WO2017163718A1 - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
WO2017163718A1
WO2017163718A1 PCT/JP2017/006345 JP2017006345W WO2017163718A1 WO 2017163718 A1 WO2017163718 A1 WO 2017163718A1 JP 2017006345 W JP2017006345 W JP 2017006345W WO 2017163718 A1 WO2017163718 A1 WO 2017163718A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
electrode
crystal display
tft array
display device
Prior art date
Application number
PCT/JP2017/006345
Other languages
French (fr)
Japanese (ja)
Inventor
浩治 米村
祐輔 牧
修一 吉良
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018507139A priority Critical patent/JPWO2017163718A1/en
Publication of WO2017163718A1 publication Critical patent/WO2017163718A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • the present invention relates to a liquid crystal display device.
  • the pixel has a horizontally long shape in which the longitudinal direction is the extending direction of the scanning line (gate line) and the short direction is the extending direction of the data line (source line), and red (R), green (G), blue
  • a liquid crystal display device configured such that, in the pixel (G) (minimum unit of display image) of (G), the three pixels are driven by three different scanning lines (for example, Patent Document 1) below.
  • Such a pixel driving method is called a “triple gate system”, and the above structure is called a “triple gate structure”.
  • Patent Document 2 discloses a technique for increasing the aperture ratio in a TN (Twisted Nematic) type liquid crystal display device having a triple gate structure.
  • the present inventor proposed an optical design optimized for further improving the aperture ratio in an FFS (fringe field switching) type liquid crystal display device capable of achieving both a wide viewing angle and a high aperture ratio. (Patent Document 3 below).
  • Patent Document 4 discloses that in a FFS type liquid crystal display device having a vertically long pixel (longitudinal direction is a data line extending direction and short side direction is a scanning line extending direction), the data lines are covered with a common electrode. It has been proposed to increase the aperture ratio by shielding the electric field from the data line.
  • JP 2007-148240 A International Publication No. 2009/110147 JP 2014-115563 A JP 2008-191669 A
  • Patent Documents 1 and 2 disclose a TN type liquid crystal display device having a triple gate structure, but do not propose an optical design suitable for an FFS type liquid crystal display device.
  • Patent Document 3 assumes a general vertically long pixel and does not propose an optical design suitable for a liquid crystal display device having a triple gate structure. That is, Patent Documents 1 to 3 have not proposed an optical design suitable for an FFS type liquid crystal display device having a triple gate structure.
  • the present invention has been made in order to solve the above-described problems, and in a triple gate FFS mode liquid crystal display device, while preventing an increase in cost, it prevents a decrease in transmittance and improves a viewing angle characteristic.
  • the purpose is to plan.
  • a liquid crystal display device includes a TFT array substrate having a plurality of scanning lines extending in the horizontal direction and a plurality of data lines extending in the vertical direction, a counter substrate disposed to face the TFT array substrate,
  • a liquid crystal display panel comprising: a positive type liquid crystal sandwiched between the TFT array substrate and the counter substrate; and a pixel formed in a region surrounded by the adjacent scanning line and the adjacent data line.
  • the pixel includes: a flat plate-like first electrode formed on the TFT array substrate; and a second electrode having a slit extending in the horizontal direction and provided on the first electrode via an insulating film.
  • One of the first electrode and the second electrode is a pixel electrode, the other is a common electrode, and each pixel is a pixel that is a minimum unit of an image composed of a plurality of pixels having different colors.
  • Each pixel region has a horizontally long shape in which the longitudinal direction is the horizontal direction and the short direction is the vertical direction, and a retardation film is provided on the surface of the liquid crystal display panel on the TFT array substrate side. Is provided.
  • the FFS liquid crystal display device having a triple gate structure it is possible to further improve the transmittance and viewing angle characteristics while suppressing an increase in cost.
  • TFT array substrate which concerns on embodiment of this invention. It is a figure which shows the structure of the pixel in the TFT array substrate which concerns on embodiment of this invention. It is a top view which shows the structure of the pixel in the TFT array substrate which concerns on embodiment of this invention. It is sectional drawing which shows the structure of the pixel in the TFT array substrate which concerns on embodiment of this invention. It is sectional drawing which shows the structure of the pixel in the TFT array substrate which concerns on embodiment of this invention. It is sectional drawing which shows the structure of the pixel in the liquid crystal display panel which concerns on embodiment of this invention.
  • FIG. 1 is a plan view showing a configuration of a TFT array substrate 100 according to an embodiment of the present invention.
  • the TFT array substrate 100 is used for a fringe field switching (FFS) type liquid crystal display panel.
  • FFS fringe field switching
  • a liquid crystal display panel is configured by disposing a counter substrate provided with a color filter or the like so as to face the TFT array substrate 100 and sandwiching liquid crystal therebetween.
  • a display screen for displaying an image is provided on the surface of the counter substrate which is the front side of the liquid crystal display panel, and the TFT array substrate 100 which is the back side of the liquid crystal display panel.
  • a backlight is arranged so as to face the surface on the side.
  • a liquid crystal display device is configured by housing the liquid crystal display panel and the backlight in a housing in which the portion of the display screen is opened.
  • the area on the TFT array substrate 100 is divided into a display area 100a where a plurality of pixels 10 for displaying an image are arranged and a frame area 100b outside the display area 100a.
  • a plurality of scanning lines 101 gate lines
  • a plurality of data lines 102 source lines
  • It is arranged to intersect. Since the pixel 10 is formed in each of the regions surrounded by the two adjacent scanning lines 101 and the two adjacent data lines 102, a plurality of pixels 10 are arranged in a matrix (array shape) in the display region 100a. ) Will be arranged.
  • the scanning line 101 and the data line 102 are extended to the frame region 100b and connected to the mounting terminals 104 provided in the frame region 100b.
  • Various control signals for driving the scanning lines 101 and the data lines 102 and display signals (image data) supplied to the data lines 102 are input from the printed circuit board 105 and the IC chip 106 connected to the mounting terminals 104.
  • each pixel 10 serving as a minimum unit of an image is configured by three pixels 10 of red (R), green (G), and blue (B).
  • FIG. 2 is a diagram illustrating a configuration of the picture element 30. As shown in FIG. 2, each pixel 10 constituting the picture element 30 includes a TFT 11 that is a switching element, a pixel electrode 12 that generates an electric field that drives a liquid crystal, and a common electrode 13.
  • the TFT 11 is disposed in the vicinity of the intersection of the scanning line 101 and the data line 102.
  • the gate of the TFT 11 is connected to the scanning line 101, the source is connected to the data line 102, and the drain is connected to the pixel electrode 12.
  • the common electrode 13 is disposed to face the pixel electrode 12 with an insulating film interposed therebetween, and is supplied with a constant potential (common potential).
  • the pixel electrode 12 is a flat electrode (first electrode) disposed on the lower layer side, and the common electrode 13 is disposed on the upper layer side and has a comb shape having a slit (opening). Electrode (second electrode).
  • each of the pixels 10 has a horizontally long shape in which the longitudinal direction is the horizontal direction (the extending direction of the scanning line 101) and the short direction is the vertical direction (the extending direction of the data line 102). .
  • the three pixels constituting the picture element 30 are driven by different scanning lines 101 (the gates of the TFTs 11 of the respective pixels 10 are connected to the different scanning lines 101). Further, a display signal is supplied to the three pixels from the same data line 102 (the source of the TFT 11 of each pixel 10 is connected to the same data line 102). That is, the TFT array substrate 100 has a triple gate structure.
  • the extending direction of the slits is changed between the left side portion and the right side portion of the common electrode 13, thereby making the pixel 10 multi-domain (alignment division).
  • the color change (color shift) depending on the viewing angle direction is suppressed, and the viewing angle characteristics are improved.
  • the pixel electrode 12 has a “ ⁇ ” shape that is bent at the boundary between the left side portion and the right side portion so as to correspond to the direction in which the slit of the common electrode 13 extends.
  • the scanning line 101 is horizontally bent while zigzag so as to correspond to the bent shape of the pixel electrode 12 of each pixel 10 adjacent to the scanning line 101 (that is, to correspond to the extending direction of the slit). Extends in the direction.
  • FIG. 3 to 5 are diagrams showing the configuration of the pixel 10 of the TFT array substrate 100.
  • FIG. 3 is a plan view of the pixel 10
  • FIG. 4 is a cross-sectional view taken along line AA in FIG. 3
  • FIG. 5 is a cross-sectional view taken along line BB in FIG.
  • the TFT array substrate 100 is formed using a transparent substrate 1 made of a transparent insulator such as glass.
  • the scanning line 101 and the gate electrode 2 of the TFT 11 are formed using the same conductive film, and a gate insulating film 3 is formed so as to cover them.
  • the gate electrode 2 is constituted by a part of the scanning line 101. That is, the portion of the scanning line 101 where the TFT 11 is formed (the portion located below the semiconductor film 4) is the gate electrode 2.
  • a semiconductor film 4 is formed in the formation region of the TFT 11.
  • a source electrode 6 and a drain electrode 7 of the TFT 11 are formed on the semiconductor film 4 via an ohmic contact film 5.
  • the ohmic contact film 5 can be formed, for example, by ion-implanting impurities into the surface layer portion of the semiconductor film 4.
  • the gate electrode 2, the source electrode 6, and the drain electrode 7 are disposed so as to face each other with the gate insulating film 3, the semiconductor film 4, and the ohmic contact film 5 interposed therebetween, and thereby the TFT 11 is configured.
  • the data line 102 is formed on the gate insulating film 3 by using the same conductive film as the source electrode 6 and the drain electrode 7.
  • the source electrode 6 is constituted by a part of the data line 102. That is, the portion of the data line 102 where the TFT 11 is formed (the portion on the semiconductor film 4) is the source electrode 6.
  • a pixel electrode 12 made of a transparent conductive film such as ITO (IndiumInTin Oxide) is also formed on the gate insulating film 3. A part of the pixel electrode 12 directly overlaps the drain electrode 7, whereby the drain electrode 7 and the pixel electrode 12 are electrically connected.
  • ITO IndiumInTin Oxide
  • a protective film 8 (insulating film) is formed so as to cover the source electrode 6, the drain electrode 7, the pixel electrode 12 and the data line 102.
  • the protective film 8 can be composed of, for example, a single layer film made of an insulator such as an oxide film, a nitride film, or an organic resin film, or a laminated film thereof.
  • a common electrode 13 made of a transparent conductive film such as ITO is provided on the protective film 8.
  • a plurality of slits (openings) are formed in the common electrode 13, and the extending direction (longitudinal direction) of each slit is a horizontal direction (longitudinal direction of the pixel electrode 12 or extending direction of the scanning line 101). ).
  • the pixel 10 is multi-domained with the slit extending directions different in the left and right portions of the common electrode 13.
  • the extending direction of the slit is substantially horizontal, but is not completely horizontal.
  • the extending direction of the slit is axisymmetric between the left side portion and the right side portion of the common electrode 13. That is, the inclination angle ⁇ with respect to the horizontal direction of the slit is the same in the left part and the right part (positive and negative are opposite).
  • the inclination angle ⁇ of the slit is less than 45 degrees, and is 15 degrees in the present embodiment.
  • the inclination angle with respect to the horizontal direction in each portion of the bent pixel electrode 12 and the inclination angle with respect to the horizontal direction in each portion of the bent scanning line 101 are also set in accordance with the inclination angle ⁇ of the slit of the common electrode 13. Has been.
  • FIG. 6 shows a cross-sectional structure of a liquid crystal display panel configured using the TFT array substrate 100.
  • a counter substrate 200 is provided to face the TFT array substrate 100, and a liquid crystal 150 is provided therebetween.
  • the liquid crystal 150 is driven by generating a fringe electric field between the common electrode 13 and the pixel electrode 12 on the TFT array substrate 100.
  • a positive type having a positive dielectric constant ⁇ (for example, +3 to +15) is used.
  • the distance (cell gap) between the TFT array substrate 100 and the counter substrate 200 is, for example, about 2 to 5 ⁇ m.
  • the counter substrate 200 is provided with a color filter, a black matrix, an alignment film, and the like.
  • FIG. 6 shows only the black matrix 201 among them.
  • the black matrix 201 is disposed so as to cover a region between the pixels 10 and prevents color mixing between adjacent pixels 10.
  • FIG. 7 is a diagram showing an optical design (optical axis configuration) of an optical sheet (polarizing plate and retardation film) and liquid crystal provided in the liquid crystal display panel.
  • a polarizing plate 501 first polarized light
  • back side the surface of the TFT array substrate 100
  • plate and a biaxial retardation film 503 are disposed.
  • a polarizing plate 502 second polarizing plate
  • front side the display screen side of the liquid crystal display panel (liquid crystal 150), that is, on the surface of the counter substrate 200 (hereinafter referred to as “front side”).
  • the biaxial retardation film 503 is interposed between the TFT array substrate 100 and the polarizing plate 501. Therefore, the backlight disposed on the back side of the liquid crystal display panel is disposed to face the surface on the TFT array substrate 100 side of the liquid crystal display panel through the biaxial retardation film 503 and the polarizing plate 501. become.
  • the alignment direction of the liquid crystal 150 is set to the extending direction of the gate electrode 2, that is, the horizontal direction (defined as the 0 ° direction).
  • the alignment process for determining the initial alignment of the liquid crystal 150 is performed by the rubbing process, an alignment film is applied to the surfaces of the TFT array substrate 100 and the counter substrate 200 (surfaces facing the liquid crystal 150), and the rubbing process is performed in the horizontal direction. Good.
  • the absorption axis of the polarizing plate 502 on the front side of the liquid crystal display panel is set to 0 ° (horizontal direction) so that the display can be visually recognized through polarized sunglasses, and the polarizing plate on the back side.
  • the absorption axis 501 is in the 90 ° direction (vertical direction).
  • a biaxial retardation film 503 having a slow axis in the 0 ° direction (horizontal direction) is disposed on the back side of the liquid crystal display panel.
  • the liquid crystal 150 can be driven by setting the alignment direction of the liquid crystal 150 to the horizontal direction (the extending direction of the scanning line 101).
  • the absorption axis of the polarizing plate 501 on the back side is perpendicular to the alignment direction of the liquid crystal 150 and the absorption axis of the polarizing plate 502 on the front side is parallel to the alignment direction of the liquid crystal 150, display is also possible through polarized sunglasses. Can be visually recognized.
  • the biaxial retardation film 503 whose slow axis is horizontal to the alignment direction of the liquid crystal 150 is disposed between the polarizing plate 501 on the back side and the TFT array substrate 100 to realize the optical axis configuration of FIG. As a result, the viewing angle characteristics are improved.
  • the reason why the viewing angle characteristics are improved by the configuration of the optical axis in FIG. 7 is that the polarized light that has passed through the polarizing plate 501 is incident on the biaxial retardation film 503 as it is.
  • the position of the biaxial retardation film 503 (the order in which polarized light is transmitted) is important.
  • the biaxial retardation film 503 when the biaxial retardation film 503 is disposed on the front side of the liquid crystal display panel, the polarized light that has passed through the polarizing plate 501 passes through the liquid crystal 150 layer, the color filter of the counter substrate 200, and the like, and then the biaxial retardation film. 503 is transmitted. In this order, depolarization occurs due to scattering by the liquid crystal 150 or the color filter, and ideal polarization cannot be transmitted through the biaxial retardation film 503, and a desired optical compensation effect cannot be obtained. .
  • a part of the common electrode 13 covers the scanning line 101. Thereby, the electric field from the scanning line 101 can be shielded.
  • a thick organic insulating film (flattening film) or the like for flattening the surface is not formed on the scanning line 101. Therefore, an increase in cost can be suppressed as compared with the case where an organic insulating film is used, but a step portion 13 a resulting from the thickness of the scanning line 101 is formed on the surface of the common electrode 13.
  • FIG. 7 shows an example using the biaxial retardation film 503, a retardation film other than the biaxial retardation film may be used.
  • a retardation film formed by laminating two uniaxial retardation films may be used.
  • the position where the retardation film is provided is between the polarizing plate 501 on the back side and the TFT array substrate 100.
  • one uniaxial retardation film has a retardation in the horizontal direction (X direction) and the vertical direction (Y direction) in the film plane, and its retardation. Set the phase axis direction to horizontal.
  • the other uniaxial retardation film may have a retardation in the thickness direction (Z direction) of the film and no retardation in the film plane. Even when such a retardation film is used, the display can be visually recognized through the polarized sunglasses as in the configuration of FIG. 7, and the effect that the viewing angle characteristics are improved can be obtained.
  • the black matrix 201 of the counter substrate 200 is disposed above the scanning line 101 (at a position overlapping the scanning line 101 in plan view) so as to cover the scanning line 101.
  • the black matrix 201 covering the scanning line 101 is formed wider than the scanning line 101 so as to cover the step portion 13 a of the common electrode 13. That is, the black matrix 201 has a bowl shape protruding from the end of the scanning line 101.
  • the protrusion amount D1 of the black matrix 201 from the end of the scanning line 101 is set to 2.0 ⁇ m. In FIG. 6, the amount protruding from the scanning line 101 to the right side (upper side in FIG.
  • the black matrix 201 is formed so as to protrude from the end portion of the scanning line 101 by a certain protrusion amount D1, and thus the extending direction (horizontal direction) of the scanning line 101 In the same manner as in the scanning line 101, the scanning line 101 is provided so as to extend while being bent in a zigzag manner.
  • the scanning line 101 does not extend in a straight line in the horizontal direction, but extends in the horizontal direction while being bent in a zigzag manner. Therefore, as shown in FIG. 8, when the alignment film 15 is applied to the surface of the scanning line 101 and the horizontal rubbing process is performed, the rubbing direction and the extending direction of the scanning line 101 are not parallel, and the rubbing roller 300. Moves over the scan line 101. In such a case, the present inventor has experimentally confirmed that a poor alignment occurs on the scanning line 101 and in the range of about 2 ⁇ m around the step portion 13a. Therefore, when the black matrix 201 covers the step portion 13a, light leakage due to alignment failure can be blocked, and an increase in black luminance is prevented.
  • the contrast of the display image is improved.
  • 8 uses the same cross-sectional view as in FIG. 5, the movement of the rubbing roller 300 may seem to be perpendicular to the scanning line 101, but the rubbing direction is only the extending direction of the scanning line 101. The direction is parallel to (horizontal direction).
  • the present inventor further examined the protrusion amount D1 of the black matrix 201 that can minimize the decrease in white luminance.
  • the transmittance at the end of the slit of the common electrode 13 becomes the highest as shown in FIG. .
  • the present inventor confirmed this by simulation (Shintech: LCD Master). Therefore, it is preferable that the black matrix 201 does not cover the end of the slit of the common electrode 13. Thereby, the white luminance is improved, and the contrast can be improved more effectively.
  • a distance D2 between the end of the black matrix 201 and the end of the slit closest to the scanning line 101 is 2.0 ⁇ m.
  • the effect of the optical design shown in FIG. 7 can be obtained regardless of the arrangement of the black matrix 201 and the presence or absence of the stepped portion 13a of the common electrode 13. Therefore, for example, even if an organic resin film is provided on the scanning line 101 and the step portion 13a is not formed on the surface of the common electrode 13, the optical design of FIG. 7 can be applied and the same effect can be obtained.
  • the flat electrode (first electrode) disposed on the lower layer side is used as the pixel electrode 12, and the comb-shaped electrode (second electrode) disposed on the upper layer side.
  • the common electrode 13 is a flat electrode (first electrode) disposed under the protective film 8
  • the pixel electrode 12 is a comb tooth disposed over the protective film 8.
  • a shaped electrode (second electrode) may be used. However, it is necessary to provide a contact hole in the protective film 8 for connecting the drain electrode 7 of the TFT 11 and the pixel electrode 12.
  • the stepped portion 13 a generated in the common electrode 13 due to the thickness of the scanning line 101 is covered with the protective film 8, but the stepped portion due to the stepped portion 13 a is on the surface of the protective film 8. If it is formed, there is a risk that alignment failure will occur at that portion. Therefore, also in the configuration of FIG. 10, the black matrix 201 covers the step portion 13 a of the common electrode 13, so that an effect of preventing a decrease in contrast due to light leakage due to alignment failure can be obtained.
  • 100 TFT array substrate 100a display region, 100b frame region, 101 scanning line, 102 data line, 104 mounting terminal, 105 printed substrate, 106 IC chip, 200 counter substrate, 201 black matrix, 1 transparent substrate, 2 gate electrode, 3 Gate insulating film, 4 semiconductor film, 5 ohmic contact film, 6 source electrode, 7 drain electrode, 8 protective film, 10 pixel, 11 TFT, 12 pixel electrode, 13 common electrode, 13a step, 15 alignment film, 30 pixel , 150 liquid crystal, 300 rubbing roller, 501, 502 polarizing plate, 503 biaxial retardation film.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Polarising Elements (AREA)

Abstract

The purpose of the present invention is to prevent a decrease in transmittance and improve viewing angle characteristics while suppressing an increase in manufacturing cost in a fringe field switching (FFS) liquid crystal display device that has a picture element comprising three pixels of red, green, and blue which are arranged such that the longitudinal direction and the transverse direction of the pixels are the extending direction of the scanning line and the extending direction of the data line, respectively, and has a triple gate structure in which the three pixels in the picture element are driven by three mutually different scanning lines. In the FFS liquid crystal display device having a triple gate structure, a positive liquid crystal is used for a liquid crystal (150) interposed between a TFT array substrate (100) and an opposite substrate (200). Each of the pixels (10) has a horizontally-long laterally elongated shape with a slit, which is arranged in a pixel electrode (12) or a common electrode (13), extending along the horizontal direction. Further, a biaxial retardation film (503) is provided on the surface of a liquid crystal display panel on the backlight side, i.e. on the TFT array substrate (100) side.

Description

液晶表示装置Liquid crystal display
 本発明は、液晶表示装置に関するものである。 The present invention relates to a liquid crystal display device.
 画素の形状を、長手方向が走査線(ゲート線)の延在方向、短手方向がデータ線(ソース線)の延在方向となる横長形状にし、赤(R)、緑(G)、青(G)の3つの画素からなる絵素(表示画像の最小単位)において、それら3つの画素をそれぞれ異なる3本の走査線で駆動するように構成した液晶表示装置が知られている(例えば、下記の特許文献1)。そのような画素の駆動方法は「トリプルゲート方式」と呼ばれ、上記の構造は「トリプルゲート構造」と呼ばれる。 The pixel has a horizontally long shape in which the longitudinal direction is the extending direction of the scanning line (gate line) and the short direction is the extending direction of the data line (source line), and red (R), green (G), blue There is known a liquid crystal display device configured such that, in the pixel (G) (minimum unit of display image) of (G), the three pixels are driven by three different scanning lines (for example, Patent Document 1) below. Such a pixel driving method is called a “triple gate system”, and the above structure is called a “triple gate structure”.
 トリプルゲート構造の液晶表示装置では、データ線の本数、およびソース線を駆動するIC(Integrated Circuit)の数を減らすことによる低コスト化が可能である。特に、下記の特許文献2では、トリプルゲート構造のTN(Twisted Nematic)型液晶表示装置において、高開口率化のための技術が開示されている。 In a triple gate liquid crystal display device, the cost can be reduced by reducing the number of data lines and the number of integrated circuits (ICs) that drive the source lines. In particular, Patent Document 2 below discloses a technique for increasing the aperture ratio in a TN (Twisted Nematic) type liquid crystal display device having a triple gate structure.
 一方、本発明者は、広視野角および高開口率を両立できるFFS(fringe field switching)型液晶表示装置において、開口率の更なる向上を実現するために最適化された光学設計を提案している(下記の特許文献3)。 On the other hand, the present inventor proposed an optical design optimized for further improving the aperture ratio in an FFS (fringe field switching) type liquid crystal display device capable of achieving both a wide viewing angle and a high aperture ratio. (Patent Document 3 below).
 また、特許文献4には、縦長形状(長手方向がデータ線の延在方向、短手方向が走査線の延在方向)の画素を有するFFS型液晶表示装置において、データ線を共通電極で覆い、データ線からの電界を遮蔽することによって高開口率化を図ることが提案されている。 Patent Document 4 discloses that in a FFS type liquid crystal display device having a vertically long pixel (longitudinal direction is a data line extending direction and short side direction is a scanning line extending direction), the data lines are covered with a common electrode. It has been proposed to increase the aperture ratio by shielding the electric field from the data line.
特開2007-148240号公報JP 2007-148240 A 国際公開第2009/110147号International Publication No. 2009/110147 特開2014-115563号公報JP 2014-115563 A 特開2008-191669号公報JP 2008-191669 A
 特許文献1,2等は、トリプルゲート構造のTN型液晶表示装置を開示しているが、FFS型液晶表示装置に適した光学設計を提案するものではない。一方、特許文献3は、一般的な縦長形状の画素を想定したものであり、トリプルゲート構造の液晶表示装置に適した光学設計を提案するものではない。つまり、特許文献1~3には、トリプルゲート構造のFFS型液晶表示装置に適した光学設計は提案されていなかった。 Patent Documents 1 and 2 disclose a TN type liquid crystal display device having a triple gate structure, but do not propose an optical design suitable for an FFS type liquid crystal display device. On the other hand, Patent Document 3 assumes a general vertically long pixel and does not propose an optical design suitable for a liquid crystal display device having a triple gate structure. That is, Patent Documents 1 to 3 have not proposed an optical design suitable for an FFS type liquid crystal display device having a triple gate structure.
 FFS型液晶表示装置において広視野角を得るには、ポジ型の液晶を用いた上で、光学フィルムの吸収軸や液晶の配向方向などの光学設計を適切に行う必要がある。また、ポジ型の液晶を用いるためには、共通電極または画素電極に設けるスリットを水平方向(走査線の延在方向)に延在させる必要がある。特許文献4のように画素が縦長形状である場合に、スリットを水平方向に延在させると、電極端部に発生するディスクリネーションにより、透過率が低下するという問題が生じる。 In order to obtain a wide viewing angle in an FFS type liquid crystal display device, it is necessary to appropriately perform optical design such as an absorption axis of an optical film and an alignment direction of the liquid crystal after using a positive type liquid crystal. In addition, in order to use a positive type liquid crystal, it is necessary to extend a slit provided in the common electrode or the pixel electrode in the horizontal direction (scanning line extending direction). When the pixels are vertically long as in Patent Document 4, if the slits are extended in the horizontal direction, there is a problem in that the transmittance decreases due to disclination generated at the electrode end portions.
 また、ディスクリネーションによる透過率低下を防ぐには、特許文献3のように、データ線上に厚い有機樹脂膜(平坦化膜)を設け、その上にデータ線を覆う共通電極を設けることが有効である。しかし、有機樹脂膜を設けることで、製造工程数の増加および製造コストの上昇の問題が生じる。 In order to prevent a decrease in transmittance due to disclination, it is effective to provide a thick organic resin film (planarization film) on the data line and a common electrode covering the data line on the data line as in Patent Document 3. It is. However, the provision of the organic resin film causes problems such as an increase in the number of manufacturing steps and an increase in manufacturing cost.
 本発明は以上のような課題を解決するためになされたものであり、トリプルゲート構造のFFS方式の液晶表示装置において、コストの上昇を抑えつつ、透過率の低下防止および視野角特性の向上を図ることを目的とする。 The present invention has been made in order to solve the above-described problems, and in a triple gate FFS mode liquid crystal display device, while preventing an increase in cost, it prevents a decrease in transmittance and improves a viewing angle characteristic. The purpose is to plan.
 本発明に係る液晶表示装置は、水平方向に延在する複数の走査線および垂直方向に延在する複数のデータ線を有するTFTアレイ基板と、前記TFTアレイ基板に対向配置された対向基板と、前記TFTアレイ基板と前記対向基板との間に挟持されたポジ型の液晶と、隣り合う前記走査線と隣り合う前記データ線とに囲まれた領域に形成された画素と、を含む液晶表示パネルを備え、前記画素は、前記TFTアレイ基板に形成された平板状の第1電極、および、前記第1電極の上に絶縁膜を介して設けられ水平方向に延びるスリットを有する第2電極とを含み、前記第1電極および前記第2電極の片方は画素電極、もう片方は共通電極であり、色の異なる複数の前記画素で構成される画像の最小単位である絵素において、各画素はそれぞれ異なる前記走査線で駆動され、各画素の領域は長手方向が水平方向、短手方向が垂直方向となった横長形状であり、前記液晶表示パネルにおけるTFTアレイ基板側の表面に、位相差フィルムが設けられている。 A liquid crystal display device according to the present invention includes a TFT array substrate having a plurality of scanning lines extending in the horizontal direction and a plurality of data lines extending in the vertical direction, a counter substrate disposed to face the TFT array substrate, A liquid crystal display panel, comprising: a positive type liquid crystal sandwiched between the TFT array substrate and the counter substrate; and a pixel formed in a region surrounded by the adjacent scanning line and the adjacent data line. The pixel includes: a flat plate-like first electrode formed on the TFT array substrate; and a second electrode having a slit extending in the horizontal direction and provided on the first electrode via an insulating film. One of the first electrode and the second electrode is a pixel electrode, the other is a common electrode, and each pixel is a pixel that is a minimum unit of an image composed of a plurality of pixels having different colors. Each pixel region has a horizontally long shape in which the longitudinal direction is the horizontal direction and the short direction is the vertical direction, and a retardation film is provided on the surface of the liquid crystal display panel on the TFT array substrate side. Is provided.
 本発明によれば、トリプルゲート構造のFFS方式の液晶表示装置において、コストの上昇を抑えつつ、透過率および視野角特性を更に向上させることができる。 According to the present invention, in the FFS liquid crystal display device having a triple gate structure, it is possible to further improve the transmittance and viewing angle characteristics while suppressing an increase in cost.
本発明の実施の形態に係るTFTアレイ基板の平面図である。It is a top view of the TFT array substrate which concerns on embodiment of this invention. 本発明の実施の形態に係るTFTアレイ基板における絵素の構成を示す図である。It is a figure which shows the structure of the pixel in the TFT array substrate which concerns on embodiment of this invention. 本発明の実施の形態に係るTFTアレイ基板における画素の構成を示す平面図である。It is a top view which shows the structure of the pixel in the TFT array substrate which concerns on embodiment of this invention. 本発明の実施の形態に係るTFTアレイ基板における画素の構成を示す断面図である。It is sectional drawing which shows the structure of the pixel in the TFT array substrate which concerns on embodiment of this invention. 本発明の実施の形態に係るTFTアレイ基板における画素の構成を示す断面図である。It is sectional drawing which shows the structure of the pixel in the TFT array substrate which concerns on embodiment of this invention. 本発明の実施の形態に係る液晶表示パネルにおける画素の構成を示す断面図である。It is sectional drawing which shows the structure of the pixel in the liquid crystal display panel which concerns on embodiment of this invention. 本発明の実施の形態に係る液晶表示装置における液晶、光学フィルム、液晶配向方向の関係を示す図である。It is a figure which shows the relationship between the liquid crystal in the liquid crystal display device which concerns on embodiment of this invention, an optical film, and a liquid crystal aligning direction. TFTアレイ基板に対するラビング処理を示す図である。It is a figure which shows the rubbing process with respect to a TFT array substrate. 画素における透過率分布のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the transmittance | permeability distribution in a pixel. 実施の形態の変形例に係る液晶表示パネルにおける画素の構成を示す断面図である。It is sectional drawing which shows the structure of the pixel in the liquid crystal display panel which concerns on the modification of embodiment.
 以下、本発明の実施の形態について説明する。なお、以下の説明に用いる図面は模式的なものであり、構成要素の大きさ、形状等を正確に表しているとは限らない。また、図示の便宜のため、本発明に関連の薄い部位は省略または簡略化して示している。さらに、複数の図面に現れる要素には、同一符号を付してあるので、個々の図面で重複する説明は省略する。 Hereinafter, embodiments of the present invention will be described. Note that the drawings used in the following description are schematic and do not necessarily accurately represent the size, shape, etc. of the constituent elements. Further, for convenience of illustration, thin portions related to the present invention are omitted or simplified. Furthermore, since the same reference numerals are given to elements appearing in a plurality of drawings, a duplicate description in each drawing is omitted.
 図1は、本発明の実施の形態に係るTFTアレイ基板100の構成を示す平面図である。当該TFTアレイ基板100は、フリンジフィールドスイッチング(fringe field switching:FFS)方式の液晶表示パネルに用いられる。図示は省略するが、TFTアレイ基板100に対向させて、カラーフィルタ等を備える対向基板を配置し、その間に液晶を挟持させることによって、液晶表示パネルが構成される。また、図示は省略するが、液晶表示パネルの前面側となる対向基板側の表面には、画像を表示するための表示画面が設けられ、更に、液晶表示パネルの背面側となるTFTアレイ基板100側の表面に対向するように、バックライトが配置される。液晶表示パネルとバックライトが、上記の表示画面の部分が開放された筺体内に収納されることによって、本発明の実施の形態に係る液晶表示装置が構成される。 FIG. 1 is a plan view showing a configuration of a TFT array substrate 100 according to an embodiment of the present invention. The TFT array substrate 100 is used for a fringe field switching (FFS) type liquid crystal display panel. Although illustration is omitted, a liquid crystal display panel is configured by disposing a counter substrate provided with a color filter or the like so as to face the TFT array substrate 100 and sandwiching liquid crystal therebetween. Although not shown, a display screen for displaying an image is provided on the surface of the counter substrate which is the front side of the liquid crystal display panel, and the TFT array substrate 100 which is the back side of the liquid crystal display panel. A backlight is arranged so as to face the surface on the side. A liquid crystal display device according to an embodiment of the present invention is configured by housing the liquid crystal display panel and the backlight in a housing in which the portion of the display screen is opened.
 図1のように、TFTアレイ基板100上の領域は、画像を表示するための複数の画素10が配置される表示領域100aと、表示領域100aの外側の額縁領域100bとに分けられる。表示領域100aには、水平方向(X方向)に延在する複数の走査線101(ゲート線)と、垂直方向(Y方向)に延在する複数のデータ線102(ソース線)とが、互いに交差するように配置されている。画素10は、隣り合う2本の走査線101と隣り合う2本のデータ線102とで囲まれる領域のそれぞれに形成されるため、表示領域100aには、複数の画素10がマトリクス状(アレイ状)に配列されることになる。 As shown in FIG. 1, the area on the TFT array substrate 100 is divided into a display area 100a where a plurality of pixels 10 for displaying an image are arranged and a frame area 100b outside the display area 100a. In the display region 100a, a plurality of scanning lines 101 (gate lines) extending in the horizontal direction (X direction) and a plurality of data lines 102 (source lines) extending in the vertical direction (Y direction) are mutually connected. It is arranged to intersect. Since the pixel 10 is formed in each of the regions surrounded by the two adjacent scanning lines 101 and the two adjacent data lines 102, a plurality of pixels 10 are arranged in a matrix (array shape) in the display region 100a. ) Will be arranged.
 走査線101およびデータ線102は、額縁領域100bへと延設され、額縁領域100bに設けられた実装端子104に接続している。走査線101およびデータ線102を駆動するための各種の制御信号や、データ線102に供給する表示信号(画像データ)などは、実装端子104に接続されたプリント基板105およびICチップ106から入力される。 The scanning line 101 and the data line 102 are extended to the frame region 100b and connected to the mounting terminals 104 provided in the frame region 100b. Various control signals for driving the scanning lines 101 and the data lines 102 and display signals (image data) supplied to the data lines 102 are input from the printed circuit board 105 and the IC chip 106 connected to the mounting terminals 104. The
 本実施の形態のTFTアレイ基板100では、赤(R)、緑(G)、青(B)の3つの画素10によって、画像の最小単位となる1つの絵素30が構成される。図2は、絵素30の構成を示す図である。図2のように、絵素30を構成する各画素10は、スイッチング素子であるTFT11と、液晶を駆動する電界を発生する画素電極12および共通電極13と含んでいる。 In the TFT array substrate 100 of the present embodiment, one pixel 30 serving as a minimum unit of an image is configured by three pixels 10 of red (R), green (G), and blue (B). FIG. 2 is a diagram illustrating a configuration of the picture element 30. As shown in FIG. 2, each pixel 10 constituting the picture element 30 includes a TFT 11 that is a switching element, a pixel electrode 12 that generates an electric field that drives a liquid crystal, and a common electrode 13.
 TFT11は、走査線101とデータ線102との交差点近傍に配置されており、TFT11のゲートは走査線101に、ソースはデータ線102に、ドレインは画素電極12に、それぞれ接続されている。共通電極13は、絶縁膜を介して画素電極12に対向して配置されており、一定の電位(共通電位)が供給される。本実施の形態では、画素電極12は、下層側に配置される平板状の電極(第1電極)であり、共通電極13は、上層側に配置され、スリット(開口部)を有する櫛歯状の電極(第2電極)である。 The TFT 11 is disposed in the vicinity of the intersection of the scanning line 101 and the data line 102. The gate of the TFT 11 is connected to the scanning line 101, the source is connected to the data line 102, and the drain is connected to the pixel electrode 12. The common electrode 13 is disposed to face the pixel electrode 12 with an insulating film interposed therebetween, and is supplied with a constant potential (common potential). In the present embodiment, the pixel electrode 12 is a flat electrode (first electrode) disposed on the lower layer side, and the common electrode 13 is disposed on the upper layer side and has a comb shape having a slit (opening). Electrode (second electrode).
 図2から分かるように、画素10のそれぞれは、長手方向が水平方向(走査線101の延在方向)、短手方向が垂直方向(データ線102の延在方向)となった横長形状である。また、絵素30を構成する3つの画素は、それぞれ異なる走査線101で駆動される(各画素10のTFT11のゲートが、それぞれ異なる走査線101に接続されている)。また、それら3つの画素には、同一のデータ線102から表示信号が供給される(各画素10のTFT11のソースが、同一のデータ線102に接続されている)。すなわち、当該TFTアレイ基板100はトリプルゲート構造を有している。 As can be seen from FIG. 2, each of the pixels 10 has a horizontally long shape in which the longitudinal direction is the horizontal direction (the extending direction of the scanning line 101) and the short direction is the vertical direction (the extending direction of the data line 102). . The three pixels constituting the picture element 30 are driven by different scanning lines 101 (the gates of the TFTs 11 of the respective pixels 10 are connected to the different scanning lines 101). Further, a display signal is supplied to the three pixels from the same data line 102 (the source of the TFT 11 of each pixel 10 is connected to the same data line 102). That is, the TFT array substrate 100 has a triple gate structure.
 また、本実施の形態では、共通電極13の左側部分と右側部分とでスリットの延在方向を変えており、それによって画素10をマルチドメイン(配向分割)化している。これにより、視野角方向に依存する色変化(カラーシフト)が抑えられ、視野角特性が改善される。また、画素電極12は、共通電極13のスリットが延びる方向に対応するように、左側部分と右側部分との境界で屈曲した「く」の字型の形状となっている。さらに、走査線101は、当該走査線101に隣接する各画素10の画素電極12の屈曲形状に対応するように(つまり、スリットの延在方向に対応するように)、ジグザグに屈曲しながら水平方向に延在している。 In the present embodiment, the extending direction of the slits is changed between the left side portion and the right side portion of the common electrode 13, thereby making the pixel 10 multi-domain (alignment division). Thereby, the color change (color shift) depending on the viewing angle direction is suppressed, and the viewing angle characteristics are improved. Further, the pixel electrode 12 has a “<” shape that is bent at the boundary between the left side portion and the right side portion so as to correspond to the direction in which the slit of the common electrode 13 extends. Further, the scanning line 101 is horizontally bent while zigzag so as to correspond to the bent shape of the pixel electrode 12 of each pixel 10 adjacent to the scanning line 101 (that is, to correspond to the extending direction of the slit). Extends in the direction.
 図3~図5は、TFTアレイ基板100の画素10の構成を示す図である。図3は、画素10の平面図、図4は図3のA-A線に沿った断面図、図5は図3のB-B線に沿った断面図である。 3 to 5 are diagrams showing the configuration of the pixel 10 of the TFT array substrate 100. FIG. 3 is a plan view of the pixel 10, FIG. 4 is a cross-sectional view taken along line AA in FIG. 3, and FIG. 5 is a cross-sectional view taken along line BB in FIG.
 TFTアレイ基板100は、ガラス等の透明絶縁体からなる透明基板1を用いて形成されている。透明基板1上には、走査線101とTFT11のゲート電極2とが、同じ導電膜を用いて形成されており、それらを覆うようにゲート絶縁膜3が形成されている。ゲート電極2は、走査線101の一部分により構成されている。すなわち、走査線101におけるTFT11の形成領域の部分(半導体膜4の下方に位置する部分)がゲート電極2となっている。 The TFT array substrate 100 is formed using a transparent substrate 1 made of a transparent insulator such as glass. On the transparent substrate 1, the scanning line 101 and the gate electrode 2 of the TFT 11 are formed using the same conductive film, and a gate insulating film 3 is formed so as to cover them. The gate electrode 2 is constituted by a part of the scanning line 101. That is, the portion of the scanning line 101 where the TFT 11 is formed (the portion located below the semiconductor film 4) is the gate electrode 2.
 ゲート絶縁膜3上には、TFT11の形成領域に半導体膜4が形成される。半導体膜4の上には、オーミックコンタクト膜5を介して、TFT11のソース電極6およびドレイン電極7が形成されている。オーミックコンタクト膜5は、ソース電極6とドレイン電極7との間の部分が除去されており、その部分に露出した半導体膜4がTFT11のチャネル部となる。オーミックコンタクト膜5は、例えば、半導体膜4の表層部に不純物をイオン注入することによって形成できる。ゲート電極2と、ソース電極6およびドレイン電極7とは、ゲート絶縁膜3、半導体膜4およびオーミックコンタクト膜5を介して対向するように配置されており、それらによって、TFT11が構成される。 On the gate insulating film 3, a semiconductor film 4 is formed in the formation region of the TFT 11. A source electrode 6 and a drain electrode 7 of the TFT 11 are formed on the semiconductor film 4 via an ohmic contact film 5. In the ohmic contact film 5, a portion between the source electrode 6 and the drain electrode 7 is removed, and the semiconductor film 4 exposed in the portion serves as a channel portion of the TFT 11. The ohmic contact film 5 can be formed, for example, by ion-implanting impurities into the surface layer portion of the semiconductor film 4. The gate electrode 2, the source electrode 6, and the drain electrode 7 are disposed so as to face each other with the gate insulating film 3, the semiconductor film 4, and the ohmic contact film 5 interposed therebetween, and thereby the TFT 11 is configured.
 また、ゲート絶縁膜3の上には、データ線102が、ソース電極6およびドレイン電極7と同じ導電膜を用いて形成されている。ソース電極6は、データ線102の一部分によって構成されている。すなわち、データ線102におけるTFT11の形成領域の部分(半導体膜4に乗り上げた部分)が、ソース電極6となっている。 Further, the data line 102 is formed on the gate insulating film 3 by using the same conductive film as the source electrode 6 and the drain electrode 7. The source electrode 6 is constituted by a part of the data line 102. That is, the portion of the data line 102 where the TFT 11 is formed (the portion on the semiconductor film 4) is the source electrode 6.
 また、ゲート絶縁膜3の上には、ITO(Indium Tin Oxide)等の透明導電膜からなる画素電極12も形成されている。画素電極12の一部は、ドレイン電極7上に直接重なっており、それによってドレイン電極7と画素電極12とが電気的に接続されている。 A pixel electrode 12 made of a transparent conductive film such as ITO (IndiumInTin Oxide) is also formed on the gate insulating film 3. A part of the pixel electrode 12 directly overlaps the drain electrode 7, whereby the drain electrode 7 and the pixel electrode 12 are electrically connected.
 ソース電極6、ドレイン電極7、画素電極12およびデータ線102を覆うように、保護膜8(絶縁膜)が形成されている。保護膜8は、例えば、酸化膜、窒化膜、又は有機樹脂膜等の絶縁体からなる単層膜、またはそれらの積層膜により構成することができる。 A protective film 8 (insulating film) is formed so as to cover the source electrode 6, the drain electrode 7, the pixel electrode 12 and the data line 102. The protective film 8 can be composed of, for example, a single layer film made of an insulator such as an oxide film, a nitride film, or an organic resin film, or a laminated film thereof.
 保護膜8の上には、ITO等の透明導電膜からなる共通電極13が設けられている。共通電極13には、複数のスリット(開口部)が形成されており、各スリットの延在方向(長手方向)は、水平方向(画素電極12の長手方向、あるいは、走査線101の延在方向)となっている。 A common electrode 13 made of a transparent conductive film such as ITO is provided on the protective film 8. A plurality of slits (openings) are formed in the common electrode 13, and the extending direction (longitudinal direction) of each slit is a horizontal direction (longitudinal direction of the pixel electrode 12 or extending direction of the scanning line 101). ).
 ただし、本実施の形態では、スリットの延在方向を、共通電極13における左側部分と右側部分とで異なる方向にして、画素10をマルチドメイン化している。そのため、スリットの延在方向は、概ね水平方向であるが、完全には水平方向にはなっていない。また、共通電極13における左側部分と右側部分とで、スリットの延在方向を線対称にしている。すなわち、左側部分と右側部分とで、スリットの水平方向に対する傾斜角度θを同じ大きさにしている(正負は逆)。スリットの傾斜角度θは45度未満であり、本実施の形態では15度とした。 However, in the present embodiment, the pixel 10 is multi-domained with the slit extending directions different in the left and right portions of the common electrode 13. For this reason, the extending direction of the slit is substantially horizontal, but is not completely horizontal. In addition, the extending direction of the slit is axisymmetric between the left side portion and the right side portion of the common electrode 13. That is, the inclination angle θ with respect to the horizontal direction of the slit is the same in the left part and the right part (positive and negative are opposite). The inclination angle θ of the slit is less than 45 degrees, and is 15 degrees in the present embodiment.
 また、屈曲形状の画素電極12の各部分における水平方向に対する傾斜角度、ならびに、屈曲形状の走査線101の各部分における水平方向に対する傾斜角度も、共通電極13のスリットの傾斜角度θに合わせて設定されている。 In addition, the inclination angle with respect to the horizontal direction in each portion of the bent pixel electrode 12 and the inclination angle with respect to the horizontal direction in each portion of the bent scanning line 101 are also set in accordance with the inclination angle θ of the slit of the common electrode 13. Has been.
 図6は、TFTアレイ基板100を用いて構成される液晶表示パネルの断面構造を示している。TFTアレイ基板100に対向するように対向基板200が設けられ、その間に液晶150が設けられている。液晶150は、TFTアレイ基板100上の共通電極13と画素電極12との間にフリンジ電界を発生させることにより駆動される。液晶150としては、誘電率Δεが正の値(例えば、+3~+15)であるポジ型のものを用いている。 FIG. 6 shows a cross-sectional structure of a liquid crystal display panel configured using the TFT array substrate 100. A counter substrate 200 is provided to face the TFT array substrate 100, and a liquid crystal 150 is provided therebetween. The liquid crystal 150 is driven by generating a fringe electric field between the common electrode 13 and the pixel electrode 12 on the TFT array substrate 100. As the liquid crystal 150, a positive type having a positive dielectric constant Δε (for example, +3 to +15) is used.
 TFTアレイ基板100と対向基板200との間の間隔(セルギャップ)は、例えば2~5μm程度である。対向基板200には、カラーフィルタ、ブラックマトリクス、配向膜等が設けられているが、図6では、それらのうちのブラックマトリクス201のみを図示している。ブラックマトリクス201は、画素10の間の領域を覆うように配設され、隣接する画素10の間での混色を防止している。 The distance (cell gap) between the TFT array substrate 100 and the counter substrate 200 is, for example, about 2 to 5 μm. The counter substrate 200 is provided with a color filter, a black matrix, an alignment film, and the like. FIG. 6 shows only the black matrix 201 among them. The black matrix 201 is disposed so as to cover a region between the pixels 10 and prevents color mixing between adjacent pixels 10.
 図7は、この液晶表示パネルに設けられる光学シート(偏光板と位相差フィルム)および液晶の光学設計(光軸構成)を示す図である。図7に示すように、液晶表示パネル(液晶150)のバックライト光が入射する側、すなわちTFTアレイ基板100側(以下「背面側」と称す)の表面に、偏光板501(第1の偏光板)および2軸位相差フィルム503が配設される。一方、液晶表示パネル(液晶150)における表示画面側、すなわち対向基板200側(以下「前面側」と称す)の表面には、偏光板502(第2の偏光板)が配設される。液晶表示パネルの背面側において、2軸位相差フィルム503は、TFTアレイ基板100と偏光板501との間に介在している。従って、液晶表示パネルの背面側に配置されるバックライトは、これら2軸位相差フィルム503と偏光板501を介して、液晶表示パネルのTFTアレイ基板100側の表面に対向して配置されることになる。 FIG. 7 is a diagram showing an optical design (optical axis configuration) of an optical sheet (polarizing plate and retardation film) and liquid crystal provided in the liquid crystal display panel. As shown in FIG. 7, a polarizing plate 501 (first polarized light) is formed on the surface of the liquid crystal display panel (liquid crystal 150) on which the backlight is incident, that is, on the surface of the TFT array substrate 100 (hereinafter referred to as “back side”). Plate) and a biaxial retardation film 503 are disposed. On the other hand, a polarizing plate 502 (second polarizing plate) is disposed on the display screen side of the liquid crystal display panel (liquid crystal 150), that is, on the surface of the counter substrate 200 (hereinafter referred to as “front side”). On the back side of the liquid crystal display panel, the biaxial retardation film 503 is interposed between the TFT array substrate 100 and the polarizing plate 501. Therefore, the backlight disposed on the back side of the liquid crystal display panel is disposed to face the surface on the TFT array substrate 100 side of the liquid crystal display panel through the biaxial retardation film 503 and the polarizing plate 501. become.
 液晶150の配向方向は、ゲート電極2の延在方向、即ち水平方向(0°方向と定義する)に設定される。液晶150の初期配向を決定する配向処理をラビング処理で行う場合、TFTアレイ基板100および対向基板200の表面(液晶150に対向する面)に配向膜を塗布し、水平方向にラビング処理を施せばよい。 The alignment direction of the liquid crystal 150 is set to the extending direction of the gate electrode 2, that is, the horizontal direction (defined as the 0 ° direction). When the alignment process for determining the initial alignment of the liquid crystal 150 is performed by the rubbing process, an alignment film is applied to the surfaces of the TFT array substrate 100 and the counter substrate 200 (surfaces facing the liquid crystal 150), and the rubbing process is performed in the horizontal direction. Good.
 偏光板501,502の吸収軸については、偏光サングラスを通しても表示を視認できるように、液晶表示パネルの前面側の偏光板502の吸収軸を0°方向(水平方向)にし、背面側の偏光板501の吸収軸を90°方向(垂直方向)にしている。さらに、斜め方向の光漏れを低減させるために、遅相軸を0°方向(水平方向)とする2軸位相差フィルム503を液晶表示パネルの背面側に配置している。本実施の形態では、2軸位相差フィルム503は、物性値が、(n-n)=270nm、且つ、(n-n)/(n-n)=0.5のものを使用した(nはフィルム面内の遅相軸方向の屈折率、nは遅相軸に直交するフィルム面内の屈折率、nはフィルム厚み方向の屈折率)。 With respect to the absorption axes of the polarizing plates 501 and 502, the absorption axis of the polarizing plate 502 on the front side of the liquid crystal display panel is set to 0 ° (horizontal direction) so that the display can be visually recognized through polarized sunglasses, and the polarizing plate on the back side. The absorption axis 501 is in the 90 ° direction (vertical direction). Further, in order to reduce light leakage in an oblique direction, a biaxial retardation film 503 having a slow axis in the 0 ° direction (horizontal direction) is disposed on the back side of the liquid crystal display panel. In the present embodiment, the biaxial retardation film 503 has physical properties of (n y −n x ) = 270 nm and (n y −n x ) / (n y −n z ) = 0.5. using things (n y is a refractive index in a slow axis direction in the film plane, n x is the refractive index of the film plane perpendicular to the slow axis, n z is the refractive index of the film thickness direction).
 このように、本実施の形態に係る液晶表示パネルでは、広視野角と高開口率を両立できるFFS型の液晶表示装置において、トリプルゲート構造(図3)を採用することにより、データ線本数およびソース駆動ICの数を減らし、低コスト化を図っている。また、ポジ型の液晶150を用いているため、液晶150の配向方向を水平方向(走査線101の延在方向)にすることで液晶150を駆動できる。また、背面側の偏光板501の吸収軸を、液晶150の配向方向に垂直にし、前面側の偏光板502の吸収軸を、液晶150の配向方向に平行にしたことにより、偏光サングラスを通しても表示を視認できる。 As described above, in the liquid crystal display panel according to this embodiment, in the FFS type liquid crystal display device that can achieve both a wide viewing angle and a high aperture ratio, by adopting a triple gate structure (FIG. 3), the number of data lines and The number of source driving ICs is reduced to reduce costs. Further, since the positive liquid crystal 150 is used, the liquid crystal 150 can be driven by setting the alignment direction of the liquid crystal 150 to the horizontal direction (the extending direction of the scanning line 101). In addition, since the absorption axis of the polarizing plate 501 on the back side is perpendicular to the alignment direction of the liquid crystal 150 and the absorption axis of the polarizing plate 502 on the front side is parallel to the alignment direction of the liquid crystal 150, display is also possible through polarized sunglasses. Can be visually recognized.
 また、遅相軸が液晶150の配向方向に水平な2軸位相差フィルム503を、背面側の偏光板501とTFTアレイ基板100との間に配置して、図7の光軸構成を実現することにより、視野角特性が向上する。図7の光軸構成によって視野角特性が良好になるのは、特に、偏光板501を通過した偏光を、そのまま2軸位相差フィルム503に入射させているからである。この2軸位相差フィルム503の位置(偏光を透過させる順番)は重要である。例えば、2軸位相差フィルム503を液晶表示パネルの前面側に配置すると、偏光板501を通過した偏光が、液晶150層や対向基板200のカラーフィルタなどを透過してから、2軸位相差フィルム503を透過することになる。この順番では、液晶150やカラーフィルタによる散乱などで偏光解消が起きてしまい、2軸位相差フィルム503に理想的な偏光を透過させることができず、所望の光学補償効果を得ることができなくなる。 Also, the biaxial retardation film 503 whose slow axis is horizontal to the alignment direction of the liquid crystal 150 is disposed between the polarizing plate 501 on the back side and the TFT array substrate 100 to realize the optical axis configuration of FIG. As a result, the viewing angle characteristics are improved. The reason why the viewing angle characteristics are improved by the configuration of the optical axis in FIG. 7 is that the polarized light that has passed through the polarizing plate 501 is incident on the biaxial retardation film 503 as it is. The position of the biaxial retardation film 503 (the order in which polarized light is transmitted) is important. For example, when the biaxial retardation film 503 is disposed on the front side of the liquid crystal display panel, the polarized light that has passed through the polarizing plate 501 passes through the liquid crystal 150 layer, the color filter of the counter substrate 200, and the like, and then the biaxial retardation film. 503 is transmitted. In this order, depolarization occurs due to scattering by the liquid crystal 150 or the color filter, and ideal polarization cannot be transmitted through the biaxial retardation film 503, and a desired optical compensation effect cannot be obtained. .
 図6に戻り、本実施の形態の液晶表示パネルでは、走査線101の上方を共通電極13の一部が覆っている。それにより、走査線101からの電界を遮蔽することができる。走査線101上には、表面を平坦化するための厚い有機絶縁膜(平坦化膜)などが形成されていない。そのため、有機絶縁膜を使用する場合に比べて、コストの上昇は抑えられるが、共通電極13の表面に、走査線101の厚さに起因する段差部13aが形成される。 Returning to FIG. 6, in the liquid crystal display panel of the present embodiment, a part of the common electrode 13 covers the scanning line 101. Thereby, the electric field from the scanning line 101 can be shielded. A thick organic insulating film (flattening film) or the like for flattening the surface is not formed on the scanning line 101. Therefore, an increase in cost can be suppressed as compared with the case where an organic insulating film is used, but a step portion 13 a resulting from the thickness of the scanning line 101 is formed on the surface of the common electrode 13.
 なお、図7では2軸位相差フィルム503を用いた例を示したが、2軸位相差フィルム以外の位相差フィルムを用いてもよい。例えば、2軸位相差フィルム503に代えて、2枚の1軸位相差フィルムを積層してなる位相差フィルムを用いてもよい。この場合も、位相差フィルムを設ける位置は、背面側の偏光板501とTFTアレイ基板100との間にする。また、2枚の1軸位相差フィルムのうち、一方の1軸位相差フィルムは、フィルム面内の水平方向(X方向)と垂直方向(Y方向)とに位相差を有するものとし、その遅相軸方向を水平方向に設定する。さらに、他方の1軸位相差フィルムは、フィルムの厚さ方向(Z方向)に位相差を有し、フィルム面内には位相差がないものを用いるとよい。そのような位相差フィルムを用いた場合にも、図7の構成と同様に、偏光サングラスを通しても表示を視認でき、視野角特性が向上するという効果を得ることができる。 Although FIG. 7 shows an example using the biaxial retardation film 503, a retardation film other than the biaxial retardation film may be used. For example, instead of the biaxial retardation film 503, a retardation film formed by laminating two uniaxial retardation films may be used. Also in this case, the position where the retardation film is provided is between the polarizing plate 501 on the back side and the TFT array substrate 100. Of the two uniaxial retardation films, one uniaxial retardation film has a retardation in the horizontal direction (X direction) and the vertical direction (Y direction) in the film plane, and its retardation. Set the phase axis direction to horizontal. Furthermore, the other uniaxial retardation film may have a retardation in the thickness direction (Z direction) of the film and no retardation in the film plane. Even when such a retardation film is used, the display can be visually recognized through the polarized sunglasses as in the configuration of FIG. 7, and the effect that the viewing angle characteristics are improved can be obtained.
 一方、対向基板200のブラックマトリクス201は、走査線101を覆うように、走査線101の上方に(平面視で走査線101と重畳する位置に)配設されている。それにより、隣接する画素10の間での混色が防止される。さらに、走査線101を覆うブラックマトリクス201は、共通電極13の段差部13aも覆うように、走査線101よりも幅が広く形成されている。すなわち、ブラックマトリクス201は、走査線101の端部よりも突出して庇状になっている。本実施の形態では、走査線101の端部からのブラックマトリクス201の突出量D1を2.0μmとした。なお、図6では、ブラックマトリクス201における走査線101から右側(図3における上側)へ突出する量と、左側(図3における下側)へ突出する量とを共に「D1」で表したが、両者は互いに異なる値でもよい。ブラックマトリクス201を平面図は省略するが、ブラックマトリクス201は、走査線101の端部から一定の突出量D1だけ突出するように形成されることから、走査線101の延在方向(水平方向)には、走査線101と同様にジグザグに屈曲しながら延在するように設けられる。 On the other hand, the black matrix 201 of the counter substrate 200 is disposed above the scanning line 101 (at a position overlapping the scanning line 101 in plan view) so as to cover the scanning line 101. This prevents color mixing between adjacent pixels 10. Further, the black matrix 201 covering the scanning line 101 is formed wider than the scanning line 101 so as to cover the step portion 13 a of the common electrode 13. That is, the black matrix 201 has a bowl shape protruding from the end of the scanning line 101. In the present embodiment, the protrusion amount D1 of the black matrix 201 from the end of the scanning line 101 is set to 2.0 μm. In FIG. 6, the amount protruding from the scanning line 101 to the right side (upper side in FIG. 3) and the amount protruding to the left side (lower side in FIG. 3) in the black matrix 201 are both represented by “D1”. Both may have different values. Although the plan view of the black matrix 201 is omitted, the black matrix 201 is formed so as to protrude from the end portion of the scanning line 101 by a certain protrusion amount D1, and thus the extending direction (horizontal direction) of the scanning line 101 In the same manner as in the scanning line 101, the scanning line 101 is provided so as to extend while being bent in a zigzag manner.
 図2および図3に示したように、本実施の形態では、走査線101は水平方向に一直線状に延びているのではなく、ジグザグに屈曲しながら水平方向に延びている。そのため、図8のように、走査線101の表面に配向膜15を塗布して水平方向のラビング処理を行う際、ラビング方向と走査線101の延在方向とが平行にならず、ラビングローラ300が走査線101を乗り越えるように動く。そのような場合、走査線101上および段差部13aの周囲2μm程度の範囲で配向不良が生じることを、本発明者は実験的に確認している。従って、ブラックマトリクス201が段差部13aを覆うことで、配向不良による光漏れを遮光でき、黒輝度の上昇が防止される。その結果、表示画像のコントラストが向上する。なお、図8では、図5と同様の断面図を用いているため、ラビングローラ300の動きが走査線101に垂直のように見えるかもしれないが、ラビング方向はあくまで走査線101の延在方向に平行な向き(水平方向)である。 As shown in FIGS. 2 and 3, in the present embodiment, the scanning line 101 does not extend in a straight line in the horizontal direction, but extends in the horizontal direction while being bent in a zigzag manner. Therefore, as shown in FIG. 8, when the alignment film 15 is applied to the surface of the scanning line 101 and the horizontal rubbing process is performed, the rubbing direction and the extending direction of the scanning line 101 are not parallel, and the rubbing roller 300. Moves over the scan line 101. In such a case, the present inventor has experimentally confirmed that a poor alignment occurs on the scanning line 101 and in the range of about 2 μm around the step portion 13a. Therefore, when the black matrix 201 covers the step portion 13a, light leakage due to alignment failure can be blocked, and an increase in black luminance is prevented. As a result, the contrast of the display image is improved. 8 uses the same cross-sectional view as in FIG. 5, the movement of the rubbing roller 300 may seem to be perpendicular to the scanning line 101, but the rubbing direction is only the extending direction of the scanning line 101. The direction is parallel to (horizontal direction).
 ただし、ブラックマトリクス201の走査線101からの突出量D1が大きすぎると、開口率が低下して白輝度が小さくなり、それが原因で表示画像のコントラストが低下することが懸念される。そこで、本発明者は、白輝度の低下を最小限に抑えることができるブラックマトリクス201の突出量D1について、さらに検討を行った。 However, if the protrusion amount D1 of the black matrix 201 from the scanning line 101 is too large, there is a concern that the aperture ratio is decreased and the white luminance is decreased, thereby causing the contrast of the display image to be decreased. Therefore, the present inventor further examined the protrusion amount D1 of the black matrix 201 that can minimize the decrease in white luminance.
 FFS型液晶表示装置では、画素電極12と共通電極13との間で生じるフリンジ電界によって液晶150を駆動することから、図9のように共通電極13のスリットの端部の透過率が最も高くなる。本発明者は、このことをシミュレーション(Shintech社:LCD Master)により確認した。よって、ブラックマトリクス201が、共通電極13のスリットの端部を覆わないようにするとよい。それにより、白輝度が改善され、より効果的にコントラストの向上を図ることができる。本実施の形態では、ブラックマトリクス201の端部と、走査線101から最も近いスリットの端部との距離D2を、2.0μm確保した。 In the FFS type liquid crystal display device, since the liquid crystal 150 is driven by a fringe electric field generated between the pixel electrode 12 and the common electrode 13, the transmittance at the end of the slit of the common electrode 13 becomes the highest as shown in FIG. . The present inventor confirmed this by simulation (Shintech: LCD Master). Therefore, it is preferable that the black matrix 201 does not cover the end of the slit of the common electrode 13. Thereby, the white luminance is improved, and the contrast can be improved more effectively. In the present embodiment, a distance D2 between the end of the black matrix 201 and the end of the slit closest to the scanning line 101 is 2.0 μm.
 なお、図7に示した光学設計による効果は、ブラックマトリクス201の配置や共通電極13の段差部13aの有無に関わらず得られる。よって、例えば、走査線101上に有機樹脂膜を設けて共通電極13の表面に段差部13aが形成されない構成にしても、図7の光学設計は適用可能であり、同様の効果が得られる。 Note that the effect of the optical design shown in FIG. 7 can be obtained regardless of the arrangement of the black matrix 201 and the presence or absence of the stepped portion 13a of the common electrode 13. Therefore, for example, even if an organic resin film is provided on the scanning line 101 and the step portion 13a is not formed on the surface of the common electrode 13, the optical design of FIG. 7 can be applied and the same effect can be obtained.
 上に示した実施の形態では、画素10において、下層側に配置される平板状の電極(第1電極)を画素電極12とし、上層側に配置される櫛歯状の電極(第2電極)を共通電極13としたが、これを逆にしてもよい。即ち、図10に示すように、共通電極13を、保護膜8の下に配置される平板状の電極(第1電極)にし、画素電極12を、保護膜8の上に配置される櫛歯状の電極(第2電極)にしてもよい。ただし、TFT11のドレイン電極7と画素電極12とを接続するためのコンタクトホールを、保護膜8に設ける必要がある。 In the embodiment shown above, in the pixel 10, the flat electrode (first electrode) disposed on the lower layer side is used as the pixel electrode 12, and the comb-shaped electrode (second electrode) disposed on the upper layer side. Is the common electrode 13, but this may be reversed. That is, as shown in FIG. 10, the common electrode 13 is a flat electrode (first electrode) disposed under the protective film 8, and the pixel electrode 12 is a comb tooth disposed over the protective film 8. A shaped electrode (second electrode) may be used. However, it is necessary to provide a contact hole in the protective film 8 for connecting the drain electrode 7 of the TFT 11 and the pixel electrode 12.
 また、図10の構成では、走査線101の厚さに起因して共通電極13に生じる段差部13aは、保護膜8によって覆われるが、段差部13aに起因する段差が保護膜8の表面に形成されると、その部分で配向不良が生じる恐れがある。そのため、図10の構成においても、ブラックマトリクス201が共通電極13の段差部13aを覆うことで、配向不良による光漏れによるコントラスト低下を防止できる効果が得られる。 In the configuration of FIG. 10, the stepped portion 13 a generated in the common electrode 13 due to the thickness of the scanning line 101 is covered with the protective film 8, but the stepped portion due to the stepped portion 13 a is on the surface of the protective film 8. If it is formed, there is a risk that alignment failure will occur at that portion. Therefore, also in the configuration of FIG. 10, the black matrix 201 covers the step portion 13 a of the common electrode 13, so that an effect of preventing a decrease in contrast due to light leakage due to alignment failure can be obtained.
 なお、本発明は、その発明の範囲内において、実施の形態を適宜、変形、省略することが可能である。 In the present invention, the embodiments can be appropriately modified or omitted within the scope of the invention.
 100 TFTアレイ基板、100a 表示領域、100b 額縁領域、101 走査線、102 データ線、104 実装端子、105 プリント基板、106 ICチップ、200 対向基板、201 ブラックマトリクス、1 透明基板、2 ゲート電極、3 ゲート絶縁膜、4 半導体膜、5 オーミックコンタクト膜、6 ソース電極、7 ドレイン電極、8 保護膜、10 画素、11 TFT、12 画素電極、13 共通電極、13a 段差部、15 配向膜、30 絵素、150 液晶、300 ラビングローラ、501,502 偏光板、503 2軸位相差フィルム。 100 TFT array substrate, 100a display region, 100b frame region, 101 scanning line, 102 data line, 104 mounting terminal, 105 printed substrate, 106 IC chip, 200 counter substrate, 201 black matrix, 1 transparent substrate, 2 gate electrode, 3 Gate insulating film, 4 semiconductor film, 5 ohmic contact film, 6 source electrode, 7 drain electrode, 8 protective film, 10 pixel, 11 TFT, 12 pixel electrode, 13 common electrode, 13a step, 15 alignment film, 30 pixel , 150 liquid crystal, 300 rubbing roller, 501, 502 polarizing plate, 503 biaxial retardation film.

Claims (8)

  1.  水平方向に延在する複数の走査線(101)および垂直方向に延在する複数のデータ線(102)を有するTFTアレイ基板(100)と、
     前記TFTアレイ基板(100)に対向配置された対向基板(200)と、
     前記TFTアレイ基板(100)と前記対向基板(200)との間に挟持されたポジ型の液晶(150)と、
     隣り合う前記走査線(101)と隣り合う前記データ線(102)とに囲まれた領域に形成された画素(10)と、
    を含む液晶表示パネルを備え、
     前記画素(10)は、前記TFTアレイ基板(100)に形成された平板状の第1電極、および、前記第1電極の上に絶縁膜を介して設けられ水平方向に延びるスリットを有する第2電極とを含み、
     前記第1電極および前記第2電極の片方は画素電極(12)、もう片方は共通電極(13)であり、
     色の異なる複数の前記画素(10)で構成される画像の最小単位である絵素(30)において、各画素(10)はそれぞれ異なる前記走査線(101)で駆動され、各画素(10)の領域は長手方向が水平方向、短手方向が垂直方向となった横長形状であり、
     前記液晶表示パネルにおけるTFTアレイ基板(100)側の表面に、位相差フィルム(503)が設けられている、
    液晶表示装置。
    A TFT array substrate (100) having a plurality of scanning lines (101) extending in the horizontal direction and a plurality of data lines (102) extending in the vertical direction;
    A counter substrate (200) disposed opposite to the TFT array substrate (100);
    A positive liquid crystal (150) sandwiched between the TFT array substrate (100) and the counter substrate (200);
    A pixel (10) formed in a region surrounded by the adjacent scanning line (101) and the adjacent data line (102);
    A liquid crystal display panel including
    The pixel (10) has a flat plate-like first electrode formed on the TFT array substrate (100), and a second slit extending in the horizontal direction provided on the first electrode via an insulating film. An electrode,
    One of the first electrode and the second electrode is a pixel electrode (12), and the other is a common electrode (13).
    In the picture element (30) which is the minimum unit of an image composed of a plurality of pixels (10) having different colors, each pixel (10) is driven by a different scanning line (101), and each pixel (10) The area of is a horizontally long shape in which the longitudinal direction is horizontal and the short direction is vertical,
    A retardation film (503) is provided on the surface of the liquid crystal display panel on the TFT array substrate (100) side.
    Liquid crystal display device.
  2.  前記対向基板(200)は、前記画素(10)の間の領域を覆うブラックマトリクス(201)を有しており、
     前記第2電極は、共通電極(13)であり、前記走査線(101)の上方にまで延在し、表面に前記走査線(101)の厚さに起因する段差部(13a)を有しており、
     前記ブラックマトリクス(201)は、前記走査線(101)および前記第2電極の段差部(13a)を覆い、且つ、前記第2電極の前記スリットの端部を覆わない、
    請求項1記載の液晶表示装置。
    The counter substrate (200) has a black matrix (201) covering a region between the pixels (10),
    The second electrode is a common electrode (13), extends to above the scanning line (101), and has a step portion (13a) due to the thickness of the scanning line (101) on the surface. And
    The black matrix (201) covers the scanning line (101) and the step portion (13a) of the second electrode, and does not cover the end of the slit of the second electrode.
    The liquid crystal display device according to claim 1.
  3.  前記第2電極の前記スリットは、当該第2電極における左側部分と右側部分とで異なる方向に延びている、
    請求項1または請求項2記載の液晶表示装置。
    The slit of the second electrode extends in different directions between the left side portion and the right side portion of the second electrode,
    The liquid crystal display device according to claim 1.
  4.  前記第2電極の前記スリットが延びる方向は、当該第2電極における左側部分と右側部分とで線対称である、
    請求項3記載の液晶表示装置。
    The direction in which the slit of the second electrode extends is axisymmetric between the left side portion and the right side portion of the second electrode.
    The liquid crystal display device according to claim 3.
  5.  前記第1電極および前記第2電極のうちの少なくとも片方は、前記スリットが延びる方向に対応するように、左側部分と右側部分との境界で屈曲した形状となっている、
    請求項3または請求項4に記載の液晶表示装置。
    At least one of the first electrode and the second electrode has a shape bent at the boundary between the left portion and the right portion so as to correspond to the direction in which the slit extends,
    The liquid crystal display device according to claim 3.
  6.  前記走査線(101)は、当該走査線(101)に隣接する画素(10)における前記スリットが延びる方向に対応するように、屈曲しながら水平方向に延びている
    請求項3から請求項5のいずれか一項に記載の液晶表示装置。
    The scanning line (101) extends in a horizontal direction while being bent so as to correspond to a direction in which the slit in the pixel (10) adjacent to the scanning line (101) extends. The liquid crystal display device according to any one of the above.
  7.  前記液晶表示パネルにおける前記TFTアレイ基板(100)側の表面に設けられた第1の偏光板(501)と、
     前記液晶表示パネルにおける前記対向基板(200)側の表面に設けられた第2の偏光板(502)と、
    をさらに備え、
     前記位相差フィルム(503)は、前記TFTアレイ基板(100)と前記第1の偏光板(501)との間に介在しており、
     前記液晶(150)の配向方向は水平方向に設定されており、
     前記第1の偏光板(501)の吸収軸の方向は垂直方向に設定されており、
     前記位相差フィルム(503)は、遅相軸の方向は水平方向に設定されており、
     前記第2の偏光板(502)の吸収軸の方向は水平方向に設定されている、
    請求項1から請求項6のいずれか一項に記載の液晶表示装置。
    A first polarizing plate (501) provided on a surface of the liquid crystal display panel on the TFT array substrate (100) side;
    A second polarizing plate (502) provided on the surface on the counter substrate (200) side of the liquid crystal display panel;
    Further comprising
    The retardation film (503) is interposed between the TFT array substrate (100) and the first polarizing plate (501),
    The alignment direction of the liquid crystal (150) is set in the horizontal direction,
    The direction of the absorption axis of the first polarizing plate (501) is set to a vertical direction,
    In the retardation film (503), the direction of the slow axis is set to the horizontal direction,
    The direction of the absorption axis of the second polarizing plate (502) is set in the horizontal direction.
    The liquid crystal display device according to any one of claims 1 to 6.
  8.  前記液晶表示パネルにおける前記対向基板(200)側の表面に画像を表示するための表示画面が設けられ、
     前記液晶表示パネルにおける前記TFTアレイ基板(100)側の表面に対向して、前記位相差フィルム(503)を介してバックライトが設けられている、
    請求項1から請求項7のいずれか一項に記載の液晶表示装置。
    A display screen for displaying an image on the surface of the liquid crystal display panel on the counter substrate (200) side is provided;
    A backlight is provided through the retardation film (503) so as to face the surface on the TFT array substrate (100) side in the liquid crystal display panel.
    The liquid crystal display device according to any one of claims 1 to 7.
PCT/JP2017/006345 2016-03-22 2017-02-21 Liquid crystal display device WO2017163718A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018507139A JPWO2017163718A1 (en) 2016-03-22 2017-02-21 Liquid crystal display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-056553 2016-03-22
JP2016056553 2016-03-22

Publications (1)

Publication Number Publication Date
WO2017163718A1 true WO2017163718A1 (en) 2017-09-28

Family

ID=59901175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006345 WO2017163718A1 (en) 2016-03-22 2017-02-21 Liquid crystal display device

Country Status (2)

Country Link
JP (1) JPWO2017163718A1 (en)
WO (1) WO2017163718A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111722444A (en) * 2019-03-19 2020-09-29 株式会社日本显示器 Display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111812901B (en) * 2020-07-08 2023-03-31 深圳市华星光电半导体显示技术有限公司 Array substrate and display panel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248999A (en) * 2006-03-17 2007-09-27 Epson Imaging Devices Corp Liquid crystal device and electronic equipment
JP2012113125A (en) * 2010-11-25 2012-06-14 Mitsubishi Electric Corp Liquid crystal display panel and liquid crystal display device
US20130088666A1 (en) * 2011-10-07 2013-04-11 Sony Corporation Liquid crystal display device
JP2013190704A (en) * 2012-03-14 2013-09-26 Nlt Technologies Ltd Lateral electric field type liquid crystal display device
JP2014115563A (en) * 2012-12-12 2014-06-26 Mitsubishi Electric Corp Liquid crystal display panel
JP2014153716A (en) * 2013-02-12 2014-08-25 Samsung Display Co Ltd Liquid crystal display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248999A (en) * 2006-03-17 2007-09-27 Epson Imaging Devices Corp Liquid crystal device and electronic equipment
JP2012113125A (en) * 2010-11-25 2012-06-14 Mitsubishi Electric Corp Liquid crystal display panel and liquid crystal display device
US20130088666A1 (en) * 2011-10-07 2013-04-11 Sony Corporation Liquid crystal display device
JP2013190704A (en) * 2012-03-14 2013-09-26 Nlt Technologies Ltd Lateral electric field type liquid crystal display device
JP2014115563A (en) * 2012-12-12 2014-06-26 Mitsubishi Electric Corp Liquid crystal display panel
JP2014153716A (en) * 2013-02-12 2014-08-25 Samsung Display Co Ltd Liquid crystal display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111722444A (en) * 2019-03-19 2020-09-29 株式会社日本显示器 Display device
CN111722444B (en) * 2019-03-19 2023-06-13 株式会社日本显示器 Display device

Also Published As

Publication number Publication date
JPWO2017163718A1 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
TWI507799B (en) Display devices and electronic machines
US8004644B2 (en) Liquid crystal display device
US8094277B2 (en) Liquid crystal display device
KR100476044B1 (en) Liquid crystal display for elevating aperture ratio
JP3732956B2 (en) Reflective liquid crystal display
US8339557B2 (en) Liquid crystal display panel
US8767160B2 (en) Liquid crystal display panel
US9389464B2 (en) Liquid crystal display device
JP5513859B2 (en) LCD panel
US20060028604A1 (en) Liquid crystal display device
JP2000292801A (en) Liquid crystal display device
KR19980042256A (en) Liquid crystal display
TWI392947B (en) Liquid crystal display
JP5132341B2 (en) LCD panel
JP2011158690A (en) Liquid crystal display panel and electronic apparatus
US20070159586A1 (en) Liquid crystal display
JP4244289B2 (en) Substrate for liquid crystal display device and liquid crystal display device including the same
WO2017163718A1 (en) Liquid crystal display device
US20080180616A1 (en) Transflective Liquid Crystal Display Device
WO2012090838A1 (en) Liquid-crystal panel and liquid-crystal display
KR20030069285A (en) a liquid crystal display
KR20040084453A (en) Liquid crystal display
JP3888346B2 (en) Liquid crystal display device and electronic device
WO2013038984A1 (en) Liquid-crystal display panel and liquid-crystal display device
US11119367B2 (en) Liquid crystal display device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018507139

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769764

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769764

Country of ref document: EP

Kind code of ref document: A1