WO2017161912A1 - Display panel, transparent display apparatus and manufacturing method - Google Patents

Display panel, transparent display apparatus and manufacturing method Download PDF

Info

Publication number
WO2017161912A1
WO2017161912A1 PCT/CN2016/108359 CN2016108359W WO2017161912A1 WO 2017161912 A1 WO2017161912 A1 WO 2017161912A1 CN 2016108359 W CN2016108359 W CN 2016108359W WO 2017161912 A1 WO2017161912 A1 WO 2017161912A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
display panel
crystal layer
substrate
light source
Prior art date
Application number
PCT/CN2016/108359
Other languages
French (fr)
Inventor
Guangkui Qin
Dengke Yang
Original Assignee
Boe Technology Group Co., Ltd.
Kent State University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boe Technology Group Co., Ltd., Kent State University filed Critical Boe Technology Group Co., Ltd.
Priority to EP16869389.3A priority Critical patent/EP3440507A4/en
Publication of WO2017161912A1 publication Critical patent/WO2017161912A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1326Liquid crystal optical waveguides or liquid crystal cells specially adapted for gating or modulating between optical waveguides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/19Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-reflection or variable-refraction elements not provided for in groups G02F1/015 - G02F1/169
    • G02F1/195Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-reflection or variable-refraction elements not provided for in groups G02F1/015 - G02F1/169 by using frustrated reflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/315Digital deflection, i.e. optical switching based on the use of controlled internal reflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • G02F1/13347Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals working in reverse mode, i.e. clear in the off-state and scattering in the on-state
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light
    • G02F1/133622Colour sequential illumination
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/34Colour display without the use of colour mosaic filters

Definitions

  • the present disclosure relates generally to the field of display technologies, and more specifically to a display panel, a transparent display apparatus and a manufacturing method thereof.
  • a voltage When a voltage is applied to a transparent display apparatus, an image is shown on the display screen, and when no voltage is applied, objects behind the display screen can be seen through the display screen.
  • high-transmittance LCDs or OLEDs are employed for manufacturing transparent displays.
  • the backlight module is typically removed from the display panel, and the light needed for image display is often provided by a lamp box disposed at an upper portion of the back of the display panel.
  • the light transmittance of the LCD-based transparent display apparatus as such is typically below 15%.
  • all materials are transparent or close to be transparent, and the light transmittance is typically below 30%.
  • a conventional transparent display apparatus in current markets commonly has a low light transmittance, leading to a poor transparent display effect.
  • the present disclosure provides a transparent display apparatus and a manufacturing method thereof, aiming at solving the issues such as low light transmittance and poor transparent displaying effect in current transparent display apparatuses.
  • a display panel in a first aspect, comprises a first substrate; a second substrate, facing the first substrate; and a liquid crystal layer, disposed between the first substrate and the second substrate.
  • the liquid crystal layer comprises a mixture of nematic liquid crystals and a macromolecular network, configured such that the display panel can switch between a first state and a second state upon application of an electrical field between the first substrate and the second substrate, wherein in the first state, light in the liquid crystal layer is scattered out of the display panel; and in the second state, light in the liquid crystal layer is totally reflected between the first substrate and the second substrate.
  • the macromolecular network can comprise a polymer network.
  • the polymer network can comprise a plurality of subunits, each derived from a polymerizable liquid crystal monomer.
  • the polymerizable liquid crystal monomer can comprise at least one of HCM and RM257.
  • a mass percentage of the macromolecular network in the liquid crystal layer is substantially in a range of 0.5%-10%.
  • the display panel can further include a light source, wherein the light source is disposed over a side of the display panel and is configured to emit light transmitting in the liquid crystal layer.
  • a preset alignment direction of the nematic liquid crystals can be substantially perpendicular to a transmission direction of the light.
  • the display panel can further include a first alignment film, disposed between the liquid crystal layer and the first substrate and configured to guide the preset alignment direction of the nematic liquid crystals, wherein a rubbing direction of the first alignment film is substantially perpendicular to the transmission direction of the light.
  • the rubbing direction of the first alignment film can be substantially in parallel to a surface of the liquid crystal layer; and the nematic liquid crystals can be positive liquid crystals.
  • the rubbing direction of the first alignment film can be substantially perpendicular to a surface of the liquid crystal layer; and the nematic liquid crystals can be negative liquid crystals.
  • one of the first substrate and the second substrate can be an array substrate, wherein: the array substrate comprises at least one signal line; and an orthographic projection of the macromolecular network on the array substrate does not overlap with an orthographic projection of the at least one signal line on the array substrate.
  • the liquid crystal layer, the first substrate, and the second substrate each can have a substantially identical refractive index.
  • the present disclosure provides a transparent display apparatus, which comprises a display panel according to any one of the embodiments as described above.
  • the light source can comprise a plurality of light source subunits, each configured to emit light of a different color; and the transparent display apparatus can further comprise a field sequential color controller, which is coupled with each of the plurality of light source subunits and is configured to control each of the plurality light source subunits to emit light through a field sequential color method.
  • the transparent display apparatus can further include a reflector, wherein the reflector is disposed at a side of the light source opposing to the display panel and has an opening pointing at the display panel.
  • the transparent display apparatus can further comprise a polarizer, wherein the polarizer is disposed between the display panel and the light source, and is configured to have a transmission axis substantially perpendicular to a transmission direction of the light.
  • the present disclosure further provides a method for manufacturing a transparent display apparatus.
  • the method comprises:
  • liquid crystal layer between an array substrate and an encasing substrate of a display panel, wherein the liquid crystal layer comprises nematic liquid crystals and polymerizable liquid crystal monomers;
  • a light source at one side of the display panel, configured to emit light to enter through the liquid crystal layer from the one side of the display panel.
  • the polymerizable liquid crystal monomers can comprise at least one of HCM and RM257.
  • a mass percentage of the polymerizable liquid crystal monomers in forming a liquid crystal layer, can be substantially in a range of around 0.5%-10%
  • the method can further comprise: forming an alignment film over each of the opposing sides of the array substrate and the encasing substrate, wherein the alignment film is configured to have a rubbing direction substantially perpendicular to a transmission direction of the light emitted by the light source.
  • curing the liquid crystal layer is carried out by at least one of ultraviolet curing or thermal curing.
  • curing the liquid crystal layer is carried out by the ultraviolet curing; and the method further comprises, between forming a liquid crystal layer and curing the liquid crystal layer: disposing a mask on a side of the array substrate opposing to the side of the liquid crystal layer, wherein the mask is configured to have a pattern whose orthographic projection on the array substrate covers an orthographic projection of at least one signal line disposed at the array substrate.
  • FIG. 1 is a schematic diagram of a transparent display apparatus according to some embodiments of the present disclosure
  • FIG. 2 is a schematic diagram of the transparent display apparatus as shown in FIG. 1 in a transmission state
  • FIG. 3 is a schematic diagram of the transparent display apparatus as shown in FIG. 1 in a scattering state
  • FIG. 4 illustrates a corresponding relationship between a level of the driving voltage and a level of the light intensity based on the various embodiments of the transparent display apparatus
  • FIG. 5 is a structural diagram of a light source according to a first embodiment of the present disclosure.
  • FIG. 6 is a structural diagram of a light source according to a second embodiment of the present disclosure.
  • FIG. 7 is a structural diagram of a pixel unit according to some embodiments of the present disclosure.
  • FIG. 8 is a flow chart of a method for manufacturing a transparent display apparatus according to some embodiments of the present disclosure.
  • the present disclosure provides a display apparatus, which comprises a first substrate; a second substrate, facing the first substrate; and a liquid crystal layer, disposed between the first substrate and the second substrate.
  • the liquid crystal layer comprises a mixture of nematic liquid crystals and a macromolecular network, configured such that the display panel can switch between a first state and a second state upon application of an electrical field between the first substrate and the second substrate, wherein in the first state, light in the liquid crystal layer is scattered out of the display panel; and in the second state, light in the liquid crystal layer is totally reflected between the first substrate and the second substrate.
  • FIG. 1 is a schematic diagram of a transparent display apparatus according to some embodiments of the present disclosure. As shown in FIG. 1, the transparent display apparatus comprises a light source 6 and a display panel.
  • the light source 6 is disposed at a side of the display panel and is configured to provide a light emitted from the side of the display panel and running through a liquid crystal layer.
  • the display panel comprises an array substrate 1, an encasing substrate 2, and a liquid crystal layer, which is disposed between the array substrate 1 and the encasing substrate 2.
  • the liquid crystal layer includes nematic liquid crystals 9, and a macromolecular network 8 formed by the polymerizable liquid crystal monomers.
  • the display panel is configured to guide the light and to display pixels.
  • the display panel can be a twisted nematic (TN) LCD panel or an electrically controlled birefringence (ECB) LCD panel.
  • a first electrode 3 pixel electrode
  • a second electrode 4 common electrode
  • a TN LCD panel and an ECB LCD panel are display panels commonly found in the field, and as such detailed description for their specific structures is skipped herein.
  • FIG. 2 is a schematic diagram of the transparent display apparatus as shown in FIG. 1 in a transmission state.
  • FIG. 3 is a schematic diagram of the transparent display apparatus as shown in FIG. 1 in a scattering state.
  • the nematic liquid crystals 9 in the liquid crystal layer have uniform alignment directions, and as such, the light emitted from the light source 6 does not get scattered in the process of transmission along a preset horizontal direction, and as such the light entering from the side of the display panel does not emit out through the surfaces of the display panel.
  • a total reflection can occur for the light: the light can be totally reflected back and forth between the array substrate 1 and the encasing substrate 2; in overall, the light is transmitted along the preset horizontal direction and fills the whole space between the array substrate 1 and the encasing substrate 2.
  • the display panel is in a transmission state.
  • the nematic liquid crystals 9 in the liquid crystal layer can be divided into a large number of small zones, each having a different alignment direction. Furthermore, due to the anisotropy of nematic liquid crystals 9, the refractive indexes of the nematic liquid crystals 9 are different in the directions of long axes and short axes.
  • the alignment directions among different small zones are different, so the refractive indexes of a light passing through different small zones are also different.
  • the light becomes scattered.
  • part of the light can emit out through the surface of the display panel.
  • the display panel is in a scattering state (i.e. bright state) .
  • FIG. 4 illustrates a corresponding relationship between a level of the driving voltage and a level of the light intensity, based on the various embodiments of the transparent display apparatus. As illustrated in the plot, the degree of scattering of the display panel can be manipulated by controlling the magnitude of the driving voltage applied on the first electrode 3.
  • the corresponding relationship between levels of the driving voltage and levels of the light intensity as plotted in FIG. 4 is illustrated through several illustrating examples where the liquid crystal layer contains different mass percentages (3%, 5%and 7%) of polymerizable liquid crystal monomers HCM or RM257.
  • HCM-3%in FIG. 4 means that the mass percentage of the polymerizable liquid crystal monomers HCM in the liquid crystal layer is 3%when filling the liquid crystal.
  • the mass percentage of the macromolecular network 8 formed by the polymerizable liquid crystal monomers HCM in the liquid crystal layer is also substantially equal to ⁇ 3%.
  • the higher the level of the driving voltage the higher the level of the light intensity (i.e., the brighter the LCD display apparatus is) .
  • the higher the mass percentage of the polymerizable liquid crystal monomers in the liquid crystal layer the higher the level of light intensity given a same level of the driving voltage.
  • the level of light intensity can be elevated by increasing the driving voltage and/or the mass percentage of the polymerizable liquid crystal monomers.
  • the macromolecular network 8 in the liquid crystal layer becomes too dense, which can unfavorably influence the deflection of the nematic liquid crystals 9, and consequently the driving voltage and power consumption can become unfavorably too high.
  • the mass percentage of the macromolecular network 8 in the liquid crystal layer can preferably be in a range of 0.5%-10% (during liquid crystal filling, the mass percentage of the polymerizable liquid crystal monomers in the liquid crystal layer can also be substantially in a same range of 0.5%-10%) .
  • the driving voltage can be effectively lowered while still ensuring that the display panel has a satisfactory scattering effect.
  • the alignment direction of the liquid crystals needs to be configured to be perpendicular to the transmission direction of the light.
  • the surface of the array substrate 1 and the surface of the encasing substrate 2 that are facing each other can each be provided with an alignment film 5 having a preset alignment direction (i.e. rubbing direction) , as shown in FIG. 1.
  • a preset alignment direction i.e. rubbing direction
  • the preset alignment direction needs to be perpendicular to the preset horizontal direction.
  • the preset alignment direction corresponding to the alignment films 5 needs to be the horizontal direction Y or the vertical direction Z.
  • the preset horizontal direction Y (corresponding drawings are not given)
  • the preset alignment direction corresponding to the alignment films 5 needs to be the horizontal direction X or the vertical direction Z.
  • the light source 6 needs to be arranged at a side of the display panel which is parallel to the alignment direction of the alignment films 5 of the display panel. If the alignment films 5 are vertically aligned (i.e. along the vertical direction Z) , the light source 6 can be arranged at any side of the display panel.
  • the nematic liquid crystals 9 are in a horizontal direction, and after application of an electric field, the nematic liquid crystals 9 need to be polarized to be in a vertical direction (i.e. along the vertical direction Z) . To satisfy the above requirement, the nematic liquid crystals 9 need to be positive liquid crystals.
  • the nematic liquid crystals 9 are in a vertical direction, and after an electric field is applied, the nematic liquid crystals 9 need to be polarized to be in a horizontal direction (i.e. along the horizontal direction X or Y) . To satisfy the above requirements, the nematic liquid crystals 9 need to be negative liquid crystals.
  • a color filter (CF) and a black matrix (BM) can absorb light (when the light is totally reflected at the side of the encasing substrate 2, part of the light will be absorbed) , the color filter and the black matrix cannot be disposed over the encasing substrate 2.
  • displaying of colors in pixels can be achieved through a field sequential color (FSC) method without the need to arrange the color filter over the encasing substrate 2.
  • FSC field sequential color
  • FIG. 5 is a structural diagram of a light source according to a first embodiment of the present disclosure.
  • the light source 6 comprises a plurality of light source subunits 61, 62, 63 that each emits a light of a different color.
  • the transparent display apparatus further comprises a field sequential color (FSC) controller 10, which is respectively coupled with each of the light source subunits 61, 62, 63 of the light source 6, and is configured to control emission of the lights from the light source subunits 61, 62, 63 via the FSC method to thereby supply lights of different colors to the display panel.
  • FSC field sequential color
  • the arrangement of the light source subunits 61, 62, 63 along the horizontal direction Y in FIG. 5 is only shown as an illustrating example.
  • the light source subunits of the light source 6 can also be arranged in other ways.
  • FIG. 6 illustrates a structural diagram of a light source according to a second embodiment of the present disclosure.
  • the light source subunits 61, 62, 63 are arranged in the vertical direction Z.
  • the lengths of the light source subunits can be set to be equal to that of the light-entrance side of the display panel to thereby guarantee the uniformity of the light entering into the display panel. Therefore, compared with the light source with the arrangement as shown in FIG. 5, the light source as shown in FIG. 6 can effectively improve the uniformity of the light emitted out of the display panel.
  • the number of the light source subunits of the light source is set as three in the two embodiments as illustrated in FIG. 5 and FIG. 6. It should be noted that these are only illustrated as examples, which shall not limit the scope of the technical solutions of the present disclosure.
  • the light source 6 includes a red light source subunit, a green light source subunit, and a blue light source subunit.
  • FIG. 7 is a structural diagram of a pixel unit according to some embodiments of the present disclosure.
  • the pixel unit comprises a red sub-pixel R, a green sub-pixel G, and a blue sub-pixel B.
  • a time frame is divided into three driving time periods: a first driving time period, a second driving time period, and a third driving time period.
  • the FSC controller 10 controls the red light source red light source to emit a light: a voltage (i.e. pixel voltage) is applied to the first electrode 3 (pixel electrode) corresponding to the red sub-pixel R; then the nematic liquid crystals 9 in the area corresponding to the red sub-pixel R is deflected to be in the scattering state; and correspondingly the red sub-pixel R has a gray scale depending on the magnitude of the pixel voltage, that is, the red sub-pixel R emits a red light.
  • a voltage i.e. pixel voltage
  • the nematic liquid crystals 9 in the corresponding areas are in their initial alignment direction and is therefore in the transmission state, that is, the green sub-pixel G and the blue sub-pixel B do not emit light.
  • the FSC controller 10 controls the green light source subunit to emit light: the green sub-pixel G emits a green light of corresponding gray scales, and the red sub-pixel R and the blue sub-pixel B do not emit light.
  • the FSC controller 10 controls the blue light source subunit to emit light; the blue sub-pixel B emits a blue light of corresponding gray scales; and the red sub-pixel R and the green sub-pixel G do not emit light.
  • each of the three driving time periods only accounts for one third of a time frame, human eyes are not able to distinguish between the displaying effects of each individual driving time period, but rather can sense the displaying effect which corresponds to the effect of simultaneous illumination by the three sub-pixels (R, G, and B) , i.e. the displaying effect of one pixel unit.
  • the number of the light source subunits (the red light source subunit, the green light source subunit, and the blue light source subunit) in the light source 6 is three is only an illustrating example, which shall not be a limitation to the technical solutions of the present disclosure.
  • the light source subunit included in the light source 6 can comprise LED light source subunits.
  • An LED light source subunit generally comprises a light bar and a plurality of LED lamps mounted onto the light bar.
  • the direction of LED lamps opposing to the light bar is the direction of light emitted from the LED lamps.
  • a reflector 7 is disposed at a side of the light source 6 opposing to the side where the display panel is disposed. Through the reflector 7, lights emitted from the LED lamps of the light source 6 can be reflected back to the light source 6, and ultimately can enter into the liquid crystal layer from the side of the display panel.
  • the reflector 7 specifically can comprise a reflective cambered surface or curved surface having an opening arranged on a side of the light source opposing to the side of the display panel.
  • Other embodiments as for the shape of the reflector 7 are also possible.
  • one reflector correspond to a plurality of light sources (as shown in FIG. 5) , or can be configured to have multiple reflectors, with each corresponding to one light source (as shown in FIG. 6) .
  • the transparent display apparatus can further comprise a polarizer 10 (shown in FIGS. 1-3) , which is disposed between the display panel and the light source 6, and is configured to have a transmission axis substantially perpendicular to a transmission direction of the light.
  • a polarizer 10 shown in FIGS. 1-3
  • the polarizer 10 is configured to have a transmission axis in the plane formed by the X-axis and the Y-axis.
  • a polarizer By configuration of a polarizer, the contrast of the display panel of the transparent display apparatus can be increased.
  • the present disclosure provides a transparent display apparatus, which comprises a display panel and a light source, wherein the light source is disposed at one side of the display panel.
  • the display panel When no electric field is applied to the display panel, the display panel is in a transmission state; and when an electric field is applied to the display panel, the display panel is in a scattering state.
  • the effect of transparent display is realized. Because there are no other structures on the back of the display panel, higher light transmittance is thereby achieved.
  • the present disclosure provides a method for manufacturing a transparent display apparatus.
  • FIG. 8 is a flow chart illustrates such a manufacturing method according to some embodiments of the present disclosure.
  • the transparent display apparatus can be a transparent display apparatus according to any one of the embodiments as described above.
  • the method for manufacturing a transparent display apparatus comprises the following steps:
  • Step 101 forming a liquid crystal layer between an array substrate and an encasing substrate of a display panel, wherein the liquid crystal layer comprises nematic liquid crystals and polymerizable liquid crystal monomers.
  • This step can be specifically performed by filling liquid crystals, which include the nematic liquid crystals and polymerizable liquid crystal monomers, between the array substrate and the encasing substrate, and by subsequently sealing the liquid crystal layer that is formed therebetween.
  • liquid crystals which include the nematic liquid crystals and polymerizable liquid crystal monomers
  • the array substrate and the encasing substrate can be aligned and the liquid crystal layer can be filled therebetween to thereby form the liquid crystal layer.
  • the liquid crystal layer comprises the nematic liquid crystals and the polymerizable liquid crystal monomers.
  • the mass percentage of the polymerizable liquid crystal monomers in the liquid crystal layer can be in a range of 0.5%-10%, and as such the amount of the macromolecular network in the liquid crystal layer can subsequently be controlled.
  • Step 102 curing the liquid crystal layer to thereby allow the polymerizable liquid crystal monomers to form a macromolecular network.
  • an ultraviolet curing method or a thermal curing method can be applied depending on the type of the polymerizable liquid crystal monomers.
  • the polymerizable liquid crystal monomers in the liquid crystal layer can form the macromolecular network.
  • signal lines such as gate lines and data lines
  • some signal lines need to be disposed on the array substrate.
  • electric fields are formed between the signal lines in the array substrate and the second electrode on the encasing substrate.
  • the area of the liquid crystal layer corresponding to the signal lines are in a scattering state, or in other words, light leakage occurs at the areas of the display panel that correspond to the signal lines.
  • a mask can be employed during ultraviolet curing process.
  • the mask can be configured to have a pattern corresponding to the area of the signal lines, thereby the macromolecular networks are not formed at the areas in the liquid crystal layer corresponding to the signal lines, and as such light scattering at these areas can be avoided.
  • Step 103 forming a light source at one side of the display panel, configured to produce light to enter through the liquid crystal layer from the one side of the display panel.
  • the nematic liquid crystals, the polymerizable liquid crystal monomers, each layer disposed over the array substrate, and each layer disposed over the encasing substrate can be manufactured with materials having identical or similar refractive indexes. As such, the contrast of the display panel in the transparent display apparatus can be effectively enhanced.
  • the manufacturing method of the transparent display apparatus can further comprise Step 100 prior to Step 101.
  • Step 100 forming an alignment film with a preset alignment direction over each of the opposing sides of the array substrate and the encasing substrate, wherein the preset alignment direction is configured to be perpendicular to a preset horizontal direction of light emitted by the light source.
  • the alignment direction of the liquid crystals needs to be perpendicular to the transmission direction of the light.
  • the detailed configuration of the light source and the alignment direction of the alignment films can be referenced to the description of the transparent display apparatus in the first aspect as provided above, and it is not repeated herein.
  • the method for manufacturing a transparent display apparatus can further comprise a step after Step 103:
  • Step 104 Disposing a polarizer between the display panel and the light source, wherein the polarizer is configured to allow light with one refractive index to enter into the display panel.
  • Step 104 does not necessarily have to be after Step 103, and may, in some other embodiments of the method for manufacturing a transparent display apparatus, be between Step 102 and Step 103.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Liquid Crystal (AREA)

Abstract

A display panel, a transparent display apparatus and a manufacturing method thereof are disclosed. The display panel comprises a first substrate (1), a second substrate (2) facing the first substrate (1), and a liquid crystal layer disposed between the first substrate (1) and the second substrate (2). The liquid crystal layer comprises a mixture of nematic liquid crystal (9) and a macromolecular network (8), configured such that the display panel can switch between a first state and a second state upon application of an electrical field between the first substrate and the second substrate, wherein in the first state, light in the liquid crystal layer is scattered out of the display panel, and in the second state, light in the liquid crystal layer is totally reflected between the first substrate (1) and the second substrate (2).

Description

DISPLAY PANEL, TRANSPARENT DISPLAY APPARATUS AND MANUFACTURING METHOD
CROSS-REFERENCE TO RELATED APPLICATION
The present application claims priority to Chinese Patent Application No. CN 201610179171.4, filed on March 25, 2016, the disclosure of which is hereby incorporated by reference in its entirety.
TECHNICAL FIELD
The present disclosure relates generally to the field of display technologies, and more specifically to a display panel, a transparent display apparatus and a manufacturing method thereof.
BACKGROUND
When a voltage is applied to a transparent display apparatus, an image is shown on the display screen, and when no voltage is applied, objects behind the display screen can be seen through the display screen. Generally, high-transmittance LCDs or OLEDs are employed for manufacturing transparent displays.
In a common LCD-based transparent display apparatus in the current market, the backlight module is typically removed from the display panel, and the light needed for image display is often provided by a lamp box disposed at an upper portion of the back of the display panel. The light transmittance of the LCD-based transparent display apparatus as such is typically below 15%.
In an OLED-based transparent display apparatus, all materials are transparent or close to be transparent, and the light transmittance is typically below 30%.
As such, a conventional transparent display apparatus in current markets  commonly has a low light transmittance, leading to a poor transparent display effect.
SUMMARY
The present disclosure provides a transparent display apparatus and a manufacturing method thereof, aiming at solving the issues such as low light transmittance and poor transparent displaying effect in current transparent display apparatuses.
In a first aspect, a display panel is disclosed herein. The display panel comprises a first substrate; a second substrate, facing the first substrate; and a liquid crystal layer, disposed between the first substrate and the second substrate.
The liquid crystal layer comprises a mixture of nematic liquid crystals and a macromolecular network, configured such that the display panel can switch between a first state and a second state upon application of an electrical field between the first substrate and the second substrate, wherein in the first state, light in the liquid crystal layer is scattered out of the display panel; and in the second state, light in the liquid crystal layer is totally reflected between the first substrate and the second substrate.
In some embodiments of the display panel, the macromolecular network can comprise a polymer network. The polymer network can comprise a plurality of subunits, each derived from a polymerizable liquid crystal monomer. The polymerizable liquid crystal monomer can comprise at least one of HCM and RM257.
In some embodiments of the display panel, a mass percentage of the macromolecular network in the liquid crystal layer is substantially in a range of 0.5%-10%.
The display panel can further include a light source, wherein the light source is disposed over a side of the display panel and is configured to emit light transmitting in the liquid crystal layer.
In the display panel as described above, a preset alignment direction of the nematic liquid crystals can be substantially perpendicular to a transmission direction of  the light.
The display panel can further include a first alignment film, disposed between the liquid crystal layer and the first substrate and configured to guide the preset alignment direction of the nematic liquid crystals, wherein a rubbing direction of the first alignment film is substantially perpendicular to the transmission direction of the light.
In some embodiments of the display panel, the rubbing direction of the first alignment film can be substantially in parallel to a surface of the liquid crystal layer; and the nematic liquid crystals can be positive liquid crystals.
In some other embodiments of the display panel, the rubbing direction of the first alignment film can be substantially perpendicular to a surface of the liquid crystal layer; and the nematic liquid crystals can be negative liquid crystals.
In the display panel, one of the first substrate and the second substrate can be an array substrate, wherein: the array substrate comprises at least one signal line; and an orthographic projection of the macromolecular network on the array substrate does not overlap with an orthographic projection of the at least one signal line on the array substrate.
In some embodiments of the display panel, the liquid crystal layer, the first substrate, and the second substrate each can have a substantially identical refractive index.
In a second aspect, the present disclosure provides a transparent display apparatus, which comprises a display panel according to any one of the embodiments as described above.
In some embodiments of the transparent display apparatus, the light source can comprise a plurality of light source subunits, each configured to emit light of a different color; and the transparent display apparatus can further comprise a field sequential color controller, which is coupled with each of the plurality of light source subunits and is configured to control each of the plurality light source subunits to emit light through a field sequential color method.
According to some embodiments of the present disclosure, the transparent display apparatus can further include a reflector, wherein the reflector is disposed at a side of the light source opposing to the display panel and has an opening pointing at the display panel.
According to some embodiments of the present disclosure, the transparent display apparatus can further comprise a polarizer, wherein the polarizer is disposed between the display panel and the light source, and is configured to have a transmission axis substantially perpendicular to a transmission direction of the light.
In a third aspect, the present disclosure further provides a method for manufacturing a transparent display apparatus. The method comprises:
forming a liquid crystal layer between an array substrate and an encasing substrate of a display panel, wherein the liquid crystal layer comprises nematic liquid crystals and polymerizable liquid crystal monomers;
curing the liquid crystal layer to thereby allow the polymerizable liquid crystal monomers to form a macromolecular network; and
forming a light source at one side of the display panel, configured to emit light to enter through the liquid crystal layer from the one side of the display panel.
According to some embodiments of the method, the polymerizable liquid crystal monomers can comprise at least one of HCM and RM257.
According to some embodiments of the method, in forming a liquid crystal layer, a mass percentage of the polymerizable liquid crystal monomers can be substantially in a range of around 0.5%-10%
In some embodiments, prior to forming a liquid crystal layer, the method can further comprise: forming an alignment film over each of the opposing sides of the array substrate and the encasing substrate, wherein the alignment film is configured to have a rubbing direction substantially perpendicular to a transmission direction of the light emitted by the light source.
In some embodiments of the method, curing the liquid crystal layer is carried out  by at least one of ultraviolet curing or thermal curing.
In the method as described above, curing the liquid crystal layer is carried out by the ultraviolet curing; and the method further comprises, between forming a liquid crystal layer and curing the liquid crystal layer: disposing a mask on a side of the array substrate opposing to the side of the liquid crystal layer, wherein the mask is configured to have a pattern whose orthographic projection on the array substrate covers an orthographic projection of at least one signal line disposed at the array substrate.
Other embodiments may become apparent in view of the following descriptions and the attached drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
To more clearly illustrate some of the embodiments, the following is a brief description of the drawings. The drawings in the following descriptions are only illustrative of some embodiments. For those of ordinary skill in the art, other drawings of other embodiments can become apparent based on these drawings.
FIG. 1 is a schematic diagram of a transparent display apparatus according to some embodiments of the present disclosure;
FIG. 2 is a schematic diagram of the transparent display apparatus as shown in FIG. 1 in a transmission state;
FIG. 3 is a schematic diagram of the transparent display apparatus as shown in FIG. 1 in a scattering state;
FIG. 4 illustrates a corresponding relationship between a level of the driving voltage and a level of the light intensity based on the various embodiments of the transparent display apparatus;
FIG. 5 is a structural diagram of a light source according to a first embodiment of the present disclosure;
FIG. 6 is a structural diagram of a light source according to a second  embodiment of the present disclosure;
FIG. 7 is a structural diagram of a pixel unit according to some embodiments of the present disclosure;
FIG. 8 is a flow chart of a method for manufacturing a transparent display apparatus according to some embodiments of the present disclosure;
DETAILED DESCRIPTION
In the following, with reference to the drawings of various embodiments disclosed herein, the technical solutions of the embodiments of the disclosure will be described in a clear and fully understandable way.
It is obvious that the described embodiments are merely a portion but not all of the embodiments of the disclosure. Based on the described embodiments of the disclosure, those ordinarily skilled in the art can obtain other embodiment (s) , which come (s) within the scope sought for protection by the disclosure.
In a first aspect, the present disclosure provides a display apparatus, which comprises a first substrate; a second substrate, facing the first substrate; and a liquid crystal layer, disposed between the first substrate and the second substrate. The liquid crystal layer comprises a mixture of nematic liquid crystals and a macromolecular network, configured such that the display panel can switch between a first state and a second state upon application of an electrical field between the first substrate and the second substrate, wherein in the first state, light in the liquid crystal layer is scattered out of the display panel; and in the second state, light in the liquid crystal layer is totally reflected between the first substrate and the second substrate.
FIG. 1 is a schematic diagram of a transparent display apparatus according to some embodiments of the present disclosure. As shown in FIG. 1, the transparent display apparatus comprises a light source 6 and a display panel.
The light source 6 is disposed at a side of the display panel and is configured to provide a light emitted from the side of the display panel and running through a  liquid crystal layer.
The display panel comprises an array substrate 1, an encasing substrate 2, and a liquid crystal layer, which is disposed between the array substrate 1 and the encasing substrate 2. The liquid crystal layer includes nematic liquid crystals 9, and a macromolecular network 8 formed by the polymerizable liquid crystal monomers. In the present disclosure, the display panel is configured to guide the light and to display pixels.
In the embodiments as described above, the display panel can be a twisted nematic (TN) LCD panel or an electrically controlled birefringence (ECB) LCD panel. Specifically, a first electrode 3 (pixel electrode) is arranged on a surface of the array substrate 1, and a second electrode 4 (common electrode) is arranged on a surface of the encasing substrate 2, which are configured such that a vertical electric field can be formed therebetween upon application of a voltage on the first electrode 3 and the second electrode 4. It should be noted that a TN LCD panel and an ECB LCD panel are display panels commonly found in the field, and as such detailed description for their specific structures is skipped herein.
FIG. 2 is a schematic diagram of the transparent display apparatus as shown in FIG. 1 in a transmission state. FIG. 3 is a schematic diagram of the transparent display apparatus as shown in FIG. 1 in a scattering state.
As shown in FIG. 2, when no electric field is applied to the display panel, the nematic liquid crystals 9 in the liquid crystal layer have uniform alignment directions, and as such, the light emitted from the light source 6 does not get scattered in the process of transmission along a preset horizontal direction, and as such the light entering from the side of the display panel does not emit out through the surfaces of the display panel. In other words, a total reflection can occur for the light: the light can be totally reflected back and forth between the array substrate 1 and the encasing substrate 2; in overall, the light is transmitted along the preset horizontal direction and fills the whole space between the array substrate 1 and the encasing substrate 2. As such, the display panel is in a transmission state.
As shown in FIG. 3, when an electric field is applied to the display panel, due  to the presence of the macromolecular network 8, the deflection states of the nematic liquid crystals 9 are not uniform. Thus, as shown in FIG. 3, the nematic liquid crystals 9 in the liquid crystal layer can be divided into a large number of small zones, each having a different alignment direction. Furthermore, due to the anisotropy of nematic liquid crystals 9, the refractive indexes of the nematic liquid crystals 9 are different in the directions of long axes and short axes.
As such, the alignment directions among different small zones are different, so the refractive indexes of a light passing through different small zones are also different. Under such a situation, the light becomes scattered. In other words, during the process when the light emitted from the light source 6 is transmitted in the liquid crystal layer along the preset horizontal direction, part of the light can emit out through the surface of the display panel. As such, the display panel is in a scattering state (i.e. bright state) .
FIG. 4 illustrates a corresponding relationship between a level of the driving voltage and a level of the light intensity, based on the various embodiments of the transparent display apparatus. As illustrated in the plot, the degree of scattering of the display panel can be manipulated by controlling the magnitude of the driving voltage applied on the first electrode 3.
Specifically, the corresponding relationship between levels of the driving voltage and levels of the light intensity as plotted in FIG. 4 is illustrated through several illustrating examples where the liquid crystal layer contains different mass percentages (3%, 5%and 7%) of polymerizable liquid crystal monomers HCM or RM257.
Taking HCM-3%as an example, HCM-3%in FIG. 4 means that the mass percentage of the polymerizable liquid crystal monomers HCM in the liquid crystal layer is 3%when filling the liquid crystal. Correspondingly, after curing of the polymerizable liquid crystal monomers HCM, the mass percentage of the macromolecular network 8 formed by the polymerizable liquid crystal monomers HCM in the liquid crystal layer is also substantially equal to ~3%.
As seen in FIG. 4, if the type and the mass percentage of the polymerizable  liquid crystal monomers in the liquid crystal layer are both fixed, the higher the level of the driving voltage, the higher the level of the light intensity (i.e., the brighter the LCD display apparatus is) . As for the same type of polymerizable liquid crystal monomers, the higher the mass percentage of the polymerizable liquid crystal monomers in the liquid crystal layer, the higher the level of light intensity given a same level of the driving voltage.
Thus based on the above descriptions, it can be seen that the level of light intensity can be elevated by increasing the driving voltage and/or the mass percentage of the polymerizable liquid crystal monomers. However, during practical operation, it is found that when excessive polymerizable liquid crystal monomers are filled in the liquid crystal layer, after curing, the macromolecular network 8 in the liquid crystal layer becomes too dense, which can unfavorably influence the deflection of the nematic liquid crystals 9, and consequently the driving voltage and power consumption can become unfavorably too high.
Based on the above considerations, the mass percentage of the macromolecular network 8 in the liquid crystal layer can preferably be in a range of 0.5%-10% (during liquid crystal filling, the mass percentage of the polymerizable liquid crystal monomers in the liquid crystal layer can also be substantially in a same range of 0.5%-10%) . As such, the driving voltage can be effectively lowered while still ensuring that the display panel has a satisfactory scattering effect.
In the embodiment as described above, in order to guarantee that light can be transmitted in the liquid crystal layer along the preset horizontal direction, the alignment direction of the liquid crystals needs to be configured to be perpendicular to the transmission direction of the light.
As such, the surface of the array substrate 1 and the surface of the encasing substrate 2 that are facing each other can each be provided with an alignment film 5 having a preset alignment direction (i.e. rubbing direction) , as shown in FIG. 1. In order for the light emitted from the light source 6 to be transmitted in the liquid crystal layer in the preset horizontal direction, the preset alignment direction needs to be perpendicular to the preset horizontal direction.
Specifically, if the preset horizontal direction is the horizontal direction X as shown in FIG. 2 and FIG. 3, the preset alignment direction corresponding to the alignment films 5 needs to be the horizontal direction Y or the vertical direction Z. Alternatively, if the preset horizontal direction is the horizontal direction Y (corresponding drawings are not given) , the preset alignment direction corresponding to the alignment films 5 needs to be the horizontal direction X or the vertical direction Z.
Thus from the above descriptions, it can be seen that if the alignment films 5 are horizontally aligned (i.e. along the horizontal direction X or Y) , the light source 6 needs to be arranged at a side of the display panel which is parallel to the alignment direction of the alignment films 5 of the display panel. If the alignment films 5 are vertically aligned (i.e. along the vertical direction Z) , the light source 6 can be arranged at any side of the display panel.
Furthermore, if the alignment films 5 are horizontally aligned (i.e. along the horizontal direction X or Y) , before application of an electric field, the nematic liquid crystals 9 are in a horizontal direction, and after application of an electric field, the nematic liquid crystals 9 need to be polarized to be in a vertical direction (i.e. along the vertical direction Z) . To satisfy the above requirement, the nematic liquid crystals 9 need to be positive liquid crystals.
If the alignment films 5 are vertically aligned (i.e. along the vertical direction Z) , before an electric field is applied, the nematic liquid crystals 9 are in a vertical direction, and after an electric field is applied, the nematic liquid crystals 9 need to be polarized to be in a horizontal direction (i.e. along the horizontal direction X or Y) . To satisfy the above requirements, the nematic liquid crystals 9 need to be negative liquid crystals.
The corresponding structure and working principle of the transparent LCD display apparatus for achieving the light wave guidance effect are described above. In the following, the structure and principle of the transparent LCD display apparatus for achieving pixel display will be described in detail.
Given the fact that a color filter (CF) and a black matrix (BM) can absorb light  (when the light is totally reflected at the side of the encasing substrate 2, part of the light will be absorbed) , the color filter and the black matrix cannot be disposed over the encasing substrate 2. As such, displaying of colors in pixels can be achieved through a field sequential color (FSC) method without the need to arrange the color filter over the encasing substrate 2.
FIG. 5 is a structural diagram of a light source according to a first embodiment of the present disclosure. As shown in FIG. 5, the light source 6 comprises a plurality of  light source subunits  61, 62, 63 that each emits a light of a different color.
The transparent display apparatus further comprises a field sequential color (FSC) controller 10, which is respectively coupled with each of the  light source subunits  61, 62, 63 of the light source 6, and is configured to control emission of the lights from the  light source subunits  61, 62, 63 via the FSC method to thereby supply lights of different colors to the display panel.
It needs to be pointed out that the arrangement of the  light source subunits  61, 62, 63 along the horizontal direction Y in FIG. 5 is only shown as an illustrating example. In the present disclosure, the light source subunits of the light source 6 can also be arranged in other ways.
FIG. 6 illustrates a structural diagram of a light source according to a second embodiment of the present disclosure. As shown in FIG. 6, the  light source subunits  61, 62, 63 are arranged in the vertical direction Z. As such, the lengths of the light source subunits can be set to be equal to that of the light-entrance side of the display panel to thereby guarantee the uniformity of the light entering into the display panel. Therefore, compared with the light source with the arrangement as shown in FIG. 5, the light source as shown in FIG. 6 can effectively improve the uniformity of the light emitted out of the display panel.
The number of the light source subunits of the light source is set as three in the two embodiments as illustrated in FIG. 5 and FIG. 6. It should be noted that these are only illustrated as examples, which shall not limit the scope of the technical solutions of the present disclosure.
In the following, an example is given in detail in which the light source 6  includes a red light source subunit, a green light source subunit, and a blue light source subunit.
FIG. 7 is a structural diagram of a pixel unit according to some embodiments of the present disclosure. As shown in FIG. 7, the pixel unit comprises a red sub-pixel R, a green sub-pixel G, and a blue sub-pixel B. A time frame is divided into three driving time periods: a first driving time period, a second driving time period, and a third driving time period.
In the first driving time period, the FSC controller 10 controls the red light source red light source to emit a light: a voltage (i.e. pixel voltage) is applied to the first electrode 3 (pixel electrode) corresponding to the red sub-pixel R; then the nematic liquid crystals 9 in the area corresponding to the red sub-pixel R is deflected to be in the scattering state; and correspondingly the red sub-pixel R has a gray scale depending on the magnitude of the pixel voltage, that is, the red sub-pixel R emits a red light.
At the same time, no voltage is applied to the first electrode 3 (pixel electrode) corresponding to the green sub-pixel G and the blue sub-pixel B; the nematic liquid crystals 9 in the corresponding areas are in their initial alignment direction and is therefore in the transmission state, that is, the green sub-pixel G and the blue sub-pixel B do not emit light.
Similarly, in the second driving time period, the FSC controller 10 controls the green light source subunit to emit light: the green sub-pixel G emits a green light of corresponding gray scales, and the red sub-pixel R and the blue sub-pixel B do not emit light.
In the third driving time period, the FSC controller 10 controls the blue light source subunit to emit light; the blue sub-pixel B emits a blue light of corresponding gray scales; and the red sub-pixel R and the green sub-pixel G do not emit light.
Because each of the three driving time periods only accounts for one third of a time frame, human eyes are not able to distinguish between the displaying effects of each individual driving time period, but rather can sense the displaying effect which corresponds to the effect of simultaneous illumination by the three sub-pixels (R, G,  and B) , i.e. the displaying effect of one pixel unit.
It should be noted the case that the number of the light source subunits (the red light source subunit, the green light source subunit, and the blue light source subunit) in the light source 6 is three is only an illustrating example, which shall not be a limitation to the technical solutions of the present disclosure.
In actual practice, the light source subunit included in the light source 6 can comprise LED light source subunits. An LED light source subunit generally comprises a light bar and a plurality of LED lamps mounted onto the light bar. Typically in an LED light source subunit, the direction of LED lamps opposing to the light bar is the direction of light emitted from the LED lamps.
However, in situations where the LED lamps are located at one side of the display panel, or in other words, where the LED lamps and the display panel are located on a same horizontal surface, only part of the light emitted from the LED lamps enters into the liquid crystal layer from the side of the display panel, thus resulting in a reduced effective utilization rate of the light source 6.
Thus in some embodiments of the present disclosure, in order to improve the effective utilization rate of the light source, a reflector 7 is disposed at a side of the light source 6 opposing to the side where the display panel is disposed. Through the reflector 7, lights emitted from the LED lamps of the light source 6 can be reflected back to the light source 6, and ultimately can enter into the liquid crystal layer from the side of the display panel.
The reflector 7 specifically can comprise a reflective cambered surface or curved surface having an opening arranged on a side of the light source opposing to the side of the display panel. Other embodiments as for the shape of the reflector 7 are also possible.
It should be noted that in some embodiments of the present disclosure, it can be configured to have one reflector correspond to a plurality of light sources (as shown in FIG. 5) , or can be configured to have multiple reflectors, with each corresponding to one light source (as shown in FIG. 6) .
In some embodiments of the present disclosure, the transparent display apparatus can further comprise a polarizer 10 (shown in FIGS. 1-3) , which is disposed between the display panel and the light source 6, and is configured to have a transmission axis substantially perpendicular to a transmission direction of the light.
In the embodiments as shown in FIGS. 1-3, the polarizer 10 is configured to have a transmission axis in the plane formed by the X-axis and the Y-axis. By configuration of a polarizer, the contrast of the display panel of the transparent display apparatus can be increased.
Taken together, the present disclosure provides a transparent display apparatus, which comprises a display panel and a light source, wherein the light source is disposed at one side of the display panel. When no electric field is applied to the display panel, the display panel is in a transmission state; and when an electric field is applied to the display panel, the display panel is in a scattering state. As such, the effect of transparent display is realized. Because there are no other structures on the back of the display panel, higher light transmittance is thereby achieved.
In a second aspect, the present disclosure provides a method for manufacturing a transparent display apparatus.
FIG. 8 is a flow chart illustrates such a manufacturing method according to some embodiments of the present disclosure. As shown in FIG. 8, the transparent display apparatus can be a transparent display apparatus according to any one of the embodiments as described above.
Specifically, the method for manufacturing a transparent display apparatus comprises the following steps:
Step 101: forming a liquid crystal layer between an array substrate and an encasing substrate of a display panel, wherein the liquid crystal layer comprises nematic liquid crystals and polymerizable liquid crystal monomers.
This step can be specifically performed by filling liquid crystals, which include the nematic liquid crystals and polymerizable liquid crystal monomers, between the  array substrate and the encasing substrate, and by subsequently sealing the liquid crystal layer that is formed therebetween.
After the array substrate and the encasing substrate are independently manufactured, the array substrate and the encasing substrate can be aligned and the liquid crystal layer can be filled therebetween to thereby form the liquid crystal layer. In some embodiments, the liquid crystal layer comprises the nematic liquid crystals and the polymerizable liquid crystal monomers.
It should be noted that the processes of manufacturing the array substrate and the encasing substrate and forming the liquid crystal layer are common technologies in this field, so the detailed description is not provided herein.
Optionally, the mass percentage of the polymerizable liquid crystal monomers in the liquid crystal layer can be in a range of 0.5%-10%, and as such the amount of the macromolecular network in the liquid crystal layer can subsequently be controlled.
Step 102: curing the liquid crystal layer to thereby allow the polymerizable liquid crystal monomers to form a macromolecular network.
In the process of curing the liquid crystal layer, an ultraviolet curing method or a thermal curing method can be applied depending on the type of the polymerizable liquid crystal monomers. After the curing process, the polymerizable liquid crystal monomers in the liquid crystal layer can form the macromolecular network.
It should be noted that some signal lines, such as gate lines and data lines, need to be disposed on the array substrate. Upon application of a signal onto the signal lines, electric fields are formed between the signal lines in the array substrate and the second electrode on the encasing substrate. As a result, the area of the liquid crystal layer corresponding to the signal lines are in a scattering state, or in other words, light leakage occurs at the areas of the display panel that correspond to the signal lines.
In order to avoid a light leakage at the areas of the display panel that correspond to the signal lines, a mask can be employed during ultraviolet curing process. The mask can be configured to have a pattern corresponding to the area of the signal lines,  thereby the macromolecular networks are not formed at the areas in the liquid crystal layer corresponding to the signal lines, and as such light scattering at these areas can be avoided.
Step 103: forming a light source at one side of the display panel, configured to produce light to enter through the liquid crystal layer from the one side of the display panel.
It should be noted that in order to avoid unnecessary light scattering in the display panel, the nematic liquid crystals, the polymerizable liquid crystal monomers, each layer disposed over the array substrate, and each layer disposed over the encasing substrate can be manufactured with materials having identical or similar refractive indexes. As such, the contrast of the display panel in the transparent display apparatus can be effectively enhanced.
Besides Steps 101-103 as specified in FIG. 8, the manufacturing method of the transparent display apparatus can further comprise Step 100 prior to Step 101.
Step 100: forming an alignment film with a preset alignment direction over each of the opposing sides of the array substrate and the encasing substrate, wherein the preset alignment direction is configured to be perpendicular to a preset horizontal direction of light emitted by the light source.
In these embodiments, to guarantee that light can be transmitted in the liquid crystal layer in the preset horizontal direction, the alignment direction of the liquid crystals needs to be perpendicular to the transmission direction of the light.
The detailed configuration of the light source and the alignment direction of the alignment films can be referenced to the description of the transparent display apparatus in the first aspect as provided above, and it is not repeated herein.
In some embodiments, the method for manufacturing a transparent display apparatus can further comprise a step after Step 103:
Step 104: Disposing a polarizer between the display panel and the light source, wherein the polarizer is configured to allow light with one refractive index to enter into the display panel.
It should be noted that Step 104 does not necessarily have to be after Step 103, and may, in some other embodiments of the method for manufacturing a transparent display apparatus, be between Step 102 and Step 103.
All references cited in the present disclosure are incorporated by reference in their entirety. Although specific embodiments have been described above in detail, the description is merely for purposes of illustration. It should be appreciated, therefore, that many aspects described above are not intended as required or essential elements unless explicitly stated otherwise.
Various modifications of, and equivalent acts corresponding to, the disclosed aspects of the exemplary embodiments, in addition to those described above, can be made by a person of ordinary skill in the art, having the benefit of the present disclosure, without departing from the spirit and scope of the disclosure defined in the following claims, the scope of which is to be accorded the broadest interpretation so as to encompass such modifications and equivalent structures.

Claims (22)

  1. A display panel, comprising:
    a first substrate;
    a second substrate, facing the first substrate;
    a liquid crystal layer, disposed between the first substrate and the second substrate;
    wherein:
    the liquid crystal layer comprises a mixture of nematic liquid crystals and a macromolecular network, configured such that the display panel can switch between a first state and a second state upon application of an electrical field between the first substrate and the second substrate, wherein:
    in the first state, light in the liquid crystal layer is scattered out of the display panel;
    in the second state, light in the liquid crystal layer is totally reflected between the first substrate and the second substrate.
  2. The display panel according to Claim 1, wherein the macromolecular network comprises a polymer network.
  3. The display panel according to Claim 2, wherein the polymer network comprises a plurality of subunits, each derived from a polymerizable liquid crystal monomer.
  4. The display panel according to Claim 3, wherein the polymerizable liquid crystal monomer comprise at least one of HCM and RM257.
  5. The display panel according to Claim 1, wherein a mass percentage of the macromolecular network in the liquid crystal layer is substantially in a range of 0.5%-10%.
  6. The display panel according to Claim 1, further comprising a light source, wherein the light source is disposed over a side of the display panel and is configured to emit light transmitting in the liquid crystal layer.
  7. The display panel according to Claim 6, wherein a preset alignment direction of the nematic liquid crystals is substantially perpendicular to a transmission direction of the light.
  8. The display panel according to Claim 7, further comprising a first alignment film, disposed between the liquid crystal layer and the first substrate and configured to guide the preset alignment direction of the nematic liquid crystals, wherein:
    a rubbing direction of the first alignment film is substantially perpendicular to the transmission direction of the light.
  9. The display panel according to Claim 8, wherein:
    the rubbing direction of the first alignment film is substantially in parallel to a surface of the liquid crystal layer; and
    the nematic liquid crystals are positive liquid crystals.
  10. The display panel according to Claim 8, wherein:
    the rubbing direction of the first alignment film is substantially perpendicular to a surface of the liquid crystal layer; and
    the nematic liquid crystals are negative liquid crystals.
  11. The display panel according to Claim 1, wherein one of the first substrate and the second substrate is an array substrate, wherein:
    the array substrate comprises at least one signal line; and
    an orthographic projection of the macromolecular network on the array substrate does not overlap with an orthographic projection of the at least one signal line on the array substrate.
  12. The display panel according to Claim 1, wherein the liquid crystal layer, the first substrate, and the second substrate each have a substantially identical refractive index.
  13. A transparent display apparatus, comprising a display panel according to any one of Claims 1-12.
  14. The transparent display apparatus of Claim 13, wherein:
    the light source comprises a plurality of light source subunits, each configured to emit light of a different color; and
    the transparent display apparatus further comprises a field sequential color controller, coupled with each of the plurality of light source subunits and configured to control each of the plurality light source subunits to emit light through a field sequential color method.
  15. The transparent display apparatus of Claim 13, further comprising a reflector, wherein the reflector is disposed at a side of the light source opposing to the display panel and has an opening pointing at the display panel.
  16. The transparent display apparatus of Claim 13, further comprising a polarizer, wherein the polarizer is disposed between the display panel and the light source, and is configured to have a transmission axis substantially perpendicular to a transmission direction of the light.
  17. A method for manufacturing a transparent display apparatus, comprising:
    forming a liquid crystal layer between an array substrate and an encasing substrate of a display panel, wherein the liquid crystal layer comprises nematic liquid crystals and polymerizable liquid crystal monomers;
    curing the liquid crystal layer to thereby allow the polymerizable liquid crystal monomers to form a macromolecular network; and
    forming a light source at one side of the display panel, configured to emit light to enter through the liquid crystal layer from the one side of the display panel.
  18. The method of Claim 17, wherein the polymerizable liquid crystal monomers comprise at least one of HCM and RM257.
  19. The method of Claim 17, wherein in forming a liquid crystal layer, a mass percentage of the polymerizable liquid crystal monomers is substantially in a range of  around 0.5%-10%
  20. The method of Claim 17, further comprising, prior to forming a liquid crystal layer:
    forming an alignment film over each of the opposing sides of the array substrate and the encasing substrate, wherein the alignment film is configured to have a rubbing direction substantially perpendicular to a transmission direction of the light emitted by the light source.
  21. The method of claim 17, wherein:
    curing the liquid crystal layer is carried out by at least one of ultraviolet curing or thermal curing.
  22. The method of claim 21, wherein:
    curing the liquid crystal layer is carried out by the ultraviolet curing; and
    the method further comprises, between forming a liquid crystal layer and curing the liquid crystal layer:
    disposing a mask on a side of the array substrate opposing to the side of the liquid crystal layer, wherein the mask is configured to have a pattern whose orthographic projection on the array substrate covers an orthographic projection of at least one signal line disposed at the array substrate.
PCT/CN2016/108359 2016-03-25 2016-12-02 Display panel, transparent display apparatus and manufacturing method WO2017161912A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16869389.3A EP3440507A4 (en) 2016-03-25 2016-12-02 Display panel, transparent display apparatus and manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610179171.4A CN107229157A (en) 2016-03-25 2016-03-25 Transparent display and preparation method thereof
CN201610179171.4 2016-03-25

Publications (1)

Publication Number Publication Date
WO2017161912A1 true WO2017161912A1 (en) 2017-09-28

Family

ID=59899367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108359 WO2017161912A1 (en) 2016-03-25 2016-12-02 Display panel, transparent display apparatus and manufacturing method

Country Status (3)

Country Link
EP (1) EP3440507A4 (en)
CN (1) CN107229157A (en)
WO (1) WO2017161912A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018049292A1 (en) * 2016-09-09 2018-03-15 Kent State University Waveguide liquid crystal display
US20180275452A1 (en) * 2017-03-24 2018-09-27 Boe Technology Group Co., Ltd. Liquid crystal display panel and liquid crystal display apparatus

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105974672B (en) 2016-07-27 2019-03-12 京东方科技集团股份有限公司 A kind of display device
CN108873457B (en) * 2018-07-16 2021-01-26 京东方科技集团股份有限公司 Reflective liquid crystal display panel, display device and driving method thereof
CN110737138B (en) * 2018-07-20 2021-04-30 京东方科技集团股份有限公司 Display panel, display device and control method thereof
CN108957862B (en) * 2018-10-09 2022-05-10 京东方科技集团股份有限公司 Transparent display device and container
CN110501835B (en) * 2019-09-19 2022-05-13 京东方科技集团股份有限公司 Display panel, driving method thereof and display device
CN110928043A (en) 2019-11-26 2020-03-27 深圳市华星光电半导体显示技术有限公司 Transparent display panel and electronic device
CN110875018B (en) 2019-11-28 2021-04-06 京东方科技集团股份有限公司 Display device, driving method thereof and driving circuit thereof
CN113759597A (en) * 2020-06-05 2021-12-07 京东方科技集团股份有限公司 Transparent display device, display method and manufacturing method
CN114200710A (en) * 2021-12-07 2022-03-18 武汉华星光电技术有限公司 Display panel, manufacturing method thereof and display device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203931A (en) 1991-09-27 1993-08-13 Matsushita Electric Ind Co Ltd Liquid crystal panel and production thereof and liquid crystal display device
US20110096261A1 (en) 2009-10-28 2011-04-28 Casio Computer Co., Ltd. Display device
US20110149201A1 (en) 2009-10-16 2011-06-23 Karlton David Powell Lightguide illuminator embedded display
US20130114008A1 (en) 2011-11-09 2013-05-09 Lachezar Komitov Polymer network stabilized flexoelectric polarization
CN103513463A (en) * 2012-06-20 2014-01-15 三星显示有限公司 Liquid crystal display device and method of manufacturing a liquid crystal display device
US20140125895A1 (en) 2012-11-05 2014-05-08 Pusan National University Industry-University Cooperation Foundation Liquid crystal display panel, method of manufacturing the same and liquid crystal display apparatus having the same
US20140160399A1 (en) * 2012-06-01 2014-06-12 Kent State University Encapsulated Polymer Stabilized Cholesteric Texture Light Shutter
WO2014183397A1 (en) 2013-05-16 2014-11-20 京东方科技集团股份有限公司 Display apparatus
CN104730752A (en) * 2014-11-20 2015-06-24 京东方科技集团股份有限公司 Liquid crystal display device and production method thereof
CN105223725A (en) 2015-10-13 2016-01-06 京东方科技集团股份有限公司 Display panel and preparation method thereof
CN105278197A (en) * 2014-06-30 2016-01-27 乐金显示有限公司 Light controlling apparatus and transparent display including the same
CN105301850A (en) * 2014-07-25 2016-02-03 乐金显示有限公司 Light Controlling Apparatus and Transparent Display Including the Same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203931A (en) 1991-09-27 1993-08-13 Matsushita Electric Ind Co Ltd Liquid crystal panel and production thereof and liquid crystal display device
US20110149201A1 (en) 2009-10-16 2011-06-23 Karlton David Powell Lightguide illuminator embedded display
US20110096261A1 (en) 2009-10-28 2011-04-28 Casio Computer Co., Ltd. Display device
US20130114008A1 (en) 2011-11-09 2013-05-09 Lachezar Komitov Polymer network stabilized flexoelectric polarization
US20140160399A1 (en) * 2012-06-01 2014-06-12 Kent State University Encapsulated Polymer Stabilized Cholesteric Texture Light Shutter
CN103513463A (en) * 2012-06-20 2014-01-15 三星显示有限公司 Liquid crystal display device and method of manufacturing a liquid crystal display device
US20140125895A1 (en) 2012-11-05 2014-05-08 Pusan National University Industry-University Cooperation Foundation Liquid crystal display panel, method of manufacturing the same and liquid crystal display apparatus having the same
WO2014183397A1 (en) 2013-05-16 2014-11-20 京东方科技集团股份有限公司 Display apparatus
CN105278197A (en) * 2014-06-30 2016-01-27 乐金显示有限公司 Light controlling apparatus and transparent display including the same
CN105301850A (en) * 2014-07-25 2016-02-03 乐金显示有限公司 Light Controlling Apparatus and Transparent Display Including the Same
CN104730752A (en) * 2014-11-20 2015-06-24 京东方科技集团股份有限公司 Liquid crystal display device and production method thereof
CN105223725A (en) 2015-10-13 2016-01-06 京东方科技集团股份有限公司 Display panel and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3440507A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018049292A1 (en) * 2016-09-09 2018-03-15 Kent State University Waveguide liquid crystal display
US11592694B2 (en) 2016-09-09 2023-02-28 Kent State University Waveguide liquid crystal display
US20180275452A1 (en) * 2017-03-24 2018-09-27 Boe Technology Group Co., Ltd. Liquid crystal display panel and liquid crystal display apparatus
US10914978B2 (en) * 2017-03-24 2021-02-09 Boe Technology Group Co., Ltd. Liquid crystal display panel and liquid crystal display apparatus

Also Published As

Publication number Publication date
CN107229157A (en) 2017-10-03
EP3440507A1 (en) 2019-02-13
EP3440507A4 (en) 2020-01-01

Similar Documents

Publication Publication Date Title
WO2017161912A1 (en) Display panel, transparent display apparatus and manufacturing method
WO2018076948A1 (en) Display panel and display device
JP5304992B2 (en) Display device
TWI487978B (en) Display device and light barrier element
CN101354113B (en) Optical film, lighting device and display unit
US10473944B2 (en) Display device, glasses-free three-dimensional (3D) display system and virtual reality (VR) glasses
CN100416358C (en) Liquid crystal display device and method of controlling viewing angle thereof
US20070268429A1 (en) Liquid crystal display and method for providing light to liquid crystal panel
KR101661323B1 (en) Color display device employing color filter
US10962823B2 (en) Display module and display device
US8970797B2 (en) Liquid crystal display adopting structure of liquid crystal lens
KR20090120564A (en) Transparent see-through display device
US10859864B2 (en) Display device
US20130002984A1 (en) Light control device and image display device
US20160260389A1 (en) Backlight module, display device and driving method thereof
CN110737138A (en) display panel, display device and control method thereof
JP2012027150A (en) Method for manufacturing polymer dispersion type liquid crystal display element, and the display element
KR20160066398A (en) Prism sheet and liquid crystal display device having the same
US8188954B2 (en) Display device and mobile terminal having the same
CN103345016B (en) Light guide plate and preparation method thereof, backlight and transparent display
KR20170068642A (en) Display panel and display device comprising the same
US20160247464A1 (en) Backlight module, display device and driving method thereof
US9377650B2 (en) Liquid crystal display device
KR102436409B1 (en) Light control sheet, method of fabricating thereof and liquid crystal display device having the same
CN111812873B (en) Transparent display panel, preparation method thereof and display device

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2016869389

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16869389

Country of ref document: EP

Kind code of ref document: A1