WO2017161785A1 - Procédé de régulation d'une sortie de puissance photovoltaïque stable en fonction de l'état de fonctionnement d'un stockage d'énergie - Google Patents

Procédé de régulation d'une sortie de puissance photovoltaïque stable en fonction de l'état de fonctionnement d'un stockage d'énergie Download PDF

Info

Publication number
WO2017161785A1
WO2017161785A1 PCT/CN2016/091834 CN2016091834W WO2017161785A1 WO 2017161785 A1 WO2017161785 A1 WO 2017161785A1 CN 2016091834 W CN2016091834 W CN 2016091834W WO 2017161785 A1 WO2017161785 A1 WO 2017161785A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
power
storage system
charging
charge
Prior art date
Application number
PCT/CN2016/091834
Other languages
English (en)
Chinese (zh)
Inventor
李春来
Original Assignee
严利容
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 严利容 filed Critical 严利容
Publication of WO2017161785A1 publication Critical patent/WO2017161785A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/383
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the invention relates to the technical field of photovoltaic power generation, in particular to a photovoltaic power stable output control method based on an energy storage operation state.
  • photovoltaic power generation has developed rapidly in recent years, and has delivered a large amount of clean energy to the power grid.
  • the installed capacity and permeability of photovoltaic power generation systems are constantly improving, and it also brings many negative effects to the safe and stable operation of power systems, such as poor peak shaving capability.
  • the impact on the power grid is large, and the rotating spare capacity needs to be increased. Therefore, the energy storage energy storage system equipped with a certain capacity for the photovoltaic electric field can effectively suppress the fluctuation of the photovoltaic output power, improve the power quality of the system, and achieve friendly access to the power grid.
  • the wavelet packet method is used to decompose the photovoltaic output power signal, combined with the cycle life performance of different types of energy storage, and the charge-discharge power of energy-type energy storage and power-type energy storage is adjusted in real time through fuzzy adaptive control of power-type energy storage SOC;
  • the filter time constant of the filter is adjusted in real time by relevant rules to achieve the goal of controlling the state of charge to be stable in the normal working state;
  • the capacity estimation function of energy storage equipment is obtained by interval estimation method, and the prediction error variance of energy storage capacity under distributed configuration and centralized configuration is compared to achieve better power compensation effect;
  • the capacity optimization model is established.
  • the genetic algorithm is used to optimize the minimum cost.
  • the optimal capacity configuration of each power supply in a given scheduling strategy is discussed.
  • the above research has made more considerations on the fluctuation of grid-connected power of photovoltaic power plants, but does not consider the influence of the operating state of the energy storage body on the fluctuation of photovoltaic power, which makes the above-mentioned methods have a large demand for energy storage capacity.
  • an object of the present invention is to provide a photovoltaic power stable output control method based on an energy storage operation state.
  • a photovoltaic power stable output control method based on an energy storage operation state comprising:
  • step S1 in the optimal power output model in step S1:
  • ⁇ C is the charging efficiency of the energy storage system
  • ⁇ D is the discharge efficiency of the energy storage system.
  • step S1 in the optimal power output model in step S1:
  • P ESS (t) ⁇ i (t) ⁇ P(t) ⁇ C
  • ⁇ C the charging efficiency of the energy storage system
  • ⁇ i (t) the correction coefficient of the charging and discharging power at time t
  • P ESS (t) ⁇ i (t) ⁇ P(t) / ⁇ D
  • the charging and discharging power of the energy storage system at time t ⁇ D is the discharge efficiency of the energy storage system
  • ⁇ i (t) is the correction coefficient of the charging and discharging power at time t.
  • the energy storage system is classified according to the limitation of the operating SOC, including: pre-discharge area [Q SOClow-L2 , Q SOClow-L1 ], normal area [Q SOClow-L1 , Q SOChigh-L1 ] , pre-charge area [Q SOChigh-L1 , Q SOChigh-L2 ].
  • the charge-discharge power correction coefficient ⁇ i (t) at the time t is specifically:
  • ⁇ i (t) is 1 in both the state of charge and the state of discharge
  • ⁇ i (t) 1 in the state of charge, and in the state of discharge
  • the goal of the energy storage capacity optimization is:
  • ⁇ L , ⁇ S , and ⁇ E are respectively the corresponding unit price of the photovoltaic power plant's abandoned light loss energy, the smooth power shortage loss energy, and the converted energy of the energy storage system crossing the line;
  • ⁇ L L LOST is the photovoltaic power plant abandoned light energy cost;
  • ⁇ S L SHORT is the energy cost lost by the smooth power shortage of the photovoltaic power station;
  • ⁇ E L ESS is the converted energy cost of the energy storage system crossing the line;
  • K L , K S and K E are the penalty coefficients of the running cost;
  • the photovoltaic power plant abandoned light loss energy, the smooth power shortage loss energy and the energy storage system cross-line operation conversion energy are respectively:
  • the constraint conditions include:
  • P D and P C are the ultimate charge and discharge power of the energy storage system, respectively;
  • ⁇ ⁇ P d max ⁇ ⁇ ⁇ , ⁇ P d (t) ⁇ P d (t) is the fluctuation value of the photovoltaic power plant output power after being stabilized by the energy storage system, and ⁇ P d max is the maximum fluctuation value Allow the upper limit of the range, which is the corresponding level of credibility;
  • the invention considers that the photovoltaic power is affected by natural conditions and has strong volatility, and uses the energy storage to realize the smooth output control of the photovoltaic power.
  • the charge and discharge power correction coefficient the effective adjustment of the energy storage state is realized, thereby avoiding excessive charge and discharge, thereby effectively prolonging the energy storage operation life and reducing the system operation cost while fully suppressing the photovoltaic output fluctuation.
  • FIG. 1 is a schematic flow chart of a photovoltaic power stable output control method based on an energy storage operation state according to the present invention.
  • FIG. 2 is a graph of a desired output cross-section of a selected time section in accordance with an embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing the effect of the selected time section leveling effect in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a SOC curve in accordance with an embodiment of the present invention.
  • the energy storage operation strategy for suppressing photovoltaic power fluctuations does not consider the state of charge of the energy storage system.
  • the energy storage system frequently exhibits overcharge and over discharge, or is in an abnormal working state for a long time.
  • its service life is greatly reduced, the cost of the energy storage system is greatly increased, which is not conducive to economic considerations.
  • the overcharge and overdischarge of the energy storage system makes the charge and discharge power difficult to control, resulting in severe power injection into the grid. Fluctuations affect the stability of the grid.
  • the maximum state of charge in each battery pack is taken as the state of charge of the entire energy storage system during charging; the minimum state of charge in each battery pack is taken as the entire storage during discharge. The state of charge of the system. This can effectively prevent overcharging and overdischarging of a single battery.
  • the invention adjusts the energy storage charging and discharging system to adjust the energy storage device to always work in the normal working range, and simultaneously considers the energy storage state and the photovoltaic power output stability, can simultaneously stabilize the grid power fluctuation and accurately adjust the energy storage system load. Electrical state.
  • a photovoltaic power stable output control method based on an energy storage operation state of the present invention includes:
  • the invention adjusts the energy storage and discharge system to adjust the energy storage device to always work in the normal working range.
  • the method simultaneously considers the energy storage state and the photovoltaic power output stability, and can effectively stabilize the grid power fluctuation and accurately adjust the energy storage. System state of charge.
  • the energy storage strategy of the photovoltaic power storage system is: when the photovoltaic power output power is greater than the grid-connected power reference value, the energy storage system is charged to stabilize the output power fluctuation; when the photovoltaic power output power is less than the grid-connected power reference value, the energy storage system Discharge to compensate for the lack of output power, in order to smooth the output power of photovoltaic power, to achieve the stability of photovoltaic power grid-connected power.
  • the charge and discharge power command of the energy storage station should consider the current SOC level and the power command size at the current time, that is, when the SOC is in the normal working range, the charge and discharge power of the energy storage power station remains unchanged; When crossing the line to the abnormal working range, it is necessary to adjust the charging and discharging power in time to prevent overcharge and overdischarge.
  • [Q SOClow-L1 , Q SOChigh-L1 ] is the normal area
  • [Q SOChigh-L1 , Q SOChigh-L2 ] is the pre-overcharge area
  • [Q SOChigh-L2 , Q SOCmax ] is the overcharge area
  • the above is the reserve The operating range of the system with different state of charge, wherein Q SOChigh-L2 and Q SOClow-L2 are respectively overcharged and over -alarmed .
  • the change of the operating range of the energy storage system's state of charge will trigger the corresponding adjustment of the power correction coefficient, and the power correction coefficient will be used to change the charging and discharging power of the energy storage system to achieve the pre-control operation of the energy storage system to avoid overcharge and over discharge. status.
  • the specific control strategy is shown in Table 1.
  • ⁇ i (t) is the charge/discharge power correction coefficient at time t, and is 1 when the energy storage system is in the normal region;
  • Q SOC (t) is the state of charge of the energy storage system at time t.
  • the present invention adopts a logarithmic barrier function. When the state of charge is close to Q SOCmax or Q SOClow-L2 , the logarithmic function is highly convergent, and ⁇ i (t) can be lowered more quickly, and the charge and discharge can be better controlled in advance. The role of power effectively prevents the state of charge of the energy storage system from reaching an overcharge or overdischarge state.
  • P ESS (t) is the charge/discharge power of the energy storage system after the power correction factor is adjusted at time t.
  • P ESS (t)>0 the energy storage system is charged
  • P ESS (t) ⁇ 0 the energy storage system is discharged.
  • the goal of optimizing the energy storage capacity of photovoltaic power plants is to ensure the mutual control of the input power and operating costs under the premise of reducing the fluctuation of photovoltaic power output power.
  • the input cost of the lowest energy storage and The operating cost optimizes the operational efficiency of the photovoltaic power storage system.
  • the input cost C C of the energy storage system includes the maintenance cost C M of the energy storage system, and the replacement cost of each energy storage unit of the energy storage system (only when the service life of the energy storage unit is less than the engineering life) C R and energy storage
  • the basic investment cost of the system is C B .
  • the operating cost includes the cost of light loss from the photovoltaic power station caused by the adjustment of the power correction factor, the cost of smoothing the power shortage and the cost of the conversion of the energy storage system across the line, all of which vary due to changes in energy storage capacity.
  • the annual output power of photovoltaic power plants is the research object of energy storage capacity optimization.
  • the photovoltaic power plant abandoned light loss energy, smooth power shortage loss energy and storage.
  • the conversion energy of the system can be operated as shown in equations (11), (12), and (13):
  • N y is the time year of the study object
  • g, h is the total number of times during the charging and discharging process in the year of y i ⁇ 1 to adjust the operation interval
  • p and q are the initial and end times of the g interval respectively
  • u, v is the initial and final time interval h
  • K exceeds the maximum number of which is on the state of charge is N y annual energy storage system in the operating state
  • L is N y annual energy storage system in the operating state is located lower than the minimum state
  • the goal of optimizing the energy storage capacity of photovoltaic power plants is:
  • ⁇ L , ⁇ S , ⁇ E are the corresponding unit price of photovoltaic power plant abandoned light loss energy, smooth power shortage loss energy and energy conversion system cross-line operation;
  • ⁇ L L LOST is photovoltaic power plant abandoned light energy cost ;
  • ⁇ S L SHORT is the energy cost of the smooth power shortage of the photovoltaic power station;
  • ⁇ E L ESS is the converted energy cost of the energy storage system crossing the line;
  • K L , K S and K E are the penalty coefficients of the operating cost;
  • C C storage The input cost of the system.
  • the cost of conversion loss of the energy storage system across the line consists of two parts: First, when the energy storage system is operating in an excessively high state, the energy storage system is not in a reasonable operating state and affects its life cycle. Cost; Second, when the state of charge of the energy storage system is too low, the energy storage system is not in a reasonable operating state and affects the conversion cost of its life cycle.
  • constraints in the charge and discharge strategy of the present invention include:
  • P D and P C are the ultimate charge and discharge power of the energy storage system, respectively, and the discharge is regarded as a negative charging process, the size of which is based on its absolute value.
  • Constraints include photovoltaic power plant output power fluctuation level constraints:
  • ⁇ P d (t) ⁇ P d (t) is the fluctuation value of the photovoltaic power plant output power after being stabilized by the energy storage system
  • ⁇ P d max is the upper limit of the maximum allowable range of the fluctuation value
  • is the corresponding credibility level.
  • the optimal energy storage capacity is calculated based on the actual operational data of a photovoltaic power plant in Qinghai.
  • This embodiment considers the PSO algorithm to solve the stochastic optimization problem of the present invention including dynamic boundary conditions and containing a plurality of random variables.
  • the specific model solving steps are:
  • Step 1 Select the time interval window length y of the research object and its operation data P(t);
  • Step 2 Determine a desired output target value PG based on the optimal power output model, and give an initial SOC equivalent
  • Step 3 Set the particle swarm dimension D, the maximum iteration number M max , the convergence precision C ⁇ , and initialize the particle swarm position x and velocity v;
  • Step 4 According to the charge and discharge strategy of the present invention, parameters such as c 1 , c 2 , ⁇ , V min , and V max are set, and the fitness value px id of each particle is calculated according to the formula (11-17), and the particle size of the particle itself is Comparing the value p i with the global example extreme value p g , if the fitness value is small, updating p i and p g , if not updating the particle velocity V id and the position X id ;
  • Step 5 Calculate ⁇ 2 to determine whether the convergence condition is satisfied.
  • the search convergence condition is:
  • ⁇ 2 is the amount of change in the population or global fitness variance of the particle population
  • C ⁇ is a constant constant close to zero. If yes, obtain the optimal energy storage capacity W O ; if not, re-release the example to form a new ethnic group and repeat step (4).
  • the invention measures the effectiveness of the method of the invention from the index parameters such as the optimal capacity W O , the leveling power offset ⁇ , the SOC extreme value limit number N, and the SOC process curve.
  • the installed capacity of the photovoltaic power station is 9MW, the acquisition frequency is 5min, and the target value is as shown in Figure 2.
  • the smoothing fluctuation output curve is obtained as shown in FIG. 3, and the calculation result of the method of the present invention is shown in Table 2.
  • the method of the present invention effectively realizes the optimization of the energy storage capacity; in terms of the power offset, the method of the present invention is similar to the conventional method and slightly increased, and the reason is the power correction coefficient adjustment strategy.
  • the probability of abandoning or stabilizing the insufficient energy is improved; in terms of the limit value operation, the invention greatly reduces the value of N, and the decrease is 96.2%, and the effect is obvious.
  • the capacity optimization calculation model of the present invention comprehensively considers the overall economics of the configuration and operation of the energy storage power station, and is beneficial to the effective combination with the site.
  • the above theoretical research provides theoretical premise and guarantee for the optimization of energy storage capacity.
  • the actual data example analysis verified the above conclusions.
  • the invention considers that the photovoltaic power is affected by natural conditions and has strong volatility, and uses the energy storage to realize the smooth output control of the photovoltaic power.
  • the charge and discharge power correction coefficient Through the charge and discharge power correction coefficient, the effective adjustment of the energy storage state is realized, thereby avoiding excessive charge and discharge, thereby effectively prolonging the energy storage operation life and reducing the system operation cost while fully suppressing the photovoltaic output fluctuation.
  • the technical director further explored the optimal capacity of photovoltaic power plant configuration energy storage, and provided important theoretical support for the optimal operation of the optical storage system.
  • the actual operation data of photovoltaic power station in Qinghai area is used for calculation.
  • the results show that the photovoltaic power can be output smoothly, and the fluctuation range of the stored energy state can be controlled, which can effectively avoid excessive charging and discharging, which indicates that the method has strong feasibility and application. Sex.

Abstract

L'invention concerne un procédé de régulation d'une sortie de puissance photovoltaïque stable sur la base de l'état de fonctionnement d'un stockage d'énergie, ledit procédé consistant à : S1) sélectionner une longueur de fenêtre de section temporelle d'objet de recherche y et des données de fonctionnement P(t) correspondantes ; S2) sur la base d'un modèle de sortie de puissance optimale, déterminer une valeur cible PG de sortie voulue ; S3) régler le nombre D de dimensions d'essaim de particules, le nombre maximal Mmax d'itérations et une précision de convergence Cσ, et initialiser une position x d'essaim de particules et une vitesse v simultanément ; S4) selon une politique de charge et de décharge, calculer une valeur d'adaptation Pxid de chaque particule, et comparer une valeur extrême de particule pi associée à une valeur extrême de particule globale pg ; si la valeur d'adaptation est inférieure, mettre à jour pi et pg, et si tel n'est pas le cas, mettre à jour une vitesse de particule Vid et une position Xid ; et S5) calculer Δσ2 et déterminer si une formule I de condition de convergence est satisfaite, si tel est le cas, acquérir la capacité Wo de stockage d'énergie optimale, et si tel n'est pas le cas, libérer à nouveau des particules pour construire un nouvel essaim de particules et répéter l'étape S4. Le procédé permet de supprimer efficacement une fluctuation de puissance de raccordement au réseau et de régler en même temps précisément l'état de charge d'un système de stockage d'énergie.
PCT/CN2016/091834 2016-03-23 2016-07-27 Procédé de régulation d'une sortie de puissance photovoltaïque stable en fonction de l'état de fonctionnement d'un stockage d'énergie WO2017161785A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610170019.XA CN107230974A (zh) 2016-03-23 2016-03-23 基于储能运行状态的光伏功率稳定输出控制方法
CN201610170019.X 2016-03-23

Publications (1)

Publication Number Publication Date
WO2017161785A1 true WO2017161785A1 (fr) 2017-09-28

Family

ID=59899287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/091834 WO2017161785A1 (fr) 2016-03-23 2016-07-27 Procédé de régulation d'une sortie de puissance photovoltaïque stable en fonction de l'état de fonctionnement d'un stockage d'énergie

Country Status (2)

Country Link
CN (1) CN107230974A (fr)
WO (1) WO2017161785A1 (fr)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107994595A (zh) * 2017-11-15 2018-05-04 中国电力科学研究院有限公司 一种削峰填谷控制方法和系统以及应用该控制方法的系统
CN109274136A (zh) * 2018-10-24 2019-01-25 南京邮电大学 一种基于量子粒子群算法的光伏系统无功优化方法
CN109768626A (zh) * 2018-07-16 2019-05-17 上海交通大学 一种储能电站即插即用的能量流实现方法
CN109995060A (zh) * 2017-12-29 2019-07-09 中国电力科学研究院有限公司 一种广域储能协调控制方法和系统
CN110059840A (zh) * 2018-01-18 2019-07-26 中国电力科学研究院有限公司 一种受端电网中电池储能系统选址方法及系统
CN110378058A (zh) * 2019-07-26 2019-10-25 中民新能投资集团有限公司 一种综合考虑可靠性与经济性的电热耦合微网最优响应模型的建立方法
CN110676861A (zh) * 2019-09-11 2020-01-10 台州宏远电力设计院有限公司 一种配电网复合储能装置的容量优化配置方法
CN110969294A (zh) * 2019-11-25 2020-04-07 合肥阳光新能源科技有限公司 虚拟电厂分段出力计划确定和储能系统配置方法及装置
CN111431196A (zh) * 2020-04-30 2020-07-17 深圳埃瑞斯瓦特新能源有限公司 用户侧储能系统容量优化供电方法及装置
CN111628497A (zh) * 2020-05-22 2020-09-04 青海大学 一种面向电网稳定性的动态负载管理方法及计算机设备
CN111900748A (zh) * 2020-06-15 2020-11-06 许继集团有限公司 一种适用于梯次利用储能电站的电网支撑控制方法及系统
CN112186786A (zh) * 2020-09-27 2021-01-05 国网辽宁省电力有限公司经济技术研究院 一种基于虚拟同步发电机的储能辅助调频容量配置方法
CN112465665A (zh) * 2020-11-17 2021-03-09 西安热工研究院有限公司 改善电厂调频收益的燃气机组电储能系统容量配置的方法
CN112736973A (zh) * 2020-12-28 2021-04-30 中国电力工程顾问集团西北电力设计院有限公司 平抑风电、光伏电站出力波动的电池储能容量配置方法及系统
CN112838600A (zh) * 2021-02-24 2021-05-25 上海甸康信息技术中心 基于分布式发电系统的功率平衡系统
CN112949898A (zh) * 2021-01-04 2021-06-11 国网上海市电力公司 一种多站融合选址规划的优化方法
CN112952877A (zh) * 2021-03-03 2021-06-11 华北电力大学 一种考虑不同种类电池特性的混合储能功率容量配置方法
CN113095715A (zh) * 2021-04-29 2021-07-09 福州大学 基于深度强化学习的含氢储能微网优化运行方法
CN113162022A (zh) * 2021-02-26 2021-07-23 河北建投新能源有限公司 光伏制氢站的功率配置方法和装置
CN113193603A (zh) * 2021-05-31 2021-07-30 阳光电源股份有限公司 一种能量管理系统的功率分配方法及能量管理系统
CN113224758A (zh) * 2021-05-25 2021-08-06 上海玫克生储能科技有限公司 光储充电站的储能充放电的控制方法、系统、设备及介质
CN113315162A (zh) * 2021-07-06 2021-08-27 阳光电源股份有限公司 场站级储能系统及其能量管理系统和方法
CN113346474A (zh) * 2021-05-31 2021-09-03 上海电力大学 一种直流微电网双储能协调控制方法及存储介质
CN113364053A (zh) * 2021-06-23 2021-09-07 国家电网有限公司 一种实现能量枢纽综合能源的运行决策方法
CN113364030A (zh) * 2021-05-30 2021-09-07 国网福建省电力有限公司 一种储能电站被动脱网运行方法
CN113364116A (zh) * 2021-04-27 2021-09-07 浙江华云信息科技有限公司 一种基于通讯控制器的新能源子站故障监控方法及装置
CN113381400A (zh) * 2021-05-28 2021-09-10 国网青海省电力公司 储能消纳新能源能力评估方法和装置
CN113488995A (zh) * 2021-06-29 2021-10-08 国网安徽省电力有限公司电力科学研究院 基于储能成本的共享储能容量优化配置方法和装置
CN113516306A (zh) * 2021-07-05 2021-10-19 内蒙古工业大学 飞轮储能系统的功率配置方法、装置、介质和电子设备
CN113610659A (zh) * 2021-04-30 2021-11-05 中国农业大学 一种提升电网灵活性与经济性的多时间窗储能配置方法
CN113612260A (zh) * 2021-08-31 2021-11-05 河北建投新能源有限公司 一种电-氢孤岛直流微电网运行控制方法
CN113629737A (zh) * 2021-08-31 2021-11-09 国网新源控股有限公司 一种风光储蓄系统中化学储能的容量配置方法
CN113794193A (zh) * 2021-08-27 2021-12-14 新天绿色能源股份有限公司 一种可再生能源直流微网制氢的决策方法
CN114050608A (zh) * 2021-10-28 2022-02-15 广东电网有限责任公司 光伏系统储能容量的优化配置方法、装置、设备及介质
CN114240104A (zh) * 2021-12-03 2022-03-25 中广核太阳能开发有限公司 光伏弃电储能功率和储能容量配置方法和装置
CN114421501A (zh) * 2022-01-07 2022-04-29 国网湖北省电力有限公司黄冈供电公司 用于分布式储能供电的自适应控制系统参数确定方法
CN114583738A (zh) * 2022-05-09 2022-06-03 西南交通大学 一种考虑老化速率的储能系统均衡控制方法
CN115117906A (zh) * 2022-07-06 2022-09-27 湖南大学 一种基于动态约束区间的双电池储能控制方法
CN115296349A (zh) * 2022-10-08 2022-11-04 合肥华思系统有限公司 一种综合储能电站的高效经济性功率分配方法
CN115378015A (zh) * 2022-09-07 2022-11-22 上海玫克生储能科技有限公司 微电网的运行控制方法、系统、设备和介质
CN115882478A (zh) * 2022-10-13 2023-03-31 襄阳诚智电力设计有限公司 一种含光伏配电网的储能容量配置方法与系统
US11626739B2 (en) 2018-12-21 2023-04-11 Vestas Wind Systems A/S Hybrid power plant and a method for controlling a hybrid power plant
CN115986787A (zh) * 2022-11-17 2023-04-18 广东志成冠军集团有限公司 一种海岛分布式储能逆变系统及其能量管理方法
CN116070822A (zh) * 2023-01-03 2023-05-05 国网湖南省电力有限公司 区域光伏电站的出力同时系数计算方法及系统
CN116307021A (zh) * 2022-10-08 2023-06-23 中国大唐集团科学技术研究总院有限公司 一种新能源制氢系统的多目标能量管理方法
CN116826816A (zh) * 2023-08-30 2023-09-29 湖南大学 考虑电能质量分级治理的储能有功-无功协调复用方法
CN117254526A (zh) * 2023-11-06 2023-12-19 河北大学 一种光储充检微电网一体站能源协同优化控制方法
CN117411087A (zh) * 2023-12-13 2024-01-16 国网山东省电力公司电力科学研究院 一种风光储氢联合发电系统的协同优化控制方法及系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108110791A (zh) * 2017-12-29 2018-06-01 西交利物浦大学 减少储能系统容量的光伏输出功率平滑控制方法及系统
CN111492552B (zh) * 2018-11-21 2023-09-12 亿可能源科技(上海)有限公司 储能管理及控制方法、系统、计算机设备、存储介质
CN110531717B (zh) * 2019-08-13 2022-04-19 天津大学 融合筒仓虚拟储能的煤矿带式输送系统节能优化调度方法
CN112018820B (zh) * 2020-10-22 2021-07-23 江苏慧智能源工程技术创新研究院有限公司 一种光储充系统ems控制方法
CN112417656B (zh) * 2020-11-10 2022-08-12 苏州沃联新能源有限公司 光储系统的能量调度策略的优化方法、装置和存储介质
CN114188982B (zh) * 2021-12-15 2024-03-19 山东大学 一种物理同步的光-储混合发电系统的工作方法
CN115395547B (zh) * 2022-08-31 2024-05-07 国网河南省电力公司南阳供电公司 基于整县光伏推进下的灵活储能系统优化配置方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030047209A1 (en) * 2001-08-31 2003-03-13 Sanyo Electric Co., Ltd. Photovoltaic power generation system with storage batteries
CN101950980A (zh) * 2010-09-13 2011-01-19 江西省电力科学研究院 用于分布式光伏电源并网调控的储能装置容量配置方法
CN102664423A (zh) * 2012-05-30 2012-09-12 山东大学 基于粒子群算法的风电场储能容量控制方法
CN103779869A (zh) * 2014-02-24 2014-05-07 国家电网公司 考虑荷电状态动态调整的储能电站容量优化计算方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030047209A1 (en) * 2001-08-31 2003-03-13 Sanyo Electric Co., Ltd. Photovoltaic power generation system with storage batteries
CN101950980A (zh) * 2010-09-13 2011-01-19 江西省电力科学研究院 用于分布式光伏电源并网调控的储能装置容量配置方法
CN102664423A (zh) * 2012-05-30 2012-09-12 山东大学 基于粒子群算法的风电场储能容量控制方法
CN103779869A (zh) * 2014-02-24 2014-05-07 国家电网公司 考虑荷电状态动态调整的储能电站容量优化计算方法

Cited By (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107994595A (zh) * 2017-11-15 2018-05-04 中国电力科学研究院有限公司 一种削峰填谷控制方法和系统以及应用该控制方法的系统
CN107994595B (zh) * 2017-11-15 2023-09-22 中国电力科学研究院有限公司 一种削峰填谷控制方法和系统以及应用该控制方法的系统
CN109995060A (zh) * 2017-12-29 2019-07-09 中国电力科学研究院有限公司 一种广域储能协调控制方法和系统
CN109995060B (zh) * 2017-12-29 2023-09-22 中国电力科学研究院有限公司 一种广域储能协调控制方法和系统
CN110059840A (zh) * 2018-01-18 2019-07-26 中国电力科学研究院有限公司 一种受端电网中电池储能系统选址方法及系统
CN110059840B (zh) * 2018-01-18 2024-04-19 中国电力科学研究院有限公司 一种受端电网中电池储能系统选址方法及系统
CN109768626A (zh) * 2018-07-16 2019-05-17 上海交通大学 一种储能电站即插即用的能量流实现方法
CN109274136A (zh) * 2018-10-24 2019-01-25 南京邮电大学 一种基于量子粒子群算法的光伏系统无功优化方法
US11626739B2 (en) 2018-12-21 2023-04-11 Vestas Wind Systems A/S Hybrid power plant and a method for controlling a hybrid power plant
CN110378058A (zh) * 2019-07-26 2019-10-25 中民新能投资集团有限公司 一种综合考虑可靠性与经济性的电热耦合微网最优响应模型的建立方法
CN110378058B (zh) * 2019-07-26 2023-12-15 中民新能投资集团有限公司 一种综合考虑可靠性与经济性的电热耦合微网最优响应模型的建立方法
CN110676861A (zh) * 2019-09-11 2020-01-10 台州宏远电力设计院有限公司 一种配电网复合储能装置的容量优化配置方法
CN110969294B (zh) * 2019-11-25 2023-09-19 阳光新能源开发股份有限公司 虚拟电厂分段出力计划确定和储能系统配置方法及装置
CN110969294A (zh) * 2019-11-25 2020-04-07 合肥阳光新能源科技有限公司 虚拟电厂分段出力计划确定和储能系统配置方法及装置
CN111431196B (zh) * 2020-04-30 2023-10-20 深圳埃瑞斯瓦特新能源有限公司 用户侧储能系统容量优化供电方法及装置
CN111431196A (zh) * 2020-04-30 2020-07-17 深圳埃瑞斯瓦特新能源有限公司 用户侧储能系统容量优化供电方法及装置
CN111628497B (zh) * 2020-05-22 2022-04-29 青海大学 一种面向电网稳定性的动态负载管理方法及计算机设备
CN111628497A (zh) * 2020-05-22 2020-09-04 青海大学 一种面向电网稳定性的动态负载管理方法及计算机设备
CN111900748A (zh) * 2020-06-15 2020-11-06 许继集团有限公司 一种适用于梯次利用储能电站的电网支撑控制方法及系统
CN112186786A (zh) * 2020-09-27 2021-01-05 国网辽宁省电力有限公司经济技术研究院 一种基于虚拟同步发电机的储能辅助调频容量配置方法
CN112186786B (zh) * 2020-09-27 2024-03-15 国网辽宁省电力有限公司经济技术研究院 一种基于虚拟同步发电机的储能辅助调频容量配置方法
CN112465665A (zh) * 2020-11-17 2021-03-09 西安热工研究院有限公司 改善电厂调频收益的燃气机组电储能系统容量配置的方法
CN112736973A (zh) * 2020-12-28 2021-04-30 中国电力工程顾问集团西北电力设计院有限公司 平抑风电、光伏电站出力波动的电池储能容量配置方法及系统
CN112949898A (zh) * 2021-01-04 2021-06-11 国网上海市电力公司 一种多站融合选址规划的优化方法
CN112838600A (zh) * 2021-02-24 2021-05-25 上海甸康信息技术中心 基于分布式发电系统的功率平衡系统
CN113162022A (zh) * 2021-02-26 2021-07-23 河北建投新能源有限公司 光伏制氢站的功率配置方法和装置
CN113162022B (zh) * 2021-02-26 2023-06-06 河北建投新能源有限公司 光伏制氢站的功率配置方法和装置
CN112952877B (zh) * 2021-03-03 2022-10-14 华北电力大学 一种考虑不同种类电池特性的混合储能功率容量配置方法
CN112952877A (zh) * 2021-03-03 2021-06-11 华北电力大学 一种考虑不同种类电池特性的混合储能功率容量配置方法
CN113364116A (zh) * 2021-04-27 2021-09-07 浙江华云信息科技有限公司 一种基于通讯控制器的新能源子站故障监控方法及装置
CN113364116B (zh) * 2021-04-27 2024-03-29 浙江华云信息科技有限公司 一种基于通讯控制器的新能源子站故障监控方法及装置
CN113095715A (zh) * 2021-04-29 2021-07-09 福州大学 基于深度强化学习的含氢储能微网优化运行方法
CN113095715B (zh) * 2021-04-29 2022-07-05 福州大学 基于深度强化学习的含氢储能微网优化运行方法
CN113610659A (zh) * 2021-04-30 2021-11-05 中国农业大学 一种提升电网灵活性与经济性的多时间窗储能配置方法
CN113610659B (zh) * 2021-04-30 2023-12-19 中国农业大学 一种提升电网灵活性与经济性的多时间窗储能配置方法
CN113224758A (zh) * 2021-05-25 2021-08-06 上海玫克生储能科技有限公司 光储充电站的储能充放电的控制方法、系统、设备及介质
CN113381400A (zh) * 2021-05-28 2021-09-10 国网青海省电力公司 储能消纳新能源能力评估方法和装置
CN113381400B (zh) * 2021-05-28 2022-09-27 国网青海省电力公司 储能消纳新能源能力评估方法和装置
CN113364030A (zh) * 2021-05-30 2021-09-07 国网福建省电力有限公司 一种储能电站被动脱网运行方法
CN113364030B (zh) * 2021-05-30 2023-06-27 国网福建省电力有限公司 一种储能电站被动脱网运行方法
CN113193603A (zh) * 2021-05-31 2021-07-30 阳光电源股份有限公司 一种能量管理系统的功率分配方法及能量管理系统
CN113193603B (zh) * 2021-05-31 2024-04-12 阳光电源股份有限公司 一种能量管理系统的功率分配方法及能量管理系统
CN113346474A (zh) * 2021-05-31 2021-09-03 上海电力大学 一种直流微电网双储能协调控制方法及存储介质
CN113364053B (zh) * 2021-06-23 2022-06-24 国家电网有限公司 一种实现能量枢纽综合能源的运行决策方法
CN113364053A (zh) * 2021-06-23 2021-09-07 国家电网有限公司 一种实现能量枢纽综合能源的运行决策方法
CN113488995B (zh) * 2021-06-29 2024-03-12 国网安徽省电力有限公司电力科学研究院 基于储能成本的共享储能容量优化配置方法和装置
CN113488995A (zh) * 2021-06-29 2021-10-08 国网安徽省电力有限公司电力科学研究院 基于储能成本的共享储能容量优化配置方法和装置
CN113516306A (zh) * 2021-07-05 2021-10-19 内蒙古工业大学 飞轮储能系统的功率配置方法、装置、介质和电子设备
CN113516306B (zh) * 2021-07-05 2023-04-07 内蒙古工业大学 飞轮储能系统的功率配置方法、装置、介质和电子设备
CN113315162A (zh) * 2021-07-06 2021-08-27 阳光电源股份有限公司 场站级储能系统及其能量管理系统和方法
CN113315162B (zh) * 2021-07-06 2024-04-12 阳光电源股份有限公司 场站级储能系统及其能量管理系统和方法
CN113794193A (zh) * 2021-08-27 2021-12-14 新天绿色能源股份有限公司 一种可再生能源直流微网制氢的决策方法
CN113794193B (zh) * 2021-08-27 2024-04-26 新天绿色能源股份有限公司 一种可再生能源直流微网制氢的决策方法
CN113612260A (zh) * 2021-08-31 2021-11-05 河北建投新能源有限公司 一种电-氢孤岛直流微电网运行控制方法
CN113629737A (zh) * 2021-08-31 2021-11-09 国网新源控股有限公司 一种风光储蓄系统中化学储能的容量配置方法
CN113629737B (zh) * 2021-08-31 2023-06-27 国网新源控股有限公司 一种风光储蓄系统中化学储能的容量配置方法
CN114050608B (zh) * 2021-10-28 2024-05-03 广东电网有限责任公司 光伏系统储能容量的优化配置方法、装置、设备及介质
CN114050608A (zh) * 2021-10-28 2022-02-15 广东电网有限责任公司 光伏系统储能容量的优化配置方法、装置、设备及介质
CN114240104A (zh) * 2021-12-03 2022-03-25 中广核太阳能开发有限公司 光伏弃电储能功率和储能容量配置方法和装置
CN114240104B (zh) * 2021-12-03 2022-08-30 中广核太阳能开发有限公司 光伏弃电储能功率和储能容量配置方法和装置
CN114421501A (zh) * 2022-01-07 2022-04-29 国网湖北省电力有限公司黄冈供电公司 用于分布式储能供电的自适应控制系统参数确定方法
CN114583738B (zh) * 2022-05-09 2022-08-02 西南交通大学 一种考虑老化速率的储能系统均衡控制方法
CN114583738A (zh) * 2022-05-09 2022-06-03 西南交通大学 一种考虑老化速率的储能系统均衡控制方法
CN115117906A (zh) * 2022-07-06 2022-09-27 湖南大学 一种基于动态约束区间的双电池储能控制方法
CN115117906B (zh) * 2022-07-06 2024-04-26 湖南大学 一种基于动态约束区间的双电池储能控制方法
CN115378015B (zh) * 2022-09-07 2023-09-05 上海玫克生储能科技有限公司 微电网的运行控制方法、系统、设备和介质
CN115378015A (zh) * 2022-09-07 2022-11-22 上海玫克生储能科技有限公司 微电网的运行控制方法、系统、设备和介质
CN116307021B (zh) * 2022-10-08 2024-03-22 中国大唐集团科学技术研究总院有限公司 一种新能源制氢系统的多目标能量管理方法
CN115296349B (zh) * 2022-10-08 2023-01-13 合肥华思系统有限公司 一种综合储能电站的高效经济性功率分配方法
CN116307021A (zh) * 2022-10-08 2023-06-23 中国大唐集团科学技术研究总院有限公司 一种新能源制氢系统的多目标能量管理方法
CN115296349A (zh) * 2022-10-08 2022-11-04 合肥华思系统有限公司 一种综合储能电站的高效经济性功率分配方法
CN115882478B (zh) * 2022-10-13 2023-09-08 襄阳诚智电力设计有限公司 一种含光伏配电网的储能容量配置方法与系统
CN115882478A (zh) * 2022-10-13 2023-03-31 襄阳诚智电力设计有限公司 一种含光伏配电网的储能容量配置方法与系统
CN115986787A (zh) * 2022-11-17 2023-04-18 广东志成冠军集团有限公司 一种海岛分布式储能逆变系统及其能量管理方法
CN115986787B (zh) * 2022-11-17 2023-08-04 广东志成冠军集团有限公司 一种海岛分布式储能逆变系统及其能量管理方法
CN116070822A (zh) * 2023-01-03 2023-05-05 国网湖南省电力有限公司 区域光伏电站的出力同时系数计算方法及系统
CN116070822B (zh) * 2023-01-03 2024-05-03 国网湖南省电力有限公司 区域光伏电站的出力同时系数计算方法及系统
CN116826816B (zh) * 2023-08-30 2023-11-10 湖南大学 考虑电能质量分级治理的储能有功-无功协调复用方法
CN116826816A (zh) * 2023-08-30 2023-09-29 湖南大学 考虑电能质量分级治理的储能有功-无功协调复用方法
CN117254526A (zh) * 2023-11-06 2023-12-19 河北大学 一种光储充检微电网一体站能源协同优化控制方法
CN117254526B (zh) * 2023-11-06 2024-05-07 河北大学 一种光储充检微电网一体站能源协同优化控制方法
CN117411087A (zh) * 2023-12-13 2024-01-16 国网山东省电力公司电力科学研究院 一种风光储氢联合发电系统的协同优化控制方法及系统
CN117411087B (zh) * 2023-12-13 2024-04-12 国网山东省电力公司电力科学研究院 一种风光储氢联合发电系统的协同优化控制方法及系统

Also Published As

Publication number Publication date
CN107230974A (zh) 2017-10-03

Similar Documents

Publication Publication Date Title
WO2017161785A1 (fr) Procédé de régulation d'une sortie de puissance photovoltaïque stable en fonction de l'état de fonctionnement d'un stockage d'énergie
CN108306331B (zh) 一种风光储混合系统的优化调度方法
WO2021114849A1 (fr) Procédé de commande hiérarchique de système de stockage d'énergie de réseau électrique insulaire permettant d'améliorer une nouvelle fluctuation de production d'alimentation énergétique
WO2018196433A1 (fr) Procédé de commande multiniveau d'accumulateur d'énergie multitype
CN105846461B (zh) 一种大规模储能电站自适应动态规划的控制方法和系统
CN105162147B (zh) 一种平抑风电功率波动的混合储能控制系统及控制方法
CN105207242B (zh) 储能装置参与机组调频的优化控制与容量规划系统及方法
CN103779869B (zh) 考虑荷电状态动态调整的储能电站容量优化计算方法
CN110581571A (zh) 一种主动配电网动态优化调度方法
CN104377724B (zh) 提高风电/光伏混合储能系统经济性的协调优化控制方法
CN107994595A (zh) 一种削峰填谷控制方法和系统以及应用该控制方法的系统
CN111244988B (zh) 考虑分布式电源的电动汽车和储能优化调度方法
WO2017161787A1 (fr) Procédé de stabilisation dynamique pour une fluctuation d'énergie photovoltaïque sur la base d'informations futures
CN111697597B (zh) 一种基于粒子群算法的火储联合agc调频控制方法
Lin et al. Long-term stable operation control method of dual-battery energy storage system for smoothing wind power fluctuations
CN106505604A (zh) 接入区域配电网的光伏储能联合运行单元优化配置方法
CN116231765B (zh) 一种虚拟电厂出力控制方法
CN110165707A (zh) 基于卡尔曼滤波和模型预测控制的光储系统优化控制方法
CN115204702A (zh) 一种基于动态分区的日前日内调度方法
CN115313516A (zh) 一种光伏发电和储能微电网结合的随机优化运行策略
CN107482657A (zh) 风电爬坡率实时平抑方法和系统
CN112290571B (zh) 储能系统平滑控制方法
CN112928769B (zh) 一种兼顾补偿预测误差和平抑波动的光伏混合储能控制方法
CN110429626B (zh) 一种适用于并网型储能系统的能量管理系统及管理方法
CN111817329A (zh) 光伏电站优化运行方法及装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895135

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/02/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16895135

Country of ref document: EP

Kind code of ref document: A1