WO2017163904A1 - Underwater detection apparatus, underwater detection method, and underwater detection program - Google Patents

Underwater detection apparatus, underwater detection method, and underwater detection program Download PDF

Info

Publication number
WO2017163904A1
WO2017163904A1 PCT/JP2017/009493 JP2017009493W WO2017163904A1 WO 2017163904 A1 WO2017163904 A1 WO 2017163904A1 JP 2017009493 W JP2017009493 W JP 2017009493W WO 2017163904 A1 WO2017163904 A1 WO 2017163904A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
underwater
fish
detection device
moving body
Prior art date
Application number
PCT/JP2017/009493
Other languages
French (fr)
Japanese (ja)
Inventor
義浩 西山
行雄 松尾
智人 今泉
Original Assignee
古野電気株式会社
学校法人 東北学院
国立研究開発法人 水産研究・教育機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古野電気株式会社, 学校法人 東北学院, 国立研究開発法人 水産研究・教育機構 filed Critical 古野電気株式会社
Priority to JP2018507206A priority Critical patent/JP6714261B2/en
Publication of WO2017163904A1 publication Critical patent/WO2017163904A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K75/00Accessories for fishing nets; Details of fishing nets, e.g. structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/50Systems of measurement, based on relative movement of the target
    • G01S15/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S15/60Velocity or trajectory determination systems; Sense-of-movement determination systems wherein the transmitter and receiver are mounted on the moving object, e.g. for determining ground speed, drift angle, ground track
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/87Combinations of sonar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/96Sonar systems specially adapted for specific applications for locating fish
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/539Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/56Display arrangements
    • G01S7/62Cathode-ray tube displays

Definitions

  • the present invention relates to an underwater detection device, an underwater detection method, and an underwater detection program for transmitting an ultrasonic signal underwater and acquiring information of an underwater moving body from an echo signal.
  • an echogram as shown in FIG. 6 of Patent Document 1 is known as a display example of the underwater detection device.
  • Patent Document 2 discloses a mode in which a mark corresponding to the position of the reef is displayed on the chart as an example of the display screen of the reef information database.
  • Patent Document 2 when a user performs an operation of selecting each mark, information indicating details of a fish reef, a video image taken underwater, and the like are displayed.
  • An object of the present invention is to provide an underwater detection device capable of displaying information that has not been obtained conventionally.
  • An underwater detection device includes: a transmission / reception unit that transmits an ultrasonic signal into the water and receives an echo signal from the water based on the ultrasonic signal; and an underwater moving body that detects individual information about the underwater moving body from the echo signal. Based on the individual information, a detection unit, an information calculation unit that calculates information including information related to the moving speed of the underwater moving body, and a display process that displays the information related to the moving speed calculated by the information calculation unit as a vector And a section.
  • the underwater detection device first detects, for example, the presence and position of the underwater moving body individually as individual information regarding the underwater moving body.
  • the SSBL Super Short Baseline
  • the underwater detection device measures the position of a single fish, not a unit of a school of fish in which a plurality of fish swim. Then, the underwater detection device calculates information regarding the moving speed of the underwater moving body from the detected individual information. Information regarding the calculated moving speed of the underwater moving body is displayed by the display processing unit.
  • the underwater detection device calculates the information about the moving speed based on the position of each single fish, not the unit of the group (fish group) in which a plurality of underwater moving bodies swim and swim, so the accurate speed of the underwater moving body , And the moving direction and the like can be calculated. Therefore, the user can grasp the accurate speed and moving direction of the underwater moving body.
  • FIG. 6 is a diagram illustrating an example of information displayed on a display device 20.
  • FIG. It is a figure which shows the example in the case of displaying information in three dimensions.
  • FIG. 1 is a block diagram showing the configuration of the underwater detection device 1.
  • the underwater detection device 1 includes a transducer 10, a transmitter 11, a transmission / reception switch 121, a transmission / reception switch 122, a transmission / reception switch 123, a transmission / reception switch 124, a reception unit 13, a calculation processing unit 14, a storage unit 15, and an operation unit. 16, a position detection unit 17, and a display 20.
  • the transducer 10 is fixed to the bottom of the ship.
  • the transmitter / receiver 10 transmits ultrasonic waves into the water based on a transmission signal given from the transmission unit 11 via the transmission / reception switch 121, the transmission / reception switch 122, the transmission / reception switch 123, or the transmission / reception switch 124.
  • the transducer 10 receives an echo obtained by reflecting an ultrasonic wave to an underwater moving body such as an underwater fish Fi, and outputs an echo signal.
  • the echo signal is input to the receiving unit 13 via the transmission / reception switch 121, the transmission / reception switch 122, the transmission / reception switch 123, or the transmission / reception switch 124, respectively.
  • the transducer 10 is formed by integrating a required number of transducers (not shown) in a bundle. These vibrators have their vibration surfaces arranged in a predetermined pattern on the same plane.
  • the transducer 10 has a transmission / reception surface divided into four in the circumferential direction. Each division plane is set as channel CH1, channel CH2, channel CH3, and channel CH4, respectively.
  • channel CH1, channel CH2, channel CH3, and channel CH4 have common directivity characteristics.
  • channel CH1, channel CH2, channel CH3, and channel CH4 have a directivity width of 7 °.
  • the transducer 10 transmits ultrasonic waves with a predetermined directivity from the entire transmission / reception surface.
  • the transducer 10 receives the echo of the fish Fi on the channel CH1, the channel CH2, the channel CH3, and the channel CH4, respectively.
  • channel CH1, channel CH2, channel CH3, and channel CH4 and ship heading is that channels CH1 and CH4 are on the bow side, channels CH2 and CH3 are on the stern side, Channels CH1 and CH2 are on the starboard side, and channels CH3 and CH4 are on the port side.
  • the transmitter / receiver 10 can receive the echoes in the bow direction and the stern direction within the directivity range by the set of the channels CH1 and CH4 and the set of the channels CH2 and CH3.
  • the transducer 10 can receive echoes from the starboard and port directions using a set of channel CH1 and channel CH2 and a set of channel CH3 and channel CH4.
  • the transmission unit 11 generates an FM (frequency modulation) transmission signal.
  • the transmission unit 11 generates a transmission signal by chirping the frequency within a predetermined range in a predetermined transmission time width (for example, a time width of several tens of microseconds).
  • the transmission unit 11 generates a transmission signal having a center frequency of 100 KHz, a minimum low frequency of 70 KHz, and a maximum frequency of 130 KHz, and chirping from the minimum frequency toward the maximum frequency.
  • the transmission unit 11 outputs such a transmission signal to each of the transmission / reception switch 121, the transmission / reception switch 122, the transmission / reception switch 123, and the transmission / reception switch 124.
  • the transmission / reception switcher 121, the transmission / reception switcher 122, the transmission / reception switcher 123, and the transmission / reception switcher 124 are connected to each vibrator constituting the channel CH1, channel CH2, channel CH3, and channel CH4 of the transmitter / receiver 10. .
  • the transmission / reception switch 121, the transmission / reception switch 122, the transmission / reception switch 123, and the transmission / reception switch 124 output the transmission signal input from the transmitter 11 to the transmitter / receiver 10. Further, the transmission / reception switch 121, the transmission / reception switch 122, the transmission / reception switch 123, and the transmission / reception switch 124 send the echo signals of the channel CH 1, channel CH 2, channel CH 3, and channel CH 4 of the transmitter / receiver 10 to the reception unit 13. Output.
  • the receiving unit 13 includes an LNA and the like, amplifies the echo signal of each channel with a predetermined gain, and generates an echo signal for each channel.
  • the echo signal for each channel is input to the arithmetic processing unit 14.
  • the arithmetic processing unit 14 is configured by a computer.
  • the arithmetic processing unit 14 functions as the single fish detection unit 141, the information calculation unit 142, and the display processing unit 143 by reading and executing the control program recorded in the storage unit 15.
  • FIG. 2 is a flowchart showing the operation of the underwater detection device 1.
  • the single fish detection unit (underwater moving body detection unit) 141 detects the single fish from the echo signal input from the reception unit 13 (S101).
  • the single fish detection unit 141 obtains echo data which is intensity data discretized in the depth direction (time direction) by sampling each echo signal at a predetermined sampling period.
  • the single fish detection unit 141 determines that the echo is reflected from the fish Fi when the echo data arranged at each transmission timing (for each PING) has a reflection with an intensity equal to or greater than a predetermined threshold, for example.
  • the single fish detection unit 141 determines that the echo is a reflection echo from the fish Fi
  • the single fish detection unit 141 stores the echo data of each channel CH1, channel CH2, channel CH3, and channel CH4 in the storage unit 15 as single fish data.
  • the single fish detection unit 141 detects the position of each fish Fi (single fish) using the SSBL (Super Short Baseline) method using a known split beam (S102).
  • the single fish detection unit 141 uses the single fish data of each channel to generate echo data of the bow side, stern side, starboard side, and port side. To do.
  • the single fish detection part 141 calculates
  • the single fish detection unit 141 obtains the three-dimensional position information of the single fish from the azimuth information thus obtained and the timing at which the reflection echo of the fish Fi is received. In addition, calculation of azimuth
  • the calculated three-dimensional position information is paired with detected single fish information (identification information of each single fish) and stored as individual information in the storage unit 15.
  • the single fish detection unit 141 measures the position of a single fish, not a unit of a school of fish in which a plurality of fish swarm.
  • Such single fish detection and position detection processing is executed at every predetermined observation timing (for example, every 1 Ping).
  • the single fish detection unit 141 calculates a movement vector (speed and posture angle) of each single fish as information on the moving speed (information including speed and moving direction). In addition, the single fish detection unit 141 calculates information such as a fish type and a fish body length.
  • the single fish detection unit 141 reads the three-dimensional position information of each single fish from the storage unit 15 and performs position tracking of each single fish. Specifically, as shown in FIG. 3, the single fish detection unit 141 performs three-dimensional coordinates of the fish Fi at a predetermined timing n based on the echo data of each channel CH1, channel CH2, channel CH3, and channel CH4. x (n), y (n), and z (n) are calculated.
  • the three-dimensional coordinates used here are an x-axis having a positive direction from the stern side toward the bow side and a positive direction from the port side toward the starboard side. It is a coordinate system defined by the y-axis and the z-axis with the direction from the bottom surface of the transducer 10 toward the seabed (depth direction) as the positive direction.
  • the single fish detection unit 141 detects the single fish position vector Vvs (n ⁇ 1) acquired at the timing n ⁇ 1 a predetermined time before the timing n at which the single fish position vector Vvs (n) is acquired, and the single fish position at the timing n. From the vector Vvs (n), the movement vector Vvfish (n) of the single fish Fi is calculated from the following vector arithmetic expression. Note that the timing interval is appropriately set according to the transmission interval of ultrasonic signals (Ping interval) or the speed for each type of fish.
  • Vvfish (n) Vvs (n) ⁇ Vvs (n ⁇ 1) ⁇ (Formula 1)
  • the movement vector of the ship can be calculated based on the position (latitude and longitude) information of the ship that is input from the position detection unit 17.
  • the tidal vector can be calculated by providing a tidal meter. Further, by providing a hull swing sensor or the like, it is possible to compensate for a change in position due to swing.
  • the single fish detection unit 141 calculates the speed and posture angle ⁇ p of the single fish based on the movement vector Vvfish (n).
  • the posture angle ⁇ p is calculated from the following formula 2 which is a vector calculation formula based on the movement vector Vvfish (n) of a single fish.
  • the posture angle ⁇ p is 0 ° when a single fish is present immediately below the transducer 10 and the single fish is moving horizontally with respect to the transmission / reception surface of the transducer 10. Further, the posture angle ⁇ p is the same as the incident angle ⁇ c of the ultrasonic wave when the single fish exists near the transducer 10. Therefore, the information calculation unit 142 calculates the posture angle ⁇ p as the incident angle ⁇ c when a single fish is present near the transducer 10.
  • the single fish detection unit 141 calculates the incident angle ⁇ c by the following method.
  • the single fish detection unit 141 has an inclination angle ⁇ t that is an angle formed between the direction in which the ultrasonic signal transmitted from the transducer 10 is applied to the target single fish Fi and the moving direction of the single fish (see FIG. 4). ) Is calculated.
  • the inclination angle ⁇ t is an angle formed by the single fish position vector Vvs (n) and the movement vector Vvfish (n) of the single fish, and can be calculated from the following Expression 3.
  • a black dot mark means an inner product of vectors.
  • the single fish detection unit 141 can output the incident angle ⁇ c of the detected single fish Fi even when the position of the single fish Fi is outside the predetermined range in the direction directly below the transducer 10. .
  • the single fish detection unit 141 performs fish type discrimination based on information on the incident angle ⁇ c and the reflection intensity TS (Target Strength). First, the single fish detection unit 141 calculates the reflection intensity TS of the single fish. The single fish detection unit 141 calculates the reflection intensity TS using specific representative echo data among the echo data constituting the single fish. For example, the single fish detection unit 141 calculates the reflection intensity TS using the maximum value of the echo amplitude waveform of the single fish.
  • FIG. 6 is a diagram showing an example of the incident angle characteristic of the reflection intensity TS.
  • ⁇ in the figure indicates the maximum value of each incident angle bin
  • X in the figure indicates the reflection intensity TS excluding the maximum value. Note that the maximum values of the incident angle bins are not all displayed, and some of them are omitted for easy understanding of the features of the present invention.
  • the single fish detection unit 141 sets an incident angle range for fish species determination (in the example of FIG. 6, from ⁇ 30 ° to + 30 °), and divides the incident angle range into a plurality of incident angle bins. .
  • the single fish detection unit 141 divides and sets an incident angle range from ⁇ 30 ° to + 30 ° with an incident angle bin having an angle width of 2 °.
  • the single fish detection unit 141 classifies the acquired reflection intensity TS of each single fish for each incident angle bin.
  • the single fish detection unit 141 detects the maximum value of the reflection intensity TS for each incident angle bin.
  • the single fish detection unit 141 estimates and calculates the incident angle characteristic curve of the reflection intensity as shown by the thick solid line in FIG. 6 from the maximum value of each incident angle bin. At this time, for example, it is preferable that the single fish detection unit 141 estimates and calculates the incident angle characteristic curve by performing a fitting process on the maximum value of each incident angle bin with a predetermined function.
  • the single fish detection unit 141 compares the estimated and calculated incident angle characteristic curve with the template characteristic curve of the incident angle of the reflection intensity TS for each fish species as shown in FIG.
  • FIG. 7 is a diagram illustrating an example of a template characteristic curve (normalization characteristic curve) of the incident angle of the reflection intensity TS for each fish species.
  • the incident angle characteristic of the reflection intensity TS has characteristics for each fish species.
  • the characteristic in the case of horse mackerel, the characteristic has a gradual maximum on the negative incident angle side from the incident angle of 0 °.
  • it In the case of mackerel, it has a characteristic that has a steep maximum on the negative incident angle side close to an incident angle of 0 °.
  • the overall characteristic is flat as compared with horse mackerel and mackerel.
  • the incident angle characteristics of the reflection strength TS of horse mackerel, mackerel, and tie are obtained by transmitting the above-described ultrasonic signal to horse mackerel, mackerel, and tie sacrifice, and detecting single fish, incident angle detection, and reflection intensity TS. This is a characteristic obtained by calculating and obtaining the maximum value of the reflection intensity TS for each incident angle.
  • the single fish detection unit 141 normalizes the calculated incident angle characteristic curve, calculates the similarity between the normalized incident angle characteristic curve and the template characteristic curve shown in FIG.
  • the single fish detection unit 141 determines the selected fish type as the detected single fish. For example, when the incident angle characteristic curve of FIG. 6 is obtained, the detected single fish is determined to be “Aji”.
  • the single fish detection unit 141 calculates the fish length L from the relational expression between the reflection intensity TS and the fish length L shown in the following formula 5.
  • the coefficient A has a corresponding value determined by the frequency of the ultrasonic signal, fish species, sea area, depth, time, or water temperature.
  • a table indicating the relationship between the coefficient A and each value is stored in the storage unit 15.
  • the single fish detection unit 141 calculates individual information such as the three-dimensional position information, movement vector, fish type, and fish length of each single fish, and stores the individual information in the storage unit 15.
  • the information calculation part 142 reads the said individual information from the memory
  • the calculated information is, for example, the number of fish for each fish type, the average movement vector, or the average fish length.
  • the number of fish N is calculated by the following formula 6 by using, for example, the volume scattering intensity SV.
  • the information calculation unit 142 determines that the single fish that are the same fish species and exist in the region within the predetermined range are the same fish school, and the number of fish in the same fish school, the average movement vector, or You may ask for average fish length. In addition, the information calculation unit 142 may obtain the number of fish, the average movement vector, or the average fish length for each predetermined depth range (for example, near a depth of 25 m, a depth of 50 m, and a depth of 75 m).
  • the display processing unit 143 outputs the information (information such as the average movement vector, the number of fishes, the fish type, or the average fish length) calculated by the information calculation unit 142 as described above to the display processing unit 143.
  • FIG. 8A shows an example of information displayed on the display 20.
  • the average movement vector of each fish type is represented by an arrow in a two-dimensional plane around the position of the ship at a predetermined observation timing. That is, the information regarding the moving speed is displayed as a vector.
  • Each arrow is color-coded for each fish type.
  • Each arrow displays a numerical value representing the number of fish.
  • the display device 20 displays the calculated number of fish, the movement vector, and the fish type, the user can accurately grasp the exact amount, speed, movement direction, and the like of the fish. it can.
  • FIG. 8B is a diagram showing an example in which the number of fish and the movement vector are displayed for each depth instead of the fish type. In this case, the user can accurately grasp the exact amount, speed, moving direction, and the like of the fish by depth.
  • FIG. 9A is a diagram showing an example of displaying information three-dimensionally.
  • the upper surface side of the cylinder shown in the figure represents the water surface side, and the bottom surface side represents the seabed side.
  • the size of the circle at each depth indicates the number of fish. Therefore, the user can easily grasp how many fish species exist according to depth and how many fish species are moving in which direction. Further, the number of fish by depth may be displayed as a bar graph as shown in FIG. 9B instead of the size of the circle.
  • FIG. 10 is a diagram showing an example of further displaying the average fish length.
  • a line drawing corresponding to the average fish length is displayed in the arrow indicating the movement vector of each fish type.
  • FIG. 11 is a diagram showing an example of displaying information together with an echogram.
  • the vertical direction corresponds to depth
  • the horizontal direction corresponds to Ping.
  • echo images for example, an echo image 202A, an echo image 203A, an echo image 204A, and an echo image 204A
  • the latest echo image in the Ping 210 is displayed on the right side in the echogram 201.
  • information is displayed three-dimensionally corresponding to each depth of the echogram 201.
  • the upper surface side of the column indicating information represents the water surface side
  • the bottom surface side represents the seabed side.
  • the arrow at each depth indicates the movement vector
  • the color of the arrow indicates the fish type.
  • Each arrow displays a line drawing showing the fish length.
  • the size of the circle indicates the number of fish.
  • the information is displayed at a position corresponding to the position on the echogram where the fish is detected.
  • the information corresponds to a calculation result in the latest Ping 210.
  • the calculation result in the selected Ping can be displayed.
  • the information calculation unit 142 can also calculate information by averaging the calculation results for a plurality of Pings. In this case, the user selects a predetermined range in the echogram 201. The information calculation unit 142 reads the individual information within the selected range and calculates the information. The display control unit 143 displays the calculated information together with the echogram 201.
  • the information corresponding to the echo image 202A is the arrow image 202B
  • the information corresponding to the echo image 203A is the arrow image 203B
  • the information corresponding to the echo image 204A is the arrow image 204B
  • the echo Information corresponding to the image 205A is an arrow image 205B.
  • the user can easily recognize the relationship between the echo image displayed in the echogram 201 and the information. For example, the user can easily grasp the information of the fish type, the number of fish, the movement vector, and the fish body length from the arrow image 202B corresponding to the echo image 202A displayed on the water surface side in the echogram 201. it can.
  • the information may be displayed in a two-dimensional plane together with the echogram 201 as shown in FIG.
  • the information 207 is displayed as a calculation result in the latest Ping 210.
  • the average movement vector of each fish type is represented by an arrow.
  • Each arrow is color-coded for each fish type.
  • Each arrow displays a numerical value representing the number of fish. In this way, even when the information 207 is displayed in a two-dimensional plane, the user can check the school of fish with a conventional echogram and how many fish species there are at each depth. In addition, it is possible to easily grasp which direction it is moving.
  • FIG. 13 is a diagram showing an example of displaying information on a nautical chart (map).
  • the wake 252 is displayed in the map screen 251, and a mark (information reduced image) 253 is displayed corresponding to the position of the ship at each timing when the information is calculated.
  • the wake 252 is drawn on the map data according to the position (latitude and longitude) of the ship detected by the position detection unit 17.
  • the information may be displayed in a two-dimensional plane on a chart as shown in FIG.
  • the wake 252 is displayed in the map screen 251 and the mark (information reduced image) 253 is displayed corresponding to the position of the ship at each timing when the information is calculated.
  • the information 255A is displayed in a two-dimensional plane.
  • the average movement vector of each fish type in the information 255A is represented by an arrow.
  • Each arrow is color-coded for each fish type.
  • Each arrow displays a numerical value representing the number of fish. Therefore, the user can easily grasp at what position and how many kinds of fish species are present at each depth and in what direction.
  • the information calculated by the information calculation unit 142 indicates information such as the average movement vector, the number of fishes, the fish type, or the average fish length, but also calculates the movement vector of each single fish. May be.

Abstract

[Problem] To provide an underwater detection apparatus that is capable of displaying information that could not be acquired conventionally. [Solution] This underwater detection apparatus is characterized by being provided with: a transmission/reception unit that transmits an ultrasonic signal into the water and receives an echo signal from within the water in response to the ultrasonic signal; an underwater moving body detection unit that detects individual information about an underwater moving body from the echo signal; an information calculation unit that calculates information including information about the moving speed of the underwater moving body on the basis of the individual information; and a display processing unit that displays, as a vector, the information about the moving speed detected by the information calculation unit.

Description

水中探知装置、水中探知方法、および水中探知プログラムUnderwater detection device, underwater detection method, and underwater detection program
 本発明は、水中に超音波信号を送信し、エコー信号から水中移動体の情報を取得する水中探知装置、水中探知方法および水中探知プログラムに関する。 The present invention relates to an underwater detection device, an underwater detection method, and an underwater detection program for transmitting an ultrasonic signal underwater and acquiring information of an underwater moving body from an echo signal.
 従来、水中探知装置の表示例としては、特許文献1の図6に示すようなエコーグラムが知られている。 Conventionally, an echogram as shown in FIG. 6 of Patent Document 1 is known as a display example of the underwater detection device.
 また、特許文献2には、魚礁情報データベースの表示画面の例として、海図上に魚礁位置に対応するマークが表示される態様が開示されている。また、特許文献2においては、利用者が各マークを選択する操作を行うと、魚礁の詳細を示す情報、および水中撮影されたビデオ映像等が表示される。 Patent Document 2 discloses a mode in which a mark corresponding to the position of the reef is displayed on the chart as an example of the display screen of the reef information database. In Patent Document 2, when a user performs an operation of selecting each mark, information indicating details of a fish reef, a video image taken underwater, and the like are displayed.
特開2015-87328号公報JP-A-2015-87328 特開2008-178325号公報JP 2008-178325 A
 漁業関係者等にとっては、資源(魚等の水中移動体)の速度、および移動方向等の情報を得ることが重要である。 It is important for fishermen and others to obtain information on the speed and direction of resources (underwater vehicles such as fish).
 しかし、特許文献1に示すようなエコーグラムの表示では、水中移動体の速度、および移動方向等を把握するのは困難である。 However, with the display of the echogram as shown in Patent Document 1, it is difficult to grasp the speed and moving direction of the underwater moving body.
 また、特許文献2に示すような水中撮影されたビデオ映像では、撮影範囲外の水中移動体の存在を知ることができず、やはり水中移動体の速度、および移動方向等を把握するのは困難である。 Further, in the video image taken underwater as shown in Patent Document 2, it is difficult to know the existence of the underwater moving body outside the shooting range, and it is difficult to grasp the speed and moving direction of the underwater moving body. It is.
 この発明は、従来では得られなかった情報を表示することができる水中探知装置を提供することを目的とする。 An object of the present invention is to provide an underwater detection device capable of displaying information that has not been obtained conventionally.
 この発明の水中探知装置は、水中へ超音波信号を送信し、該超音波信号による水中からのエコー信号を受信する送受信部と、前記エコー信号から水中移動体に関する個別情報を検出する水中移動体検出部と、前記個別情報に基づいて、前記水中移動体の移動速度に関する情報を含む情報を算出する情報算出部と、前記情報算出部で算出された前記移動速度に関する情報をベクトル表示する表示処理部と、を備えたことを特徴とする。 An underwater detection device according to the present invention includes: a transmission / reception unit that transmits an ultrasonic signal into the water and receives an echo signal from the water based on the ultrasonic signal; and an underwater moving body that detects individual information about the underwater moving body from the echo signal. Based on the individual information, a detection unit, an information calculation unit that calculates information including information related to the moving speed of the underwater moving body, and a display process that displays the information related to the moving speed calculated by the information calculation unit as a vector And a section.
 このように、水中探知装置は、まず水中移動体に関する個別情報として、例えば該水中移動体の存在およびその位置を個別に検出する。水中移動体を個別に検出するためには、例えば既知のスプリットビームを用いたSSBL(Super ShortBaseline)法を用いる。このSSBL法を用いることで、高い分解能で単体の水中移動体を検出することができる。よって、水中探知装置は、複数の魚が群れて泳ぐ魚群の単位ではなく、単体魚の位置を測定する。そして、水中探知装置は、検出した個別情報から、水中移動体の移動速度に関する情報を算出する。算出された水中移動体の移動速度に関する情報は、表示処理部により表示される。このように、水中探知装置は、複数の水中移動体が群れて泳ぐ群(魚群)の単位ではなく、各単体魚の位置に基づいて移動速度に関する情報を算出するため、水中移動体の正確な速度、および移動方向等を算出することができる。よって、利用者は、水中移動体の正確な速度、および移動方向等を把握することができる。 As described above, the underwater detection device first detects, for example, the presence and position of the underwater moving body individually as individual information regarding the underwater moving body. In order to individually detect the underwater moving body, for example, the SSBL (Super Short Baseline) method using a known split beam is used. By using this SSBL method, a single underwater moving body can be detected with high resolution. Therefore, the underwater detection device measures the position of a single fish, not a unit of a school of fish in which a plurality of fish swim. Then, the underwater detection device calculates information regarding the moving speed of the underwater moving body from the detected individual information. Information regarding the calculated moving speed of the underwater moving body is displayed by the display processing unit. In this way, the underwater detection device calculates the information about the moving speed based on the position of each single fish, not the unit of the group (fish group) in which a plurality of underwater moving bodies swim and swim, so the accurate speed of the underwater moving body , And the moving direction and the like can be calculated. Therefore, the user can grasp the accurate speed and moving direction of the underwater moving body.
 この発明によれば、従来では得られなかった情報を表示することができる。 According to this invention, it is possible to display information that could not be obtained conventionally.
本発明の実施形態に係る水中探知装置1の構成を示すブロック図である。It is a block diagram which shows the structure of the underwater detection apparatus 1 which concerns on embodiment of this invention. 水中探知装置の処理フローを示す図である。It is a figure which shows the processing flow of an underwater detection apparatus. 姿勢角の検出概念を説明するための図である。It is a figure for demonstrating the detection concept of a posture angle. 傾角および入射角の検出概念を説明するための図である。It is a figure for demonstrating the detection concept of an inclination angle and an incident angle. 入射角の設定概念を示す図である。It is a figure which shows the setting concept of an incident angle. 反射強度TSの入射角特性の例を示す図である。It is a figure which shows the example of the incident angle characteristic of reflection intensity TS. 魚種毎の反射強度TSの姿勢角のテンプレート特性(正規化特性曲線)の例を示す図である。It is a figure which shows the example of the template characteristic (normalization characteristic curve) of the attitude angle of reflection intensity TS for every fish species. 表示器20に表示される情報の一例を示した図である。6 is a diagram illustrating an example of information displayed on a display device 20. FIG. 情報を立体的に表示する場合の例を示す図である。It is a figure which shows the example in the case of displaying information in three dimensions. 平均魚体長をさらに表示する例を示す図である。It is a figure which shows the example which further displays average fish body length. エコーグラムとともに情報を表示する例を示す図である。It is a figure which shows the example which displays information with an echogram. エコーグラムとともに情報を2次元平面的に表示する例を示す図である。It is a figure which shows the example which displays information two-dimensionally with an echogram. 地図上に情報を表示する例を示す図である。It is a figure which shows the example which displays information on a map. 地図上に情報を2次元平面的に表示する例を示す図である。It is a figure which shows the example which displays information on a two-dimensional plane on a map.
 図1は、水中探知装置1の構成を示すブロック図である。水中探知装置1は、送受波器10、送信部11、送受切替器121、送受切替器122、送受切替器123、送受切替器124、受信部13、演算処理部14、記憶部15、操作部16、位置検出部17、および表示器20を備えている。 FIG. 1 is a block diagram showing the configuration of the underwater detection device 1. The underwater detection device 1 includes a transducer 10, a transmitter 11, a transmission / reception switch 121, a transmission / reception switch 122, a transmission / reception switch 123, a transmission / reception switch 124, a reception unit 13, a calculation processing unit 14, a storage unit 15, and an operation unit. 16, a position detection unit 17, and a display 20.
 送受波器10は、船舶の船底等に固定されている。送受波器10は、送受切替器121、送受切替器122、送受切替器123、または送受切替器124を介して送信部11から与えられた送信信号に基づいて超音波を水中へ送信する。 The transducer 10 is fixed to the bottom of the ship. The transmitter / receiver 10 transmits ultrasonic waves into the water based on a transmission signal given from the transmission unit 11 via the transmission / reception switch 121, the transmission / reception switch 122, the transmission / reception switch 123, or the transmission / reception switch 124.
 送受波器10は、超音波が水中の魚Fi等の水中移動体に反射して得られるエコーを受波し、エコー信号を出力する。エコー信号は、それぞれ送受切替器121、送受切替器122、送受切替器123、または送受切替器124を介して受信部13へ入力される。 The transducer 10 receives an echo obtained by reflecting an ultrasonic wave to an underwater moving body such as an underwater fish Fi, and outputs an echo signal. The echo signal is input to the receiving unit 13 via the transmission / reception switch 121, the transmission / reception switch 122, the transmission / reception switch 123, or the transmission / reception switch 124, respectively.
 送受波器10は、所要数の振動子(不図示)が束状に一体化されてなる。これらの振動子は、それぞれの振動面が同一平面上に所定パターンで配列されている。送受波器10は、送受波面が周方向に4分割されている。各分割面は、それぞれチャンネルCH1、チャンネルCH2、チャンネルCH3、およびチャンネルCH4として設定される。 The transducer 10 is formed by integrating a required number of transducers (not shown) in a bundle. These vibrators have their vibration surfaces arranged in a predetermined pattern on the same plane. The transducer 10 has a transmission / reception surface divided into four in the circumferential direction. Each division plane is set as channel CH1, channel CH2, channel CH3, and channel CH4, respectively.
 これらチャンネルCH1、チャンネルCH2、チャンネルCH3、およびチャンネルCH4は、それぞれ共通の指向特性を有する。例えば、チャンネルCH1、チャンネルCH2、チャンネルCH3、およびチャンネルCH4は、7°の指向幅を有する。 The channel CH1, channel CH2, channel CH3, and channel CH4 have common directivity characteristics. For example, channel CH1, channel CH2, channel CH3, and channel CH4 have a directivity width of 7 °.
 送受波器10は、送受波面の全体から超音波を所定の指向性で送信する。送受波器10は、魚FiのエコーをチャンネルCH1、チャンネルCH2、チャンネルCH3、およびチャンネルCH4でそれぞれ受波する。 The transducer 10 transmits ultrasonic waves with a predetermined directivity from the entire transmission / reception surface. The transducer 10 receives the echo of the fish Fi on the channel CH1, the channel CH2, the channel CH3, and the channel CH4, respectively.
 チャンネルCH1、チャンネルCH2、チャンネルCH3、およびチャンネルCH4と船舶方位との関係は、チャンネルCH1とCH4とが船首(force)側であり、チャンネルCH2とCH3とが船尾(aft)側であり、さらに、チャンネルCH1とCH2とが右舷(starboard)側であり、チャンネルCH3とCH4とが左舷(port)側である。 The relationship between channel CH1, channel CH2, channel CH3, and channel CH4 and ship heading is that channels CH1 and CH4 are on the bow side, channels CH2 and CH3 are on the stern side, Channels CH1 and CH2 are on the starboard side, and channels CH3 and CH4 are on the port side.
 これにより、送受波器10は、チャンネルCH1およびチャンネルCH4の組とチャンネルCH2およびチャンネルCH3の組とにより指向幅内において船首方向および船尾方向のエコーを受波可能にしている。また、送受波器10は、チャンネルCH1およびチャンネルCH2の組とチャンネルCH3およびチャンネルCH4の組とにより、右舷および左舷方向からのエコーを受信可能にしている。 Thereby, the transmitter / receiver 10 can receive the echoes in the bow direction and the stern direction within the directivity range by the set of the channels CH1 and CH4 and the set of the channels CH2 and CH3. In addition, the transducer 10 can receive echoes from the starboard and port directions using a set of channel CH1 and channel CH2 and a set of channel CH3 and channel CH4.
 送信部11は、FM(周波数変調)の送信信号を生成する。送信部11は、所定の送信時間幅(例えば数十μ秒の時間幅)において、周波数を所定の範囲内でチャープさせることで送信信号を生成する。例えば、送信部11は、中心周波数が100KHzで、最低低周波数が70KHz、最高周波数が130KHzであり、最低周波数から最高周波数に向かってチャープする送信信号を生成する。送信部11は、このような送信信号を送受切替器121、送受切替器122、送受切替器123、および送受切替器124のそれぞれに出力する。 The transmission unit 11 generates an FM (frequency modulation) transmission signal. The transmission unit 11 generates a transmission signal by chirping the frequency within a predetermined range in a predetermined transmission time width (for example, a time width of several tens of microseconds). For example, the transmission unit 11 generates a transmission signal having a center frequency of 100 KHz, a minimum low frequency of 70 KHz, and a maximum frequency of 130 KHz, and chirping from the minimum frequency toward the maximum frequency. The transmission unit 11 outputs such a transmission signal to each of the transmission / reception switch 121, the transmission / reception switch 122, the transmission / reception switch 123, and the transmission / reception switch 124.
 送受切替器121、送受切替器122、送受切替器123、および送受切替器124は、送受波器10のチャンネルCH1、チャンネルCH2、チャンネルCH3、およびチャンネルCH4を構成する各振動子に接続されている。 The transmission / reception switcher 121, the transmission / reception switcher 122, the transmission / reception switcher 123, and the transmission / reception switcher 124 are connected to each vibrator constituting the channel CH1, channel CH2, channel CH3, and channel CH4 of the transmitter / receiver 10. .
 送受切替器121、送受切替器122、送受切替器123、および送受切替器124は、送信部11から入力された送信信号を送受波器10に出力する。また、送受切替器121、送受切替器122、送受切替器123、および送受切替器124は、送受波器10のチャンネルCH1、チャンネルCH2、チャンネルCH3、およびチャンネルCH4のエコー信号を、受信部13へ出力する。 The transmission / reception switch 121, the transmission / reception switch 122, the transmission / reception switch 123, and the transmission / reception switch 124 output the transmission signal input from the transmitter 11 to the transmitter / receiver 10. Further, the transmission / reception switch 121, the transmission / reception switch 122, the transmission / reception switch 123, and the transmission / reception switch 124 send the echo signals of the channel CH 1, channel CH 2, channel CH 3, and channel CH 4 of the transmitter / receiver 10 to the reception unit 13. Output.
 受信部13は、LNA等を備え、各チャンネルのエコー信号を所定のゲインで増幅して、チャンネル毎のエコー信号を生成する。チャンネル毎のエコー信号は、演算処理部14へ入力される。 The receiving unit 13 includes an LNA and the like, amplifies the echo signal of each channel with a predetermined gain, and generates an echo signal for each channel. The echo signal for each channel is input to the arithmetic processing unit 14.
 演算処理部14は、コンピュータで構成される。演算処理部14は、記憶部15に記録されている制御プログラムを読み出して実行することにより、単体魚検出部141、情報算出部142、および表示処理部143として機能する。図2は、水中探知装置1の動作を示すフローチャートである。 The arithmetic processing unit 14 is configured by a computer. The arithmetic processing unit 14 functions as the single fish detection unit 141, the information calculation unit 142, and the display processing unit 143 by reading and executing the control program recorded in the storage unit 15. FIG. 2 is a flowchart showing the operation of the underwater detection device 1.
 まず、上述したように、超音波信号の送信と、エコー信号の受信が行われる(S100)。次に、単体魚検出部(水中移動体検出部)141は、受信部13から入力されるエコー信号から単体魚を検出する(S101)。 First, as described above, transmission of an ultrasonic signal and reception of an echo signal are performed (S100). Next, the single fish detection unit (underwater moving body detection unit) 141 detects the single fish from the echo signal input from the reception unit 13 (S101).
 まず、単体魚検出部141は、各エコー信号を所定のサンプリング周期でサンプリングすることで、深度方向(時間方向)に離散化された強度データであるエコーデータを取得する。 First, the single fish detection unit 141 obtains echo data which is intensity data discretized in the depth direction (time direction) by sampling each echo signal at a predetermined sampling period.
 次に、単体魚検出部141は、送信タイミング毎(PING毎)に配列したエコーデータにおいて、例えば所定閾値以上の強度の反射があった場合に、魚Fiからの反射エコーと判断する。単体魚検出部141は、魚Fiからの反射エコーであると判断した場合、各チャンネルCH1、チャンネルCH2、チャンネルCH3、およびチャンネルCH4のエコーデータを、単体魚データとして記憶部15に記憶する。 Next, the single fish detection unit 141 determines that the echo is reflected from the fish Fi when the echo data arranged at each transmission timing (for each PING) has a reflection with an intensity equal to or greater than a predetermined threshold, for example. When the single fish detection unit 141 determines that the echo is a reflection echo from the fish Fi, the single fish detection unit 141 stores the echo data of each channel CH1, channel CH2, channel CH3, and channel CH4 in the storage unit 15 as single fish data.
 そして、単体魚検出部141は、既知のスプリットビームを用いたSSBL(SuperShortBaseline)法を用いて各魚Fi(単体魚)の位置を検出する(S102)。SSBL法では、単体魚検出部141は、各チャンネルの単体魚データを用いて、船首(force)側、船尾(aft)側、右舷(starboard)側、および左舷(port)側のエコーデータを生成する。そして、単体魚検出部141は、各エコーデータにおいて超音波を送信してから魚Fiに到達するまでの時間差(または位相差)から、単体魚の到来角(方位情報)を求める。単体魚検出部141は、このようにして得られた方位情報と、魚Fiの反射エコーを受信したタイミングとから、単体魚の三次元位置情報を得る。なお、方位情報の算出は、検出された単体魚の全てに対して行われる。 The single fish detection unit 141 detects the position of each fish Fi (single fish) using the SSBL (Super Short Baseline) method using a known split beam (S102). In the SSBL method, the single fish detection unit 141 uses the single fish data of each channel to generate echo data of the bow side, stern side, starboard side, and port side. To do. And the single fish detection part 141 calculates | requires the arrival angle (azimuth | direction information) of a single fish from the time difference (or phase difference) after transmitting an ultrasonic wave in each echo data until it arrives at the fish Fi. The single fish detection unit 141 obtains the three-dimensional position information of the single fish from the azimuth information thus obtained and the timing at which the reflection echo of the fish Fi is received. In addition, calculation of azimuth | direction information is performed with respect to all the detected single fish.
 算出された三次元位置情報は、検出された単体魚の情報(各単体魚の識別情報等)と対にされて、記憶部15に、個別情報として記憶される。このように、単体魚検出部141は、複数の魚が群れて泳ぐ魚群の単位ではなく、単体魚の位置を測定する。このような単体魚の検出および位置検出処理は、所定の観測タイミング毎(例えば、1Ping毎)に実行される。 The calculated three-dimensional position information is paired with detected single fish information (identification information of each single fish) and stored as individual information in the storage unit 15. In this way, the single fish detection unit 141 measures the position of a single fish, not a unit of a school of fish in which a plurality of fish swarm. Such single fish detection and position detection processing is executed at every predetermined observation timing (for example, every 1 Ping).
 次に、単体魚検出部141は、移動速度に関する情報(速さおよび移動方向を含む情報)として、各単体魚の移動ベクトル(速度および姿勢角)を算出する。また、単体魚検出部141は、魚種、および魚体長等の情報を算出する。 Next, the single fish detection unit 141 calculates a movement vector (speed and posture angle) of each single fish as information on the moving speed (information including speed and moving direction). In addition, the single fish detection unit 141 calculates information such as a fish type and a fish body length.
 単体魚検出部141は、記憶部15から各単体魚の三次元位置情報を読み出し、各単体魚の位置追尾を行う。具体的には、図3に示すように、単体魚検出部141は、各チャンネルCH1、チャンネルCH2、チャンネルCH3、およびチャンネルCH4のエコーデータに基づいて、所定タイミングnでの魚Fiの三次元座標x(n),y(n),z(n)を算出する。 The single fish detection unit 141 reads the three-dimensional position information of each single fish from the storage unit 15 and performs position tracking of each single fish. Specifically, as shown in FIG. 3, the single fish detection unit 141 performs three-dimensional coordinates of the fish Fi at a predetermined timing n based on the echo data of each channel CH1, channel CH2, channel CH3, and channel CH4. x (n), y (n), and z (n) are calculated.
 ここで用いる三次元座標は、船尾(aft)側から船首(force)側へ向かう方向を正方向とするx軸と、左舷(port)側から右舷(starboard)側ヘ向かう方向を正方向とするy軸と、送受波器10の底面から海底に向かう方向(深度方向)を正方向とするz軸とにより定義された座標系である。 The three-dimensional coordinates used here are an x-axis having a positive direction from the stern side toward the bow side and a positive direction from the port side toward the starboard side. It is a coordinate system defined by the y-axis and the z-axis with the direction from the bottom surface of the transducer 10 toward the seabed (depth direction) as the positive direction.
 単体魚検出部141は、送受波器10の底面の中心を始点(原点)として、魚Fiの位置x(n),y(n),z(n)を終点とする単体魚位置ベクトルVvs(n)={x(n),y(n),z(n)}を取得する。 The single fish detection unit 141 uses the center of the bottom surface of the transducer 10 as a start point (origin) and a single fish position vector Vvs (starts from the position x (n), y (n), z (n) of the fish Fi). n) = {x (n), y (n), z (n)} is acquired.
 単体魚検出部141は、単体魚位置ベクトルVvs(n)を取得するタイミングnから所定時間前のタイミングn-1で取得した単体魚位置ベクトルVvs(n-1)と、タイミングnの単体魚位置ベクトルVvs(n)とから、単体魚Fiの移動ベクトルVvfish(n)を、下記のベクトル演算式である式1から算出する。なお、各タイミングの間隔は、超音波信号の送信間隔(Pingの間隔)または魚の種別毎の速度等に応じて、適宜設定される。 The single fish detection unit 141 detects the single fish position vector Vvs (n−1) acquired at the timing n−1 a predetermined time before the timing n at which the single fish position vector Vvs (n) is acquired, and the single fish position at the timing n. From the vector Vvs (n), the movement vector Vvfish (n) of the single fish Fi is calculated from the following vector arithmetic expression. Note that the timing interval is appropriately set according to the transmission interval of ultrasonic signals (Ping interval) or the speed for each type of fish.
 Vvfish(n)=Vvs(n)-Vvs(n-1)   -(式1)
 なお、移動ベクトルは、自船の移動ベクトルまたは潮流のベクトルとの差分を取ることにより、さらに正確に算出することができる。自船の移動ベクトルは、位置検出部17から入力される自船の位置(緯度および経度)情報に基づいて算出することができる。潮流ベクトルは、潮流計を備えることにより算出することができる。また、船体の揺動センサ等を備えることにより、揺動による位置変化を補償することもできる。
Vvfish (n) = Vvs (n) −Vvs (n−1) − (Formula 1)
Note that the movement vector can be calculated more accurately by taking the difference from the movement vector of the ship or the vector of the tidal current. The movement vector of the ship can be calculated based on the position (latitude and longitude) information of the ship that is input from the position detection unit 17. The tidal vector can be calculated by providing a tidal meter. Further, by providing a hull swing sensor or the like, it is possible to compensate for a change in position due to swing.
 そして、単体魚検出部141は、当該移動ベクトルVvfish(n)に基づいて、単体魚の速度および姿勢角θpを算出する。 Then, the single fish detection unit 141 calculates the speed and posture angle θp of the single fish based on the movement vector Vvfish (n).
 姿勢角θpは、単体魚の移動ベクトルVvfish(n)に基づいてベクトル演算式である以下の式2から算出される。 The posture angle θp is calculated from the following formula 2 which is a vector calculation formula based on the movement vector Vvfish (n) of a single fish.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 姿勢角θpは、単体魚が送受波器10の真下付近に存在し、該単体魚が送受波器10の送受波面に対して水平に移動している場合には、0°となる。また、姿勢角θpは、単体魚が送受波器10の真下付近に存在する時には、超音波の入射角θcと同じとなる。したがって、情報算出部142は、単体魚が送受波器10の真下付近に存在する時には、姿勢角θpを入射角θcとして算出する。 The posture angle θp is 0 ° when a single fish is present immediately below the transducer 10 and the single fish is moving horizontally with respect to the transmission / reception surface of the transducer 10. Further, the posture angle θp is the same as the incident angle θc of the ultrasonic wave when the single fish exists near the transducer 10. Therefore, the information calculation unit 142 calculates the posture angle θp as the incident angle θc when a single fish is present near the transducer 10.
 しかし、単体魚の位置が、送受波器10の真下方向の所定範囲内でなければ、単体魚検出部141は、次に示す方法により、入射角θcを算出する。 However, if the position of the single fish is not within a predetermined range directly below the transducer 10, the single fish detection unit 141 calculates the incident angle θc by the following method.
 まず、単体魚検出部141は、送受波器10から送信される超音波信号が、対象の単体魚Fiに照射される方向と、単体魚の移動方向との成す角である傾角θt(図4参照)を算出する。 First, the single fish detection unit 141 has an inclination angle θt that is an angle formed between the direction in which the ultrasonic signal transmitted from the transducer 10 is applied to the target single fish Fi and the moving direction of the single fish (see FIG. 4). ) Is calculated.
 図4に示すように、傾角θtは、単体魚位置ベクトルVvs(n)と、当該単体魚の移動ベクトルVvfish(n)との成す角であり、次の式3から算出することができる。 As shown in FIG. 4, the inclination angle θt is an angle formed by the single fish position vector Vvs (n) and the movement vector Vvfish (n) of the single fish, and can be calculated from the following Expression 3.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 なお、式3において、黒のドットマークは、ベクトルの内積を意味する。 In Equation 3, a black dot mark means an inner product of vectors.
 一方、入射角θcは、図5に示すように、単体魚Fiの背中に直交する方向から入射された場合にθc=0°となり、傾角θtと入射角θcは、次の関係を有する。 On the other hand, as shown in FIG. 5, the incident angle θc is θc = 0 ° when incident from the direction orthogonal to the back of the single fish Fi, and the inclination angle θt and the incident angle θc have the following relationship.
 θc=θt-π/2 [rad]
 したがって、入射角θcは、次の式4から算出することができる。
θc = θt−π / 2 [rad]
Therefore, the incident angle θc can be calculated from the following equation 4.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 このように、単体魚検出部141は、単体魚Fiの位置が送受波器10の真下方向の所定範囲外であった場合にも、検出した単体魚Fiの入射角θcを出力することができる。 As described above, the single fish detection unit 141 can output the incident angle θc of the detected single fish Fi even when the position of the single fish Fi is outside the predetermined range in the direction directly below the transducer 10. .
 また、単体魚検出部141は、入射角θcおよび反射強度TS(Target Strength)の情報に基づいて、魚種判別を行う。まず、単体魚検出部141は、単体魚の反射強度TSを算出する。単体魚検出部141は、単体魚を構成するエコーデータの内、代表となる特定のエコーデータを用いて、反射強度TSを算出する。例えば、単体魚検出部141は、単体魚のエコー振幅波形の最大値を用いて反射強度TSを算出する。 Also, the single fish detection unit 141 performs fish type discrimination based on information on the incident angle θc and the reflection intensity TS (Target Strength). First, the single fish detection unit 141 calculates the reflection intensity TS of the single fish. The single fish detection unit 141 calculates the reflection intensity TS using specific representative echo data among the echo data constituting the single fish. For example, the single fish detection unit 141 calculates the reflection intensity TS using the maximum value of the echo amplitude waveform of the single fish.
 図6は、反射強度TSの入射角特性の例を示す図である。図6において、図中の○印は各入射角ビンの最大値を示し、図中の×印は、最大値を除く反射強度TSを示す。なお、入射角ビンの最大値は全てを表示しているものではなく、本願発明の特徴を分かりやすくするために、図示を省略しているものもある。 FIG. 6 is a diagram showing an example of the incident angle characteristic of the reflection intensity TS. In FIG. 6, ◯ in the figure indicates the maximum value of each incident angle bin, and X in the figure indicates the reflection intensity TS excluding the maximum value. Note that the maximum values of the incident angle bins are not all displayed, and some of them are omitted for easy understanding of the features of the present invention.
 単体魚検出部141は、魚種判定用の入射角範囲(図6の例では、-30°から+30°まで)を設定し、当該入射角範囲を複数の入射角ビンに分割して設定する。例えば、単体魚検出部141は、2°の角度幅からなる入射角ビンで、-30°から+30°までの入射角範囲を分割して設定する。 The single fish detection unit 141 sets an incident angle range for fish species determination (in the example of FIG. 6, from −30 ° to + 30 °), and divides the incident angle range into a plurality of incident angle bins. . For example, the single fish detection unit 141 divides and sets an incident angle range from −30 ° to + 30 ° with an incident angle bin having an angle width of 2 °.
 単体魚検出部141は、取得した各単体魚の反射強度TSを、入射角ビン毎に分類する。単体魚検出部141は、入射角ビン毎に、反射強度TSの最大値を検出する。 The single fish detection unit 141 classifies the acquired reflection intensity TS of each single fish for each incident angle bin. The single fish detection unit 141 detects the maximum value of the reflection intensity TS for each incident angle bin.
 単体魚検出部141は、各入射角ビンの最大値から、図6の太実線に示すような反射強度の入射角特性曲線を推定算出する。この際、例えば、単体魚検出部141は、所定の関数で各入射角ビンの最大値をフィッティング処理することで、入射角特性曲線を推定算出することが好ましい。 The single fish detection unit 141 estimates and calculates the incident angle characteristic curve of the reflection intensity as shown by the thick solid line in FIG. 6 from the maximum value of each incident angle bin. At this time, for example, it is preferable that the single fish detection unit 141 estimates and calculates the incident angle characteristic curve by performing a fitting process on the maximum value of each incident angle bin with a predetermined function.
 単体魚検出部141は、推定算出した入射角特性曲線と、図7に示すような魚種毎の反射強度TSの入射角のテンプレート特性曲線とを比較する。図7は、魚種毎の反射強度TSの入射角のテンプレート特性曲線(正規化特性曲線)の例を示す図である。 The single fish detection unit 141 compares the estimated and calculated incident angle characteristic curve with the template characteristic curve of the incident angle of the reflection intensity TS for each fish species as shown in FIG. FIG. 7 is a diagram illustrating an example of a template characteristic curve (normalization characteristic curve) of the incident angle of the reflection intensity TS for each fish species.
 図7に示すように、反射強度TSの入射角特性は、魚種毎に特徴を有する。例えば、アジの場合、入射角0°よりも負の入射角側に、緩やかな極大を有する特性となる。また、サバの場合、入射角0°に近い負の入射角側に、急峻な極大を有する特性となる。さらに、タイの場合、入射角-30°から+30°の間に若干の極大はあるものの、アジおよびサバと比較して全体的に平坦な特性となる。なお、これらアジ、サバ、およびタイの反射強度TSの入射角特性は、アジ、サバ、およびタイの生け簀に、上述の超音波信号を送信し、単体魚検出、入射角検出、および反射強度TS算出を行い、入射角毎の反射強度TSの最大値を得て算出した特性である。 As shown in FIG. 7, the incident angle characteristic of the reflection intensity TS has characteristics for each fish species. For example, in the case of horse mackerel, the characteristic has a gradual maximum on the negative incident angle side from the incident angle of 0 °. In the case of mackerel, it has a characteristic that has a steep maximum on the negative incident angle side close to an incident angle of 0 °. Further, in the case of a tie, although there is a slight maximum between an incident angle of −30 ° and + 30 °, the overall characteristic is flat as compared with horse mackerel and mackerel. The incident angle characteristics of the reflection strength TS of horse mackerel, mackerel, and tie are obtained by transmitting the above-described ultrasonic signal to horse mackerel, mackerel, and tie sacrifice, and detecting single fish, incident angle detection, and reflection intensity TS. This is a characteristic obtained by calculating and obtaining the maximum value of the reflection intensity TS for each incident angle.
 単体魚検出部141は、算出した入射角特性曲線を正規化し、正規化した入射角特性曲線と、図7に示すテンプレート特性曲線との類似度を算出して魚種判定を行う。 The single fish detection unit 141 normalizes the calculated incident angle characteristic curve, calculates the similarity between the normalized incident angle characteristic curve and the template characteristic curve shown in FIG.
 そして、単体魚検出部141は、選択した魚種を、探知した単体魚として判定する。例えば、図6の入射角特性曲線を得た場合に、探知した単体魚を、「アジ」と判定する。 The single fish detection unit 141 determines the selected fish type as the detected single fish. For example, when the incident angle characteristic curve of FIG. 6 is obtained, the detected single fish is determined to be “Aji”.
 さらに、単体魚検出部141は、以下の式5に示す反射強度TSと魚体長Lとの間の関係式から魚体長Lを算出する。 Furthermore, the single fish detection unit 141 calculates the fish length L from the relational expression between the reflection intensity TS and the fish length L shown in the following formula 5.
 TS=20logL+20logA (式5)
 係数Aは、超音波信号の周波数、魚種、海域、深度、時期、または水温等によって対応する値が定められている。係数Aと各値の関係を示すテーブルは、記憶部15に記憶されている。
TS = 20logL + 20logA (Formula 5)
The coefficient A has a corresponding value determined by the frequency of the ultrasonic signal, fish species, sea area, depth, time, or water temperature. A table indicating the relationship between the coefficient A and each value is stored in the storage unit 15.
 以上の様にして、単体魚検出部141は、各単体魚の三次元位置情報、移動ベクトル、魚種、および魚体長等の個別情報を算出し、該個別情報を記憶部15に記憶する。 As described above, the single fish detection unit 141 calculates individual information such as the three-dimensional position information, movement vector, fish type, and fish length of each single fish, and stores the individual information in the storage unit 15.
 そして、情報算出部142は、記憶部15から上記個別情報を読み出し、表示器20に表示するための情報を算出する。算出される情報は、例えば、魚種毎の魚数、平均移動ベクトル、または平均魚体長である。魚数Nは、例えば体積散乱強度SVを用いることにより、以下の式6により算出される。 And the information calculation part 142 reads the said individual information from the memory | storage part 15, and calculates the information for displaying on the indicator 20. FIG. The calculated information is, for example, the number of fish for each fish type, the average movement vector, or the average fish length. The number of fish N is calculated by the following formula 6 by using, for example, the volume scattering intensity SV.
 SV=TS+10logN (式6)
 なお、情報算出部142は、同一魚種であり、所定範囲内の領域に存在する単体魚は、同一の魚群であると判定して、当該同一の魚群内の魚数、平均移動ベクトル、または平均魚体長を求めてもよい。また、情報算出部142は、所定深度範囲毎(例えば深度25m付近、深度50m付近、および深度75m付近等)の魚数、平均移動ベクトル、または平均魚体長を求めるようにしてもよい。
SV = TS + 10 logN (Formula 6)
Note that the information calculation unit 142 determines that the single fish that are the same fish species and exist in the region within the predetermined range are the same fish school, and the number of fish in the same fish school, the average movement vector, or You may ask for average fish length. In addition, the information calculation unit 142 may obtain the number of fish, the average movement vector, or the average fish length for each predetermined depth range (for example, near a depth of 25 m, a depth of 50 m, and a depth of 75 m).
 表示処理部143は、以上の様にして情報算出部142が算出した情報(平均移動ベクトル、魚数、魚種、または平均魚体長等の情報)を表示処理部143に出力する。 The display processing unit 143 outputs the information (information such as the average movement vector, the number of fishes, the fish type, or the average fish length) calculated by the information calculation unit 142 as described above to the display processing unit 143.
 図8(A)は、表示器20に表示される情報の一例を示した図である。図8(A)に示す例では、所定の観測タイミング時の自船の位置を中心として、2次元平面的に各魚種の平均移動ベクトルが矢印で表されている。すなわち、移動速度に関する情報がベクトル表示されている。また、各矢印は、魚種毎に色分けされている。各矢印には、魚数を表す数値が表示されている。 FIG. 8A shows an example of information displayed on the display 20. In the example shown in FIG. 8A, the average movement vector of each fish type is represented by an arrow in a two-dimensional plane around the position of the ship at a predetermined observation timing. That is, the information regarding the moving speed is displayed as a vector. Each arrow is color-coded for each fish type. Each arrow displays a numerical value representing the number of fish.
 このように表示器20には、算出された魚数、移動ベクトル、および魚種が表示されるため、利用者は、魚の正確な量、速度、および移動方向等を適確に把握することができる。 Thus, since the display device 20 displays the calculated number of fish, the movement vector, and the fish type, the user can accurately grasp the exact amount, speed, movement direction, and the like of the fish. it can.
 図8(B)は、魚種に代えて、深度別に魚数および移動ベクトルを表示する例を示す図である。この場合、利用者は、深度別の魚の正確な量、速度、および移動方向等を適確に把握することができる。 FIG. 8B is a diagram showing an example in which the number of fish and the movement vector are displayed for each depth instead of the fish type. In this case, the user can accurately grasp the exact amount, speed, moving direction, and the like of the fish by depth.
 次に、図9(A)は、情報を3次元立体的に表示する場合の例を示す図である。図中に示す円柱の上面側は水面側を表し、底面側は海底側を表す。この場合、各深度における円の大きさが魚数を示している。したがって、利用者は、深度別にどの魚種がどの程度の数存在し、どの方向にどの程度の速度で移動しているのか、容易に把握することができる。また、深度別の魚数は、円の大きさに代えて、図9(B)に示すように、棒グラフで表示してもよい。 Next, FIG. 9A is a diagram showing an example of displaying information three-dimensionally. The upper surface side of the cylinder shown in the figure represents the water surface side, and the bottom surface side represents the seabed side. In this case, the size of the circle at each depth indicates the number of fish. Therefore, the user can easily grasp how many fish species exist according to depth and how many fish species are moving in which direction. Further, the number of fish by depth may be displayed as a bar graph as shown in FIG. 9B instead of the size of the circle.
 図10は、平均魚体長をさらに表示する例を示す図である。この例では、各魚種の移動ベクトルを示す矢印の中に、平均魚体長に対応する線画が表示されている。これにより、利用者は、深度別にどの程度の大きさの魚種がどの程度の数存在し、どの方向に移動しているのか、容易に把握することができる。 FIG. 10 is a diagram showing an example of further displaying the average fish length. In this example, a line drawing corresponding to the average fish length is displayed in the arrow indicating the movement vector of each fish type. Thereby, the user can easily grasp how many kinds of fish species exist according to depth and how many fish species are moving in which direction.
 図11は、エコーグラムとともに情報を表示する例を示す図である。エコーグラム201は、縦方向が深度に対応し、横方向がPingに対応している。エコーグラム201内には、エコーデータの強度に応じたエコー画像(例えばエコー画像202A、エコー画像203A、エコー画像204A、およびエコー画像204A)が表示される。最新のPing210におけるエコー画像は、エコーグラム201内の右側に表示される。 FIG. 11 is a diagram showing an example of displaying information together with an echogram. In the echogram 201, the vertical direction corresponds to depth, and the horizontal direction corresponds to Ping. In the echogram 201, echo images (for example, an echo image 202A, an echo image 203A, an echo image 204A, and an echo image 204A) corresponding to the intensity of the echo data are displayed. The latest echo image in the Ping 210 is displayed on the right side in the echogram 201.
 そして、この例では、エコーグラム201の各深度に対応して、情報が立体的に表示されている。上述したように、情報を示す円柱の上面側は水面側を表し、底面側は海底側を表す。この場合、各深度における矢印が移動ベクトルを示し、矢印の色が魚種を示す。各矢印には、魚体長を示す線画が表示されている。円の大きさは、魚数を示している。情報は、魚を検出したエコーグラム上の位置に対応した位置に表示されている。この例では、情報は、最新のPing210における算出結果に対応している。ただし、例えば利用者が操作部16を操作して、エコーグラム201内の任意のPingを選択することで、選択されたPingにおける算出結果を表示させることもできる。また、情報算出部142は、複数のPingにおける算出結果を平均化することにより、情報を算出することも可能である。この場合、利用者は、エコーグラム201内の所定範囲を選択する。情報算出部142は、選択された範囲内の個別情報を読み出し、情報を算出する。表示制御部143は、算出された情報を、エコーグラム201とともに表示する。 In this example, information is displayed three-dimensionally corresponding to each depth of the echogram 201. As described above, the upper surface side of the column indicating information represents the water surface side, and the bottom surface side represents the seabed side. In this case, the arrow at each depth indicates the movement vector, and the color of the arrow indicates the fish type. Each arrow displays a line drawing showing the fish length. The size of the circle indicates the number of fish. The information is displayed at a position corresponding to the position on the echogram where the fish is detected. In this example, the information corresponds to a calculation result in the latest Ping 210. However, for example, when the user operates the operation unit 16 and selects an arbitrary Ping in the echogram 201, the calculation result in the selected Ping can be displayed. The information calculation unit 142 can also calculate information by averaging the calculation results for a plurality of Pings. In this case, the user selects a predetermined range in the echogram 201. The information calculation unit 142 reads the individual information within the selected range and calculates the information. The display control unit 143 displays the calculated information together with the echogram 201.
 この例では、エコー画像202Aに対応する情報は、矢印画像202Bであり、エコー画像203Aに対応する情報は、矢印画像203Bであり、エコー画像204Aに対応する情報は、矢印画像204Bであり、エコー画像205Aに対応する情報は、矢印画像205Bである。 In this example, the information corresponding to the echo image 202A is the arrow image 202B, the information corresponding to the echo image 203A is the arrow image 203B, the information corresponding to the echo image 204A is the arrow image 204B, and the echo Information corresponding to the image 205A is an arrow image 205B.
 これにより、利用者は、エコーグラム201内に表示されているエコー画像と情報との関係を容易に認識することができる。例えば、利用者は、エコーグラム201内の水面側に表示されているエコー画像202Aに対応する矢印画像202Bにより、魚種、魚数、移動ベクトル、および魚体長の情報を容易に把握することができる。 Thereby, the user can easily recognize the relationship between the echo image displayed in the echogram 201 and the information. For example, the user can easily grasp the information of the fish type, the number of fish, the movement vector, and the fish body length from the arrow image 202B corresponding to the echo image 202A displayed on the water surface side in the echogram 201. it can.
 従来のエコーグラムによる魚群の表示だけでは、利用者は、魚数、速度、および移動方向等を把握するのは困難であったが、図11に示す例の場合、従来のエコーグラムで魚群を確認しながら、各深度にどの程度の大きさの魚種がどの程度の数存在し、どの方向に移動しているのか、容易に把握することができる。 Although it is difficult for the user to grasp the number of fish, the speed, the moving direction, etc. only by displaying the fish school by the conventional echogram, in the case of the example shown in FIG. While confirming, it is possible to easily grasp how many fish species are present at each depth and how many fish species are moving in which direction.
 また、情報は、図12に示すように、エコーグラム201とともに、2次元平面的に表示されてもよい。この場合、情報207は、最新のPing210における算出結果として表示されている。各魚種の平均移動ベクトルは、矢印で表されている。また、各矢印は、魚種毎に色分けされている。各矢印には、魚数を表す数値が表示されている。このように、2次元平面的に情報207が表示される場合も、利用者は、従来のエコーグラムで魚群を確認しながら、各深度にどの程度の大きさの魚種がどの程度の数存在し、どの方向に移動しているのか、容易に把握することができる。 Further, the information may be displayed in a two-dimensional plane together with the echogram 201 as shown in FIG. In this case, the information 207 is displayed as a calculation result in the latest Ping 210. The average movement vector of each fish type is represented by an arrow. Each arrow is color-coded for each fish type. Each arrow displays a numerical value representing the number of fish. In this way, even when the information 207 is displayed in a two-dimensional plane, the user can check the school of fish with a conventional echogram and how many fish species there are at each depth. In addition, it is possible to easily grasp which direction it is moving.
 次に、図13は、海図(地図)上に情報を表示する例を示した図である。この例では、地図画面251内に航跡252を表示し、情報の算出を行った各タイミング時の自船の位置に対応して、マーク(情報の縮小画)253を表示する。航跡252は、位置検出部17により検出された自船の位置(緯度および経度)に応じて、地図データ上に描写される。 Next, FIG. 13 is a diagram showing an example of displaying information on a nautical chart (map). In this example, the wake 252 is displayed in the map screen 251, and a mark (information reduced image) 253 is displayed corresponding to the position of the ship at each timing when the information is calculated. The wake 252 is drawn on the map data according to the position (latitude and longitude) of the ship detected by the position detection unit 17.
 そして、利用者が操作部16を用いて各地点に表示されたマーク253を選択する操作を行うと、情報255が表示される。したがって、利用者は、どの位置において、各深度にどの程度の大きさの魚種がどの程度の数存在し、どの方向に移動していたのか、容易に把握することができる。 When the user performs an operation of selecting the mark 253 displayed at each point using the operation unit 16, information 255 is displayed. Therefore, the user can easily grasp at what position and how many kinds of fish species are present at each depth and in what direction.
 また、情報は、図14に示すように、海図上に2次元平面的に表示されてもよい。この場合も、地図画面251内に航跡252を表示し、情報の算出を行った各タイミング時の自船の位置に対応して、マーク(情報の縮小画)253を表示する。利用者が操作部16を用いて各地点に表示されたマーク253を選択する操作を行うと、情報255Aが2次元平面的に表示される。情報255Aの各魚種の平均移動ベクトルは、矢印で表されている。また、各矢印は、魚種毎に色分けされている。各矢印には、魚数を表す数値が表示されている。したがって、利用者は、どの位置において、各深度にどの程度の大きさの魚種がどの程度の数存在し、どの方向に移動していたのか、容易に把握することができる。 Also, the information may be displayed in a two-dimensional plane on a chart as shown in FIG. Also in this case, the wake 252 is displayed in the map screen 251 and the mark (information reduced image) 253 is displayed corresponding to the position of the ship at each timing when the information is calculated. When the user performs an operation of selecting the mark 253 displayed at each point using the operation unit 16, the information 255A is displayed in a two-dimensional plane. The average movement vector of each fish type in the information 255A is represented by an arrow. Each arrow is color-coded for each fish type. Each arrow displays a numerical value representing the number of fish. Therefore, the user can easily grasp at what position and how many kinds of fish species are present at each depth and in what direction.
 なお、本実施形態では、単体魚を対象として検出する例を示したが、他の水中移動体に対して、上述の構成および処理を適用することができる。また、本実施形態では、情報算出部142が算出する情報は、平均移動ベクトル、魚数、魚種、または平均魚体長等の情報等を示したが、他にも各単体魚の移動ベクトルを算出してもよい。 In the present embodiment, an example in which a single fish is detected is shown, but the above-described configuration and processing can be applied to other underwater moving bodies. Further, in the present embodiment, the information calculated by the information calculation unit 142 indicates information such as the average movement vector, the number of fishes, the fish type, or the average fish length, but also calculates the movement vector of each single fish. May be.
1…水中探知装置
10…送受波器
11…送信部
13…受信部
14…演算処理部
15…記憶部
16…操作部
17…位置検出部
20…表示器
121,122,123,124…送受切替器
141…単体魚検出部
142…情報算出部
143…表示処理部
201…エコーグラム
202A,203A,204A,205A…エコー画像
202B,203B,204B,205B…矢印画像
210…Ping
251…地図画面
252…航跡
253…マーク
255…情報
DESCRIPTION OF SYMBOLS 1 ... Underwater detection apparatus 10 ... Transmitter / receiver 11 ... Transmitting part 13 ... Receiving part 14 ... Calculation processing part 15 ... Storage part 16 ... Operation part 17 ... Position detecting part 20 ... Display 121,122,123,124 ... Transmission / reception switching Unit 141 ... Single fish detection unit 142 ... Information calculation unit 143 ... Display processing unit 201 ... Echograms 202A, 203A, 204A, 205A ... Echo images 202B, 203B, 204B, 205B ... Arrow image 210 ... Ping
251 ... Map screen 252 ... Wake 253 ... Mark 255 ... Information

Claims (9)

  1.  水中へ超音波信号を送信し、該超音波信号による水中からのエコー信号を受信する送受信部と、
     前記エコー信号から水中移動体に関する個別情報を検出する水中移動体検出部と、
     前記個別情報に基づいて、前記水中移動体の移動速度に関する情報を含む情報を算出する情報算出部と、
     前記情報算出部で算出された前記移動速度に関する情報をベクトル表示する表示処理部と、
     を備えた水中探知装置。
    A transmission / reception unit for transmitting an ultrasonic signal to the water and receiving an echo signal from the water by the ultrasonic signal;
    An underwater moving body detection unit for detecting individual information related to the underwater moving body from the echo signal;
    Based on the individual information, an information calculation unit that calculates information including information on the moving speed of the underwater moving body;
    A display processing unit that vector-displays information on the moving speed calculated by the information calculating unit;
    Underwater detection device with
  2.  請求項1に記載の水中探知装置であって、
     前記水中移動体検出部は、各水中移動体の深度を検出し、
     前記情報算出部は、前記情報を深度別に算出し、
     前記表示処理部は、前記情報を深度別に表示する水中探知装置。
    The underwater detection device according to claim 1,
    The underwater moving body detection unit detects the depth of each underwater moving body,
    The information calculation unit calculates the information according to depth,
    The display processing unit is an underwater detection device that displays the information according to depth.
  3.  請求項1または請求項2に記載の水中探知装置であって、
     前記情報算出部は、複数の水中移動体の大きさの平均値を算出し、
     前記表示処理部は、前記情報として、前記平均値を含めて表示する水中探知装置。
    The underwater detection device according to claim 1 or 2,
    The information calculation unit calculates an average value of a plurality of underwater moving objects,
    The display processing unit is an underwater detection device that displays the information including the average value.
  4.  請求項1乃至請求項3のいずれか1項に記載の水中探知装置であって、
     前記水中移動体の種別を判別する判別部を備え、
     前記表示処理部は、前記情報として、前記水中移動体の種別を含めて表示する水中探知装置。
    The underwater detection device according to any one of claims 1 to 3,
    A discriminator for discriminating the type of the underwater vehicle
    The display processing unit is an underwater detection device that displays the information including the type of the underwater moving body.
  5.  請求項1乃至請求項4のいずれか1項に記載の水中探知装置であって、
     前記表示処理部は、前記情報をエコーグラムとともに前記水中移動体を検出したエコーグラム上の位置に対応した位置に表示する水中探知装置。
    The underwater detection device according to any one of claims 1 to 4,
    The said display process part is an underwater detection apparatus which displays the said information on the position corresponding to the position on the echogram which detected the said underwater moving body with the echogram.
  6.  請求項1乃至請求項5のいずれか1項に記載の水中探知装置であって、
     前記表示処理部は、前記情報を前記情報を取得した各タイミング時の自船の位置に対応して地図上に表示する水中探知装置。
    The underwater detection device according to any one of claims 1 to 5,
    The said display process part is an underwater detection apparatus which displays the said information on a map corresponding to the position of the own ship at each timing which acquired the said information.
  7.  請求項1乃至請求項6のいずれかに記載の水中探知装置であって、
     前記水中移動体は、魚である、水中探知装置。
    The underwater detection device according to any one of claims 1 to 6,
    The underwater detection device is an underwater detection device, which is a fish.
  8.  水中へ超音波信号を送信し、
     該超音波信号による水中からのエコー信号を受信し、
     前記エコー信号から水中移動体に関する個別情報を検出し、
     前記個別情報に基づいて、前記水中移動体の移動速度に関する情報を含む情報を算出し、
     算出された前記移動速度に関する情報をベクトル表示する、
     水中探知方法。
    Send ultrasonic signals into the water,
    Receiving an echo signal from underwater by the ultrasonic signal;
    Detect individual information about the underwater moving object from the echo signal,
    Based on the individual information, calculate information including information on the moving speed of the underwater moving body,
    Information about the calculated moving speed is displayed as a vector.
    Underwater detection method.
  9.  コンピュータに、
     水中へ超音波信号を送信し、該超音波信号による水中からのエコー信号を受信する送受信処理と、
     前記エコー信号から水中移動体に関する個別情報を検出する水中移動体検出処理と、
     前記個別情報に基づいて、前記水中移動体の移動速度に関する情報を含む情報を算出する情報算出処理と、
     前記情報算出処理で算出された前記移動速度に関する情報をベクトル表示する表示処理と、
     を実行させるプログラム。
    On the computer,
    A transmission / reception process for transmitting an ultrasonic signal to the water and receiving an echo signal from the water by the ultrasonic signal;
    Underwater moving object detection processing for detecting individual information related to the underwater moving object from the echo signal;
    An information calculation process for calculating information including information on the moving speed of the underwater moving body based on the individual information;
    A display process for displaying, as a vector, information about the moving speed calculated in the information calculation process;
    A program that executes
PCT/JP2017/009493 2016-03-23 2017-03-09 Underwater detection apparatus, underwater detection method, and underwater detection program WO2017163904A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018507206A JP6714261B2 (en) 2016-03-23 2017-03-09 Underwater detection device, underwater detection method, and underwater detection program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-058007 2016-03-23
JP2016058007 2016-03-23

Publications (1)

Publication Number Publication Date
WO2017163904A1 true WO2017163904A1 (en) 2017-09-28

Family

ID=59900138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009493 WO2017163904A1 (en) 2016-03-23 2017-03-09 Underwater detection apparatus, underwater detection method, and underwater detection program

Country Status (2)

Country Link
JP (1) JP6714261B2 (en)
WO (1) WO2017163904A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020148722A (en) * 2019-03-15 2020-09-17 学校法人東北学院 Moving object detection device
WO2020195467A1 (en) * 2019-03-26 2020-10-01 古野電気株式会社 Target measurement device and target measurement method
EP4067934A1 (en) * 2021-03-31 2022-10-05 Furuno Electric Co., Ltd. Aquatic animal shape calculation device and method
EP4067933A1 (en) * 2021-03-31 2022-10-05 Furuno Electric Co., Ltd. Fish size calculation device and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080080317A1 (en) * 2006-10-02 2008-04-03 Furuno Electric Company, Ltd. Fishfinder
JP2010261883A (en) * 2009-05-11 2010-11-18 Furuno Electric Co Ltd Underwater detection device and method of displaying underwater detected image
JP2011052990A (en) * 2009-08-31 2011-03-17 Tohoku Gakuin Underwater detection device and method for discriminating kind of fish
JP2011247624A (en) * 2010-05-24 2011-12-08 Furuno Electric Co Ltd Underwater detection device and underwater detection method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5812397B2 (en) * 2011-06-22 2015-11-11 古野電気株式会社 Underwater detection device, underwater detection method, and underwater detection program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080080317A1 (en) * 2006-10-02 2008-04-03 Furuno Electric Company, Ltd. Fishfinder
JP2010261883A (en) * 2009-05-11 2010-11-18 Furuno Electric Co Ltd Underwater detection device and method of displaying underwater detected image
JP2011052990A (en) * 2009-08-31 2011-03-17 Tohoku Gakuin Underwater detection device and method for discriminating kind of fish
JP2011247624A (en) * 2010-05-24 2011-12-08 Furuno Electric Co Ltd Underwater detection device and underwater detection method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOICHI SAWADA: "Study on the Precise Estimation of the Target Strength of Fish", BULLETIN OF FISHERIES RESEARCH AGENCY, February 2002 (2002-02-01), pages 47 - 122 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020148722A (en) * 2019-03-15 2020-09-17 学校法人東北学院 Moving object detection device
JP7091595B2 (en) 2019-03-15 2022-06-28 学校法人東北学院 Moving object detector
WO2020195467A1 (en) * 2019-03-26 2020-10-01 古野電気株式会社 Target measurement device and target measurement method
JP7444852B2 (en) 2019-03-26 2024-03-06 古野電気株式会社 Target measurement device and target measurement method
EP4067934A1 (en) * 2021-03-31 2022-10-05 Furuno Electric Co., Ltd. Aquatic animal shape calculation device and method
EP4067933A1 (en) * 2021-03-31 2022-10-05 Furuno Electric Co., Ltd. Fish size calculation device and method

Also Published As

Publication number Publication date
JP6714261B2 (en) 2020-06-24
JPWO2017163904A1 (en) 2018-12-13

Similar Documents

Publication Publication Date Title
US9354314B2 (en) Underwater detection device
AU2016203271B2 (en) Sonar systems and methods using interferometry and/or beamforming for 3d imaging
US11639996B2 (en) Presenting objects in a sonar image of an underwater environment
JP5257783B2 (en) Underwater detection device and underwater detection image display method
JP5252578B2 (en) Underwater detection device and fish species discrimination method
JP6714261B2 (en) Underwater detection device, underwater detection method, and underwater detection program
CN104656089B (en) A kind of sonar sensor
JP5812397B2 (en) Underwater detection device, underwater detection method, and underwater detection program
JP5767002B2 (en) Ultrasonic transmission / reception device and fish quantity detection method
JP2015210143A (en) Underwater detection device, underwater detection method and underwater detection program
GB2553404A (en) Underwater detection system
JP7021025B2 (en) Echo signal processing device, echo signal processing system, and echo signal processing method
CN108227744A (en) A kind of underwater robot location navigation system and positioning navigation method
US11022687B2 (en) Wading staff with a sonar transducer
JP2009300220A (en) Underwater detection device
JPH0679065B2 (en) Seabed search device
JP2011247624A (en) Underwater detection device and underwater detection method
RU2660292C1 (en) Method for determining object immersion depth
CN111142112A (en) Rapid non-imaging detection method for underwater anchor system small target
RU2582624C1 (en) Hydroacoustic method of processing fishing information
RU2384863C1 (en) Active sonar
JP5515214B2 (en) Active sonar device and dereverberation method using active sonar device
JP2017156199A (en) Target detection system and target detection method
JP2001264437A (en) System device, and method for measuring distribution of tidal current, and underwater detection system
TR201606437A2 (en) Hydrographic, oceanographic, geophysical based research mission unmanned sea vessel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018507206

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769949

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769949

Country of ref document: EP

Kind code of ref document: A1