WO2017163358A1 - Storage battery device and control method therefor - Google Patents

Storage battery device and control method therefor Download PDF

Info

Publication number
WO2017163358A1
WO2017163358A1 PCT/JP2016/059346 JP2016059346W WO2017163358A1 WO 2017163358 A1 WO2017163358 A1 WO 2017163358A1 JP 2016059346 W JP2016059346 W JP 2016059346W WO 2017163358 A1 WO2017163358 A1 WO 2017163358A1
Authority
WO
WIPO (PCT)
Prior art keywords
operation mode
battery
management unit
battery management
information
Prior art date
Application number
PCT/JP2016/059346
Other languages
French (fr)
Japanese (ja)
Inventor
菊地 祐介
小杉 伸一郎
関野 正宏
黒田 和人
岡部 令
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2016/059346 priority Critical patent/WO2017163358A1/en
Publication of WO2017163358A1 publication Critical patent/WO2017163358A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments of the present invention relate to a storage battery device.
  • Lithium-ion batteries may cause characteristic degradation when overdischarged or overcharged. For this reason, in storage battery devices that combine multiple battery cells, in addition to protecting the total voltage and total current, the state of the battery cell or storage battery device is diagnosed based on the voltage value, temperature, etc. detected for each battery cell. The battery cell is monitored for abnormal states such as overcharge and overdischarge. For example, the state of the battery cell is collected by the detection unit (CMU: Cell Monitoring Unit), which collects information such as the voltage value of the battery cell, the temperature of the battery cell, etc. Collected by a management unit (BMU: Battery Management Unit).
  • CMU Cell Monitoring Unit
  • the battery cell since the power of the battery cell is consumed when measuring the voltage of the battery cell, the battery cell may be overdischarged by continuously monitoring the state of the battery cell without limitation.
  • the detection unit uses the power of the battery cell as a power source, the battery unit may be over-discharged due to the detection unit continuing to operate indefinitely.
  • the problem to be solved by the present invention is to provide a storage battery device in which the battery cell is not overdischarged by diagnosing the state of the battery cell or the storage battery device, and a control method therefor.
  • the storage battery device of the embodiment is A battery module including battery cells; A detection unit for detecting voltage information of the battery cell; A current sensor for detecting current information of a current output from the battery module; A battery management unit that obtains the voltage information from the detection unit, exchanges predetermined information including a signal for controlling the detection unit with the detection unit, and receives current information detected by the current sensor; , With The battery management unit includes: Based on the voltage information and the current information of the battery cell, A first operation mode for continuing detection of the voltage information of the detection unit; The second operation mode in which the detection of the voltage information of the detection unit is stopped for a first time; A third operation mode in which the detection of the voltage information of the detection unit is stopped for a second time longer than the first time; Is configured to select one operation mode.
  • FIG. 1 shows a schematic configuration of the storage battery device 1, which includes a battery module 10, a detection unit 20, a current sensor 40, and two switch circuits 41a (for example, electromagnetic contactors) and 41b.
  • the switch circuit 41a, the current sensor 40, the plurality of battery modules 10, and the switch circuit 41b are connected in series between the charge / discharge terminals 51 and 52.
  • the battery module 10 includes a battery cell group 11 including a plurality of battery cells (for example, 24), a voltage sensor 21 that monitors (detects or detects) the terminal voltage of each battery in the battery cell group 11, and the temperature of each battery. Or it has the temperature sensor 22 which detects the temperature in the battery cell group 11, and the equalization process circuit 23 which equalizes the terminal voltage of a some battery is provided.
  • lithium ion secondary batteries are used for the plurality of battery cells.
  • the battery management unit 30 is connected to the detection unit 20, the switch circuit 41, and the current sensor 40 through a control / communication line DL.
  • the cell balance processing instruction or the like issued from the battery management unit 30 is sent into the detection unit 20 via the control / communication line DL.
  • voltage, temperature information, and the like obtained by the voltage sensor 21 and the temperature sensor 22 provided in the detection unit 20 are sent to the transmission / reception device in the battery management unit 30 via the control / communication line DL.
  • the detection unit 20 and the battery management unit 30 communicate with each other via the control / communication line DL.
  • the battery management unit 30 includes a memory 31.
  • the equalization processing circuit 23 performs the cell balance processing when the battery management unit 30 instructs the cell balance (equalization) processing.
  • the cell balance process may be a method of transferring power from an overcharged battery to another battery in addition to a method of discharging an overcharged battery and adjusting it to the same potential as other batteries.
  • the detection unit 20 can notify the battery management unit 30 that the target battery module is in a normal state.
  • the current sensor 40 detects a current value that flows along with charging and discharging from the battery module 10, and transmits information to the battery management unit 30.
  • the switches S1 and 41b of the switch circuit 41a are both connected to the battery management unit 30 via the communication / control line 15, and these switch circuits 41a and 41b are controlled by the battery management unit 30. A signal is received and switches S1 and S2 are opened and closed. Thereby, charging / discharging of the battery module 10 is controlled.
  • the switch circuit 41 a is provided between the first charge / discharge terminal 51 and the current sensor 40, and the switch circuit 41 b is further provided between the second charge / discharge terminal 52 and the battery module 10. This is because even if one of the switch circuits is not opened due to contact welding or the like, the other switch circuit is "opened" for safety.
  • the power consumed by the detection unit 20 and the battery management unit 30 may be supplied from the outside or may be supplied from the battery module 10.
  • the detection unit 20 performs cell balance processing and voltage detection processing on each battery cell of the battery module 10. These processes are executed according to the operation mode instructed from the battery management unit 30.
  • the battery management unit 30 selects one of a plurality of operation modes according to the status of the battery cell.
  • FIG. 2 shows a flow in which the detection unit 20 issues a cell balance processing instruction or the like according to the operation mode selected by the battery management unit 30.
  • the battery management unit 30 is accommodated in the battery module 10 transmitted from the detection unit 20 and current information indicating the current value flowing between the battery module 10 detected by the current sensor 40 and the first charge / discharge terminal 51.
  • the voltage information indicating the voltage value of each battery cell and the temperature information indicating the temperature are acquired (step S11).
  • the detection unit 20 detects voltage information from a plurality of voltage sensors 21 connected to each battery cell, and detects temperature information from a temperature sensor 22 installed in the vicinity of an arbitrary battery cell in the battery module 10.
  • the acquired voltage information and temperature information are transmitted to the battery management unit 30 at a predetermined timing.
  • the battery management unit 30 selects one of a plurality of operation modes based on the acquired current value, voltage value, and temperature (step S12).
  • step S ⁇ b> 12 when the battery management unit 30 selects the first operation mode, the battery management unit 30 transmits a command indicating the first operation mode to the detection unit 20, and the operation mode is set to the memory 31.
  • the operation mode M1 is stored.
  • Step S12 the battery management unit 30 notifies the detection unit 20 to perform a cell balance process for each battery cell (step S13).
  • the battery management unit 30 receives a notification from the detection unit 20 that the execution of the cell balance processing for each battery cell is completed, and then performs other processing for t 1 second (for example, 0.1 second). Or after waiting (step S14), it returns to the process which acquires the electric current value, voltage value, and temperature of step S11.
  • the detection unit 20 determines whether to execute the cell balance process based on the voltage values of the respective battery cells detected by the plurality of voltage sensors 21. That is, it is evaluated whether the maximum value and the minimum value of the voltage values of each battery cell are within a predetermined voltage value width, and when they are within the range, it is determined that the cell balance process is unnecessary. On the other hand, if it does not fit, it is determined that cell balance processing is necessary. When it is determined that the cell balance process is necessary, the process of discharging the battery cell having the maximum voltage value is repeated until the maximum value and the minimum value among the voltage values of each battery cell fall within a predetermined voltage value range.
  • This cell balance process not only discharges battery cells having a high voltage value but also charges battery cells having a low voltage value so that the maximum value and the minimum value among the voltage values of each battery cell are set to a predetermined voltage. What is necessary is just to be able to fit the maximum value and the minimum value of the voltage values of each battery within a predetermined voltage value width, such as a method of keeping the value width.
  • the detection unit 20 notifies the battery management unit 30 of the completion of the cell balance process when it is determined that the cell balance process is unnecessary or when the cell balance process is completed.
  • step S12 If it is determined in step S12 that the operation mode is the second operation mode M2, the battery management unit 30 instructs all the detection units 20 to shift to the sleep mode and also instructs the memory 31 to perform the second operation mode M2.
  • the fact that the operation mode is M2 is stored (step S15). Thereafter, after waiting for t 2 seconds (for example, 10 seconds), the battery management unit 30 notifies the detection unit 20 to cancel the sleep mode (step S17), and the current information, voltage information, Then, the process returns to the process of acquiring temperature information.
  • the sleep mode of the detection unit 20 in step S15 refers to, for example, stopping the cell balance function, the voltage detection function, and the temperature detection function of the detection unit 20. Also, the detection unit 20 does not enter the sleep mode, and any other method may be used to reduce the monitoring frequency of the storage battery of the detection unit 20 such as a method in which the battery management unit 30 turns off the power of the detection unit 20.
  • step S12 If it is determined in step S12 that the operation mode is the third operation mode M3, the battery management unit 30 instructs all the detection units 20 to shift to the sleep mode and also instructs the memory 31 to perform the third operation mode.
  • the fact that the operation mode is M3 is stored (step S18).
  • t 3 seconds e.g., 600 seconds
  • the process returns to the process of acquiring current information, voltage information, and temperature information in step S11.
  • the sleep mode of the detection unit 20 in step S18 means that the cell balance function, the voltage detection function, and the temperature detection function of the detection unit 20 are stopped, for example, as in the sleep mode of the detection unit 20 in step S15.
  • the detection unit 20 does not enter the sleep mode, and a method of reducing the monitoring frequency of the storage battery of the detection unit by various methods such as a method in which the battery management unit 30 turns off the power of the detection unit 20 is effective.
  • step before step S11 is step S20, that is, when the previous operation mode stored in the memory 31 is the third operation mode M3, the sleep mode is canceled in step S20 of the present operation.
  • the detection unit 20 is different from the detection unit 20 in which the sleep is canceled in step S20 in the previous operation (the identification information of the detection unit 20 in which the sleep mode is canceled in step S20 is stored in the memory 31). 20 or the same detection unit 20 may be used.
  • step S13 when shifting from the third operation mode M3 to the first operation mode through steps S11 and S12, in step S13, the sleep of all the detection units 20 is performed before cell balancing. Cancel the mode.
  • the battery management unit 30 selects one of the first operation mode M1, the second operation mode M2, or the third operation mode M3 based on the acquired current information, voltage information, and temperature information. The selection flow will be described with reference to the flowchart of FIG.
  • step S101 the battery management unit 30 determines whether or not the battery cell temperature T is equal to or higher than the reference temperature T 1 ° C. based on the temperature information acquired by the detection unit 20 from the temperature sensor 22 (step S101). This reference temperature T 1 ° C will be described later. Note that step S101 may be omitted and the process may proceed to step S102.
  • step S101 when the battery management unit 30 determines in step S101 that the temperature T is lower than the reference temperature T 1 ° C., the battery management unit 30 shifts to the first operation mode M1 or maintains the first operation mode M1. To do.
  • step S101 when T is the is the reference temperature above T 1 battery management unit 30 determines, the process proceeds to step S102.
  • step S102 After the transition to step S102, while Y seconds from the time of migrated (e.g., 60 seconds), the absolute value of the current value X detected by the current sensor 40 is equal to or less than X 1 amperes (step S102) .
  • step S102 when the state is less than X 1 ampere determines the battery management unit 30 when not continued more than Y seconds, the battery management unit 30 maintains the migration or normal mode M1 to the normal mode M1. On the other hand, if it is determined in step S22 that the duration is less than X 1 amperes continuously for Y seconds or more, the battery management unit 30 determines the current operation mode (step S103).
  • T 1 is, for example, a temperature that is 10 ° C. or more lower than the average temperature of the temperature T recorded in the memory S31 for the past year or so.
  • the X 1 a current value of the degree to which it can be determined that the charging current or the discharging current to the battery cell does not flow. Therefore, performance of the current sensor 40 can be appropriately changed according to the judgment of the user, for example, temperatures T 1 may decide to 0 °C by the user.
  • step S104 determines the smallest cell among the voltage values of each battery cell detected by the plurality of voltage sensors 21 by the detection unit 20. It is determined whether or not the voltage V min is less than V 1 (step S104). If the V min is determined to be less than V 1 was in step S104, the battery management unit 30 is shifted to the third operating mode M3 (step S 111), completing the operation mode determination. On the other hand, when it is determined in step S104 that V min is equal to or greater than V 1 , the battery management unit 30 determines whether V min is less than V 2 (step S105).
  • step S105 If the V min is determined to be V 2 or more in step S105, the battery management unit 30 maintains the first operation mode M1 (step S106), completing the step S12. V min In step S105 is less than V 2, the battery management unit 30 if it is determined, the process proceeds to the second operation mode M2 (step S109), completing the step S12.
  • step S103 If it is determined in step S103 that the current operation mode is the second operation mode M2, the battery management unit 30 determines whether or not V min is less than V 1 (step S107).
  • step S107 is less than V 1, the battery management unit 30 in the case of determining the shifts to the third operating mode M3 (step S 111), completing the step S12.
  • V min is V 1 or more at step S107, the battery management unit 30 in the case of determining determines whether V min is less than V 3 (step S108).
  • step S108 When it is determined in step S108 that V min is V 3 or more, the battery management unit 30 shifts to the first operation mode M1 (step S106) and ends step S12. On the other hand, V min is less than V 3 at step S108, the battery management unit 30 in the case of determining maintains a second operating mode M2 (step S109), completing the step S12.
  • step S103 When it is determined in step S103 that the current operation mode is the third operation mode M3, the battery management unit 30 determines whether or not V min is less than V 3 (step S110).
  • V 3 at step S110 is less than V min
  • the battery management unit 30 in the case of determining the shifts to the first operation mode M1 (step S106) it proceeds to step S12.
  • V 3 is equal to or greater than V min
  • V 1 is, for example, an overdischarge warning voltage
  • V 2 is, for example, a voltage between the discharge end voltage and the overdischarge warning voltage
  • V 3 is, for example, a voltage near the end of discharge.
  • the discharge end voltage is a battery voltage corresponding to SOC (State Of Charge) of 0%
  • the overdischarge warning voltage is located between the overdischarge voltage at which the storage battery fails and the end of discharge
  • the near discharge end voltage is a voltage set higher than the end of discharge.
  • these settings of V 1 , V 2 , and V 3 are merely examples, and may be changed as appropriate.
  • the relationship of V 1 ⁇ V 2 ⁇ V 3 is necessary.
  • the battery management unit 30 operates by selecting one operation mode from the three operation modes according to the SOC of the battery cell.
  • the battery management unit 30 notifies the detection unit 20 to perform the cell balance process for each battery cell. Absent. For this reason, it is possible to prevent the SOC of the battery cell from being lowered due to the cell balance and to prevent the battery cell from being overdischarged.
  • the detection unit 20 shifts to the sleep mode for a certain period of time or the power of the detection unit 20 is turned off for a certain period of time.
  • the energy of the battery cell consumed when the detection unit 20 confirms the state of the battery cell can be suppressed.
  • the third operation mode M3 it is possible to operate only one detection unit 20 among a plurality of detection units 20, and not operate other detection units 20. Therefore, compared with the case where the several detection unit 20 is operate
  • the operation mode transition moves or maintains the first operation mode M1 in the first operation mode M1 it is less than the battery cell temperature reference temperature T 1. Accordingly, when it takes time until the cell voltage is reflected in the SOC of the cell due to the low battery cell temperature, priority is given to cell state monitoring, and either the second operation mode M2 or the third operation mode M3 is used. It is possible to avoid the transition to the operation mode.
  • the battery management unit 30 when the operation mode transition, the battery management unit 30, unless the state current obtained through the current sensor 40 is less than X 1 ampere not continue Y seconds, transition or first to the first operation mode M1 One operation mode M1 is maintained.
  • the detection unit 20 when the battery cell is charged or discharged, the detection unit 20 does not enter the sleep mode and constantly monitors the state of the battery cell. It is possible to avoid abnormality of battery cells such as charging, or to immediately detect abnormality.
  • a third operating mode M3, below the minimum cell voltage V 2 if it is V 1 or more but shifts to the second operation mode M2, the first operation
  • the battery cell state monitoring frequency is increased when the battery cell SOC is relatively high, and the battery cell state monitoring frequency is decreased when the battery cell SOC is relatively low. I can do it.
  • it is possible to select a three-stage operation mode for the SOC of the battery cell and it is possible to balance the balance between the monitoring of the cell state and the power consumption of the battery cell.
  • the transition from the second operation mode M2 or third operating mode M3 in the first operation mode M1 the minimum cell voltage must be higher than V 3.
  • the criteria for determining whether to shift to the first operation mode M1, the second operation mode M2, or the third operation mode M3 is the first implementation mode.
  • the same portions as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted as appropriate.
  • determining the operation mode by the duration of the state current value obtained through the current sensor 40 is less than X 1 amps.
  • step S12 the battery management unit 30 starts a monitoring process as to whether or not to shift to the second operation mode M2 and the third operation mode M3.
  • step S ⁇ b > 1001 the battery management unit 30 determines whether or not the minimum cell voltage V min is less than V 2 among the voltages of the battery cells obtained through the detection unit 20.
  • step S1001 is less than V 2, and when it is determined, the battery management unit 30 acquires the temperature T obtained from a temperature sensor 22 which is installed at an arbitrary vicinity battery cells in the battery module 10 Then, it is determined whether T is equal to or higher than the reference temperature T 1 ° C (step S1002).
  • step S1002 If it is determined in step S1002 that the cell temperature T is equal to or higher than the reference temperature T 1 ° C, the battery management unit 30 determines whether or not the current value X obtained from the current sensor 40 is less than X 1 amperes. (Step S1003).
  • step S1003 when it is judged less than X 1 ampere, the battery management unit 30 in step S1004, the one time t stored in the memory 31 is less than t a, less than t a higher t b or some, it is determined whether it is t b or more,.
  • Step S1004 At the time of the first operation mode transition, the time (no charge / discharge time) t stored in the memory 31 is zero. This time t is changed as shown below in step S1005, step S1006, step S1008, and step S1010.
  • step S1004 When t is determined to be less than t a in step S1004, the battery management unit 30 instructs to apply a t 2 to t with respect to the memory 31. With this operation, the time stored in the memory 31 is t + t 2 (step S1006). Thereafter, the battery management unit 30 maintains the first operation mode M1 or shifts to the first operation mode M1 (step S1007), and ends step S12.
  • step S1004 When t is determined to be less than t a higher t b in step S1004, the battery management unit 30 instructs to apply a t 2 to t with respect to the memory 31. With this operation, the time stored in the memory 31 is t + t 2 (step S1008). Thereafter, the battery management unit 30 maintains the second operation mode M2 or shifts to the second operation mode M2 (step S1009), and ends step S12.
  • step S1004 the battery management unit 30 issues an instruction to add t 3 to t with respect to the memory 31. With this operation, the time stored in the memory 31 is t + t 3 (step S1010). Thereafter, the battery management unit 30 maintains the second operation mode M3 or shifts to the second operation mode M3 (step S1011), and ends step S12.
  • the operation time of the detection unit and the battery management unit can be shortened depending on the SOC (State of Charge) of the battery cell or the time when the battery is not discharged.
  • the frequency with which the detection unit and the battery management unit monitor the state of the battery cell can be reduced.
  • the SOC of the battery cell decreases.
  • the battery management unit 30 and the detection unit 20 may be integrated.
  • the battery management unit 30 shifts the function corresponding to the detection unit 20 to the sleep mode, thereby reducing the monitoring frequency of the battery cells. It becomes possible.

Abstract

The objective of the invention is to provide a storage battery device and a control method therefor such that battery cells are prevented from reaching over-discharge by diagnosing the states of the battery cells and the storage battery device. The storage battery device according to an embodiment of the present invention comprises: a battery module containing battery cells; a detection unit detecting voltage information on the battery cells; a current sensor detecting current information on a current outputted from the battery module; and a battery management unit acquiring the voltage information from the detection unit, sending to and receiving from the detection unit predetermined information containing a signal for controlling the detection unit, and receiving the current information detected by the current sensor. The battery management unit is configured in such a manner as to select, on the basis of the current information and the voltage information on the battery cells, one operating mode among: a first operating mode wherein the detection of the voltage information by the detection unit is maintained; a second operating mode wherein the detection of the voltage information is stopped for a first duration; and a third operating mode wherein the detection of the voltage information is stopped for a second duration that is longer than the first duration.

Description

蓄電池装置及びその制御方法Storage battery device and control method thereof
 本発明の実施形態は、蓄電池装置に関する。 Embodiments of the present invention relate to a storage battery device.
 リチウムイオン電池は、過放電や過充電に至ると、特性劣化などを引き起こす可能性がある。そのため、複数の電池セルを組み合わせた蓄電池装置では、総電圧、総電流の保護に加え、個々の電池セルに対して検出した電圧値、温度などに基づいて電池セルや蓄電池装置の状態を診断し、電池セルの過充電、過放電といった異常状態となっていないか監視している。例えば、電池セルの状態は検出ユニット(CMU:Cell Monitoring Unit)が電池セルの電圧値、電池セルの温度などの情報を収集し、検出ユニットが得た情報や、蓄電池全体の情報は管理する電池管理ユニット(BMU:Battery Management Unit)が収集している。しかしながら、電池セルの電圧を測定する際に電池セルの電力を消費するため、無制限に電池セルの状態監視を続けることで電池セルが過放電に至ることがある。また、検出ユニットが電池セルの電力を電源として用いている場合、検出ユニットが無制限に動作し続けることで、電池セルが過放電に至る場合がある。 リ チ ウ ム Lithium-ion batteries may cause characteristic degradation when overdischarged or overcharged. For this reason, in storage battery devices that combine multiple battery cells, in addition to protecting the total voltage and total current, the state of the battery cell or storage battery device is diagnosed based on the voltage value, temperature, etc. detected for each battery cell. The battery cell is monitored for abnormal states such as overcharge and overdischarge. For example, the state of the battery cell is collected by the detection unit (CMU: Cell Monitoring Unit), which collects information such as the voltage value of the battery cell, the temperature of the battery cell, etc. Collected by a management unit (BMU: Battery Management Unit). However, since the power of the battery cell is consumed when measuring the voltage of the battery cell, the battery cell may be overdischarged by continuously monitoring the state of the battery cell without limitation. In addition, when the detection unit uses the power of the battery cell as a power source, the battery unit may be over-discharged due to the detection unit continuing to operate indefinitely.
特開2013―219936号公報JP 2013-219936 A
 そこで、本発明が解決しようとする課題は、電池セルや蓄電池装置の状態を診断することで電池セルが過放電に至ることがない蓄電池装置、及びその制御方法を提供することである。 Therefore, the problem to be solved by the present invention is to provide a storage battery device in which the battery cell is not overdischarged by diagnosing the state of the battery cell or the storage battery device, and a control method therefor.
 上記課題を解決するために、実施形態の蓄電池装置は、
 電池セルを含む電池モジュールと、               
 前記電池セルの電圧情報を検出する検出ユニットと、
 前記電池モジュールから出力される電流の電流情報を検出する電流センサと、
 前記検出ユニットから前記電圧情報を取得し、前記検出ユニットとの間で前記検出ユニットを制御するための信号を含む所定の情報を授受し、前記電流センサの検出した電流情報を受け取る電池管理ユニットと、
 を備え、
 前記電池管理ユニットは、
 前記電池セルの前記電圧情報及び前記電流情報に基づき、
 前記検出ユニットの前記電圧情報の検出を継続させる第一の動作モードと、
 前記検出ユニットの前記電圧情報の検出を第一の時間停止させる前記第二の動作モードと、
 前記検出ユニットの前記電圧情報の検出を前記第一の時間よりも長い第二の時間停止させる第三の動作モードと、
から一つの動作モードを選択するように構成されている。
In order to solve the above problems, the storage battery device of the embodiment is
A battery module including battery cells;
A detection unit for detecting voltage information of the battery cell;
A current sensor for detecting current information of a current output from the battery module;
A battery management unit that obtains the voltage information from the detection unit, exchanges predetermined information including a signal for controlling the detection unit with the detection unit, and receives current information detected by the current sensor; ,
With
The battery management unit includes:
Based on the voltage information and the current information of the battery cell,
A first operation mode for continuing detection of the voltage information of the detection unit;
The second operation mode in which the detection of the voltage information of the detection unit is stopped for a first time;
A third operation mode in which the detection of the voltage information of the detection unit is stopped for a second time longer than the first time;
Is configured to select one operation mode.
実施形態に係る蓄電池装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the storage battery apparatus which concerns on embodiment. 実施形態に係る電池管理ユニットの動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the battery management unit which concerns on embodiment. 第1の実施形態に係る図2に示した動作のうち、動作モードの判定を説明するためのフローチャートである。It is a flowchart for demonstrating determination of an operation mode among the operation | movement shown in FIG. 2 which concerns on 1st Embodiment. 第2の実施形態に係る図2に示した動作のうち、動作モードの判定を説明するためのフローチャートである。It is a flowchart for demonstrating determination of an operation mode among the operation | movement shown in FIG. 2 which concerns on 2nd Embodiment.
 以下、実施形態を図面に基づき説明する。 Hereinafter, embodiments will be described with reference to the drawings.
 (第1の実施形態)
 図1は蓄電池装置1の概略構成を示しており、電池モジュール10、検出ユニット20、電流センサ40、そして2つのスイッチ回路41a(例えば、電磁接触器)と41bで構成されている。また、充放電端子51と52との間に、スイッチ回路41a、電流センサ40、複数の電池モジュール10、そしてスイッチ回路41bの順で直列接続されている。また、電池モジュール10は複数の電池セル(例えば24個)からなる電池セル群11、電池セル群11内の各電池の端子電圧をモニタ(検知または検出)する電圧センサ21と、各電池の温度または電池セル群11内の温度を検出する温度センサ22を有するとともに、複数の電池の端子電圧を均等化する均等化処理回路23を備える。複数の電池セルには例えばリチウムイオン二次電池が用いられる。
(First embodiment)
FIG. 1 shows a schematic configuration of the storage battery device 1, which includes a battery module 10, a detection unit 20, a current sensor 40, and two switch circuits 41a (for example, electromagnetic contactors) and 41b. In addition, the switch circuit 41a, the current sensor 40, the plurality of battery modules 10, and the switch circuit 41b are connected in series between the charge / discharge terminals 51 and 52. The battery module 10 includes a battery cell group 11 including a plurality of battery cells (for example, 24), a voltage sensor 21 that monitors (detects or detects) the terminal voltage of each battery in the battery cell group 11, and the temperature of each battery. Or it has the temperature sensor 22 which detects the temperature in the battery cell group 11, and the equalization process circuit 23 which equalizes the terminal voltage of a some battery is provided. For example, lithium ion secondary batteries are used for the plurality of battery cells.
 電池管理ユニット30は、制御・通信ラインDLよって検出ユニット20とスイッチ回路41と、電流センサ40と、に接続されている。電池管理ユニット30から発せられるセルバランス処理の指示等は、制御・通信ラインDLを介して検出ユニット20内に送られる。また、検出ユニット20内に設けられた電圧センサ21、温度センサ22で得た電圧、温度の情報等は、制御・通信ラインDLを介して、電池管理ユニット30内の送受信装置に送られる。このように、検出ユニット20と電池管理ユニット30は制御・通信ラインDLを介して、相互に通信を行う。また、電池管理ユニット30には、メモリ31が備わっている。 The battery management unit 30 is connected to the detection unit 20, the switch circuit 41, and the current sensor 40 through a control / communication line DL. The cell balance processing instruction or the like issued from the battery management unit 30 is sent into the detection unit 20 via the control / communication line DL. In addition, voltage, temperature information, and the like obtained by the voltage sensor 21 and the temperature sensor 22 provided in the detection unit 20 are sent to the transmission / reception device in the battery management unit 30 via the control / communication line DL. Thus, the detection unit 20 and the battery management unit 30 communicate with each other via the control / communication line DL. The battery management unit 30 includes a memory 31.
 均等化処理回路23は、電池管理ユニット30からセルバランス(均等化)処理を指令された場合にセルバランス処理を実施する。セルバランス処理は、過充電されている電池の放電を行い、他の電池と同等の電位に調整する方法のほか、過充電されている電池から他の電池に電力を移す方法などでもよい。対象とする電池モジュール内の電池電圧が通常状態に復帰すると、検出ユニット20は、対象とする電池モジュールが正常状態であることを電池管理ユニット30に通知することができる。 The equalization processing circuit 23 performs the cell balance processing when the battery management unit 30 instructs the cell balance (equalization) processing. The cell balance process may be a method of transferring power from an overcharged battery to another battery in addition to a method of discharging an overcharged battery and adjusting it to the same potential as other batteries. When the battery voltage in the target battery module returns to the normal state, the detection unit 20 can notify the battery management unit 30 that the target battery module is in a normal state.
 電流センサ40は、電池モジュール10への充電及び電池モジュール10からの放電に伴って流れる電流値を検出し、電池管理ユニット30に情報を伝える。 The current sensor 40 detects a current value that flows along with charging and discharging from the battery module 10, and transmits information to the battery management unit 30.
 スイッチ回路41aのスイッチS1及び41bのスイッチS2はともに、通信・制御ライン15を介して電池管理ユニット30に接続されており、これらのスイッチ回路41a及び41bは、電池管理ユニット30から出力される制御信号を受信し、スイッチS1及びS2を開閉する。これにより、電池モジュール10の充放電を制御する。図1ではスイッチ回路41aは、第1の充放電端子51と電流センサ40との間に設けられ、さらにスイッチ回路41bが、第2の充放電端子52と電池モジュール10間に設けられている。これは、一方のスイッチ回路が接点溶着などで開かなくなっても、他方のスイッチ回路を「開」にして安全を図るためである。 The switches S1 and 41b of the switch circuit 41a are both connected to the battery management unit 30 via the communication / control line 15, and these switch circuits 41a and 41b are controlled by the battery management unit 30. A signal is received and switches S1 and S2 are opened and closed. Thereby, charging / discharging of the battery module 10 is controlled. In FIG. 1, the switch circuit 41 a is provided between the first charge / discharge terminal 51 and the current sensor 40, and the switch circuit 41 b is further provided between the second charge / discharge terminal 52 and the battery module 10. This is because even if one of the switch circuits is not opened due to contact welding or the like, the other switch circuit is "opened" for safety.
 検出ユニット20と電池管理ユニット30で消費される電力は外部から供給されていてもよいし、電池モジュール10から供給されていてもよい。 The power consumed by the detection unit 20 and the battery management unit 30 may be supplied from the outside or may be supplied from the battery module 10.
 以上のような構成の蓄電池装置1では、検出ユニット20によって電池モジュール10の各電池セルに対してセルバランス処理や電圧検出処理が実行される。そして、これらの処理は電池管理ユニット30から指示される動作モードに従って実行されるが、電池管理ユニット30では、電池セルの状況などに応じて複数の動作モードのうちの1つを選択する。 In the storage battery device 1 configured as described above, the detection unit 20 performs cell balance processing and voltage detection processing on each battery cell of the battery module 10. These processes are executed according to the operation mode instructed from the battery management unit 30. The battery management unit 30 selects one of a plurality of operation modes according to the status of the battery cell.
 以下、電池管理ユニット30が動作モードを選択する処理について、図2~図4のフローチャートを用いて説明する。 Hereinafter, the process in which the battery management unit 30 selects the operation mode will be described with reference to the flowcharts of FIGS.
 図2のフローチャートは、電池管理ユニット30が選択した動作モードに応じて検出ユニット20がセルバランス処理指示等を行う流れを示している。 2 shows a flow in which the detection unit 20 issues a cell balance processing instruction or the like according to the operation mode selected by the battery management unit 30.
 まず、電池管理ユニット30は、電流センサ40で検出した電池モジュール10と第1の充放電端子51との間を流れる電流値を示す電流情報、および検出ユニット20から送信された電池モジュール10に収容された各電池セルの電圧値を示す電圧情報と温度を示す温度情報とを取得する(ステップS11)。 First, the battery management unit 30 is accommodated in the battery module 10 transmitted from the detection unit 20 and current information indicating the current value flowing between the battery module 10 detected by the current sensor 40 and the first charge / discharge terminal 51. The voltage information indicating the voltage value of each battery cell and the temperature information indicating the temperature are acquired (step S11).
  なお、検出ユニット20は、各電池セルに接続された複数の電圧センサ21から電圧情報を、また電池モジュール10内の任意の電池セル近傍に設置された温度センサ22から温度情報を検出し、この取得した電圧情報と温度情報を所定のタイミングで電池管理ユニット30に送信する。電池管理ユニット30では、取得した電流値、電圧値、および温度に基づいて複数の動作モードのうちの1つを選択する(ステップS12)。 The detection unit 20 detects voltage information from a plurality of voltage sensors 21 connected to each battery cell, and detects temperature information from a temperature sensor 22 installed in the vicinity of an arbitrary battery cell in the battery module 10. The acquired voltage information and temperature information are transmitted to the battery management unit 30 at a predetermined timing. The battery management unit 30 selects one of a plurality of operation modes based on the acquired current value, voltage value, and temperature (step S12).
 なお、本実施形態では、第一の動作モード、第二の動作モード、および第三の動作モードの3つの動作モードがあり、電池管理ユニット30によって行われる動作モードの選択については、図3および図4のフローチャートを参照して後に詳述する。 In the present embodiment, there are three operation modes of the first operation mode, the second operation mode, and the third operation mode. Regarding the selection of the operation mode performed by the battery management unit 30, FIG. This will be described in detail later with reference to the flowchart of FIG.
 ステップS12において、電池管理ユニット30が第一の動作モードを選択すると、電池管理ユニット30は検出ユニット20に対して第一の動作モードを示す指令を送信するとともに、メモリ31に動作モードが第一の動作モードM1であることを記憶させる。(ステップS12)。その後、電池管理ユニット30は検出ユニット20に対し、各電池セルに対するセルバランス処理を行うように通知する(ステップS13)。その後、電池管理ユニット30が検出ユニット20から各電池セルに対するセルバランス処理の実行が完了したとの通知を受けとり、その後t秒(例えば、0.1秒)の間にその他の処理を行う、または待機(ステップS14)した後、ステップS11の電流値、電圧値、および温度を取得する処理に戻る。 In step S <b> 12, when the battery management unit 30 selects the first operation mode, the battery management unit 30 transmits a command indicating the first operation mode to the detection unit 20, and the operation mode is set to the memory 31. The operation mode M1 is stored. (Step S12). Thereafter, the battery management unit 30 notifies the detection unit 20 to perform a cell balance process for each battery cell (step S13). Thereafter, the battery management unit 30 receives a notification from the detection unit 20 that the execution of the cell balance processing for each battery cell is completed, and then performs other processing for t 1 second (for example, 0.1 second). Or after waiting (step S14), it returns to the process which acquires the electric current value, voltage value, and temperature of step S11.
 なお、第一の動作モードM1の指示を受信した検出ユニット20は、複数の電圧センサ21で検出した各電池セルの電圧値に基づいてセルバランス処理を実行するか判断する。すなわち、各電池セルの電圧値のうちの最大値と最小値が所定の電圧値幅に収まっているか評価し、収まっているときはセルバランス処理が不要と判断する。一方、収まっていないときは、セルバランス処理が必要と判断する。セルバランス処理が必要と判断したときは、電圧値が最大の電池セルを放電する処理を、各電池セルの電圧値のうちの最大値と最小値が所定の電圧値幅に収まるまで繰り返す。なお、このセルバランス処理は、電圧値が高い電池セルを放電するだけでなく、電圧値の低い電池セルを充電することで、各電池セルの電圧値のうち最大値と最小値を所定の電圧値幅に収める方法等、各電池の電圧値のうち最大値と最小値を所定の電圧値幅に収めることが出来ればよい。 Note that the detection unit 20 that has received the instruction of the first operation mode M1 determines whether to execute the cell balance process based on the voltage values of the respective battery cells detected by the plurality of voltage sensors 21. That is, it is evaluated whether the maximum value and the minimum value of the voltage values of each battery cell are within a predetermined voltage value width, and when they are within the range, it is determined that the cell balance process is unnecessary. On the other hand, if it does not fit, it is determined that cell balance processing is necessary. When it is determined that the cell balance process is necessary, the process of discharging the battery cell having the maximum voltage value is repeated until the maximum value and the minimum value among the voltage values of each battery cell fall within a predetermined voltage value range. This cell balance process not only discharges battery cells having a high voltage value but also charges battery cells having a low voltage value so that the maximum value and the minimum value among the voltage values of each battery cell are set to a predetermined voltage. What is necessary is just to be able to fit the maximum value and the minimum value of the voltage values of each battery within a predetermined voltage value width, such as a method of keeping the value width.
 そして、検出ユニット20は、セルバランス処理が不要と判断したとき、またはセルバランス処理が完了したとき、電池管理ユニット30に対し、セルバランス処理の完了を通知する。 The detection unit 20 notifies the battery management unit 30 of the completion of the cell balance process when it is determined that the cell balance process is unnecessary or when the cell balance process is completed.
 ステップS12において、動作モードが第二の動作モードM2であると判断した場合、電池管理ユニット30は全ての検出ユニット20に対し、スリープモードに移行するように指示するとともに、メモリ31に第二の動作モードM2であることを記憶させる(ステップS15)。その後、t秒(例えば、10秒)だけ待機した後に、電池管理ユニット30は検出ユニット20に対し、スリープモードを解除するように通知し(ステップS17)、ステップS11の電流情報、電圧情報、および温度情報を取得する処理に戻る。ステップS15における、検出ユニット20のスリープモードとは、例えば、検出ユニット20のセルバランス機能、電圧検出機能、温度検出機能を停止させることを言う。また、検出ユニット20がスリープモードとなるのでなく、電池管理ユニット30が検出ユニット20の電源を切る方法など、その他様々な方法で検出ユニット20の蓄電池の監視頻度を低下させる方法であればよい。 If it is determined in step S12 that the operation mode is the second operation mode M2, the battery management unit 30 instructs all the detection units 20 to shift to the sleep mode and also instructs the memory 31 to perform the second operation mode M2. The fact that the operation mode is M2 is stored (step S15). Thereafter, after waiting for t 2 seconds (for example, 10 seconds), the battery management unit 30 notifies the detection unit 20 to cancel the sleep mode (step S17), and the current information, voltage information, Then, the process returns to the process of acquiring temperature information. The sleep mode of the detection unit 20 in step S15 refers to, for example, stopping the cell balance function, the voltage detection function, and the temperature detection function of the detection unit 20. Also, the detection unit 20 does not enter the sleep mode, and any other method may be used to reduce the monitoring frequency of the storage battery of the detection unit 20 such as a method in which the battery management unit 30 turns off the power of the detection unit 20.
 ステップS12において、動作モードが第三の動作モードM3であると判断した場合、電池管理ユニット30は全ての検出ユニット20に対し、スリープモードに移行するように指示するとともに、メモリ31に第三の動作モードM3であることを記憶させる(ステップS18)。その後、t秒(例えば、600秒)だけ待機した後に、電池管理ユニット30は少なくとも一つの検出ユニット20に対し、スリープモードを解除するように通知する(ステップS20)。その後、ステップS11の電流情報、電圧情報、および温度情報を取得する処理に戻る。 If it is determined in step S12 that the operation mode is the third operation mode M3, the battery management unit 30 instructs all the detection units 20 to shift to the sleep mode and also instructs the memory 31 to perform the third operation mode. The fact that the operation mode is M3 is stored (step S18). Thereafter, t 3 seconds (e.g., 600 seconds) after waiting for the battery management unit 30 to at least one of the detection unit 20 notifies to release the sleep mode (step S20). Thereafter, the process returns to the process of acquiring current information, voltage information, and temperature information in step S11.
 ステップS18における検出ユニット20のスリープモードとは、ステップS15における検出ユニット20のスリープモードと同様に、例えば、検出ユニット20のセルバランス機能、電圧検出機能、温度検出機能を停止させることをいう。また、検出ユニット20がスリープモードとなるのでなく、電池管理ユニット30が検出ユニット20の電源を切る方法など、様々な方法で検出ユニットの蓄電池の監視頻度を低下させる方法が有効となる。 The sleep mode of the detection unit 20 in step S18 means that the cell balance function, the voltage detection function, and the temperature detection function of the detection unit 20 are stopped, for example, as in the sleep mode of the detection unit 20 in step S15. In addition, the detection unit 20 does not enter the sleep mode, and a method of reducing the monitoring frequency of the storage battery of the detection unit by various methods such as a method in which the battery management unit 30 turns off the power of the detection unit 20 is effective.
 また、ステップS11の前のステップがステップS20であった場合、すなわちメモリ31に記憶されている前回の動作モードが第三の動作モードM3であった場合、本動作のステップS20においてスリープモードを解除する検出ユニット20は、前の動作におけるステップS20でスリープを解除した検出ユニット20(ステップS20でスリープモードを解除した検出ユニット20の識別情報は、メモリ31に記憶されている)とは異なる検出ユニット20であってもよいし、同じ検出ユニット20であってもよい。図2には示していないが、第三の動作モードM3からステップS11、ステップS12を経て、第一の動作モードに移行する場合、ステップS13ではセルバランスを行う前にすべての検出ユニット20のスリープモードを解除する。 When the step before step S11 is step S20, that is, when the previous operation mode stored in the memory 31 is the third operation mode M3, the sleep mode is canceled in step S20 of the present operation. The detection unit 20 is different from the detection unit 20 in which the sleep is canceled in step S20 in the previous operation (the identification information of the detection unit 20 in which the sleep mode is canceled in step S20 is stored in the memory 31). 20 or the same detection unit 20 may be used. Although not shown in FIG. 2, when shifting from the third operation mode M3 to the first operation mode through steps S11 and S12, in step S13, the sleep of all the detection units 20 is performed before cell balancing. Cancel the mode.
 次に、電池管理ユニット30が、取得した電流情報、電圧情報、及び温度情報に基づいて、第一の動作モードM1、第二の動作モードM2、若しくは第三の動作モードM3のうち1つを選択する流れを図3のフローチャートを参照して説明する。 Next, the battery management unit 30 selects one of the first operation mode M1, the second operation mode M2, or the third operation mode M3 based on the acquired current information, voltage information, and temperature information. The selection flow will be described with reference to the flowchart of FIG.
 ステップS101において、電池管理ユニット30は検出ユニット20が温度センサ22から取得した温度情報に基づき、電池セル温度Tが基準温度T℃以上であるか否かを判定する(ステップS101)。この基準温度T℃については後に説明する。なお、このステップS101は省略して、ステップS102に移行してもよい。 In step S101, the battery management unit 30 determines whether or not the battery cell temperature T is equal to or higher than the reference temperature T 1 ° C. based on the temperature information acquired by the detection unit 20 from the temperature sensor 22 (step S101). This reference temperature T 1 ° C will be described later. Note that step S101 may be omitted and the process may proceed to step S102.
 電池管理ユニット30が、ステップS101において、温度Tが基準温度T℃未満であると判定した場合には、電池管理ユニット30は第一の動作モードM1に移行または第一の動作モードM1を維持する。一方、ステップS101で、Tが基準温度T以上であると電池管理ユニット30が判定した場合には、ステップS102に移行する。 When the battery management unit 30 determines in step S101 that the temperature T is lower than the reference temperature T 1 ° C., the battery management unit 30 shifts to the first operation mode M1 or maintains the first operation mode M1. To do. On the other hand, in step S101, when T is the is the reference temperature above T 1 battery management unit 30 determines, the process proceeds to step S102.
 ステップS102に移行すると、移行した時点からY秒(例えば、60秒)間、電流センサ40で検出した電流値Xの絶対値が、Xアンペア未満であるか否かを判定する(ステップS102)。 After the transition to step S102, while Y seconds from the time of migrated (e.g., 60 seconds), the absolute value of the current value X detected by the current sensor 40 is equal to or less than X 1 amperes (step S102) .
 ステップS102で、Xアンペア未満である状態がY秒以上継続していないと電池管理ユニット30が判定した場合には、電池管理ユニット30は通常モードM1に移行または通常モードM1を維持する。一方、ステップS22で、Y秒以上継続してXアンペア未満であると判定された場合には、電池管理ユニット30は現在の動作モードを判定する(ステップS103)。 In step S102, when the state is less than X 1 ampere determines the battery management unit 30 when not continued more than Y seconds, the battery management unit 30 maintains the migration or normal mode M1 to the normal mode M1. On the other hand, if it is determined in step S22 that the duration is less than X 1 amperes continuously for Y seconds or more, the battery management unit 30 determines the current operation mode (step S103).
 ここでTとは、例えば、メモリS31に記録されている過去一年程度の温度Tの平均温度よりも例えば10℃以上低い温度のことである。Xとは、電池セルに充電電流若しくは放電電流が流れていないと判断できる程度の電流値である。よって、電流センサ40の性能等、使用者の判断によって適宜変更でき、例えば温度Tは使用者によって0℃と決めてもよい。 Here, T 1 is, for example, a temperature that is 10 ° C. or more lower than the average temperature of the temperature T recorded in the memory S31 for the past year or so. The X 1, a current value of the degree to which it can be determined that the charging current or the discharging current to the battery cell does not flow. Therefore, performance of the current sensor 40 can be appropriately changed according to the judgment of the user, for example, temperatures T 1 may decide to 0 ℃ by the user.
 ステップS103で現在の動作モードが第一の動作モードM1と判定した場合は、電池管理ユニット30は、検出ユニット20が複数の電圧センサ21で検出した各電池セルの電圧値のうち、最小のセル電圧VminがV未満であるか否かを判定する(ステップS104)。ステップS104でVminがV未満であると判定した場合には、電池管理ユニット30は第三の動作モードM3に移行し(ステップS111)、動作モード判定を終える。一方、ステップS104でVminがV以上である、と判定された場合には電池管理ユニット30はVminがV未満であるか否かを判定する(ステップS105)。 When it is determined in step S103 that the current operation mode is the first operation mode M1, the battery management unit 30 determines the smallest cell among the voltage values of each battery cell detected by the plurality of voltage sensors 21 by the detection unit 20. It is determined whether or not the voltage V min is less than V 1 (step S104). If the V min is determined to be less than V 1 was in step S104, the battery management unit 30 is shifted to the third operating mode M3 (step S 111), completing the operation mode determination. On the other hand, when it is determined in step S104 that V min is equal to or greater than V 1 , the battery management unit 30 determines whether V min is less than V 2 (step S105).
 ステップS105でVminがV以上であると判定した場合には、電池管理ユニット30は第一の動作モードM1を維持し(ステップS106)、ステップS12を終える。ステップS105でVminがV未満である、と判定された場合には電池管理ユニット30は第二の動作モードM2に移行し(ステップS109)、ステップS12を終える。 If the V min is determined to be V 2 or more in step S105, the battery management unit 30 maintains the first operation mode M1 (step S106), completing the step S12. V min In step S105 is less than V 2, the battery management unit 30 if it is determined, the process proceeds to the second operation mode M2 (step S109), completing the step S12.
 ステップS103で現在の運転モードが第二の動作モードM2と判定した場合は、電池管理ユニット30はVminがV未満であるか否かを判定する(ステップS107)。 If it is determined in step S103 that the current operation mode is the second operation mode M2, the battery management unit 30 determines whether or not V min is less than V 1 (step S107).
 ステップS107でVminがV未満である、と判定した場合には電池管理ユニット30は第三の動作モードM3に移行し(ステップS111)、ステップS12を終える。一方、ステップS107でVminがV以上である、と判定した場合には電池管理ユニット30はVminがV未満であるか否かを判定する(ステップS108)。 V min In step S107 is less than V 1, the battery management unit 30 in the case of determining the shifts to the third operating mode M3 (step S 111), completing the step S12. On the other hand, V min is V 1 or more at step S107, the battery management unit 30 in the case of determining determines whether V min is less than V 3 (step S108).
 ステップS108でVminがV以上である、と判定した場合には電池管理ユニット30は第一の動作モードM1に移行し(ステップS106)、ステップS12を終える。一方、ステップS108でVminがV未満である、と判定した場合には電池管理ユニット30は第二の動作モードM2を維持し(ステップS109)、ステップS12を終える。 When it is determined in step S108 that V min is V 3 or more, the battery management unit 30 shifts to the first operation mode M1 (step S106) and ends step S12. On the other hand, V min is less than V 3 at step S108, the battery management unit 30 in the case of determining maintains a second operating mode M2 (step S109), completing the step S12.
 ステップS103で現在の運転モードが第三の動作モードM3と判定された場合は、電池管理ユニット30はVminがV未満であるか否かを判定する(ステップS110)。 When it is determined in step S103 that the current operation mode is the third operation mode M3, the battery management unit 30 determines whether or not V min is less than V 3 (step S110).
 ステップS110でVがVmin未満である、と判定した場合には電池管理ユニット30は第一の動作モードM1に移行し(ステップS106)、ステップS12に移る。一方、ステップS110でVがVmin以上である、と判定した場合には電池管理ユニット30は第三の動作モードM3を維持し(ステップS111)、ステップS12を終える。 V 3 at step S110 is less than V min, the battery management unit 30 in the case of determining the shifts to the first operation mode M1 (step S106), it proceeds to step S12. On the other hand, V 3 is equal to or greater than V min In step S110, the battery management unit 30 in the case of determining maintains a third operating mode M3 (step S 111), completing the step S12.
 Vとは、例えば過放電警告電圧であり、Vとは、例えば放電末電圧から過放電警告電圧の間の電圧であり、Vとは、例えば放電末近傍電圧のことである。ここで、放電末電圧とは、SOC(State Of Charge)が0%に相当する電池電圧のことであり、過放電警告電圧とは蓄電池が故障する過放電電圧と放電末の間に位置し、放電末近傍電圧とは、放電末よりも高く設定した電圧である。しかしながら、これらV、V、Vの設定はあくまで一例であり、適宜変更してもよい。ただし、V<V<Vの関係性は必要である。 V 1 is, for example, an overdischarge warning voltage, V 2 is, for example, a voltage between the discharge end voltage and the overdischarge warning voltage, and V 3 is, for example, a voltage near the end of discharge. Here, the discharge end voltage is a battery voltage corresponding to SOC (State Of Charge) of 0%, and the overdischarge warning voltage is located between the overdischarge voltage at which the storage battery fails and the end of discharge, The near discharge end voltage is a voltage set higher than the end of discharge. However, these settings of V 1 , V 2 , and V 3 are merely examples, and may be changed as appropriate. However, the relationship of V 1 <V 2 <V 3 is necessary.
 以上説明した実施形態の蓄電池装置によれば、電池セルのSOCに準じ、電池管理ユニット30は3つの動作モードの中から一つの動作モードを選択し、動作する。3つの動作モードのうち、第二の動作モードM2、若しくは第三の動作モードM3の場合、電池管理ユニット30は検出ユニット20に対し、各電池セルに対するセルバランス処理を行うように通知することはない。そのため、セルバランスによる電池セルのSOCの低下の防止、また電池セルが過放電状態となることが防止出来る。また、第二の動作モードM2若しくは、第三の動作モードM3の場合、検出ユニット20は一定時間スリープモードに移行、若しくは一定時間検出ユニット20の電源がオフになる。このため、検出ユニット20が電池セルの状態を確認する際に消費する電池セルのエネルギーを抑制することが出来る。第三の動作モードM3の際は、複数ある検出ユニット20のうち、一つの検出ユニット20のみを動作させ、他の検出ユニット20は動作させないことも可能となる。そのため、複数の検出ユニット20を動作している場合に比べ、電池セルの状態監視によるセルの電力消費を抑制できる。さらに、二回連続して、第三の動作モードM3が選択された場合は、先の第三の動作モードM3で動作させていた検出ユニット20は、後の第三の動作モードM3では起動させないようにすることも可能である。 According to the storage battery device of the embodiment described above, the battery management unit 30 operates by selecting one operation mode from the three operation modes according to the SOC of the battery cell. Of the three operation modes, in the second operation mode M2 or the third operation mode M3, the battery management unit 30 notifies the detection unit 20 to perform the cell balance process for each battery cell. Absent. For this reason, it is possible to prevent the SOC of the battery cell from being lowered due to the cell balance and to prevent the battery cell from being overdischarged. Further, in the second operation mode M2 or the third operation mode M3, the detection unit 20 shifts to the sleep mode for a certain period of time or the power of the detection unit 20 is turned off for a certain period of time. For this reason, the energy of the battery cell consumed when the detection unit 20 confirms the state of the battery cell can be suppressed. In the third operation mode M3, it is possible to operate only one detection unit 20 among a plurality of detection units 20, and not operate other detection units 20. Therefore, compared with the case where the several detection unit 20 is operate | moving, the power consumption of the cell by the state monitoring of a battery cell can be suppressed. Further, when the third operation mode M3 is selected twice in succession, the detection unit 20 operated in the previous third operation mode M3 is not activated in the subsequent third operation mode M3. It is also possible to do so.
 また、動作モード遷移の際、電池セル温度が基準温度T未満でなければ第一の動作モードM1に移行若しくは第一の動作モードM1を維持する。これにより、電池セル温度低いことにより、セル電圧がセルのSOCに反映されるまで時間を要する場合は、セルの状態監視を優先させ、第二の動作モードM2、若しくは第三の動作モードM3いずれかの動作モードに移行することを回避することが出来る。 Further, when the operation mode transition, moves or maintains the first operation mode M1 in the first operation mode M1 it is less than the battery cell temperature reference temperature T 1. Accordingly, when it takes time until the cell voltage is reflected in the SOC of the cell due to the low battery cell temperature, priority is given to cell state monitoring, and either the second operation mode M2 or the third operation mode M3 is used. It is possible to avoid the transition to the operation mode.
 さらに、動作モード遷移の際、電池管理ユニット30は、電流センサ40を介して得られる電流がXアンペア未満である状態がY秒間継続していなければ、第一の動作モードM1に移行若しくは第一の動作モードM1を維持する。これにより、電池セルが充電されている若しくは放電している時は、検出ユニット20がスリープモードに移行することがなく、電池セルの状態を常に監視しているため、電池セルの過放電や過充電等の電池セルの異常を回避、若しくは即座に異常を感知することが可能となる。 Further, when the operation mode transition, the battery management unit 30, unless the state current obtained through the current sensor 40 is less than X 1 ampere not continue Y seconds, transition or first to the first operation mode M1 One operation mode M1 is maintained. Thus, when the battery cell is charged or discharged, the detection unit 20 does not enter the sleep mode and constantly monitors the state of the battery cell. It is possible to avoid abnormality of battery cells such as charging, or to immediately detect abnormality.
 また、最小セル電圧がV未満である場合、第三の動作モードM3に、最小セル電圧がV未満、V以上である場合第二の動作モードM2に移行するが、第一の動作モードM1に加えて2つの動作モードを設定することで、電池セルのSOCが比較的高い時には電池セルの状態監視頻度を増やし、電池セルのSOCが比較的低い時には電池セルの状態監視頻度を減らすことが出来る。このように、電池セルのSOCに対し、3段階の動作モードを選択することが可能となり、セルの状態監視と電池セルの消費電力を減らすこと、両者のバランスをとることが可能となる。 Also, if the minimum cell voltage is less than V 1, a third operating mode M3, below the minimum cell voltage V 2, if it is V 1 or more but shifts to the second operation mode M2, the first operation By setting two operation modes in addition to the mode M1, the battery cell state monitoring frequency is increased when the battery cell SOC is relatively high, and the battery cell state monitoring frequency is decreased when the battery cell SOC is relatively low. I can do it. As described above, it is possible to select a three-stage operation mode for the SOC of the battery cell, and it is possible to balance the balance between the monitoring of the cell state and the power consumption of the battery cell.
 さらに、第二の動作モードM2若しくは第三の動作モードM3から第一の動作モードM1に移行するには、最小セル電圧がVよりも高くなければならない。これにより、電池セルのSOCが低いのにも関わらず、電池セルが急激に放電した後に電圧が上昇したために第一の動作モードM1に移行する事態を回避することが出来るため、電池セルのSOCの実態に合った動作モードを行うことが出来、ひいては電池セル、蓄電池装置1の安全性を向上することが可能となる。 Furthermore, the transition from the second operation mode M2 or third operating mode M3 in the first operation mode M1, the minimum cell voltage must be higher than V 3. Thereby, although the SOC of the battery cell is low, it is possible to avoid a situation in which the battery cell suddenly discharges and then the voltage rises, so that the transition to the first operation mode M1 can be avoided. Therefore, it is possible to improve the safety of the battery cell and the storage battery device 1.
(第2の実施形態)
 第2の実施形態では、第一の動作モードM1、第二の動作モードM2、若しくは第三の動作モードM3のいずれのモードに移行するかの判断(ステップS12)の判断基準が第1の実施形態と異なる部分がある。したがって、第1の実施形態と同一の箇所には同一の符号を付して、詳細の説明は適宜省略する。
(Second Embodiment)
In the second embodiment, the criteria for determining whether to shift to the first operation mode M1, the second operation mode M2, or the third operation mode M3 (step S12) is the first implementation mode. There is a part different from the form. Accordingly, the same portions as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted as appropriate.
 第2の実施形態では、電流センサ40を介して得られる電流値がXアンペア未満である状態の継続時間によって動作モードを判定する。 In the second embodiment, determining the operation mode by the duration of the state current value obtained through the current sensor 40 is less than X 1 amps.
 ステップS12では、図4に示すように電池管理ユニット30は、第二の動作モードM2、第三の動作モードM3に移行するか否かの監視処理を開始する。まずステップS1001において、電池管理ユニット30は、検出ユニット20を介して得られる各電池セルの電圧のうち、最小のセル電圧VminがV未満であるか否かを判定する。 In step S12, as shown in FIG. 4, the battery management unit 30 starts a monitoring process as to whether or not to shift to the second operation mode M2 and the third operation mode M3. First, in step S < b > 1001, the battery management unit 30 determines whether or not the minimum cell voltage V min is less than V 2 among the voltages of the battery cells obtained through the detection unit 20.
ステップS1001でVminがV未満である、と判定された場合には、電池管理ユニット30は、電池モジュール10内の任意の電池セル近傍に設置された温度センサ22から得られる温度Tを取得し、Tが基準温度T1℃以上であるか否かを判定する(ステップS1002)。 V min In step S1001 is less than V 2, and when it is determined, the battery management unit 30 acquires the temperature T obtained from a temperature sensor 22 which is installed at an arbitrary vicinity battery cells in the battery module 10 Then, it is determined whether T is equal to or higher than the reference temperature T 1 ° C (step S1002).
 ステップS1002で、セル温度Tが基準温度T1℃以上であると判定した場合には、電池管理ユニット30は、電流センサ40から得られる電流値XがXアンペア未満であるか否かを判定する(ステップS1003)。 If it is determined in step S1002 that the cell temperature T is equal to or higher than the reference temperature T 1 ° C, the battery management unit 30 determines whether or not the current value X obtained from the current sensor 40 is less than X 1 amperes. (Step S1003).
 ステップS1003で、Xアンペア未満であると判定した場合には、電池管理ユニット30はステップS1004において、メモリ31に記憶されている時間tがt未満であるか、t以上t未満であるか、t以上であるか、を判定する。(ステップS1004)
 初回の動作モード遷移の際、メモリ31に記憶されている時間(充放電なし時間)tは0である。この時間tはステップS1005、ステップS1006、ステップS1008、ステップS1010において以下に示すように変更される。
In step S1003, when it is judged less than X 1 ampere, the battery management unit 30 in step S1004, the one time t stored in the memory 31 is less than t a, less than t a higher t b or some, it is determined whether it is t b or more,. (Step S1004)
At the time of the first operation mode transition, the time (no charge / discharge time) t stored in the memory 31 is zero. This time t is changed as shown below in step S1005, step S1006, step S1008, and step S1010.
 ステップS1004でtがt未満であると判定した場合には、電池管理ユニット30はメモリ31に対してtにtを加えるように指示を出す。この動作で、メモリ31に記憶される時間はt+tとなる(ステップS1006)。その後、電池管理ユニット30は第一の動作モードM1を維持または第一の動作モードM1に移行し(ステップS1007)、ステップS12を終える。 When t is determined to be less than t a in step S1004, the battery management unit 30 instructs to apply a t 2 to t with respect to the memory 31. With this operation, the time stored in the memory 31 is t + t 2 (step S1006). Thereafter, the battery management unit 30 maintains the first operation mode M1 or shifts to the first operation mode M1 (step S1007), and ends step S12.
 ステップS1004でtがt以上t未満であると判定した場合には、電池管理ユニット30はメモリ31に対してtにtを加えるように指示を出す。この動作で、メモリ31に記憶される時間はt+tとなる(ステップS1008)。その後、電池管理ユニット30は第二の動作モードM2を維持または第二の動作モードM2に移行し(ステップS1009)、ステップS12を終える。 When t is determined to be less than t a higher t b in step S1004, the battery management unit 30 instructs to apply a t 2 to t with respect to the memory 31. With this operation, the time stored in the memory 31 is t + t 2 (step S1008). Thereafter, the battery management unit 30 maintains the second operation mode M2 or shifts to the second operation mode M2 (step S1009), and ends step S12.
 ステップS1004でtがt以上であると判定した場合には、電池管理ユニット30はメモリ31に対してtにtを加えるように指示を出す。この動作で、メモリ31に記憶される時間はt+tとなる(ステップS1010)。その後、電池管理ユニット30は第二の動作モードM3を維持または第二の動作モードM3に移行し(ステップS1011)、ステップS12を終える。 When t is equal to or more than t b in step S1004, the battery management unit 30 issues an instruction to add t 3 to t with respect to the memory 31. With this operation, the time stored in the memory 31 is t + t 3 (step S1010). Thereafter, the battery management unit 30 maintains the second operation mode M3 or shifts to the second operation mode M3 (step S1011), and ends step S12.
 ステップS1001でVminがV以上であると判定した場合、電池管理ユニット30はメモリ31に対してt=0とするように指示を出す(ステップS1005)。その後、電池管理ユニット30は第一の動作モードM1を維持または第一の動作モードM1に移行し(ステップS1007)、ステップS12を終える。 If V min in the step S1001 is determined to be V 2 or more, the battery management unit 30 issues an instruction to the t = 0 to the memory 31 (step S1005). Thereafter, the battery management unit 30 maintains the first operation mode M1 or shifts to the first operation mode M1 (step S1007), and ends step S12.
 ステップS1002で、セル温度が基準温度T℃未満であると判定した場合、電池管理ユニット30はメモリ31に対してt=0とするように指示を出す(ステップS1005)。その後、電池管理ユニット30は第一の動作モードM1を維持または第一の動作モードM1に移行し(ステップS1007)、ステップS12を終える。 If it is determined in step S1002 that the cell temperature is lower than the reference temperature T 1 ° C., the battery management unit 30 instructs the memory 31 to set t = 0 (step S1005). Thereafter, the battery management unit 30 maintains the first operation mode M1 or shifts to the first operation mode M1 (step S1007), and ends step S12.
 ステップS1003で、Xアンペア以上であると判定された場合には電池管理ユニット30はt=0とする(ステップS1005)。その後、電池管理ユニット30は第一の動作モードM1を維持または第一の動作モードM1に移行し(ステップS1007)、ステップS12を終える。 If it is determined in step S1003 that the current is equal to or higher than X 1 ampere, the battery management unit 30 sets t = 0 (step S1005). Thereafter, the battery management unit 30 maintains the first operation mode M1 or shifts to the first operation mode M1 (step S1007), and ends step S12.
 以上説明した実施形態の蓄電池装置によれば、電池セルのSOC(State of Charge)または、放充電されていない時間に依存して、検出ユニットや電池管理ユニットの動作時間を短くすることができるため、検出ユニットや電池管理ユニットが電池セルの状態を監視する頻度を下げることができる。また、電池セルの状態を監視するごとに電池セルのSOCが低下するが、このように監視の頻度を下げることでSOCの低下を抑制し、電池セルが過放電になる可能性を低くすることが出来る。 According to the storage battery device of the embodiment described above, the operation time of the detection unit and the battery management unit can be shortened depending on the SOC (State of Charge) of the battery cell or the time when the battery is not discharged. The frequency with which the detection unit and the battery management unit monitor the state of the battery cell can be reduced. Moreover, every time the state of the battery cell is monitored, the SOC of the battery cell decreases. By reducing the monitoring frequency in this way, the decrease in the SOC is suppressed, and the possibility that the battery cell becomes overdischarged is reduced. I can do it.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの新規な実施形態は、その他の様々な形態で実施されことが可能であり、発明の趣旨を逸脱しない範囲で、種々の省略、置き換え、変更することができる。例えば、電池管理ユニット30と検出ユニット20は一体化されていてもよく、その場合は電池管理ユニット30は検出ユニット20に相当する機能をスリープモードに移行させることで、電池セルの監視頻度を下げることが可能となる。これらの実施形態やその変形例は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. For example, the battery management unit 30 and the detection unit 20 may be integrated. In this case, the battery management unit 30 shifts the function corresponding to the detection unit 20 to the sleep mode, thereby reducing the monitoring frequency of the battery cells. It becomes possible. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
1 蓄電池装置
10 電池モジュール
11 電池セル群
20 検出ユニット(CMU)
21 電圧センサ
22 温度センサ
23 均等化処理回路
30 電池管理ユニット(BMU)
31 メモリ
40 電流センサ
41A スイッチ回路
41B スイッチ回路
DL 通信・制御ライン
DESCRIPTION OF SYMBOLS 1 Storage battery apparatus 10 Battery module 11 Battery cell group 20 Detection unit (CMU)
21 Voltage sensor 22 Temperature sensor 23 Equalization processing circuit 30 Battery management unit (BMU)
31 Memory 40 Current sensor 41A Switch circuit 41B Switch circuit DL Communication / control line

Claims (20)

  1.  電池セルを含む電池モジュールと、               
     前記電池セルの電圧情報を検出する検出ユニットと、
     前記電池モジュールから出力される電流の電流情報を検出する電流センサと、
     前記検出ユニットから前記電圧情報を取得し、前記検出ユニットとの間で前記検出ユニットを制御するための信号を含む所定の情報を授受し、前記電流センサの検出した電流情報を受け取る電池管理ユニットと、
     を備え、
     前記電池管理ユニットは、
     前記電池セルの前記電圧情報及び前記電流情報に基づき、
     前記検出ユニットの前記電圧情報の検出を継続させる第一の動作モードと、
     前記検出ユニットの前記電圧情報の検出を第一の時間停止させる第二の動作モードと、
     前記検出ユニットの前記電圧情報の検出を前記第一の時間よりも長い第二の時間停止させる第三の動作モードと、
    から一つの動作モードを選択する
    ことを特徴とする蓄電池装置。
    A battery module including battery cells;
    A detection unit for detecting voltage information of the battery cell;
    A current sensor for detecting current information of a current output from the battery module;
    A battery management unit that obtains the voltage information from the detection unit, exchanges predetermined information including a signal for controlling the detection unit with the detection unit, and receives current information detected by the current sensor; ,
    With
    The battery management unit includes:
    Based on the voltage information and the current information of the battery cell,
    A first operation mode for continuing detection of the voltage information of the detection unit;
    A second operation mode in which detection of the voltage information of the detection unit is stopped for a first time;
    A third operation mode in which the detection of the voltage information of the detection unit is stopped for a second time longer than the first time;
    A storage battery device, wherein one operation mode is selected.
  2.  前記検出ユニットを複数有し、
     前記電池管理ユニットが前記第三の動作モードを選択した場合、前記第二の時間経過後、一部の前記検出ユニットに前記電圧情報の検出を行わせる
    ことを特徴とする請求項1に記載の蓄電池装置。
    A plurality of the detection units;
    2. The voltage information of claim 1, wherein when the battery management unit selects the third operation mode, the voltage information is detected by some of the detection units after the second time has elapsed. Storage battery device.
  3.  前記電池管理ユニットが前記第三の動作モードを2回連続して選択した場合、
     先に選択された前記第三の動作モードにおいて、前記第二の時間経過後に前記電圧情報の検出を行った前記検出ユニットは、後に選択された前記第三の動作モードにおいては、前記第二の時間経過後に前記電圧情報の検出を停止させる
    ことを特徴とする請求項2に記載の蓄電池装置。
    When the battery management unit selects the third operation mode twice in succession,
    In the third operation mode selected earlier, the detection unit that has detected the voltage information after the second time has elapsed, in the third operation mode selected later, the detection unit The storage battery device according to claim 2, wherein the detection of the voltage information is stopped after a lapse of time.
  4.  前記電池管理ユニットが前記第二の動作モード又は前記第三の動作モードを選択した場合、前記電池管理ユニットは前記検出ユニットのセルバランス処理を停止する
    ことを特徴とする請求項1乃至請求項3のいずれか一項に記載の蓄電池装置。
    The battery management unit stops the cell balance processing of the detection unit when the battery management unit selects the second operation mode or the third operation mode. The storage battery device according to any one of the above.
  5.  前記電池管理ユニットは、
     前記電流情報に基づき前記電池モジュールが充電及び放電がされていないと判断した場合、前記第一の動作モードを選択する
    ことを特徴とする請求項1乃至請求項4のいずれか一項に記載の蓄電池装置。
    The battery management unit includes:
    The said 1st operation mode is selected when it is judged that the said battery module is not charged and discharged based on the said electric current information, The Claim 1 thru | or 4 characterized by the above-mentioned. Storage battery device.
  6.  前記検出ユニットは電池セルの温度情報を検出する機能を更に備え、
     前記電池管理ユニットは、前記電池セルの温度情報に基づき前記電池セルが所定の温度以下であると判断した時に、前記第一の動作モードを選択する
    ことを特徴とする請求項1乃至請求項5のいずれか一項に記載の蓄電池装置。
    The detection unit further includes a function of detecting temperature information of the battery cell,
    The said battery management unit selects said 1st operation mode, when it is judged that the said battery cell is below predetermined temperature based on the temperature information of the said battery cell. The storage battery device according to any one of the above.
  7.  前記電池管理ユニットが前記第一の動作モードを選択した場合、
     前記電池管理ユニットは、前記電池管理ユニットから取得した電圧情報に基づき前記電池セルのうち最も低い電圧値Vminが第一の電圧値であるV未満であると判断した時は、前記第三の動作モードを選択する
    ことを特徴とする請求項1乃至請求項6のいずれか一項に記載の蓄電池装置。
    When the battery management unit selects the first operation mode,
    When the battery management unit determines that the lowest voltage value V min among the battery cells is less than the first voltage value V 1 based on the voltage information acquired from the battery management unit, The storage battery device according to claim 1, wherein the operation mode is selected.
  8.  前記電池管理ユニットが前記第一の動作モードを選択した場合、
     前記電池管理ユニットは、前記電圧情報に基づき前記電圧値Vminが前記電圧値V以上であり、かつ前記電圧値Vよりも高い第二の電圧値であるV未満であると判断した時は、前記第二の動作モードを選択する
    ことを特徴とする請求項7に記載の蓄電池装置。
    When the battery management unit selects the first operation mode,
    The battery management unit, the is not less the voltage value V min on the basis of voltage information the voltage value V 1 or more, and determined to be smaller than V 2 the a second voltage value higher than the voltage value V 1 The storage battery device according to claim 7, wherein the second operation mode is selected at the time.
  9.  前記電池管理ユニットが前記第一の動作モードを選択した場合、
     前記電池管理ユニットは、前記電圧情報に基づき前記電圧値Vminが前記電圧値V以上であると判断した時は、前記第一の動作モードを選択する
    ことを特徴とする請求項8に記載の蓄電池装置。
    When the battery management unit selects the first operation mode,
    The battery management unit, when the voltage value V min based on the voltage information is determined to the be the voltage value V 2 or more, according to claim 8, characterized by selecting said first operation mode Storage battery device.
  10.  前記電池管理ユニットが前記第二の動作モードを選択した場合、
     前記電池管理ユニットは、前記電圧情報に基づき前記電圧値Vminが前記V未満であると判断した時は、前記第三の動作モードを選択する
    ことを特徴とする請求項8又は請求項9に記載の蓄電池装置。
    When the battery management unit selects the second operation mode,
    The battery management unit selects the third operation mode when it is determined that the voltage value V min is less than the V 1 based on the voltage information. The storage battery device described in 1.
  11.  前記電池管理ユニットが前記第二の動作モードを選択した場合、
     前記電池管理ユニットは、前記電圧情報に基づき前記電圧値Vminが前記V以上であり、かつ前記第二の電圧値Vよりも高い電圧値であるV未満であると判断した時は、前記第二の動作モードを選択する
    ことを特徴とする請求項8乃至請求項10のいずれか一項に記載の蓄電池装置。
    When the battery management unit selects the second operation mode,
    When the battery management unit determines based on the voltage information that the voltage value V min is equal to or greater than the V 1 and less than V 3 which is a voltage value higher than the second voltage value V 2. The storage battery device according to any one of claims 8 to 10, wherein the second operation mode is selected.
  12.  前記電池管理ユニットが前記第二の動作モードを選択した場合、
     前記電池管理ユニットは、前記電圧情報に基づき前記電圧値Vminが前記V以上であると判断した時は、前記第一の動作モードを選択する
    ことを特徴とする請求項11のいずれか一項に記載の蓄電池装置。
    When the battery management unit selects the second operation mode,
    The battery management unit, when the voltage value V min based on the voltage information is determined to be the V 3 or more, any one of the claims 11, characterized by selecting said first operation mode The storage battery device according to item.
  13.  前記電池管理ユニットが前記第三の動作モードを選択した場合、
     前記電池管理ユニットは、前記電圧情報に基づき前記電圧値Vminが前記V未満であると判断した時は、前記第三の動作モードを選択する
    ことを特徴とする請求項11又は請求項12に記載の蓄電池装置。
    When the battery management unit selects the third operation mode,
    The battery management unit selects the third operation mode when it is determined that the voltage value V min is less than the V 3 based on the voltage information. The storage battery device described in 1.
  14.  前記電池管理ユニットが前記第三の動作モードを選択した場合、
     前記電池管理ユニットは、前記電圧情報に基づき前記電圧値Vminが前記V以上であると判断した時は、前記第一の動作モードを選択する
    ことを特徴とする請求項11乃至請求項13のいずれか一項に記載の蓄電池装置。
    When the battery management unit selects the third operation mode,
    The battery management unit, said when the said voltage value V min based on the voltage information determined to be the V 3 or greater, claims 11 to 13 and selects the first operation mode The storage battery device according to any one of the above.
  15.  電池セルの電圧情報及び前記電池セルを含む電池モジュールから出力される電流の電流情報に基づき、
     前記電圧情報の検出を継続させる第一の動作モードと、
     前記電圧情報の検出を第一の時間停止させる前記第二の動作モードと、
     前記電圧情報の検出を前記第一の時間よりも長い第二の時間停止させる第三の動作モードと、
     から一つの動作モードを選択する
    ことを特徴とする電池管理ユニット。
    Based on the voltage information of the battery cell and the current information of the current output from the battery module including the battery cell,
    A first operation mode for continuing detection of the voltage information;
    The second operation mode for stopping the detection of the voltage information for a first time;
    A third operation mode for stopping the detection of the voltage information for a second time longer than the first time;
    A battery management unit, wherein one operation mode is selected.
  16.  電池セルを含む電池モジュールを有する蓄電池装置の制御方法であって、
     前記電池セルの電圧情報及び前記電池モジュールから出力される電流の電流情報に基づき、
     前記電圧情報の検出を継続させる第一の動作モードと、
     前記電圧情報の検出を第一の時間停止させる第二の動作モードと、
     前記電圧情報の検出を前記第一の時間よりも長い第二の時間停止させる第三の動作モードと、
     から一つの動作モードを選択する
    ことを特徴とする蓄電池装置の制御方法。
    A method for controlling a storage battery device having a battery module including battery cells,
    Based on the voltage information of the battery cell and the current information of the current output from the battery module,
    A first operation mode for continuing detection of the voltage information;
    A second operation mode in which detection of the voltage information is stopped for a first time;
    A third operation mode for stopping the detection of the voltage information for a second time longer than the first time;
    A method for controlling a storage battery device, wherein one operation mode is selected from
  17.  前記検出ユニットは更に温度を監視する情報検出機能を備え、
     前記電池管理ユニットは、前記電池セルの温度情報に基づき前記電池セルが所定の温度以下である、若しくは前記電流情報に基づき前記電池モジュールが充電及び放電がされていない、若しくは前記電圧情報に基づき前記電池セルのうち最も低い電圧値Vminが前記V以上である、と判断した時は、充放電なし時間tを0とし、前記第一の動作モードを選択する
    ことを特徴とする請求項1乃至請求項4のいずれか一項に記載の蓄電池装置。
    The detection unit further comprises an information detection function for monitoring temperature,
    The battery management unit is configured such that the battery cell is below a predetermined temperature based on the temperature information of the battery cell, or the battery module is not charged or discharged based on the current information, or based on the voltage information 2. The first operation mode is selected when the lowest voltage value V min of the battery cells is determined to be equal to or higher than V 2 , and the no charge / discharge time t is set to 0, and the first operation mode is selected. The storage battery device according to any one of claims 4 to 4.
  18.  前記電池管理ユニットは、
      前記充放電なし時間tが第四の時間t未満であると判断した時は、前記充放電なし時間tに第五の時間tを加え、前記第一の動作モードを選択する
    ことを特徴とする請求項17に記載の蓄電池装置。
    The battery management unit includes:
    Wherein when the charging without discharging time t is determined to be smaller than the fourth time t a is characterized by a fifth time t 1 is added without the charge and discharge time t, selecting the first operation mode The storage battery device according to claim 17.
  19.  前記電池管理ユニットは、
      前記充放電なし時間tが前記第四の時間t以上であり、かつ第六の時間t未満であると判断した時は、前記充放電なし時間tに前記第五の時間tよりも長い第七の時間tを加え、前記第二の動作モードを選択する
    ことを特徴とする請求項18に記載の蓄電池装置。
    The battery management unit includes:
    Wherein is the charge without discharging time t is the fourth time t a or more and when it is determined that the sixth is less than the time t b, rather than the time t 1 of the fifth said charge and without discharge time t long seventh time t 2 was added, battery device according to claim 18, characterized by selecting said second mode of operation.
  20.  前記電池管理ユニットは、
      前記充放電なし時間tが前記第六の時間t以上であると判断した時は、前記充放電なし時間tに前記第七の時間tよりも長い第八の時間tを加え、前記第三の動作モードを選択する
    ことを特徴とする請求項19に記載の蓄電池装置。
    The battery management unit includes:
    When it is determined that the no-charge / discharge time t is equal to or longer than the sixth time t b , an eighth time t 3 longer than the seventh time t 2 is added to the no-charge / discharge time t, The storage battery device according to claim 19, wherein the third operation mode is selected.
PCT/JP2016/059346 2016-03-24 2016-03-24 Storage battery device and control method therefor WO2017163358A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/059346 WO2017163358A1 (en) 2016-03-24 2016-03-24 Storage battery device and control method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/059346 WO2017163358A1 (en) 2016-03-24 2016-03-24 Storage battery device and control method therefor

Publications (1)

Publication Number Publication Date
WO2017163358A1 true WO2017163358A1 (en) 2017-09-28

Family

ID=59900053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059346 WO2017163358A1 (en) 2016-03-24 2016-03-24 Storage battery device and control method therefor

Country Status (1)

Country Link
WO (1) WO2017163358A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009089486A (en) * 2007-09-28 2009-04-23 Hitachi Ltd Multiple series battery control system
JP2010239817A (en) * 2009-03-31 2010-10-21 Brother Ind Ltd Information display device
JP2011155832A (en) * 2010-01-26 2011-08-11 Dr Ing Hcf Porsche Ag Battery management apparatus
JP2013207900A (en) * 2012-03-28 2013-10-07 Sanyo Electric Co Ltd Battery control device
JP2013219936A (en) * 2012-04-09 2013-10-24 Eliiy Power Co Ltd Power storage device, control method of power storage device, and power supply device
JP2014138508A (en) * 2013-01-17 2014-07-28 Mitsubishi Heavy Ind Ltd Control device and method for power storage device, and power storage system comprising the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009089486A (en) * 2007-09-28 2009-04-23 Hitachi Ltd Multiple series battery control system
JP2010239817A (en) * 2009-03-31 2010-10-21 Brother Ind Ltd Information display device
JP2011155832A (en) * 2010-01-26 2011-08-11 Dr Ing Hcf Porsche Ag Battery management apparatus
JP2013207900A (en) * 2012-03-28 2013-10-07 Sanyo Electric Co Ltd Battery control device
JP2013219936A (en) * 2012-04-09 2013-10-24 Eliiy Power Co Ltd Power storage device, control method of power storage device, and power supply device
JP2014138508A (en) * 2013-01-17 2014-07-28 Mitsubishi Heavy Ind Ltd Control device and method for power storage device, and power storage system comprising the same

Similar Documents

Publication Publication Date Title
CN107863789B (en) Power supply system
EP3525314B1 (en) Apparatus and method for preventing overcharge
US7928691B2 (en) Method and system for cell equalization with isolated charging sources
EP2418751B1 (en) Battery charger and battery charging method
EP2186181B1 (en) Apparatus and method for balancing of battery cell&#39;s charge capacity
JP5983171B2 (en) Switch failure diagnosis device, power storage device
US20090267565A1 (en) Method and system for cell equalization with charging sources and shunt regulators
US20140021923A1 (en) Electrical storage system, and control method for electrical storage system
US10320204B2 (en) Electric storage apparatus and electric-storage controlling method
JP2008079364A (en) Charging/discharging device
WO2009154079A1 (en) Secondary battery pack
JP5739005B2 (en) Power storage device management system
JP6370137B2 (en) Charge / discharge control circuit and battery device
JP2015073340A (en) Power storage system
KR20180035080A (en) Battery cell balancing circuit
EP3499678B1 (en) Battery pack
JP2014050269A (en) Equal charging system for battery pack
US20140091768A1 (en) Storage device for storing electrical energy and method for operating a storage device
WO2017163358A1 (en) Storage battery device and control method therefor
TWI415363B (en) Battery management circuit, battery module and battery management method
EP3974850A1 (en) Parallel battery relay diagnosis device and method
JP2023522463A (en) Battery management system, battery pack, energy storage system and battery management method
JP2015185392A (en) battery monitoring device
US20210351605A1 (en) Battery Charge/Discharge Control Device and Battery Management Device
JP5481367B2 (en) Battery module and vehicle

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895394

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16895394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP