WO2017164192A1 - 光電極、水分解用光電気化学システム及び光電極の製造方法 - Google Patents

光電極、水分解用光電気化学システム及び光電極の製造方法 Download PDF

Info

Publication number
WO2017164192A1
WO2017164192A1 PCT/JP2017/011276 JP2017011276W WO2017164192A1 WO 2017164192 A1 WO2017164192 A1 WO 2017164192A1 JP 2017011276 W JP2017011276 W JP 2017011276W WO 2017164192 A1 WO2017164192 A1 WO 2017164192A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectrode
intermediate layer
metal substrate
stainless steel
layer
Prior art date
Application number
PCT/JP2017/011276
Other languages
English (en)
French (fr)
Inventor
里英 斉藤
敬一 廣瀬
Original Assignee
イムラ・ジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イムラ・ジャパン株式会社 filed Critical イムラ・ジャパン株式会社
Priority to JP2018507347A priority Critical patent/JPWO2017164192A1/ja
Publication of WO2017164192A1 publication Critical patent/WO2017164192A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the present invention relates to a photoelectrode, a photoelectrochemical system for water splitting comprising the photoelectrode, and a method for producing the photoelectrode.
  • the photocatalyst is a semiconductor that receives light energy and causes charge separation (that is, electrons in the valence band are photoexcited in the conduction band and holes (holes, h + ) are formed in the valence band),
  • an oxidation-reduction reaction represented by the following formula: 2H 2 O ⁇ O 2 + 4H + + 4e ⁇ , 4H + + 4e ⁇ ⁇ 2H 2 (2H 2 O ⁇ O 2 + 2H 2 ) is catalyzed.
  • Examples of such a photocatalyst include compounds containing elements such as Ga, Zr, Ta, Si, Cd, Ti, Nb, Zn, Mo, Fe, Bi, W, V, Sn, As, and S. Solid semiconductors and the like centering on titanium oxide (TiO 2 ) are known.
  • a photoelectrode provided with a conductive base material and a photocatalyst layer made of the photocatalyst is used as an anode (anode), and water is oxidized at the anode by holes formed in the photocatalyst to generate oxygen.
  • a water splitting method in which electrons photoexcited in the photocatalyst are transferred to a cathode (cathode) as a counter electrode through an external circuit, and water is reduced at the cathode by the electrons to generate hydrogen; oxidation of water at the anode To produce carbon compounds by reducing carbon dioxide at the cathode and producing carbon compounds (CO, organic compounds, etc.); sulfate ions, chloride ions, carbonic acid and hydrogencarbonate ions, iodate ions, etc.
  • Patent Document 1 discloses a semiconductor optical device including a metal substrate having irregularities on its surface and a semiconductor layer formed on the surface of the metal substrate and made of a material having a photocatalytic action. It is described that water is decomposed using an electrode to produce hydrogen, and titanium (Ti) is used as the metal substrate, and titanium oxide and tungsten oxide are used as the materials having the photocatalytic action. Is described.
  • Patent Document 2 a photoelectrolytic element in which a photocatalytic material is formed in an island shape, a columnar shape, or a multi-hole film shape on the surface of a conductive substrate is incorporated.
  • a hydrogen production apparatus is described, and it is described that a copper sheet is used as the conductive substrate and titanium oxide is used as the photocatalytic material.
  • Non-patent Document 1 Yongqi Liang et al. Phys. Chem. C, 2011, 115, p. In 17594-17598 (Non-patent Document 1), a transparent conductive glass (FTO glass substrate) and a bismuth vanadate (BiVO 4 ) film are laminated on a photoelectrode via an intermediate layer of tin oxide (SnO 2 ). Is described.
  • Patent Documents 1 and 2 describe that the surface of the photoelectrode is provided with unevenness for the purpose of efficiently using light, but the manufacturing conditions are strictly controlled in order to provide such unevenness. It had the problem that it was necessary to do it, and the problem that it was inferior in reproducibility.
  • a metal such as titanium used as a material for a metal substrate in Patent Document 1 is inferior in fine workability and expensive, so that when it is used as a conductive base material for a photoelectrode, economic efficiency is lowered. Had the problem.
  • the FTO glass substrate used in Non-Patent Document 1 lacks flexibility, it has a problem of poor strength and formability.
  • One of materials that are inexpensive and excellent in strength and formability includes stainless steel material, but a photoelectrode using a stainless steel material as a material for the conductive substrate has not been disclosed so far.
  • Patent Document 3 a first semiconductor layer, a second semiconductor layer, and an electrode layer are sequentially stacked, and the lower end of the conduction band of the first semiconductor layer.
  • a metal such as platinum is described as the electrode layer
  • SiC and WO 3 , TiO 2, Si, and the like are described as a combination of the first semiconductor and the second semiconductor.
  • the water splitting activity ability may still be insufficient.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and is provided with a stainless steel material that is relatively inexpensive and excellent in strength and formability as a conductive substrate, has excellent water splitting activity, and It is an object of the present invention to provide a photoelectrode excellent in light utilization efficiency, a water splitting photoelectrochemical system including the photoelectrode, and a method for producing the photoelectrode.
  • the present inventors have made a photocatalyst comprising a conductive substrate and a photocatalyst layer, wherein the conductive substrate is a metal substrate made of a stainless steel material, and the photocatalyst
  • the layer is made of bismuth vanadate, and the metal base material and the photocatalyst layer are laminated via an intermediate layer made of tin oxide, so that water decomposition is achieved while providing a stainless steel material as a conductive base material.
  • a photoelectrode excellent in activity can be obtained.
  • stainless steel materials are excellent in moldability and workability, a photoelectrode having a wide reaction field area and excellent light utilization efficiency can be easily obtained by making the metal substrate a porous metal substrate having pores.
  • the present invention has been found out to be completed.
  • the photoelectrode of the present invention comprises a porous metal substrate made of a stainless steel material and having pores, an intermediate layer made of tin oxide laminated on the surface of the porous metal substrate, and the intermediate And a photocatalyst layer made of bismuth vanadate laminated on the surface of the layer, and is a porous body.
  • the intermediate layer is further laminated on the inner wall surface of the pores of the porous metal substrate, and the photocatalyst layer is formed on the surface of the intermediate layer on the inner wall surface. It is preferable that they are laminated.
  • the intermediate layer preferably has a thickness of 5 to 500 nm.
  • the stainless steel material is preferably any one selected from the group consisting of austenitic stainless steel, ferritic stainless steel and martensitic stainless steel, and the tin oxide Preferably the product is stannic oxide.
  • the photoelectrochemical system for water splitting of the present invention comprises the photoelectrode of the present invention as a working electrode.
  • the photoelectrochemical system for water splitting of the present invention preferably comprises two or more photoelectrodes. Moreover, it is preferable that the working electrode further includes a photoelectrode other than the photoelectrode.
  • the method for producing the photoelectrode of the present invention comprises: First, an intermediate layer comprising a porous metal substrate and the intermediate layer is obtained by forming an intermediate layer made of tin oxide on the surface of a porous metal substrate made of a stainless steel material and having pores. And the process of On the surface of the intermediate layer, a photocatalytic layer made of bismuth vanadate is formed using a bismuth vanadate precursor solution containing V and Bi, and the porous metal substrate and the porous metal substrate A second step of obtaining a photoelectrode that is a porous body, comprising: the intermediate layer laminated on the surface; and the photocatalyst layer laminated on the surface of the intermediate layer; Is included.
  • the first step in the first step, at least one film forming method selected from the group consisting of a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and a thermal load spray method is used.
  • the intermediate layer is preferably formed in an active gas atmosphere.
  • the water splitting activity refers to a function of decomposing water and generating hydrogen when irradiated with light in an aqueous solution using the photoelectrode as a working electrode.
  • the photoelectrode will be described later.
  • an intermediate layer is disposed between the metal base material and the photocatalyst layer, the photocatalyst layer is a layer made of bismuth vanadate, and the intermediate layer is a layer made of tin oxide. It is a specific combination.
  • the present invention excellent water splitting activity is exhibited even though the stainless steel material is used as the conductive substrate as described above, but the stainless steel material is excellent in moldability and workability. Therefore, the shape can be processed freely. Therefore, by making the metal base material a porous metal base material having pores, a photoelectrode having a wide reaction field area and capable of effectively using transmitted light and having excellent light utilization efficiency. can do. Furthermore, by simply laminating the intermediate layer and the photocatalyst layer on the surface of the porous metal substrate, it is possible to easily obtain a photoelectrode with excellent light utilization efficiency without requiring strict control. it can.
  • a photoelectrode provided with a stainless steel material, which is relatively inexpensive and excellent in strength and formability, as a conductive substrate, excellent in water splitting activity, and excellent in light utilization efficiency, the photoelectrode It is possible to provide a photoelectrochemical system for water splitting comprising: and a method for producing the photoelectrode.
  • FIG. 1 is a schematic surface view showing a preferred embodiment of a photoelectrode of the present invention.
  • FIG. 1B is a cross-sectional view taken along line A-A ′ of the schematic surface view shown in FIG. 1A.
  • FIG. 1B is a cross-sectional view taken along line B-B ′ of the schematic surface view shown in FIG. 1A. It is an expanded vertical sectional view of C part shown to FIG. 1C.
  • It is a schematic longitudinal cross-sectional view which shows other suitable one Embodiment of the photoelectrochemical system for water splitting of this invention.
  • FIG. 6 is a graph showing the performance ratio of the photoelectrochemical systems of Examples 3 to 4 to the photoelectrochemical system of Example 2. It is a graph which shows the performance ratio of the photoelectrochemical system of Example 5 with respect to the photoelectrochemical system of Example 2.
  • FIG. 7 is a graph showing the performance ratio of the photoelectrochemical systems of Examples 6 to 7 to the photoelectrochemical system of Comparative Example 1.
  • FIG. 1A is a schematic view showing the surface of a preferred embodiment of the photoelectrode (photoelectrode 10) of the present invention
  • FIG. 1B is a cross-sectional view taken along the line AA ′ of the schematic view shown in FIG. 1A
  • FIG. FIG. 1B is a sectional view taken along the line BB ′ of the schematic diagram shown in FIG. 1A
  • FIG. 1D is an enlarged sectional view of a portion C shown in FIG. 1C.
  • the photoelectrode of the present invention is a porous body having pores 4.
  • the photoelectrode 10 is a three-dimensional mesh-like porous body that is a three-dimensional mesh.
  • the shape of the photoelectrode 10 is not particularly limited, and may be a two-dimensional mesh or a sponge. Also good.
  • the shape of the pores 4 of the photoelectrode 10 is a quadrangular column, but the shape of the pores of the photoelectrode 10 is not limited to this, but a polygonal column, cylinder, sphere Or it may be a cone.
  • the pores 4 of the photoelectrode 10 penetrate so that the opposing surfaces are connected, but the pores 4 of the photoelectrode 10 may be half-penetrated, but are irradiated. From the viewpoint that all the wavelengths can be transmitted as they are, it is preferable to penetrate.
  • the photoelectrode 10 is three-dimensional or two-dimensional because it is easy to manufacture and can use both light transmitted through the photoelectrode 10 and light irregularly reflected on the surface of the photoelectrode 10. A dimensional mesh is preferred.
  • the average diameter of the pores 4 in the photoelectrode 10 is preferably 20 to 1000 ⁇ m.
  • the average diameter of the pores 4 in the photoelectrode 10 is less than the lower limit, the amount of light transmitted through the photoelectrode 10 and the amount of light irregularly reflected on the surface of the photoelectrode 10 tends to decrease, and the light utilization efficiency tends to decrease.
  • the upper limit is exceeded, the surface area of the photoelectrode 10 becomes small, the oxidation reaction field decreases, and the photoelectric conversion amount tends to decrease.
  • the average diameter of the pores is measured by measuring the diameter of the pores observed in a minute measurement range of 5 mm square at any one position with a scanning electron microscope (SEM) and calculating the average value. You can ask for it.
  • the diameter of the pore refers to the longest diameter (length in the major axis direction) when the cross section of the pore is circular, and when the cross section of the pore is not circular, The diameter of the circumscribed circle.
  • the photoelectrode 10 includes a metal base material (metal base material 1) made of a stainless steel material and an intermediate layer (intermediate layer 2) made of tin oxide laminated on the surface of the metal base material. And a photocatalyst layer (photocatalyst layer 3) made of bismuth vanadate laminated on the surface of the intermediate layer, and has a structure in which metal substrate 1 / intermediate layer 2 / photocatalyst layer 3 are laminated in this order. .
  • the metal substrate 1 functions as a conductive substrate for the photoelectrode 10 and is a porous metal substrate having pores.
  • the shape of the metal substrate 1 is not particularly limited, and can be appropriately selected according to the shape of the target photoelectrode.
  • the three-dimensional mesh is a three-dimensional lattice, a two-dimensional mesh, or a sponge. And the like.
  • Examples of the porous metal substrate having such a shape include a woven or non-woven metal wire made of a stainless steel material, a fired sintered body of a metal plate made of a stainless steel material, a punched product, and the like.
  • the shape of the pores of the metal substrate 1 can be appropriately selected according to the shape of the target photoelectrode, and is not particularly limited, and includes a quadrangular prism, a polygonal column, a cylinder, a sphere, a cone, and the like. Can be mentioned. Further, the pores of the metal substrate 1 may be penetrating or semi-penetrating, but from the viewpoint that the wavelength irradiated in the photoelectrode 10 can be transmitted through all wavelengths as it is, it penetrates. It is preferable.
  • the metal substrate 1 it is easy to manufacture the photoelectrode 10, and from the viewpoint that both the light transmitted through the photoelectrode 10 and the light irregularly reflected on the surface of the photoelectrode 10 can be used.
  • a three-dimensional or two-dimensional mesh shape is preferred.
  • the average diameter of the pores in the metal substrate 1 is preferably 20 to 1000 ⁇ m.
  • the average diameter of the pores in the metal substrate 1 is less than the lower limit, the amount of light transmitted through the obtained photoelectrode 10 and the amount of light irregularly reflected on the surface of the photoelectrode 10 are reduced, and the light utilization efficiency tends to decrease.
  • the upper limit is exceeded, the surface area of the obtained photoelectrode 10 becomes small, the oxidation reaction field decreases, and the photoelectric conversion amount tends to decrease.
  • the average diameter of the pores in the metal substrate 1 is measured with a scanning electron microscope (SEM) by measuring the diameter of the pores observed in a minute measurement range of any one 5 mm square, It can be obtained by calculating the average value.
  • the thickness of the metal substrate 1 is not particularly limited, but is preferably 20 to 1000 ⁇ m, for example.
  • the thickness of the metal substrate 1 refers to the length of the shortest portion of the continuous metal substrate.
  • the metal substrate 1 is three-dimensional or 2 made of a metal wire of a stainless steel material. In the case of a three-dimensional mesh, the thickness of the metal substrate 1 refers to the diameter of the cross section of the metal wire.
  • the stainless steel material examples include an alloy containing iron and chromium, having an iron content of 50% by mass or more and a chromium content of 10.5% by mass or more. JIS (Japan Industry Standard 2005) ) Any of austenitic stainless steel, austenitic / ferritic stainless steel, ferritic stainless steel, martensitic stainless steel, precipitation hardened stainless steel as defined by the standard, and the desired photoelectrode shape, size, or economic efficiency Can be appropriately selected.
  • the stainless steel materials include austenitic stainless steel, ferritic stainless steel, and martensite from the viewpoint of excellent corrosion resistance, strength, and workability, and from the viewpoint of improving water splitting activity.
  • SUS304 is particularly preferable.
  • the intermediate layer 2 is disposed in contact with the metal substrate 1 and the photocatalyst layer 3 between the metal substrate 1 and the photocatalyst layer 3 described later.
  • the thickness of the intermediate layer 2 is preferably 5 to 500 nm, more preferably 10 to 300 nm, and even more preferably 5 to 210 nm when the intermediate layer 2 is a layer made of tin oxide. A thickness of 10 to 200 nm is particularly preferable. If the thickness of the intermediate layer is less than the lower limit, it tends to be difficult to form a film, and the interface resistance between the metal substrate 1 and the photocatalyst layer 3 is increased. When a voltage is applied, the size tends to need to be increased. On the other hand, when the voltage exceeds the upper limit, resistance between the conductive particles tends to increase and water splitting activity tends to decrease.
  • Examples of the tin oxide include tin oxide and a composite oxide of tin oxide and indium oxide.
  • examples of the tin oxide include stannous oxide (SnO), stannic oxide (SnO 2 ), and these.
  • Examples of the composite oxide include indium tin oxide (ITO: composite oxide of In 2 O 3 and SnO 2 ).
  • stannic oxide is used from the viewpoint that it has a tendency to exhibit particularly excellent water splitting activity when combined with a stainless steel material and bismuth vanadate, and from the viewpoint of cost. It is particularly preferred.
  • the intermediate layer 2 is a uniform layer made of the tin oxide from the viewpoint that when it is combined with a stainless steel material and bismuth vanadate, the water splitting activity tends to be particularly excellent.
  • the mass per unit area of the intermediate layer 2 is preferably 0.01 to 1.2 mg / cm 2 , and the density of the tin oxide becomes denser and the water splitting activity ability is further improved. In view of the above, it is more preferably 0.1 to 1.2 mg / cm 2 .
  • the photocatalytic layer 3 is a layer that functions as a layer that receives light energy and causes charge separation.
  • the thickness of the photocatalyst layer 3 is preferably 80 to 1000 nm, and more preferably 100 to 600 nm.
  • the thickness of the photocatalyst layer 3 is less than the lower limit, the light absorptance is lowered and the water splitting activity is lowered.
  • the above upper limit is exceeded, the movement distance of electrons becomes long, charge recombination easily occurs, and the water splitting activity ability tends to decrease.
  • the photoelectrode 10 has a structure in which the intermediate layer 2 and the photocatalyst layer 3 are sequentially laminated on at least a part of the surface of the metal substrate 1, as shown in FIG.
  • the intermediate layer 2 and the photocatalyst layer 3 may be sequentially laminated on the surface, but the intermediate layer 2 and the photocatalyst layer 3 are sequentially laminated on the entire surface of the metal substrate 1 from the viewpoint of increasing the reaction field area. It is preferable that it is the structure made.
  • the surface of the metal substrate 1 includes not only the outer surface but also the inner wall surfaces of the pores of the porous metal substrate (metal substrate 1).
  • the intermediate layer 2 is laminated not only on the outer surface but also on the inner wall surface of the pores of the porous metal substrate, and the surface of the intermediate layer 2 on the inner wall surface It is preferable that the photocatalyst layer 3 is laminated on.
  • the photoelectrode 10 further includes an oxide film on the surface of the metal substrate 1 that is not covered with the intermediate layer 2. It is more preferable that the entire surface of the metal substrate 1 that is not covered with the intermediate layer 2 is covered with an oxide film.
  • an oxide film By providing such an oxide film, it becomes possible to sufficiently suppress corrosion due to water from the surface not covered with the intermediate layer 2 of the metal base 1 made of stainless steel material, and the corrosion resistance of the photoelectrode 10 can be reduced. Can be improved.
  • the thickness of such an oxide film is not particularly limited, but is preferably 1000 nm or less, for example, and preferably 5 to 200 nm.
  • the photoelectrode 10 may be one in which a promoter is supported on the surface of the photocatalyst layer 3.
  • a promoter is supported on the surface of the photocatalyst layer 3.
  • co-catalyst those conventionally known as a co-catalyst for the photoelectrode can be appropriately used.
  • NiOOH / FeOOH, FeOOH, NiOOH , Co-P i, Co-B i, Ni-B i, Co 3 O 4 CoO, IrO x, MnO x, RuO x, RhO 2 , PtO 2 is preferable, and NiOOH / FeOOH, FeOOH, NiOOH, Co—P i , and Co—B i are more preferable.
  • the photoelectrode of the present invention can be used as an electrode for artificial photosynthesis technology.
  • Useful chemicals by oxidizing an aqueous solution containing sulfate ions, chloride ions, carbonic acid and hydrogencarbonate ions, iodate ions, etc. at the anode Persulfuric acid, hypochlorous acid, hydrogen peroxide, periodate, etc.
  • the photoelectrode of this invention is excellent in water splitting activity ability as mentioned above, it can be used suitably as an electrode (water splitting photoelectrode) of the following photoelectrochemical system for water splitting.
  • the photoelectrochemical system for water splitting of the present invention comprises at least one photoelectrode of the present invention as a working electrode.
  • a schematic longitudinal sectional view of a preferred embodiment of the photoelectrochemical system for water splitting of the present invention is shown in FIG.
  • As a preferable form of the photoelectrochemical system for water splitting of the present invention as in the photoelectrochemical system 101 shown in FIG.
  • the photoelectrochemical system 101 may further include an auxiliary power source 13 for applying a voltage between the photoelectrode 10 and the counter electrode 11 through the external circuit 12.
  • the auxiliary power source 13 include a potentiostat, a chemical battery, a capacitor, a renewable energy source (solar cell or the like), and the like.
  • the oxidation-reduction reaction rate can be drastically increased by applying such an external voltage.
  • the photoelectrochemical system for water splitting of the present invention uses the photoelectrode 10 having excellent water splitting activity of the present invention
  • the photoelectrode 10 is an anode and the counter electrode 11 (cathode) is a metal electrode.
  • the magnitude of the external voltage can be made sufficiently smaller (for example, 0.80 V or less) than the theoretical electrolysis voltage of water (1.23 V).
  • the photoelectrode 10 of the present invention is an anode and a photoelectrode other than the photoelectrode 10 is used as the counter electrode 11 (cathode), the band level of the photocatalyst used for these electrodes and the water splitting standard electrode potential In the band gap of the photocatalyst of the anode, there is a standard electrode potential of water splitting half reaction: 2H 2 O ⁇ 4H + + 4e ⁇ + O 2 (1.23 V vs. SHE (standard hydrogen electrode)), and the cathode
  • the standard electrode potential of water splitting half reaction 4H + + 4e ⁇ ⁇ 2H 2 (0V vs.
  • FIGS. 3 to 6 are schematic longitudinal sectional views of other preferred embodiments of the photoelectrochemical system for water splitting of the present invention.
  • the photoelectrochemical system for water splitting according to the present invention may be provided with a plurality (two or more) of photoelectrodes 10, and as shown in FIGS.
  • FIG. Since the photoelectrode 10 is a porous body as described above, when the pore 4 penetrates, the light that has not been absorbed by the photocatalyst layer 3 can be transmitted. In the case of penetrating light, light that has not been absorbed by the photocatalyst layer 3 can be diffusely reflected and used in the reaction field, so that excellent light utilization efficiency is achieved in the photoelectrochemical system for water splitting.
  • the photoelectrochemical system 102 shown in FIG. 3 includes two photoelectrodes 10 (working electrodes) that are photoelectrodes of the present invention, and a counter electrode 11 that is electrically connected to the photoelectrode 10 by an external circuit 12. .
  • the three photoelectrodes 10 (working electrode) which are the photoelectrodes of this invention, and the counter electrode 11 electrically connected by the photoelectrode 10 and the external circuit 12 are provided. Is provided. At least a part of the surface of the photocatalyst layer 3 and the counter electrode 11 of each photoelectrode 10 is disposed so as to be in contact with the solvent 14 accommodated in the container 15.
  • the pores 4 of the photoelectrode 10 are preferably penetrated.
  • the number of the plurality of photoelectrodes 10 can be 4 or more, and the number, shape, size, and the like are the size of the system and the size per photoelectrode. Can be adjusted as appropriate.
  • the photoelectrode 10 (working electrode), which is the photoelectrode of the present invention
  • the plate electrode 16 (working electrode)
  • the photoelectrode 10 the plate electrode 16
  • the external circuit 12 And a counter electrode 11 connected to each other.
  • at least a part of the photocatalyst layer 3 surface of each photoelectrode 10, the photocatalyst layer surface of the plate electrode 16, and the counter electrode 11 are disposed so as to be in contact with the solvent 14 accommodated in the container 15.
  • the plate electrode (16) is arranged so that the surface on the photocatalyst layer side faces the side where the photoelectrode (10) is arranged, and the plate electrode (16) of the photoelectrode (10) is arranged. ) Is preferably arranged so that light is irradiated from the side opposite to the side on which it is placed.
  • the pore 4 of the photoelectrode 10 penetrates.
  • the light transmitted through the photoelectrode 10 and the light irregularly reflected by the photoelectrode 10 can be used efficiently, and the light reflected by the surface of the plate electrode 16 can be reused by the photoelectrode 10.
  • the number, shape, size, and the like of the photoelectrode 10 and the plate electrode 16 and combinations thereof can be appropriately adjusted depending on the size of the system and the size of each photoelectrode.
  • the photoelectrode 10 (working electrode) which is the photoelectrode of the present invention
  • the plate electrode 16 (working electrode), the transparent electrode 17 (working electrode), the photoelectrode 10
  • the flat electrode 16 and the transparent electrode 17 and the counter electrode 11 electrically connected by the external circuit 12 are provided.
  • at least a part of the photocatalyst layer 3 surface of each photoelectrode 10, the photocatalyst layer surface of the plate electrode 16, the photocatalyst layer surface of the transparent electrode 17, and the counter electrode 11 are disposed so as to be in contact with the solvent 14 contained in the container 15.
  • the plate electrode (16) is arranged so that the surface on the photocatalyst layer side faces the side where the photoelectrode (10) is arranged, and the plate electrode (16) of the photoelectrode (10) is arranged. ) Is preferably arranged so that light is irradiated from the side opposite to the side on which it is placed. Moreover, it is preferable that the pore 4 of the photoelectrode 10 penetrates.
  • the photoelectrochemical system for water splitting can efficiently use the light transmitted through the photoelectrode 10 and / or the light irregularly reflected at the photoelectrode 10, the photoelectrochemical system 105 shown in FIG. It can be used in combination with these various photoelectrodes, and it is possible to exhibit further excellent water splitting activity.
  • the number, shape, size, and the like of the photoelectrode 10, the plate electrode 16, and the transparent electrode 17 and combinations thereof can be appropriately adjusted according to the size of the system and the size of each photoelectrode.
  • the photoelectrochemical system for water splitting of the present invention is not limited to the form of the photoelectrochemical systems 101 to 105 shown in FIGS. 2 to 6, but the number, shape, size, and photoelectrodes of the photoelectrodes 10 10 and the combination of other photoelectrodes and / or semiconductor elements, and their arrangement may be adjusted as appropriate.
  • the method for producing the photoelectrode of the present invention comprises: First, an intermediate layer comprising a porous metal substrate and the intermediate layer is obtained by forming an intermediate layer made of tin oxide on the surface of a porous metal substrate made of a stainless steel material and having pores.
  • a photocatalytic layer made of bismuth vanadate is formed using a bismuth vanadate precursor solution containing V and Bi, and the porous metal substrate and the porous metal substrate
  • a second step of obtaining a photoelectrode that is a porous body comprising: the intermediate layer laminated on the surface; and the photocatalyst layer laminated on the surface of the intermediate layer; including.
  • the porous metal substrate made of a stainless steel material and having pores, the intermediate layer made of tin oxide, the photocatalyst layer made of bismuth vanadate, and the photoelectrode provided with these are described in the above-mentioned photoelectrode of the present invention. That's right.
  • an intermediate layer made of tin oxide is formed on the surface of a porous metal substrate made of a stainless steel material and having pores, and the porous metal substrate and the intermediate layer are provided.
  • This is a step of obtaining an intermediate.
  • the first step is performed under an inert gas atmosphere (preferably an oxygen concentration of 10% by volume).
  • the inert gas include nitrogen gas (N 2 ) and argon gas (Ar).
  • the film forming method for forming the intermediate layer made of the tin oxide in the first step is selected from the group consisting of a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and a thermal load spray method. At least one film forming method is preferable, sputtering method and / or heat load spray method is more preferable, kinetic energy is large, and adhesion between the metal substrate and the obtained intermediate layer is further improved. From the viewpoint of further increasing the density of the tin oxide and further improving the water splitting activity, the sputtering method is particularly preferable.
  • the tin oxide is used as a target, and the temperature is 400 ° C. or higher (in the inert gas atmosphere at a pressure of 3.5 Pa or less (more preferably 0.5 to 2.0 Pa)) (more Preferably, it is carried out under conditions of 350 to 550 ° C., more preferably 500 ° C.
  • the second step is a step of forming a photocatalyst layer made of bismuth vanadate using a bismuth vanadate precursor solution containing V and Bi on the surface of the intermediate layer to obtain the photoelectrode of the present invention. is there.
  • the bismuth vanadate precursor solution is a solution containing V (vanadium) and Bi (bismuth), and preferably contains a compound containing V, a compound containing Bi, and a solvent.
  • the compound containing V include vanadium carboxylate, vanadium ammonium salt, vanadium pentoxide, and the like. One of these may be used alone, or two or more may be used in combination.
  • the Bi-containing compound include bismuth carboxylate, bismuth nitrate, bismuth oxide, and the like. One of these may be used alone, or two or more may be used in combination.
  • examples of the solvent include butyl acetate, acetate ester, xylene, dimethyl sulfoxide, aqueous nitric acid, and the like. One of these may be used alone, or two or more may be used in combination.
  • the content ratio of the compound containing V and the compound containing Bi is metal conversion (number of moles of V in the bismuth vanadate precursor solution: in the bismuth vanadate precursor solution).
  • the molar ratio of Bi is preferably 1: 1.
  • the bismuth vanadate precursor solution was formed on the porous metal substrate.
  • the coating method include a spin coating method, a casting method, a spray coating method, a dip method (including electrodeposition), and among them, a spin coating method and a spray coating method are preferable.
  • the spin coating method it is preferably carried out at a temperature of 15 to 25 ° C. under conditions of 500 to 6000 rpm (more preferably 1000 to 5000 rpm).
  • the firing temperature is preferably 450 to 550 ° C., more preferably 500 to 550 ° C.
  • the firing time is preferably 0.5 to 6 hours, and more preferably 0.5 to 1 hour.
  • the method for producing a photoelectrode of the present invention further includes a step of firing the intermediate after the first step and before the second step.
  • a step of firing the intermediate By including such a process, an oxide film can be formed on the surface of the porous metal substrate that is not covered with the intermediate layer, and a photoelectrode excellent in corrosion resistance can be obtained.
  • the conditions for firing the intermediate are, in air, a firing temperature of 300 to 550 ° C. (more preferably 500 ° C.) and a firing time of 0.5 to 6 hours (more preferably 0.5 to 1 hour). Is preferred.
  • FIG. 7A shows a scanning electron microscope (SEM) photograph of the surface of the obtained photoelectrode
  • FIG. 7B shows an enlarged photograph of a portion D shown in FIG. 7A. As shown in FIGS. 7A to 7B, it was confirmed that a photocatalytic layer made of bismuth vanadate was formed on the surface of the porous metal substrate via an intermediate layer.
  • EMOD coating agent vanadium manufactured by Kojundo Chemical Laboratory Co., Ltd.
  • EMOD coating agent bismuth manufactured by Kojundo Chemical Laboratory Co., Ltd.
  • a bismuth vanadate precursor solution having a molar ratio with Bi (V: Bi) of 1: 1 was prepared.
  • the prepared bismuth vanadate precursor solution was spin-coated at 1000 rpm at a temperature of 25 ° C. on the surface of the intermediate layer opposite to the metal substrate. Thereafter, a photocatalyst layer made of bismuth vanadate is formed by baking at 550 ° C.
  • Example 1 The photoelectrode current was measured using the photoelectrochemical system 101 shown in the schematic longitudinal sectional view of FIG. That is, a potentiostat (13) is connected to the photoelectrode (10) obtained in Production Example 1 via a lead (12), and the potentiostat (13) is connected to a reference electrode (not shown) via the lead (12). First, a silver-silver chloride electrode) and a counter electrode of the photoelectrode (11, platinum electrode) were connected.
  • FIG. 8 shows a current-voltage curve obtained by cyclic voltammetry in Example 1 (with light irradiation: solid line). In addition, FIG. 8 also shows current-voltage curves obtained in the same manner as above except that no light was irradiated by the solar simulator (no light irradiation: broken line).
  • Example 4 The photoelectrode current was measured using the photoelectrochemical system 103 shown in the schematic longitudinal sectional view of FIG. That is, except that the three photoelectrodes (10) obtained in Production Example 2 were arranged so that the surfaces of each electrode were parallel to each other and connected to the potentiostat (13) via the conductor (12). In the same manner as in Example 2, a current-voltage curve was obtained.
  • Example 5 The photoelectrode current was measured using the photoelectrochemical system 104 shown in the schematic longitudinal sectional view of FIG. That is, the photoelectrode (10) obtained in Production Example 2 and the plate electrode (16) obtained in Production Example 3 are arranged so that the surfaces of each electrode are parallel to each other, and the lead wire (12) is interposed. A current-voltage curve was obtained in the same manner as in Example 2 except that it was connected to the potentiostat (13).
  • the plate electrode (16) is arranged so that the surface on the photocatalyst layer side faces the side on which the photoelectrode (10) is arranged, and light from the solar simulator is transmitted from the plate electrode (16) of the photoelectrode (10). Irradiation was from the side opposite to the side where it was placed.
  • Example 2 was conducted in the same manner as in Examples 2-4.
  • the performance ratio of the photoelectrochemical system of Example 5 to the photoelectrochemical system was determined. The obtained results are shown in FIG.
  • Example 6 A current-voltage curve was obtained in the same manner as in Example 5 except that the transparent electrode obtained in Production Example 4 was used in place of the plate electrode (16) obtained in Production Example 3.
  • the current density measured when water is decomposed is large, that is, it exhibits excellent water splitting activity and has good performance as a photoelectrode.
  • Examples 1 and 2 the results shown in FIG. 10 in the photoelectrochemical system for water splitting using the photoelectrode of the present invention (Examples 2 to 4), the water splitting ability decreases even when the number of electrodes is increased. It was confirmed that the water splitting activity was further improved in proportion to the number of electrodes. This is because the light transmitted through the photoelectrode can be used as it is in another photoelectrode because the photoelectrode of the present invention is a porous body.
  • the photoelectrode of the present invention has excellent water splitting activity even when combined with other photoelectrodes such as transparent electrodes and flat electrodes (Examples 6 to 7). It was confirmed that it was demonstrated.
  • a stainless steel material that is relatively inexpensive and excellent in strength and formability is provided as a conductive base material, has excellent water splitting activity, and has excellent light utilization efficiency. It is possible to provide a photoelectrode, a photoelectrochemical system for water splitting comprising the photoelectrode, and a method for producing the photoelectrode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

ステンレス系材料からなりかつ細孔を有する多孔性金属基材と、前記多孔性金属基材の表面上に積層されたスズ酸化物からなる中間層と、前記中間層の表面上に積層されたバナジン酸ビスマスからなる光触媒層と、を備え、かつ、多孔体である、光電極。

Description

光電極、水分解用光電気化学システム及び光電極の製造方法
 本発明は、光電極、前記光電極を備える水分解用光電気化学システム及び前記光電極の製造方法に関する。
 人工光合成技術は、太陽光などの光エネルギーを利用して、光触媒の存在下、水から水素及び酸素を、二酸化炭素及び水から炭素化合物(CO、有機化合物等)及び酸素を、それぞれ合成することが可能な技術である。このような人工光合成により合成される水素は、深刻化する環境問題やエネルギー問題を解決するためのクリーンエネルギーとして特に注目を集めている。前記光触媒は光エネルギーを受けて電荷分離を起こす(すなわち、価電子帯にある電子が伝導帯に光励起されると共に価電子帯に正孔(ホール、h)が形成される)半導体であり、前記水素の合成においては、次式:2HO→O+4H+4e、4H+4e→2H(2HO→O+2H)で表わされる酸化還元反応を触媒する。このような光触媒としては、Ga、Zr、Ta、Si、Cd、Ti、Nb、Zn、Mo、Fe、Bi、W、V、Sn、As、S等の元素を含む化合物が挙げられ、例えば、酸化チタン(TiO)を中心とする固体の半導体などが知られている。
 前記人工光合成技術としては、例えば、導電性基材と前記光触媒からなる光触媒層とを備える光電極をアノード(陽極)として用い、前記光触媒において形成された正孔によってアノードで水を酸化して酸素を生成させると共に、前記光触媒において光励起された電子を外部回路を通じて対極であるカソード(陰極)に移動させ、同電子によってカソードで水を還元して水素を生成させる水分解方法;アノードで水を酸化して酸素を生成させると共に、カソードで二酸化炭素を還元して炭素化合物(CO、有機化合物等)を生成させる方法;アノードで、硫酸イオン、塩化物イオン、炭酸及び炭酸水素イオン、ヨウ素酸イオン等を含む水溶液を酸化して有用化学品(過硫酸、次亜塩素酸、過酸化水素、過ヨウ素酸塩等)を製造すると共に、カソードで、水を還元して水素を生成させる方法などが知られている。
 例えば、特開2006-297300号公報(特許文献1)には、表面に凹凸を構成した金属基板と、前記金属基板表面に形成された光触媒作用を有する材料からなる半導体層と、を備える半導体光電極を用いて水を分解し、水素を製造することが記載されており、前記金属基板としてはチタン(Ti)を、前記光触媒作用を有する材料としては酸化チタン及び酸化タングステンを、それぞれ用いたことが記載されている。
 さらに、例えば、特開2003-146602号公報(特許文献2)には、導電性基板の表面に光触媒材料が島状、柱状又は多穴膜状に形成されている光電気分解素子が組み込まれた水素製造装置が記載されており、前記導電性基板として銅シートを、前記光触媒材料として酸化チタンを、それぞれ用いたことが記載されている。
 また、例えば、Yongqi Liangら、J.Phys.Chem.C、2011年、115、p.17594-17598(非特許文献1)には、光電極において、透明導電性ガラス(FTOガラス基板)と、バナジン酸ビスマス(BiVO)フィルムとを酸化スズ(SnO)の中間層を介して積層させることが記載されている。
 しかしながら、特許文献1~2には光を効率よく利用することを目的として光電極の表面に凹凸を設けることが記載されているものの、このような凹凸を設けるためには製造条件を厳密に制御する必要があるという問題や、再現性に劣るという問題を有していた。また、特許文献1で金属基板の材料として用いられているチタンのような金属は、微細加工性に劣り、高価であるため、これを光電極の導電性基材として用いると経済性が低下するという問題を有していた。さらに、非特許文献1で用いられているFTOガラス基板は柔軟性に欠けるため、強度や成形性に劣るといった問題を有していた。安価で強度及び成形性に優れた材料の一つとしてはステンレス系材料が挙げられるが、導電性基材の材料としてステンレス系材料を用いた光電極はこれまで開示されていない。
 また、例えば、国際公開第2012/137240号(特許文献3)には、第1の半導体層、第2の半導体層及び電極層が順に積層されており、第1の半導体層の伝導帯の下端電位が水素生成電位よりも高く、第2の半導体層の価電子帯の上端電位が酸素生成電位よりも低く、第1の半導体層のバンドギャップが第2の半導体層のバンドギャップよりも大きい半導体素子が記載されており、前記電極層としては白金等の金属が、第1の半導体及び第2の半導体の組み合わせとしてはSiC及びWO、TiO及びSi等が、それぞれ記載されている。しかしながら、このような組み合わせの半導体素子においては、水分解活性能が未だ不十分な場合があった。
特開2006-297300号公報 特開2003-146602号公報 国際公開第2012/137240号
Yongqi Liangら、J.Phys.Chem.C、2011年、115、p.17594-17598
 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、比較的安価で強度及び成形性に優れたステンレス系材料を導電性基材として備え、水分解活性能に優れ、かつ、光の利用効率に優れた光電極、前記光電極を備える水分解用光電気化学システム、及び前記光電極の製造方法を提供することを目的とする。
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、導電性基材及び光触媒層を備える光電極において、前記導電性基材をステンレス系材料からなる金属基材とし、前記光触媒層をバナジン酸ビスマスからなる層とし、前記金属基材と前記光触媒層とを、スズ酸化物からなる中間層を介して積層させることにより、ステンレス系材料を導電性基材として備えつつ、水分解活性能に優れた光電極が得られることを見い出した。さらに、ステンレス系材料は成形性・加工性に優れるため、前記金属基材を細孔を有する多孔性金属基材とすることにより、反応場面積が広く光の利用効率に優れた光電極を容易に得ることができることを見い出し、本発明を完成するに至った。
 すなわち、本発明の光電極は、ステンレス系材料からなりかつ細孔を有する多孔性金属基材と、前記多孔性金属基材の表面上に積層されたスズ酸化物からなる中間層と、前記中間層の表面上に積層されたバナジン酸ビスマスからなる光触媒層と、を備え、かつ、多孔体であるものである。
 本発明の光電極においては、さらに、前記多孔性金属基材の細孔の内壁表面上に前記中間層が積層されており、かつ、前記内壁表面上の前記中間層の表面に前記光触媒層が積層されていることが好ましい。
 また、本発明の光電極においては、前記中間層の厚さが5~500nmであることが好ましい。さらに、本発明の光電極においては、前記ステンレス系材料が、オーステナイト系ステンレス、フェライト系ステンレス及びマルテンサイト系ステンレスからなる群から選択されるいずれか1種であることが好ましく、また、前記スズ酸化物が酸化第二スズであることが好ましい。
 本発明の水分解用光電気化学システムは、本発明の光電極を作用電極として備えるものである。
 本発明の水分解用光電気化学システムとしては、前記光電極を2つ以上備えることが好ましい。また、前記作用電極として、前記光電極以外の他の光電極をさらに備えることが好ましい。
 本発明の光電極の製造方法は、
 ステンレス系材料からなりかつ細孔を有する多孔性金属基材の表面上にスズ酸化物からなる中間層を形成して、前記多孔性金属基材と前記中間層とを備える中間体を得る第1の工程と、
 前記中間層の表面上に、V及びBiを含有するバナジン酸ビスマス前駆体溶液を用いてバナジン酸ビスマスからなる光触媒層を形成して、前記多孔性金属基材と、前記多孔性金属基材の表面上に積層された前記中間層と、前記中間層の表面上に積層された前記光触媒層と、を備え、かつ、多孔体である光電極を得る第2の工程と、
を含むものである。
 本発明の光電極の製造方法では、第1の工程において、真空蒸着法、スパッタ法、イオンプレーティング法、メッキ法及び熱負荷スプレー法からなる群から選択される少なくとも一つの成膜法により不活性ガス雰囲気下で前記中間層を形成することが好ましい。
 なお、本発明において、水分解活性能とは、光電極を作用電極として水溶液中で光を照射した場合に水を分解して水素を発生させる機能のことを指し、例えば、光電極を後述する水素製造装置のアノード(作用電極)として用いた際に、測定される電流密度が大きい程、水分解活性能に優れると判断でき、また、光電変換効率に優れると判断できる。
 本発明の構成によって前記目的が達成される理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、金属基材表面に光触媒層が直接積層されてなる光電極においては、光触媒層で光エネルギーを受けて励起された電子がその固体中の既存電子と衝突しやすくなるため、内部抵抗が増大してしまう。また、例えば、特許文献3に記載されている構成の光電極では、半導体層(光触媒層)及び電極層(金属基材)の材料の組み合わせによっては、電荷分離した電子と正孔との再結合(電荷再結合)が起こりやすくなるため、対極に移動する電子が減少して十分な光電変換効率が達成されない。これに対して、本発明においては、ステンレス系材料からなる金属基材、スズ酸化物からなる中間層、及びバナジン酸ビスマスからなる光触媒層が順に積層された特定の組み合わせの構成とすることにより、前記金属基材と前記光触媒層との間に、伝導帯が空である前記中間層が配置される。そのため、伝導帯の下端の電位が+0.05V付近(pH0)であるバナジン酸ビスマスにおいて励起された電子が、例えば酸化第二スズでは伝導帯の下端の電位が+0.1V付近(pH0)であるスズ酸化物に捕捉され、その後ステンレス系材料に比較的スムーズに受け渡されることが可能となる。したがって、このような電子の整流作用により、本発明の光電極においては電荷再結合が十分に抑制されて優れた光電変換効率が達成される、すなわち、優れた水分解活性能が発揮されるものと本発明者らは推察する。
 さらに、ステンレス系材料は表面に酸化被膜を形成するために光電極の導電性基材の材料として単に用いることは困難であったと本発明者らは考えるが、本発明においては、ステンレス系材料からなる金属基材を用いるに際して、前記金属基材と光触媒層との間に中間層を配置し、前記光触媒層がバナジン酸ビスマスからなる層であり、かつ、前記中間層がスズ酸化物からなる層である特定の組み合わせとする。これにより、前記金属基材、前記中間層及び前記光触媒層の間の密着性に優れ、安価で強度及び成形性に優れたステンレス系材料を導電性基材として備える光電極を提供することが可能になると本発明者らは推察する。また、本発明においては、上記特定の組み合わせにおいて、不活性ガス雰囲気下で前記中間層を形成することにより、ステンレス系材料からなる金属基材の表面に形成される酸化被膜の影響を受けず、得られた前記金属基材と前記中間層との間でスムーズに電子が受け渡され、上記の電子の整流作用がより向上するため、ステンレス系材料からなる金属基材を導電性基材として備えているにもかかわらず、水分解活性能に優れた光電極を提供することが可能となったものと本発明者らは推察する。
 さらに、本発明においては、上記のようにステンレス系材料を導電性基材として用いているにもかかわらず優れた水分解活性能が発揮されるが、ステンレス系材料は成形性・加工性に優れるため、その形状を自由に加工することができる。そのため、前記金属基材を細孔を有する多孔性金属基材とすることで、反応場面積が広く、かつ、透過光を有効利用することが可能な、光の利用効率に優れた光電極とすることができる。さらに、前記多孔性金属基材の表面に前記中間層及び前記光触媒層を積層するだけで、厳密な制御を必要とせず、このように光の利用効率に優れた光電極を容易に得ることができる。
 本発明によれば、比較的安価で強度及び成形性に優れたステンレス系材料を導電性基材として備え、水分解活性能に優れ、かつ、光の利用効率に優れた光電極、前記光電極を備える水分解用光電気化学システム、及び前記光電極の製造方法を提供することが可能となる。
本発明の光電極の好適な一実施形態を示す概略表面図である。 図1Aに示す概略表面図のA-A’線断面図である。 図1Aに示す概略表面図のB-B’線断面図である。 図1Cに示すC部分の拡大縦断面図である。 本発明の水分解用光電気化学システムの好適な一実施形態を示す概略縦断面図である。 本発明の水分解用光電気化学システムの他の好適な一実施形態を示す概略縦断面図である。 本発明の水分解用光電気化学システムの他の好適な一実施形態を示す概略縦断面図である。 本発明の水分解用光電気化学システムの他の好適な一実施形態を示す概略縦断面図である。 本発明の水分解用光電気化学システムの他の好適な一実施形態を示す概略縦断面図である。 製造例1で得られた光電極表面の走査型電子顕微鏡(SEM)写真である。 図4Aに示すD部分の拡大写真である。 実施例1において得られた電流-電圧曲線を示すグラフである。 実施例2において得られた電流-電圧曲線を示すグラフである。 実施例2の光電気化学システムに対する実施例3~4の光電気化学システムの性能比を示すグラフである。 実施例2の光電気化学システムに対する実施例5の光電気化学システムの性能比を示すグラフである。 比較例1の光電気化学システムに対する実施例6~7の光電気化学システムの性能比を示すグラフである。
 以下、本発明をその好適な実施形態に即して詳細に説明する。先ず、本発明の光電極について、図面を参照しながら本発明の好ましい形態を例に挙げて詳細に説明するが、本発明はこれに限定されるものではない。なお、以下の説明及び図面中、同一又は相当する要素には同一の符号を付し、重複する説明は省略する。
 図1Aは本発明の光電極(光電極10)の好適な一実施形態の表面を示す概略図であり、図1Bは図1Aに示す概略図のA-A’線断面図であり、図1Cは図1Aに示す概略図のB-B’線断面図であり、図1Dは図1Cに示すC部分の拡大断面図である。図1A~図1Cに示すように、本発明の光電極は、細孔4を有する多孔体である。図1A~図1Cにおいて、光電極10は、3次元メッシュである立体格子状の多孔体であるが、光電極10の形状としては、特に限定されず、2次元メッシュ状又はスポンジ状であってもよい。また、図1A~図1Cにおいて、光電極10の細孔4の形状は四角柱となっているが、光電極10の細孔の形状としてはこれに限定されず、多角形柱、円柱、球又は円錐であってもよい。また、図1A~図1Cにおいて、光電極10の細孔4は相対する面が繋がるように貫通しているが、光電極10の細孔4としては半貫通であってもよいが、照射された波長をそのまま全波長透過させることができるという観点からは、貫通していることが好ましい。これらの中でも、光電極10としては、製造が容易であり、かつ、光電極10を透過する光及び光電極10表面で乱反射される光のいずれも利用可能になるという観点から、3次元又は2次元のメッシュ状であることが好ましい。
 光電極10における細孔4の平均径としては、20~1000μmであることが好ましい。光電極10における細孔4の平均径が前記下限未満である場合には、光電極10を透過する光量や光電極10表面で乱反射される光量が減って光の利用効率が低下する傾向にあり、他方、前記上限を超える場合には、光電極10の表面積が小さくなって酸化反応場が減少し、光電変換量が減少する傾向にある。なお、本発明において、細孔の平均径は、走査型電子顕微鏡(SEM)によって、任意の1箇所の5mm角の微小測定範囲で観察される細孔の直径を計測し、その平均値を算出することで求めることができる。前記細孔の直径とは、該細孔の断面が円状である場合にはその最長径(長軸方向の長さ)のことをいい、該細孔の断面が円状でない場合にはその外接円の直径のことをいう。
 光電極10は、図1Dに示すように、ステンレス系材料からなる金属基材(金属基材1)と、前記金属基材の表面上に積層されたスズ酸化物からなる中間層(中間層2)と、前記中間層の表面上に積層されたバナジン酸ビスマスからなる光触媒層(光触媒層3)と、を備え、金属基材1/中間層2/光触媒層3の順に積層された構造を有する。
 本発明において、金属基材1は、光電極10の導電性基材として機能するものであり、また、細孔を有する多孔性金属基材である。このような金属基材1の形状としては、特に限定されず、目的とする光電極の形状に応じて適宜選択することができ、3次元メッシュである立体格子状、二次元メッシュ状、スポンジ状等の形状が挙げられる。このような形状の多孔性金属基材としては、ステンレス系材料からなる金属線の織物、不織物;ステンレス系材料からなる金属板の発砲焼結体、パンチング加工物等が挙げられる。また、金属基材1の細孔の形状としても、目的とする光電極の形状に応じて適宜選択することができ、特に限定されず、四角柱、多角形柱、円柱、球、円錐等が挙げられる。また、金属基材1の細孔としては、貫通であっても半貫通であってもよいが、光電極10において照射された波長をそのまま全波長透過させることができるという観点からは、貫通していることが好ましい。これらの中でも、金属基材1としては、光電極10の製造が容易であり、かつ、光電極10を透過する光及び光電極10表面で乱反射される光のいずれも利用可能になるという観点から、3次元又は2次元のメッシュ状であることが好ましい。
 金属基材1における細孔の平均径としては、20~1000μmであることが好ましい。金属基材1における細孔の平均径が前記下限未満である場合には、得られる光電極10を透過する光量や光電極10表面で乱反射される光量が減って光の利用効率が低下する傾向にあり、他方、前記上限を超える場合には、得られる光電極10の表面積が小さくなって酸化反応場が減少し、光電変換量が減少する傾向にある。なお、本発明において、金属基材1における細孔の平均径は、走査型電子顕微鏡(SEM)によって、任意の1箇所の5mm角の微小測定範囲で観察される細孔の直径を計測し、その平均値を算出することで求めることができる。
 金属基材1の厚みとしては、特に制限されないが、例えば、20~1000μmであることが好ましい。なお、本発明において、金属基材1の厚みとは、連続する金属基材の最短部分の長さのことをいい、例えば、金属基材1がステンレス系材料の金属線からなる3次元又は2次元のメッシュ状である場合、当該金属基材1の厚みは、前記金属線の断面の直径を指す。
 前記ステンレス系材料としては、鉄及びクロムを含み、鉄の含有量が50質量%以上、かつ、クロムの含有量が10.5質量%以上である合金が挙げられ、2005年JIS(Japan Industry Standard)規格で定められるオーステナイト系ステンレス、オーステナイト・フェライト系ステンレス、フェライト系ステンレス、マルテンサイト系ステンレス、析出硬化系ステンレスのいずれであってもよく、目的とする光電極の形状や大きさ、或いは経済性によって適宜選択することができる。これらの中でも、前記ステンレス系材料としては、耐腐食性、強度、加工性に優れる傾向にある観点、水分解活性能がより向上する傾向にある観点から、オーステナイト系ステンレス、フェライト系ステンレス及びマルテンサイト系ステンレスからなる群から選択されるいずれか1種であることが好ましく、2005年JIS規格で定められるSUS304、SUS316、SUS420、SUS430のうちのいずれか1種であることがより好ましく、比較的安価であるという観点からは、SUS304であることが特に好ましい。
 本発明において、中間層2は、前述の金属基材1と後述の光触媒層3との間に、金属基材1と光触媒層3とに接して配置される。中間層2の厚みとしては、5~500nmであることが好ましく、10~300nmであることがより好ましく、中間層2が酸化スズからなる層である場合には5~210nmであることがさらに好ましく、10~200nmであることが特に好ましい。前記中間層の厚みが前記下限未満であると、成膜が困難となる傾向にある他、金属基材1及び光触媒層3との界面抵抗が増大するため、水分解活性能が低下したり外部電圧を印加する場合にその大きさを大きくする必要が生じる傾向にあり、他方、前記上限を超えると、導電粒子間の抵抗が増大して水分解活性能が低下する傾向にある。
 前記スズ酸化物としては、酸化スズ及び酸化スズと酸化インジウムとの複合酸化物が挙げられ、前記酸化スズとしては、酸化第一スズ(SnO)、酸化第二スズ(SnO)、及びこれらの混合物が挙げられ、前記複合酸化物としては、酸化インジウムスズ(ITO:InとSnOとの複合酸化物)が挙げられる。これらの中でも、前記スズ酸化物としては、ステンレス系材料及びバナジン酸ビスマスと組み合わせた際に特に優れた水分解活性能を発揮できる傾向にあるという観点、及びコストの観点から、酸化第二スズであることが特に好ましい。
 また、中間層2としては、ステンレス系材料及びバナジン酸ビスマスと組み合わせた際に特に優れた水分解活性能を発揮できる傾向にあるという観点から、前記スズ酸化物からなる均一な層であることが好ましい。このような中間層2の単位面積当たりの質量としては、0.01~1.2mg/cmであることが好ましく、前記スズ酸化物の密度がより密になって水分解活性能がさらに向上する観点からは0.1~1.2mg/cmであることがより好ましい。
 本発明において、光触媒層3は、光エネルギーを受けて電荷分離を起こす層として機能する層である。光触媒層3の厚みとしては、80~1000nmであることが好ましく、100~600nmであることがより好ましい。光触媒層3の厚みが前記下限未満であると、光の吸収率が低下して水分解活性能が低下する。他方、前記上限を超えると、電子の移動距離が長くなって電荷再結合が起こりやすくなり、水分解活性能が低下する傾向にある。
 光電極10としては、金属基材1の表面の少なくとも一部に中間層2及び光触媒層3が順に積層された構造であっても、図1Dに示すように、金属基材1の両面又は全表面に中間層2及び光触媒層3が順に積層された構造であってもよいが、反応場面積が広くなるという観点から、金属基材1の全表面に中間層2及び光触媒層3が順に積層された構造であることが好ましい。なお、本発明において、金属基材1の表面には、外表面のみならず、多孔性金属基材(金属基材1)の細孔の内壁表面も含まれ、光電極10としては、反応場面積が広くなって光の利用効率がより向上する観点、及び、ステンレス系材料からなる金属基材1の水による腐食を十分に抑制することが可能となり、光電極10の耐食性を向上させることができる傾向にあるという観点から、外表面のみならず、前記多孔性金属基材の細孔の内壁表面上にも中間層2が積層されており、かつ、前記内壁表面上の中間層2の表面に光触媒層3が積層されていることが好ましい。
 また、金属基材1の表面が全て中間層2に覆われていない場合、光電極10としては、金属基材1の中間層2に覆われていない表面上に酸化被膜をさらに備えていることが好ましく、金属基材1の中間層2に覆われていない表面が全て酸化被膜によって覆われていることがより好ましい。このような酸化被膜を備えることにより、ステンレス系材料からなる金属基材1の中間層2に覆われていない面からの水による腐食を十分に抑制することが可能となり、光電極10の耐食性を向上させることができる。このような酸化被膜の厚みとしては、特に制限されないが、例えば、1000nm以下であることが好ましく、5~200nmであることが好ましい。
 また、光電極10としては、光触媒層3の表面上に助触媒が担持されているものであってもよい。前記助触媒としては、光電極の助触媒として従来公知のものを適宜用いることができる。本発明において、前記助触媒としては、NiOOH/FeOOH、FeOOH、NiOOH、Co‐P、Co‐B、Ni‐B、Co、CoO、IrO、MnO、RuO、RhO、PtOであることが好ましく、NiOOH/FeOOH、FeOOH、NiOOH、Co‐P、Co‐Bであることがより好ましい。
 本発明の光電極は人工光合成技術の電極として用いることができ、例えば、下記の水分解用光電気化学システムを用いた水分解方法;アノードで水を酸化して酸素を生成させると共に、カソードで二酸化炭素を還元して炭素化合物(CO、有機化合物等)を生成させる方法;アノードで、硫酸イオン、塩化物イオン、炭酸及び炭酸水素イオン、ヨウ素酸イオン等を含む水溶液を酸化して有用化学品(過硫酸、次亜塩素酸、過酸化水素、過ヨウ素酸塩等)を製造すると共に、カソードで、水を還元して水素を生成させる方法などの電極として用いることができる。中でも、本発明の光電極は、上記のように水分解活性能に優れるため、下記の水分解用光電気化学システムの電極(水分解用光電極)として好適に用いることができる。
 次いで、本発明の水分解用光電気化学システムについて、図面を参照しながら本発明の好ましい形態を例に挙げて詳細に説明する。本発明の水分解用光電気化学システムは、少なくとも1つの本発明の光電極を作用電極として備える。本発明の水分解用光電気化学システムの好適な実施形態の概略縦断面図を図2に示す。本発明の水分解用光電気化学システムの好ましい形態としては、図2に示す光電気化学システム101のように、本発明の光電極である光電極10(作用電極)と、光電極10と外部回路12によって電気的に接続されている対極11とを備える。光電極10の光触媒層3面及び対極11のそれぞれ少なくとも一部は、容器15に収容された溶媒14に接するように配置される。
 対極11の材料としては、特に限定されず、例えば、白金、金、パラジウム、鉄、銅、カーボン、前記ステンレス系材料等の金属や、本発明の光電極10以外の光電極が挙げられ、これらの中でも、水素製造装置において本発明の光電極と組み合わせた際に水素の発生効率が向上する観点からは白金が好ましく、比較的安価で経済性に優れるという観点からは前記ステンレス系材料が好ましい。また、外部回路12の材料としては、特に限定されず、導線の材料として公知のものを適宜利用することができ、例えば、白金、金、パラジウム、鉄、銅等の金属が挙げられる。
 溶媒14としては、電解質水溶液が挙げられ、前記電解質水溶液としては、緩衝作用を有する支持電解質含有水溶液であることが好ましく、例えば、アルカリ金属の塩化物、アルカリ金属の水酸化物、アルカリ金属の炭酸塩、アルカリ金属の硫酸塩、アルカリ金属のホウ酸塩、アルカリ金属のリン酸塩、又はこれらのうちの2種以上を電解質として含有する緩衝溶液が挙げられる。また、容器15としては、光を透過させることができるものであることが好ましく、例えば、ガラス製やプラスチック製の容器が挙げられる。
 さらに、光電気化学システム101としては、図2に示すように、外部回路12を通じて光電極10と対極11との間に電圧を印加するための補助電源13をさらに備えていてもよい。補助電源13としては、例えば、ポテンショスタット、化学電池、キャパシタ、再生可能エネルギー源(太陽電池等)等が挙げられる。本発明の水分解用光電気化学システムにおいては、このような外部電圧を印加することで酸化還元反応速度を飛躍的に増大させることができる。また、本発明の水分解用光電気化学システムは、本発明の水分解活性能に優れた光電極10を用いているため、例えば、光電極10をアノードとし、対極11(カソード)として金属電極を用いた場合には、外部電圧の大きさを水の理論電解電圧(1.23V)よりも十分に小さくする(例えば0.80V以下)ことができる。
 なお、本発明の光電極10をアノードとし、対極11(カソード)として光電極10以外の光電極を用いた場合において、これらの電極に用いられている光触媒のバンド準位と水分解標準電極電位を比較した時に、アノードの光触媒のバンドギャップ内に水分解半反応の標準電極電位:2HO→4H+4e+O(1.23V vs.SHE(標準水素電極))が存在し、カソードの光触媒のバンドギャップ内に水分解半反応の標準電極電位:4H+4e→2H(0V vs.SHE)が存在し、かつ、電子伝達体として機能するレドックス種の標準電極電位が両光触媒のバンドギャップ内にある溶液を溶媒14とした構成のとき、或いは、アノード及びカソードの光触媒のバンドギャップ内に水分解の標準電極電位(0V、1.23V)が存在する構成のときには、外部電圧を印加する必要はない。しかしながら、上記の光電極10と金属電極との組み合わせによれば、両電極に光電極を用いた場合よりも水分解効率に優れ、上記のように印加する外部電圧を十分に小さくすることができ、さらに、比較的安価な金属電極を用いることができるため、経済合理性のある水素製造コストを実現することが可能となる。
 図3~6には、本発明の水分解用光電気化学システムの他の好適な実施形態の概略縦断面図を示す。本発明の水分解用光電気化学システムとしては、図3~4に示すように、光電極10を複数(2つ以上)備えていてもよく、また、図5~6に示すように、作用電極として、光電極10と組み合わせて他の光電極や光電極として作用する半導体素子(16、17等)を備えていてもよい。光電極10は上記のように多孔体であるため、細孔4が貫通している場合には光触媒層3に吸収されなかった光を透過させることができ、また、細孔4が貫通又は半貫通である場合には光触媒層3に吸収されなかった光を乱反射させて反応場に留めて利用することができるため、水分解用光電気化学システムにおいて優れた光の利用効率が達成される。
 図3に示す光電気化学システム102においては、本発明の光電極である光電極10(作用電極)を2つと、光電極10と外部回路12によって電気的に接続されている対極11とを備える。また、図4に示す光電気化学システム103においては、本発明の光電極である光電極10(作用電極)を3つと、光電極10と外部回路12によって電気的に接続されている対極11とを備える。各光電極10の光触媒層3面及び対極11のそれぞれ少なくとも一部は、容器15に収容された溶媒14に接するように配置される。
 図3~4に示した光電気化学システム102~103では、光電極10の細孔4は貫通していることが好ましい。この場合、光電極10を光が透過するため、電極数を増やしても各電極表面に光が照射されて電極ごとの水分解活性能が維持される。そのため、電極数に比例して水分解活性能をさらに向上させることができる。このような光電気化学システムにおいて、複数の光電極10の数は4以上にもすることができ、また、その数、形状、大きさ等は、システムの大きさや光電極1つ当たりの大きさによって適宜調整することができる。
 図5に示す光電気化学システム104においては、本発明の光電極である光電極10(作用電極)と、平板電極16(作用電極)と、光電極10及び平板電極16と外部回路12によって電気的に接続されている対極11とを備える。また、各光電極10の光触媒層3面、平板電極16の光触媒層面、及び対極11のそれぞれ少なくとも一部は、容器15に収容された溶媒14に接するように配置される。光電気化学システム104においては、平板電極(16)はその光触媒層側の面が光電極(10)が配置された側を向くように配置され、かつ、光電極(10)の平板電極(16)が配置された側とは反対の側から光が照射されるように配置されることが好ましい。
 平板電極16としては、平板状の導電性基材と光触媒からなる光触媒層とを備える光電極が挙げられる。このような平板電極16としては、反射光を有効利用できる観点から、光を透過しないものであることが好ましく、従来から光電極として用いられているものを適宜用いてもよいし、本発明に係る金属基材1を平板状の金属基板に代えて得られた光電極を用いてもよいし、これらのうちの1種を単独で用いても2種以上を組み合わせて用いてもよい。
 図5に示した光電気化学システム104では、光電極10の細孔4は貫通していることが好ましい。この場合、光電極10を透過した光及び光電極10において乱反射した光を効率よく利用できることに加えて、平板電極16の表面で反射した光を光電極10で再利用できるため、水分解活性能をさらに向上させることができる。光電極10及び平板電極16の数、形状、大きさ等、並びにそれらの組み合わせとしては、システムの大きさや各光電極1つ当たりの大きさによって適宜調整することができる。
 図6に示す光電気化学システム105においては、本発明の光電極である光電極10(作用電極)と、平板電極16(作用電極)と、透明電極17(作用電極)と、光電極10、平板電極16及び透明電極17と外部回路12によって電気的に接続されている対極11とを備える。また、各光電極10の光触媒層3面、平板電極16の光触媒層面、透明電極17の光触媒層面、及び対極11のそれぞれ少なくとも一部は、容器15に収容された溶媒14に接するように配置される。光電気化学システム105においては、平板電極(16)はその光触媒層側の面が光電極(10)が配置された側を向くように配置され、かつ、光電極(10)の平板電極(16)が配置された側とは反対の側から光が照射されるように配置されることが好ましい。また、光電極10の細孔4としては貫通していることが好ましい。
 透明電極17としては、透明導電性基材と光触媒からなる光触媒層とを備える光電極が挙げられる。このような透明電極17としては、透過光を有効利用できる観点から、光を透過するものであることが好ましく、従来から透明光電極として用いられているものを適宜用いてもよいし、本発明に係る金属基材1を透明導電性基板(FTO、ITO等)に代えて得られた光電極を用いてもよいし、これらのうちの1種を単独で用いても2種以上を組み合わせて用いてもよい。
 本発明の水分解用光電気化学システムは、光電極10を透過した光及び/又は光電極10において乱反射した光を効率よく利用できるため、図6に示す光電気化学システム105のように、他の各種光電極と組み合わせて用いることができ、さらに優れた水分解活性能を発揮することが可能となる。光電極10、平板電極16、透明電極17の数、形状、大きさ等、並びにそれらの組み合わせとしては、システムの大きさや各光電極1つ当たりの大きさによって適宜調整することができる。
 光電気化学システム101~105は、水素製造装置として用いることができ、例えば、光電極10をアノード、対極11をカソードとして、光触媒層3の表面に太陽光などの光を照射すると、光触媒層3に光が吸収され、光触媒層3において形成された正孔によってアノードで水を酸化して酸素を生成させると共に、光触媒層3において光励起された電子が外部回路12を通じて対極11に移動し、対極11で水を還元して水素を生成させることができる。
 なお、本発明の水分解用光電気化学システムは図2~6に示した光電気化学システム101~105の形態に限定されるものではなく、光電極10の数、形状、大きさや、光電極10と他の光電極及び/又は半導体素子との組み合わせ、並びにこれらの配置は、適宜調整されてもよいし、また例えば、対極11が複数あってもよいし、容器15は内部がアノード側及びカソード側のように複数に分割されていてもよいし、生成した水素及び酸素等のガスを取り出すための排気管や溶媒14を供給するための供給管、これらの排気量や供給量をコントロールするための制御手段等をさらに備えていてもよい。
 次いで、本発明の光電極の製造方法について説明する。本発明の光電極の製造方法は、
 ステンレス系材料からなりかつ細孔を有する多孔性金属基材の表面上にスズ酸化物からなる中間層を形成して、前記多孔性金属基材と前記中間層とを備える中間体を得る第1の工程と、
 前記中間層の表面上に、V及びBiを含有するバナジン酸ビスマス前駆体溶液を用いてバナジン酸ビスマスからなる光触媒層を形成して、前記多孔性金属基材と、前記多孔性金属基材の表面上に積層された前記中間層と、前記中間層の表面上に積層された前記光触媒層と、を備え、かつ、多孔体である光電極を得る第2の工程と、
を含む。ステンレス系材料からなりかつ細孔を有する多孔性金属基材、スズ酸化物からなる中間層、バナジン酸ビスマスからなる光触媒層、及びこれらを備える光電極としては、前述の本発明の光電極で述べたとおりである。
 第1の工程は、ステンレス系材料からなりかつ細孔を有する多孔性金属基材の表面上にスズ酸化物からなる中間層を形成して、前記多孔性金属基材と前記中間層とを備える中間体を得る工程である。ステンレス系材料からなる金属基材を導電性基材として備えつつ水分解活性能に優れた光電極を得られる観点から、第1の工程は、不活性ガス雰囲気下(好ましくは酸素濃度10容量%以下)において行うことが特に好ましい。前記不活性ガスとしては、窒素ガス(N)やアルゴンガス(Ar)が挙げられる。
 また、第1の工程において前記スズ酸化物からなる中間層を形成する成膜法としては、真空蒸着法、スパッタ法、イオンプレーティング法、メッキ法及び熱負荷スプレー法からなる群から選択される少なくとも一つの成膜法であることが好ましく、スパッタ法及び/又は熱負荷スプレー法であることがより好ましく、運動エネルギーが大きく、金属基材と得られる中間層との間の密着性がより向上したり前記スズ酸化物の密度がより密になって水分解活性能がさらに向上する観点からは、スパッタ法であることが特に好ましい。これらの成膜法を用いることで、前記スズ酸化物からなる均一な中間層を形成することができ、水分解活性能に特に優れた光電極を得られる傾向にある。前記スパッタ法を用いる場合には、例えば、ターゲットとして前記スズ酸化物を用い、圧力3.5Pa以下(より好ましくは0.5~2.0Pa)の不活性ガス雰囲気下、温度400℃以上(より好ましくは350~550℃、さらに好ましくは500℃)の条件下で実施することが好ましい。また、前記熱負荷スプレー法を用いる場合には、例えば、有機スズ錯体が溶媒(2-エチルヘキサン酸、キシレン、酢酸ブチル等)中に溶解されたスプレー液を、不活性ガス雰囲気下において、温度350℃以上(より好ましくは500~550℃)に加熱した金属基材の表面にスプレーすることが好ましい。
 また、第1の工程においては、前記中間層を形成する前に前記多孔性金属基材が大気に暴露されてその表面に酸化被膜が形成されることを抑制することを目的として、例えば、前記中間層を形成するまで前記金属基材をアセトン中に保管しておくことが好ましい。
 第2の工程は、前記中間層の表面上に、V及びBiを含有するバナジン酸ビスマス前駆体溶液を用いてバナジン酸ビスマスからなる光触媒層を形成して、本発明の光電極を得る工程である。
 前記バナジン酸ビスマス前駆体溶液は、V(バナジウム)及びBi(ビスマス)を含有する溶液であり、Vを含む化合物と、Biを含む化合物と、溶媒とを含有することが好ましい。前記Vを含む化合物としては、バナジウムのカルボン酸塩、バナジウムのアンモニウム酸塩、五酸化バナジウム等が挙げられ、これらのうちの1種を単独で用いても2種以上を組み合わせて用いてもよい。また、前記Biを含む化合物としては、ビスマスのカルボン酸塩、ビスマスの硝酸塩、酸化ビスマス等が挙げられ、これらのうちの1種を単独で用いても2種以上を組み合わせて用いてもよい。さらに、前記溶媒としては、酢酸ブチル、酢酸エステル、キシレン、ジメチルスルホキシド、硝酸水溶液等が挙げられ、これらのうちの1種を単独で用いても2種以上を組み合わせて用いてもよい。前記バナジン酸ビスマス前駆体溶液において、前記Vを含む化合物と前記Biを含む化合物との含有比としては、金属換算(バナジン酸ビスマス前駆体溶液中のVのモル数:バナジン酸ビスマス前駆体溶液中のBiのモル数)で、1:1となる含有比であることが好ましい。
 第2の工程において、前記バナジン酸ビスマス前駆体溶液を用いてバナジン酸ビスマスからなる光触媒層を形成する方法としては、前記バナジン酸ビスマス前駆体溶液を、前記多孔性金属基材上に形成された前記中間層の表面上に塗布した後、空気中で焼成せしめる方法を用いることが好ましい。前記塗布の方法としては、スピンコート法、キャスティング法、スプレーコート法、ディップ法(電析を含む)などが挙げられ、中でも、スピンコート法、スプレーコート法が好ましい。前記スピンコート法を用いる場合には、例えば、温度15~25℃において、500~6000rpm(より好ましくは1000~5000rpm)の条件下で実施することが好ましい。また、前記焼成温度としては、450~550℃であることが好ましく、500~550℃であることがより好ましい。また、焼成時間としては、0.5~6時間であることが好ましく、0.5~1時間であることがより好ましい。
 また、本発明の光電極の製造方法においては、第1の工程の後、かつ、第2の工程の前に、前記中間体を焼成する工程をさらに含むことが好ましい。このような工程を含むことにより、前記多孔性金属基材の前記中間層に覆われていない面上に酸化被膜を形成せしめることができ、耐食性に優れた光電極を得ることができる。前記中間体を焼成する条件としては、空気中において、焼成温度300~550℃(より好ましくは500℃)、焼成時間0.5~6時間(より好ましくは0.5~1時間)であることが好ましい。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 (製造例1)
 先ず、SUS304からなる二次元金属メッシュ(多孔性金属基材、1.25cm×2.0cm×金属線直径(厚さ)140μm、細孔の平均径250μm)にスパッタリング装置(株式会社パスカル製)を用いて、アルゴンガス雰囲気下(酸素濃度約0容量%以下)、ターゲット酸化第二スズ(SnO)、圧力2.0Pa、温度500℃の条件で、酸化第二スズからなる中間層を形成し、前記多孔性金属基材と前記中間層とを備える中間体を得た。前記中間層の厚さは100nmとなるようにした。また、中間層の単位面積あたりの質量は0.2mg/cmであった。次いで、前記中間体を、空気中において、500℃で1.0時間焼成し、前記多孔性金属基材の前記中間層に覆われていない面上全てに酸化被膜を形成させた。
 次いで、EMODコート剤バナジウム(株式会社高純度化学研究所製)0.2質量部及びEMODコート剤ビスマス(株式会社高純度化学研究所製)0.2質量部を酢酸ブチルで希釈し、VとBiとのモル比(V:Bi)が1:1であるバナジン酸ビスマス前駆体溶液を調製した。調製したバナジン酸ビスマス前駆体溶液を、前記中間層の表面上に、温度25℃において、1000rpmでスピンコートした。その後、空気中において、550℃で0.5時間焼成してバナジン酸ビスマスからなる光触媒層を形成し、多孔性金属基材表面上に中間層/光触媒層が順に積層された光電極を得た。前記光触媒層の厚さは100nmとなるようにした。また、得られた光電極の細孔の平均径は250μm(有効数字2桁)であった。なお、光触媒層表面における微細孔の平均径は100nmであった。得られた光電極の表面の走査型電子顕微鏡(SEM)写真を図7Aに、図7Aに示すD部分の拡大写真を図7Bに、それぞれ示す。図7A~図7Bに示したように、多孔性金属基材の表面には中間層を介してバナジン酸ビスマスからなる光触媒層が形成されていることが確認された。
 (製造例2)
 製造例1と同様にして、多孔性金属基材表面上に中間層/光触媒層が順に積層された光電極を得た。
 (製造例3)
 先ず、SUS304からなる平板状の厚さ1.0mmの金属基板の一方の面(3.1cm)をアセトン洗浄した後、その面に、スパッタリング装置(株式会社パスカル製)を用いて、アルゴンガス雰囲気下(酸素濃度約0容量%)、ターゲット酸化第二スズ(SnO)、圧力2.0Pa、温度500℃の条件で、酸化第二スズからなる中間層を形成し、前記金属基板と前記中間層とを備える積層体を得た。前記中間層の厚さは100nmとなるようにした。また、中間層の単位面積あたりの質量は0.2mg/cmであった。次いで、前記積層体を、空気中において、500℃で1.0時間焼成し、前記金属基板の前記中間層に覆われていない面上全てに酸化被膜を形成させた。
 次いで、EMODコート剤バナジウム(株式会社高純度化学研究所製)0.2質量部及びEMODコート剤ビスマス(株式会社高純度化学研究所製)0.2質量部を酢酸ブチルで希釈し、VとBiとのモル比(V:Bi)が1:1であるバナジン酸ビスマス前駆体溶液を調製した。調製したバナジン酸ビスマス前駆体溶液を、前記中間層の前記金属基板と反対の面上に、温度25℃において、1000rpmでスピンコートした。その後、空気中において、550℃で0.5時間焼成してバナジン酸ビスマスからなる光触媒層を形成し、金属基板/中間層/光触媒層が順に積層された平板状の光電極(平板電極)を得た。前記光触媒層の厚さは100nm程度となるようにした。
 (製造例4)
 SUS304からなる金属基板に代えて透明導電性基板(FTO)を用いたこと以外は製造例3と同様にして透明導電性基板/中間層/光触媒層が順に積層された平板状の光電極(透明電極)を得た。
 <光電極(光アノード)電流測定>
 (実施例1)
 図2の概略縦断面図に示す光電気化学システム101を用いて光電極の電流測定を行った。すなわち、製造例1で得られた光電極(10)に導線(12)を介してポテンショスタット(13)を接続し、ポテンショスタット(13)には導線(12)を介して参照電極(図示せず、銀-塩化銀電極)及び光電極の対極(11、白金電極)を接続した。光電極、参照電極及び対極がホールスカベンジャー(亜硫酸ナトリウム)含有リン酸ナトリウム緩衝溶液(14、pH7.3)に浸るように設置し、光電極の光触媒層面にソーラーシュミレータで光(擬似太陽光、強さ:100mW/cm)を照射し、電流-電圧曲線(電流密度-対参照電極電圧曲線)を得た。実施例1においてサイクリックボルタンメトリーで得られた電流-電圧曲線を図8に示す(光照射有り:実線)。また、併せて、図8には、ソーラーシュミレーターによる光を照射しなかったこと以外は上記と同様にして得られた電流-電圧曲線もそれぞれ示す(光照射無し:破線)。
 (実施例2)
 製造例1で得られた光電極に代えて製造例2で得られた光電極(10)を用い、ホールスカベンジャー含有リン酸ナトリウム緩衝溶液(pH7.3)に代えてホールスカベンジャー含有ホウ酸ナトリウム緩衝溶液(14、pH8.5)を用いたこと以外は実施例1と同様にして、電流-電圧曲線を得た。得られた電流-電圧曲線を図9に示す(光照射有り:実線、光照射無し:破線)。
(実施例3)
 図3の概略縦断面図に示す光電気化学システム102を用いて光電極の電流測定を行った。すなわち、製造例2で得られた光電極(10)2つを、各電極の面同士が並行になるように配置し、導線(12)を介してポテンショスタット(13)に接続したこと以外は実施例2と同様にして、電流-電圧曲線を得た。
 (実施例4)
 図4の概略縦断面図に示す光電気化学システム103を用いて光電極の電流測定を行った。すなわち、製造例2で得られた光電極(10)3つを、各電極の面同士が並行になるように配置し、導線(12)を介してポテンショスタット(13)に接続したこと以外は実施例2と同様にして、電流-電圧曲線を得た。
 実施例2~4において得られた電流-電圧曲線(光照射有り)から、それぞれ、対参照電極電圧が0.2Vのときの電流密度(A/cm)を求め、次式:
  性能比=(各実施例で求められた電流密度)/(実施例2で求められた電流密度)
より、実施例2の光電気化学システムに対する実施例3~4の光電気化学システムの性能比(実施例2で求められた電流密度を1としたときの性能比)を求めた。得られた結果を図10に示す。
 (実施例5)
 図5の概略縦断面図に示す光電気化学システム104を用いて光電極の電流測定を行った。すなわち、製造例2で得られた光電極(10)及び製造例3で得られた平板電極(16)を、各電極の面同士が並行になるように配置し、導線(12)を介してポテンショスタット(13)に接続したこと以外は実施例2と同様にして、電流-電圧曲線を得た。なお、平板電極(16)はその光触媒層側の面が光電極(10)が配置された側を向くように配置し、ソーラーシュミレーターによる光は、光電極(10)の平板電極(16)が配置された側とは反対の側から照射した。
 実施例5において得られた電流-電圧曲線(光照射有り)と、実施例2において得られた電流-電圧曲線(光照射有り)とから、実施例2~4と同様にして、実施例2の光電気化学システムに対する実施例5の光電気化学システムの性能比を求めた。得られた結果を図11に示す。
 (比較例1)
 製造例2で得られた光電極(10)に代えて製造例4で得られた透明電極を用いたこと以外は実施例2と同様にして、電流-電圧曲線を得た。
 (実施例6)
 製造例3で得られた平板電極(16)に代えて製造例4で得られた透明電極を用いたこと以外は実施例5と同様にして、電流-電圧曲線を得た。
 (実施例7)
 図6の概略縦断面図に示す光電気化学システム105を用いて光電極の電流測定を行った。すなわち、製造例4で得られた透明電極(17)、製造例2で得られた光電極(10)、及び製造例3で得られた平板電極(16)を、各電極の面同士が並行になるようにこの順で配置し、導線(12)を介してポテンショスタット(13)に接続したこと以外は実施例2と同様にして、電流-電圧曲線を得た。なお、平板電極(16)はその光触媒層側の面が光電極(10)が配置された側を向くように配置し、ソーラーシュミレーターによる光は、透明電極(17)の光電極(10)及び平板電極(16)が配置された側とは反対の側から照射した。
 実施例6~7において得られた電流-電圧曲線(光照射有り)と、比較例1において得られた電流-電圧曲線(光照射有り)とから、実施例2~4と同様にして、比較例1の光電気化学システムに対する実施例6~7の光電気化学システムの性能比を求めた。得られた結果を図12に示す。
 図8~9に示したように、本発明の光電極では、水を分解させた際に測定される電流密度が大きく、すなわち、優れた水分解活性能を発揮し、光電極として良好な性能を示すことが確認された(実施例1~2)。また、図10に示した結果から明らかなように、本発明の光電極を用いた水分解用光電気化学システム(実施例2~4)では、電極数を増やしても水分解活性能が低下せず、電極数に比例して水分解活性能がさらに向上することが確認された。これは、本発明の光電極が多孔体であることによって、光電極を透過した光を別の光電極でもそのまま利用できたためであるといえる。また、図12に示した結果から明らかなように、本発明の光電極は、他の光電極である透明電極や平板電極と組み合わせても(実施例6~7)優れた水分解活性能が発揮されることが確認された。
 さらに、図11に示した結果から明らかなように、製造例3で得られた平板電極に、本発明の光電極(製造例2)を併せて使用すると(実施例5)、図10に示した結果から予測されるよりもさらに性能比が大きくなり、特に優れた水分解活性能が発揮されることが確認された。これは、多孔体である本発明の光電極を透過した光及び該光電極において乱反射した光と、平板電極表面で反射した光とを、いずれも効率よく利用できたためであるといえる。
 以上説明したように、本発明によれば、比較的安価で強度及び成形性に優れたステンレス系材料を導電性基材として備え、水分解活性能に優れ、かつ、光の利用効率に優れた光電極、前記光電極を備える水分解用光電気化学システム、及び前記光電極の製造方法を提供することが可能となる。
 1…金属基材、2…中間層、3…光触媒層、10…光電極、4…細孔、11…対極、12…外部回路、13…補助電源、14…溶媒、15…容器、16…平板電極、17…透明電極、101~105…光電気化学システム

Claims (10)

  1.  ステンレス系材料からなりかつ細孔を有する多孔性金属基材と、前記多孔性金属基材の表面上に積層されたスズ酸化物からなる中間層と、前記中間層の表面上に積層されたバナジン酸ビスマスからなる光触媒層と、を備え、かつ、多孔体である、光電極。
  2.  前記多孔性金属基材の細孔の内壁表面上に前記中間層が積層されており、かつ、前記内壁表面上の前記中間層の表面に前記光触媒層が積層されている請求項1に記載の光電極。
  3.  前記中間層の厚さが5~500nmである請求項1又は2に記載の光電極。
  4.  前記ステンレス系材料が、オーステナイト系ステンレス、フェライト系ステンレス及びマルテンサイト系ステンレスからなる群から選択されるいずれか1種である請求項1~3のうちのいずれか一項に記載の光電極。
  5.  前記スズ酸化物が酸化第二スズである請求項1~4のうちのいずれか一項に記載の光電極。
  6.  請求項1~5のうちのいずれか一項に記載の光電極を作用電極として備える水分解用光電気化学システム。
  7.  前記光電極を2つ以上備える請求項6に記載の水分解用光電気化学システム。
  8.  前記作用電極として、前記光電極以外の他の光電極をさらに備える請求項6又は7に記載の水分解用光電気化学システム。
  9.  ステンレス系材料からなりかつ細孔を有する多孔性金属基材の表面上にスズ酸化物からなる中間層を形成して、前記多孔性金属基材と前記中間層とを備える中間体を得る第1の工程と、
     前記中間層の表面上に、V及びBiを含有するバナジン酸ビスマス前駆体溶液を用いてバナジン酸ビスマスからなる光触媒層を形成して、前記多孔性金属基材と、前記多孔性金属基材の表面上に積層された前記中間層と、前記中間層の表面上に積層された前記光触媒層と、を備え、かつ、多孔体である光電極を得る第2の工程と、
    を含む光電極の製造方法。
  10.  第1の工程において、真空蒸着法、スパッタ法、イオンプレーティング法、メッキ法及び熱負荷スプレー法からなる群から選択される少なくとも一つの成膜法により不活性ガス雰囲気下で前記中間層を形成する請求項9に記載の光電極の製造方法。
PCT/JP2017/011276 2016-03-22 2017-03-21 光電極、水分解用光電気化学システム及び光電極の製造方法 WO2017164192A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018507347A JPWO2017164192A1 (ja) 2016-03-22 2017-03-21 光電極、水分解用光電気化学システム及び光電極の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016057659 2016-03-22
JP2016-057659 2016-03-22

Publications (1)

Publication Number Publication Date
WO2017164192A1 true WO2017164192A1 (ja) 2017-09-28

Family

ID=59900569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011276 WO2017164192A1 (ja) 2016-03-22 2017-03-21 光電極、水分解用光電気化学システム及び光電極の製造方法

Country Status (2)

Country Link
JP (1) JPWO2017164192A1 (ja)
WO (1) WO2017164192A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113235124A (zh) * 2021-05-18 2021-08-10 西北师范大学 一种S-FeOOH/钒酸铋复合光阳极及其制备方法
CN113376230A (zh) * 2021-06-10 2021-09-10 福州大学 一种采用电极内部光照模式的光电化学光纤微电极及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009213985A (ja) * 2008-03-07 2009-09-24 Nisshin Steel Co Ltd 触媒担持体および触媒担持ステンレス鋼材
JP2012228659A (ja) * 2011-04-26 2012-11-22 Sharp Corp 水浄化装置
JP2014022351A (ja) * 2012-07-24 2014-02-03 National Institute Of Advanced Industrial & Technology 可視光応答性半導体光電極の製造方法、並びに可視光応答性半導体光電極及び該電極を用いた水分解反応装置。

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009213985A (ja) * 2008-03-07 2009-09-24 Nisshin Steel Co Ltd 触媒担持体および触媒担持ステンレス鋼材
JP2012228659A (ja) * 2011-04-26 2012-11-22 Sharp Corp 水浄化装置
JP2014022351A (ja) * 2012-07-24 2014-02-03 National Institute Of Advanced Industrial & Technology 可視光応答性半導体光電極の製造方法、並びに可視光応答性半導体光電極及び該電極を用いた水分解反応装置。

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113235124A (zh) * 2021-05-18 2021-08-10 西北师范大学 一种S-FeOOH/钒酸铋复合光阳极及其制备方法
CN113376230A (zh) * 2021-06-10 2021-09-10 福州大学 一种采用电极内部光照模式的光电化学光纤微电极及其制备方法

Also Published As

Publication number Publication date
JPWO2017164192A1 (ja) 2019-02-07

Similar Documents

Publication Publication Date Title
Denisov et al. Effect of different hole scavengers on the photoelectrochemical properties and photocatalytic hydrogen evolution performance of pristine and Pt-decorated TiO2 nanotubes
Park et al. Progress in bismuth vanadate photoanodes for use in solar water oxidation
Sun et al. Composite photoanodes for photoelectrochemical solar water splitting
Wang et al. One-dimensional hematite photoanodes with spatially separated Pt and FeOOH nanolayers for efficient solar water splitting
Yourey et al. Chemical stability of CuWO4 for photoelectrochemical water oxidation
Chen et al. Properties of sol–gel SnO2/TiO2 electrodes and their photoelectrocatalytic activities under UV and visible light illumination
Shan et al. A novel highly active nanostructured IrO2/Ti anode for water oxidation
JP2006297300A (ja) 半導体光電極、その製造方法及び光エネルギ変換装置
Shi et al. Visible light photoanode material for photoelectrochemical water splitting: a review of bismuth vanadate
KR101504569B1 (ko) 표면 처리된 금속 티탄 재료 또는 티탄 합금 재료의 제조 방법 및 표면 처리재
JP5641499B2 (ja) 光触媒を用いた光水分解反応用電極
WO2015151775A1 (ja) 水分解用光電極、水分解装置
JP5681343B2 (ja) 電解用電極
Subramanian et al. TiO2 nanotubes and its composites: Photocatalytic and other photo-driven applications
JP5803288B2 (ja) 半導体材料並びにそれを用いた光触媒体、光電極及び太陽電池
WO2017164191A1 (ja) 光電極、水分解用光電気化学システム及び光電極の製造方法
Sordello et al. Photoelectrochemical performance of the Ag (III)-based oxygen-evolving catalyst
JPWO2019172014A1 (ja) 水分解用光触媒電極および水分解装置
WO2017164192A1 (ja) 光電極、水分解用光電気化学システム及び光電極の製造方法
US9290852B2 (en) Light absorbing layer for photoelectrode structure, photoelectrode structure including the same, and photoelectrochemical cell including the photoelectrode structure
JP2016144804A (ja) 光触媒を用いた光水分解反応用電極
Kriek et al. Photocharging of europium (III) tellurium oxide as a photoelectrocatalyst
Eftekharinia et al. Effect of film morphology on water oxidation enhancement in NiFeCo modified hematite photoanodes
JP5462460B2 (ja) 電解用電極
Kim et al. MnO 2 co-catalyst effect on Photoelectrochemical Properties of GaN Photoelectrode

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018507347

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770234

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17770234

Country of ref document: EP

Kind code of ref document: A1