WO2017163108A1 - Sistema de rastreo de objetos animados o inanimados en tiempo real con autoreferenciación, autocalibración y sincronización robusta - Google Patents

Sistema de rastreo de objetos animados o inanimados en tiempo real con autoreferenciación, autocalibración y sincronización robusta Download PDF

Info

Publication number
WO2017163108A1
WO2017163108A1 PCT/IB2016/051650 IB2016051650W WO2017163108A1 WO 2017163108 A1 WO2017163108 A1 WO 2017163108A1 IB 2016051650 W IB2016051650 W IB 2016051650W WO 2017163108 A1 WO2017163108 A1 WO 2017163108A1
Authority
WO
WIPO (PCT)
Prior art keywords
tracking
inertial measurement
measurement acquisition
calibration
acquisition system
Prior art date
Application number
PCT/IB2016/051650
Other languages
English (en)
French (fr)
Inventor
Juan Sebastian BOTERO VALENCIA
Original Assignee
Instituto Tecnologico Metropolitano
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instituto Tecnologico Metropolitano filed Critical Instituto Tecnologico Metropolitano
Publication of WO2017163108A1 publication Critical patent/WO2017163108A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass

Definitions

  • the present invention belongs to the field of tracking systems.
  • the invention discloses a system for tracking animated or inanimate objects in real time, by means of self-referencing, self-calibration and robust synchronization.
  • the present invention can be used for the registration of biomechanical variables in athletes, for biomechanical measurement.
  • Inertial Units are sensors designed to measure kinematic variables of an object over time. At present, the manufacturing conditions, and especially the reduction of size, have allowed its appearance in many everyday applications. In this context, the Inertial Units are present in almost all mobile devices.
  • the accelerometer magnetometer and gyro set is mainly used in the construction or improvement of navigation systems and in the improvement of the user experience.
  • WO2001080736A1 discloses an orientation registration system in relation to a simple reference system and a method for finding the orientation of a system with respect to another reference system.
  • Patent US20080285805A1 similar to US7725279B2 and from the same inventors, includes a storage system and mentions additional elements integrable to the system that would allow it to re-position. Additionally, this patent focuses on the use of Kalman filters and particles, however it does not specify the use of inertial measurements derived from the IMU, in addition to those necessary to obtain the absolute orientation of the segment.
  • US8647287B2 describes a portable device with robust wireless synchronization that allows movement monitoring and has a LiPo battery. This document does not describe calibration methods or absolute orientation algorithms that allow tracking of an object of several joints or sensors supporting the reference of the movement.
  • Patent application WO2014106564A1 proposes a poly-articulated model similar to US20080285805A1, and US7725279B2 where steps are considered to obtain absolute orientation.
  • the object tracking system of the present application consists of an electronic measurement system that is composed of two or more inertial units that capture the data simultaneously, located in such a way that they can be self-referenced and that allow to monitor the movement of objects animated or inanimate.
  • the above in order to record in real time your Spatial position and associated physical variables.
  • the measurement system also includes an in-situ calibration system that allows you to adjust the conditions necessary to ensure data reliability.
  • the system is complemented by a robust data collection model that guarantees no loss of information in case the communication is interrupted with the capture software.
  • the system of the invention allows monitoring biomedical and environmental variables.
  • Figure 1 System for the acquisition of inertial measures. This figure shows the preferred interconnection of the elements of the inertial measurement acquisition system presented in this document.
  • the elements communicate with the central microprocessor system (12) and all feed from the power management system that is composed of the wireless charging system, the regulators and the battery (7), in addition to the consumption and voltage sensors for Estimate the residual load.
  • the system has two or more IMU (2), (3) and (4) that are oriented to each other in non-orthogonal Cartesian systems, in (1) an example of the arrangement of two Cartesian systems arranged as It was mentioned above.
  • Figure 1 also shows the communication module (1 1) that can be adapted to various elements and the external protocols module (8) that allows the system to be connected to external devices such as medical information systems or global positioning systems.
  • FIG. 2 Calibration system. This figure shows the preferred arrangement of the external calibration system that is used to ensure the quality of the mechanical measurements of the inertial measurement acquisition system. This system has four degrees of freedom marked in Figure 2 (1), (2), (3) and (4), and with a final element (5) that allows setting the inertial measurement acquisition system.
  • the system in Figure 2 has real-time communication of the actuator position information and its preferred kinematic model is described by the Denavit Hartenberg matrix shown in Table 1.
  • the object tracking system of the present application consists of an electronic measurement system comprising an inertial measurement system of multiple degrees of freedom comprising linear acceleration, angular velocity and magnetic field in multiple axes.
  • Said inertial measurement acquisition system comprises two or more three-axis accelerometers, two or more three-axis magnetometers and two or more three-axis gyros that together represent more than one IMU. Additionally it has one or more atmospheric pressure sensors and one or more temperature sensors.
  • the system is integrated with a microcontroller and also has a radio frequency communication module and an infrared system that allows it to also communicate underwater, in addition to synchronizing the data with a central monitoring platform in real time. This communication module is low power and supports multiple nodes.
  • the system also has a battery, an integrated charger and a storage module that completes the system to give it autonomy.
  • the system is built in a modular tower architecture that allows replacing its parts with ease.
  • the system is protected by an external housing.
  • the inertial measurement acquisition system comprises a receiver that uses GPS, GLONASS or BEIDOU satellites, as the case may be, to reference the location of the activity carried out.
  • the storage module of the inertial measurement acquisition system can be removable or integrated and allows synchronizing the acquired data with the data that can be lost due to communication problems.
  • the inertial measurement acquisition system comprises a wireless or wired interface to connect with heart rate monitoring devices for sports and medical use.
  • the inertial measurement acquisition system comprises an alert system that, through vibration or sound communication, transmits information to the animated or inanimate object about the critical level of one of the physical or environmental variables that may affect the health or performance of the object. monitored.
  • the inertial measurement acquisition system has a permanent residual charge monitoring system and the charger can operate wired or wirelessly using an electromagnetic field.
  • the object tracking system also comprises an autonomous calibration system of two or more degrees of freedom that is required for the data to be reliable and for the adjustment of the data to be made at the site of use and with a procedure that allow its implementation with minimal instructions.
  • an autonomous calibration system of two or more degrees of freedom that is required for the data to be reliable and for the adjustment of the data to be made at the site of use and with a procedure that allow its implementation with minimal instructions.
  • a robotic platform with digital servomotors is used.
  • the built set allows the IMU to be fixed to the robot so that it is oriented in multiple spatial positions and thus be able to derive the calibration data.
  • the system has USB communication and feeds the robot's position information to reconstruct the kinematic model and detect possible errors in the planned paths.
  • the USB signal is synchronized with those acquired by Bluetooth from the IMU in a computer-developed application that captures the data necessary to obtain the calibration data. Then with the data Calibration values are obtained and with these the absolute spatial orientation of the IMU can be obtained with an error of 1 or to be integrated into human biomechanical models.
  • the calibration system is 4 degrees of freedom, comprises four servomotors, the first three servomotors with an accuracy of 0.29 ° and the last with an accuracy of 0.08 °
  • Also part of the present invention is a software platform that allows synchronizing, storing and integrating the information of the complete system to perform the motion tracking of an animate or inanimate object and of the additional physical variables acquired to perform mechanical and physical analyzes.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physiology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

La presente solicitud divulga un sistema de rastreo de objetos animados o inanimados en tiempo real, caracterizado porque comprende un sistema de adquisición de medidas inerciales y un sistema de calibración autónomo. La presente invención además incluye la calibración dinámica del sistema de adquisición de medidas inerciales con un sistema automático in-situ orientado al rastreo, mezcla de IMU's en sistemas no ortogonales para desarrollar un sistema auto referenciado. El sistema tiene aplicación en deportes acuáticos y donde sea necesaria la trasmisión de datos mecánicos, de objetos animados o inanimados, por lo que emplea sistemas robustos de transmisión y modelos de recopilación de datos que evitan la desincronización de la información y que incluyen un sistema de comunicación infrarrojo.

Description

SISTEMA DE RASTREO DE OBJETOS ANIMADOS O INANIMADOS EN TIEMPO REAL CON AUTOREFERENCIACIÓN, AUTOCALIBRACIÓN Y
SINCRONIZACIÓN ROBUSTA
CAMPO DE LA INVENCIÓN
La presente invención pertenece al campo de los sistemas de rastreo. En particular, la invención divulga un sistema de rastreo de objetos animados o inanimados en tiempo real, mediante autoreferenciación, autocalibración y sincronización robusta. La presente invención puede ser utilizada para el registro de variables biomecánicas en deportistas, para medición biomecánica.
DESCRIPCIÓN DEL ESTADO DE LA TÉCNICA
Las Unidades Inerciales son sensores diseñados para medir variables cinemáticas de un objeto en el tiempo. En la actualidad, las condiciones de fabricación, y en especial la reducción de tamaño, han permitido su aparición en muchas aplicaciones cotidianas. En este contexto, las Unidades Inerciales están presentes en casi todos los dispositivos móviles. El conjunto acelerómetro magnetometro y giroscopio se utiliza principalmente en la construcción o mejora de los sistemas de navegación y en la mejora de la experiencia de usuario.
Por ejemplo, en la patente US20130179134, se presenta una metodología de calibración para una unidad de medida inercial (IMU por sus iniciales en inglés) de 6 grados de libertad (Giroscopio-magnetometro) y menciona un simulador y un conjunto de técnicas para tal fin. Sin embargo no se desarrollan elementos en el marco de una implementación práctica y los modelos matemáticos presentados hacen parte del estado del arte científico.
También se han prestado métodos de calibración general estática de IMU como en el documento de patente US2012203487, en el que nuevamente no se desarrollan elementos de la aplicación. En dicho documento tampoco se desarrolla el sistema mecánico de calibración. Adicionalmente, no se consideran las condiciones del medio en el proceso de calibración ni las necesidades específicas por ubicación geográfica de las mismas. En la misma línea, en la patente US8762091 B1 , se presenta un modelo de calibración que usa dos IMU. Una IMU es utilizada como referencia y en la misma no se presenta información detallada y se limita a la protección del modelo de calibración a partir de un patrón. En este documento el modelo no permite calibrar IMU con características dinámicas diferentes.
Adicionalmente, en el arte previo se encuentran documentos de patente dedicados directamente al rastreo espacial como en US7725279B2. En este documento se divulga un sistema para obtener la orientación absoluta y derivar la reconstrucción 3D si se conoce previamente la disposición de las IMU y si los elementos están unidos por articulaciones. Este documento igualmente abarca las aplicaciones de rehabilitación médica, animación y desarrollo de juegos. Sin emabrgo, este documento no menciona aplicaciones en deportes, un sistema de calibración in-situ automático, y la utilización de sistemas complementarios para garantizar la calidad de la medida.
La patente WO2001080736A1 divulga un sistema de registro de la orientación en relación a un sistema de referencia simple y un método para encontrar la orientación de un sistema respecto a otro sistema de referencia.
La patente US20080285805A1 , similar a US7725279B2 y proveniente de los mismos inventores, incluye un sistema de almacenamiento y menciona elementos adicionales integrables al sistema que le permitirían realimentar la posición. Adicionalmente, esta patente se centra en el uso de filtros de Kalman y de partículas, sin embargo no específica el empleo de medidas inerciales derivadas de la IMU, adicionales a las necesarias para obtener la orientación absoluta del segmento.
El documento de patente US8239162 abarca la teoría básica de construcción de la IMU de nueve grados de libertad y su integración, pero este documento cubre sólo el sensor y es claro que el sensor es un elemento previamente desarrollado y disponible en múltiples presentaciones en el mercado mundial.
En la patente US8647287B2 se describe un dispositivo portable con sincronización inalámbrica robusta que permite monitorear el movimiento y que cuenta con una batería LiPo. En este documento no se describen métodos de calibración, ni algoritmos de orientación absoluta que permitan hacer rastreo de un objeto de varias articulaciones ni sensores de apoyo a la referencia del movimiento.
De igual forma en el documento de patente US8821417B2, se menciona un sistema para monitorear un objeto respecto a su centro de masa con una sola unidad, sin sistema de calibración y sin el apoyo de sistemas complementarios, considerando sólo esta medida en el análisis mecánico.
También existen patentes más específicas como la patente US8868369B2 la cual menciona la utilización de una IMU para monitorear el desplazamiento vertical y así derivar un monitoreo de la marcha. Similar a US20140297008A1 donde se emplea una IMU para determinar variables mecánicas en atletas. En este caso también se emplea una sola IMU y no se monitorea como un objeto de más de una articulación, además no se mencionan sistemas complementarios de medida ni modelos de calibración.
La solicitud de patente WO2014106564A1 propone un modelo poli-articulado similar a US20080285805A1 , y US7725279B2 donde se consideran pasos para obtener la orientación absoluta.
Así pues, es claro que no se ha desarrollado aun un sistema de rastreo que incluya la calibración dinámica de la IMU con un sistema automático in-situ orientado al rastreo espacial, tampoco la mezcla de IMU's en sistemas no ortogonales para desarrollar un sistema auto referenciado, la aplicación en deportes acuáticos que hace necesario el desarrollo de sistemas robustos de transmisión y modelos de recopilación de datos que eviten la desincronización de la información y que incluyan un sistema de comunicación infrarrojo.
DESCRIPCIÓN GENERAL DE LA INVENCIÓN
El sistema de rastreo de objetos de la presente solicitud consiste en un sistema electrónico de medición que se encuentra compuesto por dos o más unidades inerciales que capturan los datos simultáneamente, ubicadas de tal forma que se puedan auto referenciar y que permitan monitorear el movimiento de objetos animados o inanimados. Lo anterior, con el fin de registrar en tiempo real su posición espacial y las variables físicas asociadas. El sistema de medición además comprende un sistema de calibración in-situ que le permite ajustar las condiciones necesarias para garantizar la confiabilidad de los datos. El sistema esta complementado con un modelo de recolección de datos robusto que garantiza la no pérdida de información en caso de que la comunicación se interrumpa con el software de captura. El sistema de la invención permite monitorear variables biomédicas y ambientales.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura 1 : Sistema de adquisición de medidas inerciales. En esta figura se presenta la interconexión preferida de los elementos del sistema de adquisición de medidas inerciales presentado en este documento. Los elementos se comunican con el sistema microprocesador central (12) y todos se alimentan del sistema de administración de energía que se compone el sistema de carga inalámbrica, los reguladores y la batería (7), además de los sensores de consumo y de voltaje para estimar la carga residual. Nótese que el sistema cuenta con dos o más IMU (2), (3) y (4) que se encuentran orientadas entre sí en sistemas cartesianos no ortogonales, en (1 ) se muestra un ejemplo de la disposición de dos sistemas cartesianos dispuestos como se mencionó anteriormente. La Figura 1 también muestra el módulo de comunicación (1 1 ) que se puede adaptar a diversos elementos y el módulo de protocolos externos (8) que permite conectar el sistema a dispositivos externos tales como sistemas de información médica o sistemas de posicionamiento global. Finalmente se observa el módulo de alerta por vibración o sonido (10) para realimentar al usuario de eventos en las medidas y los sensores de temperatura (6) y presión atmosférica (5) para tener información ambiental complementaria y estimar las condiciones de entrenamiento incluyendo la altura sobre el nivel del mar de la actividad desarrollada. También se describe la interconexión con el sistema de almacenamiento de datos (9) encargado de recopilar toda la información adquirida por todas las variables del sistema.
Figura 2: Sistema de calibración. Esta figura muestra la disposición preferida del sistema de calibración externo que se usa para asegurar la calidad de las medidas mecánicas del sistema de adquisición de medidas inerciales. Este sistema cuenta con cuatro grados de libertad marcados en la Figura 2 (1 ), (2), (3) y (4), y con un elemento final (5) que permite fijar el sistema de adquisición de medidas inerciales. El sistema en la Figura 2 cuenta con comunicación en tiempo real de la información de la posición de los actuadores y su modelo cinemático preferido esta descrito por la matriz de Denavit Hartenberg mostrada en la Tabla 1 .
Tabla 1. Matriz DH plataforma de calibración
Figure imgf000007_0001
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
El sistema de rastreo de objetos de la presente solicitud consiste en un sistema electrónico de medición que comprende un sistema de adquisición de medidas inerciales de múltiples grados de libertad que comprenden la aceleración lineal, la velocidad angular y el campo magnético en múltiples ejes. Dicho sistema de adquisición de medidas inerciales comprende dos o más acelerómetros de tres ejes, dos o más magnetómetros de tres ejes y dos o más giroscopios de tres ejes que en conjunto representan más de una IMU. Adicionalmente cuenta con uno o más sensores de presión atmosférica y uno o más sensores de temperatura. El sistema está integrado con un microcontrolador y cuenta también con un módulo de comunicación por radio frecuencia y con un sistema infrarrojo que le permite comunicarse también bajo el agua, además de poder sincronizar los datos con una plataforma de monitoreo central en tiempo real. Este módulo de comunicación es de bajo consumo y soporta múltiples nodos. El sistema también cuenta con una batería, un cargador integrado y un módulo de almacenamiento que completa el sistema para darle autonomía. El sistema está construido en una arquitectura modular de torre que permite reemplazar sus partes con facilidad. El sistema se encuentra protegido por una carcasa externa. Adicionalmente, el sistema de adquisición de medidas inerciales comprende un receptor que usa los satélites GPS, GLONASS o BEIDOU según sea el caso, para referenciar el lugar de la actividad realizada.
Además, el módulo de almacenamiento del sistema de adquisición de medidas inerciales, puede ser extraíble o integrado y permite sincronizar los datos adquiridos con los datos que se puedan perder por problemas en la comunicación.
De manera complementaria, el sistema de adquisición de medidas inerciales, comprende una interfaz inalámbrica o cableada para conectarse con dispositivos de monitoreo de ritmo cardiaco de uso deportivo y médico.
Adicionalmente, el sistema de adquisición de medidas inerciales comprende un sistema de alerta que mediante comunicación por vibración o sonido transmite información al objeto animado o inanimado sobre el nivel crítico de una de las variables físicas o ambientales que puedan afectar la salud o el rendimiento del objeto monitoreado.
Además, el sistema de adquisición de medidas inerciales cuenta con un sistema monitoreo permanente de la carga residual y el cargador puede operar alámbrica o inalámbricamente usando un campo electromagnético.
El sistema de rastreo de objetos además comprende un sistema de calibración autónomo de dos o más grados de libertad que se requiere para que los datos sean confiables y para que el ajuste de los datos se pueda realizar en el sitio de uso y con un procedimiento que permita su implementación con instrucciones mínimas. Para esto se utiliza una plataforma robótica con servomotores digitales.
El conjunto construido permite fijar la IMU al robot para que este lo oriente en múltiples posiciones espaciales y así poder derivar los datos de calibración. El sistema cuenta con comunicación USB y realimenta la información de posición del robot para reconstruir el modelo cinemático y detectar posibles errores en las trayectorias planeadas. La señal USB se sincroniza con las adquiridas por Bluetooth de la IMU en una aplicación desarrollada en computador que captura los datos necesarios para obtener los datos de calibración. Luego con los datos se obtienen los valores de calibración y con estos se puede obtener la orientación espacial absoluta de la IMU con un error a 1 o para ser integrada a modelos biomecánicos humanos.
En una modalidad preferida de la invención, el sistema de adquisición de medidas inerciales comprende dos acelerómetros de tres ejes, dos magnetómetros de tres ejes y dos giroscopios de tres ejes. Adicionalmente cuenta con un sensor de presión atmosférica y un sensor de temperatura. Además, en la modalidad preferida el módulo de comunicación por radio frecuencia corresponde a ZigBee® y/o Bluetooth® y el sistema infrarrojo puede ser lrDA®.Adicionalmente, el microcontrolador es de 32 bit y corre a 72 MHz. Además, en esta modalidad, la batería es una batería de litio de 150 mA que le proporciona autonomía al sistema por aproximadamente 1 .5 horas. Esta modalidad consiste en un dispositivo de 24x41x43 mm de 39 gramos que integra todas las características necesarias para que sea funcional y práctico. En la Figura 1 se muestra el dispositivo al que se hace referencia.
En una modalidad preferida de la invención, el sistema de calibración es de 4 grados de libertad, comprende cuatro servomotores, los tres primeros servomotores con precisión de 0.29° y el último con precisión de 0.08°
También hace parte de la presente invención una plataforma de software que permite sincronizar, almacenar e integrar la información del sistema completo para realizar el rastreo de movimiento de un objeto animado o inanimado y de las variables físicas adicionales adquiridas para realizar análisis mecánicos y físicos.

Claims

REIVINDICACIONES
1 . Un sistema de rastreo de objetos animados o inanimados en tiempo real, caracterizado porque comprende:
a. Un sistema de adquisición de medidas inerciales compuesto por dos o más unidades de medición inercial (IMU) auto-referenciadas en sistemas no ortogonales entre sí; y
b. Un sistema de calibración autónomo; en donde el sistema de adquisición de medidas inerciales puede estar o no puede estar fijado al sistema de calibración autónomo para derivar los datos de calibración del sistema de adquisición de medidas inerciales.
2. El sistema de rastreo de la reivindicación 1 , en donde el sistema de adquisición de medidas inerciales comprende:
a. Uno o más sensores de presión atmosférica;
b. Uno o más sensores de temperatura;
c. Un microcontrolador;
d. Un módulo de comunicación por radio frecuencia y un sistema infrarrojo;
e. Un sistema de administración de carga que comprende al menos una batería, al menos un cargador integrado, al menos un regulador y al menos un sensor de consumo y de voltaje para estimar la carga residual;
f. Un módulo de almacenamiento;
g. Un módulo de protocolos externos que conecta el sistema a dispositivos externos tales como sistemas de información médica o sistemas de posicionamiento global; ;
h. Un módulo de alerta que por vibración o sonido que transmite información al objeto animado o inanimado sobre el nivel crítico de una de las variables físicas o ambientales; en donde las dos o más unidades de medición inercial contienen: dos o más acelerómetros de tres ejes, dos o más magnetómetros de tres ejes y dos o más giroscopios de tres ejes; y
en donde todos los elementos se comunican con el microcontrolador central y todos los elementos se alimentan del sistema de administración de energía.
3. El sistema de rastreo de la reivindicación 1 , en donde el sistema de calibración autónomo comprende:
a. Actuadores tipo servomotor;
b. Un puerto USB, transmitiendo datos de la posición de los actuadores para la sincronización del IMU.
4. El sistema de rastreo de la reivindicación 1 , en donde el sistema de adquisición de medidas inerciales se encuentra recubierto con una carcasa externa que lo protege del entorno.
5. El sistema de rastreo de la reivindicación 2, en donde el módulo de almacenamiento del sistema de adquisición de medidas inerciales es extraíble o integrado.
6. El sistema de rastreo de la reivindicación 2, en donde el cargador es alámbrico o inalámbrico.
7. El sistema de rastreo de la reivindicación 2, en donde se puede conectar y sincronizar datos de dispositivos de monitoreo de variables biomédicas y dispositivos de monitoreo de ritmo cardiaco.
8. El sistema de rastreo de acuerdo con las reivindicaciones 2 y 3 que comprende:
a. dos acelerómetros de tres ejes;
b. dos magnetómetros de tres ejes;
c. dos giroscopios de tres ejes; d. un sensor de presión atmosférica;
e. un sensor de temperatura;
f. cuatro servomotores, en donde los tres primeros tienen una precisión de 0.29° y el último una precisión de 0.08°; y
En donde el módulo de comunicación por radio frecuencia corresponde a ZigBee® y/o Bluetooth® y el sistema infrarrojo es IrDA®, el microcontrolador es de 32 bit y corre a 72 MHz y la batería es una batería de litio de 150 mA.
9. El sistema de acuerdo con cualquiera de las reivindicaciones anteriores, en donde el sistema de adquisición de medidas inerciales se comunica con el sistema de calibración autónomo, para sincronizar, almacenar e integrar la información del sistema completo para realizar el rastreo de movimiento de un objeto animado o inanimado y de las variables físicas adicionales adquiridas para realizar análisis mecánicos y físicos.
PCT/IB2016/051650 2016-03-22 2016-03-23 Sistema de rastreo de objetos animados o inanimados en tiempo real con autoreferenciación, autocalibración y sincronización robusta WO2017163108A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CO16072829 2016-03-22
CO16072829 2016-03-22

Publications (1)

Publication Number Publication Date
WO2017163108A1 true WO2017163108A1 (es) 2017-09-28

Family

ID=59899142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2016/051650 WO2017163108A1 (es) 2016-03-22 2016-03-23 Sistema de rastreo de objetos animados o inanimados en tiempo real con autoreferenciación, autocalibración y sincronización robusta

Country Status (1)

Country Link
WO (1) WO2017163108A1 (es)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2783630A1 (en) * 2013-03-27 2014-10-01 ETH Zurich Human motion analysis method and device
WO2014183212A1 (en) * 2013-05-13 2014-11-20 Stability Solutions Inc. System and method for monitoring stability of a vessel
US20150173666A1 (en) * 2013-12-20 2015-06-25 Integrated Bionics, LLC In-Situ Concussion Monitor
US20150272501A1 (en) * 2014-03-26 2015-10-01 GestureLogic Inc. Systems, methods and devices for acquiring and processing physiological signals
WO2015164421A1 (en) * 2014-04-21 2015-10-29 The Trustees Of Columbia University In The City Of New York Human movement research, therapeutic, and diagnostic devices, methods, and systems
WO2016023027A1 (en) * 2014-08-08 2016-02-11 Orn, Inc. Garment including integrated sensor components and feedback components

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2783630A1 (en) * 2013-03-27 2014-10-01 ETH Zurich Human motion analysis method and device
WO2014183212A1 (en) * 2013-05-13 2014-11-20 Stability Solutions Inc. System and method for monitoring stability of a vessel
US20150173666A1 (en) * 2013-12-20 2015-06-25 Integrated Bionics, LLC In-Situ Concussion Monitor
US20150272501A1 (en) * 2014-03-26 2015-10-01 GestureLogic Inc. Systems, methods and devices for acquiring and processing physiological signals
WO2015164421A1 (en) * 2014-04-21 2015-10-29 The Trustees Of Columbia University In The City Of New York Human movement research, therapeutic, and diagnostic devices, methods, and systems
WO2016023027A1 (en) * 2014-08-08 2016-02-11 Orn, Inc. Garment including integrated sensor components and feedback components

Similar Documents

Publication Publication Date Title
US10679360B2 (en) Mixed motion capture system and method
Kok et al. An optimization-based approach to human body motion capture using inertial sensors
Brigante et al. Towards miniaturization of a MEMS-based wearable motion capture system
US8825435B2 (en) Intertial tracking system with provision for position correction
US20080262772A1 (en) Sytem and a Method for Motion Tracking Using a Calibration Unit
Morrison et al. Design and testing of a multi-sensor pedestrian location and navigation platform
EP2461748A2 (en) Inertial sensor kinematic coupling
JP2009526980A (ja) モーションキャプチャー装置およびそれに係る方法
WO2014114967A1 (en) Self-calibrating motion capture system
ES2891537T3 (es) Procedimiento de estimación de la actividad física de un miembro superior
RU121947U1 (ru) Система захвата движения
US20220409097A1 (en) Joint Axis Direction Estimation
CN107014377A (zh) 一种基于惯性定位的多功能鞋垫
CN104964686A (zh) 一种基于动作捕捉的室内定位装置及其方法
Jouybari et al. Experimental comparison between Mahoney and Complementary sensor fusion algorithm for attitude determination by raw sensor data of Xsens IMU on buoy
Lin et al. Development of an ultra-miniaturized inertial measurement unit WB-3 for human body motion tracking
Tjhai et al. Using step size and lower limb segment orientation from multiple low-cost wearable inertial/magnetic sensors for pedestrian navigation
Abbate et al. Development of a MEMS based wearable motion capture system
Goodfellow et al. DiverNet—A network of inertial sensors for real time diver visualization
Purnawarman et al. The methodology for obtaining nonlinear and continuous three-dimensional topographic data using inertial and optical measuring instruments of unmanned ground systems
WO2017163108A1 (es) Sistema de rastreo de objetos animados o inanimados en tiempo real con autoreferenciación, autocalibración y sincronización robusta
Di Capua et al. Body Pose Measurement System (BPMS): An Inertial Motion Capture System for Biomechanics Analysis and Robot Control from Within a Pressure Suit.
To et al. Design of wireless inertial trackers for human joint motion analysis
Alcala et al. Xsens DOT wearable sensor platform white paper
Zhu et al. Dataset of the intermediate competition in challenge malin: Indoor–outdoor inertial navigation system data for pedestrian and vehicle with high accuracy references in a context of firefighter scenario

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895306

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16895306

Country of ref document: EP

Kind code of ref document: A1