WO2017163317A1 - Positive electrode material for non-aqueous electrolyte secondary batteries and method for producing same - Google Patents

Positive electrode material for non-aqueous electrolyte secondary batteries and method for producing same Download PDF

Info

Publication number
WO2017163317A1
WO2017163317A1 PCT/JP2016/059070 JP2016059070W WO2017163317A1 WO 2017163317 A1 WO2017163317 A1 WO 2017163317A1 JP 2016059070 W JP2016059070 W JP 2016059070W WO 2017163317 A1 WO2017163317 A1 WO 2017163317A1
Authority
WO
WIPO (PCT)
Prior art keywords
transition metal
composite
sodium
positive electrode
metal oxide
Prior art date
Application number
PCT/JP2016/059070
Other languages
French (fr)
Japanese (ja)
Inventor
理樹 片岡
哲 清林
信彦 竹市
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to PCT/JP2016/059070 priority Critical patent/WO2017163317A1/en
Priority to PCT/JP2016/077335 priority patent/WO2017163462A1/en
Priority to JP2018506754A priority patent/JP7016166B2/en
Publication of WO2017163317A1 publication Critical patent/WO2017163317A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G37/00Compounds of chromium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode material for a non-aqueous electrolyte secondary battery that uses a small amount of rare metal and a method for producing the same.
  • a lithium ion secondary battery which is a non-aqueous electrolyte secondary battery has a high energy density. For this reason, the lithium ion secondary battery has been put into practical use as a large power source for an electric vehicle or the like as well as a small power source for a mobile phone or a notebook computer.
  • the demand for lithium-ion secondary batteries is expected to increase in the future.
  • Lithium cobalt oxide (LiCoO 2 ) is often used as a positive electrode material for lithium ion secondary batteries. Cobalt that constitutes the positive electrode material is a rare metal and therefore has a high raw material price. Cobalt is unevenly distributed in South America, China, etc., and there is concern about the stable supply of cobalt raw materials.
  • a sodium ion secondary battery has been studied as a next-generation secondary battery that can reduce the amount of cobalt used and does not use lithium, which has high resource uneven distribution like cobalt.
  • Sodium which is a charge carrier for sodium ion secondary batteries, is a resource-rich and inexpensive material. For this reason, the practical use of a sodium ion secondary battery is expected.
  • Such as sodium ferrate (NaFeO 2) or sodium permanganate (NaMnO 2) Since not contain rare metals, it is attracting attention as a positive electrode material for a sodium ion secondary battery.
  • these positive electrode materials require a synthesis process involving high-temperature firing. If an oxide cathode material for a sodium ion secondary battery can be synthesized without going through a firing process, a significant reduction in the manufacturing cost of the sodium ion secondary battery can be expected.
  • Patent Document 1 discloses a positive electrode material for a sodium ion secondary battery produced by subjecting sodium fluoride and transition metal fluoride to a mechanical milling treatment without passing through a firing process. According to Patent Document 1, this positive electrode material exhibits a reversible capacity of about 80 mAh / g. However, since this positive electrode material is mainly a charge / discharge reaction utilizing bivalent and trivalent transition metals, it is difficult to increase the operating voltage.
  • Non-Patent Document 1 discloses a positive electrode for a lithium ion secondary battery in which lithium oxide and cobalt oxide are combined by mechanical milling.
  • the positive electrode described in Non-Patent Document 1 utilizes a redox reaction of oxygen ions contained in lithium oxide, and exhibits a reversible capacity comparable to that of lithium cobaltate.
  • this lithium ion secondary battery is charged to a certain potential or higher, lithium oxide as the positive electrode material is irreversibly decomposed to generate oxygen, which deteriorates the lithium ion secondary battery.
  • the present invention has been made in view of the above problems, and uses a transition metal oxide that uses a rare metal in a small amount and can utilize a redox reaction between trivalent and tetravalent, and has a high capacity. It is a main object to provide a positive electrode material for a non-aqueous electrolyte secondary battery that can be stably charged and discharged and hardly generate oxygen.
  • the present inventors have intensively studied to achieve the above object. As a result, it has been found that by complexing a compound containing sodium and a transition metal oxide, the complex has a high capacity and can be stably charged and discharged.
  • a complex of an embodiment of the present invention is a complex having a sodium compound containing oxygen and a transition metal oxide, wherein the substance of sodium in the sodium compound with respect to the substance amount A of the transition metal in the transition metal oxide
  • the ratio of quantity B (B / A) is 0.5 to 3.0.
  • the positive electrode material of the sodium ion secondary battery of the present invention contains this composite.
  • the sodium ion secondary battery of the present invention has a positive electrode containing this positive electrode material as a positive electrode active material, a negative electrode, and an electrolyte.
  • the composite of another aspect of the present invention is a composite having a lithium compound containing oxygen and a transition metal oxide, wherein the lithium in the lithium compound with respect to the substance amount A of the transition metal in the transition metal oxide.
  • the ratio of substance amount C (C / A) is 0.5 to 3.0.
  • the positive electrode material for a lithium ion secondary battery of the present invention contains this composite.
  • the lithium ion secondary battery of the present invention has a positive electrode containing the positive electrode material as a positive electrode active material, a negative electrode, and an electrolyte.
  • a method for producing a composite according to an aspect of the present invention is a method for producing a composite having an oxygen-containing sodium compound and a transition metal oxide, wherein sodium relative to the substance amount A of the transition metal in the transition metal oxide.
  • the transition metal oxide and the sodium compound are blended so that the ratio (B / A) of the substance amount B of sodium in the compound is 0.5 to 3.0, and then mixed to obtain a composite.
  • a method for producing a composite according to another aspect of the present invention is a method for producing a composite having an oxygen-containing lithium compound and a transition metal oxide, with respect to the amount A of the transition metal in the transition metal oxide.
  • the composite is obtained by mixing the lithium compound and the transition metal oxide so that the ratio (C / A) of the substance amount C of lithium in the lithium compound is 0.5 to 3.0 and then mixing them.
  • a positive electrode material for a non-aqueous electrolyte secondary battery having a high capacity and a reduced amount of rare metal can be obtained without going through a firing process.
  • FIG. 4 is an X-ray diffraction pattern of the manganese oxide obtained in Experimental Example 1.
  • FIG. X-ray diffraction pattern of the complex of Na 2 O 2 and Mn 3 O 4 obtained in Example 1-1.
  • Complex of SEM images of Example Na 2 O 2 obtained in 1-4 and Mn 3 O 4. 6 is a graph showing the results of a charge / discharge test of a positive electrode for sodium ion secondary batteries produced from the composite obtained in Example 1-1.
  • complex obtained in Example 2-2. 6 is a graph showing the results of a charge / discharge test of a positive electrode for a sodium ion secondary battery produced from the composite obtained in Example 3-1.
  • 6 is a graph showing the results of a charge / discharge test of a positive electrode for sodium ion secondary batteries produced from the composite obtained in Example 6-5.
  • 6 is a graph showing the results of a charge / discharge test of a positive electrode for sodium ion secondary batteries produced from the composite obtained in Example 6-6.
  • 7 is a graph showing the results of a charge / discharge test of a positive electrode material for a sodium ion secondary battery produced from the composite obtained in Example 6-7.
  • the composite of the present invention the method for producing the composite, the positive electrode material, the sodium ion secondary battery, and the lithium ion secondary battery will be described based on embodiments and examples.
  • duplication description is abbreviate
  • is described between two numerical values to represent a numerical range, these two numerical values are also included in the numerical range.
  • the composite according to the first embodiment of the present invention has a sodium compound containing oxygen and a transition metal oxide.
  • the composite of this embodiment is a homogeneous mixture of this sodium compound and transition metal oxide.
  • Sodium compounds containing oxygen include sodium oxide (Na 2 O), sodium peroxide (Na 2 O 2 ), sodium superoxide (NaO 2 ), sodium hydroxide (NaOH), sodium carbonate (Na 2 CO 3 ).
  • sodium salts such as sodium bicarbonate (NaHCO 3 ).
  • sodium compound consisting only of sodium and oxygen sodium peroxide is particularly preferable.
  • the transition metal is preferably at least one selected from Mn, Co, Ni, Fe, V, and Cr.
  • transition metal oxides include manganese monoxide (MnO), dimanganese trioxide (Mn 2 O 3 ), tetramanganese trioxide (Mn 3 O 4 ), tricobalt tetroxide (Co 3 O 4 ), nickel monoxide. (NiO), triiron tetroxide (Fe 3 O 4 ), divanadium trioxide (V 2 O 3 ), dichromium trioxide (Cr 2 O 3 ) and the like can be exemplified.
  • the sodium compound or the transition metal oxide a commercially available product or a synthetic product may be used.
  • the transition metal oxide can be synthesized by a precipitation method. Specifically, an aqueous solution containing transition metal ions, for example, an aqueous solution of sulfate, nitrate, or chloride is dropped into an alkaline aqueous solution to form a precipitate, followed by filtration and drying to remove moisture. A transition metal oxide is obtained.
  • the oxide containing a plurality of transition metals can be obtained by precipitating an aqueous solution containing a plurality of transition metal ions in an alkaline aqueous solution, followed by filtration and drying.
  • alkaline aqueous solution examples include a sodium hydroxide aqueous solution, a sodium carbonate aqueous solution, a lithium hydroxide aqueous solution, and a potassium hydroxide aqueous solution. These alkaline aqueous solutions may be used alone or in combination of two or more.
  • aqueous solution containing transition metal ions is added little by little to an alkaline aqueous solution adjusted to have a temperature of 10 ° C. to 50 ° C., preferably 20 ° C. to 30 ° C. and a pH of 9 to 14, preferably 12 to 14, It is preferable to produce a precipitate.
  • each aqueous solution may be added separately or may be added simultaneously.
  • the composite of this embodiment can be used as a positive electrode material such as a positive electrode active material for a non-aqueous electrolyte secondary battery.
  • the composite of the present embodiment includes a carbon-based material such as carbon black for the purpose of improving conductivity, fluoride and phosphoric acid as a surface coating substance of the composite. It may contain a small amount of salt.
  • the “molar amount” is preferably 0.5 to 3.0, more preferably 2/3 to 3.0.
  • the composite according to the second embodiment of the present invention has a lithium compound containing oxygen and a transition metal oxide.
  • the ratio (C / A) of the substance amount C of lithium in the lithium compound to the substance amount A of transition metal in the transition metal oxide is 0.5 to 3.0.
  • the lithium compound is preferably lithium oxide or lithium peroxide.
  • the positive electrode material for a sodium ion secondary battery according to an embodiment of the present invention contains the composite according to the first embodiment. Since this positive electrode material has a high capacity and excellent charge / discharge cycle characteristics, a sodium ion secondary battery using a positive electrode containing this positive electrode material can be produced at a low cost while increasing its capacity.
  • oxygen generated by oxidative decomposition of the sodium compound during charging reacts with the transition metal oxide, and changes to an expensive number of transition metal oxides. Subsequent discharging and charging reactions proceed by the reaction of the transition metal oxide and sodium ions. Thus, by using the reaction between the transition metal oxide and oxygen during the initial charging reaction, the generation of oxygen gas inside the battery can be suppressed.
  • the content of the sodium compound can be arbitrarily adjusted. For this reason, when producing the secondary battery which combined the positive electrode containing the positive electrode material of this embodiment, and the negative electrode containing the negative electrode material which has an irreversible capacity
  • the sodium compound and the transition metal oxide are preferably particles having a particle diameter of 100 nm to 3 ⁇ m, particularly preferably about 2 ⁇ m.
  • the particle diameter is an average value of these measured values obtained by selecting about 10 arbitrary particles from the SEM image of the composite and measuring the outer diameter.
  • the composite of this embodiment contains a sodium compound, it may contain other alkali metal compounds such as a lithium compound in place of or together with the sodium compound.
  • the positive electrode material for a lithium ion secondary battery according to an embodiment of the present invention contains the composite according to the second embodiment. Since this positive electrode material has a high capacity and excellent charge / discharge cycle characteristics, a lithium ion secondary battery using a positive electrode containing this positive electrode material can be produced at a low cost while increasing its capacity. Further, in this lithium ion secondary battery, oxygen generated by oxidative decomposition of the lithium compound at the time of charging reacts with the transition metal oxide to change into an expensive transition metal oxide. The subsequent discharging and charging reaction proceeds by the reaction between the transition metal oxide and lithium ions. Thus, by using the reaction between the transition metal oxide and oxygen during the initial charging reaction, the generation of oxygen gas inside the battery can be suppressed.
  • the content of the lithium compound can be arbitrarily adjusted. For this reason, when producing the secondary battery which combined the positive electrode containing the positive electrode material of this embodiment, and the negative electrode containing the negative electrode material which has an irreversible capacity
  • complex which concerns on embodiment of this invention is a manufacturing method of the composite_body
  • the transition metal oxide and the sodium compound are adjusted so that the ratio (B / A) of the sodium substance B in the sodium compound to the substance A of the transition metal in the transition metal oxide is 0.5 to 3.0. After blending, a composite is obtained by mixing.
  • a mixing method mortar mixing, mechanical milling treatment, a method in which a sodium compound and a transition metal oxide are dispersed in a solvent and then mixed, or a sodium compound and a transition metal oxide are dispersed in a solvent at a time and mixed.
  • the method of doing etc. can be adopted.
  • the mixture of sodium compound, transition metal oxide, and solvent is irradiated with ultrasonic waves from the viewpoint of improving dispersibility and uniform mixing. More preferably.
  • mechanical milling treatment is preferable. This is because the sodium compound and the transition metal oxide can be mixed more uniformly.
  • the mechanical milling device for example, a ball mill, a vibration mill, a turbo mill, a disc mill, or the like can be used. Among these, mixing using a ball mill is preferable.
  • the atmosphere at the time of mixing is not particularly limited, and for example, an inert gas atmosphere such as Ar or N 2 , or an air atmosphere can be adopted, but when using a raw material having high reactivity in the air such as sodium oxide, It is preferable to mix the sodium compound and the transition metal oxide in an inert gas atmosphere.
  • the transition metal oxide is preferably a particle having a crystallite size of 50 nm to 90 nm, and the sodium compound and the transition metal oxide contained in the composite are preferably particles having a particle diameter of 100 nm to 3 ⁇ m.
  • the crystallite size of the transition metal oxide is calculated based on the Scherrer equation from the half width of the diffraction peak attributed to the transition metal oxide structure measured by XRD.
  • the sodium compound is preferably sodium peroxide.
  • the transition metal in the transition metal oxide is preferably at least one selected from Mn, Co, Ni, Fe, V, and Cr.
  • the method for producing a composite according to another embodiment of the present invention is a method for producing a composite having a lithium compound containing oxygen and a transition metal oxide.
  • the lithium compound and the transition metal oxide are mixed so that the ratio (C / A) of the substance amount C of lithium in the lithium compound to the substance amount A of transition metal in the transition metal oxide is 0.5 to 3.0.
  • the composite is obtained by mixing.
  • the mixing of the lithium compound and the transition metal oxide can be performed in the same manner as the mixing of the sodium compound and the transition metal oxide.
  • the transition metal oxide is preferably particles having a crystallite size of 50 nm to 90 nm, and the lithium compound and the transition metal oxide contained in the composite are preferably particles having a particle size of 100 nm to 3 ⁇ m.
  • the lithium compound is preferably lithium oxide or lithium peroxide.
  • the transition metal in the transition metal oxide is preferably at least one selected from Mn, Co, Ni, Fe, V, and Cr.
  • the sodium ion secondary battery which concerns on embodiment of this invention is equipped with the positive electrode containing the positive electrode material of the sodium ion secondary battery of this embodiment as a positive electrode active material, the negative electrode, the electrolyte, and the separator.
  • This sodium ion secondary battery is, for example, a non-aqueous electrolyte sodium ion secondary battery, an all-solid-state sodium ion secondary battery, or a metal sodium ion secondary battery.
  • the basic structure of these sodium ion secondary batteries is the same as that of a known sodium ion secondary battery except that the positive electrode material for the sodium ion secondary battery of this embodiment is used as a positive electrode active material. can do.
  • the shape of the sodium ion secondary battery of this embodiment is not particularly limited, and a cylindrical shape, a rectangular shape, or the like can be adopted.
  • the negative electrode may contain a negative electrode material containing sodium as a negative electrode active material, or may be composed of a negative electrode active material not containing sodium.
  • a negative electrode active material for example, a substance that reacts with sodium, such as hardly sinterable carbon, sodium metal, tin, or an alloy containing these, can be used.
  • a negative electrode can be produced by supporting these negative electrode active materials on a negative electrode current collector made of Al, Cu, Ni, stainless steel, carbon, or the like, using a conductive agent, a binder, or the like as necessary.
  • the separator is made of a material such as polyolefin resin such as polyethylene or polypropylene, fluororesin, nylon, aromatic aramid, or inorganic glass.
  • a material in the form of a porous film, a nonwoven fabric, a woven fabric, or the like can be used.
  • the positive electrode mixture obtained by mixing the positive electrode material, the conductive agent, and the binder of the sodium ion secondary battery of the present embodiment, which is the positive electrode active material, is made of Al, stainless steel, carbon cloth, or the like.
  • a positive electrode can be produced by supporting the positive electrode current collector.
  • the conductive agent for example, a carbon material such as graphite, coke, carbon black, or acicular carbon can be used.
  • the electrolyte of the non-aqueous electrolyte sodium ion secondary battery is a non-aqueous solvent based electrolyte.
  • a solvent for an electrolytic solution of a known non-aqueous solvent secondary battery such as carbonates, ethers, nitriles, sulfur-containing compounds and the like can be used.
  • a positive electrode mixture containing a positive electrode material, a conductive agent, a binder, a solid electrolyte, and the like of the sodium ion secondary battery of this embodiment as a positive electrode active material is used as Ti, Al, Ni
  • a positive electrode can be produced by supporting it on a positive electrode current collector such as stainless steel.
  • a carbon material such as graphite, cokes, carbon black, or acicular carbon can be used.
  • solid electrolytes for all solid-state sodium ion secondary batteries include polymer solid electrolytes such as polyethylene oxide polymer compounds, polymer compounds containing at least one of polyorganosiloxane chains and polyoxyalkylene chains, and sulfides.
  • a solid electrolyte, an oxide solid electrolyte, or the like can be used.
  • the lithium ion secondary battery which concerns on embodiment of this invention has the positive electrode containing the positive electrode material of the sodium ion secondary battery of this embodiment as a positive electrode active material, a negative electrode, and electrolyte.
  • the basic structure of the lithium ion secondary battery can be the same as the structure of a known lithium ion secondary battery except for the positive electrode active material.
  • a transition metal oxide constituting the composite was produced by the following method.
  • Commercial iron sulfate (FeSO 4 ) was dissolved in distilled water to obtain an iron sulfate aqueous solution having a concentration of 1M.
  • the aqueous iron sulfate solution was added little by little to a 1 M sodium hydroxide aqueous solution to form a precipitate.
  • the precipitate was washed with distilled water until neutral, and then dried at 80 ° C. in the air to obtain iron oxide (Fe 3 O 4 ).
  • Synthesis Example 2 Manganese oxide (Mn 3 O 4 ) particles having different crystallite sizes
  • Manganese oxide (Mn 3 O 4 ) particles having different crystallite sizes were produced by the following method. 1 mmol of citric acid was added to 100 mL of 1 M aqueous manganese sulfate solution prepared in the same procedure as in Synthesis Example 1. The manganese sulfate aqueous solution containing citric acid was added little by little to a 1 M sodium hydroxide aqueous solution to form a precipitate. Thereafter, manganese oxide (Mn 3 O 4 ) particles were produced in the same procedure as in Synthesis Example 1 (Synthesis Example 2-1). Further, manganese oxide (Mn 3 O 4 ) particles were produced in the same manner as in Synthesis Example 2-1 except that the amount of citric acid added was changed to 10 mmol (Synthesis Example 2-2).
  • Manganese oxide (Mn 3 O 4 ) particles obtained in Synthesis Example 1 without addition of citric acid
  • the crystallite sizes of the manganese oxide (Mn 3 O 4 ) particles (added with 10 mmol of citric acid) obtained in Example 2-2 were 50 nm, 83 nm, and 90 nm, respectively.
  • Examples 1-1 to 6-7 Preparation of complex sodium compound and transition metal so that the mass ratio (so-called “mol ratio”) of the sodium compound and transition metal oxide is the value described in Table 1.
  • An oxide was blended. Thereafter, using a planetary ball mill, dry mixing was performed by mechanical milling under the milling conditions described in Table 1. Mechanical milling process, using a ZrO 2 pot and ZrO 2 balls of capacity 80mL, was carried out in an Ar atmosphere.
  • Table 1 also shows the types and sources of the sodium compounds and transition metal oxides constituting the composite, and the crystallite size of the transition metal oxide particles. The crystallite size was calculated based on the Scherrer equation from the half-value width of the diffraction peak of XRD measurement. The “initial capacity” and “maintenance rate” will be described later.
  • Example 2 XRD measurement of complex XRD measurement using a radiation beam having a wavelength of 0.0413 nm was performed on the complex obtained in Example 1-1. The result is shown in FIG. A peak based on a substance other than the raw material was not observed, and it was confirmed that the composite obtained in Example 1-1 was a composite of Na 2 O 2 and Mn 3 O 4 as raw materials.
  • Experimental Example 3 Particle size of Na 2 O 2 particles and Mn 3 O 4 particles constituting the composites SEM images of the composites obtained in Examples 1-1 to 1-4 are shown in FIGS. 3A to 3D, respectively. Show.
  • the particle size distribution and average particle size of Na 2 O 2 particles and Mn 3 O 4 particles constituting the composites obtained in Examples 1-1 to 1-4 are 700 nm to 3.0 ⁇ m ⁇ 2 ⁇ m, 500 nm to They were 2.4 ⁇ m, 1.1 ⁇ m, 1.4 ⁇ m to 3.0 ⁇ m, 2.1 ⁇ m, and 200 nm to 3.0 ⁇ m, 1.1 ⁇ m.
  • Example 4 Charge / Discharge Test 1 (Examples 1-1 to 6-7) Using the composite obtained in Example 1-1, an electrochemical cell (coin cell CR2032) was prepared by the following method, and a charge / discharge test was performed. An active material composite 84% by mass, acetylene black (AB) 8% by mass, and a mixture containing 8% by mass of PTFE binder were prepared, closely bonded to an aluminum mesh, and heat-treated (under reduced pressure at 220 ° C., 10 hours or more) to obtain a positive electrode. A metal sodium foil having a capacity approximately 50 times the test electrode calculated capacity was used as a counter electrode. A polypropylene microporous membrane was used as a separator.
  • good electrode characteristics were obtained in the order of Na 2 O 2 , Na 2 O, and Na 2 CO 3 as the sodium compounds constituting the composite of electrode materials.
  • good electrode characteristics were obtained in the order of transition metals in the transition metal oxide constituting the composite of electrode materials in the order of Mn, Fe, V, Cr, Ni, and Co.
  • good electrode characteristics were obtained in the order of Mn 3 O 4 , Mn 2 O 3 , MnO, and MnO 2 as the manganese oxide constituting the composite of the electrode material. It was found that the crystallite size of the manganese oxide particles constituting the composite of the electrode material is preferably 50 nm to 90 nm, and more preferably 80 nm to 90 nm.
  • Example 5 Charge / discharge test 2 Using the composite obtained in Example 1-1, a coin cell (CR2032) of a sodium ion all battery (1.5 mAh) was produced by the following method, and a charge / discharge test was performed. After mixing 90% by mass of hard carbon, 5% by mass of AB, and 5% by mass of polyvinylidene fluoride (PVdF) to prepare a slurry mixture, the slurry was applied and dried on a copper foil having a thickness of 10 ⁇ m. The copper foil and the coating film were tightly bonded and heat-treated (under reduced pressure at 150 ° C. for 5 hours or more) to obtain a negative electrode. The same positive electrode and electrolytic solution as in Example 4 were used. When charging / discharging was performed in the range of a cut-off potential of 1.0 to 4.2 V, the battery functioned. The result is shown in FIG.
  • Experimental Example 6 The charge-discharge test sodium compound Na 2 O of the lithium ion secondary batteries, except for changing the lithium compound Li 2 O, to obtain a complex in the same manner as in Example 4-1.
  • a positive electrode was produced in the same manner as in Experimental Example 4 using the obtained composite.
  • the result of the charge / discharge test using lithium metal as a counter electrode is shown in FIG.
  • the initial charge capacity was 90 mAh / g
  • the initial discharge capacity was 220 mAh / g
  • the capacity retention rate after 5 cycles was 95%. It was found that when a lithium compound was used instead of the sodium compound, the obtained composite could be used as a positive electrode material for a lithium ion secondary battery.
  • the composite of the present invention can be used as a positive electrode active material for non-aqueous electrolyte secondary batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Provided is a positive electrode material for non-aqueous electrolyte secondary batteries that uses less rare metals, uses a transition metal oxide which can utilize a redox reaction between the trivalent and tetravalent states, has high capacity, can be stably charged and discharged, and does not tend to generate oxygen. The positive electrode material for sodium ion secondary batteries which are non-aqueous electrolyte secondary batteries includes a composite. This composite cpmprises: a sodium compound that includes oxygen; and a transition metal oxide. The ratio (B/A) of the amount B of sodium in the sodium compound to the amount A of the transition metal in the transition metal oxide is 0.5 to 3.0. The sodium compound and the transition metal oxide are particles having a particle size of, for example, 100 nm to 3 μm. The sodium compound is, for example, sodium peroxide. The transition metal in the transition metal oxide is at least one element selected, for example, from Mn, Co, Ni, Fe, V, and Cr.

Description

非水電解質二次電池用の正極材料およびその製造方法Positive electrode material for non-aqueous electrolyte secondary battery and method for producing the same
 本発明は、希少金属の使用量が少ない非水電解質二次電池用の正極材料およびその製造方法に関する。 The present invention relates to a positive electrode material for a non-aqueous electrolyte secondary battery that uses a small amount of rare metal and a method for producing the same.
 非水電解質二次電池であるリチウムイオン二次電池は高いエネルギー密度を有する。このため、リチウムイオン二次電池は、携帯電話やノートパソコン等の小型電源の他、電気自動車等の大型電源としても実用化されている。今後もリチウムイオン二次電池の需要の拡大が期待される。リチウムイオン二次電池の正極材料として、コバルト酸リチウム(LiCoO)がよく用いられている。この正極材料を構成するコバルトは、希少金属のため原料価格が高い。また、コバルトは南米や中国等に偏在しており、コバルト原料の安定供給に不安がある。 A lithium ion secondary battery which is a non-aqueous electrolyte secondary battery has a high energy density. For this reason, the lithium ion secondary battery has been put into practical use as a large power source for an electric vehicle or the like as well as a small power source for a mobile phone or a notebook computer. The demand for lithium-ion secondary batteries is expected to increase in the future. Lithium cobalt oxide (LiCoO 2 ) is often used as a positive electrode material for lithium ion secondary batteries. Cobalt that constitutes the positive electrode material is a rare metal and therefore has a high raw material price. Cobalt is unevenly distributed in South America, China, etc., and there is concern about the stable supply of cobalt raw materials.
 この課題を解決するため、コバルトの使用量を低減でき、コバルトと同様に資源偏在性が高いリチウムを使用しない次世代二次電池として、ナトリウムイオン二次電池が研究されている。ナトリウムイオン二次電池の電荷担体であるナトリウムは、資源量が豊富で安価な材料である。このため、ナトリウムイオン二次電池の実用化が期待されている。鉄酸ナトリウム(NaFeO)やマンガン酸ナトリウム(NaMnO)などは、希少金属を含まないので、ナトリウムイオン二次電池用の正極材料として注目されている。しかしながら、これらの正極材料は、リチウムイオン二次電池用の正極材料と同様に、高温焼成を伴う合成プロセスが必要である。焼成プロセスを経ることなくナトリウムイオン二次電池用の酸化物正極材料が合成できれば、ナトリウムイオン二次電池の製造コストの大幅な削減が期待できる。 In order to solve this problem, a sodium ion secondary battery has been studied as a next-generation secondary battery that can reduce the amount of cobalt used and does not use lithium, which has high resource uneven distribution like cobalt. Sodium, which is a charge carrier for sodium ion secondary batteries, is a resource-rich and inexpensive material. For this reason, the practical use of a sodium ion secondary battery is expected. Such as sodium ferrate (NaFeO 2) or sodium permanganate (NaMnO 2) Since not contain rare metals, it is attracting attention as a positive electrode material for a sodium ion secondary battery. However, like these positive electrode materials for lithium ion secondary batteries, these positive electrode materials require a synthesis process involving high-temperature firing. If an oxide cathode material for a sodium ion secondary battery can be synthesized without going through a firing process, a significant reduction in the manufacturing cost of the sodium ion secondary battery can be expected.
 フッ化ナトリウムと遷移金属フッ化物をメカニカルミリング処理することによって、焼成プロセスを経ずに作製したナトリウムイオン二次電池用正極材料が、特許文献1に記載されている。特許文献1によれば、この正極材料は80mAh/g程度の可逆容量を示している。しかし、この正極材料は、主に遷移金属の二価と三価を利用した充放電反応であるため、動作電圧を高くしにくい。 Patent Document 1 discloses a positive electrode material for a sodium ion secondary battery produced by subjecting sodium fluoride and transition metal fluoride to a mechanical milling treatment without passing through a firing process. According to Patent Document 1, this positive electrode material exhibits a reversible capacity of about 80 mAh / g. However, since this positive electrode material is mainly a charge / discharge reaction utilizing bivalent and trivalent transition metals, it is difficult to increase the operating voltage.
 また、酸化リチウムと酸化コバルトをメカニカルミリングで複合化したリチウムイオン二次電池用正極が、非特許文献1に記載されている。非特許文献1に記載された正極は、酸化リチウム中に含まれる酸素イオンの酸化還元反応を利用しており、コバルト酸リチウムと同程度の可逆容量を示している。しかし、このリチウムイオン二次電池を一定電位以上に充電すると、正極材料の酸化リチウムが不可逆的に分解して酸素を発生し、リチウムイオン二次電池が劣化するという問題がある。 Further, Non-Patent Document 1 discloses a positive electrode for a lithium ion secondary battery in which lithium oxide and cobalt oxide are combined by mechanical milling. The positive electrode described in Non-Patent Document 1 utilizes a redox reaction of oxygen ions contained in lithium oxide, and exhibits a reversible capacity comparable to that of lithium cobaltate. However, when this lithium ion secondary battery is charged to a certain potential or higher, lithium oxide as the positive electrode material is irreversibly decomposed to generate oxygen, which deteriorates the lithium ion secondary battery.
特開2014-220203号公報JP 2014-220203 A
 本発明は、上記の問題に鑑みてなされたものであり、希少金属の使用量が少なく、三価と四価の間の酸化還元反応が利用できる遷移金属酸化物を用いて、高容量で、充放電が安定してでき、酸素が発生しにくい非水電解質二次電池用の正極材料を提供することを主な目的とする。 The present invention has been made in view of the above problems, and uses a transition metal oxide that uses a rare metal in a small amount and can utilize a redox reaction between trivalent and tetravalent, and has a high capacity. It is a main object to provide a positive electrode material for a non-aqueous electrolyte secondary battery that can be stably charged and discharged and hardly generate oxygen.
 本発明者らは、上記目的を達成すべく鋭意研究を重ねてきた。その結果、ナトリウムを含有する化合物と遷移金属酸化物とを複合化することにより、その複合体が高容量で、安定して充放電できることを見出した。 The present inventors have intensively studied to achieve the above object. As a result, it has been found that by complexing a compound containing sodium and a transition metal oxide, the complex has a high capacity and can be stably charged and discharged.
 本発明のある態様の複合体は、酸素を含有するナトリウム化合物と遷移金属酸化物とを有する複合体であって、遷移金属酸化物中の遷移金属の物質量Aに対するナトリウム化合物中のナトリウムの物質量Bの比(B/A)が0.5~3.0である。本発明のナトリウムイオン二次電池の正極材料はこの複合体を含有する。本発明のナトリウムイオン二次電池は、この正極材料を正極活物質として含む正極と、負極と、電解質とを有する。 A complex of an embodiment of the present invention is a complex having a sodium compound containing oxygen and a transition metal oxide, wherein the substance of sodium in the sodium compound with respect to the substance amount A of the transition metal in the transition metal oxide The ratio of quantity B (B / A) is 0.5 to 3.0. The positive electrode material of the sodium ion secondary battery of the present invention contains this composite. The sodium ion secondary battery of the present invention has a positive electrode containing this positive electrode material as a positive electrode active material, a negative electrode, and an electrolyte.
 本発明の他の態様の複合体は、酸素を含有するリチウム化合物と遷移金属酸化物とを有する複合体であって、遷移金属酸化物中の遷移金属の物質量Aに対するリチウム化合物中のリチウムの物質量Cの比(C/A)が0.5~3.0である。本発明のリチウムイオン二次電池用の正極材料はこの複合体を含有する。本発明のリチウムイオン二次電池は、この正極材料を正極活物質として含む正極と、負極と、電解質とを有する。 The composite of another aspect of the present invention is a composite having a lithium compound containing oxygen and a transition metal oxide, wherein the lithium in the lithium compound with respect to the substance amount A of the transition metal in the transition metal oxide. The ratio of substance amount C (C / A) is 0.5 to 3.0. The positive electrode material for a lithium ion secondary battery of the present invention contains this composite. The lithium ion secondary battery of the present invention has a positive electrode containing the positive electrode material as a positive electrode active material, a negative electrode, and an electrolyte.
 本発明のある態様の複合体の製造方法は、酸素を含有するナトリウム化合物と遷移金属酸化物とを有する複合体の製造方法であって、遷移金属酸化物中の遷移金属の物質量Aに対するナトリウム化合物中のナトリウムの物質量Bの比(B/A)が0.5~3.0となるように、遷移金属酸化物とナトリウム化合物とを配合した後、混合することによって複合体を得る。 A method for producing a composite according to an aspect of the present invention is a method for producing a composite having an oxygen-containing sodium compound and a transition metal oxide, wherein sodium relative to the substance amount A of the transition metal in the transition metal oxide. The transition metal oxide and the sodium compound are blended so that the ratio (B / A) of the substance amount B of sodium in the compound is 0.5 to 3.0, and then mixed to obtain a composite.
 本発明の他の態様の複合体の製造方法は、酸素を含有するリチウム化合物と遷移金属酸化物とを有する複合体の製造方法であって、遷移金属酸化物中の遷移金属の物質量Aに対するリチウム化合物中のリチウムの物質量Cの比(C/A)が0.5~3.0となるように、リチウム化合物と遷移金属酸化物を配合した後、混合することによって複合体を得る。 A method for producing a composite according to another aspect of the present invention is a method for producing a composite having an oxygen-containing lithium compound and a transition metal oxide, with respect to the amount A of the transition metal in the transition metal oxide. The composite is obtained by mixing the lithium compound and the transition metal oxide so that the ratio (C / A) of the substance amount C of lithium in the lithium compound is 0.5 to 3.0 and then mixing them.
 本発明によれば、高容量で、希少金属の使用量を抑えた非水電解質二次電池用の正極材料が、焼成プロセスを経ることなく得られる。 According to the present invention, a positive electrode material for a non-aqueous electrolyte secondary battery having a high capacity and a reduced amount of rare metal can be obtained without going through a firing process.
実験例1で得られたマンガン酸化物のX線回折図。4 is an X-ray diffraction pattern of the manganese oxide obtained in Experimental Example 1. FIG. 実施例1-1で得られたNaとMnの複合体のX線回折図。X-ray diffraction pattern of the complex of Na 2 O 2 and Mn 3 O 4 obtained in Example 1-1. 実施例1-1で得られたNaとMnの複合体のSEM画像。Complex of SEM images of Example Na 2 O 2 obtained in 1-1 and Mn 3 O 4. 実施例1-2で得られたNaとMnの複合体のSEM画像。Complex of SEM images of the Na 2 O 2 obtained in Example 1-2 Mn 3 O 4. 実施例1-3で得られたNaとMnの複合体のSEM画像。The SEM image of the complex of Na 2 O 2 and Mn 3 O 4 obtained in Example 1-3. 実施例1-4で得られたNaとMnの複合体のSEM画像。Complex of SEM images of Example Na 2 O 2 obtained in 1-4 and Mn 3 O 4. 実施例1-1で得られた複合体から作製したナトリウムイオン二次電池用正極の充放電試験の結果を示すグラフ。6 is a graph showing the results of a charge / discharge test of a positive electrode for sodium ion secondary batteries produced from the composite obtained in Example 1-1. 実施例1-2で得られた複合体から作製したナトリウムイオン二次電池用正極の充放電試験の結果を示すグラフ。The graph which shows the result of the charging / discharging test of the positive electrode for sodium ion secondary batteries produced from the composite_body | complex obtained in Example 1-2. 実施例1-3で得られた複合体から作製したナトリウムイオン二次電池用正極の充放電試験の結果を示すグラフ。The graph which shows the result of the charging / discharging test of the positive electrode for sodium ion secondary batteries produced from the composite_body | complex obtained in Example 1-3. 実施例1-4で得られた複合体から作製したナトリウムイオン二次電池用正極の充放電試験の結果を示すグラフ。The graph which shows the result of the charging / discharging test of the positive electrode for sodium ion secondary batteries produced from the composite_body | complex obtained in Example 1-4. 実施例2-1で得られた複合体から作製したナトリウムイオン二次電池用正極の充放電試験の結果を示すグラフ。The graph which shows the result of the charging / discharging test of the positive electrode for sodium ion secondary batteries produced from the composite_body | complex obtained in Example 2-1. 実施例2-2で得られた複合体から作製したナトリウムイオン二次電池用正極の充放電試験の結果を示すグラフ。The graph which shows the result of the charging / discharging test of the positive electrode for sodium ion secondary batteries produced from the composite_body | complex obtained in Example 2-2. 実施例3-1で得られた複合体から作製したナトリウムイオン二次電池用正極の充放電試験の結果を示すグラフ。6 is a graph showing the results of a charge / discharge test of a positive electrode for a sodium ion secondary battery produced from the composite obtained in Example 3-1. 実施例3-2で得られた複合体から作製したナトリウムイオン二次電池用正極の充放電試験の結果を示すグラフ。The graph which shows the result of the charging / discharging test of the positive electrode for sodium ion secondary batteries produced from the composite_body | complex obtained in Example 3-2. 実施例3-3で得られた複合体から作製したナトリウムイオン二次電池用正極の充放電試験の結果を示すグラフ。The graph which shows the result of the charging / discharging test of the positive electrode for sodium ion secondary batteries produced from the composite_body | complex obtained in Example 3-3. 実施例4-1で得られた複合体から作製したナトリウムイオン二次電池用正極の充放電試験の結果を示すグラフ。The graph which shows the result of the charging / discharging test of the positive electrode for sodium ion secondary batteries produced from the composite_body | complex obtained in Example 4-1. 実施例4-2で得られた複合体から作製したナトリウムイオン二次電池用正極の充放電試験の結果を示すグラフ。The graph which shows the result of the charging / discharging test of the positive electrode for sodium ion secondary batteries produced from the composite_body | complex obtained in Example 4-2. 実施例5-1で得られた複合体から作製したナトリウムイオン二次電池用正極の充放電試験の結果を示すグラフ。The graph which shows the result of the charging / discharging test of the positive electrode for sodium ion secondary batteries produced from the composite_body | complex obtained in Example 5-1. 実施例5-2で得られた複合体から作製したナトリウムイオン二次電池用正極の充放電試験の結果を示すグラフ。The graph which shows the result of the charging / discharging test of the positive electrode for sodium ion secondary batteries produced from the composite_body | complex obtained in Example 5-2. 実施例6-1で得られた複合体から作製したナトリウムイオン二次電池用正極の充放電試験の結果を示すグラフ。The graph which shows the result of the charging / discharging test of the positive electrode for sodium ion secondary batteries produced from the composite_body | complex obtained in Example 6-1. 実施例6-2で得られた複合体から作製したナトリウムイオン二次電池用正極の充放電試験の結果を示すグラフ。The graph which shows the result of the charging / discharging test of the positive electrode for sodium ion secondary batteries produced from the composite_body | complex obtained in Example 6-2. 実施例6-3で得られた複合体から作製したナトリウムイオン二次電池用正極の充放電試験の結果を示すグラフ。The graph which shows the result of the charging / discharging test of the positive electrode for sodium ion secondary batteries produced from the composite_body | complex obtained in Example 6-3. 実施例6-4で得られた複合体から作製したナトリウムイオン二次電池用正極の充放電試験の結果を示すグラフ。The graph which shows the result of the charging / discharging test of the positive electrode for sodium ion secondary batteries produced from the composite_body | complex obtained in Example 6-4. 実施例6-5で得られた複合体から作製したナトリウムイオン二次電池用正極の充放電試験の結果を示すグラフ。6 is a graph showing the results of a charge / discharge test of a positive electrode for sodium ion secondary batteries produced from the composite obtained in Example 6-5. 実施例6-6で得られた複合体から作製したナトリウムイオン二次電池用正極の充放電試験の結果を示すグラフ。6 is a graph showing the results of a charge / discharge test of a positive electrode for sodium ion secondary batteries produced from the composite obtained in Example 6-6. 実施例6-7で得られた複合体から作製したナトリウムイオン二次電池用正極材料の充放電試験の結果を示すグラフ。7 is a graph showing the results of a charge / discharge test of a positive electrode material for a sodium ion secondary battery produced from the composite obtained in Example 6-7. 実験例5の充放電試験の結果を示すグラフ。The graph which shows the result of the charging / discharging test of Experimental example 5. 実験例6の充放電試験の結果を示すグラフ。The graph which shows the result of the charging / discharging test of Experimental example 6.
 以下、本発明の複合体、複合体の製造方法、正極材料、ナトリウムイオン二次電池、およびリチウムイオン二次電池について、実施形態と実施例に基づいて説明する。なお、重複説明は適宜省略する。また、2つの数値の間に「~」を記載して数値範囲を表す場合には、この2つの数値も数値範囲に含まれる。 Hereinafter, the composite of the present invention, the method for producing the composite, the positive electrode material, the sodium ion secondary battery, and the lithium ion secondary battery will be described based on embodiments and examples. In addition, duplication description is abbreviate | omitted suitably. In addition, when “˜” is described between two numerical values to represent a numerical range, these two numerical values are also included in the numerical range.
(ナトリウム化合物を含有する複合体)
 本発明の第一実施形態に係る複合体は、酸素を含有するナトリウム化合物と遷移金属酸化物とを有している。本実施形態の複合体は、このナトリウム化合物と遷移金属酸化物との均一混合物である。酸素を含有するナトリウム化合物としては、酸化ナトリウム(NaO)、過酸化ナトリウム(Na)、超酸化ナトリウム(NaO)、水酸化ナトリウム(NaOH)、炭酸ナトリウム(NaCO)、炭酸水素ナトリウム(NaHCO)などのナトリウム塩等が例示できる。これらの中でも、酸素とナトリウムのみからなるナトリウム化合物と遷移金属酸化物を有する複合体から得られる正極を用いると、ナトリウムイオン二次電池の充放電サイクル特性を向上させることができる。ナトリウムと酸素のみからなるナトリウム化合物としては、過酸化ナトリウムが特に好ましい。
(Composite containing sodium compound)
The composite according to the first embodiment of the present invention has a sodium compound containing oxygen and a transition metal oxide. The composite of this embodiment is a homogeneous mixture of this sodium compound and transition metal oxide. Sodium compounds containing oxygen include sodium oxide (Na 2 O), sodium peroxide (Na 2 O 2 ), sodium superoxide (NaO 2 ), sodium hydroxide (NaOH), sodium carbonate (Na 2 CO 3 ). And sodium salts such as sodium bicarbonate (NaHCO 3 ). Among these, when a positive electrode obtained from a composite having a sodium compound consisting of only oxygen and sodium and a transition metal oxide is used, the charge / discharge cycle characteristics of the sodium ion secondary battery can be improved. As a sodium compound consisting only of sodium and oxygen, sodium peroxide is particularly preferable.
 遷移金属は、Mn、Co、Ni、Fe、V、およびCrの中から選ばれる少なくとも一種であることが好ましい。遷移金属酸化物としては、一酸化マンガン(MnO)、三酸化二マンガン(Mn)、三酸化四マンガン(Mn)、四酸化三コバルト(Co)、一酸化ニッケル(NiO)、四酸化三鉄(Fe)、三酸化二バナジウム(V)、三酸化二クロム(Cr)等が例示できる。ナトリウム化合物または遷移金属酸化物は、市販品を使用してもよいし、合成品を使用してもよい。 The transition metal is preferably at least one selected from Mn, Co, Ni, Fe, V, and Cr. Examples of transition metal oxides include manganese monoxide (MnO), dimanganese trioxide (Mn 2 O 3 ), tetramanganese trioxide (Mn 3 O 4 ), tricobalt tetroxide (Co 3 O 4 ), nickel monoxide. (NiO), triiron tetroxide (Fe 3 O 4 ), divanadium trioxide (V 2 O 3 ), dichromium trioxide (Cr 2 O 3 ) and the like can be exemplified. As the sodium compound or the transition metal oxide, a commercially available product or a synthetic product may be used.
 遷移金属酸化物は沈殿法により合成することができる。具体的には、遷移金属のイオンを含む水溶液、例えば、硫酸塩、硝酸塩、または塩化物等の水溶液をアルカリ水溶液中に滴下し沈殿物を生成した後、ろ過・乾燥して水分を除去して遷移金属酸化物が得られる。複数の遷移金属を含む酸化物は、複数の遷移金属イオンを含む水溶液をアルカリ水溶液に沈殿させ、ろ過・乾燥することで得られる。アルカリ水溶液としては、例えば、水酸化ナトリウム水溶液、炭酸ナトリウム水溶液、水酸化リチウム水溶液、水酸化カリウム水溶液等が挙げられる。これらのアルカリ水溶液は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The transition metal oxide can be synthesized by a precipitation method. Specifically, an aqueous solution containing transition metal ions, for example, an aqueous solution of sulfate, nitrate, or chloride is dropped into an alkaline aqueous solution to form a precipitate, followed by filtration and drying to remove moisture. A transition metal oxide is obtained. The oxide containing a plurality of transition metals can be obtained by precipitating an aqueous solution containing a plurality of transition metal ions in an alkaline aqueous solution, followed by filtration and drying. Examples of the alkaline aqueous solution include a sodium hydroxide aqueous solution, a sodium carbonate aqueous solution, a lithium hydroxide aqueous solution, and a potassium hydroxide aqueous solution. These alkaline aqueous solutions may be used alone or in combination of two or more.
 温度10℃~50℃、好ましくは20℃~30℃程度で、pHが9~14、好ましくは12~14となるように調整したアルカリ水溶液に、遷移金属イオンを含む水溶液を少しずつ添加し、沈殿物を生成させることが好ましい。アルカリ水溶液を2種以上使用する場合、各水溶液は、別途添加してもよいし、同時に添加してもよい。ナトリウム化合物および遷移金属酸化物の形状については特に制限がないが、取り扱い性の観点から、粒子状であることが好ましい。 An aqueous solution containing transition metal ions is added little by little to an alkaline aqueous solution adjusted to have a temperature of 10 ° C. to 50 ° C., preferably 20 ° C. to 30 ° C. and a pH of 9 to 14, preferably 12 to 14, It is preferable to produce a precipitate. When using 2 or more types of aqueous alkali solution, each aqueous solution may be added separately or may be added simultaneously. Although there is no restriction | limiting in particular about the shape of a sodium compound and a transition metal oxide, From a viewpoint of handleability, it is preferable that it is a particulate form.
 本実施形態の複合体は、非水電解質二次電池用の正極活物質等の正極材料として使用できる。なお、本実施形態の複合体は、ナトリウム化合物と遷移金属酸化物以外に、導電性の向上を目的としたカーボンブラック等の炭素系材料や、複合体の表面被覆物質としてのフッ化物やリン酸塩などを少量含んでいてもよい。遷移金属酸化物中の遷移金属の物質量Aに対するナトリウム化合物中のナトリウムの物質量Bの比(B/A)、すなわち「ナトリウム化合物中のナトリウムのモル量/遷移金属酸化物中の遷移金属のモル量」は、0.5~3.0であることが好ましく、2/3~3.0であることがさらに好ましい。 The composite of this embodiment can be used as a positive electrode material such as a positive electrode active material for a non-aqueous electrolyte secondary battery. In addition to the sodium compound and the transition metal oxide, the composite of the present embodiment includes a carbon-based material such as carbon black for the purpose of improving conductivity, fluoride and phosphoric acid as a surface coating substance of the composite. It may contain a small amount of salt. The ratio (B / A) of the amount B of sodium in the sodium compound to the amount A of the transition metal in the transition metal oxide (B / A), that is, "molar amount of sodium in the sodium compound / transition metal in the transition metal oxide The “molar amount” is preferably 0.5 to 3.0, more preferably 2/3 to 3.0.
(リチウム化合物を含有する複合体)
 本発明の第二実施形態に係る複合体は、酸素を含有するリチウム化合物と遷移金属酸化物とを有している。遷移金属酸化物中の遷移金属の物質量Aに対するリチウム化合物中のリチウムの物質量Cの比(C/A)は0.5~3.0である。リチウム化合物は酸化リチウムまたは過酸化リチウムであることが好ましい。
(Composite containing lithium compound)
The composite according to the second embodiment of the present invention has a lithium compound containing oxygen and a transition metal oxide. The ratio (C / A) of the substance amount C of lithium in the lithium compound to the substance amount A of transition metal in the transition metal oxide is 0.5 to 3.0. The lithium compound is preferably lithium oxide or lithium peroxide.
(ナトリウムイオン二次電池用の正極材料)
 本発明の実施形態に係るナトリウムイオン二次電池用の正極材料は、第一実施形態の複合体を含有する。この正極材料は高容量で充放電サイクル特性に優れているため、この正極材料を含有する正極を用いたナトリウムイオン二次電池を高容量化しつつ、安価に作製することができる。また、このナトリウムイオン二次電池では、充電時におけるナトリウム化合物の酸化分解で発生する酸素と遷移金属酸化物が反応し、高価数の遷移金属酸化物に変化する。その後の放電および充電反応は、遷移金属酸化物とナトリウムイオンの反応により進行する。このように、初期充電反応時に遷移金属酸化物と酸素との反応を利用することによって、電池内部の酸素ガス発生を抑制することができる。
(Positive electrode material for sodium ion secondary battery)
The positive electrode material for a sodium ion secondary battery according to an embodiment of the present invention contains the composite according to the first embodiment. Since this positive electrode material has a high capacity and excellent charge / discharge cycle characteristics, a sodium ion secondary battery using a positive electrode containing this positive electrode material can be produced at a low cost while increasing its capacity. In this sodium ion secondary battery, oxygen generated by oxidative decomposition of the sodium compound during charging reacts with the transition metal oxide, and changes to an expensive number of transition metal oxides. Subsequent discharging and charging reactions proceed by the reaction of the transition metal oxide and sodium ions. Thus, by using the reaction between the transition metal oxide and oxygen during the initial charging reaction, the generation of oxygen gas inside the battery can be suppressed.
 また、第一実施形態の複合体では、ナトリウム化合物の含有量を任意に調整できる。このため、本実施形態の正極材料を含む正極と、初期充放電時に不可逆容量を有する負極材料を含む負極を組み合わせた二次電池を作製する場合、ナトリウム化合物を多く含む第一実施形態の複合体を正極に用いることで、負極の不可逆容量を補償できる。したがって、本実施形態のナトリウムイオン二次電池用の正極材料は、様々な負極を備えるナトリウムイオン二次電池の正極に使用できる。 Further, in the complex of the first embodiment, the content of the sodium compound can be arbitrarily adjusted. For this reason, when producing the secondary battery which combined the positive electrode containing the positive electrode material of this embodiment, and the negative electrode containing the negative electrode material which has an irreversible capacity | capacitance at the time of initial stage charge / discharge, the composite_body | complex of 1st embodiment containing many sodium compounds. Can be compensated for the irreversible capacity of the negative electrode. Therefore, the positive electrode material for a sodium ion secondary battery according to this embodiment can be used for a positive electrode of a sodium ion secondary battery including various negative electrodes.
 なお、複合体に含まれるナトリウム化合物および遷移金属酸化物が粒子である場合、これらの粒子の粒径は複合体から作製する電極の特性に影響する。粒径が小さすぎると比表面積が大きくなり、充放電反応時に電極表面での副反応が起こりやすくなり、良好な電極特性が得られない。また、粒径が大きすぎると、粒子内のイオンの拡散に時間がかかり、均一に反応しにくくなるため、電極性能が低下する。 In addition, when the sodium compound and the transition metal oxide contained in the composite are particles, the particle size of these particles affects the characteristics of the electrode manufactured from the composite. If the particle size is too small, the specific surface area becomes large, and side reactions on the electrode surface tend to occur during the charge / discharge reaction, and good electrode characteristics cannot be obtained. On the other hand, if the particle size is too large, it takes time to diffuse the ions in the particle and it becomes difficult to react uniformly, so that the electrode performance is lowered.
 電極の良好なサイクル特性を得るためには、ナトリウム化合物および遷移金属酸化物が、粒径100nm~3μmの粒子であることが好ましく、2μm程度であることが特に好ましい。ここで粒径は、複合体のSEM画像から任意の10個程度の粒子を選択して外径を計測し、これらの計測値の加算平均値である。本実施形態の複合体はナトリウム化合物を含有するが、ナトリウム化合物に代えて、またはナトリウム化合物と併せて、リチウム化合物等の他のアルカリ金属化合物を含有していてもよい。 In order to obtain good cycle characteristics of the electrode, the sodium compound and the transition metal oxide are preferably particles having a particle diameter of 100 nm to 3 μm, particularly preferably about 2 μm. Here, the particle diameter is an average value of these measured values obtained by selecting about 10 arbitrary particles from the SEM image of the composite and measuring the outer diameter. Although the composite of this embodiment contains a sodium compound, it may contain other alkali metal compounds such as a lithium compound in place of or together with the sodium compound.
(リチウムイオン二次電池用の正極材料)
 本発明の実施形態に係るリチウムイオン二次電池用の正極材料は、第二実施形態の複合体を含有する。この正極材料は高容量で充放電サイクル特性に優れているため、この正極材料を含有する正極を用いたリチウムイオン二次電池を高容量化しつつ、安価に作製することができる。また、このリチウムイオン二次電池では、充電時におけるリチウム化合物の酸化分解で発生する酸素と、遷移金属酸化物が反応し、高価数の遷移金属酸化物に変化する。その後の放電および充電反応は、遷移金属酸化物とリチウムイオンの反応により進行する。このように、初期充電反応時に遷移金属酸化物と酸素との反応を利用することによって、電池内部の酸素ガス発生を抑制することができる。
(Positive electrode material for lithium ion secondary battery)
The positive electrode material for a lithium ion secondary battery according to an embodiment of the present invention contains the composite according to the second embodiment. Since this positive electrode material has a high capacity and excellent charge / discharge cycle characteristics, a lithium ion secondary battery using a positive electrode containing this positive electrode material can be produced at a low cost while increasing its capacity. Further, in this lithium ion secondary battery, oxygen generated by oxidative decomposition of the lithium compound at the time of charging reacts with the transition metal oxide to change into an expensive transition metal oxide. The subsequent discharging and charging reaction proceeds by the reaction between the transition metal oxide and lithium ions. Thus, by using the reaction between the transition metal oxide and oxygen during the initial charging reaction, the generation of oxygen gas inside the battery can be suppressed.
 また、第二実施形態の複合体では、リチウム化合物の含有量を任意に調整できる。このため、本実施形態の正極材料を含む正極と、初期充放電時に不可逆容量を有する負極材料を含む負極を組み合わせた二次電池を作製する場合、リチウム化合物を多く含む第二実施形態の複合体を正極に用いることで、負極の不可逆容量を補償することが可能である。したがって、本実施形態のリチウムイオン二次電池用の正極材料は、様々な負極を備えるリチウムイオン二次電池の正極に使用できる。 Moreover, in the composite of the second embodiment, the content of the lithium compound can be arbitrarily adjusted. For this reason, when producing the secondary battery which combined the positive electrode containing the positive electrode material of this embodiment, and the negative electrode containing the negative electrode material which has an irreversible capacity | capacitance at the time of initial stage charge / discharge, the composite_body | complex of 2nd embodiment containing many lithium compounds. Can be compensated for the irreversible capacity of the negative electrode. Therefore, the positive electrode material for a lithium ion secondary battery according to this embodiment can be used for a positive electrode of a lithium ion secondary battery including various negative electrodes.
(ナトリウム化合物を含有する複合体の製造方法)
 本発明の実施形態に係る複合体の製造方法は、酸素を含有するナトリウム化合物と遷移金属酸化物とを有する複合体の製造方法である。遷移金属酸化物中の遷移金属の物質量Aに対するナトリウム化合物中のナトリウムの物質量Bの比(B/A)が0.5~3.0となるように、遷移金属酸化物とナトリウム化合物とを配合した後、混合することによって複合体を得る。
(Method for producing complex containing sodium compound)
The manufacturing method of the composite_body | complex which concerns on embodiment of this invention is a manufacturing method of the composite_body | complex which has the sodium compound and transition metal oxide which contain oxygen. The transition metal oxide and the sodium compound are adjusted so that the ratio (B / A) of the sodium substance B in the sodium compound to the substance A of the transition metal in the transition metal oxide is 0.5 to 3.0. After blending, a composite is obtained by mixing.
 混合方法としては、乳鉢混合、メカニカルミリング処理、ナトリウム化合物と遷移金属酸化物をそれぞれ溶媒中に分散させた後に混合する方法、またはナトリウム化合物と遷移金属酸化物を溶媒中で一度に分散させて混合する方法等が採用できる。ナトリウム化合物と遷移金属酸化物を溶媒に分散してから混合を行う場合には、分散性の向上と均一な混合の観点から、ナトリウム化合物、遷移金属酸化物、および溶媒の混合物に超音波を照射することがより好ましい。これらの混合方法の中でも、メカニカルミリング処理が好ましい。ナトリウム化合物と遷移金属酸化物を、より均一に混合できるからである。メカニカルミリング装置としては、例えば、ボールミル、振動ミル、ターボミル、およびディスクミル等を用いることができる。これらの中でもボールミルを用いた混合が好ましい。 As a mixing method, mortar mixing, mechanical milling treatment, a method in which a sodium compound and a transition metal oxide are dispersed in a solvent and then mixed, or a sodium compound and a transition metal oxide are dispersed in a solvent at a time and mixed. The method of doing etc. can be adopted. When mixing after mixing the sodium compound and transition metal oxide in the solvent, the mixture of sodium compound, transition metal oxide, and solvent is irradiated with ultrasonic waves from the viewpoint of improving dispersibility and uniform mixing. More preferably. Among these mixing methods, mechanical milling treatment is preferable. This is because the sodium compound and the transition metal oxide can be mixed more uniformly. As the mechanical milling device, for example, a ball mill, a vibration mill, a turbo mill, a disc mill, or the like can be used. Among these, mixing using a ball mill is preferable.
 混合時の雰囲気は特に制限がなく、例えば、ArやN等の不活性ガス雰囲気、または大気雰囲気等が採用できるが、酸化ナトリウムなどの大気中で反応性が高い原料を用いる場合には、不活性ガス雰囲気でナトリウム化合物と遷移金属酸化物を混合することが好ましい。なお、遷移金属酸化物は、結晶子サイズ50nm~90nmの粒子であることが好ましく、複合体に含まれるナトリウム化合物および遷移金属酸化物は、粒径100nm~3μmの粒子であることが好ましい。なお、遷移金属酸化物の結晶子サイズは、XRD測定の遷移金属酸化物構造に帰属される回折ピークの半価幅から、Scherrerの式に基づいて算出する。ナトリウム化合物は過酸化ナトリウムであることが好ましい。また、遷移金属酸化物中の遷移金属は、Mn、Co、Ni、Fe、V、およびCrから選ばれる少なくとも一種であることが好ましい。 The atmosphere at the time of mixing is not particularly limited, and for example, an inert gas atmosphere such as Ar or N 2 , or an air atmosphere can be adopted, but when using a raw material having high reactivity in the air such as sodium oxide, It is preferable to mix the sodium compound and the transition metal oxide in an inert gas atmosphere. The transition metal oxide is preferably a particle having a crystallite size of 50 nm to 90 nm, and the sodium compound and the transition metal oxide contained in the composite are preferably particles having a particle diameter of 100 nm to 3 μm. The crystallite size of the transition metal oxide is calculated based on the Scherrer equation from the half width of the diffraction peak attributed to the transition metal oxide structure measured by XRD. The sodium compound is preferably sodium peroxide. The transition metal in the transition metal oxide is preferably at least one selected from Mn, Co, Ni, Fe, V, and Cr.
(リチウム化合物を含有する複合体の製造方法)
 本発明の他の実施形態に係る複合体の製造方法は、酸素を含有するリチウム化合物と遷移金属酸化物とを有する複合体の製造方法である。遷移金属酸化物中の遷移金属の物質量Aに対するリチウム化合物中のリチウムの物質量Cの比(C/A)が0.5~3.0となるように、リチウム化合物と遷移金属酸化物を配合した後、混合することによって複合体を得る。
(Method for producing composite containing lithium compound)
The method for producing a composite according to another embodiment of the present invention is a method for producing a composite having a lithium compound containing oxygen and a transition metal oxide. The lithium compound and the transition metal oxide are mixed so that the ratio (C / A) of the substance amount C of lithium in the lithium compound to the substance amount A of transition metal in the transition metal oxide is 0.5 to 3.0. After compounding, the composite is obtained by mixing.
 リチウム化合物と遷移金属酸化物の混合は、ナトリウム化合物と遷移金属酸化物の混合と同様の方法で行うことができる。なお、遷移金属酸化物は、結晶子サイズ50nm~90nmの粒子であることが好ましく、複合体に含まれるリチウム化合物および遷移金属酸化物は、粒径100nm~3μmの粒子であることが好ましい。リチウム化合物は酸化リチウムまたは過酸化リチウムであることが好ましい。また、遷移金属酸化物中の遷移金属は、Mn、Co、Ni、Fe、V、およびCrの中から選択される少なくとも一種であることが好ましい。 The mixing of the lithium compound and the transition metal oxide can be performed in the same manner as the mixing of the sodium compound and the transition metal oxide. The transition metal oxide is preferably particles having a crystallite size of 50 nm to 90 nm, and the lithium compound and the transition metal oxide contained in the composite are preferably particles having a particle size of 100 nm to 3 μm. The lithium compound is preferably lithium oxide or lithium peroxide. The transition metal in the transition metal oxide is preferably at least one selected from Mn, Co, Ni, Fe, V, and Cr.
(ナトリウムイオン二次電池)
 本発明の実施形態に係るナトリウムイオン二次電池は、本実施形態のナトリウムイオン二次電池の正極材料を正極活物質として含む正極と、負極と、電解質と、セパレータを備えている。このナトリウムイオン二次電池は、例えば、非水電解質ナトリウムイオン二次電池、全固体型ナトリウムイオン二次電池、または金属ナトリウムイオン二次電池等である。これらのナトリウムイオン二次電池の基本的な構造は、本実施形態のナトリウムイオン二次電池用の正極材料を正極活物質として用いることを除いて、公知のナトリウムイオン二次電池の構造と同様とすることができる。本実施形態のナトリウムイオン二次電池の形状についても特に限定がなく、円筒型や角型等の形状が採用できる。
(Sodium ion secondary battery)
The sodium ion secondary battery which concerns on embodiment of this invention is equipped with the positive electrode containing the positive electrode material of the sodium ion secondary battery of this embodiment as a positive electrode active material, the negative electrode, the electrolyte, and the separator. This sodium ion secondary battery is, for example, a non-aqueous electrolyte sodium ion secondary battery, an all-solid-state sodium ion secondary battery, or a metal sodium ion secondary battery. The basic structure of these sodium ion secondary batteries is the same as that of a known sodium ion secondary battery except that the positive electrode material for the sodium ion secondary battery of this embodiment is used as a positive electrode active material. can do. The shape of the sodium ion secondary battery of this embodiment is not particularly limited, and a cylindrical shape, a rectangular shape, or the like can be adopted.
 負極は、ナトリウムを含有する負極材料を負極活物質として含んでいてもよいし、ナトリウムを含有しない負極活物質から構成されていてもよい。負極活物質としては、例えば、難焼結性炭素、ナトリウム金属、スズ、またはこれらを含む合金等、ナトリウムと反応する物質を用いることができる。必要に応じて導電剤やバインダー等を用いて、Al、Cu、Ni、ステンレス、またはカーボン等からなる負極集電体にこれらの負極活物質を担持させることで、負極が作製できる。セパレータは、例えば、ポリエチレンやポリプロピレン等のポリオレフィン樹脂、フッ素樹脂、ナイロン、芳香族アラミド、または無機ガラス等の材質から構成される。セパレータは、多孔質膜、不織布、または織布等の形態の材料を用いることができる。 The negative electrode may contain a negative electrode material containing sodium as a negative electrode active material, or may be composed of a negative electrode active material not containing sodium. As the negative electrode active material, for example, a substance that reacts with sodium, such as hardly sinterable carbon, sodium metal, tin, or an alloy containing these, can be used. A negative electrode can be produced by supporting these negative electrode active materials on a negative electrode current collector made of Al, Cu, Ni, stainless steel, carbon, or the like, using a conductive agent, a binder, or the like as necessary. The separator is made of a material such as polyolefin resin such as polyethylene or polypropylene, fluororesin, nylon, aromatic aramid, or inorganic glass. As the separator, a material in the form of a porous film, a nonwoven fabric, a woven fabric, or the like can be used.
 非水電解質ナトリウムイオン二次電池では、正極活物質である本実施形態のナトリウムイオン二次電池の正極材料、導電剤、およびバインダーを混合した正極合剤を、Al、ステンレス、またはカーボンクロス等の正極集電体に担持させることで、正極が作製できる。導電剤としては、例えば、黒鉛、コークス類、カーボンブラック、または針状カーボン等の炭素材料を用いることができる。非水電解質ナトリウムイオン二次電池の電解質は非水溶媒系の電解液である。この電解液の溶媒としては、カーボネート類、エーテル類、ニトリル類、含硫黄化合物等の公知の非水溶媒系二次電池の電解液の溶媒を用いることができる。 In the non-aqueous electrolyte sodium ion secondary battery, the positive electrode mixture obtained by mixing the positive electrode material, the conductive agent, and the binder of the sodium ion secondary battery of the present embodiment, which is the positive electrode active material, is made of Al, stainless steel, carbon cloth, or the like. A positive electrode can be produced by supporting the positive electrode current collector. As the conductive agent, for example, a carbon material such as graphite, coke, carbon black, or acicular carbon can be used. The electrolyte of the non-aqueous electrolyte sodium ion secondary battery is a non-aqueous solvent based electrolyte. As a solvent for this electrolytic solution, a solvent for an electrolytic solution of a known non-aqueous solvent secondary battery such as carbonates, ethers, nitriles, sulfur-containing compounds and the like can be used.
 全固体型ナトリウムイオン二次電池では、正極活物質としての本実施形態のナトリウムイオン二次電池の正極材料、導電剤、バインダー、および固体電解質等を含む正極合剤を、Ti、Al、Ni、ステンレス等の正極集電体に担持させることで、正極が作製できる。導電剤としては、非水電解質ナトリウムイオン二次電池の場合と同様に、例えば、黒鉛、コークス類、カーボンブラック、または針状カーボン等の炭素材料を用いることができる。全固体型ナトリウムイオン二次電池の固体電解質としては、例えば、ポリエチレンオキサイド系の高分子化合物、ポリオルガノシロキサン鎖およびポリオキシアルキレン鎖の少なくとも一方を含む高分子化合物等のポリマー系固体電解質、硫化物系固体電解質、または酸化物系固体電解質等を用いることができる。 In the all-solid-state sodium ion secondary battery, a positive electrode mixture containing a positive electrode material, a conductive agent, a binder, a solid electrolyte, and the like of the sodium ion secondary battery of this embodiment as a positive electrode active material is used as Ti, Al, Ni, A positive electrode can be produced by supporting it on a positive electrode current collector such as stainless steel. As the conductive agent, similarly to the case of the non-aqueous electrolyte sodium ion secondary battery, for example, a carbon material such as graphite, cokes, carbon black, or acicular carbon can be used. Examples of solid electrolytes for all solid-state sodium ion secondary batteries include polymer solid electrolytes such as polyethylene oxide polymer compounds, polymer compounds containing at least one of polyorganosiloxane chains and polyoxyalkylene chains, and sulfides. A solid electrolyte, an oxide solid electrolyte, or the like can be used.
(リチウムイオン二次電池)
 本発明の実施形態に係るリチウムイオン二次電池は、本実施形態のナトリウムイオン二次電池の正極材料を正極活物質として含む正極と、負極と、電解質とを有する。このリチウムイオン二次電池の基本的な構造は、正極活物質を除いて、公知のリチウムイオン二次電池の構造と同様とすることができる。
(Lithium ion secondary battery)
The lithium ion secondary battery which concerns on embodiment of this invention has the positive electrode containing the positive electrode material of the sodium ion secondary battery of this embodiment as a positive electrode active material, a negative electrode, and electrolyte. The basic structure of the lithium ion secondary battery can be the same as the structure of a known lithium ion secondary battery except for the positive electrode active material.
 以下、実施例を示して本発明を具体的に説明するが、本発明はこれらの実施例のみに限定されない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
合成例1:遷移金属酸化物の作製
 複合体を構成する遷移金属酸化物を以下の方法により作製した。市販の硫酸鉄(FeSO)を蒸留水に溶かして、濃度1Mの硫酸鉄水溶液を得た。濃度1Mの水酸化ナトリウム水溶液にこの硫酸鉄水溶液を少しずつ添加し、沈殿物を生成させた。沈殿物が中性になるまで蒸留水で洗浄し、その後、大気中にて80℃で乾燥させて酸化鉄(Fe)を得た。同様の方法で、硫酸マンガン(MnSO)、硫酸コバルト(CoSO)、硫酸ニッケル(NiSO)、および硫酸鉄(FeSO)と硫酸マンガン(MnSO)の混合物から、酸化マンガン(Mn)、酸化コバルト(Co)、酸化ニッケル(NiO)、および(Fe0.7Mn0.3)をそれぞれ作製した。
Synthesis Example 1 Production of Transition Metal Oxide A transition metal oxide constituting the composite was produced by the following method. Commercial iron sulfate (FeSO 4 ) was dissolved in distilled water to obtain an iron sulfate aqueous solution having a concentration of 1M. The aqueous iron sulfate solution was added little by little to a 1 M sodium hydroxide aqueous solution to form a precipitate. The precipitate was washed with distilled water until neutral, and then dried at 80 ° C. in the air to obtain iron oxide (Fe 3 O 4 ). In a similar manner, manganese oxide (Mn 3 O 4 ), manganese sulfate (Mn 3 O 4 ), cobalt sulfate (CoSO 4 ), nickel sulfate (NiSO 4 ), and a mixture of iron sulfate (FeSO 4 ) and manganese sulfate (MnSO 4 ) 4 ), cobalt oxide (Co 3 O 4 ), nickel oxide (NiO), and (Fe 0.7 Mn 0.3 ) 3 O 4 were produced.
合成例2:結晶子サイズが異なる酸化マンガン(Mn)粒子の作製
 結晶子サイズが異なる酸化マンガン(Mn)粒子を以下の方法により作製した。合成例1と同様の手順で調製した濃度1Mの硫酸マンガン水溶液100mLに、クエン酸を1mmol添加した。このクエン酸を含む硫酸マンガン水溶液を、濃度1Mの水酸化ナトリウム水溶液中に少しずつ添加し、沈殿物を生成させた。その後は合成例1と同様の手順で、酸化マンガン(Mn)粒子を作製した(合成例2-1)。また、クエン酸の添加量を10mmolに変更した点を除いて、合成例2-1と同様にして酸化マンガン(Mn)粒子を作製した(合成例2-2)。
Synthesis Example 2: Manganese oxide (Mn 3 O 4 ) particles having different crystallite sizes Manganese oxide (Mn 3 O 4 ) particles having different crystallite sizes were produced by the following method. 1 mmol of citric acid was added to 100 mL of 1 M aqueous manganese sulfate solution prepared in the same procedure as in Synthesis Example 1. The manganese sulfate aqueous solution containing citric acid was added little by little to a 1 M sodium hydroxide aqueous solution to form a precipitate. Thereafter, manganese oxide (Mn 3 O 4 ) particles were produced in the same procedure as in Synthesis Example 1 (Synthesis Example 2-1). Further, manganese oxide (Mn 3 O 4 ) particles were produced in the same manner as in Synthesis Example 2-1 except that the amount of citric acid added was changed to 10 mmol (Synthesis Example 2-2).
実験例1:酸化マンガン(Mn)粒子のXRD測定
 合成例1、合成例2-1、および合成例2-2で作製した酸化マンガン(Mn)粒子について、Cu-Kα線を用いたXRD測定を行った。その結果を図1(横軸は回折角2θ(°))に示す。クエン酸添加量が多くなるにつれて、XRDのピーク線幅が小さくなることが確認された。XRD測定のMn型構造に帰属される回折ピークの半価幅から、Scherrerの式に基づいて酸化マンガン(Mn)粒子の結晶子サイズを算出した。合成例1で得られた酸化マンガン(Mn)粒子(クエン酸添加無)、合成例2-1で得られた酸化マンガン(Mn)粒子(クエン酸1mmol添加)、および合成例2-2で得られた酸化マンガン(Mn)粒子(クエン酸10mmol添加)の結晶子サイズは、それぞれ50nm、83nm、および90nmであった。
Experimental Example 1: XRD measurement Synthesis Example 1 of manganese oxide (Mn 3 O 4) particles, the Synthesis Examples 2-1, and manganese oxide prepared in Synthesis Example 2-2 (Mn 3 O 4) particles, Cu-K [alpha line The XRD measurement using was performed. The results are shown in FIG. 1 (the horizontal axis is the diffraction angle 2θ (°)). It was confirmed that the peak line width of XRD became smaller as the amount of citric acid added increased. The crystallite size of manganese oxide (Mn 3 O 4 ) particles was calculated based on the Scherrer equation from the half width of the diffraction peak attributed to the Mn 3 O 4 type structure measured by XRD. Manganese oxide (Mn 3 O 4 ) particles obtained in Synthesis Example 1 (without addition of citric acid), Manganese oxide (Mn 3 O 4 ) particles obtained in Synthesis Example 2-1 (addition of 1 mmol of citric acid), and synthesis The crystallite sizes of the manganese oxide (Mn 3 O 4 ) particles (added with 10 mmol of citric acid) obtained in Example 2-2 were 50 nm, 83 nm, and 90 nm, respectively.
実施例1-1~6-7:複合体の作製
 ナトリウム化合物と遷移金属酸化物の物質量比(いわゆる「mol比」)が表1に記載された値となるように、ナトリウム化合物と遷移金属酸化物を配合した。その後、遊星型ボールミルを用い、表1に記載されたミリング条件でメカニカルミリング処理によって乾式混合した。メカニカルミリング処理は、容量80mLのZrO製ポットとZrOボールを使用し、Ar雰囲気で行った。複合体を構成するナトリウム化合物と遷移金属酸化物の種類および出所と、遷移金属酸化物粒子の結晶子サイズも表1に記載した。結晶子サイズは、XRD測定の回折ピークの半価幅から、Scherrerの式に基づいて算出した。「初期容量」と「維持率」については後述する。
Examples 1-1 to 6-7: Preparation of complex sodium compound and transition metal so that the mass ratio (so-called “mol ratio”) of the sodium compound and transition metal oxide is the value described in Table 1. An oxide was blended. Thereafter, using a planetary ball mill, dry mixing was performed by mechanical milling under the milling conditions described in Table 1. Mechanical milling process, using a ZrO 2 pot and ZrO 2 balls of capacity 80mL, was carried out in an Ar atmosphere. Table 1 also shows the types and sources of the sodium compounds and transition metal oxides constituting the composite, and the crystallite size of the transition metal oxide particles. The crystallite size was calculated based on the Scherrer equation from the half-value width of the diffraction peak of XRD measurement. The “initial capacity” and “maintenance rate” will be described later.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
実験例2:複合体のXRD測定
 実施例1-1で得られた複合体について、波長0.0413nmの放射光線を用いたXRD測定を行った。その結果を図2に示す。原料以外の物質に基づくピークが観測されず、実施例1-1で得られた複合体は、原料であるNaとMnの複合体であることが確認された。
Experimental Example 2: XRD measurement of complex XRD measurement using a radiation beam having a wavelength of 0.0413 nm was performed on the complex obtained in Example 1-1. The result is shown in FIG. A peak based on a substance other than the raw material was not observed, and it was confirmed that the composite obtained in Example 1-1 was a composite of Na 2 O 2 and Mn 3 O 4 as raw materials.
実験例3:複合体を構成するNa粒子とMn粒子の粒径
 実施例1-1~1-4で得られた複合体のSEM画像を、図3Aから図3Dにそれぞれ示す。実施例1-1~1-4で得られた複合体を構成するNa粒子とMn粒子の粒径分布および平均粒径は、それぞれ700nm~3.0μm・2μm、500nm~2.4μm・1.1μm、1.4μm~3.0μm・2.1μm、200nm~3.0μm・1.1μmであった。メカニカルミリング処理の時間が長くなるにつれて、原料同士の凝集または反応が進行し、粒径が大きくなっていくことが確認できた。また、ミリング回転速度が小さくなると、混合状態が悪くなり、粒径にばらつきがある複合体が得られることがわかった。
Experimental Example 3: Particle size of Na 2 O 2 particles and Mn 3 O 4 particles constituting the composites SEM images of the composites obtained in Examples 1-1 to 1-4 are shown in FIGS. 3A to 3D, respectively. Show. The particle size distribution and average particle size of Na 2 O 2 particles and Mn 3 O 4 particles constituting the composites obtained in Examples 1-1 to 1-4 are 700 nm to 3.0 μm · 2 μm, 500 nm to They were 2.4 μm, 1.1 μm, 1.4 μm to 3.0 μm, 2.1 μm, and 200 nm to 3.0 μm, 1.1 μm. It was confirmed that as the mechanical milling time increased, the aggregation or reaction of the raw materials progressed and the particle size increased. Further, it was found that when the milling rotational speed is decreased, the mixed state is deteriorated and a composite having a variation in particle diameter can be obtained.
実験例4:充放電試験1(実施例1-1~6-7)
 実施例1-1で得られた複合体を用いて、下記の方法で電気化学セル(コインセルCR2032)を作製し、充放電試験を行った。活物質である複合体84質量%、アセチレンブラック(AB)8質量%、およびPTFEバインダー8質量%を混合した合剤を調製し、アルミニウムメッシュに密着接合させ、加熱処理(減圧中、220℃、10時間以上)して正極を得た。試験電極計算容量の約50倍の容量を有する金属ナトリウム箔を対極として用いた。また、ポリプロピレン微多孔膜をセパレータとして用いた。そして、エチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合液(EC:DEC=1:1(容量%比))にNaPFを溶解したもの(1mol/L)を電解液として用いた。
Experimental Example 4: Charge / Discharge Test 1 (Examples 1-1 to 6-7)
Using the composite obtained in Example 1-1, an electrochemical cell (coin cell CR2032) was prepared by the following method, and a charge / discharge test was performed. An active material composite 84% by mass, acetylene black (AB) 8% by mass, and a mixture containing 8% by mass of PTFE binder were prepared, closely bonded to an aluminum mesh, and heat-treated (under reduced pressure at 220 ° C., 10 hours or more) to obtain a positive electrode. A metal sodium foil having a capacity approximately 50 times the test electrode calculated capacity was used as a counter electrode. A polypropylene microporous membrane was used as a separator. Then, a solution (1 mol / L) of NaPF 6 dissolved in a mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) (EC: DEC = 1: 1 (volume% ratio)) was used as the electrolytic solution.
 表1に示すカットオフ電位の範囲で、電流密度を10mA/gとして充放電試験を行った。その結果を図4に示す。図4に示すように、実施例1-1で得られた複合体を用いた正極は、初期充電容量210mAh/gおよび初期放電容量156mAh/gの高い容量を示した。また、この正極の初期容量に対する15サイクル後の放電容量維持率は90%であった。実施例1-2から6-7で得られた複合体から作製した正極についても同様に充放電試験を行った。その結果を図5から図23にそれぞれに示す。図5から図23に示す充放電曲線をもとに初期容量(充電容量と放電容量)を決定した。その結果を表1に示す。 In the range of the cut-off potential shown in Table 1, a charge / discharge test was conducted at a current density of 10 mA / g. The result is shown in FIG. As shown in FIG. 4, the positive electrode using the composite obtained in Example 1-1 exhibited a high capacity with an initial charge capacity of 210 mAh / g and an initial discharge capacity of 156 mAh / g. Further, the discharge capacity retention ratio after 15 cycles with respect to the initial capacity of the positive electrode was 90%. A charge / discharge test was similarly performed on the positive electrode prepared from the composite obtained in Examples 1-2 to 6-7. The results are shown in FIGS. 5 to 23, respectively. The initial capacity (charge capacity and discharge capacity) was determined based on the charge / discharge curves shown in FIGS. The results are shown in Table 1.
 表1に示すように、電極材料の複合体を構成するナトリウム化合物がNa、NaO、NaCOの順に、良好な電極特性が得られた。一方、電極材料の複合体を構成する遷移金属酸化物中の遷移金属がMn、Fe、V、Cr、Ni、Coの順に、良好な電極特性が得られた。また、電極材料の複合体を構成するマンガン酸化物がMn、Mn、MnO、MnOの順に、良好な電極特性が得られた。電極材料の複合体を構成するマンガン酸化物粒子の結晶子サイズは、50nm~90nmが好ましく、80nm~90nmがさらに好ましいことがわかった。 As shown in Table 1, good electrode characteristics were obtained in the order of Na 2 O 2 , Na 2 O, and Na 2 CO 3 as the sodium compounds constituting the composite of electrode materials. On the other hand, good electrode characteristics were obtained in the order of transition metals in the transition metal oxide constituting the composite of electrode materials in the order of Mn, Fe, V, Cr, Ni, and Co. Moreover, good electrode characteristics were obtained in the order of Mn 3 O 4 , Mn 2 O 3 , MnO, and MnO 2 as the manganese oxide constituting the composite of the electrode material. It was found that the crystallite size of the manganese oxide particles constituting the composite of the electrode material is preferably 50 nm to 90 nm, and more preferably 80 nm to 90 nm.
実験例5:充放電試験2
 実施例1-1で得られた複合体を用いて、下記の方法でナトリウムイオン全電池(1.5mAh)のコインセル(CR2032)を作製し、充放電試験を行った。ハードカーボン90質量%、AB5質量%、およびポリフッ化ビニリデン(PVdF)5質量%を混合してスラリー状の合剤を調整し、厚さ10μmの銅箔上に塗布・乾燥した後、ロールプレスにより銅箔と塗膜とを密着接合させ、加熱処理(減圧中、150℃、5時間以上)して負極を得た。正極と電解液は実施例4と同じものを用いた。カットオフ電位1.0~4.2Vの範囲で充放電を行ったところ、電池として機能した。その結果を図24に示す。
Experimental Example 5: Charge / discharge test 2
Using the composite obtained in Example 1-1, a coin cell (CR2032) of a sodium ion all battery (1.5 mAh) was produced by the following method, and a charge / discharge test was performed. After mixing 90% by mass of hard carbon, 5% by mass of AB, and 5% by mass of polyvinylidene fluoride (PVdF) to prepare a slurry mixture, the slurry was applied and dried on a copper foil having a thickness of 10 μm. The copper foil and the coating film were tightly bonded and heat-treated (under reduced pressure at 150 ° C. for 5 hours or more) to obtain a negative electrode. The same positive electrode and electrolytic solution as in Example 4 were used. When charging / discharging was performed in the range of a cut-off potential of 1.0 to 4.2 V, the battery functioned. The result is shown in FIG.
実験例6:リチウムイオン二次電池の充放電試験
 ナトリウム化合物NaOをリチウム化合物LiOに変更した点を除いて、実施例4-1と同様にして複合体を得た。得られた複合体を用いて、実験例4と同様にして正極を作製した。リチウム金属を対極として充放電試験を行った結果を図25に示す。初期充電容量90mAh/g、初期放電容量220mAh/gを示し、5サイクル後の容量維持率は95%であった。ナトリウム化合物の代わりにリチウム化合物を用いると、得られた複合体は、リチウムイオン二次電池用の正極材料として利用できることがわかった。
Experimental Example 6: The charge-discharge test sodium compound Na 2 O of the lithium ion secondary batteries, except for changing the lithium compound Li 2 O, to obtain a complex in the same manner as in Example 4-1. A positive electrode was produced in the same manner as in Experimental Example 4 using the obtained composite. The result of the charge / discharge test using lithium metal as a counter electrode is shown in FIG. The initial charge capacity was 90 mAh / g, the initial discharge capacity was 220 mAh / g, and the capacity retention rate after 5 cycles was 95%. It was found that when a lithium compound was used instead of the sodium compound, the obtained composite could be used as a positive electrode material for a lithium ion secondary battery.
 本発明の複合体は、非水電解質二次電池用の正極活物質などに利用できる。 The composite of the present invention can be used as a positive electrode active material for non-aqueous electrolyte secondary batteries.

Claims (18)

  1.  酸素を含有するナトリウム化合物と遷移金属酸化物とを有する複合体であって、
     前記遷移金属酸化物中の遷移金属の物質量Aに対する前記ナトリウム化合物中のナトリウムの物質量Bの比(B/A)が0.5~3.0である複合体。
    A complex having a sodium compound containing oxygen and a transition metal oxide,
    A composite in which a ratio (B / A) of a substance amount B of sodium in the sodium compound to a substance amount A of transition metal in the transition metal oxide is 0.5 to 3.0.
  2.  請求項1において、
     前記ナトリウム化合物および前記遷移金属酸化物が、粒径100nm~3μmの粒子である複合体。
    In claim 1,
    A composite in which the sodium compound and the transition metal oxide are particles having a particle diameter of 100 nm to 3 μm.
  3.  請求項1または2において、
     前記ナトリウム化合物が過酸化ナトリウムである複合体。
    In claim 1 or 2,
    A complex wherein the sodium compound is sodium peroxide.
  4.  請求項1から3のいずれかにおいて、
     前記遷移金属がMn、Co、Ni、Fe、V、およびCrの中から選ばれる少なくとも一種である複合体。
    In any one of Claim 1 to 3,
    A composite in which the transition metal is at least one selected from Mn, Co, Ni, Fe, V, and Cr.
  5.  請求項1から4のいずれかの複合体を含有するナトリウムイオン二次電池の正極材料。 A positive electrode material for a sodium ion secondary battery containing the composite according to any one of claims 1 to 4.
  6.  請求項5の正極材料を正極活物質として含む正極と、負極と、電解質とを有するナトリウムイオン二次電池。 A sodium ion secondary battery comprising a positive electrode containing the positive electrode material of claim 5 as a positive electrode active material, a negative electrode, and an electrolyte.
  7.  酸素を含有するリチウム化合物と遷移金属酸化物とを有する複合体であって、
     前記遷移金属酸化物中の遷移金属の物質量Aに対する前記リチウム化合物中のリチウムの物質量Cの比(C/A)が0.5~3.0である複合体。
    A composite having a lithium compound containing oxygen and a transition metal oxide,
    A composite in which a ratio (C / A) of a substance amount C of lithium in the lithium compound to a substance amount A of transition metal in the transition metal oxide is 0.5 to 3.0.
  8.  請求項7において、
     前記リチウム化合物が酸化リチウムである複合体。
    In claim 7,
    A composite in which the lithium compound is lithium oxide.
  9.  請求項7または8の複合体を含有するリチウムイオン二次電池用の正極材料。 A positive electrode material for a lithium ion secondary battery containing the composite according to claim 7 or 8.
  10.  請求項9の正極材料を正極活物質として含む正極と、負極と、電解質とを有するリチウムイオン二次電池。 A lithium ion secondary battery comprising a positive electrode comprising the positive electrode material of claim 9 as a positive electrode active material, a negative electrode, and an electrolyte.
  11.  酸素を含有するナトリウム化合物と遷移金属酸化物とを有する複合体の製造方法であって、
     前記遷移金属酸化物中の遷移金属の物質量Aに対する前記ナトリウム化合物中のナトリウムの物質量Bの比(B/A)が0.5~3.0となるように前記遷移金属酸化物と前記ナトリウム化合物とを配合した後、混合することによって、前記複合体を得る複合体の製造方法。
    A method for producing a composite having a sodium compound containing oxygen and a transition metal oxide,
    The transition metal oxide and the transition metal oxide are mixed so that the ratio (B / A) of the sodium substance B in the sodium compound to the transition metal substance A in the transition metal oxide is 0.5 to 3.0. A method for producing a composite, wherein the composite is obtained by mixing a sodium compound and then mixing.
  12.  請求項11において、
     前記配合前の前記遷移金属酸化物が、結晶子サイズ50nm~90nmの粒子であり、
     前記複合体に含まれる前記ナトリウム化合物および前記遷移金属酸化物が、粒径100nm~3μmの粒子である複合体の製造方法。
    In claim 11,
    The transition metal oxide before blending is a particle having a crystallite size of 50 nm to 90 nm,
    A method for producing a composite, wherein the sodium compound and the transition metal oxide contained in the composite are particles having a particle size of 100 nm to 3 μm.
  13.  請求項11または12において、
     前記ナトリウム化合物が過酸化ナトリウムである複合体の製造方法。
    In claim 11 or 12,
    A method for producing a complex, wherein the sodium compound is sodium peroxide.
  14.  請求項11から13のいずれかにおいて、
     前記遷移金属がMn、Co、Ni、Fe、V、およびCrから選ばれる少なくとも一種である複合体の製造方法。
    In any of claims 11 to 13,
    A method for producing a composite, wherein the transition metal is at least one selected from Mn, Co, Ni, Fe, V, and Cr.
  15.  酸素を含有するリチウム化合物と遷移金属酸化物とを有する複合体の製造方法であって、前記遷移金属酸化物中の遷移金属の物質量Aに対する前記リチウム化合物中のリチウムの物質量Cの比(C/A)が0.5~3.0となるように、前記リチウム化合物と前記遷移金属酸化物を配合した後、混合することによって前記複合体を得る複合体の製造方法。 A method for producing a composite having a lithium compound containing oxygen and a transition metal oxide, wherein a ratio of a substance amount C of lithium in the lithium compound to a substance amount A of transition metal in the transition metal oxide ( A method for producing a composite, wherein the composite is obtained by mixing the lithium compound and the transition metal oxide so that C / A) is from 0.5 to 3.0 and then mixing them.
  16.  請求項15において、
     前記配合前の前記遷移金属酸化物が、結晶子サイズ50nm~90nmの粒子であり、
     前記複合体に含まれる前記リチウム化合物および前記遷移金属酸化物が、粒径100nm~3μmの粒子である複合体の製造方法。
    In claim 15,
    The transition metal oxide before blending is a particle having a crystallite size of 50 nm to 90 nm,
    A method for producing a composite, wherein the lithium compound and the transition metal oxide contained in the composite are particles having a particle diameter of 100 nm to 3 μm.
  17.  請求項15または16において、
     前記リチウム化合物が過酸化リチウムである複合体の製造方法。
    In claim 15 or 16,
    A method for producing a composite, wherein the lithium compound is lithium peroxide.
  18.  請求項15から17のいずれかにおいて、
     前記遷移金属がMn、Co、Ni、Fe、V、およびCrの中から選択される少なくとも一種である正極材料の製造方法。
    In any of claims 15 to 17,
    A method for producing a positive electrode material, wherein the transition metal is at least one selected from Mn, Co, Ni, Fe, V, and Cr.
PCT/JP2016/059070 2016-03-22 2016-03-22 Positive electrode material for non-aqueous electrolyte secondary batteries and method for producing same WO2017163317A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/059070 WO2017163317A1 (en) 2016-03-22 2016-03-22 Positive electrode material for non-aqueous electrolyte secondary batteries and method for producing same
PCT/JP2016/077335 WO2017163462A1 (en) 2016-03-22 2016-09-15 Positive electrode material for nonaqueous electrolyte secondary batteries and method for producing same
JP2018506754A JP7016166B2 (en) 2016-03-22 2016-09-15 Positive electrode material for non-aqueous electrolyte secondary batteries and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/059070 WO2017163317A1 (en) 2016-03-22 2016-03-22 Positive electrode material for non-aqueous electrolyte secondary batteries and method for producing same

Publications (1)

Publication Number Publication Date
WO2017163317A1 true WO2017163317A1 (en) 2017-09-28

Family

ID=59900075

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2016/059070 WO2017163317A1 (en) 2016-03-22 2016-03-22 Positive electrode material for non-aqueous electrolyte secondary batteries and method for producing same
PCT/JP2016/077335 WO2017163462A1 (en) 2016-03-22 2016-09-15 Positive electrode material for nonaqueous electrolyte secondary batteries and method for producing same

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077335 WO2017163462A1 (en) 2016-03-22 2016-09-15 Positive electrode material for nonaqueous electrolyte secondary batteries and method for producing same

Country Status (2)

Country Link
JP (1) JP7016166B2 (en)
WO (2) WO2017163317A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108777301A (en) * 2018-05-30 2018-11-09 陕西煤业化工技术研究院有限责任公司 A kind of nickel cobalt aluminic acid lithium material and preparation method thereof of sodium base oxidant doping

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230069A (en) * 1987-11-20 1990-01-31 Showa Denko Kk Secondary battery
JP2008152923A (en) * 2006-11-22 2008-07-03 Matsushita Electric Ind Co Ltd Cathode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and nonaqueous secondary battery using this cathode active material
JP2012028322A (en) * 2010-07-20 2012-02-09 Samsung Sdi Co Ltd Positive electrode and lithium battery including the same
JP2012043787A (en) * 2010-08-13 2012-03-01 Samsung Sdi Co Ltd Positive electrode active material and lithium battery including the same
JP2015053244A (en) * 2012-10-22 2015-03-19 国立大学法人 東京大学 Battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6680145B2 (en) * 2001-08-07 2004-01-20 3M Innovative Properties Company Lithium-ion batteries
JP3632686B2 (en) * 2002-08-27 2005-03-23 ソニー株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery
US20120003541A1 (en) * 2010-07-02 2012-01-05 Samsung Sdi Co., Ltd. Positive active material for lithium secondary battery and lithium secondary battery using the same
JP2015176656A (en) * 2014-03-13 2015-10-05 本田技研工業株式会社 positive electrode material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230069A (en) * 1987-11-20 1990-01-31 Showa Denko Kk Secondary battery
JP2008152923A (en) * 2006-11-22 2008-07-03 Matsushita Electric Ind Co Ltd Cathode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and nonaqueous secondary battery using this cathode active material
JP2012028322A (en) * 2010-07-20 2012-02-09 Samsung Sdi Co Ltd Positive electrode and lithium battery including the same
JP2012043787A (en) * 2010-08-13 2012-03-01 Samsung Sdi Co Ltd Positive electrode active material and lithium battery including the same
JP2015053244A (en) * 2012-10-22 2015-03-19 国立大学法人 東京大学 Battery

Also Published As

Publication number Publication date
WO2017163462A1 (en) 2017-09-28
JP7016166B2 (en) 2022-02-04
JPWO2017163462A1 (en) 2019-01-31

Similar Documents

Publication Publication Date Title
Sun et al. Electrochemical performance of nano-sized ZnO-coated LiNi0. 5Mn1. 5O4 spinel as 5 V materials at elevated temperatures
Yang et al. Suppressed capacity/voltage fading of high-capacity lithium-rich layered materials via the design of heterogeneous distribution in the composition
JP5712544B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
Qiu et al. Synthesis of three-dimensional nanoporous Li-rich layered cathode oxides for high volumetric and power energy density lithium-ion batteries
JP6708326B2 (en) Positive electrode material for sodium secondary batteries
Reddy et al. Facile synthesis of Co 3 O 4 by molten salt method and its Li-storage performance
JP7127277B2 (en) Positive electrode active material for lithium ion secondary battery, lithium ion secondary battery, and method for producing positive electrode active material for lithium ion secondary battery
CN106910887B (en) Lithium-rich manganese-based positive electrode material, preparation method thereof and lithium ion battery containing positive electrode material
JPWO2012133113A1 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP7127631B2 (en) Method for manufacturing positive electrode active material, and method for manufacturing lithium ion battery
Zhao et al. Structure evolution from layered to spinel during synthetic control and cycling process of fe-containing li-rich cathode materials for lithium-ion batteries
Deng et al. Enhancing the electrochemical performances of LiNi0. 5Mn1. 5O4 by Co3O4 surface coating
Wu et al. Hierarchical microspheres and nanoscale particles: effects of morphology on electrochemical performance of Li1. 2Mn0. 54Ni0. 13Co0. 13O2 cathode material for lithium-ion batteries
JP2013149586A (en) Method for manufacturing electrode material containing layered double hydroxide
KR20150065979A (en) Manufacturing method of surface treated positive active material precusor for lithium rich rechargeable batteries, and positive active material precusor, positive active material made by the same
US20150221932A1 (en) Positive-electrode active material for lithium secondary battery, manufacturing method therefor, positive electrode for lithium secondary battery, and lithium secondary battery provided with said positive electrode
JP2019096612A (en) Cathode active material for lithium secondary battery
Yalçın et al. Synthesis of Sn-doped Li-rich NMC as a cathode material for Li-ion batteries
Gershinsky et al. Direct chemical synthesis of lithium sub-stochiometric olivine Li0. 7Co0. 75Fe0. 25PO4 coated with reduced graphene oxide as oxygen evolution reaction electrocatalyst
JP5516463B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
Baboo et al. Facile redox synthesis of layered LiNi1/3Co1/3Mn1/3O2 for rechargeable Li-ion batteries
JP2015153551A (en) Positive electrode active material particle powder, manufacturing method thereof, and nonaqueous electrolyte secondary battery
Cen et al. Spinel Li4Mn5O12 as 2.0 V Insertion Materials for Mg‐Based Hybrid Ion Batteries
JP2014086279A (en) Positive electrode active material for sodium ion secondary battery
JP2016051548A (en) Positive electrode material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery arranged by use of positive electrode material

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895353

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16895353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP