WO2017161566A1 - 一种拥塞控制方法、装置及相关设备 - Google Patents

一种拥塞控制方法、装置及相关设备 Download PDF

Info

Publication number
WO2017161566A1
WO2017161566A1 PCT/CN2016/077356 CN2016077356W WO2017161566A1 WO 2017161566 A1 WO2017161566 A1 WO 2017161566A1 CN 2016077356 W CN2016077356 W CN 2016077356W WO 2017161566 A1 WO2017161566 A1 WO 2017161566A1
Authority
WO
WIPO (PCT)
Prior art keywords
congestion control
congestion
window value
transmission link
control window
Prior art date
Application number
PCT/CN2016/077356
Other languages
English (en)
French (fr)
Inventor
徐青
周伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112018069130A priority Critical patent/BR112018069130A2/pt
Priority to PCT/CN2016/077356 priority patent/WO2017161566A1/zh
Priority to EP16894920.4A priority patent/EP3410658B1/en
Priority to CN201680074621.1A priority patent/CN108476174B/zh
Publication of WO2017161566A1 publication Critical patent/WO2017161566A1/zh
Priority to US16/120,000 priority patent/US10530693B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/19Flow control; Congestion control at layers above the network layer
    • H04L47/193Flow control; Congestion control at layers above the network layer at the transport layer, e.g. TCP related
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0273Traffic management, e.g. flow control or congestion control adapting protocols for flow control or congestion control to wireless environment, e.g. adapting transmission control protocol [TCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • H04L47/127Avoiding congestion; Recovering from congestion by using congestion prediction

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a congestion control method, apparatus, and related device.
  • the control plane message of the Long Term Evolution (LTE) system is used to ensure the normal operation of the system and the normal establishment and exit of the service connection. Therefore, the reliability of the control plane message is very important in the LTE system.
  • LTE Long Term Evolution
  • MME Mobility Management Entity
  • SGW Serving Gate Way
  • the MME After the communication message, the MME needs to send a paging message (Paging) to all the Evolved Node Base Stations (eNBs) in the Tracking Area List (TA List), so that the eNB will
  • the paging message is forwarded to the user equipment (User Equipment, UE for short), and the UE can initiate a Radio Resource Control (RRC) connection to receive data after receiving the paging message.
  • RRC Radio Resource Control
  • the Paging message is sent by using the S1 signaling between the MME and the eNB, and the S1 signaling and the X2 signaling between the eNBs are transmitted based on the Stream Control Transmission Protocol (SCTP).
  • SCTP Stream Control Transmission Protocol
  • the embodiments of the present invention provide a congestion control method, device, and related device, which are used to solve the congestion problem and reduce the congestion risk.
  • a first aspect of the present invention provides a congestion control method, which may include:
  • Determining whether the congestion risk coefficient is not less than a preset threshold if the congestion risk coefficient is not less than The preset threshold triggers adjustment of the congestion control window value.
  • a preset security threshold for detecting congestion risk is preset, and then the transmission rate and the congestion control window value in the transmission link are obtained in real time, and are calculated according to the transmission rate and the congestion control window value. If the congestion risk coefficient is not less than the preset threshold, the congestion risk may occur in the transmission link, and then the congestion control window value is adjusted to identify congestion in advance and avoid congestion. Reduce the impact of congestion and packet loss on the transmission link and improve the utilization of network bandwidth.
  • adjusting the congestion control window value mainly lowers the congestion control window value, reduces the upper limit of the traffic that can be transmitted in the transmission link, and achieves the purpose of controlling congestion.
  • the foregoing obtaining the transmission rate of the transmission link, and acquiring the congestion control window value of the transmission link may specifically include: acquiring a transmission rate of the transmitting end in the transmission link, and And/or a receiving rate of the receiving end, and obtaining a congestion control window value of the transmitting end and/or a congestion control window value of the receiving end in the transmission link.
  • the two ends of the transmission link are the transmitting end and the receiving end respectively, and the transmitting end has its own sending rate and congestion control window value.
  • the receiving end also has its own receiving rate and congestion control window value.
  • the congestion risk coefficient of the transmission link can be calculated according to the transmission rate of the transmitting end and/or the receiving rate of the receiving end, and the congestion control window value of the transmitting end and/or the congestion control window value of the receiving end, which can be integrated. Consider the actual situation of the sender and receiver.
  • the adjustment of the congestion control window value of the transmitting end may be separately triggered, or the adjustment of the congestion control window value of the receiving end may be separately triggered. Or trigger the adjustment of the congestion control window value of the sender and the congestion control window value of the receiver at the same time.
  • the acquisition of the transmission rate of the transmission link and the acquisition of the congestion control window value may be performed according to the cycle, thereby periodically starting the congestion control method provided by the present invention to perform the transmission link.
  • Congestion identification It can be understood that the cycle is actually a cycle for implementing the congestion control method provided by the present invention, and not just a cycle of acquiring the transmission rate.
  • a second aspect of the present invention provides a congestion control apparatus, which may include:
  • An acquiring module configured to acquire a transmission rate of the transmission link, and obtain a congestion control window value of the transmission link
  • a calculating module configured to calculate a congestion risk coefficient of the transmission link according to the transmission rate and the congestion control window value
  • an adjustment module configured to determine whether the congestion risk coefficient is not less than a preset threshold, and if the congestion risk coefficient is not less than the preset threshold, triggering adjustment of the congestion control window value.
  • the acquiring module is specifically configured to acquire a sending rate of the sending end in the transmission link and/or a receiving rate of the receiving end, and acquire the sending end of the transmitting link.
  • the congestion control window value and/or the congestion control window value of the receiving end are specifically configured to acquire a sending rate of the sending end in the transmission link and/or a receiving rate of the receiving end, and acquire the sending end of the transmitting link.
  • the calculating module is specifically configured to: according to the sending rate of the sending end and/or the receiving rate of the receiving end, and the congestion control window value of the sending end and/or the receiving end
  • the congestion control window value calculates a congestion risk factor of the transmission link.
  • the adjusting module is specifically configured to trigger an adjustment of a congestion control window value of the transmitting end and/or a congestion control window value of the receiving end.
  • the acquiring module is further configured to: measure, according to a preset period, a transmission rate of the transmission link, and obtain a congestion control window value of the transmission link.
  • a third aspect of the present invention provides a congestion control apparatus, which may include:
  • the memory is configured to store program instructions
  • the processor is operative to invoke the program instructions to perform the steps provided by the first aspect above.
  • a fourth aspect of the present invention provides a core network device, including the congestion control device provided by the second aspect, or the congestion control device provided by the third aspect.
  • a fifth aspect of the present invention provides an access network device, including the congestion control device provided by the second aspect, or the congestion control device provided by the third aspect.
  • a sixth aspect of the present invention provides a congestion control system, including the core network device provided by the fourth aspect, and the access network device provided by the fifth aspect.
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present invention.
  • FIG. 1b is a schematic flowchart of a congestion control method according to some embodiments of the present invention.
  • FIG. 2 is a schematic flowchart of a congestion control method according to some embodiments of the present invention.
  • FIG. 3 is a schematic flowchart of a congestion control method according to another embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a congestion control method according to another embodiment of the present invention.
  • FIG. 5 is a schematic flowchart diagram of a congestion control method according to another embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a congestion control apparatus according to an embodiment of the present invention.
  • FIG. 7 is another schematic structural diagram of a congestion control apparatus according to an embodiment of the present invention.
  • FIGS. 8a-8b are schematic structural diagrams of a core network device according to some embodiments of the present invention.
  • FIGS. 9a-9b are schematic structural diagrams of an access network device according to some embodiments of the present invention.
  • FIG. 10 is a schematic structural diagram of a congestion control system according to some embodiments of the present invention.
  • the embodiment of the present invention provides a congestion control method, which is used to identify congestion in advance, avoid congestion, reduce the impact of congestion and packet loss on the transmission link, and improve the utilization of link bandwidth.
  • the embodiment of the invention further provides a device corresponding to the congestion control method, and a core network device and an access network device.
  • the LTE system is taken as an example in the foregoing background, the person skilled in the art should know that the present invention is not only applicable to the LTE system, but also applicable to other wireless communication systems, such as the Global System for Global System (Global System for Mobile System). Mobile Communication, GSM), Universal Mobile Telecommunications System (UMTS), Code Division Multiple Access (CDMA) system, and new network systems.
  • GSM Global System for Global System
  • UMTS Universal Mobile Telecommunications System
  • CDMA Code Division Multiple Access
  • FIG. 1a is a schematic diagram of an application scenario according to an embodiment of the present invention.
  • an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) is composed of a plurality of eNBs, an MME/SGW/Packet Data Network Gateway (PGW). .
  • the eNB implements wireless physical layer functions, resource scheduling and radio resource management, radio access control, and mobility management functions.
  • the MME is mainly responsible for all control plane functions of the user, that is, session management, including management of the TA List, PGW and SGW selection.
  • the SGW is mainly responsible for data transmission, forwarding, and route switching of the user equipment (User Equipment, UE for short), and is used as a local mobility anchor point when the UE switches between eNBs.
  • the PGW is responsible for the Internet Protocol (IP) address allocation of the UE, data packet filtering, rate control, and generation of charging information of the UE.
  • IP Internet Protocol
  • the eNBs can be connected through the X2 interface, and the eNB is connected to the MME/SGW/PGW through the S1 interface. Both the X2 signaling and the S1 signaling are transmitted based on the SCTP protocol.
  • eNB may support or manage one or more cells.
  • BTS Base Transceiver Station
  • Node B Node B
  • the eNB may support or manage one or more cells. When the UE needs to communicate with the network, it selects a cell to initiate network access.
  • the UE may be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal, for example, a portable, pocket, handheld, computer built-in or in-vehicle mobile device that is connected to the wireless device.
  • Network exchange language and / or data.
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the UE may also be referred to as a system, a Subscriber Unit, a Subscriber Station, a Mobile Station, a Mobile, a Remote Station, an Access Point, and a remote. Remote Terminal, Access Terminal, User Terminal, User Agent, etc.
  • a congestion control method specifically includes:
  • the two ends of the transmission link are respectively a transmitting end and a receiving end, wherein the transmitting end can be any one of the eNB, the BTS, the Node B, and the like described above.
  • the receiving end is the MME and the SGW introduced above. , any of the PGW.
  • the transmitting end may be any one of the MME, the SGW, and the PGW described above
  • the receiving end may be any one of the eNB, the BTS, the Node B, and the like described above.
  • the transmitting end may also be any one of the eNB, the BTS, the Node B, and the like described above, and the receiving end is the UE described above, and the transmitting end is the UE, and the receiving end is the receiving end. It is any one of an eNB, a BTS, a Node B, and the like.
  • the embodiments of the present invention can also be applied to other link connection based communication systems.
  • the execution body of the embodiment of the present invention is a congestion control device
  • the congestion control device may be disposed at the transmitting end or the receiving end, or the transmitting end and the receiving end simultaneously set the congestion control device.
  • the transmitting end or the receiving end provided with the congestion control device performs the congestion control method provided by the present invention.
  • both the transmitting end and the receiving end are provided with congestion control means, one of the congestion control means provided by the present invention performs the congestion control method provided by the present invention, and another set congestion control means may participate in the adjustment of the congestion control window value.
  • the congestion control window value represents the maximum amount of traffic that can be transmitted on the transmission link.
  • the transmission rate of the transmission link and the congestion control window value of the transmission link are not sequentially executed.
  • the transmission rate of the transmission link may be obtained first, and then the congestion control window value of the transmission link may be obtained; or, the congestion control window value of the transmission link may be obtained first. Then obtain the transmission rate of the transmission link; or, simultaneously acquire the transmission rate and congestion control window value of the transmission link.
  • a preset threshold is preset in the congestion control device, and the preset threshold is used to indicate an upper limit congestion risk coefficient of the transmission link that does not cause congestion of the transmission link.
  • the congestion risk factor is used to indicate the risk of congestion in the transmission link.
  • step 104 If yes, go to step 104; if no, go to step 105.
  • the congestion risk coefficient when the congestion risk coefficient is not less than the preset threshold, it indicates that the current transmission rate and the congestion control window value on the transmission link may be suddenly congested, thereby triggering adjustment of the congestion control window value.
  • the adjustment situation includes three ways: only the sender participates in the adjustment; only the receiver participates in the adjustment; the sender and the receiver simultaneously participate in the adjustment.
  • the congestion risk coefficient is less than the preset threshold, it is recognized that the transmission link does not have a sudden congestion risk, and the advanced congestion avoidance operation may not be performed.
  • a preset security threshold for detecting congestion risk is preset, and then the transmission rate and the congestion control window value in the transmission link are obtained in real time, and the current value is calculated according to the transmission rate and the congestion control window value.
  • the congestion risk factor if the congestion risk factor is not less than the preset threshold, the transmission link may be in a sudden congestion risk, and then trigger the adjustment of the congestion control window value to identify congestion in advance, prevent congestion, and reduce congestion. The impact of the packet on the transmission link improves the utilization of network bandwidth.
  • the embodiment of the present invention may be performed according to a certain period, that is, a period is set, for example, 10s, and then the embodiment of the present invention is executed every 10s to identify the congestion risk on the transmission link in real time to prevent The risk of congestion.
  • the foregoing transmission link may be an SCTP link between the MME and the eNB, of course, It can also be applied to other link layers, such as a Transmission Control Protocol (TCP)-based link, an IP-based link, and the like.
  • TCP Transmission Control Protocol
  • the MME is used as the transmitting end, and the eNB is used as the receiving end. Otherwise, the eNB is used as the transmitting end, and the MME is used as the receiving end.
  • the logic of the terminal is similar to that of the embodiment, and is not described in detail in the embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a congestion control method according to some embodiments of the present invention. As shown in FIG. 2, a congestion control method may include:
  • the eNB reports the receiving window value to the MME.
  • the congestion control window value of the receiving end described above is the receiving window value introduced here and later.
  • the eNB reports the receiving window value currently used for receiving data traffic to the MME according to the SCTP protocol, and the receiving window value indicates that the eNB can The maximum data traffic received.
  • the MME receives a receiving window value reported by the eNB.
  • the MME measures a sending rate, and obtains a sending window value.
  • the MME is used as the transmitting end, and the eNB is used as the receiving end.
  • the congestion control apparatus provided by the embodiment of the present invention is provided in the MME.
  • the congestion control apparatus provided by the embodiment of the present invention may be set in the eNB at the same time, and the congestion control apparatus set in the eNB is configured to perform the adjustment of the receiving window value, without performing The judgment of the congestion risk factor will be described in detail below.
  • the send window value indicates the maximum data traffic that the MME can send.
  • the congestion control window value of the sender described above is the value of the transmission window introduced here and later.
  • a period is preset in the eNB and the MME, and the period is a period in which the technical solution of the present invention is executed.
  • the congestion control method provided by the embodiment of the present invention is executed.
  • the eNB detects the arrival of the preset period, and then the eNB reports the receiving window value to the MME.
  • the MME detects the arrival of the preset period, starts measuring its own transmission rate, and acquires its own transmission window value.
  • the transmission rate may be measured first, and the transmission window value of the transmission window may be obtained; or the transmission window value of the transmission window may be obtained first, and then the transmission rate may be measured; or the measurement transmission rate and the transmission window value may be simultaneously performed.
  • step 201 is performed first, and then step 202 is performed.
  • step 202 is performed between step 201, step 202 and step 203, there may be several execution sequences: execution Steps 201-203-202; Execute 201-202-203; Execute 203-201-202; Execute (201, 203)-202, wherein (201, 203) indicates that 201 and 203 are simultaneously executed.
  • the MME calculates a congestion risk coefficient on the SCTP link according to the receiving window value, the sending rate, and the sending window value.
  • the current congestion risk coefficient of the SCTP link is calculated according to the transmission window value and the sending rate of the eNB. It can be understood that the congestion risk factor is used to indicate the congestion risk in the SCTP link.
  • the MME determines whether the calculated congestion risk coefficient is not less than a preset threshold.
  • a preset threshold is preset in the congestion control device or in the MME, and the preset threshold is used to indicate an upper limit congestion risk coefficient of the SCTP link that does not cause congestion of the transmission link.
  • the transmission link has a high congestion risk; if the congestion risk coefficient is less than the preset threshold, it is considered that there is no congestion risk or low congestion risk.
  • the MME sets the congestion risk identifier to the first preset value; if the congestion risk coefficient is less than the preset threshold, the MME sets the congestion risk identifier to the second preset value. ;
  • a congestion risk indicator to indicate the congestion risk of the SCTP link by using the congestion risk indicator. If the congestion risk indicator is set to the first preset value, the congestion risk coefficient is not less than the preset threshold, indicating the transmission link. High congestion risk. If the congestion risk indicator is set to the second preset value, the congestion risk coefficient is less than the preset threshold, indicating that there is no congestion risk or low congestion risk.
  • the first preset value and the second preset value are arbitrary values. For example, when the congestion risk coefficient is not less than the preset threshold, the congestion risk flag is set to 1, and conversely, when the congestion risk coefficient is less than the preset threshold, the congestion will be congested. The risk flag is set to 0.
  • the MME adjusts a sending window value according to the congestion risk identifier.
  • the congestion risk indicator when the congestion risk indicator is set to the first preset value, the sending window value is lowered, that is, the current sending window value is reduced, so that the MME can allow the transmitted data traffic upper limit to be smaller, that is, the SCTP link is reduced.
  • the congestion risk indicator is set to the second preset value, the processing may not be processed, and the current sending window value of the MME may be maintained.
  • the MME sends the congestion risk identifier to the eNB.
  • the eNB receives the congestion risk identifier, and adjusts the receiving window value according to the congestion risk identifier.
  • the adjustment of the transmission window value may be performed only on the MME side, and the eNB does not need to participate in the adjustment, that is, the eNB does not need to adjust the reception window value.
  • the MME completes the adjustment of the transmission window value, and also sends the congestion risk identifier to the eNB, and completes the adjustment of the receiving window value on the eNB side.
  • the congestion risk coefficient of the SCTP link is calculated according to the transmission rate, the transmission window value, and the receiving window value of the eNB, and then the congestion risk coefficient and the preset threshold are compared.
  • the MME's transmit window value needs to be adjusted and adjust the eNB's receive window value to adjust the transmit window value and the receive window value before the next data traffic burst causes congestion to reduce congestion risk and improve SCTP.
  • the business efficiency of the link is calculated according to the transmission rate, the transmission window value, and the receiving window value of the eNB, and then the congestion risk coefficient and the preset threshold are compared.
  • FIG. 3 is a schematic flowchart of a congestion control method according to some embodiments of the present invention. As shown in FIG. 3, a congestion control method may include:
  • the steps 301 to 306 are the same as the above steps 201 to 206, and are not described herein again.
  • the MME sends the congestion risk identifier to the eNB.
  • the eNB receives the congestion risk identifier, and adjusts the receiving window value according to the congestion risk identifier.
  • the embodiment of the present invention is different from the embodiment shown in FIG. 2 in that, in the embodiment of the present invention, the MME side does not need to perform the adjustment of the transmission window value, and only the eNB completes the adjustment of the receiving window value.
  • FIG. 4 is a schematic flowchart of a congestion control method according to another embodiment of the present invention. As shown in FIG. 4, a congestion control method may include:
  • the eNB measures a receiving rate.
  • the eNB and the MME start the congestion control method provided by the present invention according to the preset period. For example, refer to the parsing of the preset period in the foregoing step 203, and details are not described herein again.
  • the eNB sends a receiving rate to the MME.
  • the MME receives a receiving rate sent by the eNB.
  • the MME measures a sending rate, and obtains a sending window value.
  • the execution order of the four steps 401 to 404 is as follows: execution 401-402-403-404; execution 401-402-404-403; execution 401-404-402-403; execution 404-401-402-403; Execute (401, 404)-402-403; Execute 401-(402, 404)-403; Execute 401-402-(403, 404); wherein (401, 404) indicates that 401 and 404 are simultaneously executed, (402, 404) Representations 402 and 404 are performed simultaneously, and (403, 404) indicates that 403 and 404 are simultaneously executed.
  • the transmission rate and the acquisition transmission window value in the MME may be performed simultaneously, or may be performed one after the other.
  • the measurement transmission rate and the acquisition transmission window value in step 404 may be split into two execution steps, then In combination with the previous 401-403, 5 steps can be arranged in a reasonable execution order, which will not be detailed here.
  • the MME calculates a congestion risk coefficient on the SCTP link according to the receiving rate, the sending rate, and the sending window value.
  • the steps 406-410 are the same as the above steps 205-209, and are not described here.
  • the MME when calculating the congestion risk coefficient, the MME considers the receiving rate of the eNB, its own sending rate, and the sending window. value.
  • the adjustment of the transmission window value may be completed only by the MME side, or the adjustment of the reception window value may be completed only by the eNB, or the MME completes the adjustment of the transmission window value and the eNB completes the reception window value. Adjustments to achieve early congestion control of the SCTP link.
  • FIG. 5 is a schematic flowchart of a congestion control method according to another embodiment of the present invention. As shown in FIG. 5, a congestion control method may include:
  • the eNB measures a receiving rate and a receiving window value.
  • the eNB and the MME start the congestion control method provided by the present invention according to a preset period. For example, refer to the parsing of the preset period in the foregoing step 203, and details are not described herein again.
  • the reception rate and the acquisition window value in the eNB can be performed simultaneously, or performed one after the other.
  • the MME measures a sending rate, and obtains a sending window value.
  • the transmission rate and the acquisition window value in the MME can be performed simultaneously, or performed one after the other.
  • the MME sends a sending rate and a sending window value to the eNB.
  • steps 501-503 may be as follows: execution 501-502-503; execution 502-503-501; Execute (501, 502)-503; 502-(501, 503), wherein (501, 502) indicates that 501 and 502 are simultaneously executed, and (501, 503) indicates that 501 and 503 are simultaneously executed.
  • steps of measuring the receiving rate, receiving the window value, measuring the sending rate, and obtaining the sending window value can also be subdivided in the embodiment of the present invention, and together with step 503, a total of 5 steps are performed.
  • Reasonable execution order is not detailed here.
  • the eNB receives the sending rate and the sending window value.
  • the eNB calculates a congestion risk coefficient according to the receiving rate and the receiving window value of the MME, and the sending rate and the sending window value of the MME.
  • the congestion control apparatus provided by the embodiment of the present invention is set in the eNB.
  • the congestion control apparatus provided by the embodiment of the present invention may be set in the MME at the same time, but the congestion control set in the MME is provided.
  • the device is only used to perform the adjustment of the transmission window value, and does not judge the congestion risk coefficient, which will be specifically described below.
  • the eNB determines whether the calculated congestion risk coefficient is not less than a preset threshold.
  • a preset threshold is preset in the congestion control device or in the eNB.
  • the eNB sets the congestion risk identifier to a first preset value; if the congestion risk coefficient is less than a preset threshold, the eNB sets the congestion risk identifier to a second preset value. ;
  • step 206 The same as step 206, for details, refer to the description in step 206.
  • the eNB adjusts a receiving window value according to the congestion risk identifier.
  • the receiving window value is lowered, that is, the current receiving window value is reduced, so that the data traffic that the eNB can receive becomes smaller, that is, the transmission link is reduced (SCTP chain).
  • SCTP chain transmission link is reduced
  • the eNB sends the congestion risk identifier to the MME.
  • the MME adjusts the sending window value according to the congestion risk identifier.
  • the congestion risk indicator When the congestion risk indicator is set to the first preset value, the value of the sending window is lowered, that is, the current sending window value is reduced, so that the upper limit of the data traffic that the MME can allow to be transmitted becomes smaller, that is, the SCTP link is reduced.
  • Congestion risk identification When it is the second preset value, it can be processed without leaving the current sending window value of the MME.
  • steps 508 and 509 do not have a sequential execution sequence.
  • the embodiment of the present invention is different from the previous embodiment in that, in the embodiment of the present invention, the calculation of the congestion risk coefficient and the setting of the congestion risk identifier are completed at the eNB.
  • the MME side only needs to complete the adjustment of the transmission window value.
  • the adjustment of the transmission window value may be completed only by the MME side, or the adjustment of the reception window value may be completed only by the eNB, or the MME completes the adjustment of the transmission window value and the eNB completes the reception window value. Adjustments to achieve early congestion control of the SCTP link.
  • FIG. 6 is a schematic structural diagram of a congestion control apparatus according to an embodiment of the present invention. As shown in FIG. 6, a congestion control apparatus 600 may include:
  • the obtaining module 610 is configured to acquire a transmission rate of the transmission link, and obtain a congestion control window value of the transmission link.
  • the calculating module 620 is configured to calculate a congestion risk coefficient of the transmission link according to the transmission rate and the congestion control window value;
  • the adjusting module 630 is configured to determine whether the congestion risk coefficient is not less than a preset threshold, and if the congestion risk coefficient is not less than the preset threshold, triggering adjustment of the congestion control window value.
  • the obtaining module 610 obtains the transmission rate and the congestion control window value in the transmission link in real time, and the calculation module 620 according to the transmission rate. Calculating the current congestion risk coefficient with the congestion control window value. If the congestion risk coefficient is not less than the preset threshold, the congestion risk may occur in the transmission link, and then the adjustment module 630 triggers the congestion control window value adjustment. Congestion is identified in advance to avoid congestion, reduce the impact of congestion and packet loss on the transmission link, and improve the utilization of network bandwidth.
  • the acquiring module 610 is specifically configured to acquire a sending rate of the sending end in the transmission link and/or a receiving rate of the receiving end, and obtain the sending in the transmission link.
  • the congestion control window value of the end and/or the congestion control window value of the receiving end is specifically configured to acquire a sending rate of the sending end in the transmission link and/or a receiving rate of the receiving end, and obtain the sending in the transmission link.
  • the calculating module 620 is specifically configured to: according to the sending rate of the sending end and/or the receiving rate of the receiving end, and the congestion control window value of the sending end and/or the receiving The congestion control window value of the end calculates a congestion risk coefficient of the transmission link.
  • the calculating module 620 is specifically configured to perform the foregoing adjustment.
  • the module 630 is specifically configured to trigger an adjustment of a congestion control window value of the transmitting end and/or a congestion control window value of the receiving end.
  • the obtaining module 610 is further configured to: measure, according to a preset period, a transmission rate of the transmission link, and obtain a congestion control window value of the transmission link.
  • FIG. 7 is another schematic structural diagram of a congestion control apparatus according to an embodiment of the present invention.
  • the congestion control apparatus 700 may include at least one processor 701 (eg, a CPU, Central Processing Unit), at least one network interface, or Other communication interfaces, memory 702, and at least one communication bus are used to effect connection communication between these devices.
  • the processor 701 is configured to execute an executable module, such as a computer program, stored in a memory.
  • the memory 702 may include a high speed random access memory (RAM), and may also include a non-volatile memory, such as at least one disk storage.
  • the communication connection between the system gateway and at least one other network element is implemented by at least one network interface (which may be wired or wireless), and an Internet, a wide area network, a local network, a metropolitan area network, etc. may be used.
  • program instructions are stored in the memory 702, and the program instructions may be executed by the processor 701.
  • the processor 701 specifically performs the steps of: acquiring a transmission rate of a transmission link, and Obtaining a congestion control window value of the transmission link, calculating a congestion risk coefficient of the transmission link according to the transmission rate and the congestion control window value, and determining whether the congestion risk coefficient is not less than a preset threshold. If the congestion risk coefficient is not less than the preset threshold, the adjustment of the congestion control window value is triggered.
  • the processor 701 further performs the steps of: acquiring a transmission rate of the transmitting end and/or a receiving rate of the receiving end in the transmission link, and acquiring congestion control of the transmitting end in the transmission link.
  • the window value and/or the congestion control window value of the receiving end are the steps of: acquiring a transmission rate of the transmitting end and/or a receiving rate of the receiving end in the transmission link, and acquiring congestion control of the transmitting end in the transmission link. The window value and/or the congestion control window value of the receiving end.
  • the processor 701 further performs the following steps: according to the sending rate of the sending end and/or the receiving rate of the receiving end, and the congestion control window value of the sending end and/or the congestion control of the receiving end.
  • the processor 701 further performs the steps of: triggering adjustment of a congestion control window value of the transmitting end and/or a congestion control window value of the receiving end.
  • the processor 701 further performs the following steps: according to a preset period Measuring a transmission rate of the transmission link and obtaining a congestion control window value of the transmission link.
  • FIG. 8a and FIG. 8b are schematic diagrams showing the structure of a core network device according to some embodiments of the present invention.
  • the core network device 800 may include the congestion control device 600 provided in FIG.
  • the core network device 800 may include the congestion control device 700 provided in FIG. 7, wherein the congestion control device 600 and the congestion control device 700 may refer to the detailed description of the foregoing method embodiments and device embodiments, and Let me repeat.
  • FIG. 9a and FIG. 9b are schematic diagrams showing the structure of an access network device according to some embodiments of the present invention.
  • the access network device 900 may include the congestion control device 600 provided in FIG.
  • the access network device 900 may include the congestion control device 700 as provided in FIG. 7, wherein the congestion control device 600 and the congestion control device 700 may refer to the detailed description of the foregoing method embodiments and device embodiments. , will not repeat them here.
  • FIG. 10 is a schematic structural diagram of a congestion control system according to some embodiments of the present invention. As shown in FIG. 10, a congestion control system may include the core network device shown in FIG. Access network equipment.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. You can choose some or all of them according to actual needs.
  • the unit is to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

一种拥塞控制方法、装置及相关设备,用于提前识别拥塞,避免拥塞的发生,该发明方法可包括:获取传输链路的传输速率,以及获取所述传输链路的拥塞控制窗口值;根据所述传输速率与所述拥塞控制窗口值,计算所述传输链路的拥塞风险系数;判断所述拥塞风险系数是否不小于预设阀值,若所述拥塞风险系数不小于所述预设阀值,触发所述拥塞控制窗口值的调整。

Description

一种拥塞控制方法、装置及相关设备 技术领域
本发明涉及通信技术领域,具体涉及一种拥塞控制方法、装置及相关设备。
背景技术
长期演进(Long Term Evolution,简称LTE)系统的控制面消息用于保证系统的正常运转、业务连接的正常建立和退出等,因此控制面消息的可靠性在LTE系统中至关重要。比如,在LTE的演进型分组核心网(Evolved Packet Core network,简称EPC)架构中,移动性管理实体(Mobility Management Entity,简称MME)收到服务网关(Serving Gate Way,简称SGW)发送的下行数据通信消息后,MME需要对用户所在的跟踪区列表(Tracking Area List,简称TA List)中的所有增强型基站(Evolved Node Base Station,简称eNB)发送一个寻呼消息(Paging),以使eNB将寻呼消息转发给用户设备(User Equipment,简称UE),UE在接收到寻呼消息后能够发起无线资源控制(Radio Resource Control,简称RRC)连接以接收数据。其中,Paging报文是通过MME和eNB之间的S1信令发送的,而S1信令以及eNB之间的X2信令是基于流控制传输协议(Stream Control Transmission Protocol,简称SCTP)进行传输的。
在高负荷场景下,由于SCTP信令个数较大或信令流量较大,给系统造成网络拥塞,过多的丢包重发会导致雪崩效应,严重时甚至导致链接断路,几乎不能处理其它业务。为了防止SCTP拥塞造成MME/eNB异常,需要合理地进行拥塞控制和拥塞避免。
发明内容
有鉴于上述介绍,本发明实施例提供了一种拥塞控制方法、装置及相关设备,用于解决拥塞问题,降低拥塞风险。
本发明第一方面提供了一种拥塞控制方法,可包括:
获取传输链路的传输速率,以及获取所述传输链路的拥塞控制窗口值;
根据所述传输速率与所述拥塞控制窗口值,计算所述传输链路的拥塞风险系数;
判断所述拥塞风险系数是否不小于预设阀值,若所述拥塞风险系数不小于 所述预设阀值,触发所述拥塞控制窗口值的调整。
可以看出,本发明中通过预设一个较为安全的用于检测拥塞风险的预设阀值,然后实时获取传输链路中的传输速率和拥塞控制窗口值,根据传输速率和拥塞控制窗口值计算出当前的拥塞风险系数,若该拥塞风险系数不小于该预设阀值,则说明传输链路中可能会突发拥塞风险,然后触发拥塞控制窗口值调整,以提前识别拥塞,避免拥塞的发生,减少拥塞丢包给传输链路带来的冲击,提高网络带宽的利用率。
其中,调整拥塞控制窗口值,主要是下调拥塞控制窗口值,降低传输链路中可以传输的流量上限,达到控制拥塞的目的。
可选地,在本发明一些实施例中,上述所介绍的获取传输链路的传输速率,以及获取所述传输链路的拥塞控制窗口值具体可以包括:获取传输链路中发送端的发送速率和/或接收端的接收速率,以及获取所述传输链路中所述发送端的拥塞控制窗口值和/或所述接收端的拥塞控制窗口值。可以知道,传输链路的两端分别为发送端和接收端,发送端有自己的发送速率和拥塞控制窗口值,同样,接收端也有着自己的接收速率和拥塞控制窗口值。进而,在该实施例中,可以根据发送端的发送速率和/或接收端的接收速率,以及发送端的拥塞控制窗口值和/或接收端的拥塞控制窗口值,计算传输链路的拥塞风险系数,能够综合考虑发送端和接收端的实际情况。
可选地,在本发明一些实施例中,在计算出拥塞风险系数不小于预设阀值后,可以单独触发发送端的拥塞控制窗口值的调整,或者单独触发接收端的拥塞控制窗口值的调整,或者同时触发调整发送端的拥塞控制窗口值和接收端的拥塞控制窗口值。
可选地,在本发明一些实施例中,可以根据周期进行传输链路的传输速率的获取和拥塞控制窗口值的获取,从而周期地启动本发明提供的拥塞控制方法,以进行传输链路的拥塞识别。可以理解,该周期实际上是实现本发明提供的拥塞控制方法的周期,而不仅仅只是获取传输速率的周期。
本发明第二方面提供了一种拥塞控制装置,可包括:
获取模块,用于获取传输链路的传输速率,以及获取所述传输链路的拥塞控制窗口值;
计算模块,用于根据所述传输速率与所述拥塞控制窗口值,计算所述传输链路的拥塞风险系数;
调整模块,用于判断所述拥塞风险系数是否不小于预设阀值,若所述拥塞风险系数不小于所述预设阀值,触发所述拥塞控制窗口值的调整。
可选地,在本发明一些实施例中,上述获取模块具体用于,获取所述传输链路中发送端的发送速率和/或接收端的接收速率,以及获取所述传输链路中所述发送端的拥塞控制窗口值和/或所述接收端的拥塞控制窗口值。
可选地,在本发明一些实施例中,上述计算模块具体用于,根据所述发送端的发送速率和/或接收端的接收速率,以及所述发送端的拥塞控制窗口值和/或所述接收端的拥塞控制窗口值,计算所述传输链路的拥塞风险系数。
可选地,在本发明一些实施例中,上述调整模块具体用于,触发所述发送端的拥塞控制窗口值和/或所述接收端的拥塞控制窗口值的调整。
可选地,在本发明一些实施例中,上述获取模块进一步具体用于,根据预设周期测量所述传输链路的传输速率,以及获取所述传输链路的拥塞控制窗口值。
本发明第三方面提供了一种拥塞控制装置,可包括:
处理器和存储器;
所述存储器用于存储程序指令;
所述处理器用于调用所述程序指令以执行上述第一方面提供的步骤。
本发明第四方面提供了一种核心网设备,包括第二方面提供的拥塞控制装置,或者第三方面提供的拥塞控制装置。
本发明第五方面提供了一种接入网设备,包括第二方面提供的拥塞控制装置,或者第三方面提供的拥塞控制装置。
本发明第六方面提供了一种拥塞控制系统,包括第四方面提供的核心网设备,以及第五方面提供的接入网设备。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还 可以根据这些附图获得其他的附图。
图1a为本发明实施例提供的应用场景示意图;
图1b为本发明一些实施例提供的拥塞控制方法的流程示意图;
图2为本发明一些实施例提供的拥塞控制方法的流程示意图;
图3为本发明另一些实施例提供的拥塞控制方法的流程示意图;
图4为本发明另一些实施例提供的拥塞控制方法的流程示意图;
图5为本发明另一些实施例提供的拥塞控制方法的流程示意图;
图6为本发明实施例提供的一种拥塞控制装置的结构示意图;
图7为本发明实施例提供的拥塞控制装置另一结构示意图;
图8a~8b为本发明一些实施例提供的核心网设备的结构示意图;
图9a~9b为本发明一些实施例提供的接入网设备的结构示意图;
图10为本发明一些实施例提供的拥塞控制系统的结构示意图。
具体实施方式
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,下面所描述的实施例仅仅是本发明一部分实施例,而非全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等是用于区别不同的对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
本发明实施例提供了一种拥塞控制方法,用于提前识别拥塞,避免拥塞的发生,减少拥塞丢包给传输链路带来的冲击,提高链路带宽的利用率。本发明实施例还提供了一种拥塞控制方法对应的装置,以及一种核心网设备和一种接入网设备。
虽然在前述背景技术部分以LTE系统为例进行了介绍,但本领域技术人员应当知晓,本发明不仅仅适用于LTE系统,也可以适用于其他无线通信系统,例如全球移动通信系统(Global System for Mobile Communication,GSM),移动通信系统(Universal Mobile Telecommunications Systemc,UMTS),码分多址接入(Code Division Multiple Access,CDMA)系统,以及新的网络系统等。下面以LTE系统为例进行具体实施例的介绍。
请参阅图1a,图1a为本发明实施例提供的应用场景示意图。如图1a所示,演进通用陆地无线接入网(Evolved Universal Terrestrial Radio Access Network,简称E-UTRAN)中,由多个eNB、MME/SGW/分组数据网关(Packet Data Network Gateway,简称PGW)组成。其中,eNB实现无线物理层功能、资源调度和无线资源管理、无线接入控制以及移动性管理功能。MME主要负责用户即会话管理的所有控制平面功能,包括TA List的管理,PGW和SGW选择等。SGW主要负责用户设备(User Equipment,简称UE)的数据传输、转发以及路由切换等,并作为UE在eNB之间切换时的本地移动性锚定点。PGW作为分组数据网(Packet Data Network,简称PDN)连接的锚定点,负责UE的互联网协议(Internet Protocol,简称IP)地址分配,UE的数据报文过滤、速率控制、生成计费信息等。
eNB之间可以通过X2接口相连,eNB通过S1接口和MME/SGW/PGW连接,X2信令和S1信令均基于SCTP协议进行传输。
可以理解,在其它网络系统中,如GSM或者CDMA系统中不是上述eNB,而是基站(Base Transceiver Station,简称BTS),或者是WCDMA中的基站(Node B)。eNB可以支持或管理一个或者多个小区(cell),UE需要和网络通信时,它选择一个小区发起网络接入。
UE可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(PCS,Personal Communication Service)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(WLL,Wireless Local Loop)站、个人数字助理(PDA, Personal Digital Assistant)等设备。UE也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)等。
基于上述介绍,本发明一些实施例提供了一种拥塞控制方法,如图1b所示,一种拥塞控制方法具体包括:
101、获取传输链路的传输速率,以及获取上述传输链路的拥塞控制窗口值;
可以理解,传输链路的两端分别为发送端和接收端,其中,发送端可以是上面介绍的eNB、BTS、Node B等中的任意一个,此时,接收端为上面介绍的MME、SGW、PGW中的任意一个。反之,发送端可以是上面介绍的MME、SGW、PGW中的任意一个,而接收端可以是上面介绍的eNB、BTS、Node B等中的任意一个。当然,在本发明另一些实施例中,发送端还可以是上面介绍的eNB、BTS、Node B等中的任意一个,而接收端为上面介绍的UE,反之,发送端为UE,而接收端为eNB、BTS、Node B等中的任意一个。当然,本发明实施例还可以应用于其它基于链路连接的通信系统中。
需要说明,本发明实施例的执行主体为拥塞控制装置,该拥塞控制装置可以设置在发送端或者接收端,或者发送端和接收端同时设置该拥塞控制装置。当只有发送端和接收端中的任意一个设置该拥塞控制装置时,设置有拥塞控制装置的发送端或者接收端执行本发明提供的拥塞控制方法。当发送端和接收端都设置有拥塞控制装置,由其中一个通过设置的拥塞控制装置执行本发明提供的拥塞控制方法,另外一个通过设置的拥塞控制装置,可能会参与拥塞控制窗口值的调整。
其中,拥塞控制窗口值表示传输链路上能够传输的最大数量流量。
还需要说明,本发明实施例中,获取传输链路的传输速率和获取上述传输链路的拥塞控制窗口值没有先后执行顺序。可以先获取传输链路的传输速率,后获取传输链路的拥塞控制窗口值;或者,先获取传输链路的拥塞控制窗口值, 后获取传输链路的传输速率;或者,同时获取传输链路的传输速率和拥塞控制窗口值。
102、根据上述传输速率与上述拥塞控制窗口值,计算上述传输链路的拥塞风险系数;
其中,在拥塞控制装置中预置一个预设阀值,该预设阀值用于指示传输链路中不造成传输链路拥塞的上限拥塞风险系数。
拥塞风险系数用于指示传输链路中拥塞风险的情况。
103、判断上述拥塞风险系数是否不小于预设阀值;
其中,若是,转向步骤104;若否,转向步骤105。
104、若上述拥塞风险系数不小于上述预设阀值,触发上述拥塞控制窗口值的调整;
105、若上述拥塞风险系数小于上述预设阀值,不做处理。
在本发明实施例中,在拥塞风险系数不小于预设阀值时,说明传输链路上基于目前的传输速率和拥塞控制窗口值,可能会突发拥塞,从而触发拥塞控制窗口值的调整。其中,调整的情况包括三种方式:只是发送端参与调整;只是接收端参与调整;发送端和接收端同时参与调整。
另外,在拥塞风险系数小于预设阀值时,识别到传输链路还不会突发拥塞风险,可以不用进行提前的拥塞避免操作。
其中,本发明中通过预设一个较为安全的用于检测拥塞风险的预设阀值,然后实时获取传输链路中的传输速率和拥塞控制窗口值,根据传输速率和拥塞控制窗口值计算出当前的拥塞风险系数,若该拥塞风险系数不小于该预设阀值,则说明传输链路可能会突发拥塞风险,然后触发调整拥塞控制窗口值,以提前识别拥塞,防止拥塞发生,减少拥塞丢包给传输链路带来的冲击,提高网络带宽的利用率。
需要说明,本发明实施例可以根据一定的周期来执行,也就设置一个周期,比如10s,然后每隔10s执行本发明实施例,以实时地进行传输链路上的拥塞风险的识别,以防止拥塞风险的发生。
可以理解,上述传输链路可以是MME与eNB之间的SCTP链路,当然, 还可以适用于其它链路层,比如基于传输控制协议(Transmission Control Protocol,简称TCP)的链路,基于IP协议的链路等。下面将以MME与eNB之间的SCTP链路为例,详细介绍本发明技术方案,并且在后续实施例中,以MME作为发送端,eNB作为接收端,反之,eNB作为发送端,MME作为接收端时其逻辑与之相似,本发明实施例中不再赘述。
请参阅图2,图2为本发明一些实施例提供的拥塞控制方法的流程示意图;如图2所示,一种拥塞控制方法可包括:
201、eNB向MME上报接收窗口值;
需要说明,上述介绍的接收端的拥塞控制窗口值即为这里以及后续介绍的接收窗口值,eNB根据SCTP协议,向MME上报其当前用于接收数据流量的接收窗口值,该接收窗口值表示eNB能够接收的最大数据流量。
202、MME接收eNB上报的接收窗口值;
203、MME测量发送速率,以及获取发送窗口值;
需要说明,本发明实施例中以MME作为发送端,eNB作为接收端。在MME中设置本发明实施例提供的拥塞控制装置,当然,可以同时在eNB中设置本发明实施例提供的拥塞控制装置,eNB中设置的拥塞控制装置用于执行接收窗口值的调整,不进行拥塞风险系数的判断,下面将具体介绍。
发送窗口值表示MME能够发送的最大数据流量。而上述介绍的发送端的拥塞控制窗口值即为这里以及后续介绍的发送窗口值。
还需要说明,在eNB和MME中预置一个周期,该周期也就是执行本发明技术方案的周期,在到达预置的周期时,执行本发明实施例提供的拥塞控制方法。比如,在本发明实施例中,eNB检测到该预设周期的到来,然后eNB向MME上报接收窗口值。而MME检测到预设周期的到来,开始测量自身的发送速率以及获取自身的发送窗口值。当然,在MME中,可以先测量发送速率,在获取自身的发送窗口值;或者先获取自身的发送窗口值,再测量发送速率;或者同时执行测量发送速率和获取发送窗口值的步骤。
再进一步说明,步骤201和步骤202之间,先执行步骤201,再执行步骤202。但是,步骤201、步骤202和步骤203之间,可以具有如下几种执行顺序:执行 步骤201-203-202;执行201-202-203;执行203-201-202;执行(201,203)-202,其中,(201,203)表示201和203同时执行。
204、MME根据接收窗口值、发送速率和发送窗口值,计算SCTP链路上的拥塞风险系数;
根据eNB发送的接收窗口值,然后结合自身的发送窗口值和发送速率,计算出SCTP链路当前的拥塞风险系数。可以理解,拥塞风险系数用于指示SCTP链路中拥塞风险的情况。
205、MME判断计算出来的拥塞风险系数是否不小于预设阀值;
其中,在拥塞控制装置中或者在MME中预置一个预设阀值,该预设阀值用于指示SCTP链路中不造成传输链路拥塞的上限拥塞风险系数。
若拥塞风险系数不小于预设阀值时,说明传输链路高拥塞风险;若拥塞风险系数小于预设阀值时,则认为当前没有拥塞风险或者低拥塞风险。
206、若拥塞风险系数不小于预设阀值时,MME将拥塞风险标识置为第一预设值;若拥塞风险系数小于预设阀值时,MME将拥塞风险标识置为第二预设值;
设置一个拥塞风险标识,通过拥塞风险标识来指示SCTP链路的拥塞风险情况,其中,若拥塞风险标识被置为第一预设值,为拥塞风险系数不小于预设阀值,说明传输链路高拥塞风险。若拥塞风险标识被置为第二预设值,为拥塞风险系数小于预设阀值,说明当前没有拥塞风险或者低拥塞风险。第一预设值和第二预设值为任意数值,比如,当拥塞风险系数不小于预设阀值,将拥塞风险标识置为1,反之,当拥塞风险系数小于预设阀值,将拥塞风险标识置为0。
207、MME根据拥塞风险标识,调整发送窗口值;
可以理解,在拥塞风险标识置为第一预设值时,下调发送窗口值,也就是将当前的发送窗口值调小,使得MME可以允许传输的数据流量上限更小,也就是减少SCTP链路上瞬时突发时允许传输的数据流量。而在拥塞风险标识置为第二预设值时,可以不用处理,保持MME当前的发送窗口值即可。
208、MME将拥塞风险标识发送给eNB;
209、eNB接收拥塞风险标识,根据拥塞风险标识调整接收窗口值。
需要说明,在本发明一些实施例中,可以只在MME侧对发送窗口值的调整,而eNB不用参与调整,也就是eNB不用去调整接收窗口值。当然,在本发明另一些实施例中,MME完成了发送窗口值的调整,同时,也将拥塞风险标识发送给eNB,在eNB侧完成接收窗口值的调整。
可以看出,在本发明实施例中,根据自身的发送速率、发送窗口值和eNB的接收窗口值,计算出SCTP链路的拥塞风险系数,然后通过比较拥塞风险系数与预设阀值的大小,来确定是否需要调整MME的发送窗口值和调整eNB的接收窗口值,以实现在下一次数据流量突发造成拥塞之前,进行了发送窗口值和接收窗口值的调整,以降低拥塞风险,提高SCTP链路的业务效率。
请参阅图3,图3为本发明一些实施例提供的拥塞控制方法的流程示意图;如图3所示,一种拥塞控制方法可包括:
301~306;
其中,步骤301~306,分别与上述步骤201~206相同,在此不再赘述。
307、MME将拥塞风险标识发送给eNB;
308、eNB接收拥塞风险标识,根据拥塞风险标识调整接收窗口值。
可以看出,本发明实施例与图2所示实施例的不同之处在于,本发明实施例中MME侧不需要进行发送窗口值的调整,只由eNB完成对接收窗口值的调整。
请参阅图4,图4为本发明另一些实施例提供的拥塞控制方法的流程示意图;如图4所示,一种拥塞控制方法可包括:
401、eNB测量接收速率;
eNB和MME根据预设周期启动本发明提供的拥塞控制方法,其中,请参阅上述步骤203中对预设周期的解析,在此不再赘述。
402、eNB向MME发送接收速率;
403、MME接收eNB发送的接收速率;
404、MME测量发送速率,以及获取发送窗口值;
根据上述对预设周期的解析,其中,401~404四个步骤的执行顺序如下:执行401-402-403-404;执行401-402-404-403;执行401-404-402-403;执行 404-401-402-403;执行(401,404)-402-403;执行401-(402,404)-403;执行401-402-(403,404);其中,(401,404)表示401和404同时执行,(402,404)表示402和404同时执行,(403,404)表示403和404同时执行。
进一步说明,在MME中发送速率和获取发送窗口值,可以同时执行,或者一前一后执行,当然,还可以将步骤404中测量发送速率和获取发送窗口值拆分成两个执行步骤,那么结合之前的401-403,5个步骤可以进行合理的执行顺序的排列,在此不再一一详举。
405、MME根据接收速率、发送速率和发送窗口值,计算SCTP链路上的拥塞风险系数;
406~410;
其中,步骤406~410分别与上述步骤205~209相同,在此不再赘述。
可以看出,本发明实施例与前面两个实施例的不同之处在于,在本发明实施例中,MME在计算拥塞风险系数时,考虑的是eNB的接收速率、自身的发送速率和发送窗口值。同样,在本发明实施例中,可以只由MME侧完成对发送窗口值的调整,或者只由eNB完成对接收窗口值的调整,或者同时MME完成发送窗口值的调整和eNB完成对接收窗口值的调整,从而实现提前对SCTP链路的拥塞控制。
请参阅图5,图5为本发明另一些实施例提供的拥塞控制方法的流程示意图;如图5所示,一种拥塞控制方法可包括:
501、eNB测量接收速率,以及接收窗口值;
其中,eNB和MME根据预设周期启动本发明提供的拥塞控制方法,其中,请参阅上述步骤203中对预设周期的解析,在此不再赘述。
在eNB中接收速率和获取接收窗口值,可以同时执行,或者一前一后执行。
502、MME测量发送速率,以及获取发送窗口值;
在MME中发送速率和获取发送窗口值,可以同时执行,或者一前一后执行。
503、MME向eNB发送发送速率和发送窗口值;
步骤501-503之间的执行顺序可以如下:执行501-502-503;执行 502-503-501;执行(501,502)-503;502-(501,503),其中,(501,502)表示501和502同时执行,(501,503)表示501和503同时执行。当然,本领域普通技术人员可以理解,在本发明实施例中还可以细分出测量接收速率、接收窗口值、测量发送速率和获取发送窗口值这些步骤,和步骤503一起,一共5个步骤进行合理的执行顺序排列,在此不再一一详举。
504、eNB接收发送速率和发送窗口值;
505、eNB根据自身的接收速率和接收窗口值,以及MME的发送速率和发送窗口值,计算拥塞风险系数;
需要说明,在本发明实施例中,在eNB中设置本发明实施例提供的拥塞控制装置,当然,可以同时在MME中设置本发明实施例提供的拥塞控制装置,但是,MME中设置的拥塞控制装置仅用于执行发送窗口值的调整,不进行拥塞风险系数的判断,下面将具体介绍。
506、eNB判断计算出来的拥塞风险系数是否不小于预设阀值;
其中,在拥塞控制装置中或者在eNB中预置一个预设阀值。
507、若拥塞风险系数不小于预设阀值时,eNB将拥塞风险标识置为第一预设值;若拥塞风险系数小于预设阀值时,eNB将拥塞风险标识置为第二预设值;
与步骤206相同,具体可以参阅步骤206中的说明。
508、eNB根据拥塞风险标识,调整接收窗口值;
其中,在拥塞风险标识置为第一预设值时,下调接收窗口值,也就是将当前的接收窗口值调小,使得eNB可以接收的数据流量变小,也就是减少传输链路(SCTP链路)上的数据流量上限。而在拥塞风险标识置为第二预设值时,可以不用处理,保持eNB当前的接收窗口值即可。
509、eNB将拥塞风险标识发送给MME;
510、MME根据拥塞风险标识,调整发送窗口值。
其中,在拥塞风险标识置为第一预设值时,下调发送窗口值,也就是将当前的发送窗口值调小,使得MME可以允许传输的数据流量上限变小,也就是减少SCTP链路上瞬时突发时允许传输的最大数据流量。而在拥塞风险标识置 为第二预设值时,可以不用处理,保持MME当前的发送窗口值即可。
需要说明,上述步骤508和509没有先后执行顺序。
可以看出,本发明实施例与前面实施例的不同之处在于,在本发明实施例中在eNB完成对拥塞风险系数的计算,以及拥塞风险标识的设置。而MME侧只需要完成发送窗口值的调整。当然,在本发明实施例中,可以只由MME侧完成对发送窗口值的调整,或者只由eNB完成对接收窗口值的调整,或者同时MME完成发送窗口值的调整和eNB完成对接收窗口值的调整,从而实现提前对SCTP链路的拥塞控制。
请参阅图6,图6为本发明实施例提供的一种拥塞控制装置的结构示意图;如图6所示,一种拥塞控制装置600可包括:
获取模块610,用于获取传输链路的传输速率,以及获取所述传输链路的拥塞控制窗口值;
计算模块620,用于根据所述传输速率与所述拥塞控制窗口值,计算所述传输链路的拥塞风险系数;
调整模块630,用于判断所述拥塞风险系数是否不小于预设阀值,若所述拥塞风险系数不小于所述预设阀值,触发所述拥塞控制窗口值的调整。
可以看出,本发明中通过预设一个较为安全的用于检测拥塞风险的预设阀值,然后获取模块610实时获取传输链路中的传输速率和拥塞控制窗口值,计算模块620根据传输速率和拥塞控制窗口值计算出当前的拥塞风险系数,若该拥塞风险系数不小于该预设阀值,则说明传输链路中可能会突发拥塞风险,然后调整模块630触发拥塞控制窗口值调整,以提前识别拥塞,避免拥塞的发生,减少拥塞丢包给传输链路带来的冲击,提高网络带宽的利用率。
可选地,在本发明一些实施例中,上述获取模块610具体用于,获取所述传输链路中发送端的发送速率和/或接收端的接收速率,以及获取所述传输链路中所述发送端的拥塞控制窗口值和/或所述接收端的拥塞控制窗口值。
可选地,在本发明一些实施例中,上述计算模块620具体用于,根据所述发送端的发送速率和/或接收端的接收速率,以及所述发送端的拥塞控制窗口值和/或所述接收端的拥塞控制窗口值,计算所述传输链路的拥塞风险系数。
可选地,在本发明一些实施例中,上述计算模块620具体用于,上述调整 模块630具体用于,触发所述发送端的拥塞控制窗口值和/或所述接收端的拥塞控制窗口值的调整。
可选地,在本发明一些实施例中,上述获取模块610进一步具体用于,根据预设周期测量所述传输链路的传输速率,以及获取所述传输链路的拥塞控制窗口值。
请参考图7,图7为本发明实施例提供的拥塞控制装置另一结构示意图,其中,该拥塞控制装置700可包括至少一个处理器701(例如CPU,Central Processing Unit),至少一个网络接口或者其它通信接口,存储器702,和至少一个通信总线,用于实现这些装置之间的连接通信。所述处理器701用于执行存储器中存储的可执行模块,例如计算机程序。所述存储器702可能包含高速随机存取存储器(RAM,Random Access Memory),也可能还包括非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。通过至少一个网络接口(可以是有线或者无线)实现该系统网关与至少一个其它网元之间的通信连接,可以使用互联网,广域网,本地网,城域网等。
如图7所示,在一些实施方式中,所述存储器702中存储了程序指令,程序指令可以被处理器701执行,所述处理器701具体执行以下步骤:获取传输链路的传输速率,以及获取所述传输链路的拥塞控制窗口值;根据所述传输速率与所述拥塞控制窗口值,计算所述传输链路的拥塞风险系数;判断所述拥塞风险系数是否不小于预设阀值,若所述拥塞风险系数不小于所述预设阀值,触发所述拥塞控制窗口值的调整。
在一些实施方式中,所述处理器701还具体执行以下步骤:获取所述传输链路中发送端的发送速率和/或接收端的接收速率,以及获取所述传输链路中所述发送端的拥塞控制窗口值和/或所述接收端的拥塞控制窗口值。
在一些实施方式中,所述处理器701还具体执行以下步骤:根据所述发送端的发送速率和/或接收端的接收速率,以及所述发送端的拥塞控制窗口值和/或所述接收端的拥塞控制窗口值,计算所述传输链路的拥塞风险系数。
在一些实施方式中,所述处理器701还具体执行以下步骤:触发所述发送端的拥塞控制窗口值和/或所述接收端的拥塞控制窗口值的调整。
在一些实施方式中,所述处理器701还具体执行以下步骤:根据预设周期 测量所述传输链路的传输速率,以及获取所述传输链路的拥塞控制窗口值。
请参阅图8a和图8b,图8a和8b为本发明一些实施例提供的核心网设备的结构示意图;如图8a所示,该核心网设备800可包括图6提供的拥塞控制装置600,或者如图8b所示,该核心网设备800可包括图7提供的拥塞控制装置700,其中,拥塞控制装置600和拥塞控制装置700可以参阅上述方法实施例和装置实施例的详细介绍,在此不再赘述。
请参阅图9a和图9b,图9a和9b为本发明一些实施例提供的接入网设备的结构示意图;如图9a所示,该接入网设备900可包括图6提供的拥塞控制装置600,或者如图9b所示,该接入网设备900可包括如图7提供的拥塞控制装置700,其中,拥塞控制装置600和拥塞控制装置700可以参阅上述方法实施例和装置实施例的详细介绍,在此不再赘述。
请参阅图10,图10为本发明一些实施例提供的拥塞控制系统的结构示意图;如图10所示,一种拥塞控制系统可包括图8所示的核心网设备,以及图9所示的接入网设备。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部 单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上对本发明所提供的一种拥塞控制方法、装置、系统及相关设备进行了详细介绍,对于本领域的一般技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (13)

  1. 一种拥塞控制方法,其特征在于,包括:
    获取传输链路的传输速率,以及获取所述传输链路的拥塞控制窗口值;
    根据所述传输速率与所述拥塞控制窗口值,计算所述传输链路的拥塞风险系数;
    判断所述拥塞风险系数是否不小于预设阀值,若所述拥塞风险系数不小于所述预设阀值,触发所述拥塞控制窗口值的调整。
  2. 根据权利要求1所述的方法,其特征在于,所述获取传输链路的传输速率,以及获取所述传输链路的拥塞控制窗口值包括:
    获取所述传输链路中发送端的发送速率和/或接收端的接收速率,以及获取所述传输链路中所述发送端的拥塞控制窗口值和/或所述接收端的拥塞控制窗口值。
  3. 根据权利要求2所述的方法,其特征在于,包括:所述根据所述传输速率与所述拥塞控制窗口值,计算所述传输链路的拥塞风险系数包括:
    根据所述发送端的发送速率和/或接收端的接收速率,以及所述发送端的拥塞控制窗口值和/或所述接收端的拥塞控制窗口值,计算所述传输链路的拥塞风险系数。
  4. 根据权利要求3所述的方法,其特征在于,所述调整所述拥塞控制窗口值包括:
    触发所述发送端的拥塞控制窗口值和/或所述接收端的拥塞控制窗口值的调整。
  5. 根据权利要求1~4任一项所述的方法,其特征在于,所述获取传输链路的传输速率,以及获取所述传输链路的拥塞控制窗口值包括:
    根据预设周期测量所述传输链路的传输速率,以及获取所述传输链路的拥塞控制窗口值。
  6. 一种拥塞控制装置,其特征在于,包括:
    获取模块,用于获取传输链路的传输速率,以及获取所述传输链路的拥塞控制窗口值;
    计算模块,用于根据所述传输速率与所述拥塞控制窗口值,计算所述传输 链路的拥塞风险系数;
    调整模块,用于判断所述拥塞风险系数是否不小于预设阀值,若所述拥塞风险系数不小于所述预设阀值,触发所述拥塞控制窗口值的调整。
  7. 根据权利要求6所述的装置,其特征在于,
    所述获取模块具体用于,获取所述传输链路中发送端的发送速率和/或接收端的接收速率,以及获取所述传输链路中所述发送端的拥塞控制窗口值和/或所述接收端的拥塞控制窗口值。
  8. 根据权利要求7所述的装置,其特征在于,
    所述计算模块具体用于,根据所述发送端的发送速率和/或接收端的接收速率,以及所述发送端的拥塞控制窗口值和/或所述接收端的拥塞控制窗口值,计算所述传输链路的拥塞风险系数。
  9. 根据权利要求8所述的装置,其特征在于,
    所述调整模块具体用于,触发所述发送端的拥塞控制窗口值和/或所述接收端的拥塞控制窗口值的调整。
  10. 根据权利要求6~9任一项所述的装置,其特征在于,
    所述获取模块进一步具体用于,根据预设周期测量所述传输链路的传输速率,以及获取所述传输链路的拥塞控制窗口值。
  11. 一种拥塞控制装置,其特征在于,包括:
    处理器和存储器;
    所述存储器用于存储程序指令;
    所述处理器用于调用所述程序指令以执行权利要求1~5任一项所述的步骤。
  12. 一种核心网设备,其特征在于,包括:如权利要求6~10任一项所述的拥塞控制装置,或者如权利要求11所述的拥塞控制装置。
  13. 一种接入网设备,其特征在于,包括:如权利要求6~10任一项所述的拥塞控制装置,或者如权利要求11所述的拥塞控制装置。
PCT/CN2016/077356 2016-03-25 2016-03-25 一种拥塞控制方法、装置及相关设备 WO2017161566A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112018069130A BR112018069130A2 (pt) 2016-03-25 2016-03-25 método e aparelhos de controle de congestionamento, dispositivo de rede de núcleo e dispositivo de rede de acesso
PCT/CN2016/077356 WO2017161566A1 (zh) 2016-03-25 2016-03-25 一种拥塞控制方法、装置及相关设备
EP16894920.4A EP3410658B1 (en) 2016-03-25 2016-03-25 Congestion control method, apparatus, and related device
CN201680074621.1A CN108476174B (zh) 2016-03-25 2016-03-25 一种拥塞控制方法、装置及相关设备
US16/120,000 US10530693B2 (en) 2016-03-25 2018-08-31 Congestion control method and apparatus, and related device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/077356 WO2017161566A1 (zh) 2016-03-25 2016-03-25 一种拥塞控制方法、装置及相关设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/120,000 Continuation US10530693B2 (en) 2016-03-25 2018-08-31 Congestion control method and apparatus, and related device

Publications (1)

Publication Number Publication Date
WO2017161566A1 true WO2017161566A1 (zh) 2017-09-28

Family

ID=59900917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077356 WO2017161566A1 (zh) 2016-03-25 2016-03-25 一种拥塞控制方法、装置及相关设备

Country Status (5)

Country Link
US (1) US10530693B2 (zh)
EP (1) EP3410658B1 (zh)
CN (1) CN108476174B (zh)
BR (1) BR112018069130A2 (zh)
WO (1) WO2017161566A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021109661A1 (zh) * 2019-12-03 2021-06-10 华为技术有限公司 拥塞控制方法以及相关设备
CN114095126A (zh) * 2021-11-11 2022-02-25 北京邮电大学 一种数据发送速率调整方法、系统及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6969922B2 (ja) * 2017-07-18 2021-11-24 パナソニック株式会社 通信装置、通信システム、および接続先制御方法
US10439945B2 (en) * 2017-12-29 2019-10-08 Tionesta, Llc Single stream aggregation protocol

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009058084A1 (en) * 2007-11-01 2009-05-07 Telefonaktiebolaget L M Ericsson (Publ) Efficient flow control in a radio network controller (rnc)
WO2015069944A1 (en) * 2013-11-06 2015-05-14 Huawei Technologies Co., Ltd. Systems and methods for proactive congestion detection in radio access networks
WO2015161990A1 (en) * 2014-04-23 2015-10-29 Bequant S.L. Method and apparatus for network congestion control based on transmission rate gradients
CN105049369A (zh) * 2015-08-14 2015-11-11 浙江大学 异构无线网络中基于mptcp的视频传输拥塞控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101964755B (zh) * 2010-11-03 2012-03-07 中南大学 高带宽延时网络中基于带宽估计的显式拥塞控制方法
US8976664B2 (en) * 2013-03-11 2015-03-10 Broadcom Corporation Facilitating network flows
KR20160019523A (ko) * 2013-06-12 2016-02-19 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 무선 네트워크에서 최종 사용자 혼잡을 완화하기 위한 방법, 장치, 시스템, 컴퓨터 프로그램 및 컴퓨터 프로그램 제품
CN104954279B (zh) * 2014-03-28 2018-04-10 华为技术有限公司 一种传输控制方法、装置及系统
CN105323187B (zh) * 2014-07-31 2020-02-07 北京网康科技有限公司 一种拥塞控制方法和装置
CN105207944B (zh) * 2015-08-13 2019-01-15 清华大学 基于fast tcp的传输控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009058084A1 (en) * 2007-11-01 2009-05-07 Telefonaktiebolaget L M Ericsson (Publ) Efficient flow control in a radio network controller (rnc)
WO2015069944A1 (en) * 2013-11-06 2015-05-14 Huawei Technologies Co., Ltd. Systems and methods for proactive congestion detection in radio access networks
WO2015161990A1 (en) * 2014-04-23 2015-10-29 Bequant S.L. Method and apparatus for network congestion control based on transmission rate gradients
CN105049369A (zh) * 2015-08-14 2015-11-11 浙江大学 异构无线网络中基于mptcp的视频传输拥塞控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021109661A1 (zh) * 2019-12-03 2021-06-10 华为技术有限公司 拥塞控制方法以及相关设备
CN114095126A (zh) * 2021-11-11 2022-02-25 北京邮电大学 一种数据发送速率调整方法、系统及装置

Also Published As

Publication number Publication date
US20180375775A1 (en) 2018-12-27
US10530693B2 (en) 2020-01-07
CN108476174B (zh) 2021-01-29
EP3410658A1 (en) 2018-12-05
CN108476174A (zh) 2018-08-31
EP3410658B1 (en) 2020-06-24
EP3410658A4 (en) 2019-01-16
BR112018069130A2 (pt) 2019-01-22

Similar Documents

Publication Publication Date Title
US10750559B2 (en) User device and data transmission method therefor, and network node and data transmission method therefor
EP3140958B1 (en) Communication system
US20190021130A1 (en) Method for changing connection mode and mobility management entity
EP3393168B1 (en) User equipment and data reception method, and network node and data transmission method
US20130201904A1 (en) Handover of Connection of User Equipment
JP2017504999A (ja) 無線リンク制御構成を用いたカバレッジ拡張のためのmtc−ue及び方法
JP7120383B2 (ja) 基地局および通信方法
WO2017161566A1 (zh) 一种拥塞控制方法、装置及相关设备
US20150003280A1 (en) Reporting congestion in access networks to the core network
US20160156485A1 (en) Tunnel establishment method and apparatus
CN109429348B (zh) 一种数据的处理方法、移动性管理设备和终端设备
US20220210850A1 (en) Information transmission method and communications device
US8520637B2 (en) Mobile communication system, network device, and mobile communication method
JP6263102B2 (ja) バックホール側の混雑度に応じたウィンドウサイズを設定可能な無線端末、通信システム、プログラム及び方法
US9609551B2 (en) Charging information accuracy in a telecommunications network
TWI746710B (zh) 數據處理方法和設備
EP3457754B1 (en) Data transmission method and base station
WO2019090489A1 (zh) 配置无线资源的方法、终端设备和网络设备
WO2020200136A1 (zh) 一种网关选择系统及方法
US9681002B2 (en) Improving charging information accuracy in a telecommunications network
JP2019532527A (ja) データ伝送方法、アクセスネットワーク装置及び端末装置
WO2020061871A1 (zh) 通信方法和通信装置
KR101558101B1 (ko) Sgw 및 그 제어방법과, 그 제어방법을 실행하기 위한 프로그램을 기록한 기록 매체
US20170273088A1 (en) D2D Transmission Distance Obtaining Method and Device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2016894920

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016894920

Country of ref document: EP

Effective date: 20180830

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894920

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018069130

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112018069130

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180920