WO2017161479A1 - 一种小区的切换方法及设备、系统 - Google Patents

一种小区的切换方法及设备、系统 Download PDF

Info

Publication number
WO2017161479A1
WO2017161479A1 PCT/CN2016/076848 CN2016076848W WO2017161479A1 WO 2017161479 A1 WO2017161479 A1 WO 2017161479A1 CN 2016076848 W CN2016076848 W CN 2016076848W WO 2017161479 A1 WO2017161479 A1 WO 2017161479A1
Authority
WO
WIPO (PCT)
Prior art keywords
enb
handover
random access
access preamble
cell
Prior art date
Application number
PCT/CN2016/076848
Other languages
English (en)
French (fr)
Inventor
唐珣
权威
柴丽
苗金华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680083688.1A priority Critical patent/CN108886734A/zh
Priority to EP16894838.8A priority patent/EP3419337B1/en
Priority to PCT/CN2016/076848 priority patent/WO2017161479A1/zh
Publication of WO2017161479A1 publication Critical patent/WO2017161479A1/zh
Priority to US16/137,054 priority patent/US20190028942A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0077Transmission or use of information for re-establishing the radio link of access information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0016Hand-off preparation specially adapted for end-to-end data sessions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0061Transmission or use of information for re-establishing the radio link of neighbour cell information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/02Buffering or recovering information during reselection ; Modification of the traffic flow during hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B

Definitions

  • the embodiments of the present invention relate to the field of wireless communications technologies, and in particular, to a cell handover method, device, and system.
  • FIG. 1 is a schematic flowchart diagram of a cell handover method disclosed in the prior art. As shown in FIG. 1 , the UE completes measurement of the neighboring cell and feeds back the measurement to the source eNB according to the configuration of the evolved Node B (also referred to as “source eNB” or “SeNB”) to which the current cell belongs.
  • source eNB also referred to as “source eNB” or “SeNB”
  • the source eNB determines whether the cell handover needs to be performed according to the signal strength of the current cell and the neighboring cell (also referred to as “target cell”. If yes, the source eNB refers to the eNB to which the neighboring cell belongs (also referred to as “target eNB” or “ The TeNB ”) sends a handover request. If the target eNB has sufficient resources to allocate to the UE, the target eNB feeds back a handover confirmation message to the source eNB, and the source eNB then sends a handover instruction to the UE, and the UE disconnects after receiving the handover instruction sent by the source eNB.
  • the connection with the source eNB is opened, that is, the data transmission between the UE and the source eNB is stopped, and the downlink synchronization information of the neighboring cell is started to be monitored; after the downlink synchronization with the neighboring cell is completed, the UE sends a random access preamble to the target eNB. After detecting the preamble sequence in the random access preamble, the target eNB sends a timing advance (TA, Timing Advance) and an uplink grant (UL-Grant, Uplink Grant) indication message to the UE, and then the UE sends the target eNB to the target eNB. Feedback The handover complete message, after the target eNB returns an acknowledgement (ACK, Acknowledgement) message, the handover procedure of the cell ends, and the data transmission is resumed.
  • TA Timing Advance
  • U-Grant Uplink Grant
  • the data transmission between the UE and the source eNB is interrupted, and the average time for data transmission interruption is 50 ms.
  • the maximum time for data transmission interruption that the user can tolerate is 20-25ms.
  • the embodiment of the invention discloses a cell handover method, device and system, which can solve the deficiencies of the prior art.
  • a first aspect of the embodiments of the present invention discloses a cell handover method, where the method includes:
  • the user equipment UE sends a first measurement report to the first evolved base station eNB, where the first eNB is a base station to which the current cell of the serving UE belongs, and the first measurement report is used to indicate the phase of the current cell and the current cell.
  • the neighboring cell pre-handover condition that is, when the UE's signal strength measurement result of the current cell and the neighboring cell of the current cell meets the trigger condition of the pre-switching A3 event, the UE reports the first measurement report to the first eNB, where the pre-switching A3
  • the triggering condition of the event is that the signal quality of the neighboring cell is higher than the signal quality of the current cell, that is, the signal strength of the neighboring cell and the signal strength of the current cell reach the first preset signal strength threshold;
  • the pre-handover instruction returned by the first eNB for the first measurement report, where the pre-handover instruction includes an index identifier and configuration information corresponding to the second eNB, and the pre-handover instruction is used to instruct the UE to send the index identifier
  • the indicated random access preamble where the second eNB is a base station to which the neighboring cell belongs;
  • the UE creates a radio bearer corresponding to the second eNB according to the configuration information, where the radio bearer includes a Signaling Radio Bearer (SRB) and a Data Radio Bearer (DRB);
  • SRB Signaling Radio Bearer
  • DRB Data Radio Bearer
  • the UE receives the timing advance and the uplink indication message, where the uplink indication message is used to indicate the uplink resource used by the UE when communicating with the second eNB, and the timing advance is used for uplink synchronization between the UE and the second eNB. .
  • the embodiment of the present invention can perform the cell pre-handover procedure before performing the cell handover procedure and without affecting the communication with the current cell, that is, preparing resources for cell handover in the process of communicating with the current cell.
  • the method may further include:
  • the UE sends a second measurement report to the first eNB, and receives a handover instruction returned by the first eNB for the second measurement report, where the second measurement report is used to indicate that the current cell and the neighboring cell meet the handover condition, that is,
  • the UE reports a second measurement report to the first eNB when the signal strength measurement result of the neighboring cell of the current cell and the current cell meets the triggering condition of the handover A3 event, where the trigger condition of the handover A3 event is the neighboring cell.
  • the signal quality is higher than the signal quality of the current cell, that is, the signal strength of the neighboring cell and the signal strength of the current cell reach a second preset signal strength threshold, wherein the second preset signal strength threshold is greater than the first preset signal.
  • An intensity threshold, the handover instruction is used to indicate that the UE switches the cell serving the UE from the current cell to the neighboring cell;
  • the UE starts the radio bearer in response to the handover instruction, and sends a cell handover complete indication message to the second eNB.
  • the possible implementation manner can quickly complete cell handover by using resources prepared for cell handover in advance, shortening the interruption time of data transmission during cell handover, and improving the user experience.
  • the foregoing pre-handover instruction is specifically used to indicate that the UE sends the random access preamble indicated by the index identifier according to the downlink timing, and the pre-handover instruction may further include a physics for sending the random access preamble. Random access channel PRACH time-frequency resources.
  • the downlink timing is a downlink timing of the current cell
  • the PRACH time-frequency resource is a resource of a current cell
  • the random access preamble is allocated by the first eNB.
  • the downlink timing is a downlink timing of a neighboring cell
  • the PRACH time-frequency resource is a resource of the neighboring cell
  • the random access preamble is allocated by a second eNB.
  • the pre-handover command may further include interval information of the target interval, where the interval information of the target interval includes a start frame identifier of the target interval, and a target interval. At least one of a subframe identifier, a length of a target interval, and a period of a target interval, where the target interval is specifically used by the UE to send a random access preamble, that is, the first eNB does not perform uplink and downlink scheduling for the UE within the target interval.
  • the target interval may be a short interval that allows the UE to only send the random access preamble, or may be a random access response message that allows the UE to send the random access preamble and the UE to receive the second eNB. Long interval
  • the random access preamble that is sent by the UE in response to the pre-handover command may include:
  • the UE sends the random access preamble through the PRACH time-frequency resource in the target interval according to the downlink timing in response to the pre-handover instruction.
  • the pre-handover command may be used to indicate that the UE uses a key between the UE and the first eNB as a key of the radio bearer and a security algorithm between the UE and the first eNB as the wireless.
  • a security algorithm of the bearer wherein the UE continues to use the key between the UE and the first eNB as the key of the SRB and the DRB, and the security algorithm using the security algorithm between the UE and the first eNB as the SRB and the DRB described above can be reduced.
  • the update of the key and security algorithm further reduces the interruption time of data transmission in the cell pre-switching process.
  • the content of the pre-handover request message, the pre-handover confirmation message, and the pre-handover instruction is more than one pre-handover identifier, and the other contents are the same as compared with the existing handover request message, the handover confirmation message, and the handover instruction.
  • the neighboring cell of the current cell may be multiple, and the UE performs a pre-handover procedure for different second eNBs to which the multiple neighboring cells belong, that is, the UE will establish an SRB and a DRB corresponding to each second eNB. And a set of related configuration parameters, and each of the second eNBs also needs to establish the SRB and the DRB corresponding to the UE at the same time.
  • the second cutting instruction carries the cell identifier of one of the neighboring cells, such as the temporary identifier of the cell wireless network ( C-RNTI, Cell-Radio Network Temporary Identity), to indicate that the UE switches the cell serving the UE from the current cell to the neighboring cell identified by the C-RNTI.
  • C-RNTI Cell-Radio Network Temporary Identity
  • a second aspect of the embodiment of the present invention discloses another method for switching a cell, where the method includes:
  • the first evolved base station eNB receives the first measurement report sent by the user equipment UE, where the first eNB is the base station to which the current cell of the serving UE belongs, and the first measurement report is used to indicate the signals of the current cell and the neighboring cell of the current cell.
  • the intensity measurement result satisfies the pre-switching condition
  • the first eNB determines that the pre-handover procedure needs to be performed according to the first measurement report
  • the first eNB sends a pre-handover request message to the second eNB, where the pre-handover request message is used to request the second eNB to indicate whether the UE performs the pre-handover procedure, and the second eNB a base station to which the neighboring cell belongs;
  • the first eNB receives a pre-handover acknowledgment message returned by the second eNB in response to the pre-handover request message, where the pre-handover acknowledgment message is used to trigger the first eNB to send a pre-handover instruction to the UE;
  • the first eNB sends a pre-handover instruction to the UE according to the pre-handover confirmation message, where the pre-handover instruction may include an index identifier and configuration information corresponding to the second eNB, and the pre-handover instruction is used to instruct the UE to send the random access preamble indicated by the index identifier. code.
  • the embodiment of the present invention can trigger the UE to perform the cell pre-handover procedure before performing the cell handover procedure and without affecting the communication with the current cell, that is, preparing resources for the cell handover in the communication process with the current cell.
  • the method may further include:
  • the first eNB sends a handover instruction for the second measurement report to the UE, where the handover instruction is used to indicate that the UE switches the cell serving the UE from the current cell to the neighboring cell.
  • the foregoing pre-handover instruction is specifically used to indicate that the UE sends the random access preamble indicated by the index identifier according to the downlink timing, and the foregoing pre-handover instruction may further include: sending the random access preamble The physical random access channel PRACH time-frequency resource of the code.
  • the downlink timing may be the downlink timing of the current cell, the PRACH time-frequency resource is the resource of the current cell, and the random access preamble is allocated by the first eNB;
  • the method can also include:
  • the first eNB sends the time-frequency location identifier and the index identifier of the random access preamble in the PRACH time-frequency resource to the second eNB.
  • the second eNB can monitor the random access preamble indicated by the index identifier sent by the UE in the corresponding PRACH time-frequency resource according to the time-frequency location identifier and the index identifier.
  • the downlink timing may also be the downlink timing of the neighboring cell, where the PRACH time-frequency resource is a resource of a neighboring cell, and the random access preamble is allocated by the second eNB, where
  • the pre-handover confirmation message may include a time-frequency location identifier, an index identifier, and configuration information of the random access preamble in the PRACH time-frequency resource.
  • the method may further include:
  • the first eNB receives the timing advance and the uplink indication message sent by the second eNB, and sends a timing advance and an uplink indication message to the UE, where the uplink indication message is used to indicate that the UE is used to communicate with the second eNB.
  • the uplink resource is used for uplink synchronization between the UE and the second eNB.
  • the pre-switching instruction may further include interval information of the target interval, where the interval information of the target interval includes At least one of a start frame identifier of the target interval, a subframe identifier of the target interval, a length of time of the target interval, and a period of the target interval.
  • the method may further include:
  • the first eNB receives the timing advance sent by the second eNB and the uplink indication message, where the uplink indication message is used to indicate the uplink resource used when the UE communicates with the second eNB, and the timing advance is determined by the second eNB.
  • the timing advance is used for uplink synchronization between the UE and the second eNB;
  • the first eNB transmits a timing advance and an uplink indication message to the UE.
  • the pre-handover command may be used to indicate that the UE uses a key between the UE and the first eNB as a key of the radio bearer and a security algorithm between the UE and the first eNB as a radio bearer.
  • the radio bearer is a radio bearer corresponding to the second eNB that is created by the UE according to the foregoing configuration information.
  • the method may further include:
  • the first eNB sends a key between the UE and the first eNB and a security algorithm between the UE and the first eNB to the second eNB.
  • a third aspect of the embodiments of the present invention discloses another method for switching a cell, where the method includes:
  • the second evolved base station eNB receives a pre-handover request message sent by the first eNB, where the pre-handover request message is used to request the second eNB to indicate whether the UE performs a pre-handover procedure, where the first eNB is a base station to which the current cell of the serving UE belongs, The second eNB is a base station to which the neighboring cell of the current cell belongs;
  • the second eNB When the second eNB determines, according to the pre-handover request message, that the communication resource provided by the second eNB meets the communication requirement of the UE, the second eNB sends a pre-handoff confirmation message for the pre-handover request message to the first eNB, where the pre-handover confirmation message is used to trigger the first
  • the eNB sends a pre-handover instruction to the UE, where the pre-handover instruction may include an index identifier and configuration information corresponding to the second eNB, and the pre-handover instruction is used to instruct the UE to send the random access preamble indicated by the index identifier;
  • the second eNB receives the random access preamble sent by the UE;
  • the second eNB sends a timing advance and an uplink indication message to the UE, where the uplink indication message is used to indicate an uplink resource used by the UE to communicate with the second eNB, and the timing advance is used by the UE and the second eNB.
  • Uplink synchronization is used to indicate an uplink resource used by the UE to communicate with the second eNB, and the timing advance is used by the UE and the second eNB.
  • the method may further include:
  • the second eNB receives the cell handover complete indication message sent by the UE.
  • the foregoing pre-handover instruction is specifically used to instruct the UE to send a random access preamble identifier of the index identifier according to the downlink timing, and the pre-handover instruction may further include a physics for sending the random access preamble Random access channel PRACH time-frequency resources.
  • the downlink timing is the downlink timing of the current cell
  • the PRACH time-frequency resource is the resource of the current cell
  • the random access preamble is allocated by the first eNB
  • the method may further include:
  • the second eNB receives the time-frequency location identifier and the index identifier of the random access preamble transmitted by the first eNB in the PRACH time-frequency resource.
  • the downlink timing is the downlink timing of the neighboring cell
  • the PRACH time-frequency resource is the resource of the neighboring cell
  • the random access preamble is allocated by the second eNB
  • the pre-handover confirmation message may include The time-frequency location identifier, index identifier, and configuration information of the random access preamble in the PRACH time-frequency.
  • the pre-switching instruction may further include interval information of the target interval, where the interval information of the target interval includes a start frame identifier of the target interval, and a target interval. At least one of a subframe identification, a length of time of the target interval, and a period of the target interval.
  • the pre-handover command may be used to indicate that the UE uses a key between the UE and the first eNB as a key of the data radio bearer and a security algorithm between the UE and the first eNB as the radio bearer.
  • the security algorithm is that the radio bearer is a radio bearer corresponding to the second eNB that is created by the UE according to the foregoing configuration information.
  • the method may further include:
  • the second eNB receives a key between the UE and the first eNB sent by the first eNB and a security algorithm between the UE and the first eNB.
  • a fourth aspect of the embodiments of the present invention discloses a user equipment UE, where the UE includes a module for performing a handover method of a cell disclosed in the first aspect of the embodiment of the present invention.
  • a fifth aspect of the embodiments of the present invention discloses an evolved base station eNB, where the eNB is configured to perform A module of a cell handover method disclosed in a second aspect of the embodiments of the present invention.
  • the sixth aspect of the embodiments of the present invention discloses an evolved base station eNB, where the eNB includes a module for performing a handover method of a cell disclosed in the third aspect of the embodiment of the present invention.
  • a seventh embodiment of the present invention discloses a user equipment UE, where the UE includes a processor, a memory, a transmitter, and a receiver, where the transmitter is configured to send a first measurement report to the first evolved base station eNB, where the An eNB is a base station to which the current cell of the serving UE belongs, and the first measurement report is used by the neighboring cell of the current cell and the current cell to meet the pre-handover condition;
  • a receiver configured to receive a pre-handover instruction returned by the first eNB for the first measurement report, where the pre-handover instruction includes an index identifier and configuration information corresponding to the second eNB, where the pre-handover instruction is used to instruct the UE to send an index identifier indication to the second eNB. Random access preamble;
  • the transmitter is further configured to send a random access preamble indicated by the index identifier in response to the pre-handover instruction;
  • a set of program code is stored in the memory, and the processor is used to call the program code stored in the memory to perform the following operations:
  • the receiver is further configured to receive a timing advance message and an uplink indication message, where the uplink indication message is used to indicate an uplink resource used by the UE to communicate with the second eNB, and the timing advance is used for the UE and the second eNB. Perform uplink synchronization.
  • the transmitter is further configured to send a second measurement report to the first eNB, where the second measurement report is used to indicate that the current cell and the neighboring cell meet the handover condition;
  • the receiver is further configured to receive a handover instruction returned by the first eNB for the second measurement report, where the handover instruction is used to indicate that the UE switches the cell serving the UE from the current cell to the neighboring cell;
  • the processor is used to call the program code stored in the memory, and is also used to perform the following operations:
  • the transmitter is further configured to send a cell handover complete indication message to the second eNB.
  • the pre-handover instruction is specifically used to instruct the UE to send the random access preamble of the index identifier according to the downlink timing, where the pre-handover instruction further includes physical random access for sending the random access preamble.
  • Channel PRACH time-frequency resource is specifically used to instruct the UE to send the random access preamble of the index identifier according to the downlink timing, where the pre-handover instruction further includes physical random access for sending the random access preamble.
  • the downlink timing is the downlink timing of the current cell
  • the time-frequency resource is the resource of the current cell
  • the random access preamble is allocated by the first eNB.
  • the downlink timing is the downlink timing of the neighboring cell
  • the PRACH time-frequency resource is the resource of the neighboring cell
  • the random access preamble is allocated by the second eNB.
  • the pre-handover instruction further includes interval information of the target interval, where the interval information of the target interval includes a start frame identifier of the target interval, a subframe identifier of the target interval, a time length of the target interval, and a target interval. At least one of the cycles;
  • the random access preamble indicated by the index identifier is sent by the PRACH time-frequency resource according to the downlink timing in the target interval.
  • the pre-handover instruction may be further used to indicate that the UE uses a key between the UE and the first eNB as a key of the radio bearer and a security algorithm between the UE and the first eNB as a data radio bearer. Security algorithm.
  • An eighth embodiment of the present invention discloses an evolved base station eNB, which includes a processor, a memory, a transmitter, and a receiver, where the eNB is a base station to which the current cell of the serving user equipment UE belongs, where:
  • a receiver configured to receive a first measurement report sent by the UE, where the first measurement report is used to indicate that the signal strength measurement result of the neighboring cell of the current cell and the current cell meets a pre-handover condition;
  • the processor is used to call program code stored in the memory to perform the following operations:
  • a transmitter configured to send a pre-handover request message to the second eNB, where the pre-handover request message is used to request the second eNB to indicate whether the UE performs the pre-handover procedure;
  • the receiver is further configured to receive a pre-handover confirmation message returned by the second eNB in response to the pre-handover request message, where the second eNB is a base station to which the neighboring cell belongs;
  • the transmitter is further configured to send a pre-handover instruction to the UE according to the pre-handover confirmation message, where the pre-handover instruction includes an index identifier and configuration information corresponding to the second eNB, where the pre-handover instruction is used to instruct the UE to send the random access preamble indicated by the index identifier. .
  • the receiver is further configured to receive a second measurement report sent by the UE, where the second measurement report is used to indicate that the current cell and the neighboring cell meet the handover condition;
  • a transmitter configured to send a handover instruction for the second measurement report to the UE, where the handover instruction is used Instructing the UE to handover the cell serving the UE from the current cell to the neighboring cell.
  • the pre-handover instruction is specifically used to indicate that the UE sends the random access preamble indicated by the index identifier according to the downlink timing, and the pre-handover instruction further includes a physical random access channel used to send the random access preamble. PRACH time-frequency resources.
  • the downlink timing is the downlink timing of the current cell
  • the PRACH time-frequency resource is the resource of the current cell
  • the random access preamble is allocated by the eNB
  • the transmitter is further configured to send, to the second eNB, a time-frequency location identifier and an index identifier of the random access preamble in the PRACH time-frequency resource.
  • the downlink timing is the downlink timing of the neighboring cell
  • the PRACH time-frequency resource is the resource of the neighboring cell
  • the random access preamble is allocated by the second eNB
  • the pre-handover confirmation message includes the random connection.
  • the time-frequency location identifier, index identifier, and configuration information of the preamble in the PRACH time-frequency resource is the downlink timing of the neighboring cell
  • the PRACH time-frequency resource is the resource of the neighboring cell
  • the random access preamble is allocated by the second eNB
  • the pre-handover confirmation message includes the random connection.
  • the receiver is further configured to receive a timing advance sent by the second eNB and an uplink indication message, where the uplink indication message is used to indicate The uplink resource used by the UE to communicate with the second eNB, and the timing advance is used for uplink synchronization between the UE and the second eNB;
  • the transmitter is further configured to send a timing advance and an uplink indication message to the UE.
  • the pre-handover command further includes interval information of the target interval, where the interval information of the target interval includes a start frame identifier of the target interval, and a subframe of the target interval. At least one of an identification, a length of time of the target interval, and a period of the target interval.
  • the receiver is further configured to receive a timing advance sent by the second eNB and an uplink indication message, where the uplink indication message is used to indicate
  • the uplink resource used by the UE to communicate with the second eNB is calculated by the second eNB when receiving the random access preamble sent by the UE, and the timing advance is used by the UE and the second eNB.
  • the transmitter is further configured to send a timing advance and an uplink indication message to the UE.
  • the pre-handover instruction is further used to indicate that the UE uses a key between the UE and the eNB as a key of the radio bearer and uses a security algorithm between the UE and the eNB as the radio bearer.
  • the security algorithm, the radio bearer is a radio bearer corresponding to the second eNB that is created by the UE according to the configuration information.
  • the transmitter is further configured to send a key between the UE and the eNB and a security algorithm between the UE and the eNB to the second eNB.
  • the ninth aspect of the embodiment of the present invention discloses an evolved base station eNB, which includes a processor, a memory, a receiver, and a transmitter, where the eNB is a base station to which a neighboring cell of a current cell serving the user equipment UE belongs, where:
  • a receiver configured to receive a pre-handover request message sent by the first eNB, where the pre-handover request message is used to request the eNB to indicate whether the UE performs a pre-handover procedure, where the first eNB is a base station to which the current cell belongs;
  • a set of program code is stored in the memory, and the processor is used to call the program code stored in the memory to perform the following operations:
  • a transmitter configured to send, by the first eNB, a pre-handover confirmation message for the pre-handover request message, where the pre-handover confirmation message is used to trigger the first eNB to send a pre-handover instruction to the UE, and the pre-handover The command includes an index identifier and configuration information corresponding to the eNB, where the pre-handover instruction is used to instruct the UE to send a random access preamble indicated by the index identifier;
  • the receiver is further configured to receive a random access preamble sent by the UE;
  • the transmitter is further configured to send a timing advance and an uplink indication message to the UE, where the uplink indication message is used to indicate an uplink resource used by the UE to communicate with the eNB, and the timing advance is used by the UE and the eNB. Perform uplink synchronization.
  • the receiver is further configured to receive a cell handover completion indication message sent by the UE.
  • the pre-handover instruction is specifically used to indicate that the UE sends the random access preamble identified by the index identifier according to the downlink timing, and the pre-handover instruction further includes a physical random access channel used to send the random access preamble. PRACH time-frequency resources.
  • the downlink timing is the downlink timing of the current cell
  • the PRACH time-frequency resource is the resource of the current cell
  • the random access preamble is allocated by the first eNB
  • the receiver is further configured to receive a time-frequency location identifier and an index identifier of the random access preamble sent by the first eNB in the PRACH time-frequency resource.
  • the downlink timing is a downlink timing of the neighboring cell
  • the PRACH time-frequency resource is a resource of a neighboring cell
  • the random access preamble is allocated by the eNB.
  • the pre-handover acknowledgment message includes a time-frequency location identifier, an index identifier, and configuration information of the random access preamble in the PRACH time-frequency.
  • the pre-handover command further includes interval information of the target interval, where the interval information of the target interval includes a start frame identifier of the target interval, and a subframe of the target interval. At least one of an identification, a length of time of the target interval, and a period of the target interval.
  • the pre-handover instruction is further used to indicate that the UE uses a key between the UE and the first eNB as a key of the radio bearer and a security algorithm that uses a security algorithm between the UE and the first eNB as a radio bearer.
  • the radio bearer is a radio bearer corresponding to the eNB created by the UE according to the configuration information.
  • the receiver is further configured to receive a key between the UE and the first eNB and a security algorithm between the UE and the first eNB that are sent by the first eNB.
  • a tenth aspect of the embodiment of the present invention discloses a handover system of a cell, where the system includes the UE disclosed in the seventh aspect of the embodiment of the present invention, and the eNB and the current UE of the serving UE disclosed in the eighth aspect of the embodiment of the present invention.
  • the eNB to which the neighboring cell of the current cell belongs is disclosed in the ninth aspect of the invention.
  • the UE after receiving the pre-handover instruction sent by the first eNB, the UE sends a random access preamble, and creates a radio bearer corresponding to the second eNB according to the configuration information in the pre-handover instruction, and the UE receives the The timing advance of the uplink synchronization performed by the second eNB and the uplink indication message for indicating the uplink resource used when the UE communicates with the second eNB. It can be seen that the embodiment of the present invention can perform the cell pre-handover procedure before performing the cell handover procedure and without affecting the communication with the current cell, that is, preparing resources for cell handover in the process of communicating with the current cell.
  • FIG. 1 is a schematic flowchart of a handover method of a cell disclosed in the prior art
  • FIG. 2 is a schematic structural diagram of an application architecture disclosed in an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a cell handover method according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of another cell handover method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a path of another cell handover method according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a path of another cell handover method according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a user equipment UE according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another user equipment UE according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of an evolved base station eNB according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another evolved base station eNB according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of still another evolved base station eNB according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of still another evolved base station eNB according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a cell handover system according to an embodiment of the present invention.
  • the embodiment of the invention discloses a cell handover method, device and system, which can perform a cell pre-handover procedure before performing a cell handover procedure without affecting communication with the current cell, that is, during communication with the current cell.
  • the cell handover is ready for resources. The details are described below separately.
  • FIG. 2 is a schematic structural diagram of an application architecture according to an embodiment of the present invention.
  • the application framework is used to indicate a handover scenario of a cell in an LTE system, and the application architecture may include a UE and at least two eNBs, where the at least two eNBs include a first eNB (also referred to as a “source eNB”).
  • SeNB SeNB
  • target eNB target eNB
  • TeNB TeNB
  • the SeNB can determine whether the pre-handover procedure/handover procedure needs to be performed according to the measurement report of the UE; the neighboring cell (also referred to as “target cell”) of the current cell is deployed in the TeNB, and the TeNB receives the pre-handover sent by the SeNB.
  • the TeNB can determine whether to accept the pre-handover request/handover request according to its current resource usage.
  • the UE switches from the current cell to the neighboring cell through the handover procedure of the cell, and the eNB serving the UE is also switched by the SeNB accordingly.
  • the TeNB may be connected between the eNBs through the X2 port, or may be transited through the S1 port through a mobility management entity (MME, Mobility Management Entity).
  • MME Mobility Management Entity
  • FIG. 3 is a schematic flowchart diagram of a cell handover method according to an embodiment of the present invention.
  • the handover method of the cell may include the following operations:
  • the UE sends a first measurement report to the first eNB.
  • the first eNB is a base station to which the current cell of the serving UE belongs, that is, the SeNB in FIG. 2, and the first measurement report is used to indicate that the current cell and the neighboring cell of the current cell meet the pre-handover condition, that is, The UE reports the first measurement report to the first eNB, where the signal strength measurement result of the neighboring cell of the current cell and the current cell meets the trigger condition of the pre-switching A3 event, where the trigger condition of the pre-switching A3 event is adjacent.
  • the signal quality of the cell is higher than the signal quality of the current cell, that is, the signal strength of the neighboring cell and the signal strength of the current cell reach the first preset signal strength threshold, and the judgment formula is as follows:
  • the leaving condition of the pre-switching A3 event is that the signal quality of the neighboring cell is lower than the signal quality of the current cell, and the judgment formula is as follows:
  • Mn is a signal strength measurement result of a neighboring cell, such as Reference Signal Receiving Power (RSRP) or Reference Signal Receiving Quality (RSRQ), and Offn is a bias corresponding to the frequency of the neighboring cell.
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • Ocn is the offset value of the neighboring cell
  • Mp is the signal strength measurement result of the current cell, such as RSRP or RSRQ
  • Ofp is the offset value corresponding to the frequency of the current cell
  • Ocp is the offset value of the current cell
  • Hys Is the hysteresis parameter of the pre-switching A3 event
  • Off is the offset parameter of the pre-switching A3 event
  • the Mn and Mp units are dBm
  • the Ofn, Ocn, Ofp, Ocp, Hys, and Off units are dB.
  • the triggering condition of the pre-switching A3 event is mainly controlled by four parameters of Ocn, Ocp, Hys and Off, which are based on the existing normal switching A3 event parameters. If you want to weaken the trigger condition of the pre-switch A3 event, you can set a larger Ocn or smaller Ocp, Hys, and Off for the pre-switch A3 event to reduce the difficulty of triggering the pre-switch A3 event, that is, Ocn, Ocp. The value of at least one of the four parameters, Hys and Off, is different from the value of the switch A3 event.
  • the UE sends a first measurement report to the first eNB, so that the first eNB performs the following operations:
  • the first eNB sends a pre-handover request message to the second eNB, where the pre-handover request message is used to request the second eNB to indicate whether the UE performs a pre-handover procedure, where the second eNB is a phase
  • the base station to which the neighboring cell belongs that is, the TeNB shown in FIG. 2;
  • the first eNB After the first eNB receives the pre-handover confirmation message returned by the second eNB for the pre-handover request message, the first eNB sends a pre-handover instruction to the UE according to the pre-handover confirmation message, where the pre-handover confirmation message is used to trigger the An eNB sends a pre-handover instruction to the UE.
  • the UE receives a pre-handover instruction returned by the first eNB for the foregoing first measurement report.
  • the pre-handover command may include an index identifier of the random access preamble Preamble and configuration information of a signaling radio bearer (SRB) and a data radio bearer (DRB) corresponding to the second eNB, and
  • the pre-handover instruction is used to instruct the UE to send a random access preamble indicated by the index identifier.
  • the UE sends the random access preamble indicated by the index identifier in response to the foregoing pre-handover instruction.
  • the UE determines the random access preamble indicated by the index identifier according to the index identifier included in the pre-handover instruction, and sends the determined random access preamble.
  • the UE creates a radio bearer corresponding to the second eNB according to the foregoing configuration information.
  • the radio bearer may include an SRB and a DRB.
  • the UE receives a timing advance (TA, Timing Advance) and an uplink indication message.
  • TA Timing Advance
  • the uplink indication message is used to indicate an uplink resource used by the UE when communicating with the second eNB, and the timing advance is used for performing uplink synchronization between the UE and the second eNB.
  • the UE prepares for fast handover with the second eNB through the interaction between the UE and the first eNB.
  • the method of the embodiment of the present invention may further include:
  • the UE starts the SRB and the DRB in response to the handover instruction, and sends an indication message indicating that the cell handover is completed to the second eNB.
  • the second measurement report is used to indicate that the signal strength measurement result of the current cell and the neighboring cell meets the handover condition, that is, when the signal strength measurement result of the UE to the neighboring cell of the current cell and the current cell meets the handover A3 event.
  • the triggering condition is that the UE reports the second measurement report to the first eNB, where the trigger condition of the handover A3 event is that the signal quality of the neighboring cell is higher than the signal quality of the current cell, that is, the signal strength of the neighboring cell and the signal of the current cell.
  • the intensity difference reaches a second preset signal strength threshold, wherein the second preset signal strength threshold is greater than the first preset signal strength threshold.
  • the UE sends a second measurement report to the first eNB, to trigger the first eNB to determine, according to the second measurement report, whether the handover procedure needs to be performed.
  • the first eNB sends the second eNB to the UE.
  • measuring a handover instruction where the handover instruction is used to instruct the UE to switch the cell serving the UE from the current cell to the neighboring cell.
  • step S305 may also be performed between the step S303 and the step S304, which is not limited in the embodiment of the present invention.
  • the pre-handover instruction is specifically used to instruct the UE to send the random access preamble indicated by the index identifier to the second eNB according to the downlink timing
  • the pre-handover instruction may further include: And transmitting, by the UE, the random access preamble by using a physical random access channel (PRACH) time-frequency resource of the preamble, and the UE responding to the foregoing pre-handover instruction, the method may include:
  • PRACH physical random access channel
  • the UE sends the random access preamble on the PRACH time-frequency resource according to the downlink timing according to the foregoing pre-handover instruction.
  • the downlink timing is current cell
  • the foregoing PRACH time-frequency resource is a resource of the current cell
  • the random access preamble is allocated by the first eNB.
  • the UE receiving the timing advance and the uplink indication message may include:
  • the UE receives the timing advance amount transmitted by the first eNB and an uplink indication message.
  • the UE first sends the downlink timing offset ⁇ T of the neighboring cell to the current eNB to the first eNB, and the first eNB sends the downlink timing offset ⁇ T to the second eNB, so that the second eNB is in the corresponding PRACH.
  • the timing advance of the UE is calculated after detecting the random access preamble on the frequency resource, where the corresponding calculation formula may be:
  • TeNB TA TA1+ ⁇ T
  • the TA1 is calculated by the second eNB receiving the random access preamble on the corresponding PRACH time-frequency resource.
  • the sending, by the UE, the downlink timing offset ⁇ T of the neighboring cell to the current cell to the first eNB may occur after the step S303 and before the step S305, and may also occur before the step S301, which is not limited in the embodiment of the present invention.
  • the downlink timing is a downlink timing of the neighboring cell, where the PRACH time-frequency resource is a resource of the neighboring cell, and the random access preamble is The timing advance amount allocated by the second eNB and received by the UE is calculated by the second eNB when receiving the random access preamble.
  • the foregoing pre-handover instruction may further include interval information of a target interval Gap configured by the second eNB for the UE, and the interval information may include a start of the target Gap. At least one of a frame identifier, a subframe identifier of the target Gap, a time length of the target Gap, and a period of the target Gap, where the target Gap is specifically used for the UE to send the random access preamble, that is, the first eNB is in the target Gap.
  • the uplink and downlink scheduling is not performed on the UE.
  • the sending, by the UE, the random access preamble according to the foregoing pre-handover instruction may include:
  • the UE sends the random access preamble through the PRACH time-frequency resource in the target Gap according to the downlink timing.
  • the target Gap may be a short Gap that only allows the UE to send a random access preamble, or one that can allow the UE to send a random access preamble and allow the UE to receive the second eNB.
  • the length of the returned random access response message is not limited in the embodiment of the present invention.
  • the UE receiving the timing advance and the uplink indication message may include:
  • the UE receives the timing advance sent by the first eNB and the uplink indication message, that is, the second eNB sends the timing advance and the uplink indication message to the first eNB, and the timing advance and the uplink are performed by the first eNB.
  • the way indication message is forwarded to the UE.
  • the UE receiving the timing advance and the uplink indication message may include:
  • the message may be included in a random access response message sent by the second eNB to the UE.
  • the pre-handover command may be used to indicate whether the UE performs a data communication with the second eNB and whether the security algorithm is updated, that is, whether the UE continues to use the confidentiality between the UE and the first eNB.
  • the key is used as the key of the SRB and the DRB, and whether a security algorithm between the UE and the first eNB is used as the security algorithm of the SRB and the DRB.
  • the key change indication indicator in the security configuration information element of the foregoing pre-handover command may be used to indicate whether the key of the UE is updated when performing data communication with the second eNB, that is, the extended keyChangeIndicator is represented by two bits, and A high bit of 1 indicates no update, and a high bit of 0 indicates update.
  • the high bit is 0, a low bit of 1 indicates that a new key is derived vertically, and a low bit of 0 indicates that a new key is derived horizontally, and is first
  • the eNB transmits a key between the UE and the first eNB, or a method of deriving a key between the UE and the first eNB and a new key to the second eNB.
  • the UE continues to use the key between the UE and the first eNB as the SRB and the DRB key and the security algorithm between the UE and the first eNB as the SRB and the DRB security algorithm can reduce the key and the security algorithm. Update to reduce the time of the cell pre-switching process.
  • the content of the pre-handover request message, the pre-handover confirmation message, and the pre-handover instruction is more than one pre-handover identifier, and the other contents are the same as compared with the existing handover request message, the handover confirmation message, and the handover instruction.
  • the neighboring cell of the current cell may be multiple, and the UE is to be small for the multiple neighbors.
  • the different second eNBs to which the area belongs perform a pre-handover procedure, that is, the UE will establish a set of SRBs, DRBs, and related configuration parameters corresponding to each second eNB, and each second eNB also needs to establish the SRB and DRB corresponding to the UE at the same time.
  • the second cut instruction carries a cell identifier of one of the neighboring cells, such as a Cell-Radio Network Temporary Identity (C-RNTI), to indicate that the UE switches the cell serving the UE from the current cell.
  • C-RNTI Cell-Radio Network Temporary Identity
  • the embodiment of the present invention can perform the cell pre-handover procedure before performing the cell handover procedure and without affecting the communication with the current cell, that is, preparing resources for cell handover in the process of communicating with the current cell, which can reduce The interruption time of data transmission during the cell handover process improves the user experience.
  • FIG. 4 is a schematic flowchart diagram of another cell handover method according to an embodiment of the present invention. 4 is an example in which the UE sends a random access preamble according to the PRACH configuration of the current cell. As shown in FIG. 4, the handover method of the cell may include the following steps:
  • the UE sends a first measurement report to the first eNB (SeNB).
  • SeNB first eNB
  • the first eNB is a base station to which the current cell of the serving UE belongs, that is, the SeNB in FIG. 2, and the first measurement report is used to indicate the signal strength measurement of the neighboring cell of the current cell and the current cell by the UE.
  • the result meets the pre-handover condition, that is, when the UE's signal strength measurement result of the neighboring cell of the current cell and the current cell meets the trigger condition of the pre-handover A3 event, the UE reports the first measurement report to the first eNB (ie, the pre-handover A3 event) ).
  • the first eNB receives the foregoing first measurement report, and determines, according to the foregoing first measurement report, whether a pre-handover process needs to be performed.
  • step S403 when the determination result in step S402 is YES, step S403 is performed; when the determination result in step S402 is no, the current flow may be ended.
  • the first eNB sends a pre-handover request message to the second eNB.
  • the pre-handover request message is used to request the second eNB to indicate whether the UE performs a pre-handover procedure, where the second eNB is a base station to which the neighboring cell belongs (ie, the TeNB in FIG. 2), and the message content of the pre-handover request message A pre-handover identifier is added compared to the message content of the handover request message in the prior art.
  • the second eNB receives the foregoing pre-handover request message sent by the first eNB, and determines, according to the pre-handover request message, whether the communication resource that can be provided meets the communication requirement of the UE.
  • the second eNB when the determining result of the step S404 is no, the second eNB sends, to the first eNB, the UE to perform the pre-handover operation for the neighboring cell in the second eNB; and the result of the step S404 If yes, step S405 is performed.
  • the second eNB sends a pre-handoff confirmation message for the foregoing pre-handover request message to the first eNB.
  • the pre-handover confirmation message is used to instruct the UE to perform a pre-handover procedure and is used to trigger the first eNB to send a pre-handover instruction to the UE.
  • the first eNB receives the foregoing pre-handoff confirmation message.
  • the first eNB sends a pre-handover instruction to the UE according to the pre-handoff confirmation message.
  • the pre-handover command may include an index identifier of a random access preamble allocated by the first eNB, configuration information of the SRB and the DRB corresponding to the second eNB, configuration information of a media access control (MAC) layer, and a PRACH time-frequency resource used by the current cell to send a random access preamble, and the pre-handover command is used to instruct the UE to send the random access preamble indicated by the index identifier on the PRACH time-frequency resource according to the downlink timing of the current cell.
  • the key used in data communication with the second eNB and the security algorithm are updated.
  • the dedicated random access channel configuration rach-ConfigDedicated field included in the information element (IE, Information Element) of the mobility control information MobilityConttolInfo in the pre-handover instruction indicates the PRACH time-frequency resource for transmitting the random access preamble
  • the resource configuration information element radioResourceConfigDedicated IE includes configuration information of the SRB and the DRB corresponding to the second eNB, configuration information of the media access control layer (MAC), and the security configuration information element securityConfigHO IE may include the security algorithm. And an update indication of the key key.
  • the first eNB sends, to the second eNB, a time-frequency location identifier of the random access preamble in the PRACH time-frequency resource and the index identifier.
  • the second eNB receives the time-frequency location identifier in the PRACH time-frequency resource and the index identifier.
  • the UE receives the foregoing pre-handover instruction.
  • the UE responds to the foregoing pre-handover command, according to the downlink timing of the current cell, and according to the random connection.
  • the PRACH time-frequency resource indicated by the incoming channel configuration field sends a random access preamble.
  • the UE creates a new set of SRBs and DRBs according to the configuration information of the SRBs and DRBs corresponding to the second eNB, and updates a security algorithm and a key key used for data communication with the second eNB.
  • the new SRB and DRB created by the UE do not affect the SRB and DRB that the current cell is using.
  • the second eNB receives the random access preamble sent by the UE according to the time-frequency location identifier and the index identifier, and calculates a TA of the UE.
  • the second eNB may receive, in advance, a downlink timing offset ⁇ T of the neighboring cell sent by the UE with respect to the current cell, that is, the UE first sends ⁇ T to the first eNB, and then the first eNB forwards ⁇ T to the second eNB. And when receiving the random access preamble, the second eNB calculates a timing advance amount TA1 and determines the sum of TA1 and ⁇ T as the TA of the UE.
  • the ⁇ T sent by the UE to the first eNB may be performed before the pre-switching action is triggered after the UE sends the random access preamble, which is not limited in the embodiment of the present invention.
  • the second eNB sends, to the first eNB, a TA of the UE and an uplink indication message for indicating an uplink resource used by the UE to perform data communication with the second eNB.
  • the first eNB receives the TA of the UE and an uplink indication message.
  • the first eNB sends a TA of the UE and an uplink indication message to the UE.
  • the UE receives the TA sent by the first eNB and an uplink indication message.
  • the UE When the UE performs the corresponding operation, the UE maintains normal communication with the current cell, and after the UE performs the corresponding operation, the UE establishes a set of SRBs and DRBs for the neighboring cells, and the UE also obtains the TA and the uplink.
  • the road indicates the message and the pre-switching process is completed.
  • the UE establishes a set of SRBs, DRBs, and related configuration parameters for multiple neighboring cells, and corresponding to each neighboring cell.
  • the second eNB also establishes the SRB and the DRB corresponding to the UE accordingly.
  • the UE sends a second measurement report to the first eNB.
  • the second measurement report (that is, the handover A3 event) is used to indicate that the UE determines that the signal strength measurement result of the current cell and the neighboring cell meets the handover condition.
  • the first eNB receives the second measurement report, and determines, according to the second measurement report, whether the handover process needs to be performed.
  • step S420 when the determination result in step S419 is YES, step S420 is performed; when the determination result in step S419 is no, the first eNB sends an indication message indicating that the handover procedure is not to be performed to the UE.
  • the first eNB sends a handover instruction to the UE.
  • the handover command is used to instruct the UE to perform a handover procedure, that is, the UE is instructed to switch the cell serving the UE from the current cell to the neighboring cell, where the handover instruction may include the C-RNTI of the neighboring cell to which the UE needs to handover.
  • the UE receives the handover command sent by the first eNB, and starts the SRB and the DRB in response to the handover instruction.
  • the UE sends an indication message to the second eNB to indicate completion of the cell handover.
  • the first eNB needs to send a key between the UE and the first eNB and a security algorithm between the UE and the first eNB to the second eNB.
  • the foregoing pre-handover command may also be used to indicate that the UE does not update the key and security algorithm required for the UE to perform data communication with the second eNB, that is, the pre-handover instruction instructs the UE to use the UE and the first eNB.
  • the key is used as the SRB and the key of the DRB, and a security algorithm using the UE and the first eNB as the security algorithm of the SRB and the DRB.
  • the UE does not need to perform the operation of "updating the security algorithm and key key used in data communication with the second eNB" in the above step S412.
  • the UE when the UE meets the entry condition of the handover A3 event for the measurement result of the current cell and the neighboring cell, the UE reports the measurement report to the first eNB, because the previous eNB has completed the pre-handover with the second eNB.
  • the first eNB sends a handover command directly to the UE, and the handover instruction only needs to indicate to which neighboring cell the UE is handed over.
  • the UE can immediately enable the SRB and the DRB corresponding to the neighboring cell, which reduces the The interruption time of data transmission improves the user experience.
  • FIG. 5 is a schematic flowchart of another cell handover method according to an embodiment of the present invention.
  • 5 is a description of the example in which the UE sends a random access preamble according to the PRACH configuration of the neighboring cell.
  • Steps S501-S506 correspond to S401-S406 in FIG. 4, and are not further described in the embodiment of the present invention, and step S505 is performed.
  • the pre-handover request message may include the random access preamble allocated by the second eNB at The time-frequency location identifier of the PRACH time-frequency resource of the neighboring cell, the index identifier of the random access preamble, and the configuration information of the SRB and DRB corresponding to the second eNB, and the medium access control layer (MAC, Media Access Control) Configuration information.
  • the handover method of the cell may further include the following steps:
  • the first eNB sends a pre-handover instruction to the UE according to the foregoing pre-handoff confirmation message.
  • the pre-handover command (also referred to as a pre-handover command) may include an index identifier of a random access preamble allocated by the second eNB, configuration information of the SRB and the DRB corresponding to the second eNB, configuration information of the MAC layer, and neighboring information.
  • the interval information of the target Gap may include the start frame identifier of the target Gap and the subframe identifier of the target Gap, and the interval information of the target Gap configured by the second eNB.
  • At least one of a time length of the target Gap and a period of the target Gap, and the pre-handover instruction is used to indicate that the UE sends an index indication by using a PRACH time-frequency resource of the neighboring cell according to the downlink timing of the neighboring cell in the target Gap.
  • Random access preamble, and the time range of the target Gap needs to refer to the time of the PRACH time-frequency resource provided by the second eNB, so that the start time of the target Gap is earlier than the configured PRACH time-frequency resource, and the time length of the target Gap is at least
  • the transmission of the random access preamble can be guaranteed and the key used in data communication with the second eNB and the security algorithm can be updated.
  • the dedicated random access channel configuration rach-ConfigDedicated field included in the information element (IE, Information Element) of the mobility control information MobilityConttolInfo in the pre-handover instruction indicates the PRACH time-frequency resource for transmitting the random access preamble (which is The resource of the neighboring cell
  • the dedicated radio resource configuration information element radioResourceConfigDedicated IE includes the configuration information of the SRB and the DRB corresponding to the second eNB, the configuration information of the medium access control layer (MAC, Media Access Control), and the local security configuration.
  • the information element securityConfigHO IE may contain an update indication of the security algorithm and the key key.
  • the UE receives the foregoing pre-handover instruction.
  • the UE sends the random access preamble according to the downlink timing of the neighboring cell and the PRACH time-frequency resource indicated by the random access channel configuration field in the target Gap in response to the pre-handover command.
  • the second eNB receives the random access preamble sent by the UE, and calculates a TA of the UE.
  • the second eNB sends, to the UE, a random access response message including a TA of the UE and an uplink indication message for indicating an uplink resource used by the UE when communicating with the second eNB.
  • the target Gap is a long Gap, that is, the time length of the target Gap can ensure that the UE sends the random access preamble, and can ensure that the UE receives the random access response message returned by the second eNB, where During the process of transmitting the random access preamble to receiving the random access response message, the UE suspends communication with the current cell, and after receiving the random access response message, the UE continues to communicate with the current cell.
  • the UE suspends communication with the current cell in the target Gap when the random access preamble is used.
  • the UE After the sending is complete, the UE continues to communicate with the current cell, and subsequently acquires the timing advance of the UE by the first eNB and an uplink indication message for indicating the uplink resource used by the UE when communicating with the second eNB, that is, the first
  • the second eNB transmits a timing advance amount to the first eNB and an uplink indication message for indicating an uplink resource used by the UE when communicating with the second eNB, where the first eNB sets the first advance timing amount and the uplink indication message
  • the UE sends the timing advance amount and the uplink indication message sent by the first eNB to the UE.
  • the UE receives the random access response sent by the second eNB in the target Gap.
  • the UE creates a new set of SRBs and DRBs according to the configuration information of the SRBs and DRBs corresponding to the second eNB, and updates a security algorithm and a key key used for data communication with the second eNB.
  • the UE sends a second measurement report to the first eNB.
  • the second measurement report (that is, the handover A3 event) is used to indicate that the UE determines that the signal strength measurement result of the current cell and the neighboring cell meets the handover condition.
  • the first eNB receives the second measurement report, and determines, according to the second measurement report, whether the handover process needs to be performed.
  • step S516 when the determination result in step S515 is YES, step S516 is performed; when the determination result in step S515 is no, the first eNB sends an indication message indicating that the handover procedure is not to be performed to the UE.
  • the first eNB sends a handover request message to the second eNB.
  • the second eNB receives the handover request message.
  • the second eNB sends a handover request response message to the first eNB according to the handover request message.
  • the first eNB sends a handover instruction to the UE according to the handover request response message.
  • the handover instruction is used to instruct the UE to perform a handover procedure, that is, to indicate that the UE will serve the cell of the UE.
  • a handover procedure that is, to indicate that the UE will serve the cell of the UE.
  • the handover command may include the C-RNTI of the neighboring cell to which the UE needs to handover.
  • the UE receives the handover command sent by the first eNB, and starts the SRB and the DRB in response to the handover instruction.
  • the UE sends an indication message indicating that the cell handover is completed to the second eNB.
  • the first eNB needs to send a key between the UE and the first eNB and a security algorithm between the UE and the first eNB to the second eNB.
  • the foregoing pre-handover command may also be used to indicate that the UE does not update the key and security algorithm required for the UE to perform data communication with the second eNB, that is, the pre-handover instruction instructs the UE to use the UE and the first eNB.
  • the key is used as the SRB and the key of the DRB, and a security algorithm using the UE and the first eNB as the security algorithm of the SRB and the DRB.
  • the UE does not need to perform the operation of "updating the security algorithm and key key used when the second eNB performs data communication" in the above step S513.
  • the UE when the UE meets the entry condition of the handover A3 event for the measurement result of the current cell and the neighboring cell, the UE reports the measurement report to the first eNB, because the previous eNB has completed the pre-handover with the second eNB.
  • the first eNB sends a handover command directly to the UE, and the handover instruction only needs to indicate to which neighboring cell the UE is handed over.
  • the UE can immediately enable the SRB and the DRB corresponding to the neighboring cell, which reduces the The interruption time of data transmission improves the user experience.
  • FIG. 6 is a schematic diagram of another method for switching a cell according to an embodiment of the present invention. 6 is an example in which the UE sends a random access preamble according to the PRACH configuration of the neighboring cell. As shown in FIG. 6, the handover method of the cell may include the following steps:
  • the UE sends a first measurement report to the first eNB (SeNB).
  • SeNB first eNB
  • the first eNB receives the foregoing first measurement report, and determines, according to the foregoing first measurement report, whether a pre-handover process needs to be performed.
  • step S603 when the determination result in step S602 is YES, step S603 is performed; when the determination result in step S602 is no, the current flow may be ended.
  • the first eNB sends a pre-handover request message to the second eNB.
  • the second eNB receives the foregoing pre-handover request message sent by the first eNB, and determines, according to the pre-handover request message, whether the communication resource that can be provided meets the communication requirement of the UE.
  • the second eNB when the determining result in step 604 is no, the second eNB sends an indication message to the first eNB to indicate that the UE does not perform a pre-handover operation for the neighboring cell in the second eNB; when step S604 If the result of the determination is YES, step 605 is performed.
  • the second eNB sends a pre-handoff confirmation message for the foregoing pre-handover request message to the first eNB.
  • the first eNB sends a first pre-handover instruction to the UE.
  • the pre-handover command (also referred to as a pre-handover command) may include an index identifier of a random access preamble allocated by the second eNB, configuration information of the SRB and the DRB corresponding to the second eNB, configuration information of the MAC layer, and neighboring information.
  • the interval information of the target Gap may include the start frame identifier of the target Gap and the subframe identifier of the target Gap, and the interval information of the target Gap configured by the second eNB.
  • At least one of a time length of the target Gap and a period of the target Gap, and the pre-handover instruction is used to indicate that the UE sends an index indication by using a PRACH time-frequency resource of the neighboring cell according to the downlink timing of the neighboring cell in the target Gap.
  • Random access preamble and indicating that the key key and the security algorithm are not updated, and the time range of the target Gap needs to refer to the time of the PRACH time-frequency resource provided by the second TeNB, so that the startup time of the target Gap is earlier than the configured PRACH.
  • the frequency resource, and the length of the target Gap can ensure a random access procedure between the UE and the second eNB.
  • the UE completes a random access procedure with the second eNB.
  • the UE creates an SRB and a DRB corresponding to the second eNB.
  • the UE sends a second measurement report to the first eNB.
  • the second measurement report (that is, the handover A3 event) is used to indicate that the signal strength measurement result of the UE to the current cell and the neighboring cell meets the handover condition.
  • the first eNB receives the second measurement report, and determines, according to the second measurement report, whether the handover process needs to be performed.
  • step S610 when the determination result of step S610 is YES, steps S611 and S612 are performed; when the determination result of step S610 is no, the first eNB sends an indication message for indicating that the handover procedure is not to be performed to the UE.
  • the first eNB sends, to the second eNB, a value corresponding to each current subkey of the UE.
  • the first eNB sends a handover instruction to the UE.
  • the handover instruction is used to instruct the UE to perform a handover procedure, that is, instruct the UE to switch the cell serving the UE from the current cell to the neighboring cell, where the handover instruction includes the C-RNTI of the neighboring cell to which the UE needs to handover.
  • the UE receives the handover command sent by the first eNB, and starts the SRB and the DRB in response to the handover instruction.
  • the UE sends an indication message to the second eNB to indicate that the cell handover is complete.
  • the security algorithm may not change during each handover, but the keys need to be updated.
  • the first eNB may send the currently used key to the second eNB in the foregoing pre-handover request message, and the second eNB will use the key to communicate with the UE, and at the same time, may adopt a security configuration information element that extends the pre-handover instruction.
  • the key change indication indicates a keyChangeIndicator to indicate whether the key of the UE is updated when performing data communication with the second eNB, that is, the extended keyChangeIndicator is represented by two bits, and the high bit is 1 for no update, and the high bit is 0 for update. When the high bit is 0, a low bit of 1 indicates that the new key is derived vertically, and a low bit of 0 indicates that the new key is derived horizontally.
  • the first eNB When the first eNB sends a handover instruction to the UE, the first eNB needs to send the value of each current subkey to the second eNB, so that when the UE sends an indication message indicating that the cell handover is completed to the second eNB, the UE may Continue to use the current key to complete security features such as encryption and integrity protection.
  • the UE when the UE meets the entry condition of the handover A3 event for the measurement result of the current cell and the neighboring cell, the UE reports the measurement report to the first eNB, because the previous eNB has completed the pre-handover with the second eNB.
  • the first eNB sends a handover command directly to the UE, and the handover instruction only needs to indicate to which neighboring cell the UE is handed over.
  • the UE can immediately enable the SRB and the DRB corresponding to the neighboring cell, which reduces the The interruption time of data transmission improves the user experience without updating the security algorithm and key key.
  • FIG. 7 is a schematic structural diagram of a user equipment UE according to an embodiment of the present invention.
  • the UE shown in FIG. 7 is used to complete the handover method of the cell shown in FIG. 3.
  • the UE may include a sending module 701, a receiving module 702, and a processing module 703, where:
  • the sending module 701 is configured to send a first measurement report (ie, a pre-handover A3 event) to the first eNB, where the first eNB is a base station to which the current cell of the serving UE belongs, and the first measurement report is used to indicate the UE to the current cell and The signal strength measurement result of the neighboring cell of the current cell satisfies a pre-handover condition, where the pre-handover command includes an index identifier of the random access preamble and configuration information corresponding to the second eNB, and the pre-handover command is used to indicate the UE to the second eNB.
  • the receiving module 702 is configured to receive a pre-handover instruction returned by the first eNB for the foregoing first measurement report, where the pre-handover instruction is used to instruct the UE to send the random access preamble.
  • the sending module 701 is further configured to send the random access preamble in response to the pre-handover instruction received by the receiving module 702.
  • the processing module 703 is configured to create a radio bearer corresponding to the second eNB according to the configuration information in the foregoing pre-handover instruction, where the radio bearer may include the SRB and the DRB.
  • the receiving module 702 is further configured to receive a timing advance and an uplink indication message for indicating an uplink resource used by the UE to perform data communication with the second eNB, where the timing advance is used by the UE and the second eNB. Perform uplink synchronization.
  • the sending module 701 is further configured to send a second measurement report (ie, a handover A3 event) to the first eNB, where the second measurement report is used to indicate that the UE meets the handover condition for the signal strength measurement result of the current cell and the neighboring cell. .
  • a second measurement report ie, a handover A3 event
  • the receiving module 702 is further configured to receive a handover instruction returned by the first eNB for the foregoing second measurement report, where the handover instruction is used to indicate that the UE switches the cell serving the UE from the current cell to the neighboring cell.
  • the processing module 703 is further configured to start the SRB and the DRB in response to the handover instruction received by the receiving module 702.
  • the trigger sending module 701 sends a cell handover complete indication message to the second eNB.
  • the sending module 701 is further configured to send a cell handover complete indication message to the second eNB.
  • the foregoing pre-handover instruction is specifically used to indicate that the UE is configured according to downlink timing.
  • Sending the random access preamble indicated by the index identifier, and the pre-handover command may further include a PRACH time-frequency resource for transmitting the random access preamble, and the sending module 701 sends the random access preamble in response to the pre-handover instruction.
  • the specific way of the code can be:
  • the downlink timing is a downlink timing of the current cell
  • the PRACH time-frequency resource is a resource of the current cell
  • the random access preamble is first
  • the eNB allocates, that is, the sending module 701 completes the foregoing random access preamble transmission according to the PRACH configuration of the current cell.
  • the optional manner in which the receiving module 702 receives the timing advance and the uplink indication message used to indicate the uplink resource used by the UE to communicate with the second eNB may be:
  • Timing advance message sent by the first eNB and an uplink indication message for indicating an uplink resource used by the UE when communicating with the second eNB that is, receiving a timing advance amount from the second eNB forwarded by the first eNB
  • An uplink indication message where the timing advance is calculated by the second eNB, and is equal to a predetermined timing deviation ⁇ T of the neighboring cell from the UE received by the second eNB with respect to the current cell by the first eNB.
  • the downlink timing is a downlink timing of the neighboring cell
  • the PRACH time-frequency resource is a resource of the neighboring cell
  • the random access preamble is Assigned by the second eNB.
  • the foregoing pre-handover instruction may further include interval information of the target Gap configured by the second eNB, where the interval information of the target Gap may include a start frame of the target Gap. At least one of the identifier, the subframe identifier of the target Gap, the length of time of the target Gap, and the period of the target Gap.
  • the specific manner in which the sending module sends the random access preamble on the PRACH time-frequency resource according to the downlink timing, in response to the foregoing pre-handover command may be:
  • the random access preamble is transmitted through the PRACH time-frequency resource in the target Gap according to the downlink timing.
  • the target Gap may be a short Gap that only allows the UE to send a random access preamble, or Therefore, the UE is allowed to transmit the random access preamble and the UE is allowed to receive the long Gap including the timing advance amount and the uplink indication message, and the data communication between the UE and the current cell is interrupted during the target Gap.
  • the receiving module 702 receives the timing advance amount and an uplink indication message for indicating an uplink resource used by the UE when communicating with the second eNB.
  • the specific way can be:
  • the target Gap is a long Gap
  • the random connection of the uplink indication message including the timing advance and the uplink indication message used to indicate the uplink resource used by the UE to communicate with the second eNB is received in the target Gap.
  • the timing advance is calculated by the second eNB when receiving the random access preamble;
  • the target Gap is a short Gap
  • receiving a timing advance amount sent by the first eNB and an uplink indication message that is, the first eNB receives the timing advance amount and the uplink indication message sent by the second eNB, and is first
  • the eNB sends to the UE.
  • the timing advance received by the UE is directly measured by the second eNB, which improves the accuracy of the timing advance, thereby improving the accuracy of uplink synchronization between the UE and the second eNB in subsequent data communication.
  • the foregoing pre-handover instruction may further be used to indicate that the security algorithm and the key need not be updated, that is, the UE uses the key between the UE and the first eNB as the key of the SRB and the DRB, and uses the security between the UE and the first eNB.
  • the algorithm as a security algorithm of the SRB and the DRB, may also be used to instruct the UE to update the security algorithm and the key; or the pre-handover instruction may also be used to indicate that the security algorithm and the key are updated.
  • the embodiment of the present invention can prepare resources for the cell handover process in advance, reduce the interruption time of data transmission in the cell handover process, and improve the user experience.
  • FIG. 8 is a schematic structural diagram of another user equipment UE according to an embodiment of the present invention.
  • the UE shown in FIG. 8 is used to complete the handover method of the cell shown in FIG. 3.
  • the UE may include: a processor 801, a memory 802, a transmitter 803, and a receiver 804.
  • the memory 802 may be a high-speed RAM memory or a non-volatile memory, such as at least A disk storage, optionally, the memory 802 can also be at least one storage device located remotely from the processor 801. among them:
  • the transmitter 803 is configured to send a first measurement report to the first eNB, where the first eNB is a base station to which the current cell of the serving UE belongs, and the first measurement report is used to indicate the UE to the current cell and the neighboring cell of the current cell.
  • the signal strength measurement results satisfy the pre-switching conditions.
  • the receiver 804 is configured to receive a pre-handover instruction returned by the first eNB for the first measurement report, where the pre-handover instruction includes an index identifier of the random access preamble and configuration information corresponding to the second eNB, where the pre-handover instruction is used
  • the UE is instructed to send the random access preamble indicated by the index identifier to the second eNB, and the second eNB is the base station to which the neighboring cell of the current cell belongs.
  • the receiver 804 sends the pre-switching instruction to the processor 801, and the processor 801 sends the pre-switching instruction to the transmitter 803 to trigger the transmitter 803 to respond to the pre-switching instruction.
  • the transmitter 803 can also be configured to transmit a random access preamble in response to the pre-handover command.
  • a set of program codes is stored in the memory 802, and the processor 801 is configured to call program code stored in the memory 802 for performing the following operations:
  • a radio bearer corresponding to the second eNB where the radio bearer includes an SRB and a DRB.
  • the receiver 804 is further configured to receive a timing advance and an uplink indication message used to indicate an uplink resource used by the UE to communicate with the second eNB, where the timing advance is used for uplink synchronization between the UE and the second eNB. .
  • the transmitter 803 is further configured to send, to the first eNB, a second measurement report, where the second measurement report is used to indicate that the signal strength measurement result of the current cell and the neighboring cell meets the handover condition.
  • the receiver 804 is further configured to receive a handover instruction returned by the first eNB for the foregoing second measurement report, where the handover instruction is used to indicate that the UE switches the cell serving the UE from the current cell to the neighboring cell.
  • the processor 801 is configured to call the program code stored in the memory 802, and can also be used to perform the following operations:
  • the SRB and the DRB are started.
  • the transmitter 803 is further configured to send a cell handover complete indication message to the second eNB.
  • the foregoing pre-handover instruction is specifically used to indicate that the UE is configured according to downlink timing.
  • the random access preamble indicated by the index identifier is sent, and the pre-handover command may further include a physical random access channel PRACH time-frequency resource for transmitting a random access preamble.
  • the specific manner in which the transmitter 803 sends the random access preamble in response to the foregoing pre-handover instruction is:
  • the downlink timing is a downlink timing of a current cell
  • the PRACH time-frequency resource is a resource of a current cell
  • the random access preamble is allocated by a first eNB. of.
  • the specific manner in which the receiver 804 receives the timing advance and the uplink indication message used to indicate the uplink resource used by the UE to communicate with the second eNB may be :
  • the downlink timing is a downlink timing of a neighboring cell
  • the PRACH time-frequency resource is a resource of a neighboring cell
  • the random access preamble is a second Assigned by the eNB.
  • the foregoing pre-handover instruction may further include interval information of the target Gap configured by the second eNB, where the interval information of the target Gap includes a start frame of the target Gap.
  • the identifier, the subframe identifier of the target Gap, the length of time of the target Gap, and the period of the target Gap, and the target Gap may be a long Gap or a short Gap.
  • the specific manner of transmitting the foregoing random access preamble by the transmitter 803 in response to the foregoing pre-handover instruction may be:
  • the specific manner in which the receiver 804 receives the timing advance and the uplink indication message used to indicate the uplink resource used by the UE to communicate with the second eNB may be:
  • the random selection of the uplink indication message including the timing advance and the uplink indication message used to indicate the uplink resource used by the UE when communicating with the second eNB is received in the target Gap.
  • the timing advance amount from the second eNB and the uplink indication message sent by the first eNB are received.
  • the timing advance amount is directly calculated by the second eNB when receiving the random access preamble.
  • the pre-handover command may be used to indicate that the security algorithm and the key are not required to be updated, that is, the UE is used to use the key between the UE and the first eNB as the key of the SRB and the DRB, and between the UE and the first eNB.
  • the security algorithm is used as a security algorithm of the SRB and the DRB, or may also be used to instruct the UE to update the security algorithm and the key; or the pre-handover instruction may also be used to indicate the update of the security algorithm and the key.
  • the embodiment of the present invention can prepare resources for the cell handover process in advance, reduce the interruption time of data transmission in the cell handover process, and improve the user experience.
  • FIG. 9 is a schematic structural diagram of an evolved base station eNB according to an embodiment of the present invention.
  • the eNB shown in FIG. 9 is a base station to which the current cell of the serving UE belongs, and the UE is the UE shown in FIG. 7.
  • the eNB may include a receiving module 901, a processing module 902, and a sending module 903, where:
  • the receiving module 901 is configured to receive a first measurement report sent by the UE, where the first measurement report is used to indicate that the signal strength measurement result of the neighboring cell of the current cell and the current cell meets the pre-handover condition.
  • the processing module 902 is configured to determine, according to the foregoing first measurement report, whether a pre-handover process needs to be performed.
  • the sending module 903 is configured to: when the determining result of the processing module 902 is YES, send a pre-handover request message to the second eNB, where the pre-handover request message is used to request the second eNB to indicate whether the UE performs the pre-handover procedure, and the second The eNB is a base station to which a neighboring cell belongs.
  • the receiving module 901 is further configured to receive a pre-handover confirmation message returned by the second eNB in response to the pre-handover request message, where the pre-handover confirmation message is used to trigger the eNB shown in FIG. 9 to send a pre-handover instruction to the UE.
  • the sending module 903 is further configured to send a pre-handover instruction to the UE according to the foregoing pre-handover confirmation message, where the pre-handover instruction may include an index identifier of the random access preamble and configuration information of the SRB and the DRB corresponding to the second eNB, where The pre-handover instruction is used to instruct the UE to send a random access preamble indicated by the index identifier.
  • the receiving module 901 is further configured to receive a second measurement report sent by the UE, where The second measurement report is used to indicate that the UE determines that the signal strength measurement result of the current cell and the neighboring cell meets the handover condition.
  • the sending module 903 is further configured to send, to the UE, a handover instruction for the second measurement report, where the handover instruction is used to indicate that the UE switches the cell serving the UE from the current cell to the neighboring cell.
  • the pre-handover instruction is specifically configured to instruct the UE to send the random access preamble corresponding to the index identifier according to the downlink timing, and the pre-handover instruction may further include: sending the random access preamble PRACH time-frequency resources.
  • the downlink timing is a downlink timing of a current cell
  • the PRACH time-frequency resource is a resource of a current cell
  • the random access preamble is represented by FIG. Assigned by the eNB.
  • the sending module 903 is further configured to send, to the second eNB, a time-frequency location identifier and an index identifier of the random access preamble in the PRACH time-frequency resource, so that the second eNB monitors the index identifier indication according to the time-frequency location identifier. Random access preamble.
  • the receiving module 901 is further configured to receive a timing advance sent by the second eNB and an uplink resource used to indicate that the UE uses the uplink resource when communicating with the second eNB.
  • the link indicates a message, and the timing advance is used for uplink synchronization between the UE and the second eNB.
  • the sending module 903 is further configured to send the timing advance amount and the uplink indication message to the UE.
  • the downlink timing is a downlink timing of a neighboring cell
  • the PRACH time-frequency resource is a resource of a neighboring cell
  • the random access preamble is a second
  • the pre-handover acknowledgment message may include the time-frequency location identifier of the random access preamble in the PRACH time-frequency resource, the index identifier, and the configuration information of the SRB and the DRB corresponding to the second eNB.
  • the foregoing pre-handover instruction may further include interval information of the target Gap configured by the second eNB, where the interval information of the target Gap may include a start of the target Gap.
  • the frame identifier, the subframe identifier of the target Gap, the length of time of the target Gap, and the period of the target Gap, and the target Gap may be a short Gap or a long Gap.
  • the receiving module 901 is further configured to receive a timing advance sent by the second eNB and an uplink used to indicate that the UE communicates with the second eNB.
  • An uplink indication message of the path resource where the timing advance is directly calculated by the second eNB when receiving the random access preamble sent by the UE, and the timing advance is used for uplink synchronization between the UE and the second eNB.
  • the sending module 903 is further configured to send the timing advance amount and the uplink indication message to the UE.
  • the foregoing pre-handover instruction may further be used to indicate that the security algorithm and the key are not required to be updated, that is, the UE is used to use the key between the UE and the eNB shown in FIG. 9 as the key of the SRB and the DRB, and the UE and the UE are used.
  • the illustrated inter-eNB security algorithm acts as a security algorithm for the SRB and the DRB, or can also be used to instruct the UE to update the security algorithm and key.
  • the sending module 903 is further configured to send, to the second eNB, a key between the UE and the eNB shown in FIG. 9 and a security algorithm between the UE and the eNB shown in FIG. 9.
  • the embodiment of the present invention can prepare resources for the cell handover process in advance, reduce the interruption time of data transmission in the cell handover process, and improve the user experience.
  • FIG. 10 is a schematic structural diagram of another evolved base station eNB according to an embodiment of the present invention.
  • the eNB shown in FIG. 10 is a base station to which the current cell of the serving UE belongs, and the UE is the UE shown in FIG. 7.
  • the eNB may include: a processor 1001, a memory 1002, a transmitter 1003, and a receiver 1004.
  • the memory 1002 may be a high-speed RAM memory or a non-volatile memory, such as at least A disk storage, optionally, the memory 1002 may also be at least one storage device located away from the processor 1001. among them:
  • the receiver 1004 is configured to receive a first measurement report sent by the UE, where the first measurement report is used to indicate that the signal strength measurement result of the neighboring cell of the current cell and the current cell meets the pre-handover condition.
  • the processor 1001 is configured to call program code stored in the memory 1002 for performing the following operations:
  • the first measurement report it is determined whether a pre-switching process needs to be performed.
  • the transmitter 1003 is configured to send a pre-handover request message to the second eNB when the judgment result of the processor 1001 is YES, where the pre-handover request message is used to request the second eNB to indicate whether the UE performs the pre-handover procedure.
  • the receiver 1004 is further configured to receive a pre-handover confirmation message returned by the second eNB in response to the pre-handover request message, where the pre-handoff confirmation message is used to trigger the eNB shown in FIG. 10 to send a pre-handover instruction to the UE, where the second eNB is a phase The base station to which the neighboring cell belongs.
  • the receiver 1004 sends a pre-handoff confirmation message to the processor 1001 after receiving the pre-handoff confirmation message, and the processor 1001 sends a pre-handoff confirmation message to the transmitter 1003 to trigger the transmitter 1003 to perform a corresponding operation.
  • the transmitter 1003 may be further configured to send a pre-handover instruction to the UE according to the pre-handover confirmation message, where the pre-handover instruction may include an index identifier of the random access preamble and configuration information of the signaling radio bearer and the data radio bearer corresponding to the second eNB.
  • the pre-handover instruction is used to instruct the UE to send a random access preamble indicated by the index identifier.
  • the receiver 1004 is further configured to receive a second measurement report that is sent by the UE, where the second measurement report is used to indicate that the signal strength measurement result of the current cell and the neighboring cell meets the handover condition.
  • the transmitter 1003 is further configured to send, to the UE, a handover instruction for the second measurement report, where the handover instruction is used to indicate that the UE switches the cell serving the UE from the current cell to the neighboring cell.
  • the pre-handover instruction is specifically configured to instruct the UE to send the random access preamble corresponding to the index identifier according to the downlink timing, and the pre-handover instruction may further include: sending the random access preamble PRACH time-frequency resources.
  • the downlink timing is a downlink timing of a current cell
  • the PRACH time-frequency resource is a resource of a current cell
  • the random access preamble is represented by FIG. Assigned by the eNB.
  • the transmitter 1003 may be further configured to send, to the second eNB, a time-frequency location identifier of the random access preamble in the PRACH time-frequency resource and the index identifier, so that the second eNB listens to the index identifier according to the time-frequency location identifier. Indicated random access preamble.
  • the receiver 1004 is further configured to receive a timing advance sent by the second eNB and an uplink resource used to indicate that the UE uses the uplink resource to communicate with the second eNB.
  • the link indicates a message, and the timing advance is used for uplink synchronization between the UE and the second eNB.
  • the transmitter 1003 can also be configured to send the timing advance and the uplink indication message to the UE.
  • the downlink timing is a downlink timing of a neighboring cell
  • the PRACH time-frequency resource is a resource of a neighboring cell
  • the random access preamble is a second
  • the foregoing pre-handover acknowledgment message may include: a time-frequency location identifier of the random access preamble in the PRACH time-frequency resource, an index identifier, and configuration information of the SRB and the DRB corresponding to the second eNB.
  • the foregoing pre-handover instruction may further include interval information of the target Gap configured by the second eNB, where the interval information of the target Gap may include a start of the target Gap.
  • the frame identifier, the subframe identifier of the target Gap, the length of time of the target Gap, and the period of the target Gap, and the target Gap may be a short Gap or a long Gap.
  • the receiver 1004 may be further configured to receive a timing advance sent by the second eNB and an uplink resource used to indicate that the UE uses the uplink resource when communicating with the second eNB.
  • the link indication message is directly calculated by the second eNB when receiving the random access preamble sent by the UE, and the timing advance is used for uplink synchronization between the UE and the second eNB.
  • the transmitter 1003 may be further configured to send the foregoing timing advance amount and the uplink indication message to the UE.
  • the pre-handover command may be used to indicate that the security algorithm and the key are not required to be updated, that is, the UE is used to use the key between the UE and the eNB shown in FIG. 10 as the key of the radio bearer, and the UE is used in FIG. 10
  • the security algorithm between the eNBs is used as a security algorithm for the radio bearer, or may be used to instruct the UE to update the security algorithm and the key, where the radio bearer may include the SRB and the DRB, and is created by the UE according to the foregoing configuration information.
  • the radio bearer corresponding to the second eNB.
  • the transmitter 1003 may also be configured to send a key between the UE and the eNB shown in FIG. 10 and a security algorithm between the UE and the eNB shown in FIG. 10 to the second eNB.
  • the embodiment of the present invention can prepare resources for the cell handover process in advance, reduce the interruption time of data transmission in the cell handover process, and improve the user experience.
  • FIG. 11 is a schematic structural diagram of still another evolved base station eNB according to an embodiment of the present invention.
  • the eNB shown in FIG. 11 is a base station to which the neighboring cell of the current cell of the serving UE belongs, and the current cell is deployed in the first eNB, and the structure of the UE may be as shown in FIG. 7, and the structure of the first eNB may be as shown in FIG. 9 is shown.
  • the eNB may include a receiving module 1101, a processing module 1102, and a sending module 1103, where:
  • the receiving module 1101 is configured to receive a pre-handover request message sent by the first eNB, where the pre-handover request message is used to request the eNB shown in FIG. 11 to indicate whether the UE performs a pre-handover procedure.
  • the processing module 1102 is configured to determine, according to the pre-handover request message, whether the communication resource provided by the UE exceeds the communication requirement of the UE.
  • the sending module 1103 is further configured to: when the determining result of the processing module 1102 is YES, send, to the first eNB, a pre-handover confirmation message for the pre-handover request message, where the pre-handover confirmation message is used to trigger the first eNB to send the pre-handover to the UE.
  • the pre-handover command includes an index identifier of the random access preamble and configuration information corresponding to the eNB shown in FIG. 11. The pre-handover command is used to instruct the UE to send the random access preamble indicated by the index identifier.
  • the receiving module 1101 is further configured to receive a random access preamble sent by the UE.
  • the sending module 1103 is further configured to send, to the UE, a timing advance amount and an uplink indication message for indicating an uplink resource used by the UE when communicating with the eNB shown in FIG. 11, the timing advance amount is used for the UE and the figure.
  • the eNB shown in FIG. 11 performs uplink synchronization.
  • the receiving module 1101 is further configured to receive a cell handover completion indication message sent by the UE.
  • the pre-handover instruction is specifically configured to instruct the UE to send the random access preamble corresponding to the index identifier according to the downlink timing, and the pre-handover instruction may further include: sending the random access preamble PRACH time-frequency resources.
  • the downlink timing is a downlink timing of a current cell
  • the PRACH time-frequency resource is a resource of a current cell
  • the random access preamble is allocated by a first eNB.
  • the receiving module 1101 is further configured to receive a time-frequency location identifier and an index identifier of the random access preamble sent by the first eNB in the PRACH time-frequency resource, and the receiving module 1101 is specifically configured to use, according to the corresponding PRACH time-frequency resource, The time-frequency location identifier receives the random access preamble indicated by the index identifier.
  • the sending module 1103 sends a timing advance amount to the UE and an uplink indication message for indicating an uplink resource used by the UE when communicating with the eNB shown in FIG.
  • the specific way can be:
  • the eNB indicates that the timing advance is equal to the downlink timing offset of the neighboring cell sent by the UE by the first eNB with respect to the current cell, and the eNB of the eNB is receiving the UE.
  • the sum of the timing advances calculated when the random access preamble is transmitted.
  • the downlink timing is a downlink timing of a neighboring cell, where the PRACH time-frequency resource is a resource of a neighboring cell, and the random access preamble is represented by FIG. 11
  • the eNB is allocated, and the pre-handover confirmation message may include a time-frequency location identifier of the random access preamble in the PRACH time-frequency, the foregoing index identifier, and the foregoing configuration information.
  • the foregoing pre-handover instruction may further include interval information of the target Gap configured by the eNB of FIG. 11, and the interval information of the target Gap may include a start of the target Gap.
  • the frame identifier, the subframe identifier of the target Gap, the length of time of the target Gap, and the period of the target Gap, and the target Gap may be a short Gap or a long Gap.
  • the specific manner in which the sending module 1103 sends the timing advance amount to the UE and the uplink indication message used to indicate the uplink resource used by the UE to communicate with the eNB shown in FIG. 11 may be:
  • the timing advance amount and an uplink indication message for indicating an uplink resource used when the UE communicates with the eNB shown in FIG. 11 are transmitted to the first eNB, so that the first eNB is used. Transmitting the first advance timing amount and the uplink indication message to the UE;
  • the timing advance and the uplink indication message are directly transmitted to the UE.
  • the timing advance is directly calculated by the eNB shown in FIG. 11 when receiving the random access preamble.
  • the pre-handover command may be used to indicate that the security algorithm and the key are not updated, that is, the UE is used to use the key between the UE and the first eNB as a key of the radio bearer, and the security between the UE and the first eNB is used.
  • the algorithm is used as a security algorithm for the radio bearer, or may be used to instruct the UE to update the security algorithm and the key, where the radio bearer may include the SRB and the DRB, and is created by the UE according to the foregoing configuration information and the eNB shown in FIG. Corresponding wireless bearer.
  • the receiving module 1101 may be further configured to receive a key between the UE and the first eNB sent by the first eNB and a security algorithm between the UE and the first eNB.
  • the embodiment of the present invention can prepare resources for the cell handover process in advance, reduce the interruption time of data transmission in the cell handover process, and improve the user experience.
  • FIG. 12 is a schematic structural diagram of still another evolved base station eNB according to an embodiment of the present invention.
  • the eNB shown in FIG. 12 is a base station to which the neighboring cell of the current cell of the serving UE belongs, and the current cell is deployed in the first eNB, and the structure of the UE may be as shown in FIG. 10 is shown.
  • the eNB may include: a processor 1201, a memory 1202, a transmitter 1203, and a receiver 1204.
  • the memory 1202 may be a high-speed RAM memory or a non-volatile memory, such as at least A disk storage, optionally, the memory 1202 may also be at least one storage device located remotely from the processor 1201. among them:
  • the receiver 1204 is configured to receive a pre-handover request message sent by the first eNB, where the pre-handover request message is used to request the eNB shown in FIG. 12 to indicate whether the UE performs a pre-handover procedure.
  • a set of program codes is stored in the memory 1202, and the processor 1201 is configured to call the program code stored in the memory 1202 for performing the following operations:
  • the transmitter 1203 is configured to send, to the first eNB, a pre-handoff confirmation message for the pre-handover request message, where the pre-handoff confirmation message is used to trigger the first eNB to send a pre-handover instruction to the UE, when the result of the determination by the processor 1201 is YES.
  • the pre-handover instruction may include an index identifier of the random access preamble and configuration information corresponding to the eNB shown in FIG. 12, where the pre-handover instruction is used to instruct the UE to send the random access preamble indicated by the index identifier;
  • the receiver 1204 is further configured to receive a random access preamble sent by the UE.
  • the transmitter 1203 may be further configured to send a timing advance amount to the UE and an uplink indication message for indicating an uplink resource used by the UE when communicating with the eNB shown in FIG. 12, where the timing advance is used for the UE and the map.
  • the eNB shown in 12 performs uplink synchronization.
  • the receiver 1204 is further configured to receive an indication message sent by the UE to indicate completion of the cell handover.
  • the pre-handover instruction is specifically configured to instruct the UE to send the random access preamble corresponding to the index identifier according to the downlink timing, and the pre-handover instruction may further include: sending the random access preamble PRACH time-frequency resources.
  • the downlink timing is a downlink timing of a current cell
  • the PRACH time-frequency resource is a resource of a current cell
  • the random access preamble is Assigned by the first eNB.
  • the receiver 1204 is further configured to receive a time-frequency location identifier and an index identifier of the random access preamble sent by the first eNB in the PRACH time-frequency resource.
  • the transmitter 1203 sends a timing advance amount to the UE and an uplink indication message for indicating an uplink resource used by the UE when communicating with the eNB shown in FIG.
  • the specific way can be:
  • the downlink timing is a downlink timing of a neighboring cell, where the PRACH time-frequency resource is a resource of a neighboring cell, and the random access preamble is a graph.
  • the eNB is allocated by the eNB, and the pre-handover acknowledgment message may include a time-frequency location identifier of the random access preamble in the PRACH time-frequency, the foregoing index identifier, and the foregoing configuration information.
  • the foregoing pre-handover instruction may further include interval information of the target Gap configured by the eNB shown in FIG. 12, and the interval information of the target Gap may include the target Gap.
  • the start frame identifier, the subframe identifier of the target Gap, the length of time of the target Gap, and the period of the target Gap, and the target Gap may be a short Gap or a long Gap.
  • the specific manner in which the transmitter 1203 sends the timing advance to the UE and the uplink indication message used to indicate the uplink resource used by the UE to communicate with the eNB shown in FIG. 12 may be:
  • the timing advance amount and an uplink indication message for indicating an uplink resource used when the UE communicates with the eNB shown in FIG. 12 are transmitted to the first eNB, so that the first eNB is used. Transmitting the first advance timing amount and the uplink indication message to the UE;
  • the timing advance and the uplink indication message are directly transmitted to the UE.
  • the timing advance is directly calculated by the eNB shown in FIG. 12 when receiving the random access preamble.
  • the foregoing pre-handover instruction may further be used to indicate that the security algorithm and the key are not required to be updated, that is, the UE is used to use a key between the UE and the first eNB as a key of the radio bearer, and the UE and the first
  • the security algorithm between the eNBs is used as a security algorithm for the radio bearer, or may be used to instruct the UE to update the security algorithm and the key, where the radio bearer may include the SRB and the DRB, and is created by the UE according to the foregoing configuration information.
  • the radio bearer corresponding to the eNB shown.
  • the receiver 1204 is further configured to receive a key between the UE and the first eNB sent by the first eNB and a security algorithm between the UE and the first eNB.
  • the embodiment of the present invention can prepare resources for the cell handover process in advance, reduce the interruption time of data transmission in the cell handover process, and improve the user experience.
  • FIG. 13 is a schematic structural diagram of a cell handover system according to an embodiment of the present invention.
  • the system may include a UE, a first eNB, and a second eNB, where the first eNB is a base station to which the current cell of the serving UE belongs, and the second eNB is a base station to which the neighboring cell of the current cell belongs, where:
  • the UE is configured to send a first measurement report to the first eNB, where the first measurement report is used to indicate that the current cell and the neighboring cell meet the pre-handover condition. Specifically, the first measurement report is used to indicate the UE to the current cell and the neighboring cell.
  • the signal strength measurement results satisfy the pre-switching conditions.
  • the first eNB is configured to determine, according to the first measurement report, whether the pre-handover procedure needs to be performed, and when the determination result is yes, send a pre-handover request message to the second eNB, where the pre-handover request message is used to request the second eNB to indicate whether the UE performs the pre- Switch the process.
  • the second eNB is configured to determine, according to the pre-handover request message, whether the communication resource provided by the UE meets the communication requirement of the UE, and when the determination result is yes, send a pre-handover confirmation message for the pre-handover request message to the first eNB, and the pre-handover confirmation message is sent.
  • the pre-handover instruction is used to trigger the first eNB to send a pre-handover instruction to the UE, where the pre-handover instruction includes an index identifier of the random access preamble and configuration information corresponding to the second eNB, and the pre-handover instruction is used to instruct the UE to send the index identifier indication random Access the preamble.
  • the first eNB is further configured to send a pre-handover instruction to the UE according to the pre-handoff confirmation message.
  • the UE is further configured to send a random access preamble in response to the pre-handover instruction, and create a radio bearer corresponding to the second eNB according to the configuration information, and the radio bearer may include a signaling radio bearer and a data radio bearer.
  • the second eNB is further configured to receive a random access preamble, and send a timing advance amount to the UE, and an uplink indication message for indicating an uplink resource used by the UE when communicating with the second eNB, timing The advance amount is used for uplink synchronization between the UE and the second eNB.
  • the UE is further configured to send a second measurement report to the first eNB, where the second measurement report is used to indicate that the current cell and the neighboring cell meet the handover condition.
  • the second measurement report is specifically used by the UE to the current cell and the phase. The signal strength measurement result of the neighboring cell satisfies the switching condition.
  • the first eNB is further configured to send, to the UE, a handover instruction for the second measurement report, where the handover instruction is used to indicate that the UE switches the cell serving the UE from the current cell to the neighboring cell.
  • the UE is further configured to start the signaling radio bearer and the data radio bearer in response to the handover instruction, and send a cell handover complete indication message to the second eNB.
  • the second eNB is further configured to receive a cell handover complete indication message.
  • the pre-handover instruction is specifically used to indicate that the UE sends the random access preamble indicated by the index identifier according to the downlink timing, and the pre-handover instruction further includes physical random access for sending the random access preamble.
  • Channel PRACH time-frequency resource is specifically used to indicate that the UE sends the random access preamble indicated by the index identifier according to the downlink timing, and the pre-handover instruction further includes physical random access for sending the random access preamble.
  • the downlink timing is a downlink timing of the current cell
  • the PRACH time-frequency resource is a resource of a current cell
  • the random access preamble is allocated by the first eNB.
  • the first eNB is further configured to send, to the second eNB, a time-frequency location identifier for transmitting the random access preamble in the PRACH time-frequency resource and the foregoing index identifier.
  • the second eNB is further configured to receive a time-frequency location identifier of the random access preamble in the PRACH time-frequency resource and the foregoing index identifier.
  • the second eNB sends a timing advance amount to the UE and a specific manner of indicating an uplink indication message of an uplink resource used by the UE when communicating with the second eNB.
  • a timing advance amount to the UE and a specific manner of indicating an uplink indication message of an uplink resource used by the UE when communicating with the second eNB.
  • the first eNB Transmitting, by the first eNB, a timing advance amount and an uplink indication message indicating an uplink resource used by the UE when communicating with the second eNB, so that the first eNB sets the first advance timing amount and the uplink indication message Send to the UE.
  • the downlink timing is a downlink timing of a neighboring cell
  • the PRACH time-frequency resource is a resource of a neighboring cell
  • the random access preamble is a second
  • the pre-handover confirmation message that is allocated by the eNB may include a time-frequency location identifier of the random access preamble in the PRACH time-frequency resource, the foregoing index identifier, and the foregoing configuration information.
  • the foregoing pre-handover instruction may further include interval information of the target Gap configured by the second eNB, where the interval information of the target Gap may include a start frame of the target Gap.
  • the identifier, the subframe identifier of the target Gap, the length of time of the target Gap, and the period of the target Gap, and the target Gap may be a short Gap or a long Gap.
  • the specific manner in which the second eNB sends the timing advance amount to the UE and the uplink indication message used to indicate the uplink resource used by the UE to communicate with the second eNB may be:
  • the target Gap is a short Gap
  • the advance timing amount and the uplink indication message are sent to the UE;
  • the timing advance and the uplink indication message are directly transmitted to the UE.
  • the timing advance is directly calculated by the second eNB when receiving the random access preamble.
  • the pre-handover command may be used to indicate that the security algorithm and the key are not required to be updated, that is, the UE is used to use the key between the UE and the first eNB as the key of the SRB and the DRB, and between the UE and the first eNB.
  • the security algorithm acts as a security algorithm for the SRB and the DRB, or can also be used to instruct the UE to update the security algorithm and the key.
  • the first eNB is further configured to send a key between the UE and the first eNB and a security algorithm between the UE and the first eNB to the second eNB.
  • the embodiment of the present invention can prepare resources for the cell handover process in advance, reduce the interruption time of data transmission in the cell handover process, and improve the user experience.
  • the modules in the user equipment in the embodiment of the present invention may be combined, divided, and deleted according to actual needs.
  • the modules in the evolved base station of the embodiment of the present invention may be combined, divided, and deleted according to actual needs.
  • the module in the embodiment of the present invention may be implemented by a general-purpose integrated circuit, such as a CPU (Central Processing Unit) or an ASIC (Application Specific Integrated Circuit).
  • a general-purpose integrated circuit such as a CPU (Central Processing Unit) or an ASIC (Application Specific Integrated Circuit).
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种小区的切换方法及设备、系统,该方法包括UE在接收到第一eNB发送的预切换指令后,发送随机接入前导码,并根据预切换指令中的配置信息创建第二eNB对应的无线承载,UE接收用于与第二eNB进行上行同步的定时提前量以及用于指示UE与第二eNB通信时所使用的上行链路资源的上行链路指示消息。可见,实施本发明实施例能够在UE与当前小区通信过程中提前为小区切换做好资源准备。

Description

一种小区的切换方法及设备、系统 技术领域
本发明实施例涉及无线通信技术领域,具体涉及一种小区的切换方法及设备、系统。
背景技术
在长期演进(LTE,Long Term Evolution)系统中,当用户设备(UE,User Equipment)移动时,其可能会从一个小区进入到另一个小区,此时,UE的小区切换流程会被触发,且UE的小区切换流程可以如图1所示,图1是现有技术公开的一种小区的切换方法的流程示意图。如图1所示,UE会根据当前小区所属的演进型基站(eNB,evolved Node B)(又称“源eNB”或“SeNB”)的配置完成对相邻小区的测量并向源eNB反馈测量报告,源eNB根据当前小区和相邻小区(又称“目标小区”)的信号强度判断是否需要进行小区切换,如果是,源eNB向相邻小区所属的eNB(又称“目标eNB”或“TeNB”)发送切换请求,如果目标eNB有足够的资源分配给UE,目标eNB会向源eNB反馈切换确认消息,源eNB随后向UE发送切换指令,UE在接收到源eNB发送的切换指令后断开与源eNB的连接,即UE与源eNB间的数据传输停止,并开始监听相邻小区的下行同步信息;在完成与相邻小区的下行同步后,UE向目标eNB发送随机接入前导码,目标eNB在检测到随机接入前导码中的前导序列后向UE发送定时提前量(TA,Timing Advance)和上行链路授权(UL-Grant,Uplink Grant)指示消息,随后,UE向目标eNB反馈切换完成消息,在目标eNB返回确认(ACK,Acknowledgement)消息后,小区的切换流程结束,数据传输恢复。
在上述切换流程中,UE与源eNB间的数据传输中断,且数据传输中断的平均时间为50ms,对于在线视频、实时游戏等应用场景来说,用户能够容忍的数据传输中断的最长时间为20-25ms。现有技术的切换流程不能满足用户的需求,需要提供一种有效快捷的处理方式。
发明内容
本发明实施例公开了一种小区的切换方法及设备、系统,能够解决现有技术的的不足。
本发明实施例第一方面公开了一种小区的切换方法,该方法包括:
用户设备UE向第一演进型基站eNB发送第一测量报告,该第一eNB为服务UE的当前小区所属的基站,且该第一测量报告用于指示所述当前小区及所述当前小区的相邻小区预切换条件,即当UE对当前小区及当前小区的相邻小区的信号强度测量结果满足预切换A3事件的触发条件时,UE向第一eNB上报第一测量报告,其中,预切换A3事件的触发条件为相邻小区的信号质量高于当前小区的信号质量,即相邻小区的信号强度与当前小区的信号强度差达到第一预设信号强度阈值;
所述UE接收所述第一eNB针对所述第一测量报告返回的预切换指令,该预切换指令包括索引标识以及第二eNB对应的配置信息,且该预切换指令用于指示UE发送索引标识指示的随机接入前导码,其中,第二eNB为上述相邻小区所属的基站;
UE响应预切换指令,发送索引标识指示的随机接入前导码;
UE根据配置信息创建第二eNB对应的无线承载,其中,该无线承载包括信令无线承载(SRB,Signaling Radio Bearer)及数据无线承载(DRB,Data Radio Bearer);
UE接收定时提前量以及上行链路指示消息,其中,上行链路指示消息用于指示UE与第二eNB通信时所使用的上行链路资源,定时提前量用于UE与第二eNB进行上行同步。
可见,实施本发明实施例能够在进行小区切换流程之前且在不影响与当前小区通信的前提下进行小区预切换流程,即在与当前小区通信过程中为小区切换做好资源准备。
作为一种可能的实现方式,该方法还可以包括:
UE向第一eNB发送第二测量报告,并接收第一eNB针对第二测量报告返回的切换指令,该第二测量报告用于指示当前小区及相邻小区满足切换条件,即 当UE对当前小区及当前小区的相邻小区的信号强度测量结果满足切换A3事件的触发条件时,UE向第一eNB上报第二测量报告,其中,切换A3事件的触发条件为相邻小区的信号质量高于当前小区的信号质量,即相邻小区的信号强度与当前小区的信号强度差达到第二预设信号强度阈值,其中,该第二预设信号强度阈值大于上述第一预设信号强度阈值,该切换指令用于指示UE将服务UE的小区由当前小区切换到相邻小区;
UE响应切换指令,启动无线承载,并向第二eNB发送小区切换完成指示消息。
该可能的实现方式能够利用提前为小区切换准备好的资源快速的完成小区切换,缩短了在小区切换过程中数据传输的中断时间,提高了用户的使用体验。
作为另一种可能的实现方式,上述预切换指令具体用于指示UE根据下行定时发送索引标识指示的随机接入前导码,且上述预切换指令还可以包括用于发送随机接入前导码的物理随机接入信道PRACH时频资源。
作为又一种可能的实现方式,上述下行定时为当前小区的下行定时,上述PRACH时频资源为当前小区的资源,上述随机接入前导码是由第一eNB分配的。
作为又一种可能的实现方式,上述下行定时为相邻小区的下行定时,上述PRACH时频资源为所述相邻小区的资源,上述随机接入前导码是由第二eNB分配的。
作为又一种可能的实现方式,若上述下行定时为相邻小区的下行定时,预切换指令还可以包括目标间隔的间隔信息,目标间隔的间隔信息包括目标间隔的起始帧标识、目标间隔的子帧标识、目标间隔的时间长度以及目标间隔的周期中的至少一种,其中,目标间隔专门用于供UE发送随机接入前导码,即第一eNB在目标间隔内不对UE进行上下行调度,且目标间隔可以是一个只允许UE发送随机接入前导码的短间隔,也可以是一个既能够允许UE发送随机接入前导码又能够允许UE接收第二eNB返回的随机接入响应消息的长间隔;
其中,UE响应预切换指令,发送索引标识指示的随机接入前导码可以包括:
UE响应预切换指令,根据下行定时在目标间隔内通过PRACH时频资源发送随机接入前导码。
作为又一种可能的实现方式,上述预切换指令还可以用于指示UE使用UE与第一eNB间的密钥作为上述无线承载的密钥以及使用UE与第一eNB间的安全算法作为上述无线承载的安全算法,其中,UE继续使用UE与第一eNB间的密钥作为上述SRB以及上述DRB的密钥以及使用UE与第一eNB间的安全算法作为上述SRB以及上述DRB的安全算法能够减少密钥和安全算法的更新,进一步减少小区预切换流程中数据传输的中断时间。
其中,与现有的切换请求消息、切换确认消息以及切换指令相比,上述预切换请求消息、预切换确认消息以及预切换指令的内容多了一个预切换标识,其它内容相同。
需要说明的是,当前小区的相邻小区可以为多个,UE要针对该多个相邻小区所属的不同第二eNB执行预切换流程,即UE将建立每个第二eNB对应的SRB、DRB及相关配置参数的集合,且每个第二eNB也需同时建立UE对应的SRB及DRB,此时,上述第二切指令携带有其中一个相邻小区的小区标识,如小区无线网络临时标识(C-RNTI,Cell-Radio Network Temporary Identity),以指示UE将服务UE的小区由当前小区切换为该C-RNTI所标识的相邻小区。
本发明实施例第二方面公开了另一种小区的切换方法,该方法包括:
第一演进型基站eNB接收用户设备UE发送的第一测量报告,该第一eNB为服务UE的当前小区所属的基站,该第一测量报告用于指示当前小区及当前小区的相邻小区的信号强度测量结果满足预切换条件;
第一eNB根据第一测量报告判断需要执行预切换流程时,第一eNB向第二eNB发送预切换请求消息,预切换请求消息用于请求第二eNB指示UE是否执行预切换流程,第二eNB为相邻小区所属的基站;
第一eNB接收第二eNB响应预切换请求消息返回的预切换确认消息,其中,该预切换确认消息用于触发第一eNB向UE发送预切换指令;
第一eNB根据预切换确认消息向UE发送预切换指令,该预切换指令可以包括索引标识以及第二eNB对应的配置信息,且该预切换指令用于指示UE发送索引标识指示的随机接入前导码。
可见,实施本发明实施例能够在进行小区切换流程之前且在不影响与当前小区通信的前提下触发UE进行小区预切换流程,即在与当前小区通信过程中为小区切换做好资源准备。
作为一种可能的实现方式,该方法还可以包括:
第一eNB接收UE发送的第二测量报告,第二测量报告用于指示当前小区及相邻小区满足切换条件;
第一eNB向UE发送针对第二测量报告的切换指令,该切换指令用于指示UE将服务UE的小区由当前小区切换到相邻小区。
作为另一种可能的实现方式中,上述预切换指令具体用于指示UE根据下行定时发送索引标识指示的所述随机接入前导码,且上述预切换指令还可以包括用于发送随机接入前导码的物理随机接入信道PRACH时频资源。
作为又一种可能的实现方式,下行定时可以为当前小区的下行定时,PRACH时频资源为当前小区的资源,随机接入前导码是由第一eNB分配的;
该方法还可以包括:
第一eNB向第二eNB发送随机接入前导码在PRACH时频资源中的时频位置标识以及索引标识。这样能够使第二eNB根据时频位置标识以及索引标识在对应的PRACH时频资源中监听UE发送的索引标识指示的随机接入前导码。
作为又一种可能的实现方式,下行定时也可以为相邻小区的下行定时,上述PRACH时频资源为相邻小区的资源,上述随机接入前导码是由第二eNB分配的,其中,上述预切换确认消息可以包括随机接入前导码在PRACH时频资源中的时频位置标识、索引标识以及配置信息。
作为又一种可能的实现方式,若上述下行定时是相邻小区的下行定时,该方法还可以包括:
第一eNB接收第二eNB发送的定时提前量以及上行链路指示消息,并向UE发送定时提前量以及上行链路指示消息,上行链路指示消息用于指示UE与第二eNB通信时所使用的上行链路资源,定时提前量用于UE与第二eNB进行上行同步。
作为又一种可能的实现方式,若上述下行定时是第二eNB的下行定时,上述预切换指令还可以包括目标间隔的间隔信息,所述目标间隔的间隔信息包括 所述目标间隔的起始帧标识、所述目标间隔的子帧标识、所述目标间隔的时间长度以及所述目标间隔的周期中的至少一种。
作为又一种可能的实现方式,该方法还可以包括:
第一eNB接收第二eNB发送的定时提前量以及上行链路指示消息,上行链路指示消息用于指示UE与第二eNB通信时所使用的上行链路资源,定时提前量是由第二eNB在接收到UE发送的随机接入前导码时计算出的,定时提前量用于UE与第二eNB进行上行同步;
第一eNB向UE发送定时提前量以及上行链路指示消息。
作为又一种可能的实现方式,上述预切换指令还可以用于指示UE使用UE与第一eNB间的密钥作为无线承载的密钥以及使用UE与第一eNB间的安全算法作为无线承载的安全算法,该无线承载是由UE根据上述配置信息创建的第二eNB对应的无线承载。
作为又一种可能的实现方式,该方法还可以包括:
第一eNB向第二eNB发送UE与第一eNB间的密钥和UE与第一eNB间的安全算法。
本发明实施例第三方面公开了又一种小区的切换方法,该方法包括:
第二演进型基站eNB接收第一eNB发送的预切换请求消息,该预切换请求消息用于请求第二eNB指示UE是否执行预切换流程,第一eNB为服务UE的当前小区所属的基站,第二eNB为当前小区的相邻小区所属的基站;
第二eNB根据预切换请求消息判断其提供的通信资源满足UE的通信需求时,第二eNB向第一eNB发送针对预切换请求消息的预切换确认消息,该预切换确认消息用于触发第一eNB向UE发送预切换指令,该预切换指令可以包括索引标识以及第二eNB对应的配置信息,且该预切换指令用于指示UE发送索引标识指示的随机接入前导码;
第二eNB接收UE发送的随机接入前导码;
第二eNB向UE发送定时提前量以及上行链路指示消息,上行链路指示消息用于指示UE与第二eNB通信时所使用的上行链路资源,定时提前量用于UE与第二eNB进行上行同步。
作为一种可能的实现方式,该方法还可以包括:
第二eNB接收UE发送的小区切换完成指示消息。
作为另一种可能的实现方式,上述预切换指令具体用于指示UE根据下行定时发送索引标识标识的随机接入前导码,且上述预切换指令还可以包括用于发送随机接入前导码的物理随机接入信道PRACH时频资源。
作为又一种可能的实现方式,下行定时为当前小区的下行定时,PRACH时频资源为当前小区的资源,随机接入前导码是由第一eNB分配的;
第二eNB接收UE发送的随机接入前导码之前,该方法还可以包括:
第二eNB接收第一eNB发送的随机接入前导码在PRACH时频资源中的时频位置标识以及索引标识。
作为又一种可能的实现方式,下行定时为相邻小区的下行定时,PRACH时频资源为相邻小区的资源,随机接入前导码是由第二eNB分配的,上述预切换确认消息可以包括随机接入前导码在PRACH时频中的时频位置标识、索引标识以及配置信息。
作为又一种可能的实现方式,若下行定时为相邻小区的下行定时,上述预切换指令还可以包括目标间隔的间隔信息,目标间隔的间隔信息包括目标间隔的起始帧标识、目标间隔的子帧标识、目标间隔的时间长度以及目标间隔的周期中的至少一种。
作为又一种可能的实现方式,上述预切换指令还可以用于指示UE使用UE与第一eNB间的密钥作为数据无线承载的密钥以及使用UE与第一eNB间的安全算法作为无线承载的安全算法,无线承载是由UE根据上述配置信息创建的第二eNB对应的无线承载。
作为又一种可能的实现方式,该方法还可以包括:
第二eNB接收第一eNB发送的UE与第一eNB间的密钥和UE与第一eNB间的安全算法。
本发明实施例第四方面公开了一种用户设备UE,该UE包括用于执行本发明实施例第一方面公开的小区的切换方法的模块。
本发明实施例第五方面公开了一种演进型基站eNB,该eNB包括用于执行 本发明实施例第二方面公开的小区的切换方法的模块。
本发明实施例第六方面公开了一种演进型基站eNB,该eNB包括用于执行本发明实施例第三方面公开的小区的切换方法的模块。
本发明实施例第七方面公开了一种用户设备UE,该UE包括处理器、存储器、发射器以及接收器,该发射器,用于向第一演进型基站eNB发送第一测量报告,该第一eNB为服务UE的当前小区所属的基站,第一测量报告用于当前小区及当前小区的相邻小区满足预切换条件;
接收器,用于接收第一eNB针对第一测量报告返回的预切换指令,预切换指令包括索引标识以及第二eNB对应的配置信息,预切换指令用于指示UE向第二eNB发送索引标识指示的随机接入前导码;
发射器,还用于响应预切换指令,发送索引标识指示的随机接入前导码;
存储器中存储一组程序代码,且处理器用于调用存储器中存储的程序代码,用于执行以下操作:
根据配置信息创建第二eNB对应的无线承载;
接收器,还用于接收定时提前量以及上行链路指示消息,上行链路指示消息用于指示UE与第二eNB通信时所使用的上行链路资源,定时提前量用于UE与第二eNB进行上行同步。
作为一种可能的实现方式,发射器,还用于向第一eNB发送第二测量报告,第二测量报告用于指示当前小区及相邻小区满足切换条件;
接收器,还用于接收第一eNB针对第二测量报告返回的切换指令,该切换指令用于指示UE将服务UE的小区由当前小区切换到相邻小区;
处理器用于调用存储器中存储的程序代码,还用于执行以下操作:
响应切换指令,启动无线承载;
发射器,还用于向第二eNB发送小区切换完成指示消息。
作为另一种可能的实现方式中,预切换指令具体用于指示UE根据下行定时发送索引标识标识的随机接入前导码,预切换指令还包括用于发送随机接入前导码的物理随机接入信道PRACH时频资源。
作为又一种可能的实现方式,下行定时为当前小区的下行定时,PRACH 时频资源为当前小区的资源,随机接入前导码是由第一eNB分配的。
作为又一种可能的实现方式,下行定时为相邻小区的下行定时,PRACH时频资源为相邻小区的资源,随机接入前导码是由第二eNB分配的。
作为又一种可能的实现方式,预切换指令还包括目标间隔的间隔信息,目标间隔的间隔信息包括目标间隔的起始帧标识、目标间隔的子帧标识、目标间隔的时间长度以及目标间隔的周期中的至少一种;
发射器响应预切换指令,发送索引标识指示的随机接入前导码的具体方式为:
响应预切换指令,根据下行定时在目标间隔内通过PRACH时频资源发送索引标识指示的随机接入前导码。
作为又一种可能的实现方式,预切换指令还可以用于指示UE使用UE与第一eNB间的密钥作为无线承载的密钥以及使用UE与第一eNB间的安全算法作为数据无线承载的安全算法。
本发明实施例第八方面公开了一种演进型基站eNB,包括处理器、存储器、发射器以及接收器,该eNB为服务用户设备UE的当前小区所属的基站,其中:
接收器,用于接收UE发送的第一测量报告,第一测量报告用于指示当前小区及当前小区的相邻小区的信号强度测量结果满足预切换条件;
处理器用于调用存储器中存储的程序代码,用于执行以下操作:
根据第一测量报告判断是否需要执行预切换流程;
发射器,用于当处理器的判断结果为是时,向第二eNB发送预切换请求消息,预切换请求消息用于请求第二eNB指示UE是否执行预切换流程;
接收器,还用于接收第二eNB响应预切换请求消息返回的预切换确认消息,第二eNB为相邻小区所属的基站;
发射器,还用于根据预切换确认消息向UE发送预切换指令,预切换指令包括索引标识以及第二eNB对应的配置信息,预切换指令用于指示UE发送索引标识指示的随机接入前导码。
作为一种可能的实现方式,接收器,还用于接收UE发送的第二测量报告,第二测量报告用于指示当前小区及相邻小区满足切换条件;
发射器,还用于向UE发送针对第二测量报告的切换指令,切换指令用于 指示UE将服务所述UE的小区由当前小区切换到相邻小区。
作为另一种可能的实现方式,预切换指令具体用于指示UE根据下行定时发送索引标识指示的随机接入前导码,预切换指令还包括用于发送随机接入前导码的物理随机接入信道PRACH时频资源。
作为又一种可能的实现方式中,下行定时为当前小区的下行定时,PRACH时频资源为当前小区的资源,随机接入前导码是由eNB分配的;
发射器,还用于向第二eNB发送随机接入前导码在PRACH时频资源中的时频位置标识以及索引标识。
作为又一种可能的实现方式,下行定时为相邻小区的下行定时,PRACH时频资源为相邻小区的资源,随机接入前导码是由第二eNB分配的,预切换确认消息包括随机接入前导码在PRACH时频资源中的时频位置标识、索引标识以及配置信息。
作为又一种可能的实现方式中,若下行定时是当前小区的下行定时,接收器,还用于接收第二eNB发送的定时提前量以及上行链路指示消息,上行链路指示消息用于指示UE与第二eNB通信时所使用的上行链路资源,定时提前量用于UE与第二eNB进行上行同步;
发射器,还用于向UE发送定时提前量以及上行链路指示消息。
作为又一种可能的实现方式,若下行定时为相邻小区的下行定时,预切换指令还包括目标间隔的间隔信息,目标间隔的间隔信息包括目标间隔的起始帧标识、目标间隔的子帧标识、目标间隔的时间长度以及目标间隔的周期中的至少一种。
作为又一种可能的实现方式,若下行定时为相邻小区的下行定时,接收器,还用于接收第二eNB发送的定时提前量以及上行链路指示消息,上行链路指示消息用于指示UE与第二eNB通信时所使用的上行链路资源,定时提前量是由第二eNB在接收到UE发送的随机接入前导码时计算出的,定时提前量用于UE与第二eNB进行上行同步;
发射器,还用于向UE发送定时提前量以及上行链路指示消息。
作为又一种可能的实现方式,预切换指令还用于指示UE使用UE与eNB间的密钥作为无线承载的密钥以及使用UE与eNB间的安全算法作为无线承载的 安全算法,无线承载是由UE根据配置信息创建的第二eNB对应的无线承载。
作为又一种可能的实现方式,发射器,还用于向第二eNB发送UE与eNB间的密钥和UE与eNB间的安全算法。
本发明实施例第九方面公开了一种演进型基站eNB,包括处理器、存储器、接收器以及发射器,eNB为服务用户设备UE的当前小区的相邻小区所属的基站,其中:
接收器,用于接收第一eNB发送的预切换请求消息,预切换请求消息用于请求eNB指示UE是否执行预切换流程,第一eNB为当前小区所属的基站;
存储器中存储一组程序代码,且处理器用于调用存储器中存储的程序代码,用于执行以下操作:
根据预切换请求消息判断eNB提供的通信资源是否满足UE的通信需求;
发射器,用于当处理器的判断结果为是时,向第一eNB发送针对预切换请求消息的预切换确认消息,预切换确认消息用于触发第一eNB向UE发送预切换指令,预切换指令包括索引标识以及所述eNB对应的配置信息,预切换指令用于指示UE发送索引标识指示的随机接入前导码;
接收器,还用于接收UE发送的随机接入前导码;
发射器,还用于向UE发送定时提前量以及上行链路指示消息,上行链路指示消息用于指示UE与eNB通信时所使用的上行链路资源,定时提前量用于UE与所述eNB进行上行同步。
作为一种可能的实现方式,接收器,还用于接收UE发送的用于小区切换完成指示消息。
作为另一种可能的实现方式,预切换指令具体用于指示UE根据下行定时发送索引标识标识的随机接入前导码,预切换指令还包括用于发送随机接入前导码的物理随机接入信道PRACH时频资源。
作为又一种可能的实现方式,在下行定时为当前小区的下行定时,PRACH时频资源为当前小区的资源,随机接入前导码是由第一eNB分配的;
接收器,还用于接收第一eNB发送的随机接入前导码在PRACH时频资源中的时频位置标识以及索引标识。
作为又一种可能的实现方式中,下行定时为相邻小区的下行定时, PRACH时频资源为相邻小区的资源,随机接入前导码是由eNB分配的,预切换确认消息包括随机接入前导码在PRACH时频中的时频位置标识、索引标识以及配置信息。
作为又一种种可能的实现方式,若下行定时为相邻小区的下行定时,预切换指令还包括目标间隔的间隔信息,目标间隔的间隔信息包括目标间隔的起始帧标识、目标间隔的子帧标识、目标间隔的时间长度以及目标间隔的周期中的至少一种。
作为又一种可能的实现方式,预切换指令还用于指示UE使用UE与第一eNB间的密钥作为无线承载的密钥以及使用UE与第一eNB间的安全算法作为无线承载的安全算法,无线承载是由UE根据所述配置信息创建的eNB对应的无线承载。
作为又一种可能的实现方式,接收器,还用于接收第一eNB发送的UE与第一eNB间的密钥和UE与第一eNB间的安全算法。
本发明实施例第十方面公开了一种小区的切换系统,所述系统包括本发明实施例第七方面公开的UE、本发明实施例第八方面公开的服务UE的当前小区所属的eNB以及本发明实施例第九方面公开的当前小区的相邻小区所属的eNB。
本发明实施例中,UE在接收到第一eNB发送的预切换指令后,发送随机接入前导码,并根据预切换指令中的配置信息创建第二eNB对应的无线承载,UE接收用于与第二eNB进行上行同步的定时提前量以及用于指示UE与第二eNB通信时所使用的上行链路资源的上行链路指示消息。可见,实施本发明实施例能够在进行小区切换流程之前且在不影响与当前小区通信的前提下进行小区预切换流程,即在与当前小区通信过程中为小区切换做好资源准备。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的 前提下,还可以根据这些附图获得其他的附图。
图1是现有技术公开的一种小区的切换方法的流程示意图;
图2是本发明实施例公开的一种应用构架的架构示意图;
图3是本发明实施例公开的一种小区的切换方法的流程示意图;
图4是本发明实施例公开的另一种小区的切换方法的流程示意图;
图5是本发明实施例公开的又一种小区的切换方法的路程示意图;
图6是本发明实施例公开的又一种小区的切换方法的路程示意图;
图7是本发明实施例公开的一种用户设备UE的结构示意图;
图8是本发明实施例公开的另一种用户设备UE的结构示意图;
图9是本发明实施例公开的一种演进型基站eNB的结构示意图;
图10是本发明实施例公开的另一种演进型基站eNB的结构示意图;
图11是本发明实施例公开的又一种演进型基站eNB的结构示意图;
图12是本发明实施例公开的又一种演进型基站eNB的结构示意图;
图13是本发明实施例公开的一种小区的切换系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例公开了一种小区的切换方法及设备、系统,能够在进行小区切换流程之前且在不影响与当前小区通信的前提下进行小区预切换流程,即在与当前小区通信过程中为小区切换做好资源准备。以下分别进行详细说明。
为了更好理解本发明实施例公开的一种小区的切换方法及设备、系统,下面先对本发明实施例适用的应用构架进行描述。请参阅图2,图2是本发明实施例公开的一种应用构架的架构示意图。如图2所示,该应用构架用于表示LTE系统中小区的切换场景,且该应用架构可以包括UE以及至少两个eNB,该至少两个eNB中包括第一eNB(又称“源eNB”或“SeNB”)以及第二eNB(又称“目标eNB”或“TeNB”),其中,服务UE的当前小区部署在SeNB,在小区 的切换流程中,SeNB能够根据UE的测量报告判断是否需要执行预切换流程/切换流程;当前小区的相邻小区(又称“目标小区”)部署在TeNB,当TeNB接收到SeNB发送的预切换请求/切换请求时,TeNB能够根据其当前资源使用情况判断是否接受预切换请求/切换请求,UE通过小区的切换流程由当前小区切换到相邻小区,服务UE的eNB也相应的由SeNB切换到TeNB,其中,eNB间可以通过X2口连通,也可以通过移动管理实体(MME,Mobility Management Entity)经S1口中转通信。
请参阅图3,图3是本发明实施例公开的一种小区的切换方法的流程示意图。如图3所示,该小区的切换方法可以包括以下操作:
S301、UE向第一eNB发送第一测量报告。
本发明实施例中,第一eNB为服务UE的当前小区所属的基站,即图2中的SeNB,且该第一测量报告用于指示当前小区及当前小区的相邻小区满足预切换条件,即当UE对当前小区及当前小区的相邻小区的信号强度测量结果满足预切换A3事件的触发条件时,UE向第一eNB上报第一测量报告,其中,预切换A3事件的触发条件为相邻小区的信号质量高于当前小区的信号质量,即相邻小区的信号强度与当前小区的信号强度差达到第一预设信号强度阈值,其判断公式具体如下:
Mn+Ofn+Ocn-Hys>Mp+Ofp+Ocp+Off
且预切换A3事件的离开条件为相邻小区的信号质量低于当前小区的信号质量,其判断公式具体如下:
Mn+Ofn+Ocn+Hys<Mp+Ofp+Ocp+Off
其中,Mn是相邻小区的信号强度测量结果,如参考信号接收功率(RSRP,Reference Signal Receiving Power)或参考信号接收质量(RSRQ,Reference Signal Receiving Quality),Ofn是相邻小区所在频率对应的偏移值,Ocn是相邻小区的偏移值,Mp是当前小区的信号强度测量结果,如RSRP或RSRQ,Ofp是当前小区所在频率对应的偏移值,Ocp是当前小区的偏移值,Hys是预切换A3事件的迟滞参数,Off是预切换A3事件的偏移参数,且如果信号强度测量结果是RSRP,则Mn和Mp单位是dBm;如果信号强度测量结果是RSRQ,则Mn 和Mp单位是dB,Ofn、Ocn、Ofp、Ocp、Hys以及Off单位是dB。如果当前小区和相邻小区处于相同频率,则Ofn和Ofp相等,则预切换A3事件的触发条件主要由Ocn、Ocp、Hys以及Off四个参数控制,在现有的正常切换A3事件参数的基础上,如果想要弱化预切换A3事件的触发条件,则可以针对预切换A3事件设置更大的Ocn或更小的Ocp、Hys以及Off,以降低触发预切换A3事件的难度,即Ocn、Ocp、Hys以及Off四个参数中至少有一个参数的值与切换A3事件的值不同。
本发明实施例中,UE向第一eNB发送第一测量报告,以使第一eNB执行以下操作:
由第一eNB根据第一测量报告判断是否需要执行预切换流程;
当判断结果为是时,由第一eNB向第二eNB发送预切换请求消息,其中,该预切换请求消息用于请求第二eNB指示UE是否执行预切换流程,其中,该第二eNB为相邻小区所属的基站,即图2中所示的TeNB;
当第一eNB接收到第二eNB针对预切换请求消息返回的预切换确认消息后,由第一eNB根据该预切换确认消息向UE发送预切换指令,其中,该预切换确认消息用于触发第一eNB向UE发送预切换指令。
S302、UE接收第一eNB针对上述第一测量报告返回的预切换指令。
其中,该预切换指令可以包括随机接入前导码Preamble的索引标识以及第二eNB对应的信令无线承载(SRB,Signaling Radio Bearer)和数据无线承载(DRB,Data Radio Bearer)的配置信息,且该预切换指令用于指示UE发送索引标识指示的随机接入前导码。
S303、UE响应上述预切换指令,发送索引标识指示的随机接入前导码。
具体的,UE在接收到上述预切换指令后,根据上述预切换指令中包括的索引标识确定出该索引标识所指示的随机接入前导码,并发送确定出的随机接入前导码。
S304、UE根据上述配置信息创建第二eNB对应的无线承载。
其中,该无线承载可以包括SRB及DRB。
S305、UE接收定时提前量(TA,Timing Advance)以及上行链路指示消息。
其中,该上行链路指示消息用于指示UE与第二eNB通信时所使用的上行链路资源,且该定时提前量用于UE与第二eNB进行上行同步。
以上,通过UE与第一eNB的交互,UE做好了与第二eNB快速切换的资源准备。
进一步的,本发明实施例的方法还可以包括:
UE向第一eNB发送第二测量报告;
UE接收第一eNB针对上述第二测量报告返回的切换指令;
UE响应上述切换指令,启动上述SRB以及上述DRB,并向第二eNB发送用于指示小区切换完成的指示消息。
其中,该第二测量报告用于指示UE对当前小区及相邻小区的信号强度测量结果满足切换条件,即当UE对当前小区及当前小区的相邻小区的信号强度测量结果满足切换A3事件的触发条件时,UE向第一eNB上报第二测量报告,其中,切换A3事件的触发条件为相邻小区的信号质量高于当前小区的信号质量,即相邻小区的信号强度与当前小区的信号强度差达到第二预设信号强度阈值,其中,该第二预设信号强度阈值大于上述第一预设信号强度阈值。且UE向第一eNB发送第二测量报告,以触发第一eNB根据第二测量报告判断是否需要执行切换流程,当第一eNB的判断结果为是时,由第一eNB向UE发送针对第二测量报告的切换指令,该切换指令用于指示UE将服务UE的小区由上述当前小区切换到上述相邻小区。
需要说明的是,步骤S305也可以发生在步骤S303与步骤S304之间,本发明实施例不做限定。
在一个可选的实施例中,上述预切换指令具体用于指示UE根据下行定时向第二eNB发送上述索引标识指示的随机接入前导码,且上述预切换指令还可以包括用于发送随机接入前导码的物理随机接入信道(PRACH,Physical Random Access Channel)时频资源,且UE响应上述预切换指令,发送上述随机接入前导码可以包括:
UE响应上述预切换指令,根据上述下行定时在上述PRACH时频资源上发送上述随机接入前导码。
作为该可选的实施例的一种可选的实施方式,上述下行定时为当前小区的 下行定时,上述PRACH时频资源为当前小区的资源,上述随机接入前导码是由第一eNB分配的。
在该可选的实施方式中,进一步可选的,UE接收定时提前量以及上行链路指示消息可以包括:
UE接收第一eNB发送的定时提前量以及上行链路指示消息。
具体的,UE首先将相邻小区相对于当前小区的下行定时偏差ΔT发送至第一eNB,由第一eNB将该下行定时偏差ΔT发送至第二eNB,以使第二eNB在对应的PRACH时频资源上检测到随机接入前导码后计算出UE的定时提前量,其中,对应的计算公式可以为:
TeNB TA=TA1+ΔT
其中,TA1是由第二eNB在对应的PRACH时频资源上接收到上述随机接入前导码时计算出的。可选的,UE将相邻小区相对于当前小区的下行定时偏差ΔT发送至第一eNB可以发生在步骤S303之后以及步骤S305之前,也可以发生在步骤S301之前,本发明实施例不做限定。
作为该可选的实施例的另一种可选的实施方式,上述下行定时为上述相邻小区的下行定时,上述PRACH时频资源为上述相邻小区的资源,上述随机接入前导码是由第二eNB分配的,且UE接收到的定时提前量是由第二eNB在接收到随机接入前导码时计算出的。
在该另一种可选的实施方式中,进一步可选的,上述预切换指令还可以包括由第二eNB为UE配置的目标间隔Gap的间隔信息,且该间隔信息可以包括目标Gap的起始帧标识、目标Gap的子帧标识、目标Gap的时间长度以及目标Gap的周期中的至少一种,其中,目标Gap专门用于供UE发送随机接入前导码,即第一eNB在目标Gap内不对UE进行上下行调度。且UE响应上述预切换指令,发送上述随机接入前导码可以包括:
UE响应上述预切换指令,根据上述下行定时在上述目标Gap内通过上述PRACH时频资源发送上述随机接入前导码。
其中,上述目标Gap可以是一个只允许UE发送随机接入前导码的短Gap,也可以是一个既能够允许UE发送随机接入前导码又能够允许UE接收第二eNB 返回的随机接入响应消息的长Gap,本发明实施例不做限定。
当上述目标Gap为短Gap时,UE接收定时提前量以及上行链路指示消息可以包括:
UE接收第一eNB发送的定时提前量以及上行链路指示消息,即由第二eNB将定时提前量以及上行链路指示消息发送至第一eNB,并由第一eNB将定时提前量以及上行链路指示消息转发给UE。
当上述目标Gap为长Gap时,UE接收定时提前量以及上行链路指示消息可以包括:
UE在上述目标Gap内接收第二eNB发送的定时提前量以及用于指示UE与第二eNB通信时所使用的上行链路资源的上行链路指示消息,其中,定时提前量以及上行链路指示消息可以包括在第二eNB发送给UE的随机接入响应消息中。
作为一种可选的实施方式,上述预切换指令还可以用于指示UE在与第二eNB进行数据通信时的密钥以及安全算法是否更新,即UE是否继续使用UE与第一eNB间的密钥作为上述SRB以及上述DRB的密钥以及是否使用UE与第一eNB间的安全算法作为上述SRB以及上述DRB的安全算法。其中,可以采用扩展上述预切换指令的安全配置信息元素中密钥更改指示keyChangeIndicator的方式来指示UE在与第二eNB进行数据通信时的密钥是否更新,即扩展的keyChangeIndicator用两bit表示,且高bit为1表示不更新,高bit为0表示更新,当高bit为0时,低bit为1表示垂直推导新的密钥,低bit为0表示水平推导新的密钥,且由第一eNB将UE与第一eNB间的密钥,或者将UE与第一eNB间的密钥以及新密钥的推导方法发送给第二eNB。其中,UE继续使用UE与第一eNB间的密钥作为上述SRB以及上述DRB的密钥以及使用UE与第一eNB间的安全算法作为上述SRB以及上述DRB的安全算法能够减少密钥和安全算法的更新,减少小区预切换流程的时间。
其中,与现有的切换请求消息、切换确认消息以及切换指令相比,上述预切换请求消息、预切换确认消息以及预切换指令的内容多了一个预切换标识,其它内容相同。
需要说明的是,当前小区的相邻小区可以为多个,UE要针对该多个相邻小 区所属的不同第二eNB执行预切换流程,即UE将建立每个第二eNB对应的SRB、DRB及相关配置参数的集合,且每个第二eNB也需同时建立UE对应的SRB及DRB,此时,上述第二切指令携带有其中一个相邻小区的小区标识,如小区无线网络临时标识(C-RNTI,Cell-Radio Network Temporary Identity),以指示UE将服务UE的小区由当前小区切换为该C-RNTI所标识的相邻小区。
可见,实施本发明实施例能够在进行小区切换流程之前且在不影响与当前小区通信的前提下进行小区预切换流程,即在与当前小区通信过程中为小区切换做好资源准备,这样能够减少小区切换过程中数据传输的中断时间,提高用户的使用体验。
请参阅图4,图4是本发明实施例公开的另一种小区的切换方法的流程示意图。其中,图4是以UE按照当前小区的PRACH配置发送随机接入前导码为例进行说明。如图4所示,该小区的切换方法可以包括以下步骤:
S401、UE向第一eNB(SeNB)发送第一测量报告。
本发明实施例中,第一eNB为服务UE的当前小区所属的基站,即图2中的SeNB,且该第一测量报告用于指示UE对当前小区及当前小区的相邻小区的信号强度测量结果满足预切换条件,即当UE对当前小区及当前小区的相邻小区的信号强度测量结果满足预切换A3事件的触发条件时,UE向第一eNB上报第一测量报告(即预切换A3事件)。
S402、第一eNB接收上述第一测量报告,并根据上述第一测量报告判断是否需要执行预切换流程。
本发明实施例中,当步骤S402的判断结果为是时,执行步骤S403;当步骤S402的判断结果为否时,可以结束本次流程。
S403、第一eNB向第二eNB发送预切换请求消息。
其中,该预切换请求消息用于请求第二eNB指示UE是否执行预切换流程,该第二eNB为相邻小区所属的基站(即图2中的TeNB),且该预切换请求消息的消息内容相比于现有技术中的切换请求消息的消息内容多了一个预切换标识。
S404、第二eNB接收第一eNB发送的上述预切换请求消息,并根据上述预切换请求消息判断其能够提供的通信资源是否满足UE的通信需求。
本发明实施例中,当步骤S404的判断结果为否时,第二eNB向第一eNB发送用于指示UE不针对该第二eNB中的相邻小区执行预切换操作;当步骤S404的判断结果为是时,执行步骤S405。
S405、第二eNB向第一eNB发送针对上述预切换请求消息的预切换确认消息。
其中,该预切换确认消息用于指示UE执行预切换流程且用于触发第一eNB向UE发送预切换指令。
S406、第一eNB接收上述预切换确认消息。
S407、第一eNB根据上述预切换确认消息向UE发送预切换指令。
其中,该预切换指令可以包括第一eNB分配的随机接入前导码的索引标识、第二eNB对应的SRB和DRB的配置信息、媒体接入控制(MAC,Media Access Control)层的配置信息以及当前小区的用于发送随机接入前导码的PRACH时频资源,且该预切换指令用于指示UE根据当前小区的下行定时在PRACH时频资源上发送该索引标识指示的随机接入前导码并更新与第二eNB进行数据通信时所使用的密钥以及安全算法。具体的,预切换指令中的移动控制信息MobilityConttolInfo的信息元素(IE,Information Element)中包含的专用随机接入信道配置rach-ConfigDedicated字段指示了发送随机接入前导码的PRACH时频资源,专用无线资源配置信息元素radioResourceConfigDedicated IE中包含了第二eNB对应的SRB和DRB的配置信息、媒体接入控制层(MAC,Media Access Control)的配置信息,且本地安全配置信息元素securityConfigHO IE中可以包含安全算法和密钥key的更新指示。
S408、第一eNB向第二eNB发送随机接入前导码在上述PRACH时频资源中的时频位置标识以及上述索引标识。
S409、第二eNB接收上述PRACH时频资源中的时频位置标识以及上述索引标识。
S410、UE接收上述预切换指令。
S411、UE响应上述预切换指令,根据当前小区的下行定时并按照随机接 入信道配置字段所指示的PRACH时频资源发送随机接入前导码。
S412、UE根据第二eNB对应的SRB和DRB的配置信息创建一套新的SRB以及DRB,并更新与第二eNB进行数据通信时用到的安全算法以及密钥key。
其中,UE创建的新的SRB以及DRB不会影响当前小区正在使用的SRB以及DRB。
S413、第二eNB根据上述时频位置标识以及上述索引标识接收UE发送的随机接入前导码,并计算UE的TA。
具体的,第二eNB可以预先接收到UE发送的上述相邻小区相对于上述当前小区的下行定时偏差ΔT,即UE首先将ΔT发送给第一eNB,随后第一eNB向第二eNB转发ΔT。且在接收到随机接入前导码时,第二eNB计算出一个定时提前量TA1并将TA1与ΔT的和确定为UE的TA。
需要说明的是,UE向第一eNB发送ΔT可以在UE发送随机接入前导码之后,也可以发生在预切换动作触发之前,本发明实施例不作限定。
S414、第二eNB向第一eNB发送UE的TA以及用于指示UE与第二eNB进行数据通信时所使用的上行链路资源的上行链路指示消息。
S415、第一eNB接收UE的TA以及上行链路指示消息。
S416、第一eNB向UE发送UE的TA以及上行链路指示消息。
S417、UE接收第一eNB发送的TA以及上行链路指示消息。
在UE执行对应的操作时,UE保持与当前小区的正常通信,且在UE执行完毕对应的操作后,UE建立了一套针对相邻小区的SRB以及DRB,同时UE也获得了TA以及上行链路指示消息,完成了预切换流程。
需要说明的是,当前小区的相邻小区可能有多个,在这种情况下,UE会建立针对多个相邻小区的SRB、DRB以及相关配置参数的集合,同时,各个相邻小区对应的第二eNB也会相应的建立UE对应的SRB以及DRB。
S418、UE向第一eNB发送第二测量报告。
其中,该第二测量报告(即切换A3事件)用于指示UE对当前小区及相邻小区的信号强度测量结果满足切换条件。
S419、第一eNB接收第二测量报告,并根据第二测量报告判断是否需要执行切换流程。
本发明实施例中,当步骤S419的判断结果为是时,执行步骤S420;当步骤S419的判断结果为否时,第一eNB向UE发送用于指示不执行切换流程的指示消息。
S420、第一eNB向UE发送切换指令。
其中,该切换指令用于指示UE执行切换流程,即指示UE将服务UE的小区由当前小区切换到相邻小区,其中,该切换指令可以包括UE需要切换到的相邻小区的C-RNTI。
S421、UE接收第一eNB发送的切换指令,响应切换指令,启动上述SRB以及上述DRB。
S422、UE向第二eNB发送用于指示小区切换完成的指示消息。
需要说明的是,在第一eNB向UE发送切换指令之前,第一eNB还需要向第二eNB发送UE与第一eNB间的密钥和UE与第一eNB间的安全算法。
需要说明的是,上述预切换指令也可以用于指示UE不更新UE与第二eNB进行数据通信时所需要的密钥以及安全算法,即上述预切换指令指示UE使用UE与第一eNB间的密钥作为上述SRB以及上述DRB的密钥以及使用UE与第一eNB间的安全算法作为上述SRB以及上述DRB的安全算法。在这种情况下,UE无需执行上述步骤S412中的“更新与第二eNB进行数据通信时用到的安全算法以及密钥key”的操作。
本发明实施例中,当UE针对当前小区及相邻小区的测量结果满足切换A3事件的进入条件时,UE向第一eNB上报测量报告,由于之前第一eNB已经和第二eNB完成了预切换交互流程,第一eNB直接向UE发送切换指令,且切换指令只需指示UE切换到哪个相邻小区即可,UE接收到切换指令后可以立即启用相邻小区对应的SRB以及DRB,这减少了数据传输的中断时间,提高了用户的使用体验。
请参阅图5,图5是本发明实施例公开的另一种小区的切换方法的流程示意图。其中,图5是以UE按照相邻小区的PRACH配置发送随机接入前导码为例进行说明,步骤S501-S506与图4中的S401-S406对应,本发明实施例不再赘述,且步骤S505中的预切换请求消息可以包括第二eNB分配的随机接入前导码在 相邻小区的PRACH时频资源中的时频位置标识、该随机接入前导码的索引标识以及第二eNB对应的SRB和DRB的配置信息、媒体接入控制层(MAC,Media Access Control)的配置信息。如图5所示,该小区的切换方法还可以包括以下步骤:
S507、第一eNB根据上述预切换确认消息向UE发送预切换指令。
其中,该预切换指令(又称预切换指令)可以包括由第二eNB分配的随机接入前导码的索引标识、第二eNB对应的SRB和DRB的配置信息、MAC层的配置信息、相邻小区的用于发送随机接入前导码的PRACH时频资源以及由第二eNB配置的目标Gap的间隔信息,该目标Gap的间隔信息可以包括目标Gap的起始帧标识、目标Gap的子帧标识、目标Gap的时间长度以及目标Gap的周期中的至少一种,且该预切换指令用于指示UE在目标Gap内根据相邻小区的下行定时通过相邻小区的PRACH时频资源发送索引标识指示的随机接入前导码,且目标Gap的时间范围需要参考第二eNB提供的PRACH时频资源的时间,以使目标Gap的启动时间早于配置的PRACH时频资源,且目标Gap的时间长度至少能够保证随机接入前导码的发送并更新与第二eNB进行数据通信时所使用的密钥以及安全算法。具体的,预切换指令中的移动控制信息MobilityConttolInfo的信息元素(IE,Information Element)中包含的专用随机接入信道配置rach-ConfigDedicated字段指示了发送随机接入前导码的PRACH时频资源(其为相邻小区的资源),专用无线资源配置信息元素radioResourceConfigDedicated IE中包含了第二eNB对应的SRB和DRB的配置信息、媒体接入控制层(MAC,Media Access Control)的配置信息,且本地安全配置信息元素securityConfigHO IE中可以包含安全算法和密钥key的更新指示。
S508、UE接收上述预切换指令。
S509、UE响应上述预切换指令,在上述目标Gap内根据相邻小区的下行定时并按照上述随机接入信道配置字段所指示的PRACH时频资源发送随机接入前导码。
S510、第二eNB接收UE发送的随机接入前导码,并计算UE的TA。
S511、第二eNB向UE发送包括UE的TA以及用于指示UE与第二eNB通信时所使用的上行链路资源的上行链路指示消息的随机接入响应消息。
本发明实施例中,上述目标Gap为一个长Gap,即上述目标Gap的时间长度既能够保证UE发送随机接入前导码,又能够保证UE接收第二eNB返回的随机接入响应消息,其中,在发送随机接入前导码到接收随机接入响应消息的过程中,UE暂停与当前小区的通信,且在接收到随机接入响应消息后,UE继续与当前小区的通信。
需要说明的是,当上述目标Gap为短Gap(即上述目标Gap的时间长度只允许UE发送随机接入前导码)时,UE在目标Gap内暂停与当前小区的通信,当随机接入前导码发送完毕后,UE继续与当前小区的通信,后续通过第一eNB获取UE的定时提前量以及用于指示UE与第二eNB通信时所使用的上行链路资源的上行链路指示消息,即第二eNB向第一eNB发送定时提前量以及用于指示UE与第二eNB通信时所使用的上行链路资源的上行链路指示消息,第一eNB将第一提前定时量以及上行链路指示消息发送给UE,UE接收第一eNB发送的定时提前量以及上行链路指示消息。
S512、UE在上述目标Gap内接收第二eNB发送的随机接入响应。
S513、UE根据第二eNB对应的SRB和DRB的配置信息创建一套新的SRB以及DRB,并更新与第二eNB进行数据通信时用到的安全算法以及密钥key。
S514、UE向第一eNB发送第二测量报告。
其中,该第二测量报告(即切换A3事件)用于指示UE对当前小区及相邻小区的信号强度测量结果满足切换条件。
S515、第一eNB接收第二测量报告,并根据第二测量报告判断是否需要执行切换流程。
本发明实施例中,当步骤S515的判断结果为是时,执行步骤S516;当步骤S515的判断结果为否时,第一eNB向UE发送用于指示不执行切换流程的指示消息。
S516、第一eNB向第二eNB发送切换请求消息。
S517、第二eNB接收切换请求消息。
S518、第二eNB根据切换请求消息向第一eNB发送切换请求响应消息。
S519、第一eNB根据切换请求响应消息向UE发送切换指令。
其中,该切换指令用于指示UE执行切换流程,即指示UE将服务UE的小区 由当前小区切换到相邻小区,其中,该切换指令可以包括UE需要切换到的相邻小区的C-RNTI。
S520、UE接收第一eNB发送的切换指令,响应切换指令,启动上述SRB以及上述DRB。
S521、UE向第二eNB发送用于指示小区切换完成的指示消息。
需要说明的是,在第一eNB向UE发送切换指令之前,第一eNB还需要向第二eNB发送UE与第一eNB间的密钥和UE与第一eNB间的安全算法。
需要说明的是,上述预切换指令也可以用于指示UE不更新UE与第二eNB进行数据通信时所需要的密钥以及安全算法,即上述预切换指令指示UE使用UE与第一eNB间的密钥作为上述SRB以及上述DRB的密钥以及使用UE与第一eNB间的安全算法作为上述SRB以及上述DRB的安全算法。在这种情况下,UE无需执行上述步骤S513中的“更新与第二eNB进行数据通信时用到的安全算法以及密钥key”的操作。
本发明实施例中,当UE针对当前小区及相邻小区的测量结果满足切换A3事件的进入条件时,UE向第一eNB上报测量报告,由于之前第一eNB已经和第二eNB完成了预切换交互流程,第一eNB直接向UE发送切换指令,且切换指令只需指示UE切换到哪个相邻小区即可,UE接收到切换指令后可以立即启用相邻小区对应的SRB以及DRB,这减少了数据传输的中断时间,提高了用户的使用体验。
请参阅图6,图6是本发明实施例公开的又一种小区的切换方法的路程示意图。其中,图6是以UE按照相邻小区的PRACH配置发送随机接入前导码为例进行说明。如图6所示,该小区的切换方法可以包括以下步骤:
S601、UE向第一eNB(SeNB)发送第一测量报告。
S602、第一eNB接收上述第一测量报告,并根据上述第一测量报告判断是否需要执行预切换流程。
本发明实施例中,当步骤S602的判断结果为是时,执行步骤S603;当步骤S602的判断结果为否时,可以结束本次流程。
S603、第一eNB向第二eNB发送预切换请求消息。
S604、第二eNB接收第一eNB发送的上述预切换请求消息,并根据上述预切换请求消息判断其能够提供的通信资源是否满足UE的通信需求。
本发明实施例中,当步骤604的判断结果为否时,第二eNB向第一eNB发送用于指示UE不针对该第二eNB中的相邻小区执行预切换操作的指示消息;当步骤S604的判断结果为是时,执行步骤605。
S605、第二eNB向第一eNB发送针对上述预切换请求消息的预切换确认消息。
S606、第一eNB向UE发送第一预切换指令。
其中,该预切换指令(又称预切换指令)可以包括由第二eNB分配的随机接入前导码的索引标识、第二eNB对应的SRB和DRB的配置信息、MAC层的配置信息、相邻小区的用于发送随机接入前导码的PRACH时频资源以及由第二eNB配置的目标Gap的间隔信息,该目标Gap的间隔信息可以包括目标Gap的起始帧标识、目标Gap的子帧标识、目标Gap的时间长度以及目标Gap的周期中的至少一种,且该预切换指令用于指示UE在目标Gap内根据相邻小区的下行定时通过相邻小区的PRACH时频资源发送索引标识指示的随机接入前导码且指示不更新密钥key以及安全算法,且目标Gap的时间范围需要参考第二TeNB提供的PRACH时频资源的时间,以使目标Gap的启动时间早于配置的PRACH时频资源,且目标Gap的时间长度能够保证UE与第二eNB间的随机接入过程。
S607、UE与第二eNB完成随机接入过程。
S608、UE创建第二eNB对应的SRB以及DRB。
S609、UE向第一eNB发送第二测量报告。
其中,该第二测量报告(即切换A3事件)用于于指示UE对当前小区及相邻小区的信号强度测量结果满足切换条件。
S610、第一eNB接收第二测量报告,并根据第二测量报告判断是否需要执行切换流程。
本发明实施例中,当步骤S610的判断结果为是时,执行步骤S611以及S612;当步骤S610的判断结果为否时,第一eNB向UE发送用于指示不执行切换流程的指示消息。
S611、第一eNB向第二eNB发送UE当前各子密钥对应的值。
S612、第一eNB向UE发送切换指令。
其中,该切换指令用于指示UE执行切换流程,即指示UE将服务UE的小区由当前小区切换到相邻小区,其中,该切换指令包括UE需要切换到的相邻小区的C-RNTI。
S613、UE接收第一eNB发送的切换指令,响应切换指令,启动上述SRB以及上述DRB。
S614、UE向第二eNB发送用于指示小区切换完成的指示消息。
需要说明的是,对于目前的安全配置来说,在每次切换过程中安全算法可以不改变,但是密钥都需要更新。在预切换场景下可能存在与UE对应的多个预切换小区(即多个相邻小区),每个预切换小区都需要一组新的密钥,且密钥的更新需要符合横向推导原则或纵向推导原则,过多的预切换小区会导致密钥更新过程中不必要的复杂,因此,本发明实施例提供了一种在小区的切换流程中不更新密钥的方法。即第一eNB可以在上述预切换请求消息中向第二eNB发送当前使用的密钥,第二eNB将使用该密钥与UE进行通信,同时,可以采用扩展上述预切换指令的安全配置信息元素中密钥更改指示keyChangeIndicator的方式来指示UE在与第二eNB进行数据通信时的密钥是否更新,即扩展的keyChangeIndicator用两bit表示,且高bit为1表示不更新,高bit为0表示更新,当高bit为0时,低bit为1表示垂直推导新的密钥,低bit为0表示水平推导新的密钥。当第一eNB向UE发送切换指令时,第一eNB同时需要向第二eNB发送当前各个子密钥的值,这样当UE向第二eNB发送用于指示小区切换完成的指示消息时,UE可以继续使用当前的密钥完成加密和完整性保护等安全功能。
本发明实施例中,当UE针对当前小区及相邻小区的测量结果满足切换A3事件的进入条件时,UE向第一eNB上报测量报告,由于之前第一eNB已经和第二eNB完成了预切换交互流程,第一eNB直接向UE发送切换指令,且切换指令只需指示UE切换到哪个相邻小区即可,UE接收到切换指令后可以立即启用相邻小区对应的SRB以及DRB,这减少了数据传输的中断时间,提高了用户的使用体验,且无需更新安全算法和密钥key。
请参阅图7,图7是本发明实施例公开的一种用户设备UE的结构示意图。其中,图7所示的UE用于完成图3所示的小区的切换方法。如图7所示,该UE可以包括发送模块701、接收模块702以及处理模块703,其中:
发送模块701用于向第一eNB发送第一测量报告(即预切换A3事件),其中,第一eNB为服务UE的当前小区所属的基站,该第一测量报告用于指示UE对当前小区及当前小区的相邻小区的信号强度测量结果满足预切换条件,该预切换指令包括随机接入前导码的索引标识以及第二eNB对应的配置信息,且预切换指令用于指示UE向第二eNB发送索引标识指示的随机接入前导码,该第二eNB为相邻小区所属的基站。
接收模块702,用于接收第一eNB针对上述第一测量报告返回的预切换指令,其中,该预切换指令用于指示UE发送上述随机接入前导码。
发送模块701还用于响应接收模块702接收到的预切换指令,发送上述随机接入前导码。
处理模块703用于根据上述预切换指令中的配置信息创建第二eNB对应的无线承载,其中,该无线承载可以包括SRB及DRB。
接收模块702还用于接收定时提前量以及用于指示UE与第二eNB进行数据通信时所使用的上行链路资源的上行链路指示消息,其中,该定时提前量用于UE与第二eNB进行上行同步。
进一步的,发送模块701还可以用于向第一eNB发送第二测量报告(即切换A3事件),该第二测量报告用于指示UE对当前小区及相邻小区的信号强度测量结果满足切换条件。
接收模块702还可以用于接收第一eNB针对上述第二测量报告返回的切换指令,该切换指令用于指示UE将服务UE的小区由当前小区切换到相邻小区。
处理模块703还可以用于响应接收模块702接收到的切换指令,启动SRB以及DRB。
具体的,处理模块在启动SRB以及DRB完毕后,触发发送模块701向第二eNB发送小区切换完成指示消息。
发送模块701还可以用于向第二eNB发送小区切换完成指示消息。
在一个可选的实施例中,上述预切换指令具体用于指示UE根据下行定时 发送上述索引标识指示的随机接入前导码,且上述预切换指令还可以包括用于发送上述随机接入前导码的PRACH时频资源,且发送模块701响应上述预切换指令,发送随机接入前导码的具体方式可以为:
响应上述预切换指令,根据下行定时在上述PRACH时频资源上发送上述随机接入前导码。
作为该可选的实施例的一种可选的实施方式,上述下行定时为上述当前小区的下行定时,上述PRACH时频资源为上述当前小区的资源,且上述随机接入前导码是由第一eNB分配的,即发送模块701根据当前小区的PRACH配置完成上述随机接入前导码的发送。
在该可选的方式中,进一步可选的,接收模块702接收定时提前量以及用于指示UE与第二eNB通信时所使用的上行链路资源的上行链路指示消息的具体方式可以为:
接收第一eNB发送的定时提前量以及用于指示UE与第二eNB通信时所使用的上行链路资源的上行链路指示消息,即接收第一eNB转发的来自第二eNB的定时提前量以及上行链路指示消息,其中,该定时提前量是由第二eNB计算得到的,且其等于第二eNB通过第一eNB接收到的来自UE的相邻小区相对于当前小区的下定定时偏差ΔT与第二eNB在接收到上述随机接入前导码时计算出的定时提前量的和。
作为该可选的实施例的另一种可选的实施方式中,上述下行定时为上述相邻小区的下行定时,上述PRACH时频资源为上述相邻小区的资源,上述随机接入前导码是由第二eNB分配的。
在该另一种可选的实施方式中,进一步可选的,上述预切换指令还可以包括由第二eNB配置的目标Gap的间隔信息,该目标Gap的间隔信息可以包括目标Gap的起始帧标识、目标Gap的子帧标识、目标Gap的时间长度以及目标Gap的周期中的至少一种。且发送模块响应上述预切换指令,根据上述下行定时在上述PRACH时频资源上发送上述随机接入前导码的具体方式可以为:
响应上述预切换指令,根据上述下行定时在上述目标Gap内通过上述PRACH时频资源发送随机接入前导码。
其中,上述目标Gap可以为只允许UE发送随机接入前导码的短Gap,也可 以是既允许UE发送随机接入前导码又允许UE接收包括上述定时提前量以及上述上行链路指示消息的长Gap,且在目标Gap生效期间,UE与当前小区的数据通信中断。
在该另一种可选的实施方式中,又进一步可选的,接收模块702接收上述定时提前量以及用于指示UE与第二eNB通信时所使用的上行链路资源的上行链路指示消息的具体方式可以为:
当上述目标Gap为长Gap时,在目标Gap内接收第二eNB发送的包括定时提前量以及用于指示UE与第二eNB通信时所使用的上行链路资源的上行链路指示消息的随机接入响应,其中,该定时提前量是由第二eNB在接收到随机接入前导码时计算出的;
当上述目标Gap为短Gap时,接收第一eNB发送的定时提前量以及上行链路指示消息,即由第一eNB接收第二eNB发送的定时提前量以及上行链路指示消息,并由第一eNB发送给UE。
其中,UE接收到的定时提前量是由第二eNB直接测量得到的,这提高了定时提前量的精确度,进而提高了UE与第二eNB在后续数据通信过程中上行同步的准确率。
可选的,上述预切换指令还可以用于指示无需更新安全算法和密钥,即UE使用UE与第一eNB间的密钥作为SRB以及DRB的密钥以及使用UE与第一eNB间的安全算法作为SRB以及DRB的安全算法,也可以用于指示UE更新安全算法和密钥;或者上述预切换指令还可以用于指示更新安全算法和密钥。
可见,实施本发明实施例能够提前为小区切换流程做好资源准备,减少小区切换流程中数据传输的中断时间,提高用户的使用体验。
请参阅图8,图8是本发明实施例公开的另一种用户设备UE的结构示意图。其中,图8所示的UE用于完成图3所示的小区的切换方法。如图8所示,该UE可以包括:处理器801、存储器802、发射器803以及接收器804,存储器802可以是高速RAM存储器,也可以是非易失性存储器(non-volatile memory),如至少一个磁盘存储器,可选的,存储器802还可以是至少一个位于远离前述处理器801的存储装置。其中:
发射器803用于向第一eNB发送第一测量报告,其中,第一eNB为服务UE的当前小区所属的基站,该第一测量报告用于指示UE对当前小区及当前小区的相邻小区的信号强度测量结果满足预切换条件。
接收器804用于接收第一eNB针对第一测量报告返回的预切换指令,其中,该预切换指令包括随机接入前导码的索引标识以及第二eNB对应的配置信息,该预切换指令用于指示UE向第二eNB发送索引标识指示的随机接入前导码,且第二eNB为当前小区的相邻小区所属的基站。
具体的,接收器804在接收到预切换指令后,将预切换指令发送给处理器801,处理器801将预切换指令发送给发射器803,以触发发射器803响应预切换指令。
发射器803还可以用于响应预切换指令,发送随机接入前导码。
存储器802中存储一组程序代码,且处理器801用于调用存储器802中存储的程序代码,用于执行以下操作:
根据上述配置信息创建第二eNB对应的无线承载,该无线承载包括SRB以及DRB。
接收器804还可以用于接收定时提前量以及用于指示UE与第二eNB通信时所使用的上行链路资源的上行链路指示消息,该定时提前量用于UE与第二eNB进行上行同步。
进一步的,发射器803还可以用于向第一eNB发送第二测量报告,该第二测量报告用于指示UE对当前小区及相邻小区的信号强度测量结果满足切换条件。
接收器804还可以用于接收第一eNB针对上述第二测量报告返回的切换指令,其中,该切换指令用于指示UE将服务UE的小区由当前小区切换到相邻小区。
处理器801用于调用存储器802中存储的程序代码,还可以用于执行以下操作:
响应上述切换指令,启动上述SRB以及上述DRB。
发射器803还可以用于向第二eNB发送小区切换完成指示消息。
在一个可选的实施例中,上述预切换指令具体用于指示UE根据下行定时 发送索引标识指示的随机接入前导码,上述预切换指令还可以包括用于发送随机接入前导码的物理随机接入信道PRACH时频资源。发射器803响应上述预切换指令,发送随机接入前导码的具体方式为:
响应上述预切换指令,根据上述下行定时在上述PRACH时频资源上发送随机接入前导码。
作为该可选的实施例的一种可选的实施方式,上述下行定时为当前小区的下行定时,上述PRACH时频资源为当前小区的资源,且上述随机接入前导码是由第一eNB分配的。
在该可选的实施方式中,进一步可选的,接收器804接收定时提前量以及用于指示UE与第二eNB通信时所使用的上行链路资源的上行链路指示消息的具体方式可以为:
接收第一eNB转发的来自第二eNB的定时提前量以及用于指示UE与第二eNB通信时所使用的上行链路资源的上行链路指示消息。
作为该可选的实施例的另一种可选的实施方式,上述下行定时为相邻小区的下行定时,上述PRACH时频资源为相邻小区的资源,且随机接入前导码是由第二eNB分配的。
在该另一种可选的实施方式中,进一步可选的,上述预切换指令还可以包括由第二eNB配置的目标Gap的间隔信息,该目标Gap的间隔信息包括该目标Gap的起始帧标识、该目标Gap的子帧标识、该目标Gap的时间长度以及目标Gap的周期中的至少一种,且该目标Gap可以是一个长Gap,也可以是一个短Gap。且发射器803响应上述预切换指令,发送上述随机接入前导码的具体方式可以为:
响应上述预切换指令,根据上述下行定时在上述目标Gap内通过上述PRACH时频资源发送上述随机接入前导码。
又进一步可选的,接收器804接收定时提前量以及用于指示UE与第二eNB通信时所使用的上行链路资源的上行链路指示消息的具体方式可以为:
当上述目标Gap为长Gap时,在上述目标Gap内接收第二eNB发送的包括定时提前量以及用于指示UE与第二eNB通信时所使用的上行链路资源的上行链路指示消息的随机接入响应消息;
当上述目标Gap为短Gap时,接收第一eNB发送的来自第二eNB的定时提前量以及上行链路指示消息。
其中,上述定时提前量是由第二eNB在接收到上述随机接入前导码时直接计算出的。
可选的,上述预切换指令还可以用于指示无需更新安全算法和密钥,即指示UE使用UE与第一eNB间的密钥作为SRB以及DRB的密钥以及使用UE与第一eNB间的安全算法作为SRB以及DRB的安全算法,或者还可以用于指示UE更新安全算法和密钥;或者上述预切换指令还可以用于指示更新安全算法和密钥。
可见,实施本发明实施例能够提前为小区切换流程做好资源准备,减少小区切换流程中数据传输的中断时间,提高用户的使用体验。
图9是本发明实施例公开的一种演进型基站eNB的结构示意图。其中,图9所示的eNB为服务UE的当前小区所属的基站,且UE为图7所示的UE。如图9所示,该eNB可以包括接收模块901、处理模块902以及发送模块903,其中:
接收模块901用于接收UE发送的第一测量报告,该第一测量报告用于指示UE对当前小区及当前小区的相邻小区的信号强度测量结果满足预切换条件。
处理模块902用于根据上述第一测量报告判断是否需要执行预切换流程。
发送模块903用于当处理模块902的判断结果为是时,向第二eNB发送预切换请求消息,其中,该预切换请求消息用于请求第二eNB指示UE是否执行预切换流程,且第二eNB为相邻小区所属的基站。
接收模块901还可以用于接收第二eNB响应该预切换请求消息返回的预切换确认消息,该预切换确认消息用于触发图9所示的eNB向UE发送预切换指令。
发送模块903还可以用于根据上述预切换确认消息向UE发送预切换指令,其中,该预切换指令可以包括随机接入前导码的索引标识以及第二eNB对应的SRB和DRB的配置信息,该预切换指令用于指示UE发送索引标识指示的随机接入前导码。
进一步的,接收模块901还可以用于接收UE发送的第二测量报告,其中, 该第二测量报告用于指示UE对当前小区及相邻小区的信号强度测量结果满足切换条件。
发送模块903还可以用于向UE发送针对该第二测量报告的切换指令,该切换指令用于指示UE将服务UE的小区由当前小区切换到相邻小区。
在一个可选的实施例中,上述预切换指令具体用于指示UE根据下行定时发送索引标识对应的上述随机接入前导码,且上述预切换指令还可以包括用于发送上述随机接入前导码的PRACH时频资源。
作为该可选的实施例的一种可选的实施方式,上述下行定时为当前小区的下行定时,上述PRACH时频资源为当前小区的资源,上述随机接入前导码是由图9所示的eNB分配的。且发送模块903还可以用于向第二eNB发送上述随机接入前导码在PRACH时频资源中的时频位置标识以及索引标识,以使第二eNB根据该时频位置标识监听该索引标识指示的随机接入前导码。
在该可选的实施方式中,进一步可选的,接收模块901还可以用于接收第二eNB发送的定时提前量以及用于指示UE与第二eNB通信时所使用的上行链路资源的上行链路指示消息,且该定时提前量用于UE与第二eNB进行上行同步。发送模块903还可以用于向UE发送该定时提前量以及该上行链路指示消息。
作为该可选的实施例的另一种可选的实施方式,上述下行定时为相邻小区的下行定时,上述PRACH时频资源为相邻小区的资源,上述随机接入前导码是由第二eNB分配的,且上述预切换确认消息可以包括随机接入前导码在上述PRACH时频资源中的时频位置标识、上述索引标识以及第二eNB对应的SRB以及DRB的配置信息。
在该另一种可选的实施方式中,进一步可选的,上述预切换指令还可以包括由第二eNB配置的目标Gap的间隔信息,该目标Gap的间隔信息可以包括该目标Gap的起始帧标识、该目标Gap的子帧标识、该目标Gap的时间长度以及该目标Gap的周期中的至少一种,且该目标Gap可以是一个短Gap,也可以是一个长Gap。
又进一步可选的,当目标Gap为短Gap时,接收模块901还可以用于接收第二eNB发送的定时提前量以及用于指示UE与第二eNB通信时所使用的上行链 路资源的上行链路指示消息,该定时提前量是由第二eNB在接收到UE发送的随机接入前导码时直接计算出的,且该定时提前量用于UE与第二eNB进行上行同步。
发送模块903还可以用于向UE发送上述定时提前量以及上述上行链路指示消息。
可选的,上述预切换指令还可以用于指示无需更新安全算法和密钥,即指示UE使用UE与图9所示的eNB间的密钥作为SRB以及DRB的密钥以及使用UE与图9所示的eNB间的安全算法作为SRB以及DRB的安全算法,或者还可以用于指示UE更新安全算法和密钥。
发送模块903还可以用于向第二eNB发送UE与图9所示的eNB间的密钥和UE与图9所示的eNB间的安全算法。
可见,实施本发明实施例能够提前为小区切换流程做好资源准备,减少小区切换流程中数据传输的中断时间,提高用户的使用体验。
请参阅图10,图10是本发明实施例公开的另一种演进型基站eNB的结构示意图。其中,图10所示的eNB为服务UE的当前小区所属的基站,且UE为图7所示的UE。如图10所示,该eNB可以包括:处理器1001、存储器1002、发射器1003以及接收器1004,存储器1002可以是高速RAM存储器,也可以是非易失性存储器(non-volatile memory),如至少一个磁盘存储器,可选的,存储器1002还可以是至少一个位于远离前述处理器1001的存储装置。其中:
接收器1004用于接收UE发送的第一测量报告,该第一测量报告用于指示UE对当前小区及当前小区的相邻小区的信号强度测量结果满足预切换条件。
处理器1001用于调用存储器1002中存储的程序代码,用于执行以下操作:
根据第一测量报告判断是否需要执行预切换流程。
发射器1003用于当处理器1001的判断结果为是时,向第二eNB发送预切换请求消息,该预切换请求消息用于请求第二eNB指示UE是否执行预切换流程。
接收器1004还可以用于接收第二eNB响应预切换请求消息返回的预切换确认消息,该预切换确认消息用于触发图10所示的eNB向UE发送预切换指令,该第二eNB为相邻小区所属的基站。
具体的,接收器1004在接收到预切换确认消息后将预切换确认消息发送给处理器1001,处理器1001将预切换确认消息发送给发射器1003,以触发发射器1003执行相应的操作。
发射器1003还可以用于根据预切换确认消息向UE发送预切换指令,该预切换指令可以包括随机接入前导码的索引标识以及第二eNB对应的信令无线承载和数据无线承载的配置信息,该预切换指令用于指示UE发送索引标识指示的随机接入前导码。
进一步的,接收器1004还可以用于接收UE发送的第二测量报告,该第二测量报告用于指示UE对当前小区及相邻小区的信号强度测量结果满足切换条件。
发射器1003还可以用于向UE发送针对第二测量报告的切换指令,该切换指令用于指示UE将服务UE的小区由当前小区切换到相邻小区。
在一个可选的实施例中,上述预切换指令具体用于指示UE根据下行定时发送索引标识对应的上述随机接入前导码,且上述预切换指令还可以包括用于发送上述随机接入前导码的PRACH时频资源。
作为该可选的实施例的一种可选的实施方式,上述下行定时为当前小区的下行定时,上述PRACH时频资源为当前小区的资源,上述随机接入前导码是由图10所示的eNB分配的。且发射器1003还可以用于向第二eNB发送上述随机接入前导码在PRACH时频资源中的时频位置标识以及上述索引标识,以使第二eNB根据该时频位置标识监听该索引标识指示的随机接入前导码。
在该可选的实施方式中,进一步可选的,接收器1004还可以用于接收第二eNB发送的定时提前量以及用于指示UE与第二eNB通信时所使用的上行链路资源的上行链路指示消息,且该定时提前量用于UE与第二eNB进行上行同步。发射器1003还可以用于向UE发送该定时提前量以及该上行链路指示消息。
作为该可选的实施例的另一种可选的实施方式,上述下行定时为相邻小区的下行定时,上述PRACH时频资源为相邻小区的资源,上述随机接入前导码是由第二eNB分配的,且上述预切换确认消息可以包括随机接入前导码在上述PRACH时频资源中的时频位置标识、索引标识以及第二eNB对应的SRB以及DRB的配置信息。
在该另一种可选的实施方式中,进一步可选的,上述预切换指令还可以包括由第二eNB配置的目标Gap的间隔信息,该目标Gap的间隔信息可以包括该目标Gap的起始帧标识、该目标Gap的子帧标识、该目标Gap的时间长度以及该目标Gap的周期中的至少一种,且该目标Gap可以是一个短Gap,也可以是一个长Gap。
又进一步可选的,当目标Gap为短Gap时,接收器1004还可以用于接收第二eNB发送的定时提前量以及用于指示UE与第二eNB通信时所使用的上行链路资源的上行链路指示消息,该定时提前量是由第二eNB在接收到UE发送的随机接入前导码时直接计算出的,且该定时提前量用于UE与第二eNB进行上行同步。
发射器1003还可以用于向UE发送上述定时提前量以及上述上行链路指示消息。
可选的,上述预切换指令还可以用于指示无需更新安全算法和密钥,即指示UE使用UE与图10所示的eNB间的密钥作为无线承载的密钥以及使用UE与图10所示的eNB间的安全算法作为无线承载的安全算法,或者还可以用于指示UE更新安全算法和密钥,其中,该无线承载可以包括SRB以及DRB,且是由UE根据上述配置信息创建的与第二eNB对应的无线承载。
发射器1003还可以用于向第二eNB发送UE与图10所示的eNB间的密钥和UE与图10所示的eNB间的安全算法。
可见,实施本发明实施例能够提前为小区切换流程做好资源准备,减少小区切换流程中数据传输的中断时间,提高用户的使用体验。
请参阅图11,图11是本发明实施例公开的又一种演进型基站eNB的结构示意图。其中,图11所示的eNB为服务UE的当前小区的相邻小区所属的基站,当前小区部署在第一eNB中,且UE的结构可以如图7所示,第一eNB的结构可以如图9所示。如图11所示,该eNB可以包括接收模块1101、处理模块1102以及发送模块1103,其中:
接收模块1101用于接收第一eNB发送的预切换请求消息,该预切换请求消息用于请求图11所示的eNB指示UE是否执行预切换流程。
处理模块1102用于根据预切换请求消息判断其提供的通信资源是否满足UE的通信需求。
发送模块1103还可以用于当处理模块1102的判断结果为是时,向第一eNB发送针对预切换请求消息的预切换确认消息,该预切换确认消息用于触发第一eNB向UE发送预切换指令,该预切换指令包括随机接入前导码的索引标识以及图11所示的eNB对应的配置信息,该预切换指令用于指示UE发送索引标识指示的随机接入前导码。
接收模块1101还可以用于接收UE发送的随机接入前导码。
发送模块1103还可以用于向UE发送定时提前量以及用于指示UE与图11所示的eNB通信时所使用的上行链路资源的上行链路指示消息,该定时提前量用于UE与图11所示的eNB进行上行同步。
进一步的,接收模块1101还可以用于接收UE发送的用于小区切换完成指示消息。
在一个可选的实施例中,上述预切换指令具体用于指示UE根据下行定时发送索引标识对应的上述随机接入前导码,且上述预切换指令还可以包括用于发送上述随机接入前导码的PRACH时频资源。
作为该可选的实施例的一种可选的实施方式,上述下行定时为当前小区的下行定时,上述PRACH时频资源为当前小区的资源,上述随机接入前导码是由第一eNB分配的。且接收模块1101还可以用于接收第一eNB发送的随机接入前导码在PRACH时频资源中的时频位置标识以及索引标识,且接收模块1101具体用于在对应的PRACH时频资源中根据时频位置标识接收索引标识所指示的随机接入前导码。
在该可选的实施方式中,进一步可选的,发送模块1103向UE发送定时提前量以及用于指示UE与图11所示的eNB通信时所使用的上行链路资源的上行链路指示消息的具体方式可以为:
向第一eNB发送定时提前量以及用于指示UE与图11所示的eNB通信时所使用的上行链路资源的上行链路指示消息,以使第一eNB将第一提前定时量以及上行链路指示消息发送给UE,其中,该定时提前量等于UE通过第一eNB发送的相邻小区相对于当前小区的下行定时偏差与图11所示的eNB在接收到UE 发送的随机接入前导码时计算出的定时提前量的和。
作为该可选的实施例的另一种可选的实施方式,上述下行定时为相邻小区的下行定时,上述PRACH时频资源为相邻小区的资源,上述随机接入前导码是由图11所示的eNB分配的,且上述预切换确认消息可以包括随机接入前导码在PRACH时频中的时频位置标识、上述索引标识以及上述配置信息。
在该另一种可选的实施方式中,进一步可选的,上述预切换指令还可以包括图11的eNB配置的目标Gap的间隔信息,该目标Gap的间隔信息可以包括该目标Gap的起始帧标识、该目标Gap的子帧标识、该目标Gap的时间长度以及该目标Gap的周期中的至少一种,且该目标Gap可以是一个短Gap,也可以是一个长Gap。
又进一步可选的,发送模块1103向UE发送定时提前量以及用于指示UE与图11所示的eNB通信时所使用的上行链路资源的上行链路指示消息的具体方式可以为:
当上述目标Gap为短Gap时,向第一eNB发送定时提前量以及用于指示UE与图11所示的eNB通信时所使用的上行链路资源的上行链路指示消息,以使第一eNB将第一提前定时量以及上行链路指示消息发送给UE;
当上述目标Gap为长Gap时,直接向UE发送定时提前量以及上行链路指示消息。
其中,定时提前量是图11所示的eNB在接收到随机接入前导码时直接计算出的。
可选的,上述预切换指令还可以用于指示无需更新安全算法和密钥,即指示UE使用UE与第一eNB间的密钥作为无线承载的密钥以及使用UE与第一eNB间的安全算法作为无线承载的安全算法,或者还可以用于指示UE更新安全算法和密钥,其中,该无线承载可以包括SRB以及DRB,且是由UE根据上述配置信息创建的与图11所示的eNB对应的无线承载。
接收模块1101还可以还用于接收第一eNB发送的UE与第一eNB间的密钥和UE与第一eNB间的安全算法。
可见,实施本发明实施例能够提前为小区切换流程做好资源准备,减少小区切换流程中数据传输的中断时间,提高用户的使用体验。
请参阅图12,图12是本发明实施例公开的又一种演进型基站eNB的结构示意图。其中,图12所示的eNB为服务UE的当前小区的相邻小区所属的基站,当前小区部署在第一eNB中,且UE的结构可以如图8所示,第一eNB的结构可以如图10所示。如图12所示,该eNB可以包括:处理器1201、存储器1202、发射器1203以及接收器1204,存储器1202可以是高速RAM存储器,也可以是非易失性存储器(non-volatile memory),如至少一个磁盘存储器,可选的,存储器1202还可以是至少一个位于远离前述处理器1201的存储装置。其中:
接收器1204用于接收第一eNB发送的预切换请求消息,该预切换请求消息用于请求图12所示的eNB指示UE是否执行预切换流程。
存储器1202中存储一组程序代码,处理器1201用于调用存储器1202中存储的程序代码,用于执行以下操作:
根据预切换请求消息判断其提供的通信资源是否满足UE的通信需求。
发射器1203用于当处理器1201的判断结果为是时,向第一eNB发送针对预切换请求消息的预切换确认消息,该预切换确认消息用于触发第一eNB向UE发送预切换指令,预切换指令可以包括随机接入前导码的索引标识以及图12所示的eNB对应的配置信息,该预切换指令用于指示UE发送索引标识指示的随机接入前导码;
接收器1204还可以用于接收UE发送的随机接入前导码。
发射器1203还可以用于向UE发送定时提前量以及用于指示UE与图12所示的eNB通信时所使用的上行链路资源的上行链路指示消息,该定时提前量用于UE与图12所示的eNB进行上行同步。
进一步的,接收器1204还可以用于接收UE发送的用于指示小区切换完成的指示消息。
在一个可选的实施例中,上述预切换指令具体用于指示UE根据下行定时发送索引标识对应的上述随机接入前导码,且上述预切换指令还可以包括用于发送上述随机接入前导码的PRACH时频资源。
作为该可选的实施例的一种可选的实施方式,上述下行定时为当前小区的下行定时,上述PRACH时频资源为当前小区的资源,上述随机接入前导码是 由第一eNB分配的。接收器1204还可以用于接收第一eNB发送的随机接入前导码在PRACH时频资源中的时频位置标识以及索引标识。
在该可选的实施方式中,进一步可选的,发射器1203向UE发送定时提前量以及用于指示UE与图12所示的eNB通信时所使用的上行链路资源的上行链路指示消息的具体方式可以为:
向第一eNB发送定时提前量以及用于指示UE与图12所示的eNB通信时所使用的上行链路资源的上行链路指示消息,以使第一eNB将第一提前定时量以及上行链路指示消息发送给UE。
作为该可选的实施例的另一种可选的实施方式中,上述下行定时为相邻小区的下行定时,上述PRACH时频资源为相邻小区的资源,上述随机接入前导码是由图12所示的eNB分配的,且上述预切换确认消息可以包括随机接入前导码在PRACH时频中的时频位置标识、上述索引标识以及上述配置信息。
在该另一种可选的实施方式中,进一步可选的,上述预切换指令还可以包括图12所示的eNB配置的目标Gap的间隔信息,该目标Gap的间隔信息可以包括该目标Gap的起始帧标识、该目标Gap的子帧标识、该目标Gap的时间长度以及该目标Gap的周期中的至少一种,且该目标Gap可以是一个短Gap,也可以是一个长Gap。
又进一步可选的,发射器1203向UE发送定时提前量以及用于指示UE与图12所示的eNB通信时所使用的上行链路资源的上行链路指示消息的具体方式可以为:
当上述目标Gap为短Gap时,向第一eNB发送定时提前量以及用于指示UE与图12所示的eNB通信时所使用的上行链路资源的上行链路指示消息,以使第一eNB将第一提前定时量以及上行链路指示消息发送给UE;
当上述目标Gap为长Gap时,直接向UE发送定时提前量以及上行链路指示消息。
其中,定时提前量是图12所示的eNB在接收到随机接入前导码时直接计算出的。
可选的,上述预切换指令还可以用于指示无需更新安全算法和密钥,即指示UE使用UE与第一eNB间的密钥作为无线承载的密钥以及使用UE与第一 eNB间的安全算法作为无线承载的安全算法,或者还可以用于指示UE更新安全算法和密钥,其中,该无线承载可以包括SRB以及DRB,且是由UE根据上述配置信息创建的与图12所示的eNB对应的无线承载。
接收器1204还可以用于接收第一eNB发送的UE与第一eNB间的密钥和UE与第一eNB间的安全算法。
可见,实施本发明实施例能够提前为小区切换流程做好资源准备,减少小区切换流程中数据传输的中断时间,提高用户的使用体验。
请参阅图13,图13是本发明实施例公开的一种小区的切换系统的结构示意图。如图13所示,该系统可以包括UE、第一eNB以及第二eNB,第一eNB为服务UE的当前小区所属的基站,第二eNB为当前小区的相邻小区所属的基站,其中:
UE用于向第一eNB发送第一测量报告,第一测量报告用于指示当前小区及相邻小区满足预切换条件,具体的,该第一测量报告用于指示UE对当前小区及相邻小区的信号强度测量结果满足预切换条件。
第一eNB用于根据第一测量报告判断是否需要执行预切换流程,当判断结果为是时,向第二eNB发送预切换请求消息,预切换请求消息用于请求第二eNB指示UE是否执行预切换流程。
第二eNB用于根据预切换请求消息判断其提供的通信资源是否满足UE的通信需求,当判断结果为是时,向第一eNB发送针对预切换请求消息的预切换确认消息,预切换确认消息用于触发第一eNB向UE发送预切换指令,该预切换指令包括随机接入前导码的索引标识以及第二eNB对应的配置信息,且该预切换指令用于指示UE发送索引标识指示的随机接入前导码。
第一eNB还用于根据预切换确认消息向UE发送预切换指令。
UE还用于响应预切换指令,发送随机接入前导码,并根据配置信息创建第二eNB对应的无线承载,且该无线承载可以包括信令无线承载及数据无线承载。
第二eNB还用于接收随机接入前导码,并向UE发送定时提前量以及用于指示UE与第二eNB通信时所使用的上行链路资源的上行链路指示消息,定时 提前量用于UE与第二eNB进行上行同步。
进一步的,UE还用于向第一eNB发送第二测量报告,第二测量报告用于指示当前小区及相邻小区满足切换条件,具体的,第二测量报告具体用于UE对当前小区及相邻小区的信号强度测量结果满足切换条件。
第一eNB还用于向UE发送针对第二测量报告的切换指令,该切换指令用于指示UE将服务UE的小区由当前小区切换到相邻小区。
UE还用于响应切换指令,启动信令无线承载以及数据无线承载,并向第二eNB发送小区切换完成指示消息。
第二eNB还用于接收小区切换完成指示消息。
在一个可选的实施例中,上述预切换指令具体用于指示UE根据下行定时发送索引标识指示的随机接入前导码,预切换指令还包括用于发送随机接入前导码的物理随机接入信道PRACH时频资源。
作为该可选的实施例的一种可选的实施方式,上述下行定时为当前小区的下行定时,上述PRACH时频资源为当前小区的资源,随机接入前导码是由第一eNB分配的。
第一eNB还用于向第二eNB发送发送随机接入前导码在PRACH时频资源中的时频位置标识以及上述索引标识。
第二eNB还用于接收随机接入前导码在PRACH时频资源中的时频位置标识以及上述索引标识。
在该可选的实施方式中,进一步可选的,第二eNB向UE发送定时提前量以及用于指示UE与第二eNB通信时所使用的上行链路资源的上行链路指示消息的具体方式可以为:
向第一eNB发送定时提前量以及用于指示UE与第二eNB通信时所使用的上行链路资源的上行链路指示消息,以使第一eNB将第一提前定时量以及上行链路指示消息发送给UE。
作为该可选的实施例的另一种可选的实施方式,上述下行定时为相邻小区的下行定时,上述PRACH时频资源为相邻小区的资源,上述随机接入前导码是由第二eNB分配的,上述预切换确认消息可以包括随机接入前导码在PRACH时频资源中的时频位置标识、上述索引标识以及上述配置信息。
在该另一种可选的实施方式中,进一步可选的,上述预切换指令还可以包括第二eNB配置的目标Gap的间隔信息,该目标Gap的间隔信息可以包括该目标Gap的起始帧标识、该目标Gap的子帧标识、该目标Gap的时间长度以及该目标Gap的周期中的至少一种,且该目标Gap可以是一个短Gap,也可以是一个长Gap。
又进一步可选的,第二eNB向UE发送定时提前量以及用于指示UE与第二eNB通信时所使用的上行链路资源的上行链路指示消息的具体方式可以为:
当上述目标Gap为短Gap时,向第一eNB发送定时提前量以及用于指示UE与第二eNB通信时所使用的上行链路资源的上行链路指示消息,以使第一eNB将第一提前定时量以及上行链路指示消息发送给UE;
当上述目标Gap为长Gap时,直接向UE发送定时提前量以及上行链路指示消息。
其中,定时提前量是第二eNB在接收到随机接入前导码时直接计算出的。
可选的,上述预切换指令还可以用于指示无需更新安全算法和密钥,即指示UE使用UE与第一eNB间的密钥作为SRB以及DRB的密钥以及使用UE与第一eNB间的安全算法作为SRB以及DRB的安全算法,或者还可以用于指示UE更新安全算法和密钥。
第一eNB还用于向第二eNB发送UE与第一eNB间的密钥和UE与第一eNB间的安全算法。
可见,实施本发明实施例能够提前为小区切换流程做好资源准备,减少小区切换流程中数据传输的中断时间,提高用户的使用体验。
需要说明的是,在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
本发明实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本发明实施例用户设备中的模块可以根据实际需要进行合并、划分和删减。
本发明实施例演进型基站中的模块可以根据实际需要进行合并、划分和删减。
本发明实施例中所述模块,可以通过通用集成电路,例如CPU(Central Processing Unit,中央处理器),或通过ASIC(Application Specific Integrated Circuit,专用集成电路)来实现。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上对本发明实施例所提供的一种小区的切换方法及设备、系统进行了详细介绍,本文中应用了具体实例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (83)

  1. 一种小区的切换方法,其特征在于,所述方法包括:
    用户设备UE向第一演进型基站eNB发送第一测量报告,所述第一eNB为服务所述UE的当前小区所属的基站,所述第一测量报告用于指示所述当前小区及所述当前小区的相邻小区满足预切换条件;
    所述UE接收所述第一eNB针对所述第一测量报告返回的预切换指令,所述预切换指令包括索引标识以及第二eNB对应的配置信息;
    所述UE响应所述预切换指令,发送所述索引标识指示的随机接入前导码;
    所述UE根据所述配置信息创建所述第二eNB对应的无线承载;
    所述UE接收定时提前量以及上行链路指示消息,所述上行链路指示消息用于指示所述UE与所述第二eNB通信时所使用的上行链路资源,所述定时提前量用于所述UE与所述第二eNB进行上行同步。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述UE向所述第一eNB发送第二测量报告,并接收所述第一eNB针对所述第二测量报告返回的切换指令,所述第二测量报告用于指示所述当前小区及所述相邻小区满足切换条件,所述切换指令用于指示所述UE将服务所述UE的小区由所述当前小区切换到所述相邻小区;
    所述UE响应所述切换指令,启动所述无线承载;
    所述UE向所述第二eNB发送小区切换完成指示消息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述预切换指令具体用于指示所述UE根据下行定时发送所述随机接入前导码,所述预切换指令还包括用于发送所述随机接入前导码的物理随机接入信道PRACH时频资源。
  4. 根据权利要求3所述的方法,其特征在于,所述下行定时为所述当前小区的下行定时,所述PRACH时频资源为所述当前小区的资源,所述随机接入前导码是由所述第一eNB分配的。
  5. 根据权利要求3所述的方法,其特征在于,所述下行定时为所述相邻小区的下行定时,所述PRACH时频资源为所述相邻小区的资源,所述随机接入前导码是由所述第二eNB分配的。
  6. 根据权利要求5所述的方法,其特征在于,所述预切换指令还包括目标间隔的间隔信息,所述目标间隔的间隔信息包括所述目标间隔的起始帧标识、所述目标间隔的子帧标识、所述目标间隔的时间长度以及所述目标间隔的周期中的至少一种;
    所述UE响应所述预切换指令,发送所述索引标识指示的随机接入前导码,包括:
    所述UE响应所述预切换指令,根据所述下行定时在所述目标间隔内通过所述PRACH时频资源发送所述索引标识指示的随机接入前导码。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述预切换指令还用于指示所述UE使用所述UE与所述第一eNB间的密钥作为所述无线承载的密钥以及使用所述UE与所述第一eNB间的安全算法作为所述无线承载的安全算法。
  8. 一种小区的切换方法,其特征在于,所述方法包括:
    第一演进型基站eNB接收用户设备UE发送的第一测量报告,所述第一eNB为服务所述UE的当前小区所属的基站,所述第一测量报告用于指示所述当前小区及所述当前小区的相邻小区满足预切换条件;
    所述第一eNB根据所述第一测量报告判断需要执行预切换流程时,所述第一eNB向第二eNB发送预切换请求消息,所述预切换请求消息用于请求所述第二eNB指示所述UE是否执行预切换流程,所述第二eNB为所述相邻小区所属的基站;
    所述第一eNB接收所述第二eNB响应所述预切换请求消息返回的预切换确认消息;
    所述第一eNB根据所述预切换确认消息向所述UE发送预切换指令,所述 预切换指令包括索引标识以及所述第二eNB对应的配置信息,所述预切换指令用于指示所述UE发送所述索引标识指示的随机接入前导码。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述第一eNB接收所述UE发送的第二测量报告,所述第二测量报告用于指示所述当前小区及所述相邻小区满足切换条件;
    所述第一eNB向所述UE发送针对所述第二测量报告的切换指令,所述切换指令用于指示所述UE将服务所述UE的小区由所述当前小区切换到所述相邻小区。
  10. 根据权利要求8或9所述的方法,其特征在于,所述预切换指令具体用于指示所述UE根据下行定时发送所述随机接入前导码,所述预切换指令还包括用于发送所述随机接入前导码的物理随机接入信道PRACH时频资源。
  11. 根据权利要求10所述的方法,其特征在于,所述下行定时为所述当前小区的下行定时,所述PRACH时频资源为所述当前小区的资源,所述随机接入前导码是由所述第一eNB分配的;
    所述方法还包括:
    所述第一eNB向所述第二eNB发送所述随机接入前导码在所述PRACH时频资源中的时频位置标识以及所述索引标识。
  12. 根据权利要求10所述的方法,其特征在于,所述下行定时为所述相邻小区的下行定时,所述PRACH时频资源为所述相邻小区的资源,所述随机接入前导码是由所述第二eNB分配的,所述预切换确认消息包括所述随机接入前导码在所述PRACH时频资源中的时频位置标识、所述索引标识以及所述配置信息。
  13. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述第一eNB接收所述第二eNB发送的定时提前量以及上行链路指示消 息,并向所述UE发送所述定时提前量以及所述上行链路指示消息,所述上行链路指示消息用于指示所述UE与所述第二eNB通信时所使用的上行链路资源,所述定时提前量用于所述UE与所述第二eNB进行上行同步。
  14. 根据权利要求12所述的方法,其特征在于,所述预切换指令还包括目标间隔的间隔信息,所述目标间隔的间隔信息包括所述目标间隔的起始帧标识、所述目标间隔的子帧标识、所述目标间隔的时间长度以及所述目标间隔的周期中的至少一种。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    所述第一eNB接收所述第二eNB发送的定时提前量以及上行链路指示消息,所述上行链路指示消息用于指示所述UE与所述第二eNB通信时所使用的上行链路资源,所述定时提前量是由所述第二eNB在接收到所述UE发送的所述随机接入前导码时计算出的,所述定时提前量用于所述UE与所述第二eNB进行上行同步;
    所述第一eNB向所述UE发送所述定时提前量以及所述上行链路指示消息。
  16. 根据权利要求8-15任一项所述的方法,其特征在于,所述预切换指令还用于指示所述UE使用所述UE与所述第一eNB间的密钥作为无线承载的密钥以及使用所述UE与所述第一eNB间的安全算法作为所述无线承载的安全算法,所述无线承载是由所述UE根据所述配置信息创建的所述第二eNB对应的无线承载。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    所述第一eNB向所述第二eNB发送所述UE与所述第一eNB间的密钥和所述UE与所述第一eNB间的安全算法。
  18. 一种小区的切换方法,其特征在于,所述方法包括:
    第二演进型基站eNB接收第一eNB发送的预切换请求消息,所述预切换请求消息用于请求所述第二eNB指示UE是否执行预切换流程,所述第一eNB为服务所述UE的当前小区所属的基站,所述第二eNB为所述当前小区的相邻小区所属的基站;
    所述第二eNB根据所述预切换请求消息判断其提供的通信资源满足所述UE的通信需求时,所述第二eNB向所述第一eNB发送针对所述预切换请求消息的预切换确认消息,所述预切换确认消息用于触发所述第一eNB向所述UE发送预切换指令,所述预切换指令包括索引标识以及所述第二eNB对应的配置信息,所述预切换指令用于指示所述UE发送所述索引标识指示的随机接入前导码;
    所述第二eNB接收所述UE发送的所述随机接入前导码;
    所述第二eNB向所述UE发送定时提前量以及上行链路指示消息,所述上行链路指示消息用于指示所述UE与所述第二eNB通信时所使用的上行链路资源,所述定时提前量用于所述UE与所述第二eNB进行上行同步。
  19. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    所述第二eNB接收所述UE发送的小区切换完成指示消息。
  20. 根据权利要求18或19所述的方法,其特征在于,所述预切换指令具体用于指示所述UE根据下行定时发送所述随机接入前导码,所述预切换指令还包括用于发送所述随机接入前导码的物理随机接入信道PRACH时频资源。
  21. 根据权利要求20所述的方法,其特征在于,所述下行定时为所述当前小区的下行定时,所述PRACH时频资源为所述当前小区的资源,所述随机接入前导码是由所述第一eNB分配的;
    所述第二eNB接收所述UE发送的所述随机接入前导码之前,所述方法还包括:
    所述第二eNB接收所述第一eNB发送的所述随机接入前导码在所述PRACH时频资源中的时频位置标识以及所述索引标识。
  22. 根据权利要求20所述的方法,其特征在于,所述下行定时为所述相邻小区的下行定时,所述PRACH时频资源为所述相邻小区的资源,所述随机接入前导码是由所述第二eNB分配的,所述预切换确认消息包括所述随机接入前导码在所述PRACH时频中的时频位置标识、所述索引标识以及所述配置信息。
  23. 根据权利要求22所述的方法,其特征在于,所述预切换指令还包括目标间隔的间隔信息,所述目标间隔的间隔信息包括所述目标间隔的起始帧标识、所述目标间隔的子帧标识、所述目标间隔的时间长度以及所述目标间隔的周期中的至少一种。
  24. 根据权利要求18-23任一项所述的方法,其特征在于,所述预切换指令还用于指示所述UE使用所述UE与所述第一eNB间的密钥作为无线承载的密钥以及使用所述UE与所述第一eNB间的安全算法作为所述无线承载的安全算法,所述无线承载是由所述UE根据所述配置信息创建的所述第二eNB对应的无线承载。
  25. 根据权利要求24所述的方法,其特征在于,所述方法还包括:
    所述第二eNB接收所述第一eNB发送的所述UE与所述第一eNB间的密钥和所述UE与所述第一eNB间的安全算法。
  26. 一种用户设备UE,其特征在于,所述UE包括发送模块、接收模块、以及处理模块,其中:
    所述发送模块,用于向第一演进型基站eNB发送第一测量报告,所述第一eNB为服务所述UE的当前小区所属的基站,所述第一测量报告用于指示所述当前小区及所述当前小区的相邻小区满足预切换条件;
    所述接收模块,用于接收所述第一eNB针对所述第一测量报告返回的预切换指令,所述预切换指令包括索引标识以及第二eNB对应的配置信息;
    所述发送模块,还用于响应所述预切换指令,发送所述索引标识指示的随 机接入前导码;
    所述处理模块,用于根据所述配置信息创建所述第二eNB对应的无线承载;
    所述接收模块,还用于接收定时提前量以及上行链路指示消息,所述上行链路指示消息用于指示所述UE与所述第二eNB通信时所使用的上行链路资源,所述定时提前量用于所述UE与所述第二eNB进行上行同步。
  27. 根据权利要求26所述的UE,其特征在于,所述发送模块,还用于向所述第一eNB发送第二测量报告,所述第二测量报告用于指示所述当前小区及所述相邻小区满足切换条件;
    所述接收模块,还用于接收所述第一eNB针对所述第二测量报告返回的切换指令,所述切换指令用于指示所述UE将服务所述UE的小区由所述当前小区切换到所述相邻小区;
    所述处理模块,还用于响应所述切换指令,启动所述无线承载;
    所述发送模块,还用于向所述第二eNB发送小区切换完成指示消息。
  28. 根据权利要求26或27所述的UE,其特征在于,所述预切换指令具体用于指示所述UE根据下行定时发送所述随机接入前导码,所述预切换指令还包括用于发送所述随机接入前导码的物理随机接入信道PRACH时频资源。
  29. 根据权利要求28所述的UE,其特征在于,所述下行定时为所述当前小区的下行定时,所述PRACH时频资源为所述当前小区的资源,所述随机接入前导码是由所述第一eNB分配的。
  30. 根据权利要求28所述的UE,其特征在于,所述下行定时为所述相邻小区的下行定时,所述PRACH时频资源为所述相邻小区的资源,所述随机接入前导码是由所述第二eNB分配的。
  31. 根据权利要求30所述的UE,其特征在于,所述预切换指令还包括目 标间隔的间隔信息,所述目标间隔的间隔信息包括所述目标间隔的起始帧标识、所述目标间隔的子帧标识、所述目标间隔的时间长度以及所述目标间隔的周期中的至少一种;
    所述发送模块响应所述预切换指令,发送所述索引标识指示的随机接入前导码的具体方式为:
    响应所述预切换指令,根据所述下行定时在所述目标间隔内通过所述PRACH时频资源发送所述索引标识指示的随机接入前导码。
  32. 根据权利要求26-31任一项所述的UE,其特征在于,所述预切换指令还用于指示所述UE使用所述UE与所述第一eNB间的密钥作为所述无线承载的密钥以及使用所述UE与所述第一eNB间的安全算法作为所述无线承载的安全算法。
  33. 一种演进型基站eNB,其特征在于,所述eNB为服务用户设备UE的当前小区所属的基站,所述eNB包括接收模块、处理模块以及发送模块,其中:
    所述接收模块,用于接收所述UE发送的第一测量报告,所述第一测量报告用于指示所述当前小区及所述当前小区的相邻小区满足预切换条件;
    所述处理模块,用于根据所述第一测量报告判断是否需要执行预切换流程;
    所述发送模块,用于当所述处理模块的判断结果为是时,向第二eNB发送预切换请求消息,所述预切换请求消息用于请求所述第二eNB指示所述UE是否执行预切换流程,所述第二eNB为所述相邻小区所属的基站;
    所述接收模块,还用于接收所述第二eNB响应所述预切换请求消息返回的预切换确认消息;
    所述发送模块,还用于根据所述预切换确认消息向所述UE发送预切换指令,所述预切换指令包括索引标识以及所述第二eNB对应的配置信息,所述预切换指令用于指示所述UE发送所述索引标识指示的随机接入前导码。
  34. 根据权利要求33所述的eNB,其特征在于,所述接收模块,还用于接 收所述UE发送的第二测量报告,所述第二测量报告用于指示所述当前小区及所述相邻小区满足切换条件;
    所述发送模块,还用于向所述UE发送针对所述第二测量报告的切换指令,所述切换指令用于指示所述UE将服务所述UE的小区由所述当前小区切换到所述相邻小区。
  35. 根据权利要求33或34所述的eNB,其特征在于,所述预切换指令具体用于指示所述UE根据下行定时发送所述随机接入前导码,所述预切换指令还包括用于发送所述随机接入前导码的物理随机接入信道PRACH时频资源。
  36. 根据权利要求35所述的eNB,其特征在于,所述下行定时为所述当前小区的下行定时,所述PRACH时频资源为所述当前小区的资源,所述随机接入前导码是由所述eNB分配的;
    所述发送模块,还用于向所述第二eNB发送所述随机接入前导码在所述PRACH时频资源中的时频位置标识以及所述索引标识。
  37. 根据权利要求35所述的eNB,其特征在于,所述下行定时为所述相邻小区的下行定时,所述PRACH时频资源为所述相邻小区的资源,所述随机接入前导码是由所述第二eNB分配的,所述预切换确认消息包括所述随机接入前导码在所述PRACH时频资源中的时频位置标识、所述索引标识以及所述配置信息。
  38. 根据权利要求36所述的eNB,其特征在于,所述接收模块,还用于接收所述第二eNB发送的定时提前量以及上行链路指示消息,所述上行链路指示消息用于指示所述UE与所述第二eNB通信时所使用的上行链路资源,所述定时提前量用于所述UE与所述第二eNB进行上行同步;
    所述发送模块,还用于向所述UE发送所述定时提前量以及所述上行链路指示消息。
  39. 根据权利要求37所述的eNB,其特征在于,所述预切换指令还包括目标间隔的间隔信息,所述目标间隔的间隔信息包括所述目标间隔的起始帧标识、所述目标间隔的子帧标识、所述目标间隔的时间长度以及所述目标间隔的周期中的至少一种。
  40. 根据权利要求39所述的eNB,其特征在于,所述接收模块,还用于接收所述第二eNB发送的定时提前量以及上行链路指示消息,所述上行链路指示消息用于指示所述UE与所述第二eNB通信时所使用的上行链路资源,所述定时提前量是由所述第二eNB在接收到所述UE发送的所述随机接入前导码时计算出的,所述定时提前量用于所述UE与所述第二eNB进行上行同步;
    所述发送模块,还用于向所述UE发送所述定时提前量以及所述上行链路指示消息。
  41. 根据权利要求33-40任一项所述的eNB,其特征在于,所述预切换指令还用于指示所述UE使用所述UE与所述eNB间的密钥作为无线承载的密钥以及使用所述UE与所述eNB间的安全算法作为所述无线承载的安全算法,所述无线承载是由所述UE根据所述配置信息创建的所述第二eNB对应的无线承载。
  42. 根据权利要求41所述的eNB,其特征在于,所述发送模块,还用于向所述第二eNB发送所述UE与所述eNB间的密钥和所述UE与所述eNB间的安全算法。
  43. 一种演进型基站eNB,其特征在于,所述eNB为服务用户设备UE的当前小区的相邻小区所属的基站,所述eNB包括接收模块、处理模块以及发送模块,其中:
    所述接收模块,用于接收第一eNB发送的预切换请求消息,所述预切换请求消息用于请求所述eNB指示所述UE是否执行预切换流程,所述第一eNB为所述当前小区所属的基站;
    所述处理模块,用于根据所述预切换请求消息判断其提供的通信资源是否满足所述UE的通信需求;
    所述发送模块,用于当所述处理模块的判断结果为是时,向所述第一eNB发送针对所述预切换请求消息的预切换确认消息,所述预切换确认消息用于触发所述第一eNB向所述UE发送预切换指令,所述预切换指令包括索引标识以及所述eNB对应的配置信息,所述预切换指令用于指示所述UE发送所述索引标识指示的随机接入前导码;
    所述接收模块,还用于接收所述UE发送的所述随机接入前导码;
    所述发送模块,还用于向所述UE发送定时提前量以及上行链路指示消息,所述上行链路指示消息用于指示所述UE与所述eNB通信时所使用的上行链路资源,所述定时提前量用于所述UE与所述eNB进行上行同步。
  44. 根据权利要求43所述的eNB,其特征在于,所述接收模块,还用于接收所述UE发送的小区切换完成指示消息。
  45. 根据权利要求43或44所述的eNB,其特征在于,所述预切换指令具体用于指示所述UE根据下行定时发送所述随机接入前导码,所述预切换指令还包括用于发送所述随机接入前导码的物理随机接入信道PRACH时频资源。
  46. 根据权利要求45所述的eNB,其特征在于,所述下行定时为所述当前小区的下行定时,所述PRACH时频资源为所述当前小区的资源,所述随机接入前导码是由所述第一eNB分配的;
    所述接收模块,还用于接收所述第一eNB发送的所述随机接入前导码在所述PRACH时频资源中的时频位置标识以及所述索引标识。
  47. 根据权利要求45所述的eNB,其特征在于,所述下行定时为所述相邻小区的下行定时,所述PRACH时频资源为所述相邻小区的资源,所述随机接入前导码是由所述eNB分配的,所述预切换确认消息包括所述随机接入前导码在所述PRACH时频中的时频位置标识、所述索引标识以及所述配置信息。
  48. 根据权利要求47所述的eNB,其特征在于,所述预切换指令还包括目标间隔的间隔信息,所述目标间隔的间隔信息包括所述目标间隔的起始帧标识、所述目标间隔的子帧标识、所述目标间隔的时间长度以及所述目标间隔的周期中的至少一种。
  49. 根据权利要求43-48任一项所述的eNB,其特征在于,所述预切换指令还用于指示所述UE使用所述UE与所述第一eNB间的密钥作为无线承载的密钥以及使用所述UE与所述第一eNB间的安全算法作为所述无线承载的安全算法,所述无线承载是由所述UE根据所述配置信息创建的所述eNB对应的无线承载。
  50. 根据权利要求49所述的eNB,其特征在于,所述接收模块,还用于接收所述第一eNB发送的所述UE与所述第一eNB间的密钥和所述UE与所述第一eNB间的安全算法。
  51. 一种用户设备UE,包括处理器、存储器、发射器以及接收器,其特征在于,所述发射器,用于向第一演进型基站eNB发送第一测量报告,所述第一eNB为服务所述UE的当前小区所属的基站,所述第一测量报告用于指示所述当前小区及所述当前小区的相邻小区满足预切换条件;
    所述接收器,用于接收所述第一eNB针对所述第一测量报告返回的预切换指令,所述预切换指令包括索引标识以及第二eNB对应的配置信息;
    所述发射器,还用于响应所述预切换指令,发送所述索引标识指示的随机接入前导码;
    所述存储器中存储一组程序代码,且所述处理器用于调用所述存储器中存储的程序代码,用于执行以下操作:
    根据所述配置信息创建所述第二eNB对应的无线承载;
    所述接收器,还用于接收定时提前量以及上行链路指示消息,所述上行链路指示消息用于指示所述UE与所述第二eNB通信时所使用的上行链路资源, 所述定时提前量用于所述UE与所述第二eNB进行上行同步。
  52. 根据权利要求51所述的UE,其特征在于,所述发射器,还用于向所述第一eNB发送第二测量报告,所述第二测量报告用于指示所述当前小区及所述相邻小区满足切换条件;
    所述接收器,还用于接收所述第一eNB针对所述第二测量报告返回的切换指令,所述切换指令用于指示所述UE将服务所述UE的小区由所述当前小区切换到所述相邻小区;
    所述处理器用于调用所述存储器中存储的程序代码,还用于执行以下操作:
    响应所述切换指令,启动所述无线承载;
    所述发射器,还用于向所述第二eNB发送小区切换完成指示消息。
  53. 根据权利要求51或52所述的UE,其特征在于,所述预切换指令具体用于指示所述UE根据下行定时发送所述随机接入前导码,所述预切换指令还包括用于发送所述随机接入前导码的物理随机接入信道PRACH时频资源。
  54. 根据权利要求53所述的UE,其特征在于,所述下行定时为所述当前小区的下行定时,所述PRACH时频资源为所述当前小区的资源,所述随机接入前导码是由所述第一eNB分配的。
  55. 根据权利要求53所述的UE,其特征在于,所述下行定时为所述相邻小区的下行定时,所述PRACH时频资源为所述相邻小区的资源,所述随机接入前导码是由所述第二eNB分配的。
  56. 根据权利要求55所述的UE,其特征在于,所述预切换指令还包括目标间隔的间隔信息,所述目标间隔的间隔信息包括所述目标间隔的起始帧标识、所述目标间隔的子帧标识、所述目标间隔的时间长度以及所述目标间隔的周期中的至少一种;
    所述发射器响应所述预切换指令,发送所述索引标识指示的随机接入前导码的具体方式为:
    响应所述预切换指令,根据所述下行定时在所述目标间隔内通过所述PRACH时频资源发送所述索引标识指示的随机接入前导码。
  57. 根据权利要求51-56任一项所述的UE,其特征在于,所述预切换指令还用于指示所述UE使用所述UE与所述第一eNB间的密钥作为所述无线承载的密钥以及使用所述UE与所述第一eNB间的安全算法作为所述无线承载的安全算法。
  58. 一种演进型基站eNB,包括处理器、存储器、发射器以及接收器,其特征在于,所述eNB为服务用户设备UE的当前小区所属的基站,其中:
    所述接收器,用于接收所述UE发送的第一测量报告,所述第一测量报告用于指示所述当前小区及所述当前小区的相邻小区满足预切换条件;
    所述处理器用于调用所述存储器中存储的程序代码,用于执行以下操作:
    根据所述第一测量报告判断是否需要执行预切换流程;
    所述发射器,用于当所述处理器的判断结果为是时,向第二eNB发送预切换请求消息,所述预切换请求消息用于请求所述第二eNB指示所述UE是否执行预切换流程,所述第二eNB为所述相邻小区所属的基站;
    所述接收器,还用于接收所述第二eNB响应所述预切换请求消息返回的预切换确认消息;
    所述发射器,还用于根据所述预切换确认消息向所述UE发送预切换指令,所述预切换指令包括索引标识以及所述第二eNB对应的配置信息,所述预切换指令用于指示所述UE发送所述索引标识指示的随机接入前导码。
  59. 根据权利要求58所述的eNB,其特征在于,所述接收器,还用于接收所述UE发送的第二测量报告,所述第二测量报告用于指示所述当前小区及所述相邻小区满足切换条件;
    所述发射器,还用于向所述UE发送针对所述第二测量报告的切换指令, 所述切换指令用于指示所述UE将服务所述UE的小区由所述当前小区切换到所述相邻小区。
  60. 根据权利要求58或59所述的eNB,其特征在于,所述预切换指令具体用于指示所述UE根据下行定时发送所述随机接入前导码,所述预切换指令还包括用于发送所述随机接入前导码的物理随机接入信道PRACH时频资源。
  61. 根据权利要求60所述的eNB,其特征在于,所述下行定时为所述当前小区的下行定时,所述PRACH时频资源为所述当前小区的资源,所述随机接入前导码是由所述eNB分配的;
    所述发射器,还用于向所述第二eNB发送所述随机接入前导码在所述PRACH时频资源中的时频位置标识以及所述索引标识。
  62. 根据权利要求60所述的eNB,其特征在于,所述下行定时为所述相邻小区的下行定时,所述PRACH时频资源为所述相邻小区的资源,所述随机接入前导码是由所述第二eNB分配的,所述预切换确认消息包括所述随机接入前导码在所述PRACH时频资源中的时频位置标识、所述索引标识以及所述配置信息。
  63. 根据权利要求61所述的eNB,其特征在于,所述接收器,还用于接收所述第二eNB发送的定时提前量以及上行链路指示消息,所述上行链路指示消息用于指示所述UE与所述第二eNB通信时所使用的上行链路资源,所述定时提前量用于所述UE与所述第二eNB进行上行同步;
    所述发射器,还用于向所述UE发送所述定时提前量以及所述上行链路指示消息。
  64. 根据权利要求62所述的eNB,其特征在于,所述预切换指令还包括目标间隔的间隔信息,所述目标间隔的间隔信息包括所述目标间隔的起始帧标识、所述目标间隔的子帧标识、所述目标间隔的时间长度以及所述目标间隔的 周期中的至少一种。
  65. 根据权利要求64所述的eNB,其特征在于,所述接收器,还用于接收所述第二eNB发送的定时提前量以及上行链路指示消息,所述上行链路指示消息用于指示所述UE与所述第二eNB通信时所使用的上行链路资源,所述定时提前量是由所述第二eNB在接收到所述UE发送的所述随机接入前导码时计算出的,所述定时提前量用于所述UE与所述第二eNB进行上行同步;
    所述发射器,还用于向所述UE发送所述定时提前量以及所述上行链路指示消息。
  66. 根据权利要求58-65任一项所述的eNB,其特征在于,所述预切换指令还用于指示所述UE使用所述UE与所述eNB间的密钥作为无线承载的密钥以及使用所述UE与所述eNB间的安全算法作为所述无线承载的安全算法,所述无线承载是由所述UE根据所述配置信息创建的所述第二eNB对应的无线承载。
  67. 根据权利要求66所述的eNB,其特征在于,所述发射器,还用于向所述第二eNB发送所述UE与所述eNB间的密钥和所述UE与所述eNB间的安全算法。
  68. 一种演进型基站eNB,包括处理器、存储器、接收器以及发射器,其特征在于,所述eNB为服务用户设备UE的当前小区的相邻小区所属的基站,其中:
    所述接收器,用于接收第一eNB发送的预切换请求消息,所述预切换请求消息用于请求所述eNB指示所述UE是否执行预切换流程,所述第一eNB为所述当前小区所属的基站;
    所述存储器中存储一组程序代码,且所述处理器用于调用所述存储器中存储的程序代码,用于执行以下操作:
    根据所述预切换请求消息判断所述eNB提供的通信资源是否满足所述UE 的通信需求;
    所述发射器,用于当所述处理器的判断结果为是时,向所述第一eNB发送针对所述预切换请求消息的预切换确认消息,所述预切换确认消息用于触发所述第一eNB向所述UE发送预切换指令,所述预切换指令包括索引标识以及所述eNB对应的配置信息,所述预切换指令用于指示所述UE发送所述索引标识指示的随机接入前导码;
    所述接收器,还用于接收所述UE发送的所述随机接入前导码;
    所述发射器,还用于向所述UE发送定时提前量以及上行链路指示消息,所述上行链路指示消息用于指示所述UE与所述eNB通信时所使用的上行链路资源,所述定时提前量用于所述UE与所述eNB进行上行同步。
  69. 根据权利要求68所述的eNB,其特征在于,所述接收器,还用于接收所述UE发送的小区切换完成指示消息。
  70. 根据权利要求68或69所述的eNB,其特征在于,所述预切换指令具体用于指示所述UE根据下行定时发送所述随机接入前导码,所述预切换指令还包括用于发送所述随机接入前导码的物理随机接入信道PRACH时频资源。
  71. 根据权利要求70所述的eNB,其特征在于,所述下行定时为所述当前小区的下行定时,所述PRACH时频资源为所述当前小区的资源,所述随机接入前导码是由所述第一eNB分配的;
    所述接收器,还用于接收所述第一eNB发送的所述随机接入前导码在所述PRACH时频资源中的时频位置标识以及所述索引标识。
  72. 根据权利要求70所述的eNB,其特征在于,所述下行定时为所述相邻小区的下行定时,所述PRACH时频资源为所述相邻小区的资源,所述随机接入前导码是由所述eNB分配的,所述预切换确认消息包括所述随机接入前导码在所述PRACH时频中的时频位置标识、所述索引标识以及所述配置信息。
  73. 根据权利要求72所述的eNB,其特征在于,所述预切换指令还包括目标间隔的间隔信息,所述目标间隔的间隔信息包括所述目标间隔的起始帧标识、所述目标间隔的子帧标识、所述目标间隔的时间长度以及所述目标间隔的周期中的至少一种。
  74. 根据权利要求68-73任一项所述的eNB,其特征在于,所述预切换指令还用于指示所述UE使用所述UE与所述第一eNB间的密钥作为无线承载的密钥以及使用所述UE与所述第一eNB间的安全算法作为所述无线承载的安全算法,所述无线承载是由所述UE根据所述配置信息创建的所述eNB对应的无线承载。
  75. 根据权利要求74所述的eNB,其特征在于,所述接收器,还用于接收所述第一eNB发送的所述UE与所述第一eNB间的密钥和所述UE与所述第一eNB间的安全算法。
  76. 一种小区的切换系统,其特征在于,所述系统包括用户设备UE、第一演进型基站eNB以及第二eNB,所述第一eNB为服务所述UE的当前小区所属的基站,所述第二eNB为所述当前小区的相邻小区所属的基站,其特征在于,
    所述UE,用于向所述第一eNB发送第一测量报告,所述第一测量报告用于指示所述当前小区及所述相邻小区满足预切换条件;
    所述第一eNB,用于根据所述第一测量报告判断是否需要执行预切换流程,当判断结果为是时,向第二eNB发送预切换请求消息,所述预切换请求消息用于请求所述第二eNB指示所述UE是否执行预切换流程;
    所述第二eNB,用于根据所述预切换请求消息判断其提供的通信资源是否满足所述UE的通信需求,当判断结果为是时,向所述第一eNB发送针对所述预切换请求消息的预切换确认消息,所述预切换确认消息用于触发所述第一eNB向所述UE发送预切换指令,所述预切换指令包括索引标识以及所述第二eNB对应的配置信息;
    所述第一eNB,还用于根据所述预切换确认消息向所述UE发送所述预切 换指令;
    所述UE,还用于响应所述预切换指令,发送所述随机接入前导码,并根据所述配置信息创建所述第二eNB对应的无线承载;
    所述第二eNB,还用于接收所述随机接入前导码,并向所述UE发送定时提前量以及上行链路指示消息,所述上行链路指示消息用于指示所述UE与所述第二eNB通信时所使用的上行链路资源,所述定时提前量用于所述UE与所述第二eNB进行上行同步。
  77. 根据权利要求76所述的系统,其特征在于,所述UE,还用于向所述第一eNB发送第二测量报告,所述第二测量报告用于指示所述当前小区及所述相邻小区满足切换条件;
    所述第一eNB,还用于向所述UE发送针对所述第二测量报告的切换指令,所述切换指令用于指示所述UE将服务所述UE的小区由所述当前小区切换到所述相邻小区;
    所述UE,还用于响应所述切换指令,启动所述无线承载,并向所述第二eNB发送用于指示小区切换完成指示消息;
    所述第二eNB,还用于接收所述小区切换完成指示消息。
  78. 根据权利要求76或77所述的系统,其特征在于,所述预切换指令具体用于指示所述UE根据下行定时发送所述随机接入前导码,所述预切换指令还包括用于发送所述随机接入前导码的物理随机接入信道PRACH时频资源。
  79. 根据权利要求78所述的系统,其特征在于,所述下行定时为所述当前小区的下行定时,所述PRACH时频资源为所述当前小区的资源,所述随机接入前导码是由所述第一eNB分配的;
    所述第一eNB,还用于向所述第二eNB发送发送所述随机接入前导码在所述PRACH时频资源中的时频位置标识以及所述索引标识;
    所述第二eNB,还用于接收所述随机接入前导码在所述PRACH时频资源中的时频位置标识以及所述索引标识。
  80. 根据权利要求78所述的系统,其特征在于,所述下行定时为所述相邻小区的下行定时,所述PRACH时频资源为所述相邻小区的资源,所述随机接入前导码是由所述第二eNB分配的,所述预切换确认消息包括所述随机接入前导码在所述PRACH时频资源中的时频位置标识、所述索引标识以及所述配置信息。
  81. 根据权利要求80所述的系统,其特征在于,所述预切换指令还包括目标间隔的间隔信息,所述目标间隔的间隔信息包括所述目标间隔的起始帧标识、所述目标间隔的子帧标识、所述目标间隔的时间长度以及所述目标间隔的周期中的至少一种。
  82. 根据权利要求76-81任一项所述的系统,其特征在于,所述预切换指令还用于指示所述UE使用所述UE与所述第一eNB间的密钥作为所述无线承载的密钥以及使用所述UE与所述第一eNB间的安全算法作为所述无线承载的安全算法。
  83. 根据权利要求82所述的系统,其特征在于,所述第一eNB,还用于向所述第二eNB发送所述UE与所述第一eNB间的密钥和所述UE与所述第一eNB间的安全算法;
    所述第二eNB,还用于接收所述UE与所述第一eNB间的密钥和所述UE与所述第一eNB间的安全算法。
PCT/CN2016/076848 2016-03-21 2016-03-21 一种小区的切换方法及设备、系统 WO2017161479A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680083688.1A CN108886734A (zh) 2016-03-21 2016-03-21 一种小区的切换方法及设备、系统
EP16894838.8A EP3419337B1 (en) 2016-03-21 2016-03-21 Cell handover method, apparatus and system
PCT/CN2016/076848 WO2017161479A1 (zh) 2016-03-21 2016-03-21 一种小区的切换方法及设备、系统
US16/137,054 US20190028942A1 (en) 2016-03-21 2018-09-20 Cell handover method and system, and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/076848 WO2017161479A1 (zh) 2016-03-21 2016-03-21 一种小区的切换方法及设备、系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/137,054 Continuation US20190028942A1 (en) 2016-03-21 2018-09-20 Cell handover method and system, and device

Publications (1)

Publication Number Publication Date
WO2017161479A1 true WO2017161479A1 (zh) 2017-09-28

Family

ID=59899844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076848 WO2017161479A1 (zh) 2016-03-21 2016-03-21 一种小区的切换方法及设备、系统

Country Status (4)

Country Link
US (1) US20190028942A1 (zh)
EP (1) EP3419337B1 (zh)
CN (1) CN108886734A (zh)
WO (1) WO2017161479A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018172488A1 (en) * 2017-03-24 2018-09-27 Sony Corporation Early handover preparation and early handover command
WO2020006670A1 (en) * 2018-07-02 2020-01-09 Nokia Shanghai Bell Co., Ltd. Performing overload control for random access channel

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11968570B2 (en) * 2016-09-17 2024-04-23 Qualcomm Incorporated Techniques for handovers in the presence of directional wireless beams
CN107919897B (zh) * 2016-10-09 2022-05-17 株式会社Ntt都科摩 上行随机接入时执行的波束确定方法、用户设备和基站
EP3574668B1 (en) * 2017-01-27 2022-08-03 Telefonaktiebolaget LM Ericsson (PUBL) Key change procedure
KR102414677B1 (ko) * 2017-12-14 2022-06-29 삼성전자주식회사 무선통신시스템에서 신호를 송수신하는 방법 및 장치
EP3741186A1 (en) * 2018-01-19 2020-11-25 Sony Corporation Method and apparatus for handoff of multiple bearers with differing quality of service levels in a wireless communication system
US11464045B2 (en) * 2018-05-07 2022-10-04 Nokia Technologies Oy Random access
WO2020120156A1 (en) * 2018-12-11 2020-06-18 Sony Corporation Communications device, infrastructure equipment, core network equipment and methods
CN111356188B (zh) * 2018-12-24 2022-11-18 海能达通信股份有限公司 一种终端的越区方法、通信终端及存储介质
WO2020164016A1 (zh) * 2019-02-13 2020-08-20 Oppo广东移动通信有限公司 小区切换的方法和设备
KR20200099420A (ko) 2019-02-14 2020-08-24 삼성전자주식회사 무선 통신 시스템에서 조건부 핸드오버의 자원 운용 방법 및 장치
WO2020252709A1 (zh) * 2019-06-19 2020-12-24 Oppo广东移动通信有限公司 无线通信的方法、网络设备和终端设备
CN112350808B (zh) * 2019-08-06 2022-04-05 华为技术有限公司 信号传输的方法与装置
WO2021092766A1 (en) * 2019-11-12 2021-05-20 Nokia Shanghai Bell Co., Ltd. Enhanced handover and timing advance alignment
EP4106404A4 (en) * 2020-02-25 2023-04-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. COMMUNICATION METHOD AND APPARATUS
CN114071609A (zh) * 2020-08-06 2022-02-18 北京三星通信技术研究有限公司 一种用于变更服务实体的方法及设备
CN114501558B (zh) * 2020-11-13 2023-11-28 大唐移动通信设备有限公司 一种信息传输、获取方法及装置
CN112469094A (zh) * 2020-11-16 2021-03-09 上海擎昆信息科技有限公司 网络切换方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047622A (zh) * 2006-03-29 2007-10-03 华为技术有限公司 一种对系统资源进行调度的方法
WO2011044996A1 (en) * 2009-10-12 2011-04-21 Alcatel Lucent Method and apparatus for handover management in a wireless communications network
CN102123457A (zh) * 2010-01-11 2011-07-13 中兴通讯股份有限公司 切换方法及终端
CN103428796A (zh) * 2012-05-21 2013-12-04 普天信息技术研究院有限公司 切换过程中确定目标基站的方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8218500B2 (en) * 2007-04-30 2012-07-10 Texas Instruments Incorporated Pre-synchronization method for hard handovers in wireless networks
US9380503B2 (en) * 2007-04-30 2016-06-28 Google Technology Holdings LLC Method and apparatus for handover in a wireless communication system
US20080268849A1 (en) * 2007-04-30 2008-10-30 Motorola, Inc. Method and apparatus for handover in a wireless communication system
CN106850174B (zh) * 2011-02-10 2020-10-16 三菱电机株式会社 通信系统
WO2017047839A1 (ko) * 2015-09-16 2017-03-23 엘지전자(주) 무선 통신 시스템에서 기지국과 데이터를 송수신하는 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047622A (zh) * 2006-03-29 2007-10-03 华为技术有限公司 一种对系统资源进行调度的方法
WO2011044996A1 (en) * 2009-10-12 2011-04-21 Alcatel Lucent Method and apparatus for handover management in a wireless communications network
CN102123457A (zh) * 2010-01-11 2011-07-13 中兴通讯股份有限公司 切换方法及终端
CN103428796A (zh) * 2012-05-21 2013-12-04 普天信息技术研究院有限公司 切换过程中确定目标基站的方法及装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018172488A1 (en) * 2017-03-24 2018-09-27 Sony Corporation Early handover preparation and early handover command
CN110463262A (zh) * 2017-03-24 2019-11-15 索尼公司 早期切换准备和早期切换命令
CN110463262B (zh) * 2017-03-24 2021-12-10 康维达无线有限责任公司 早期切换准备和早期切换命令
US11234170B2 (en) 2017-03-24 2022-01-25 Convida Wireless, Llc Early handover preparation and early handover command
WO2020006670A1 (en) * 2018-07-02 2020-01-09 Nokia Shanghai Bell Co., Ltd. Performing overload control for random access channel
US11672009B2 (en) 2018-07-02 2023-06-06 Nokia Technologies Oy Performing overload control for random access channel

Also Published As

Publication number Publication date
CN108886734A (zh) 2018-11-23
EP3419337B1 (en) 2019-11-27
EP3419337A4 (en) 2018-12-26
EP3419337A1 (en) 2018-12-26
US20190028942A1 (en) 2019-01-24

Similar Documents

Publication Publication Date Title
WO2017161479A1 (zh) 一种小区的切换方法及设备、系统
US20240015620A1 (en) Signaling optimization method and device
US10306521B2 (en) Method and apparatus for performing handover of user equipment in wireless communication system supporting dual connectivity
JP6637617B2 (ja) 通信方法、ネットワーク側デバイス、およびユーザ端末
CN104272777B (zh) 移动通信系统中的终端、基站、及其方法
CN110769473B (zh) 本地区域无线网中低开销移动性管理方法以及用户设备
US11895545B2 (en) Suspend-resume in conditional handover
EP2273818B1 (en) Key derivation
CN106063328B (zh) 一种切换装置及方法
EP3809756B1 (en) Mobility management methods, apparatus, communications system and computer-readable storage medium
KR101871090B1 (ko) Dc (이중 접속성) 를 위한 장치, 시스템 및 방법
EP3062555B1 (en) Cell handover method and base station
EP2763461B1 (en) Radio resource control connection reestablishment method
WO2015140848A1 (ja) 制御装置、基地局装置、無線端末、及び隣接関係テーブルの更新方法
US20150195762A1 (en) Handover failure detection device, handover parameter adjustment device, and handover optimization system
CN107872851A (zh) 切换方法、系统以及基站
CN114557035A (zh) 切换命令中的有条件切换
KR20150020031A (ko) 다중 기지국 연결 기반의 무선 통신 시스템에서의 무선 링크 실패 처리 방법 및 그 장치
JP2015527777A (ja) ソース側,ターゲット側切替通信装置、通信システム及びコール切替方法
US20220174593A1 (en) Systems and methods for determining the validity of idle mode measurements

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2016894838

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016894838

Country of ref document: EP

Effective date: 20180920

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894838

Country of ref document: EP

Kind code of ref document: A1