WO2017163554A1 - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
WO2017163554A1
WO2017163554A1 PCT/JP2017/001316 JP2017001316W WO2017163554A1 WO 2017163554 A1 WO2017163554 A1 WO 2017163554A1 JP 2017001316 W JP2017001316 W JP 2017001316W WO 2017163554 A1 WO2017163554 A1 WO 2017163554A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective substrate
sealing layer
cell module
solar cell
solar
Prior art date
Application number
PCT/JP2017/001316
Other languages
French (fr)
Japanese (ja)
Inventor
幸弘 吉嶺
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2018507061A priority Critical patent/JPWO2017163554A1/en
Publication of WO2017163554A1 publication Critical patent/WO2017163554A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module.
  • the solar cell module has a plurality of solar cells.
  • the plurality of solar cells are resin-sealed between the first protective member and the second protective member (see, for example, Patent Document 1).
  • a force may be applied in the direction in which the solar cell module is warped, which may lead to damage of the solar cell. Therefore, even when a force is applied in a direction in which warpage occurs, a module structure that can prevent damage to solar cells is preferable.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a solar cell module with improved reliability.
  • a solar cell module includes a first protective substrate, a first sealing layer, a plurality of solar cells, and a second sealing layer, which are sequentially stacked.
  • the second protective substrate has a larger thickness in the stacking direction than the first protective substrate, and the second sealing layer has a lower melting point than the first sealing layer.
  • the solar cell module includes a first protective substrate, a first sealing layer, a plurality of solar cells, a second sealing layer, and a second protective substrate that are sequentially stacked.
  • the first protective substrate is disposed on the light receiving surface side of the plurality of solar cells.
  • the second protective substrate is disposed on the back side of the plurality of solar cells, and has a greater thickness in the stacking direction than the first protective substrate.
  • a solar cell module with improved reliability can be provided.
  • the embodiment of the present invention is a solar cell module.
  • the solar battery module has a plurality of solar battery cells, and adjacent solar battery cells are connected by a connecting member called a tab wiring.
  • the solar cells connected by tab wiring are sandwiched between the first protective substrate and the second protective substrate and sealed with resin.
  • the strength of the module is increased by providing a difference between the thicknesses of the first protective substrate and the second protective substrate.
  • the strength of the glass is generally proportional to the square of the thickness. Rather than having the same thickness, the difference in thickness between the two increases the overall strength of the module.
  • the second protective substrate side is less likely to be heated in the sealing process because the second protective substrate is thick.
  • the solar battery cell can be more reliably sealed by suitably softening the resin. Thereby, a highly reliable solar cell module can be provided.
  • FIG. 1 is a cross-sectional view showing the structure of a solar cell module 100 according to an embodiment.
  • the solar cell module 100 includes a plurality of solar cells 10, a tab wiring 20 that connects adjacent solar cells 10, a first protective substrate 30, a second protective substrate 32, and a first sealing layer 34. And a second sealing layer 36.
  • the solar battery cell 10 is a layer that absorbs incident light and generates photovoltaic power, and includes a substrate made of a semiconductor material such as crystalline silicon, gallium arsenide (GaAs), or indium phosphorus (InP).
  • the structure of the solar battery cell 10 is not particularly limited.
  • the solar battery cell 10 has a heterojunction of an n-type single crystal silicon substrate and amorphous silicon.
  • the solar cell 10 includes an i-type amorphous silicon layer, a p-type amorphous silicon layer doped with boron (B) or the like on a light-receiving surface side of an n-type single crystal silicon substrate, indium oxide or the like.
  • the transparent conductive layers made of a photoconductive oxide are stacked in this order. Further, an i-type amorphous silicon layer, an n-type amorphous silicon layer doped with phosphorus (P) or the like, and a transparent conductive layer are laminated on the back side of the substrate in this order.
  • P phosphorus
  • the solar battery cell 10 has a light receiving surface 12 that is one of the cell surfaces and a back surface 14 that is one of the cell surfaces and faces away from the light receiving surface 12.
  • the light receiving surface 12 means a main surface on which solar light is mainly incident in the solar battery cell 10, and is a surface on which most of the light incident on the solar battery cell 10 is incident.
  • a light receiving surface electrode is formed on the light receiving surface 12, and a back electrode is formed on the back surface 14.
  • the tab wiring 20 is an elongated metal foil, for example, a copper foil coated with silver, tin, solder or the like, or an aluminum foil.
  • the tab wiring 20 electrically and mechanically connects adjacent solar cells 10.
  • One end of the tab wiring 20 is in electrical contact with the light receiving surface electrode formed on one light receiving surface 12 of the adjacent solar battery cell 10.
  • the other end of the tab wiring 20 is brought into electrical contact with a back electrode formed on the other back surface 14 of the adjacent solar battery cell 10.
  • the tab wiring 20 is bent in an inter-cell region between adjacent solar cells 10 so that the light receiving surface 12 and the back surface 14 of the adjacent solar cells 10 are arranged in the same plane. .
  • the first protective substrate 30 and the second protective substrate 32 are exterior members that protect the plurality of solar cells 10 from the external environment, and are, for example, glass substrates.
  • the first protective substrate 30 is provided on the light receiving surface 12 side and transmits light in a wavelength band that the solar battery cell 10 absorbs for power generation.
  • the second protective substrate 32 is provided on the back surface 14 side.
  • the second protective substrate 32 is preferably thicker in the stacking direction than the first protective substrate 30 and has a thickness of 1.1 times or more that of the first protective substrate 30.
  • the first sealing layer 34 and the second sealing layer 36 are sealing resin layers that prevent moisture from entering the solar cells 10 and improve the strength of the entire solar cell module 100.
  • the 1st sealing layer 34 is provided between the photovoltaic cell 10 and the 1st protective substrate 30, ie, the light-receiving surface 12 side.
  • the second sealing layer 36 is provided between the solar battery cell 10 and the second protective substrate 32, that is, on the back surface 14 side.
  • the first sealing layer 34 is a thermoplastic resin, for example, a polyethylene-based or polypropylene-based resin.
  • the second sealing layer 36 is a thermosetting resin, for example, an ethylene-vinyl acetate copolymer (EVA), a polyethylene-based or polypropylene-based resin containing a polyimide or a cross-linking material.
  • EVA ethylene-vinyl acetate copolymer
  • a resin having a melting point lower than that of the first sealing layer 34 is selected for the second sealing layer 36. That is, the resin material of the first sealing layer 34 has a relatively high melting point, and the resin material of the second sealing layer 36 has a relatively low melting point.
  • the melting point of the resin material is, for example, at least when the average molecular weight of the polymer constituting the resin is large, when the ratio of the branched structure (weight to density) is high, and when the localized site is present in the main chain of the polymer In either case, the melting point increases. Therefore, by using resins having at least one of these different resin characteristics, the melting points of the first sealing layer 34 and the second sealing layer 36 can be made different. In addition, you may give the difference in melting
  • FIG. 2 is a diagram schematically showing a manufacturing process of the solar cell module 100.
  • the direction of the photovoltaic cell 10 is reversed upside down from FIG.
  • a plurality of solar cells 10 are connected by tab wiring 20 to form a cell string 18.
  • the first sealing material 54 and the first protective substrate 30 are disposed on the light receiving surface 12 side of the cell string 18, and the second sealing material 56 and the second protective substrate 32 are disposed on the back surface 14 side.
  • the first jig 40 and the first jig 40 are vertically moved so as to sandwich the laminate composed of the first protective substrate 30, the first sealing material 54, the cell string 18, the second sealing material 56, and the second protective substrate 32.
  • tool 42 is arrange
  • the first jig 40 is on the heating side
  • the second jig 42 is on the pressing side.
  • the first sealing material 54 and the second sealing material 56 are fused to form the first sealing layer 34 and the second sealing layer 36, and the solar cell module 100 of FIG. 1 is completed.
  • the configuration of the laminating apparatus is not particularly limited.
  • the first jig 40 may be the pressing side
  • the second jig 42 may be the heating side
  • the first jig 40 and the second jig 42 may be used.
  • thermosetting second sealing layer 36 may be completely cured by placing the solar cell module 100 in a resin curing furnace after thermocompression bonding.
  • the first jig 40 is disposed so as to be in contact with the first protective substrate 30, and the second jig 42 is disposed so as to be in contact with the second protective substrate 32.
  • the first jig 40 has a heating device 44 such as a heater.
  • the heating device 44 heats the first protective substrate 30.
  • the heat generated by the heating device 44 is transmitted in the order of the first protective substrate 30, the first sealing material 54, the cell string 18, the second sealing material 56, and the second protective substrate 32.
  • the first sealing material 54 and the second sealing material 56 are heated by heating from the first protective substrate 30 having a small thickness, compared with the case of heating from the second protective substrate 32 having a large thickness. Heat can be transmitted easily.
  • the first sealing material 54 and the second sealing material 56 are almost at the same timing. It can be softened and fused. Thereby, the thermocompression bonding process can be completed in a shorter time, and an increase in manufacturing cost can be suppressed.
  • FIG. 3 is a diagram schematically illustrating an effect exhibited by the solar cell module 100 according to the embodiment.
  • the solar cell module 100 is installed such that the first protective substrate 30 is vertically upward and the second protective substrate 32 is vertically downward.
  • the solar cell module 100 may be installed so that the first protective substrate 30 is orthogonal to the vertical direction, or may be installed obliquely so that the first protective substrate 30 intersects the vertical direction.
  • snow is deposited on the first protective substrate 30 and the positive polarity as indicated by the arrow A from above the first protective substrate 30 is obtained. A load is applied.
  • the neutral plane F of stress refers to a place where no compressive stress or tensile stress is applied when the solar cell module 100 is bent.
  • the range closer to the first protective substrate 30 than the neutral plane F is the compression region D to which compressive stress is applied, and the range closer to the second protective substrate 32 than the neutral plane F is the tensile region E to which tensile stress is applied. is there.
  • the neutral plane F of the stress is located closer to the second protective substrate 32 than the solar battery cell 10, so that the solar battery cell 10 included in the compression region D is subjected to compressive stress.
  • the crystalline semiconductor material constituting the solar battery cell 10 has a characteristic that it is weak against tensile stress but strong against compressive stress.
  • the present embodiment by increasing the thickness of the second protective substrate 32, it is possible to prevent a tensile stress from being generated in the solar battery cell 10 even when a positive load is applied to the solar battery module 100. Thereby, damage of the photovoltaic cell 10 can be prevented and the reliability of the solar cell module 100 can be improved.
  • the attenuation amount of incident light caused by the first protective substrate 30 can be reduced. This is because even if the glass substrate is transparent to the incident light, the transmittance of the incident light can be reduced as the glass substrate becomes thicker. Therefore, according to this Embodiment, more light can be entered into the photovoltaic cell 10, and the power generation efficiency of the photovoltaic module 100 can be improved.
  • the first protective substrate 30 may be easily warped depending on the external environment at the time of installation. For example, in summer when the intensity of sunlight is high, the solar battery cell 10 absorbs high-intensity incident light and becomes high temperature, and the temperature of the first protective substrate 30 also increases. Since the first protective substrate 30 has a small heat capacity, the first protective substrate 30 is likely to have a higher temperature than the second protective substrate 32. As a result, the first protective substrate 30 has a larger amount of thermal expansion than the second protective substrate 32, and the solar cell panel 60 warps so that the outer surface (light receiving surface) of the first protective substrate 30 is convex. It will be. If it does so, tensile stress may be added to the photovoltaic cell 10 and it may lead to damage of the photovoltaic cell 10.
  • thermoplastic resin is used as the first sealing layer 34 between the first protective substrate 30 and the solar battery cell 10. Therefore, even when the first protective substrate 30 is warped due to the temperature rise of the solar cell module 100, the stress caused by the warp of the first protective substrate 30 due to the softening of the thermoplastic first sealing layer 34. Can be relaxed by the first sealing layer 34. Thereby, it is possible to prevent a strong tensile stress from being generated in the solar battery cell 10 and prevent the solar battery cell 10 from being damaged.
  • the first sealing layer 34 on the light receiving surface 12 side is made of a thermoplastic resin
  • the second sealing layer 36 on the back surface 14 side is made of a thermosetting resin, so that the solar cell module. 100 reliability can be improved. If both the first sealing layer 34 and the second sealing layer 36 are made of a thermoplastic resin, the entire sealing layer softens when the solar cell module 100 reaches a high temperature and shifts to the arrangement of the cell strings 18. May occur, leading to damage to the solar battery cell 10.
  • at least one of the sealing layers is made of a thermosetting resin, thereby preventing displacement of the cell string 18 at a high temperature and damaging the solar battery cell 10 due to the displacement of the cell string 18. Can be prevented.
  • One aspect of this embodiment is a solar cell module (100).
  • the solar cell module (100) A first protective substrate (30), a first sealing layer (34), a plurality of solar cells (10), a second sealing layer (36), and a second protective substrate (32), which are sequentially stacked.
  • the second protective substrate (32) has a greater thickness in the stacking direction than the first protective substrate (30),
  • the second sealing layer (36) has a lower melting point than the first sealing layer (34).
  • the first protective substrate (30) is disposed on the light receiving surface (12) side of the plurality of solar cells (10), and the second protective substrate (32) is the back surface (14) of the plurality of solar cells (10). It may be arranged on the side.
  • the first sealing layer (34) may be a thermoplastic resin
  • the second sealing layer (36) may be a thermosetting resin
  • the first protective substrate (30) may be installed on the upper side in the vertical direction.
  • the solar cell module (100) A first protective substrate (30), a first sealing layer (34), a plurality of solar cells (10), a second sealing layer (36), and a second protective substrate (32), which are sequentially stacked. And The first protective substrate (30) is disposed on the light receiving surface side of the plurality of solar cells (10), A 2nd protective substrate (32) is arrange
  • the present invention has been described with reference to the above-described embodiment.
  • the present invention is not limited to the above-described embodiment, and the present invention can be appropriately combined or replaced with the configuration of the embodiment. It is included in the present invention.
  • a solar cell module with improved reliability can be provided.

Abstract

A solar cell module 100 is provided with a first protection substrate 30, a first sealing layer 34, a plurality of solar cells 10, a second sealing layer 36, and a second protection substrate 32, which are laminated in this order. The thickness of the second protection substrate 32, said thickness being in the laminating direction, is larger than that of the first protection substrate 30. The melting point of the second sealing layer 36 is lower than that of the first sealing layer 34. The first protection substrate 30 may be disposed on the light receiving surface 12 side of the solar cells 10, and the second protection substrate 32 may be disposed on the rear surface 14 side of the solar cells 10. The first sealing layer 34 may be formed of a thermoplastic resin. The second sealing layer 36 may be formed of a thermosetting resin.

Description

太陽電池モジュールSolar cell module
 本発明は、太陽電池モジュールに関する。 The present invention relates to a solar cell module.
 太陽電池モジュールは、複数の太陽電池セルを有する。複数の太陽電池セルは、第1保護部材と第2保護部材との間に樹脂封止される(例えば、特許文献1参照)。 The solar cell module has a plurality of solar cells. The plurality of solar cells are resin-sealed between the first protective member and the second protective member (see, for example, Patent Document 1).
国際公開第2012/128342号International Publication No. 2012/128342
 設置時の外部環境によっては太陽電池モジュールに反りが生じる方向に力が加わることがあり、太陽電池セルの損傷につながるおそれがある。したがって、反りが生じる方向に力が加わる場合であっても、太陽電池セルの損傷を防止できるモジュール構造であることが好ましい。 Depending on the external environment at the time of installation, a force may be applied in the direction in which the solar cell module is warped, which may lead to damage of the solar cell. Therefore, even when a force is applied in a direction in which warpage occurs, a module structure that can prevent damage to solar cells is preferable.
 本発明はこうした状況に鑑みてなされたものであり、その目的は、信頼性を高めた太陽電池モジュールを提供することにある。 The present invention has been made in view of such circumstances, and an object thereof is to provide a solar cell module with improved reliability.
 上記課題を解決するために、本発明のある態様の太陽電池モジュールは、順に積層される第1保護基板と、第1封止層と、複数の太陽電池セルと、第2封止層と、第2保護基板とを備える。第2保護基板は、第1保護基板よりも積層方向の厚さが大きく、第2封止層は、第1封止層よりも融点が低い。 In order to solve the above problems, a solar cell module according to an aspect of the present invention includes a first protective substrate, a first sealing layer, a plurality of solar cells, and a second sealing layer, which are sequentially stacked. A second protective substrate. The second protective substrate has a larger thickness in the stacking direction than the first protective substrate, and the second sealing layer has a lower melting point than the first sealing layer.
 本発明の別の態様もまた太陽電池モジュールである。この太陽電池モジュールは、順に積層される第1保護基板と、第1封止層と、複数の太陽電池セルと、第2封止層と、第2保護基板とを備える。第1保護基板は、複数の太陽電池セルの受光面側に配置される。第2保護基板は、複数の太陽電池セルの裏面側に配置され、第1保護基板よりも積層方向の厚さが大きい。 Another embodiment of the present invention is also a solar cell module. The solar cell module includes a first protective substrate, a first sealing layer, a plurality of solar cells, a second sealing layer, and a second protective substrate that are sequentially stacked. The first protective substrate is disposed on the light receiving surface side of the plurality of solar cells. The second protective substrate is disposed on the back side of the plurality of solar cells, and has a greater thickness in the stacking direction than the first protective substrate.
 本発明によれば、信頼性を高めた太陽電池モジュールを提供できる。 According to the present invention, a solar cell module with improved reliability can be provided.
実施の形態に係る太陽電池モジュールの構造を示す断面図である。It is sectional drawing which shows the structure of the solar cell module which concerns on embodiment. 太陽電池モジュールの製造工程を模式的に示す図である。It is a figure which shows typically the manufacturing process of a solar cell module. 実施の形態に係る太陽電池モジュールが奏する効果を模式的に示す図である。It is a figure which shows typically the effect which the solar cell module which concerns on embodiment shows.
 本発明を具体的に説明する前に、概要を述べる。本発明の実施の形態は、太陽電池モジュールである。太陽電池モジュールは、複数の太陽電池セルを有し、隣接する太陽電池セル間がタブ配線といわれる接続部材により接続される。タブ配線により接続された太陽電池セルは、第1保護基板と第2保護基板の間に挟み込まれて樹脂封止される。本実施の形態では、第1保護基板と第2保護基板の厚さに差を設けることで、モジュールの強度が高められるようにする。保護基板としてガラス板を用いる場合、ガラスの強度は一般に厚さの二乗に比例することから、第1保護基板と第2保護基板の厚さの合計値を一定とする条件下において、両者の厚さを同じとするよりも両者の厚さに差を設けた方がモジュール全体としての強度が高まる。また、第2保護基板側の封止樹脂として第1保護基板側よりも低融点の樹脂材料を用いることで、第2保護基板が厚いために封止工程において加熱されにくい第2保護基板側の樹脂を好適に軟化させて太陽電池セルをより確実に封止できる。これにより、信頼性の高い太陽電池モジュールを提供できる。 An outline will be given before concretely explaining the present invention. The embodiment of the present invention is a solar cell module. The solar battery module has a plurality of solar battery cells, and adjacent solar battery cells are connected by a connecting member called a tab wiring. The solar cells connected by tab wiring are sandwiched between the first protective substrate and the second protective substrate and sealed with resin. In this embodiment, the strength of the module is increased by providing a difference between the thicknesses of the first protective substrate and the second protective substrate. When a glass plate is used as the protective substrate, the strength of the glass is generally proportional to the square of the thickness. Rather than having the same thickness, the difference in thickness between the two increases the overall strength of the module. In addition, by using a resin material having a lower melting point than the first protective substrate side as the sealing resin on the second protective substrate side, the second protective substrate side is less likely to be heated in the sealing process because the second protective substrate is thick. The solar battery cell can be more reliably sealed by suitably softening the resin. Thereby, a highly reliable solar cell module can be provided.
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。図面の説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and repeated descriptions are omitted as appropriate.
 図1は、実施の形態に係る太陽電池モジュール100の構造を示す断面図である。太陽電池モジュール100は、複数の太陽電池セル10と、隣接する太陽電池セル10を互いに接続するタブ配線20と、第1保護基板30と、第2保護基板32と、第1封止層34と、第2封止層36とを備える。 FIG. 1 is a cross-sectional view showing the structure of a solar cell module 100 according to an embodiment. The solar cell module 100 includes a plurality of solar cells 10, a tab wiring 20 that connects adjacent solar cells 10, a first protective substrate 30, a second protective substrate 32, and a first sealing layer 34. And a second sealing layer 36.
 太陽電池セル10は、入射する光を吸収して光起電力を発生させる層であり、例えば、結晶系シリコン、ガリウム砒素(GaAs)又はインジウム燐(InP)等の半導体材料からなる基板を有する。太陽電池セル10の構造は、特に限定されないが、本実施形態では、n型単結晶シリコン基板と非晶質シリコンのヘテロ接合を有する。太陽電池セル10は、例えば、n型単結晶シリコン基板の受光面側に、i型非晶質シリコン層、ボロン(B)等がドープされたp型非晶質シリコン層、酸化インジウム等の透光性導電酸化物からなる透明導電層の順番で積層されている。また、基板の裏面側に、i型非晶質シリコン層、リン(P)等がドープされたn型非晶質シリコン層、透明導電層の順番で積層されている。 The solar battery cell 10 is a layer that absorbs incident light and generates photovoltaic power, and includes a substrate made of a semiconductor material such as crystalline silicon, gallium arsenide (GaAs), or indium phosphorus (InP). The structure of the solar battery cell 10 is not particularly limited. In this embodiment, the solar battery cell 10 has a heterojunction of an n-type single crystal silicon substrate and amorphous silicon. For example, the solar cell 10 includes an i-type amorphous silicon layer, a p-type amorphous silicon layer doped with boron (B) or the like on a light-receiving surface side of an n-type single crystal silicon substrate, indium oxide or the like. The transparent conductive layers made of a photoconductive oxide are stacked in this order. Further, an i-type amorphous silicon layer, an n-type amorphous silicon layer doped with phosphorus (P) or the like, and a transparent conductive layer are laminated on the back side of the substrate in this order.
 太陽電池セル10は、セル表面の一つである受光面12と、セル表面の一つであり、受光面12に背向する裏面14とを有する。ここで、受光面12は、太陽電池セル10において主に太陽光が入射される主面を意味し、太陽電池セル10に入射される光の大部分が入射される面である。受光面12には、受光面電極が形成され、裏面14には裏面電極が形成される。 The solar battery cell 10 has a light receiving surface 12 that is one of the cell surfaces and a back surface 14 that is one of the cell surfaces and faces away from the light receiving surface 12. Here, the light receiving surface 12 means a main surface on which solar light is mainly incident in the solar battery cell 10, and is a surface on which most of the light incident on the solar battery cell 10 is incident. A light receiving surface electrode is formed on the light receiving surface 12, and a back electrode is formed on the back surface 14.
 タブ配線20は、細長い金属箔であり、例えば、銅箔に銀や錫、ハンダ等をコーティングしたものや、アルミニウム箔が用いられる。タブ配線20は、隣接する太陽電池セル10同士を電気的かつ機械的に接続する。タブ配線20の一端は、隣接する太陽電池セル10の一方の受光面12に形成される受光面電極と接触して電気的に導通する。タブ配線20の他端は、隣接する太陽電池セル10の他方の裏面14に形成される裏面電極と接触して電気的に導通する。タブ配線20は、隣接する太陽電池セル10の間のセル間領域において屈曲しており、隣接する太陽電池セル10の受光面12および裏面14のそれぞれが同一平面内に配置されるようにしている。 The tab wiring 20 is an elongated metal foil, for example, a copper foil coated with silver, tin, solder or the like, or an aluminum foil. The tab wiring 20 electrically and mechanically connects adjacent solar cells 10. One end of the tab wiring 20 is in electrical contact with the light receiving surface electrode formed on one light receiving surface 12 of the adjacent solar battery cell 10. The other end of the tab wiring 20 is brought into electrical contact with a back electrode formed on the other back surface 14 of the adjacent solar battery cell 10. The tab wiring 20 is bent in an inter-cell region between adjacent solar cells 10 so that the light receiving surface 12 and the back surface 14 of the adjacent solar cells 10 are arranged in the same plane. .
 第1保護基板30および第2保護基板32は、複数の太陽電池セル10を外部環境から保護する外装部材であり、例えばガラス基板である。第1保護基板30は、受光面12側に設けられ、太陽電池セル10が発電のために吸収する波長帯域の光を透過する。第2保護基板32は、裏面14側に設けられる。第2保護基板32は、第1保護基板30よりも積層方向の厚さが大きく、第1保護基板30の1.1倍以上の厚さを有することが好ましい。第1保護基板30の厚さtと第2保護基板32の厚さtに差を設けることにより、両者の厚さの合計値(t+t)を一定とした場合にモジュール全体としての強度を高めることができる。ガラスの強度は一般に厚さの二乗に比例するため、厚さの合計値が一定であれば、両者の厚さが等しい(t=t)場合に両者のガラスの強度の和が最小となるためである。 The first protective substrate 30 and the second protective substrate 32 are exterior members that protect the plurality of solar cells 10 from the external environment, and are, for example, glass substrates. The first protective substrate 30 is provided on the light receiving surface 12 side and transmits light in a wavelength band that the solar battery cell 10 absorbs for power generation. The second protective substrate 32 is provided on the back surface 14 side. The second protective substrate 32 is preferably thicker in the stacking direction than the first protective substrate 30 and has a thickness of 1.1 times or more that of the first protective substrate 30. By the thickness of the first protective substrate 30 t 1 and providing a difference in thickness t 2 of the second protective substrate 32, as the entire module when both of the thickness of the sum of (t 1 + t 2) to a constant The strength of can be increased. Since the strength of the glass is generally proportional to the square of the thickness, if the total thickness is constant, the sum of the strengths of the two glasses is minimum when both thicknesses are equal (t 1 = t 2 ). It is to become.
 第1封止層34および第2封止層36は、封止樹脂層であり、太陽電池セル10への水分の浸入等を防ぐとともに、太陽電池モジュール100全体の強度を向上させる。第1封止層34は、太陽電池セル10と第1保護基板30の間、つまり、受光面12側に設けられる。第2封止層36は、太陽電池セル10と第2保護基板32の間、つまり、裏面14側に設けられる。第1封止層34は、熱可塑性樹脂であり、例えば、ポリエチレン系またはポリプロピレン系の樹脂である。第2封止層36は、熱硬化性樹脂であり、例えば、エチレン酢酸ビニル共重合体(EVA)、ポリイミドもしくは架橋材を含むポリエチレン系またはポリプロピレン系の樹脂である。 The first sealing layer 34 and the second sealing layer 36 are sealing resin layers that prevent moisture from entering the solar cells 10 and improve the strength of the entire solar cell module 100. The 1st sealing layer 34 is provided between the photovoltaic cell 10 and the 1st protective substrate 30, ie, the light-receiving surface 12 side. The second sealing layer 36 is provided between the solar battery cell 10 and the second protective substrate 32, that is, on the back surface 14 side. The first sealing layer 34 is a thermoplastic resin, for example, a polyethylene-based or polypropylene-based resin. The second sealing layer 36 is a thermosetting resin, for example, an ethylene-vinyl acetate copolymer (EVA), a polyethylene-based or polypropylene-based resin containing a polyimide or a cross-linking material.
 本実施の形態において、第2封止層36は、第1封止層34よりも融点の低い樹脂が選択される。つまり、第1封止層34の樹脂材料は相対的に融点が高く、第2封止層36の樹脂材料は相対的に融点が低い。樹脂材料の融点は、例えば、樹脂を構成するポリマーの平均分子量が大きい場合、分枝構造の割合(重量ないし密度)が高い場合、および、ポリマーの主鎖に局在部位が存在する場合の少なくともいずれかの場合に融点が高くなる。したがって、これらの樹脂特性の少なくともいずれかが相違する樹脂を用いることで、第1封止層34と第2封止層36の融点に差異を持たせることができる。なお、上述の樹脂特性とは異なる特性を利用して樹脂材料の融点に差異を持たせてもよい。 In the present embodiment, a resin having a melting point lower than that of the first sealing layer 34 is selected for the second sealing layer 36. That is, the resin material of the first sealing layer 34 has a relatively high melting point, and the resin material of the second sealing layer 36 has a relatively low melting point. The melting point of the resin material is, for example, at least when the average molecular weight of the polymer constituting the resin is large, when the ratio of the branched structure (weight to density) is high, and when the localized site is present in the main chain of the polymer In either case, the melting point increases. Therefore, by using resins having at least one of these different resin characteristics, the melting points of the first sealing layer 34 and the second sealing layer 36 can be made different. In addition, you may give the difference in melting | fusing point of a resin material using the characteristic different from the above-mentioned resin characteristic.
 図2は、太陽電池モジュール100の製造工程を模式的に示す図である。本図では、太陽電池セル10の向きを図1とは上下反転させている。複数の太陽電池セル10をタブ配線20で接続してセルストリング18を形成する。次に、セルストリング18の受光面12側に第1封止材54および第1保護基板30を配置し、裏面14側に第2封止材56および第2保護基板32を配置する。つづいて、第1保護基板30、第1封止材54、セルストリング18、第2封止材56および第2保護基板32で構成される積層体を挟み込むように上下に第1治具40および第2治具42を配置し、積層体に圧力を加えながら加熱する。このとき、第1治具40が加熱側となり、第2治具42が押圧側となる。加熱圧着により、第1封止材54および第2封止材56が融着して第1封止層34および第2封止層36が形成され、図1の太陽電池モジュール100ができあがる。なお、ラミネート装置の構成は特に限定されず、変形例においては、第1治具40を押圧側、第2治具42を加熱側としてもよいし、第1治具40および第2治具42の双方を加熱側にしてもよいし、第1治具40および第2治具42の双方を押圧側にしてもよい。また、加熱圧着した後に太陽電池モジュール100を樹脂硬化炉に入れることで、熱硬化性の第2封止層36を完全に硬化させてもよい。 FIG. 2 is a diagram schematically showing a manufacturing process of the solar cell module 100. In this figure, the direction of the photovoltaic cell 10 is reversed upside down from FIG. A plurality of solar cells 10 are connected by tab wiring 20 to form a cell string 18. Next, the first sealing material 54 and the first protective substrate 30 are disposed on the light receiving surface 12 side of the cell string 18, and the second sealing material 56 and the second protective substrate 32 are disposed on the back surface 14 side. Subsequently, the first jig 40 and the first jig 40 are vertically moved so as to sandwich the laminate composed of the first protective substrate 30, the first sealing material 54, the cell string 18, the second sealing material 56, and the second protective substrate 32. The 2nd jig | tool 42 is arrange | positioned and it heats, applying a pressure to a laminated body. At this time, the first jig 40 is on the heating side, and the second jig 42 is on the pressing side. By the thermocompression bonding, the first sealing material 54 and the second sealing material 56 are fused to form the first sealing layer 34 and the second sealing layer 36, and the solar cell module 100 of FIG. 1 is completed. The configuration of the laminating apparatus is not particularly limited. In a modification, the first jig 40 may be the pressing side, the second jig 42 may be the heating side, and the first jig 40 and the second jig 42 may be used. Both may be on the heating side, and both the first jig 40 and the second jig 42 may be on the pressing side. Alternatively, the thermosetting second sealing layer 36 may be completely cured by placing the solar cell module 100 in a resin curing furnace after thermocompression bonding.
 上述の加熱圧着工程において、第1治具40は、第1保護基板30と接触するように配置され、第2治具42は、第2保護基板32と接触するように配置される。第1治具40は、ヒータなどの加熱装置44を有する。加熱装置44は、第1保護基板30を加熱する。加熱装置44が発する熱は、第1保護基板30、第1封止材54、セルストリング18、第2封止材56、第2保護基板32の順に伝わる。本実施の形態では、厚さの小さい第1保護基板30から加熱することで、厚さの大きい第2保護基板32から加熱する場合よりも、第1封止材54および第2封止材56に熱が伝わりやすくなるようにできる。また、第1封止材54と比べて加熱されにくい第2封止材56に融点の低い樹脂材料を用いることで、第1封止材54と第2封止材56とがほぼ同じタイミングで軟化して融着するようにできる。これにより、より短い時間で加熱圧着工程が完了するようにでき、製造コストの増大を抑えることができる。 In the above-described thermocompression bonding step, the first jig 40 is disposed so as to be in contact with the first protective substrate 30, and the second jig 42 is disposed so as to be in contact with the second protective substrate 32. The first jig 40 has a heating device 44 such as a heater. The heating device 44 heats the first protective substrate 30. The heat generated by the heating device 44 is transmitted in the order of the first protective substrate 30, the first sealing material 54, the cell string 18, the second sealing material 56, and the second protective substrate 32. In the present embodiment, the first sealing material 54 and the second sealing material 56 are heated by heating from the first protective substrate 30 having a small thickness, compared with the case of heating from the second protective substrate 32 having a large thickness. Heat can be transmitted easily. Further, by using a resin material having a low melting point for the second sealing material 56 that is harder to be heated than the first sealing material 54, the first sealing material 54 and the second sealing material 56 are almost at the same timing. It can be softened and fused. Thereby, the thermocompression bonding process can be completed in a shorter time, and an increase in manufacturing cost can be suppressed.
 つづいて、太陽電池モジュール100が奏する効果について説明する。
 図3は、実施の形態に係る太陽電池モジュール100が奏する効果を模式的に示す図である。太陽電池モジュール100は、第1保護基板30が鉛直上側、第2保護基板32が鉛直下側となるようにして設置される。太陽電池モジュール100は、第1保護基板30が鉛直方向と直交するように設置されてもよいし、第1保護基板30が鉛直方向と交差するように斜めに設置されてもよい。太陽電池モジュール100を降雪のある場所に第1保護基板30を鉛直上側にして設置すると、第1保護基板30の上に積雪して第1保護基板30の上から矢印Aで示されるような正荷重が加わる。
Next, the effect produced by the solar cell module 100 will be described.
FIG. 3 is a diagram schematically illustrating an effect exhibited by the solar cell module 100 according to the embodiment. The solar cell module 100 is installed such that the first protective substrate 30 is vertically upward and the second protective substrate 32 is vertically downward. The solar cell module 100 may be installed so that the first protective substrate 30 is orthogonal to the vertical direction, or may be installed obliquely so that the first protective substrate 30 intersects the vertical direction. When the solar cell module 100 is installed in a place with snowfall with the first protective substrate 30 vertically upward, snow is deposited on the first protective substrate 30 and the positive polarity as indicated by the arrow A from above the first protective substrate 30 is obtained. A load is applied.
 正荷重が加わると、太陽電池モジュール100の中央が下方に向かうような撓みが生じる。第1保護基板30には矢印Bで示すような圧縮応力がかかり、第2保護基板32には矢印Cで示すような引っ張り応力がかかる。太陽電池モジュール100は、第1保護基板30が薄く、第2保護基板32が厚いため、応力の中立面Fが第2保護基板32に近い位置にある。ここで、中立面Fとは、太陽電池モジュール100に撓みが生じる場合に圧縮応力または引張応力がかからない場所をいう。中立面Fよりも第1保護基板30に近い範囲は、圧縮応力が加わる圧縮領域Dであり、中立面Fよりも第2保護基板32に近い範囲は、引っ張り応力が加わる引張領域Eである。応力の中立面Fは、図示されるように、太陽電池セル10よりも第2保護基板32に近い位置にあるため、圧縮領域Dに含まれる太陽電池セル10には圧縮応力がかかることとなる。太陽電池セル10を構成する結晶性の半導体材料は、引っ張り応力に弱いが、圧縮応力には強いという特性を有する。本実施の形態によれば、第2保護基板32を厚くすることで、太陽電池モジュール100に正荷重がかかる場合であっても太陽電池セル10に引っ張り応力が生じないようにすることができる。これにより、太陽電池セル10の損傷を防止し、太陽電池モジュール100の信頼性を高めることができる。 When a positive load is applied, bending occurs such that the center of the solar cell module 100 is directed downward. The first protective substrate 30 is subjected to compressive stress as indicated by arrow B, and the second protective substrate 32 is subjected to tensile stress as indicated by arrow C. In the solar cell module 100, since the first protective substrate 30 is thin and the second protective substrate 32 is thick, the neutral plane F of stress is close to the second protective substrate 32. Here, the neutral plane F refers to a place where no compressive stress or tensile stress is applied when the solar cell module 100 is bent. The range closer to the first protective substrate 30 than the neutral plane F is the compression region D to which compressive stress is applied, and the range closer to the second protective substrate 32 than the neutral plane F is the tensile region E to which tensile stress is applied. is there. As shown in the drawing, the neutral plane F of the stress is located closer to the second protective substrate 32 than the solar battery cell 10, so that the solar battery cell 10 included in the compression region D is subjected to compressive stress. Become. The crystalline semiconductor material constituting the solar battery cell 10 has a characteristic that it is weak against tensile stress but strong against compressive stress. According to the present embodiment, by increasing the thickness of the second protective substrate 32, it is possible to prevent a tensile stress from being generated in the solar battery cell 10 even when a positive load is applied to the solar battery module 100. Thereby, damage of the photovoltaic cell 10 can be prevented and the reliability of the solar cell module 100 can be improved.
 本実施の形態によれば、太陽電池セル10の受光面12側に厚さの小さい第1保護基板30が設けられるため、第1保護基板30に起因する入射光の減衰量を小さくできる。入射光に対して透明なガラス基板であっても、ガラス基板が厚くなると入射光の透過率が低下しうるためである。したがって、本実施の形態によれば太陽電池セル10により多くの光を入射させることができ、太陽電池モジュール100の発電効率を高めることができる。 According to this embodiment, since the first protective substrate 30 having a small thickness is provided on the light receiving surface 12 side of the solar battery cell 10, the attenuation amount of incident light caused by the first protective substrate 30 can be reduced. This is because even if the glass substrate is transparent to the incident light, the transmittance of the incident light can be reduced as the glass substrate becomes thicker. Therefore, according to this Embodiment, more light can be entered into the photovoltaic cell 10, and the power generation efficiency of the photovoltaic module 100 can be improved.
 なお、第1保護基板30の厚さを小さくすると、設置時の外部環境によっては第1保護基板30に反りが生じやすくなるおそれがある。例えば、太陽光の強度が高い夏場などでは、太陽電池セル10が高強度の入射光を吸収して高温となり、第1保護基板30の温度も高まる。第1保護基板30は熱容量が小さいため、第2保護基板32と比べて第1保護基板30の方が高温になりやすい。その結果、第2保護基板32よりも第1保護基板30の方が熱膨張量が大きくなり、第1保護基板30の外表面(受光面)が凸となるように太陽電池パネル60が反ることとなる。そうすると、太陽電池セル10に引っ張り応力が加わって太陽電池セル10の損傷につながる可能性がある。 If the thickness of the first protective substrate 30 is reduced, the first protective substrate 30 may be easily warped depending on the external environment at the time of installation. For example, in summer when the intensity of sunlight is high, the solar battery cell 10 absorbs high-intensity incident light and becomes high temperature, and the temperature of the first protective substrate 30 also increases. Since the first protective substrate 30 has a small heat capacity, the first protective substrate 30 is likely to have a higher temperature than the second protective substrate 32. As a result, the first protective substrate 30 has a larger amount of thermal expansion than the second protective substrate 32, and the solar cell panel 60 warps so that the outer surface (light receiving surface) of the first protective substrate 30 is convex. It will be. If it does so, tensile stress may be added to the photovoltaic cell 10 and it may lead to damage of the photovoltaic cell 10.
 一方、本実施の形態では、第1保護基板30と太陽電池セル10の間の第1封止層34として熱可塑性の樹脂が用いられる。そのため、太陽電池モジュール100の温度上昇により第1保護基板30に反りが生じる場合であっても、熱可塑性の第1封止層34が軟化することによって第1保護基板30の反りに起因する応力を第1封止層34で緩和させることができる。これにより、太陽電池セル10に強い引っ張り応力が生じないようにし、太陽電池セル10の損傷を防止できる。 On the other hand, in the present embodiment, a thermoplastic resin is used as the first sealing layer 34 between the first protective substrate 30 and the solar battery cell 10. Therefore, even when the first protective substrate 30 is warped due to the temperature rise of the solar cell module 100, the stress caused by the warp of the first protective substrate 30 due to the softening of the thermoplastic first sealing layer 34. Can be relaxed by the first sealing layer 34. Thereby, it is possible to prevent a strong tensile stress from being generated in the solar battery cell 10 and prevent the solar battery cell 10 from being damaged.
 本実施の形態によれば、受光面12側の第1封止層34を熱可塑性樹脂とする一方、裏面14側の第2封止層36を熱硬化性樹脂とすることで、太陽電池モジュール100の信頼性を高めることができる。仮に、第1封止層34と第2封止層36の双方を熱可塑性樹脂としてしまうと、太陽電池モジュール100が高温となった時に封止層全体が軟化してセルストリング18の配置にずれが生じ、太陽電池セル10の損傷につながるおそれがある。本実施の形態によれば、少なくとも一方の封止層を熱硬化性樹脂とすることで、高温時におけるセルストリング18の位置ずれを防ぎ、セルストリング18のずれに起因する太陽電池セル10の損傷を防ぐことができる。 According to the present embodiment, the first sealing layer 34 on the light receiving surface 12 side is made of a thermoplastic resin, while the second sealing layer 36 on the back surface 14 side is made of a thermosetting resin, so that the solar cell module. 100 reliability can be improved. If both the first sealing layer 34 and the second sealing layer 36 are made of a thermoplastic resin, the entire sealing layer softens when the solar cell module 100 reaches a high temperature and shifts to the arrangement of the cell strings 18. May occur, leading to damage to the solar battery cell 10. According to the present embodiment, at least one of the sealing layers is made of a thermosetting resin, thereby preventing displacement of the cell string 18 at a high temperature and damaging the solar battery cell 10 due to the displacement of the cell string 18. Can be prevented.
 本実施の形態の一態様は、太陽電池モジュール(100)である。
 太陽電池モジュール(100)は、
 順に積層される第1保護基板(30)と、第1封止層(34)と、複数の太陽電池セル(10)と、第2封止層(36)と、第2保護基板(32)とを備え、
 第2保護基板(32)は、第1保護基板(30)よりも積層方向の厚さが大きく、
 第2封止層(36)は、第1封止層(34)よりも融点が低い。
One aspect of this embodiment is a solar cell module (100).
The solar cell module (100)
A first protective substrate (30), a first sealing layer (34), a plurality of solar cells (10), a second sealing layer (36), and a second protective substrate (32), which are sequentially stacked. And
The second protective substrate (32) has a greater thickness in the stacking direction than the first protective substrate (30),
The second sealing layer (36) has a lower melting point than the first sealing layer (34).
 第1保護基板(30)は、複数の太陽電池セル(10)の受光面(12)側に配置され、第2保護基板(32)は、複数の太陽電池セル(10)の裏面(14)側に配置されてもよい。 The first protective substrate (30) is disposed on the light receiving surface (12) side of the plurality of solar cells (10), and the second protective substrate (32) is the back surface (14) of the plurality of solar cells (10). It may be arranged on the side.
 第1封止層(34)は、熱可塑性の樹脂であり、第2封止層(36)は、熱硬化性の樹脂であってもよい。 The first sealing layer (34) may be a thermoplastic resin, and the second sealing layer (36) may be a thermosetting resin.
 第1保護基板(30)が鉛直方向上側となるように設置されてもよい。 The first protective substrate (30) may be installed on the upper side in the vertical direction.
 本実施の形態の別の態様は、太陽電池モジュール(100)である。
 太陽電池モジュール(100)は、
 順に積層される第1保護基板(30)と、第1封止層(34)と、複数の太陽電池セル(10)と、第2封止層(36)と、第2保護基板(32)とを備え、
 第1保護基板(30)は、複数の太陽電池セル(10)の受光面側に配置され、
 第2保護基板(32)は、複数の太陽電池セル(10)の裏面側に配置され、第1保護基板(30)よりも積層方向の厚さが大きい。
Another aspect of the present embodiment is a solar cell module (100).
The solar cell module (100)
A first protective substrate (30), a first sealing layer (34), a plurality of solar cells (10), a second sealing layer (36), and a second protective substrate (32), which are sequentially stacked. And
The first protective substrate (30) is disposed on the light receiving surface side of the plurality of solar cells (10),
A 2nd protective substrate (32) is arrange | positioned at the back surface side of a several photovoltaic cell (10), and the thickness of a lamination direction is larger than a 1st protective substrate (30).
 以上、本発明を上述の実施の形態を参照して説明したが、本発明は上述の実施の形態に限定されるものではなく、実施の形態の構成を適宜組み合わせたものや置換したものについても本発明に含まれるものである。 As described above, the present invention has been described with reference to the above-described embodiment. However, the present invention is not limited to the above-described embodiment, and the present invention can be appropriately combined or replaced with the configuration of the embodiment. It is included in the present invention.
 10…太陽電池セル、12…受光面、14…裏面、30…第1保護基板、32…第2保護基板、34…第1封止層、36…第2封止層、100…太陽電池モジュール。 DESCRIPTION OF SYMBOLS 10 ... Solar cell, 12 ... Light-receiving surface, 14 ... Back surface, 30 ... 1st protective substrate, 32 ... 2nd protective substrate, 34 ... 1st sealing layer, 36 ... 2nd sealing layer, 100 ... Solar cell module .
 本発明によれば、信頼性を高めた太陽電池モジュールを提供できる。 According to the present invention, a solar cell module with improved reliability can be provided.

Claims (5)

  1.  順に積層される第1保護基板と、第1封止層と、複数の太陽電池セルと、第2封止層と、第2保護基板とを備え、
     前記第2保護基板は、前記第1保護基板よりも積層方向の厚さが大きく、
     前記第2封止層は、前記第1封止層よりも融点が低いことを特徴とする太陽電池モジュール。
    A first protective substrate, a first sealing layer, a plurality of solar cells, a second sealing layer, and a second protective substrate, which are sequentially stacked;
    The second protective substrate has a larger thickness in the stacking direction than the first protective substrate,
    The solar cell module, wherein the second sealing layer has a melting point lower than that of the first sealing layer.
  2.  前記第1保護基板は、前記複数の太陽電池セルの受光面側に配置され、
     前記第2保護基板は、前記複数の太陽電池セルの裏面側に配置されることを特徴とする請求項1に記載の太陽電池モジュール。
    The first protective substrate is disposed on a light receiving surface side of the plurality of solar cells,
    The solar cell module according to claim 1, wherein the second protective substrate is disposed on a back surface side of the plurality of solar cells.
  3.  前記第1封止層は、熱可塑性の樹脂であり、前記第2封止層は、熱硬化性の樹脂であることを特徴とする請求項1または2に記載の太陽電池モジュール。 The solar cell module according to claim 1 or 2, wherein the first sealing layer is a thermoplastic resin, and the second sealing layer is a thermosetting resin.
  4.  前記第1保護基板が鉛直方向上側となるように設置されることを特徴とする請求項1から3のいずれか一項に記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 3, wherein the first protective substrate is installed so as to be on an upper side in a vertical direction.
  5.  順に積層される第1保護基板と、第1封止層と、複数の太陽電池セルと、第2封止層と、第2保護基板とを備え、
     前記第1保護基板は、前記複数の太陽電池セルの受光面側に配置され、
     前記第2保護基板は、前記複数の太陽電池セルの裏面側に配置され、前記第1保護基板よりも積層方向の厚さが大きいことを特徴とする太陽電池モジュール。
    A first protective substrate, a first sealing layer, a plurality of solar cells, a second sealing layer, and a second protective substrate, which are sequentially stacked;
    The first protective substrate is disposed on a light receiving surface side of the plurality of solar cells,
    The solar cell module, wherein the second protective substrate is disposed on a back surface side of the plurality of solar cells and has a larger thickness in the stacking direction than the first protective substrate.
PCT/JP2017/001316 2016-03-22 2017-01-17 Solar cell module WO2017163554A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018507061A JPWO2017163554A1 (en) 2016-03-22 2017-01-17 Solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-057154 2016-03-22
JP2016057154 2016-03-22

Publications (1)

Publication Number Publication Date
WO2017163554A1 true WO2017163554A1 (en) 2017-09-28

Family

ID=59901048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001316 WO2017163554A1 (en) 2016-03-22 2017-01-17 Solar cell module

Country Status (2)

Country Link
JP (1) JPWO2017163554A1 (en)
WO (1) WO2017163554A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021034659A (en) * 2019-08-28 2021-03-01 パナソニック株式会社 Solar cell module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000049367A (en) * 1998-07-27 2000-02-18 Asahi Glass Co Ltd Solar cell panel
JP2006210405A (en) * 2005-01-25 2006-08-10 Dainippon Printing Co Ltd Solar battery module
WO2011093383A1 (en) * 2010-01-29 2011-08-04 三洋電機株式会社 Solar cell module
WO2012017538A1 (en) * 2010-08-05 2012-02-09 三菱電機株式会社 Solar cell module and solar cell module production method
WO2013030993A1 (en) * 2011-08-31 2013-03-07 三洋電機株式会社 Solar cell module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000049367A (en) * 1998-07-27 2000-02-18 Asahi Glass Co Ltd Solar cell panel
JP2006210405A (en) * 2005-01-25 2006-08-10 Dainippon Printing Co Ltd Solar battery module
WO2011093383A1 (en) * 2010-01-29 2011-08-04 三洋電機株式会社 Solar cell module
WO2012017538A1 (en) * 2010-08-05 2012-02-09 三菱電機株式会社 Solar cell module and solar cell module production method
WO2013030993A1 (en) * 2011-08-31 2013-03-07 三洋電機株式会社 Solar cell module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021034659A (en) * 2019-08-28 2021-03-01 パナソニック株式会社 Solar cell module
CN112447872A (en) * 2019-08-28 2021-03-05 松下电器产业株式会社 Solar cell module

Also Published As

Publication number Publication date
JPWO2017163554A1 (en) 2018-12-06

Similar Documents

Publication Publication Date Title
JP4294048B2 (en) Solar cell module
KR101215694B1 (en) Solar Cell Module And Manufacturing Method Thereof
CN111615752B (en) Solar cell module
KR101985053B1 (en) Photovoltaic modules comprising light directing mediums and methods of making the same
US20120006483A1 (en) Methods for Interconnecting Solar Cells
US20140130866A1 (en) Photovoltaic module
US9698291B2 (en) Solar cell panel and method for manufacturing the same
WO2012176419A1 (en) Solar cell module and method of manufacturing same
TWI628807B (en) Back-contacted solar panel and method for manufacturing such a solar panel
KR102243603B1 (en) Solar Cell Module And Manufacturing Method Thereof
JP2011049485A (en) Solar cell module and method of manufacturing the same
JP5430326B2 (en) Solar cell module
WO2011148930A1 (en) Solar cell module and method of producing same
WO2017163554A1 (en) Solar cell module
JP2012109414A (en) Solar cell module
WO2012165001A1 (en) Solar cell module and method for manufacturing same
JP6624388B2 (en) Solar cell module and method for manufacturing solar cell module
TWI583014B (en) Solar module, method for manufacturing the same and method for reworking the same
JP5342150B2 (en) Solar cell module
JP2006278695A (en) Solar cell module
JP2012079838A (en) Solar cell module and method for manufacturing the same
KR20120044541A (en) Conductive film, solar cell panel with the same and manufacturing method thereof
JP5598986B2 (en) Solar cell module
JP2014175520A (en) Solar battery module and manufacturing method for the same
EP2932537B1 (en) Application of the encapsulant to a back-contact back-sheet

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018507061

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769601

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769601

Country of ref document: EP

Kind code of ref document: A1