WO2017159976A1 - Putrescine-producing microorganism and method for producing putrescine using same - Google Patents

Putrescine-producing microorganism and method for producing putrescine using same Download PDF

Info

Publication number
WO2017159976A1
WO2017159976A1 PCT/KR2017/000134 KR2017000134W WO2017159976A1 WO 2017159976 A1 WO2017159976 A1 WO 2017159976A1 KR 2017000134 W KR2017000134 W KR 2017000134W WO 2017159976 A1 WO2017159976 A1 WO 2017159976A1
Authority
WO
WIPO (PCT)
Prior art keywords
putrescine
microorganism
activity
cbfdh
strain
Prior art date
Application number
PCT/KR2017/000134
Other languages
French (fr)
Korean (ko)
Inventor
이나훔
이재헌
리홍선
문준옥
엄혜원
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to NZ745668A priority Critical patent/NZ745668A/en
Priority to EP17766877.9A priority patent/EP3431605A4/en
Priority to US16/083,193 priority patent/US11124812B2/en
Priority to RU2018134282A priority patent/RU2727666C2/en
Priority to JP2018545348A priority patent/JP6786616B2/en
Priority to CA3017944A priority patent/CA3017944C/en
Priority to SG11201807791TA priority patent/SG11201807791TA/en
Priority to CN201780017515.4A priority patent/CN109072246B/en
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Priority to MX2018010929A priority patent/MX2018010929A/en
Priority to BR112018068816-9A priority patent/BR112018068816B1/en
Priority to AU2017232873A priority patent/AU2017232873A1/en
Publication of WO2017159976A1 publication Critical patent/WO2017159976A1/en
Priority to PH12018501981A priority patent/PH12018501981A1/en
Priority to AU2020250273A priority patent/AU2020250273B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/001Amines; Imines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01002Formate dehydrogenase (1.2.1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01017Ornithine decarboxylase (4.1.1.17)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium

Definitions

  • the present application relates to a microorganism producing putrescine and a method of producing putrescine using the same.
  • Putrescine is known as one of the raw materials of polyamide. Putrescine is produced by chemical methods using petroleum compounds as a raw material, and putrescine fermentation production technology using genetic engineering technology and fermentation technology has been studied.
  • a strain capable of producing putrescine by manipulating the metabolic pathway of a strain of Corynebacterium is known in Korea (Korean Patent Publication No. 2014-0115244, International Publication WO2014-148743).
  • formic acid dehydrogenase is an enzyme that catalyzes the oxidation of formic acid to reduce the second substrate, NAD + , and to produce NADH and CO 2 as a result.
  • NADH is known to be an important substance throughout the metabolism of strains. This is because it is possible to increase the reducing power in the strain through the increase of NADH may be advantageous to the production of the target material.
  • the present inventors have made an effort to increase the production of putrescine in a putrescine producing strain, resulting in overexpression of formic acid dehydrogenase to increase the level of NADH and ATP in the strain, thereby increasing the putrescine production.
  • the present inventors have made an effort to increase the production of putrescine in a putrescine producing strain, resulting in overexpression of formic acid dehydrogenase to increase the level of NADH and ATP in the strain, thereby increasing the putrescine production. was completed.
  • One object of the present application is to provide a microorganism of the genus Corynebacterium producing putrescine with increased activity of formate dehydrogenase (Fdh).
  • Another object of the present invention is to provide a method for producing putrescine using the microorganism.
  • the microorganism of the genus Corynebacterium with improved putrescine production capacity is modified to increase the activity of formic acid dehydrogenase, thereby increasing NADH and ATP production, thereby increasing the production of putrescine, thereby increasing the mass production of putrescine. Can be effectively used.
  • FIG. 1 is an SDS-PAGE gel photograph showing the results of overexpressing CbFdh using E. coli host.
  • Column 1 is the result of protein in cell pulverized solution expressed for 24 hours at 18 °C using E. coli BL21 DE3.
  • Row 2 is the result of soluble protein expressed for 24 hours at 18 °C using E. coli BL21 DE3.
  • Row 3 is the result of protein in cell pulverized solution expressed for 8 hours at 30 ° C. using E. coli BL21 DE3.
  • Row 4 is the result of soluble protein expressed for 8 hours at 30 °C using E. coli BL21 DE3.
  • Row 5 is the result of the protein of the cell grinding liquid expressed by E. coli Rosetta DE3 for 24 hours at 18 °C conditions.
  • Row 6 is the result of soluble protein expressed for 24 hours at 18 °C using E. coli Rosetta DE3.
  • Column 7 is the result of protein in the cell pulverized solution expressed for 8 hours at 30 °C using E. coli Rosetta DE3.
  • Column 8 is the result of soluble protein expressed for 8 hours at 30 °C using E. coli Rosetta DE3.
  • CbFdh is a sample of 10% addition of soluble protein overexpressing formic acid dehydrogenase at 30 ° C. using E. coli BL21 DE3. In the case of CbFdh, it was confirmed that NADH, which is a reactant of CbFdh, continuously increased over time.
  • the control group is a strain in which the pSCEC_CJ7 vector is inserted into a Corynebacterium glutamicum strain.
  • CbFdh is a strain into which the pSCEC_CJ7_CbFdh plasmid capable of expressing the C. boidinii- derived formic acid dehydrogenase gene is inserted. 0, 2, and 10 g / l formic acid were added to the culture, and the change in formic acid concentration of the control group and CbFdh was observed.
  • the present application provides a microorganism of the genus Corynebacterium for producing putrescine, the activity of formate dehydrogenase (Fdh) is increased.
  • Fdh formate dehydrogenase
  • the formic acid dehydrogenase is not limited to its origin or sequence because a difference may exist in the amino acid sequence of a protein exhibiting activity depending on the species or strain of the microorganism.
  • Fdh is a serifoliopsis sub vermispora ( Ceriporiopsis) subvermispora), a bacterium methyl Solarium X Torr quenched switch (Methylobacterium extorquens ), Methylosinus tricosporium trichosporium), the queue-free father Douce oxalato tea kusu (Cupriavidus oxalaticus ), Candida methylica , methylotrophic bacterium , Ancylobacter aquaticus , Komagataella pastoris pastoris ), Mycobacterium vaccae , Arabidopsis thaliana , etc., recently known Corynebacterium glutamicum (Microbiology (2012), 158, 2428-2439) May be derived. Specifically, it may be derived from Candida boidinii , but is not limited thereto.
  • Fdh herein is a protein comprising the amino acid sequence of SEQ ID NO: 10, or 70% or more, specifically 80% or more, more specifically 90% or more, even more specifically 95% or more of the sequence and the sequence Specifically, as the amino acid sequence showing a homology of 99% or more, any protein substantially having activity as formic acid dehydrogenase may be included without limitation.
  • sequence is homologous to the sequence and has an amino acid sequence having a biological activity substantially the same as or corresponding to that of the protein of SEQ ID NO: 10, the case of some sequences having an amino acid sequence deleted, modified, substituted or added is also the scope of the present application. Inclusion in is self-evident.
  • the polynucleotide encoding the Fdh herein has at least 70%, in particular at least 80%, more specifically at least 90%, even more than the amino acid sequence of SEQ ID NO: 10 or the sequence as long as it has similar activity as the Fdh protein. Specifically, it may include a polynucleotide encoding a protein exhibiting homology of at least 95%, most specifically at least 99%. For example, it may include the nucleotide sequence of SEQ ID NO: 9.
  • polynucleotide encoding the Fdh herein may be hybridized under stringent conditions with a nucleotide sequence of SEQ ID NO: 9 or a probe derived from the nucleotide sequence, and may be a variant that encodes a normally functioning Fdh. Can be.
  • homology means a degree of agreement with a given amino acid sequence or base sequence and may be expressed as a percentage.
  • homologous sequences thereof having the same or similar activity as a given amino acid sequence or base sequence are designated as "% homology”.
  • % homology For example, using standard software that calculates parameters such as score, identity and similarity, in particular BLAST 2.0, or by hybridization experiments used under defined stringent conditions Appropriate hybridization conditions, which are defined within the scope of the art, are well known to those skilled in the art, and are well known to those skilled in the art (e.g., J.
  • stringent conditions refers to conditions that enable specific hybridization between polynucleotides. For example, such conditions are described specifically in the literature (eg, J. Sambrook et al., Homology).
  • the term "increase in activity” means that the activity is improved compared to the intrinsic activity or the activity before the modification of the microorganism.
  • the increase in activity may include both introducing foreign Fdhs and enhancing intrinsic Fdh activity. Specifically, it may mean that the activity of formic acid dehydrogenase is increased and putrescine production capacity is increased.
  • the increase in the number of copies of the polynucleotide 1) is not particularly limited thereto, but may be performed in a form operably linked to a vector or by insertion into a chromosome in a host cell.
  • a vector capable of replicating and functioning independently of the host, to which the polynucleotide encoding the enzyme of the present application is operably linked can be performed by introducing into a host cell.
  • a vector capable of inserting the polynucleotide into a chromosome in a host cell, to which the polynucleotide is operably linked is introduced into the host cell to increase the copy number of the polynucleotide in the chromosome of the host cell. have.
  • the copy number may be carried out by introducing a foreign polynucleotide exhibiting the activity of the enzyme or a codon optimized variant polynucleotide of the polynucleotide.
  • Introduction of the foreign polynucleotide sequence may be performed by introducing into the host cell a foreign polynucleotide encoding an enzyme that exhibits the same / similar activity as the enzyme.
  • the foreign polynucleotide can be used without limitation in its origin or sequence as long as it exhibits the same / similar activity as the enzyme.
  • the foreign polynucleotide may be introduced into the host cell by optimizing its codons to achieve optimized transcription and translation in the host cell. The introduction can be carried out by a person skilled in the art to appropriately select a known transformation method, the expression of the introduced polynucleotide in the host cell can be produced by the enzyme can be increased its activity.
  • 2) modification of the expression control sequence to increase the expression of the polynucleotide is not particularly limited, but deletion, insertion, non-conservative or conservative substitution of these nucleic acid sequences to further enhance the activity of the expression control sequence or these It can be carried out by inducing a variation in the sequence in combination with or by replacing with a nucleic acid sequence having a stronger activity.
  • the expression control sequence may include, but is not particularly limited to, a promoter, an operator sequence, a sequence encoding a ribosomal binding site, a sequence that controls the termination of transcription and translation, and the like.
  • a strong heterologous promoter may be linked to the top of the polynucleotide expression unit, but examples of the strong promoter include a CJ7 promoter, a lysCP1 promoter, an EF-Tu promoter, a groEL promoter, an aceA or aceB promoter, and the like. More specifically, the expression rate of the polynucleotide encoding the enzyme is operably linked to the lysCP1 promoter (WO2009 / 096689) or the CJ7 promoter (Korean Patent No. 0620092 and WO2006 / 065095), which are promoters of the genus Corynebacterium. It can be improved, but is not limited thereto.
  • modification of the polynucleotide sequence on the chromosome is not particularly limited, and expression control sequences by deletion, insertion, non-conservative or conservative substitution, or a combination thereof, to further enhance the activity of the polynucleotide sequence. This can be done by inducing a phase shift or by replacing with a polynucleotide sequence that has been modified to have stronger activity.
  • the term "vector” refers to a DNA preparation containing a nucleotide sequence of a polynucleotide encoding said target protein operably linked to a suitable regulatory sequence to enable expression of the target protein in a suitable host.
  • the regulatory sequence may comprise a promoter capable of initiating transcription, any operator sequence for regulating such transcription, a sequence encoding a suitable mRNA ribosomal binding site, and a sequence regulating termination of transcription and translation. After being transformed into a suitable host cell, the vector can be replicated or function independent of the host genome and integrated into the genome itself.
  • the vector used herein is not particularly limited as long as it can replicate in a host cell, and any vector known in the art may be used.
  • Examples of commonly used vectors include natural or recombinant plasmids, cosmids, viruses and bacteriophages.
  • pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, Charon21A, etc. can be used as a phage vector or cosmid vector
  • pBR-based, pUC-based, pBluescriptII-based, etc. pGEM-based, pTZ-based, pCL-based and pET-based and the like can be used.
  • pDZ, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC vector and the like can be used.
  • a polynucleotide encoding a target protein in a chromosome can be replaced with a mutated polynucleotide through an intracellular chromosome insertion vector. Insertion of the polynucleotide into the chromosome can be made by any method known in the art, such as, but not limited to, homologous recombination.
  • transformation herein means introducing a vector comprising a polynucleotide encoding a target protein into a host cell so that the protein encoded by the polynucleotide can be expressed in the host cell.
  • the transformed polynucleotides may include all of them, as long as they can be expressed in the host cell, either inserted into the chromosome of the host cell or located outside the chromosome.
  • the polynucleotide also includes DNA and RNA encoding the target protein.
  • the polynucleotide may be introduced in any form as long as it can be expressed by being introduced into a host cell.
  • the polynucleotide may be introduced into a host cell in the form of an expression cassette, which is a gene construct containing all elements necessary for self expression.
  • the expression cassette may include a promoter, a transcription termination signal, a ribosomal binding site, and a translation termination signal, which are typically operably linked to the polynucleotide.
  • the expression cassette may be in the form of an expression vector capable of self replication.
  • the polynucleotide may be introduced into the host cell in its own form and operably linked with a sequence required for expression in the host cell, but is not limited thereto.
  • operably linked means that the gene sequence is functionally linked with a promoter sequence for initiating and mediating the transcription of a polynucleotide encoding a protein of interest herein.
  • microorganisms that produce putrescine or "microorganisms having putrescine-producing ability” means that microorganisms having putrescine-producing ability or putrescine in a parent strain lacking the production capacity of putrescine are known. Means a microorganism given production capacity.
  • the microorganism producing the putrescine is not particularly limited thereto, for example, acetylglutamate synthase or acetylornithine, which converts glutamate to acetylglutamate to enhance the biosynthetic pathway from glutamate to ornithine.
  • Ornithine acetyltransferase (ArgJ), which converts to ornithine, acetylglutamate kinase (ArgB), which converts acetylglutamate to acetylglutamyl phosphate, and acetylglutamate semialdehyde (N acetyl gamma glutamyl phosphate reductase (ArgC) to convert to -acetylglutamate semialdehyde) and acetylornithine aminotransferase (ArgD) to convert acetylglutamate semialdehyde into acetylornithine (N-acetylornithine) Gender is deformed so as to increase than this may be increased productivity of ornithine is used as a raw material gods putrescine biosynthesis.
  • the microorganism may be ornithine carbamoyltransfrase (ArgF), a protein that exhibits glutamate exporter activity, and / or an acetyltransfer that acetylates putrescine, which is involved in arginine synthesis in ornithine.
  • the activity of the lagase may be modified to inactivate the intrinsic activity and / or modified to introduce the activity of ornithine decarboxylase (ODC).
  • ODC ornithine decarboxylase
  • the ornithine carbamoyl transferase (ArgF), the protein showing glutamate exporter activity, ornithine decarboxylase (ODC), ornithine acetyltransferase (ArgJ), acetylglutamate Kinases (ArgB), acetyl gamma glutamyl phosphate reductase (ArgC), and acetylornithine aminotransferase (ArgD) are not particularly limited, but are specifically SEQ ID NOs: 11, 12, 13, 14, respectively. , At least 70%, specifically at least 80%, more specifically at least 90%, even more specifically at least 95%, most specifically at least 99% homology It may include an amino acid sequence having a.
  • the acetyltransferase for acetylating putrescine is not particularly limited, but specifically the amino acid sequence represented by SEQ ID NO: 18 or 19 or 70% or more, specifically 80% or more, more specifically Amino acid sequences having at least 90%, more specifically at least 95% and most specifically at least 99% homology.
  • the activity of the protein exhibiting putrescine releasing activity may be increased compared to the intrinsic activity, but is not limited thereto.
  • a protein exhibiting putrescine excretion activity is not particularly limited, but specifically, an amino acid sequence of SEQ ID NO: 20 or 21 or 70% or more thereof, specifically 80% or more, more specifically 90% or more And even more specifically at least 95%, most specifically at least 99% homology.
  • the microorganism of the present application is a microorganism having a putrescine-producing ability, and may include a prokaryotic microorganism in which the Fdh protein is expressed, and examples thereof include Escherichia sp. And Shigella sp. ), Citrobacter sp., Salmonella sp., Enterobacter sp. Yersinia sp., Klebsiella sp.
  • the microorganism of the present application may be a microorganism belonging to the genus Corynebacterium or Escherichia, more specifically Corynebacterium glutamicum ( Corynebacterium glutamicum ), but is not limited thereto.
  • the present application provides the use of the Corynebacterium microorganism for producing putrescine.
  • the microorganism is a microorganism in which the activity of formate dehydrogenase (Fdh) is increased compared to the activity before modification, and the use may be for producing putrescine.
  • Fdh formate dehydrogenase
  • the present invention comprises the steps of (a) culturing in the medium a microorganism of the genus Corynebacterium producing putrescine with increased activity of formate dehydrogenase (Fdh); And (b) recovering putrescine from the microorganism or medium obtained in the step.
  • Microorganisms having improved formic acid dehydrogenase and putrescine production capacity have been described above.
  • the step of culturing the microorganism is not particularly limited thereto, and may be performed by a known batch culture method, continuous culture method, fed-batch culture method, or the like.
  • the culture conditions are not particularly limited thereto, but using a basic compound (eg, sodium hydroxide, potassium hydroxide or ammonia) or an acidic compound (eg, phosphoric acid or sulfuric acid), an appropriate pH (eg, pH 5 to 9, specifically, Can adjust pH 6 to 8, most specifically pH 6.8), and maintain an aerobic condition by introducing oxygen or oxygen-containing gas mixture into the culture.
  • the culture temperature may be maintained at 20 to 45 °C, specifically 25 to 40 °C, can be incubated for about 10 to 160 hours, but is not limited thereto. Putrescine produced by the culture may be secreted into the medium or remain in the cells.
  • the culture medium used includes sugars and carbohydrates (e.g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose), fats and fats (e.g. soybean oil, sunflower seeds) as carbon sources.
  • sugars and carbohydrates e.g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose
  • fats and fats e.g. soybean oil, sunflower seeds
  • fatty acids e.g. palmitic acid, stearic acid and linoleic acid
  • alcohols e.g. glycerol and ethanol
  • organic acids e.g. acetic acid
  • Nitrogen sources include nitrogen-containing organic compounds (eg peptone, yeast extract, gravy, malt extract, corn steep liquor, soybean meal and urea), or inorganic compounds (eg ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and Ammonium nitrate) and the like can be used individually or in combination, but is not limited thereto.
  • organic compounds eg peptone, yeast extract, gravy, malt extract, corn steep liquor, soybean meal and urea
  • inorganic compounds eg ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and Ammonium nitrate
  • As a source of phosphorus, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, a corresponding sodium-containing salt, and the like may be used individually or in combination, but is not limited thereto.
  • the medium may also contain essential growth-promoting substances such as other metal salts (eg magnesium sul
  • the method of recovering putrescine produced in the culturing step of the present application may collect the desired amino acid from the culture medium using a suitable method known in the art according to the culture method. For example, centrifugation, filtration, anion exchange chromatography, crystallization and HPLC can be used, and the desired putrescine can be recovered from the medium or microorganism using any suitable method known in the art.
  • CbFdh Candida To overexpress boidinii formate dehydrogenase in E. coli Candida boidinii
  • KCTC17776 strain was cultured to obtain genomic DNA.
  • the formic acid dehydrogenase gene (CbFdh) (SEQ ID NO: 9) was inserted into the pET28a vector using the primers of SEQ ID NOs: 1 and 2.
  • PCR conditions were repeated 30 times for denaturation 95 °C 30 seconds, annealing (annealing) 55 °C 30 seconds, extension (72 °C) 1 minute. After electrophoresis on a 1.0% agarose gel from the PCR result, a 1.1 kb band was eluted and purified. NcoI and XhoI were added to the purified PCR product and the pET28a vector solution sample, followed by restriction enzyme treatment at 37 ° C. for 4 hours. Purified nucleic acid fragments were obtained using kit (GeneAll, Seoul).
  • Each of the obtained 1 mg CbFdh fragment and pET28a vector fragment were ligated using T4 ligase and then electroporated at 2500 V to the E. coli DH5 ⁇ strain.
  • the recovered strains were plated in LB plate medium containing 50 ⁇ g / L spectinomycin and cultured at 37 ° C. for 1 day, and then strains showing resistance to spectinomycin were selected.
  • the recovered strains were plated in LB plate medium containing 50 ⁇ g / L kanamycin and cultured at 37 ° C. for 1 day, and the strains showing resistance were selected.
  • the selected strain was PCR under the above conditions using primers of SEQ ID NOs: 3 and 4 of the T7 promoter and terminator sequence, and then inserted into the CbFdh by confirming that the gene size was observed to be 1.3 kb on 1.0% agarose gel. It was confirmed.
  • the strain in which the insertion of CbFdh was confirmed was placed in 50 ml / ml of ampicillin in 3 ml of LB solution medium and incubated at 37 ° C. for 12 hours. Cultured strains were placed in 50 ml LB containing antibiotics and cultured at 37 ° C., and the optical luminosity (600 nm wavelength) became 0.8. 0.2 mM IPTG was added to induce expression at various temperature / time conditions. The cultured strains were washed and cells were crushed using a sonicator. After grinding, the SDS-PAGE gel result confirmed that CbFdh (41kDa, SEQ ID NO: 10) was overexpressed (FIG. 1).
  • CbFdh 100 mM phosphate buffer (pH 7.2) was used as reaction buffer. 10 mM NAD + and 0.1% sodium formate were added to the buffer solution as a control. On the other hand, the CbFdh overexpressing cell pulverized solution confirmed in Example 1-1) was added to the control group at a 10% rate to evaluate the activity of CbFdh. The reaction solution was checked for numerical changes at 339 nm wavelength using a 96 well plate reader. Light of 340 nm wavelength is known to be selectively absorbed by NADH.
  • Example 2 Preparation of microorganisms of the genus CbFdh expressing Corynebacterium
  • PCR was performed using primer pairs of SEQ ID NOs: 5 and 6 as a template using genomic DNA of Corynebacterium glutamicum ATCC13032 to obtain a gene including the CJ7 promoter sequence.
  • the PCR reaction was performed by repeating the procedure of denaturation 95 °C 30 seconds, annealing 55 °C 30 seconds and elongation 72 °C 30 seconds 30 times.
  • PCR nucleic acid product having a size of 400 bp (base pair) after electrophoresis was confirmed using 1.5% agarose gel. From the obtained PCR result, a purified CJ7 promoter nucleic acid fragment was obtained using a PCR prep kit (GeneAll, Seoul).
  • BamHI and XbaI were added to the purified CJ7 nucleic acid fragment and the pSCEC vector solution sample, followed by restriction enzyme treatment at 37 ° C. for 4 hours. Then, after electrophoresis, a 1.5% agarose gel was used to cut the CJ7 promoter and pSCEC vector-sized nucleic acid fragments having a size of 400 bp. Nucleic acid fragments were obtained. Each 1 mg of CJ7 promoter fragment and pSCEC vector were linked using T4 ligase and then electroporated to 2500 V in E. coli DH5 ⁇ strain.
  • Strains recovered after electroporation were plated in LB plate medium containing 50 ⁇ g / L spectinomycin and cultured at 37 ° C. for 1 day, and 18 strains showing resistance to spectinomycin were selected. 18 selected strains were identified using PCR primers of SEQ ID NOs: 5 and 6, and PCR products having a size of 400 bp after colony PCR. The production of pSCEC_CJ7 having a CJ7 promoter was confirmed from colony PCR results.
  • the CbFdh PCR product that can be inserted into pSCEC_CJ7 was obtained using the primers of SEQ ID NOs: 7 and 8 in the same manner as the CbFdh PCR product obtaining condition obtained in Example 1 above.
  • PSCEC_CJ7 and CbFdh PCR products treated with restriction enzymes XbaI and SalI were linked to the E. coli DH5 ⁇ strain.
  • PSCEC_CJ7_CbFdh was obtained from the selected strains and electroporated at 2500 V in the microorganisms of the Corynebacterium genus, the putrescine-producing strain KCCM11240P (Korean Patent No. 2013-0082478) and KCCM11401P (Korean Patent No. 2014-0017243). (electrophoration).
  • Colonies were cultured by plating the strains obtained by electroporation in BHIS plate medium (Braine heart infusion 37 g / l, sorbitol 91 g / l, agar 2%) containing 50 ⁇ g / l spectinomycin. Formed.
  • the selected strains were CM medium containing 50 ⁇ g / l spectinomycin (glucose 10 g / l, polypeptone 10 g / l, yeast extract 5 g / l, beef extract 5 g / l, NaCl 2.5 g / 1 L, Urea 2 g / L, pH 6.8) was finally selected by shaking culture.
  • KCCM11240P strain with pSCEC_CJ7_CbFdh inserted was named KCCM11240P / pSCEC_CJ7_CbFdh (CC04-0081) and KCCM11240P strain with pSCEC_CJ7 was named KCCM11240P / pSCEC_CJ7.
  • the KCCM11401P strain into which pSCEC_CJ7_CbFdh was inserted was named KCCM11401P / pSCEC_CJ7_CbFdh
  • the KCCM11401P strain into which pSCEC_CJ7 was inserted was named KCCM11401P / pSCEC_CJ7.
  • the CC04-0081 strain was deposited with the accession number KCCM11798P to the Korea Culture Center of Microorganisms (KCCM), an international depository institution under the Budapest Treaty on January 8, 2016.
  • KCCM Korea Culture Center of Microorganisms
  • Corynebacterium glutamicum mutants containing KCCM11401PJ / CCEC11401PJJ, respectively containing Flat media (glucose 1%, polypeptone 1%, yeast extract 0.5%, beef extract 0.5%, NaCl 0.25%, urea 0.2%, 50% NaOH 100 ⁇ l, 50 ⁇ g spectinomycin, agar 2%, pH 6.8, 1 L Base plate) and incubated for 24 hours at 30 °C.
  • titer medium Glucose 8%, soy protein 0.25%, corn solid 0.50%, (NH 4 ) 2 SO 4 4%, KH 2 PO 4 0.1%, MgSO 4 ⁇ 7H 2 O 0.05%, urea 0.15%, biotin 100 ⁇ g, thiamine hydrochloride 3 mg, calcium-pantothenic acid 3 mg, nicotinamide 3 mg, CaCO 3 5%, 50 ⁇ g spectinomycin, based on 1 L) It was incubated at 200 rpm for 30 hours for 98 hours for the KCCM11240P / pSCEC_CJ7_CbFdh and KCCM11240P / pSCEC_CJ7 strains, and 104 hours for the KCCM11401P / pSCEC_CJ7_CbFdh and KCCM11401P / pSCEC_CJ7 strains.
  • titer medium Glucose 8%, soy protein 0.2
  • the putrescine concentration produced from each culture was measured and the results are shown in Table 1 below.
  • Putrescine concentration present in the culture was analyzed using HPLC. As shown in Table 1, in the case of KCCM11240P / pSCEC_CJ7 strain, putrescine production was not significantly changed depending on the presence of 5 g / L formic acid. On the other hand, the strain introduced KCCM11240P / pSCEC_CJ7_CbFdh was confirmed to increase the production more than 7% compared to the KCCM11240P / pSCEC_CJ7 strain regardless of the presence or absence of 5g / l formic acid. It was confirmed that putrescine production of the Fdh-enhanced strain was increased with or without formic acid.
  • the transformed strain in which formic acid dehydrogenase (CbFdh) was introduced into the putrescine producing strain was confirmed to further increase the putrescine production, which is an effect regardless of the addition of formic acid. Accordingly, the present invention is expected to be able to efficiently mass-produce putrescine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present application relates to a putrescine-producing microorganism in which the activity of formate dehydrogenase is activated, and a method for producing putrescine using the same.

Description

퓨트레신을 생산하는 미생물 및 이를 이용한 퓨트레신 생산 방법 Microorganisms that produce putrescine and methods for producing putrescine using the same
본원은 퓨트레신을 생산하는 미생물 및 이를 이용하여 퓨트레신을 생산하는 방법에 관한 것이다.The present application relates to a microorganism producing putrescine and a method of producing putrescine using the same.
퓨트레신은 폴리아미드의 원료 물질 중 하나로 알려져 있다. 퓨트레신은 현재까지 석유화합물을 원료물질로 하는 화학적 방법으로 생산되며, 유전자 조작 기술 및 발효 기술을 이용한 퓨트레신 발효 생산 기술이 연구되고 있다. Putrescine is known as one of the raw materials of polyamide. Putrescine is produced by chemical methods using petroleum compounds as a raw material, and putrescine fermentation production technology using genetic engineering technology and fermentation technology has been studied.
예를 들어, 코리네박테리움 속 균주의 대사 경로를 조작한 퓨트레신 생산이 가능한 균주가 기공지 되어 있다 (대한민국 공개특허 제2014-0115244호, 국제공개 WO2014-148743호). For example, a strain capable of producing putrescine by manipulating the metabolic pathway of a strain of Corynebacterium is known in Korea (Korean Patent Publication No. 2014-0115244, International Publication WO2014-148743).
한편, 포름산 탈수소효소는 포름산의 산화를 촉매시켜 두 번째 기질인 NAD+를 환원시키고 결과물로 NADH와 CO2를 생성하는 효소이다. NADH는 균주의 대사 전반에 걸친 중요한 물질로 알려져 있다. NADH 증가를 통해 균주 내 환원력을 증가시킬 수 있어서 목적 물질 생산에 유리할 수 있기 때문이다.On the other hand, formic acid dehydrogenase is an enzyme that catalyzes the oxidation of formic acid to reduce the second substrate, NAD + , and to produce NADH and CO 2 as a result. NADH is known to be an important substance throughout the metabolism of strains. This is because it is possible to increase the reducing power in the strain through the increase of NADH may be advantageous to the production of the target material.
포름산 탈수소효소를 이용하여 NADH를 강화시켜, 혐기 조건에서 숙신산 및 바이오 알코올을 생산하는 방법이 공지되어 있다. 숙신산은 혐기 발효 조건에서 환원성 TCA (reverse TCA) 경로를 이용하여 생산이 가능하다. 환원성 TCA 경로에서 NADH 양은 숙신산 생산과 직접적인 관련성을 가지고 있으며, 옥살로아세트산 (oxaloacetate)으로부터 숙신산 경로까지 2 몰의 NADH가 소모된다. 실제로 포도당으로부터 숙신산을 혐기 조건에서 생산할 때 FDH를 강화시키면 20 % 이상의 수율이 증가되는 것으로 보고된바 있다 (Appl Environ Microbiol., 2012, 78(9): 3325-3337). 그러나, 숙신산과는 달리 퓨트레신 생합성 경로에서는 NADH가 직접적인 기질로 사용되지 않으며, 포름산 탈수소효소와 퓨트레신 생산과의 관련성에 대해서는 보고된 바 없다.It is known to formic NADH using formic acid dehydrogenase to produce succinic acid and bioalcohol under anaerobic conditions. Succinic acid can be produced using the reverse TCA route under anaerobic fermentation conditions. The amount of NADH in the reducing TCA pathway is directly related to succinic acid production, and 2 moles of NADH are consumed from the oxaloacetate to the succinic acid pathway. Indeed, the production of succinic acid from glucose in anaerobic conditions has been reported to increase the yield of more than 20% (Appl Environ Microbiol., 2012, 78 (9): 3325-3337). However, unlike succinic acid, NADH is not used as a direct substrate in the putrescine biosynthetic pathway, and no association has been reported between formic acid dehydrogenase and putrescine production.
본 발명자들은 퓨트레신 생산 균주에서 퓨트레신의 생산을 증가시키기 위해 예의 노력한 결과, 포름산 탈수소효소를 과발현시켜 균주 내 NADH 및 ATP 수준을 증가시키고, 이를 통해 퓨트레신 생산이 증가하는 것을 확인함으로써 본원을 완성하였다.The present inventors have made an effort to increase the production of putrescine in a putrescine producing strain, resulting in overexpression of formic acid dehydrogenase to increase the level of NADH and ATP in the strain, thereby increasing the putrescine production. Was completed.
본원의 하나의 목적은 포름산 탈수소효소 (formate dehydrogenase, Fdh)의 활성이 증가된, 퓨트레신을 생산하는 코리네박테리움 속 미생물을 제공하는 것이다.One object of the present application is to provide a microorganism of the genus Corynebacterium producing putrescine with increased activity of formate dehydrogenase (Fdh).
본원의 다른 목적은 상기 미생물을 이용하여 퓨트레신을 생산하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing putrescine using the microorganism.
본원의 퓨트레신 생산능이 향상된 코리네박테리움 속 미생물은 포름산 탈수소효소의 활성이 증가되도록 변형되어 NADH 및 ATP 생성이 증가되며, 이를 통해 퓨트레신 생산을 증가시킬 수 있어 퓨트레신의 대량 생산에 효과적으로 활용될 수 있다.The microorganism of the genus Corynebacterium with improved putrescine production capacity is modified to increase the activity of formic acid dehydrogenase, thereby increasing NADH and ATP production, thereby increasing the production of putrescine, thereby increasing the mass production of putrescine. Can be effectively used.
도 1은 대장균 숙주를 이용하여 CbFdh를 과발현시킨 결과를 보여주는 SDS-PAGE 겔 사진이다. 1 열은 대장균 BL21 DE3를 이용하여 18 ℃ 조건에서 24 시간 발현시킨 세포 분쇄액상의 단백질 결과이다. 2 열은 대장균 BL21 DE3를 이용하여 18 ℃ 조건에서 24 시간 발현시킨 가용성 단백질 결과이다. 3 열은 대장균 BL21 DE3를 이용하여 30 ℃ 조건에서 8 시간 발현시킨 세포 분쇄액상의 단백질 결과이다. 4 열은 대장균 BL21 DE3를 이용하여 30 ℃ 조건에서 8 시간 발현시킨 가용성 단백질 결과이다. 5 열은 대장균 Rosetta DE3를 이용하여 18 ℃ 조건에서 24 시간 발현시킨 세포 분쇄액상의 단백질 결과이다. 6 열은 대장균 Rosetta DE3를 이용하여 18 ℃ 조건에서 24 시간 발현시킨 가용성 단백질 결과이다. 7 열은 대장균 Rosetta DE3를 이용하여 30 ℃ 조건에서 8 시간 발현시킨 세포 분쇄액상의 단백질 결과이다. 8 열은 대장균 Rosetta DE3를 이용하여 30 ℃ 조건에서 8 시간 발현시킨 가용성 단백질 결과이다.1 is an SDS-PAGE gel photograph showing the results of overexpressing CbFdh using E. coli host. Column 1 is the result of protein in cell pulverized solution expressed for 24 hours at 18 ℃ using E. coli BL21 DE3. Row 2 is the result of soluble protein expressed for 24 hours at 18 ℃ using E. coli BL21 DE3. Row 3 is the result of protein in cell pulverized solution expressed for 8 hours at 30 ° C. using E. coli BL21 DE3. Row 4 is the result of soluble protein expressed for 8 hours at 30 ℃ using E. coli BL21 DE3. Row 5 is the result of the protein of the cell grinding liquid expressed by E. coli Rosetta DE3 for 24 hours at 18 ℃ conditions. Row 6 is the result of soluble protein expressed for 24 hours at 18 ℃ using E. coli Rosetta DE3. Column 7 is the result of protein in the cell pulverized solution expressed for 8 hours at 30 ℃ using E. coli Rosetta DE3. Column 8 is the result of soluble protein expressed for 8 hours at 30 ℃ using E. coli Rosetta DE3.
도 2는 시간에 따른 NADH의 생성량을 표시한 그래프이다. 완충액은 100mM 인산 완충액 (pH 7.2)을 사용하였으며, 대조군은 가용성 단백질을 제외한 반응 샘플이다. CbFdh는 대장균 BL21 DE3를 이용하여 30 ℃에서 포름산 탈수소효소를 과발현시킨 가용성 단백질 10 % 첨가 반응 샘플이다. CbFdh의 경우 시간이 지날수록 CbFdh의 반응물인 NADH가 지속적으로 증가되는 것을 확인할 수 있었다. 2 is a graph showing the amount of NADH produced over time. Buffer was used 100 mM phosphate buffer (pH 7.2), the control is the reaction sample excluding soluble protein. CbFdh is a sample of 10% addition of soluble protein overexpressing formic acid dehydrogenase at 30 ° C. using E. coli BL21 DE3. In the case of CbFdh, it was confirmed that NADH, which is a reactant of CbFdh, continuously increased over time.
도 3은 시간에 따른 포름산 농도를 표시한 그래프이다. 대조군은 코리네박테리움 글루타미쿰 균주에 pSCEC_CJ7 벡터가 삽입된 균주이다. CbFdh는 C. boidinii 유래 포름산 탈수소효소 유전자의 발현이 가능한 pSCEC_CJ7_CbFdh 플라스미드가 삽입된 균주이다. 배양액에 0, 2, 및 10 g/ℓ의 포름산을 넣고 대조군과 CbFdh의 포름산 농도 변화를 관찰하였다.3 is a graph showing formic acid concentration over time. The control group is a strain in which the pSCEC_CJ7 vector is inserted into a Corynebacterium glutamicum strain. CbFdh is a strain into which the pSCEC_CJ7_CbFdh plasmid capable of expressing the C. boidinii- derived formic acid dehydrogenase gene is inserted. 0, 2, and 10 g / l formic acid were added to the culture, and the change in formic acid concentration of the control group and CbFdh was observed.
상기의 목적을 달성하기 위한 하나의 양태로서, 본원은 포름산 탈수소효소 (formate dehydrogenase, Fdh)의 활성이 증가된, 퓨트레신을 생산하는 코리네박테리움 속 미생물을 제공한다.As one aspect for achieving the above object, the present application provides a microorganism of the genus Corynebacterium for producing putrescine, the activity of formate dehydrogenase (Fdh) is increased.
본원에서 용어, “포름산 탈수소효소 (formate dehydrogenase, 이하 “Fdh”로 기재)”는 포름산을 기질로 하여, 산화반응을 촉매시켜 NAD+를 환원시키고 NADH 및 CO2를 생성하는 효소를 통칭한다. As used herein, the term “formate dehydrogenase (hereinafter referred to as“ Fdh ”)” refers to enzymes that form formic acid as a substrate to catalyze oxidation reactions to reduce NAD + and produce NADH and CO 2 .
상기 포름산 탈수소효소는 미생물의 종 또는 균주에 따라 활성을 나타내는 단백질의 아미노산 서열에 차이가 존재하는 경우가 있기 때문에, 그 유래나 서열에 한정되지 않는다. The formic acid dehydrogenase is not limited to its origin or sequence because a difference may exist in the amino acid sequence of a protein exhibiting activity depending on the species or strain of the microorganism.
구체적으로 상기 Fdh는 세리포리옵시스 서브베르미스포라 (Ceriporiopsis subvermispora), 메틸로박테리움 엑스토르쿠엔스 (Methylobacterium extorquens), 메틸로시너스 트리코스포리움 (Methylosinus trichosporium), 큐프리아비두스 옥살라티쿠스 (Cupriavidus oxalaticus), 캔디다 메틸리카 (Candida methylica), 메틸로트로픽 박테리움 (methylotrophic bacterium), 안실로박터 아쿠아티쿠스 (Ancylobacter aquaticus), 코마가타엘라 파스토리스 (Komagataella pastoris), 마이코박테리움 바씨애 (Mycobacterium vaccae), 아라비돕시스 탈리아나 (Arabidopsis thaliana) 등의 유래일 수 있으며, 최근 공지된 코리네박테리움 글루타미쿰 (Microbiology (2012), 158, 2428-2439) 유래일 수 있다. 구체적으로는 캔디다 보이디니 (Candida boidinii) 유래일 수 있으나, 이에 제한되지 않는다.Specifically, Fdh is a serifoliopsis sub vermispora ( Ceriporiopsis) subvermispora), a bacterium methyl Solarium X Torr quenched switch (Methylobacterium extorquens ), Methylosinus tricosporium trichosporium), the queue-free father Douce oxalato tea kusu (Cupriavidus oxalaticus ), Candida methylica , methylotrophic bacterium , Ancylobacter aquaticus , Komagataella pastoris pastoris ), Mycobacterium vaccae , Arabidopsis thaliana , etc., recently known Corynebacterium glutamicum (Microbiology (2012), 158, 2428-2439) May be derived. Specifically, it may be derived from Candida boidinii , but is not limited thereto.
또한, 본원에서 Fdh는 서열번호 10의 아미노산 서열을 포함하는 단백질, 또는 상기 서열과 70 % 이상, 구체적으로는 80 % 이상, 더욱 구체적으로는 90 % 이상, 보다 더욱 구체적으로는 95 % 이상, 가장 구체적으로는 99 % 이상의 상동성을 나타내는 아미노산 서열로서, 실질적으로 포름산 탈수소효소로서의 활성을 가지는 단백질이라면 제한 없이 포함될 수 있다.In addition, Fdh herein is a protein comprising the amino acid sequence of SEQ ID NO: 10, or 70% or more, specifically 80% or more, more specifically 90% or more, even more specifically 95% or more of the sequence and the sequence Specifically, as the amino acid sequence showing a homology of 99% or more, any protein substantially having activity as formic acid dehydrogenase may be included without limitation.
상기 서열과 상동성을 가지는 서열로서 실질적으로 서열번호 10의 단백질과 동일하거나 상응하는 생물학적 활성을 가지는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 가지는 경우도 역시 본원의 범주에 포함됨은 자명하다.As long as the sequence is homologous to the sequence and has an amino acid sequence having a biological activity substantially the same as or corresponding to that of the protein of SEQ ID NO: 10, the case of some sequences having an amino acid sequence deleted, modified, substituted or added is also the scope of the present application. Inclusion in is self-evident.
본원의 Fdh를 코딩하는 폴리뉴클레오티드는 상기 Fdh 단백질과 유사한 활성을 가지는 한, 서열번호 10의 아미노산 서열 또는 상기 서열과 70 % 이상, 구체적으로는 80 % 이상, 더욱 구체적으로는 90 % 이상, 보다 더욱 구체적으로는 95 % 이상, 가장 구체적으로는 99 % 이상의 상동성을 나타내는 단백질을 코딩하는 폴리뉴클레오티드를 포함할 수 있다. 예를 들어, 서열번호 9의 염기서열을 포함할 수 있다. The polynucleotide encoding the Fdh herein has at least 70%, in particular at least 80%, more specifically at least 90%, even more than the amino acid sequence of SEQ ID NO: 10 or the sequence as long as it has similar activity as the Fdh protein. Specifically, it may include a polynucleotide encoding a protein exhibiting homology of at least 95%, most specifically at least 99%. For example, it may include the nucleotide sequence of SEQ ID NO: 9.
또한, 본원의 Fdh를 코딩하는 폴리뉴클레오티드는 서열번호 9의 염기서열 또는 상기 염기서열로부터 유래된 프로브 (probe)와 엄격한 조건 (stringent conditions)에서 혼성화될 수 있고, 정상적으로 기능하는 Fdh를 코딩하는 변이형일 수 있다.In addition, the polynucleotide encoding the Fdh herein may be hybridized under stringent conditions with a nucleotide sequence of SEQ ID NO: 9 or a probe derived from the nucleotide sequence, and may be a variant that encodes a normally functioning Fdh. Can be.
상기에서 용어 "상동성"은 주어진 아미노산 서열 또는 염기 서열과 일치하는 정도를 의미하며 백분율로 표시될 수 있다. 본 명세서에서, 주어진 아미노산 서열 또는 염기 서열과 동일하거나 유사한 활성을 가지는 그의 상동성 서열이 "% 상동성"으로 표시된다. 예를 들면, 점수(score), 동일성(identity) 및 유사도(similarity) 등의 매개 변수(parameter)들을 계산하는 표준 소프트웨어, 구체적으로 BLAST 2.0을 이용하거나, 정의된 엄격한 조건하에서 써던 혼성화 실험에 의해 서열을 비교함으로써 확인할 수 있으며, 정의되는 적절한 혼성화 조건은 해당 기술 범위 내이고, 당업자에게 잘 알려진 방법(예컨대, J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York)으로 결정될 수 있다. 상기에서 용어 “엄격한 조건”이란 폴리뉴클레오티드 간의 특이적 혼성화를 가능하게 하는 조건을 의미한다. 예를 들어, 이러한 조건은 문헌 (예컨대, J. Sambrook et al., 상동)에 구체적으로 기재되어 있다.As used herein, the term “homology” means a degree of agreement with a given amino acid sequence or base sequence and may be expressed as a percentage. In this specification, homologous sequences thereof having the same or similar activity as a given amino acid sequence or base sequence are designated as "% homology". For example, using standard software that calculates parameters such as score, identity and similarity, in particular BLAST 2.0, or by hybridization experiments used under defined stringent conditions Appropriate hybridization conditions, which are defined within the scope of the art, are well known to those skilled in the art, and are well known to those skilled in the art (e.g., J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; FM Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York. As used herein, the term "stringent conditions" refers to conditions that enable specific hybridization between polynucleotides. For example, such conditions are described specifically in the literature (eg, J. Sambrook et al., Homology).
본원에서 용어, “활성의 증가”는 미생물이 가진 내재적 활성 또는 변형 전 활성에 비하여 활성이 향상된 것을 의미한다. 상기 활성 증가는 외래의 Fdh를 도입하는 것과, 내재적 Fdh의 활성을 강화하는 것을 모두 포함할 수 있다. 구체적으로는 포름산 탈수소효소의 활성이 증가되어 퓨트레신 생산능이 증가되는 것을 의미할 수 있다.As used herein, the term "increase in activity" means that the activity is improved compared to the intrinsic activity or the activity before the modification of the microorganism. The increase in activity may include both introducing foreign Fdhs and enhancing intrinsic Fdh activity. Specifically, it may mean that the activity of formic acid dehydrogenase is increased and putrescine production capacity is increased.
구체적으로, 본원에서 활성 증가는,Specifically, the increase in activity herein
1) 상기 효소를 암호화하는 폴리뉴클레오티드의 카피수 증가,1) an increase in the number of copies of the polynucleotide encoding the enzyme,
2) 상기 폴리뉴클레오티드의 발현이 증가하도록 발현조절 서열의 변형,2) modification of expression control sequences to increase expression of the polynucleotide,
3) 상기 효소의 활성이 강화되도록 염색체 상의 폴리뉴클레오티드 서열의 변형, 또는3) modification of the polynucleotide sequence on the chromosome to enhance the activity of the enzyme, or
4) 이의 조합에 의해 강화되도록 변형하는 방법 등에 의하여 수행될 수 있으나, 이에 제한되지 않는다.4) but may be performed by a method such as deformation to be enhanced by a combination thereof, but is not limited thereto.
상기 1) 폴리뉴클레오티드의 카피수 증가는, 특별히 이에 제한되지 않으나, 벡터에 작동 가능하게 연결된 형태로 수행되거나, 숙주세포 내의 염색체 내로 삽입됨으로써 수행될 수 있다. 구체적으로, 본원의 효소를 암호화하는 폴리뉴클레오티드가 작동 가능하게 연결된, 숙주와 무관하게 복제되고 기능할 수 있는 벡터가 숙주세포 내에 도입됨으로써 수행될 수 있다. 또는 상기 폴리뉴클레오티드가 작동가능 하게 연결된, 숙주세포 내의 염색체 내로 상기 폴리뉴클레오티드를 삽입시킬 수 있는 벡터가 숙주세포 내에 도입됨으로써 상기 숙주세포의 염색체 내 상기 폴리뉴클레오티드의 카피수를 증가하는 방법으로 수행될 수 있다. The increase in the number of copies of the polynucleotide 1) is not particularly limited thereto, but may be performed in a form operably linked to a vector or by insertion into a chromosome in a host cell. Specifically, a vector capable of replicating and functioning independently of the host, to which the polynucleotide encoding the enzyme of the present application is operably linked, can be performed by introducing into a host cell. Or a vector capable of inserting the polynucleotide into a chromosome in a host cell, to which the polynucleotide is operably linked, is introduced into the host cell to increase the copy number of the polynucleotide in the chromosome of the host cell. have.
또한 카피수 증가의 한 양태로, 효소의 활성을 나타내는 외래 폴리뉴클레오티드 또는 상기 폴리뉴클레오티드의 코돈 최적화된 변이형 폴리뉴클레오티드의 도입함으로써 수행될 수 있다. 외래 폴리뉴클레오티드 서열의 도입은, 상기 효소와 동일/유사한 활성을 나타내는 효소를 암호화하는 외래 폴리뉴클레오티드를 숙주세포 내로 도입하여 수행될 수 있다. 상기 외래 폴리뉴클레오티드는 상기 효소와 동일/유사한 활성을 나타내는 한 그 유래나 서열에 제한 없이 사용될 수 있다. 또한 상기 외래 폴리뉴클레오티드가 숙주세포 내에서 최적화된 전사, 번역이 이루어지도록 이의 코돈을 최적화하여 숙주세포 내로 도입할 수 있다. 상기 도입은 공지된 형질전환 방법을 당업자가 적절히 선택하여 수행될 수 있으며, 숙주 세포 내에서 상기 도입된 폴리뉴클레오티드가 발현됨으로써 효소가 생성되어 그 활성이 증가될 수 있다.In addition, as an aspect of increasing the copy number, it may be carried out by introducing a foreign polynucleotide exhibiting the activity of the enzyme or a codon optimized variant polynucleotide of the polynucleotide. Introduction of the foreign polynucleotide sequence may be performed by introducing into the host cell a foreign polynucleotide encoding an enzyme that exhibits the same / similar activity as the enzyme. The foreign polynucleotide can be used without limitation in its origin or sequence as long as it exhibits the same / similar activity as the enzyme. In addition, the foreign polynucleotide may be introduced into the host cell by optimizing its codons to achieve optimized transcription and translation in the host cell. The introduction can be carried out by a person skilled in the art to appropriately select a known transformation method, the expression of the introduced polynucleotide in the host cell can be produced by the enzyme can be increased its activity.
다음으로, 2) 폴리뉴클레오티드의 발현이 증가하도록 발현조절 서열의 변형은, 특별히 이에 제한되지 않으나, 상기 발현조절 서열의 활성을 더욱 강화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 서열상의 변이를 유도하여 수행하거나, 더욱 강한 활성을 가지는 핵산 서열로 교체함에 의하여 수행될 수 있다. 상기 발현조절 서열은, 특별히 이에 제한되지 않으나 프로모터, 오퍼레이터 서열, 리보좀 결합 부위를 코딩하는 서열, 전사 및 해독의 종결을 조절하는 서열 등을 포함할 수 있다.Next, 2) modification of the expression control sequence to increase the expression of the polynucleotide is not particularly limited, but deletion, insertion, non-conservative or conservative substitution of these nucleic acid sequences to further enhance the activity of the expression control sequence or these It can be carried out by inducing a variation in the sequence in combination with or by replacing with a nucleic acid sequence having a stronger activity. The expression control sequence may include, but is not particularly limited to, a promoter, an operator sequence, a sequence encoding a ribosomal binding site, a sequence that controls the termination of transcription and translation, and the like.
구체적으로, 폴리뉴클레오티드 발현 단위의 상부에는 본래의 프로모터 대신 강력한 이종 프로모터가 연결될 수 있는데, 상기 강력한 프로모터의 예로는 CJ7 프로모터, lysCP1 프로모터, EF-Tu 프로모터, groEL 프로모터, aceA 혹은 aceB 프로모터 등이 있다. 더욱 구체적으로는 코리네박테리움 속 유래 프로모터인 lysCP1 프로모터 (WO2009/096689) 혹은 CJ7 프로모터(대한민국 등록특허 제0620092호 및 WO2006/065095)와 작동 가능하게 연결되어 상기 효소를 코딩하는 폴리뉴클레오티드의 발현율을 향상시킬 수 있으나, 이에 한정되지 않는다.Specifically, a strong heterologous promoter may be linked to the top of the polynucleotide expression unit, but examples of the strong promoter include a CJ7 promoter, a lysCP1 promoter, an EF-Tu promoter, a groEL promoter, an aceA or aceB promoter, and the like. More specifically, the expression rate of the polynucleotide encoding the enzyme is operably linked to the lysCP1 promoter (WO2009 / 096689) or the CJ7 promoter (Korean Patent No. 0620092 and WO2006 / 065095), which are promoters of the genus Corynebacterium. It can be improved, but is not limited thereto.
아울러, 3) 염색체 상의 폴리뉴클레오티드 서열의 변형은, 특별히 이에 제한되지 않으나, 상기 폴리뉴클레오티드 서열의 활성을 더욱 강화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 발현조절 서열상의 변이를 유도하여 수행하거나, 더욱 강한 활성을 갖도록 개량된 폴리뉴클레오티드 서열로 교체함에 의하여 수행될 수 있다.In addition, 3) modification of the polynucleotide sequence on the chromosome is not particularly limited, and expression control sequences by deletion, insertion, non-conservative or conservative substitution, or a combination thereof, to further enhance the activity of the polynucleotide sequence. This can be done by inducing a phase shift or by replacing with a polynucleotide sequence that has been modified to have stronger activity.
마지막으로, 4) 상기 1) 내지 3)의 조합에 의해 강화되도록 변형하는 방법은, 상기 효소를 암호화하는 폴리뉴클레오티드의 카피수 증가, 이의 발현이 증가하도록 발현조절 서열의 변형, 염색체 상의 상기 폴리뉴클레오티드 서열의 변형 및 상기 효소의 활성을 나타내는 외래 폴리뉴클레오티드 또는 이의 코돈 최적화된 변이형 폴리뉴클레오티드의 변형 중 1 이상의 방법을 함께 적용하여 수행될 수 있다. Finally, 4) modification to enhance by the combination of 1) to 3), the increase in the number of copies of the polynucleotide encoding the enzyme, the modification of the expression control sequence to increase its expression, the polynucleotide on the chromosome One or more methods of modifying the sequence and modifying a foreign polynucleotide or a codon-optimized variant polynucleotide thereof that exhibit the activity of the enzyme can be performed together.
본원에서 사용된 용어 "벡터"는 적합한 숙주 내에서 목적 단백질을 발현시킬 수 있도록 적합한 조절 서열에 작동 가능하게 연결된 상기 목적 단백질을 코딩하는 폴리뉴클레오티드의 염기서열을 함유하는 DNA 제조물을 의미한다. 상기 조절 서열은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합부위를 코딩하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함할 수 있다. 벡터는 적당한 숙주세포 내로 형질전환된 후, 숙주 게놈과 무관하게 복제되거나 기능할 수 있으며, 게놈 그 자체에 통합될 수 있다.As used herein, the term "vector" refers to a DNA preparation containing a nucleotide sequence of a polynucleotide encoding said target protein operably linked to a suitable regulatory sequence to enable expression of the target protein in a suitable host. The regulatory sequence may comprise a promoter capable of initiating transcription, any operator sequence for regulating such transcription, a sequence encoding a suitable mRNA ribosomal binding site, and a sequence regulating termination of transcription and translation. After being transformed into a suitable host cell, the vector can be replicated or function independent of the host genome and integrated into the genome itself.
본원에서 사용되는 벡터는 숙주세포 내에서 복제 가능한 것이면 특별히 한정되지 않으며, 당업계에 알려진 임의의 벡터를 이용할 수 있다. 통상 사용되는 벡터의 예로는 천연 상태이거나 재조합된 상태의 플라스미드, 코스미드, 바이러스 및 박테리오파지를 들 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다. 구체적으로는 pDZ, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC 벡터 등을 사용할 수 있다.The vector used herein is not particularly limited as long as it can replicate in a host cell, and any vector known in the art may be used. Examples of commonly used vectors include natural or recombinant plasmids, cosmids, viruses and bacteriophages. For example, pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, Charon21A, etc. can be used as a phage vector or cosmid vector, and pBR-based, pUC-based, pBluescriptII-based, etc. , pGEM-based, pTZ-based, pCL-based and pET-based and the like can be used. Specifically, pDZ, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC vector and the like can be used.
일례로 세포 내 염색체 삽입용 벡터를 통해 염색체 내에 목적 단백질을 코딩하는 폴리뉴클레오티드를 변이된 폴리뉴클레오티드로 교체시킬 수 있다. 상기 폴리뉴클레오티드의 염색체 내로의 삽입은 당업계에 알려진 임의의 방법, 예를 들면, 상동재조합에 의하여 이루어질 수 있으나, 이에 한정되지는 않는다.For example, a polynucleotide encoding a target protein in a chromosome can be replaced with a mutated polynucleotide through an intracellular chromosome insertion vector. Insertion of the polynucleotide into the chromosome can be made by any method known in the art, such as, but not limited to, homologous recombination.
본원에서 용어 "형질전환"은 표적 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 벡터를 숙주세포 내에 도입하여 숙주세포 내에서 상기 폴리뉴클레오티드가 코딩하는 단백질이 발현할 수 있도록 하는 것을 의미한다. 형질전환된 폴리뉴클레오티드는 숙주세포 내에서 발현될 수 있기만 한다면, 숙주세포의 염색체 내에 삽입되어 위치하거나 염색체 외에 위치하거나 상관없이 이들 모두를 포함할 수 있다. 또한, 상기 폴리뉴클레오티드는 표적 단백질을 코딩하는 DNA 및 RNA를 포함한다. 상기 폴리뉴클레오티드는 숙주세포 내로 도입되어 발현될 수 있는 것이면, 어떠한 형태로 도입되는 것이든 상관없다. 예를 들면, 상기 폴리뉴클레오티드는 자체적으로 발현되는데 필요한 모든 요소를 포함하는 유전자 구조체인 발현 카세트 (expression cassette)의 형태로 숙주세포에 도입될 수 있다. 상기 발현 카세트는 통상 상기 폴리뉴클레오티드에 작동 가능하게 연결되어 있는 프로모터 (promoter), 전사 종결신호, 리보좀 결합부위 및 번역 종결신호를 포함할 수 있다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 폴리뉴클레오티드는 그 자체의 형태로 숙주세포에 도입되어 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있으며, 이에 한정되지 않는다.The term "transformation" herein means introducing a vector comprising a polynucleotide encoding a target protein into a host cell so that the protein encoded by the polynucleotide can be expressed in the host cell. The transformed polynucleotides may include all of them, as long as they can be expressed in the host cell, either inserted into the chromosome of the host cell or located outside the chromosome. The polynucleotide also includes DNA and RNA encoding the target protein. The polynucleotide may be introduced in any form as long as it can be expressed by being introduced into a host cell. For example, the polynucleotide may be introduced into a host cell in the form of an expression cassette, which is a gene construct containing all elements necessary for self expression. The expression cassette may include a promoter, a transcription termination signal, a ribosomal binding site, and a translation termination signal, which are typically operably linked to the polynucleotide. The expression cassette may be in the form of an expression vector capable of self replication. In addition, the polynucleotide may be introduced into the host cell in its own form and operably linked with a sequence required for expression in the host cell, but is not limited thereto.
또한, 상기에서 용어 "작동 가능하게 연결"된 것이란 본원의 목적 단백질을 코딩하는 폴리뉴클레오티드의 전사를 개시 및 매개하도록 하는 프로모터 서열과 상기 유전자 서열이 기능적으로 연결되어 있는 것을 의미한다.In addition, the term "operably linked" means that the gene sequence is functionally linked with a promoter sequence for initiating and mediating the transcription of a polynucleotide encoding a protein of interest herein.
본원에서 사용되는 용어 "퓨트레신을 생산하는 미생물" 또는 "퓨트레신 생산능을 가지는 미생물"이란, 자연적으로 퓨트레신 생산능을 가지고 있는 미생물 또는 퓨트레신의 생산능이 없는 모균주에 퓨트레신의 생산능이 부여된 미생물을 의미한다.As used herein, the term "microorganisms that produce putrescine" or "microorganisms having putrescine-producing ability" means that microorganisms having putrescine-producing ability or putrescine in a parent strain lacking the production capacity of putrescine are known. Means a microorganism given production capacity.
상기 퓨트레신을 생산하는 미생물은, 특별히 이에 제한되지 않으나, 예를 들어 글루타메이트에서 오르니틴까지의 생합성 경로를 강화하기 위해 글루타메이트를 아세틸글루타메이트 (N-acetylglutamate)로 전환하는 아세틸글루타메이트 신타아제 또는 아세틸오르니틴을 오르니틴으로 전환하는 오르니틴 아세틸트랜스퍼라아제 (ArgJ), 아세틸글루타메이트를 아세틸글루타밀 포스페이트 (N-acetylglutamyl phosphate)로 전환하는 아세틸글루타메이트 키나아제 (ArgB), 아세틸글루타밀 포스페이트를 아세틸글루타메이트 세미알데히드 (N-acetylglutamate semialdehyde)로 전환하는 아세틸 감마 글루타밀 포스페이트 리덕타아제 (ArgC), 아세틸글루타메이트 세미알데히드를 아세틸오르니틴 (N-acetylornithine)으로 전환하는 아세틸오르니틴 아미노트랜스퍼라아제 (ArgD)의 활성을 내재적 활성에 비하여 증가시키도록 변형되어 퓨트레신의 생합성 원료로서 사용되는 오르니틴의 생산성이 향상된 것일 수 있다.The microorganism producing the putrescine is not particularly limited thereto, for example, acetylglutamate synthase or acetylornithine, which converts glutamate to acetylglutamate to enhance the biosynthetic pathway from glutamate to ornithine. Ornithine acetyltransferase (ArgJ), which converts to ornithine, acetylglutamate kinase (ArgB), which converts acetylglutamate to acetylglutamyl phosphate, and acetylglutamate semialdehyde (N acetyl gamma glutamyl phosphate reductase (ArgC) to convert to -acetylglutamate semialdehyde) and acetylornithine aminotransferase (ArgD) to convert acetylglutamate semialdehyde into acetylornithine (N-acetylornithine) Gender is deformed so as to increase than this may be increased productivity of ornithine is used as a raw material gods putrescine biosynthesis.
또한, 상기 미생물은 오르니틴에서 아르기닌 합성에 관여하는 오르니틴 카르바모일 트랜스퍼라아제 (ornithine carbamoyltransfrase, ArgF), 글루타메이트 엑스포터 (glutamate exporter) 활성을 나타내는 단백질, 및/또는 퓨트레신을 아세틸화시키는 아세틸트랜스퍼라아제의 활성을 내재적 활성이 불활성화되도록 변이되고/되거나, 오르니틴 디카르복실라아제 (ornithine decarboxylase, ODC)의 활성을 도입하도록 변형된 것일 수 있다.In addition, the microorganism may be ornithine carbamoyltransfrase (ArgF), a protein that exhibits glutamate exporter activity, and / or an acetyltransfer that acetylates putrescine, which is involved in arginine synthesis in ornithine. The activity of the lagase may be modified to inactivate the intrinsic activity and / or modified to introduce the activity of ornithine decarboxylase (ODC).
이때, 상기 오르니틴 카르바모일 트랜스퍼라아제 (ArgF), 글루타메이트 엑스포터 (glutamate exporter) 활성을 나타내는 단백질, 오르니틴 디카르복실라아제 (ODC), 오르니틴 아세틸트랜스퍼라아제 (ArgJ), 아세틸글루타메이트 키나아제 (ArgB), 아세틸 감마 글루타밀 포스페이트 리덕타아제 (ArgC), 및 아세틸오르니틴 아미노트랜스퍼라아제 (ArgD)는, 특별히 이에 제한되지 않으나, 구체적으로는 각각 서열번호: 11, 12, 13, 14, 15, 16 및 17로 기재되는 아미노산 서열 또는 이와 70 % 이상, 구체적으로는 80 % 이상, 더욱 구체적으로는 90 % 이상, 보다 더욱 구체적으로는 95 % 이상, 가장 구체적으로는 99 % 이상의 상동성을 가지는 아미노산 서열을 포함할 수 있다.At this time, the ornithine carbamoyl transferase (ArgF), the protein showing glutamate exporter activity, ornithine decarboxylase (ODC), ornithine acetyltransferase (ArgJ), acetylglutamate Kinases (ArgB), acetyl gamma glutamyl phosphate reductase (ArgC), and acetylornithine aminotransferase (ArgD) are not particularly limited, but are specifically SEQ ID NOs: 11, 12, 13, 14, respectively. , At least 70%, specifically at least 80%, more specifically at least 90%, even more specifically at least 95%, most specifically at least 99% homology It may include an amino acid sequence having a.
또한, 퓨트레신을 아세틸화시키는 아세틸트랜스퍼라아제는, 특별히 이에 제한되지 않으나, 구체적으로는 서열번호: 18 또는 19로 기재되는 아미노산 서열 또는 이와 70 % 이상, 구체적으로는 80 % 이상, 더욱 구체적으로는 90 % 이상, 보다 더욱 구체적으로는 95 % 이상, 가장 구체적으로는 99 % 이상의 상동성을 가지는 아미노산 서열을 포함할 수 있다.In addition, the acetyltransferase for acetylating putrescine is not particularly limited, but specifically the amino acid sequence represented by SEQ ID NO: 18 or 19 or 70% or more, specifically 80% or more, more specifically Amino acid sequences having at least 90%, more specifically at least 95% and most specifically at least 99% homology.
또한, 퓨트레신 배출 활성을 나타내는 단백질의 활성이 내재적 활성에 비해 증가된 것일 수 있으나, 이에 제한되는 것은 아니다. 퓨트레신 배출 활성을 나타내는 단백질은, 특별히 이에 제한되지 않으나, 구체적으로는 서열번호: 20 또는 21로 기재되는 아미노산 서열 또는 이와 70 % 이상, 구체적으로는 80 % 이상, 더욱 구체적으로는 90 % 이상, 보다 더욱 구체적으로는 95 % 이상, 가장 구체적으로는 99 % 이상의 상동성을 가지는 아미노산 서열을 포함할 수 있다.In addition, the activity of the protein exhibiting putrescine releasing activity may be increased compared to the intrinsic activity, but is not limited thereto. A protein exhibiting putrescine excretion activity is not particularly limited, but specifically, an amino acid sequence of SEQ ID NO: 20 or 21 or 70% or more thereof, specifically 80% or more, more specifically 90% or more And even more specifically at least 95%, most specifically at least 99% homology.
한편, 본원의 미생물은 퓨트레신 생산능을 가지는 미생물로서, 상기 Fdh 단백질이 발현되는 원핵 미생물을 포함할 수 있으며, 이의 예로는 에스케리치아 속 (Escherichia sp.), 시겔라 속 (Shigella sp.), 시트로박터 속 (Citrobacter sp.), 살모넬라 속 (Salmonella sp.), 엔테로박터 속 (Enterobacter sp.) 여시니아 속 (Yersinia sp.), 크렙시엘라 속 (Klebsiella sp.), 어위니아 속 (Erwinia sp.), 코리네박테리움 속 (Corynebacterium sp.), 브레비박테리움 속 (Brevibacterium sp.), 락토바실러스 속 (Lactobacillus sp.), 셀레노모나스 속 (Selenomanas sp.), 비브리오 속 (Vibrio sp.), 슈도모나스 속 (Pseudomonas sp.), 스트렙토마이시스 속 (Streptomyces sp.), 아카노박테리아 속 (Arcanobacterium sp.), 알칼리젠 속 (Alcaligenes sp.) 등에 속하는 미생물일 수 있다. 구체적으로 본원의 미생물은 코리네박테리움 속 또는 에스케리키아 속에 속하는 미생물일 수 있으며, 더욱 구체적으로는 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)일 수 있으나, 이에 한정되지 않는다.Meanwhile, the microorganism of the present application is a microorganism having a putrescine-producing ability, and may include a prokaryotic microorganism in which the Fdh protein is expressed, and examples thereof include Escherichia sp. And Shigella sp. ), Citrobacter sp., Salmonella sp., Enterobacter sp. Yersinia sp., Klebsiella sp. ( Erwinia sp.), Corynebacterium sp., Brevibacterium sp., Lactobacillus sp., Selenomanas sp., Vibrio genus ( Vibrio sp.), Pseudomonas sp., Streptomyces sp., Arcanobacterium sp., Alcaligenes sp. Specifically, the microorganism of the present application may be a microorganism belonging to the genus Corynebacterium or Escherichia, more specifically Corynebacterium glutamicum ( Corynebacterium glutamicum ), but is not limited thereto.
다른 하나의 양태로서 본원은, 퓨트레신을 생산하기 위한, 상기 코리네 박테리움 미생물의 용도를 제공한다. 상기 미생물은 포름산 탈수소효소(formate dehydrogenase, Fdh)의 활성이 변형 전 활성에 비하여 증가된 미생물이고, 상기 용도는 퓨트레신을 생산하기 위한 것 일 수 있다.In another aspect, the present application provides the use of the Corynebacterium microorganism for producing putrescine. The microorganism is a microorganism in which the activity of formate dehydrogenase (Fdh) is increased compared to the activity before modification, and the use may be for producing putrescine.
다른 하나의 양태로서 본원은, (a) 포름산 탈수소효소 (formate dehydrogenase, Fdh)의 활성이 증가된 퓨트레신을 생산하는 코리네박테리움 속 미생물을 배지에서 배양하는 단계; 및 (b) 상기 단계에서 수득되는 미생물 또는 배지로부터 퓨트레신을 회수하는 단계를 포함하는 퓨트레신 생산 방법을 제공한다.As another embodiment, the present invention comprises the steps of (a) culturing in the medium a microorganism of the genus Corynebacterium producing putrescine with increased activity of formate dehydrogenase (Fdh); And (b) recovering putrescine from the microorganism or medium obtained in the step.
포름산 탈수소효소 및 퓨트레신 생산능이 향상된 미생물에 대해서는 상기 설명한 바와 같다.Microorganisms having improved formic acid dehydrogenase and putrescine production capacity have been described above.
상기 방법에 있어서, 상기 미생물을 배양하는 단계는, 특별히 이에 제한되지 않으나, 공지된 회분식 배양방법, 연속식 배양방법, 유가식 배양방법 등에 의해 수행될 수 있다. 이때, 배양조건은, 특별히 이에 제한되지 않으나, 염기성 화합물 (예: 수산화나트륨, 수산화칼륨 또는 암모니아) 또는 산성 화합물 (예: 인산 또는 황산)을 사용하여 적정 pH (예컨대, pH 5 내지 9, 구체적으로는 pH 6 내지 8, 가장 구체적으로는 pH 6.8)를 조절할 수 있고, 산소 또는 산소-함유 가스 혼합물을 배양물에 도입시켜 호기성 조건을 유지할 수 있다. 배양온도는 20 내지 45 ℃, 구체적으로는 25 내지 40 ℃를 유지할 수 있고, 약 10 내지 160 시간 동안 배양할 수 있으나, 이에 제한 되는 것은 아니다. 상기 배양에 의하여 생산된 퓨트레신은 배지 중으로 분비되거나 세포 내에 잔류할 수 있다.In the above method, the step of culturing the microorganism is not particularly limited thereto, and may be performed by a known batch culture method, continuous culture method, fed-batch culture method, or the like. At this time, the culture conditions are not particularly limited thereto, but using a basic compound (eg, sodium hydroxide, potassium hydroxide or ammonia) or an acidic compound (eg, phosphoric acid or sulfuric acid), an appropriate pH (eg, pH 5 to 9, specifically, Can adjust pH 6 to 8, most specifically pH 6.8), and maintain an aerobic condition by introducing oxygen or oxygen-containing gas mixture into the culture. The culture temperature may be maintained at 20 to 45 ℃, specifically 25 to 40 ℃, can be incubated for about 10 to 160 hours, but is not limited thereto. Putrescine produced by the culture may be secreted into the medium or remain in the cells.
아울러, 사용되는 배양용 배지는 탄소 공급원으로는 당 및 탄수화물 (예: 글루코오스, 슈크로오스, 락토오스, 프럭토오스, 말토오스, 몰라세, 전분 및 셀룰로오스), 유지 및 지방 (예: 대두유, 해바라기씨유, 땅콩유 및 코코넛유), 지방산 (예: 팔미트산, 스테아르산 및 리놀레산), 알코올 (예: 글리세롤 및 에탄올) 및 유기산 (예: 아세트산) 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 질소 공급원으로는 질소-함유 유기 화합물 (예: 펩톤, 효모 추출액, 육즙, 맥아 추출액, 옥수수 침지액, 대두 박분 및 우레아), 또는 무기 화합물 (예: 황산암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄) 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 인 공급원으로 인산 이수소칼륨, 인산수소이칼륨, 이에 상응하는 나트륨 함유 염 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 또한, 배지에는 기타 금속염 (예: 황산마그네슘 또는 황산철), 아미노산 및 비타민과 같은 필수성장-촉진 물질을 포함할 수 있다.In addition, the culture medium used includes sugars and carbohydrates (e.g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose), fats and fats (e.g. soybean oil, sunflower seeds) as carbon sources. Oils, peanut oils and coconut oils), fatty acids (e.g. palmitic acid, stearic acid and linoleic acid), alcohols (e.g. glycerol and ethanol) and organic acids (e.g. acetic acid) may be used individually or in combination. This is not restrictive. Nitrogen sources include nitrogen-containing organic compounds (eg peptone, yeast extract, gravy, malt extract, corn steep liquor, soybean meal and urea), or inorganic compounds (eg ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and Ammonium nitrate) and the like can be used individually or in combination, but is not limited thereto. As a source of phosphorus, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, a corresponding sodium-containing salt, and the like may be used individually or in combination, but is not limited thereto. The medium may also contain essential growth-promoting substances such as other metal salts (eg magnesium sulfate or iron sulfate), amino acids and vitamins.
본원의 상기 배양 단계에서 생산된 퓨트레신을 회수하는 방법은 배양방법에 따라 당해 분야에 공지된 적합한 방법을 이용하여 배양액으로부터 목적하는 아미노산을 수집할 수 있다. 예를 들어, 원심분리, 여과, 음이온 교환 크로마토그래피, 결정화 및 HPLC 등이 사용될 수 있으며, 당해 분야에 공지된 적합한 방법을 이용하여 배지 또는 미생물로부터 목적하는 퓨트레신을 회수 할 수 있다.The method of recovering putrescine produced in the culturing step of the present application may collect the desired amino acid from the culture medium using a suitable method known in the art according to the culture method. For example, centrifugation, filtration, anion exchange chromatography, crystallization and HPLC can be used, and the desired putrescine can be recovered from the medium or microorganism using any suitable method known in the art.
이하 본원을 실시예에 의해 보다 상세하게 설명한다. 그러나 이들 실시예는 본원을 예시적으로 설명하기 위한 것으로, 본원의 범위가 이들 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present application will be described in more detail with reference to Examples. However, these examples are for illustrative purposes only, and the scope of the present application is not limited by these examples.
실시예 1: CbFdh의 대장균 발현 및 반응성 평가 Example 1: E. coli expression and reactivity evaluation of CbFdh
1) CbFdh 유전자의 대장균 발현 1) E. coli expression of CbFdh gene
CbFdh (Candida boidinii formate dehydrogenase)를 대장균에 과발현시키기 위하여 캔디다 보이디니 (Candida boidinii) KCTC17776 균주를 배양하여 유전체 DNA 를 수득하였다. 서열번호 1 및 2의 프라이머를 이용하여 pET28a 벡터에 포름산 탈수소효소 유전자 (CbFdh) (서열번호 9)를 삽입하였다. CbFdh ( Candida To overexpress boidinii formate dehydrogenase in E. coli Candida boidinii ) KCTC17776 strain was cultured to obtain genomic DNA. The formic acid dehydrogenase gene (CbFdh) (SEQ ID NO: 9) was inserted into the pET28a vector using the primers of SEQ ID NOs: 1 and 2.
구체적으로, PCR 조건은 변성 (denaturation) 95 ℃ 30 초, 어닐링 (annealing) 55 ℃ 30 초, 신장 (extension) 72 ℃ 1 분을 30 회 반복 수행하였다. 이 PCR 결과물로부터 1.0 % 아가로스 겔에서 전기 영동한 후 1.1 kb 크기의 밴드를 용리하여 정제하였다. 상기 정제된 PCR 산물과 pET28a 벡터 용액 샘플에 NcoI과 XhoI을 넣고 37 ℃, 4 시간 반응으로 제한효소 처리하고 1.5 % 아가로스 겔을 이용하여 전기영동 후 CbFdh와 벡터 사이즈의 핵산 단편을 잘라낸 후 Gel prep kit (GeneAll, 서울)를 이용하여 정제된 핵산 단편들을 수득하였다. 상기 수득한 각 1 mg의 CbFdh 단편과 pET28a 벡터 단편을 T4 연결효소 (ligase)를 이용하여 연결시킨 후 E. coli DH5α 균주에 2500 V로 일렉트로포레이션 (electrophoration)하였다. 상기 일렉트로포레이션 후, 회수된 균주를 50 ㎍/ℓ 스펙티노마이신 (spectinomycin)을 포함한 LB 평판배지에 도말하여 37 ℃에서 1 일 배양한 후 스펙티노마이신에 내성을 보이는 균주를 선별하였다. 회수된 균주를 50 ㎍/ℓ 카나마이신 (kanamycin)을 포함한 LB 평판배지에 도말하여 37 ℃에서 1 일 배양한 후 내성을 보이는 균주를 선별하였다. 선별된 균주는 T7 프로모터와 터미네이터 (terminator) 서열의 서열번호 3 및 4의 프라이머를 이용하여 위 조건으로 PCR 한 후, 1.0 % 아가로스 겔 상에서 유전자의 크기가 1.3 kb로 관찰되는 것을 확인함으로써 CbFdh 삽입을 확인하였다. Specifically, PCR conditions were repeated 30 times for denaturation 95 ℃ 30 seconds, annealing (annealing) 55 ℃ 30 seconds, extension (72 ℃) 1 minute. After electrophoresis on a 1.0% agarose gel from the PCR result, a 1.1 kb band was eluted and purified. NcoI and XhoI were added to the purified PCR product and the pET28a vector solution sample, followed by restriction enzyme treatment at 37 ° C. for 4 hours. Purified nucleic acid fragments were obtained using kit (GeneAll, Seoul). Each of the obtained 1 mg CbFdh fragment and pET28a vector fragment were ligated using T4 ligase and then electroporated at 2500 V to the E. coli DH5α strain. After the electroporation, the recovered strains were plated in LB plate medium containing 50 μg / L spectinomycin and cultured at 37 ° C. for 1 day, and then strains showing resistance to spectinomycin were selected. The recovered strains were plated in LB plate medium containing 50 μg / L kanamycin and cultured at 37 ° C. for 1 day, and the strains showing resistance were selected. The selected strain was PCR under the above conditions using primers of SEQ ID NOs: 3 and 4 of the T7 promoter and terminator sequence, and then inserted into the CbFdh by confirming that the gene size was observed to be 1.3 kb on 1.0% agarose gel. It was confirmed.
상기 CbFdh의 삽입이 확인된 균주를 3 ㎖의 LB 용액 배지에 50 mg/㎖ 농도의 앰피실린을 넣고 37 ℃에서 12 시간 배양하였다. 배양된 균주를 항생제를 포함한 50 ㎖ LB에 넣고 37 ℃에서 배양하여 광학광도 (600 nm 파장)가 0.8이 되면, 0.2 mM IPTG를 첨가하여 다양한 온도/시간 조건에서 발현을 유도하였다. 배양된 균주를 세척하고 소니케이터 (sonicator)를 이용하여 세포를 분쇄하였다. 분쇄 후 SDS-PAGE 겔 결과를 통해서 CbFdh (41kDa, 서열번호 10)가 과발현되었음을 확인하였다 (도 1).The strain in which the insertion of CbFdh was confirmed was placed in 50 ml / ml of ampicillin in 3 ml of LB solution medium and incubated at 37 ° C. for 12 hours. Cultured strains were placed in 50 ml LB containing antibiotics and cultured at 37 ° C., and the optical luminosity (600 nm wavelength) became 0.8. 0.2 mM IPTG was added to induce expression at various temperature / time conditions. The cultured strains were washed and cells were crushed using a sonicator. After grinding, the SDS-PAGE gel result confirmed that CbFdh (41kDa, SEQ ID NO: 10) was overexpressed (FIG. 1).
2) 발현된 CbFdh 유전자의 활성 평가 2) Evaluation of activity of expressed CbFdh gene
CbFdh의 활성을 평가하기 위하여, 100 mM 인산 완충액 (pH 7.2)을 반응 완충용액으로 사용하였다. 상기 완충용액에 10 mM의 NAD+와 0.1 % 소듐 포메이트 (sodium formate)를 넣어준 용액을 대조군으로 사용하였다. 한편, 대조군에 상기 실시예 1-1)에서 확인한 CbFdh 과발현 세포 분쇄액을 10 % 비율로 넣어주고 CbFdh의 활성을 평가하였다. 반응액은 96 웰 플레이트 리더기를 사용하여 339 nm 파장에서 수치 변화를 확인하였다. 340 nm 파장의 빛은 NADH에 선택적으로 흡수되는 것으로 알려져 있다. To assess the activity of CbFdh, 100 mM phosphate buffer (pH 7.2) was used as reaction buffer. 10 mM NAD + and 0.1% sodium formate were added to the buffer solution as a control. On the other hand, the CbFdh overexpressing cell pulverized solution confirmed in Example 1-1) was added to the control group at a 10% rate to evaluate the activity of CbFdh. The reaction solution was checked for numerical changes at 339 nm wavelength using a 96 well plate reader. Light of 340 nm wavelength is known to be selectively absorbed by NADH.
그 결과, 수분 동안 NADH가 지속적으로 생성되는 것을 확인할 수 있었다 (도 2). 본 실시예를 통하여 CbFdh가 대장균에서 과발현될 수 있으며, 발현된 단백질은 고유한 활성을 가지는 것으로 평가되었다. As a result, it was confirmed that NADH is continuously produced for several minutes (Fig. 2). In this example, CbFdh can be overexpressed in E. coli, and the expressed protein was evaluated as having inherent activity.
실시예 2: CbFdh 발현 코리네박테리움 속 미생물 제작Example 2: Preparation of microorganisms of the genus CbFdh expressing Corynebacterium
다음으로, 퓨트레신을 생산하는 코리네박테리움 속 균주에 CbFdh의 기능을 강화하여 퓨트레신 생산능 향상 여부를 확인하고자 하였다. 코리네박테리움 속 균주에서 CbFdh를 발현시키고 이의 활성을 확인하기 위하여 CbFdh의 유전자 개시코돈 앞에 CJ7 프로모터 (KCCM10617, 대한민국 등록특허 제10-0620092호)를 도입하였다. Next, to enhance the function of putrescine production by enhancing the function of CbFdh in the strains of Corynebacterium genus to produce putrescine. In order to express CbFdh in Corynebacterium sp. Strain and confirm its activity, a CJ7 promoter (KCCM10617, Republic of Korea Patent No. 10-0620092) was introduced before the gene start codon of CbFdh.
우선 CJ7 프로모터 서열을 포함하는 유전자를 얻기 위하여 코리네박테리움 글루타미쿰 ATCC13032의 게놈 DNA를 주형으로 서열번호 5 및 6의 프라이머 쌍을 이용한 PCR을 수행하였다. PCR 반응은 변성 95 ℃ 30 초, 어닐링 55 ℃ 30 초 및 신장 72 ℃ 30 초의 과정을 30 회 반복하여 수행하였다. 1.5 % 아가로스 겔을 이용하여 전기영동 후 400 bp (base pair)의 크기를 가지는 PCR 핵산 결과물을 확인하였다. 얻어진 PCR 결과물로부터 PCR prep kit (GeneAll, 서울)를 이용하여 정제된 CJ7 프로모터 핵산 단편을 확보하였다. 정제된 CJ7 핵산 단편과 pSCEC 벡터 용액 샘플에 BamHI과 XbaI을 넣고 37 ℃, 4 시간 반응으로 제한효소 처리하였다. 그 다음 1.5 % 아가로스 겔을 이용하여 전기영동 후 400 bp의 크기를 가지는 CJ7 프로모터와 pSCEC 벡터 크기의 핵산 단편들을 잘라내고, Gel prep kit (GeneAll, 서울)를 이용하여 CJ7 프로모터 단편과 pSCEC 벡터의 핵산 단편들을 수득하였다. 상기 각 1 mg의 CJ7 프로모터 단편과 pSCEC 벡터를 T4 연결효소를 이용하여 연결한 후 E. coli DH5α 균주에 2500 V로 일렉트로포레이션 (electrophoration)하였다. 일렉트로포레이션 후 회수된 균주를 50 ㎍/ℓ 스펙티노마이신 (spectinomycin)을 포함한 LB 평판배지에 도말하여 37 ℃에서 1 일 배양한 후 스펙티노마이신에 내성을 보이는 균주를 18 종 선별하였다. 상기 선별된 18 개의 균주를 서열번호 5 및 6의 프라이머를 이용하여 콜로니 PCR 후 400 bp의 크기를 가지는 PCR 결과물을 확인할 수 있었다. 콜로니 PCR 결과로부터 CJ7 프로모터를 가지는 pSCEC_CJ7의 제작을 확인하였다. First, PCR was performed using primer pairs of SEQ ID NOs: 5 and 6 as a template using genomic DNA of Corynebacterium glutamicum ATCC13032 to obtain a gene including the CJ7 promoter sequence. The PCR reaction was performed by repeating the procedure of denaturation 95 ℃ 30 seconds, annealing 55 ℃ 30 seconds and elongation 72 ℃ 30 seconds 30 times. PCR nucleic acid product having a size of 400 bp (base pair) after electrophoresis was confirmed using 1.5% agarose gel. From the obtained PCR result, a purified CJ7 promoter nucleic acid fragment was obtained using a PCR prep kit (GeneAll, Seoul). BamHI and XbaI were added to the purified CJ7 nucleic acid fragment and the pSCEC vector solution sample, followed by restriction enzyme treatment at 37 ° C. for 4 hours. Then, after electrophoresis, a 1.5% agarose gel was used to cut the CJ7 promoter and pSCEC vector-sized nucleic acid fragments having a size of 400 bp. Nucleic acid fragments were obtained. Each 1 mg of CJ7 promoter fragment and pSCEC vector were linked using T4 ligase and then electroporated to 2500 V in E. coli DH5α strain. Strains recovered after electroporation were plated in LB plate medium containing 50 μg / L spectinomycin and cultured at 37 ° C. for 1 day, and 18 strains showing resistance to spectinomycin were selected. 18 selected strains were identified using PCR primers of SEQ ID NOs: 5 and 6, and PCR products having a size of 400 bp after colony PCR. The production of pSCEC_CJ7 having a CJ7 promoter was confirmed from colony PCR results.
상기 실시예 1에서 얻어진 CbFdh PCR 결과물 획득 조건과 동일하게 서열번호 7 및 8의 프라이머를 이용하여 pSCEC_CJ7에 삽입할 수 있는 CbFdh PCR 결과물을 획득하였다. 제한 효소 XbaI과 SalI으로 처리된 pSCEC_CJ7와 CbFdh PCR 결과물을 연결하여 E. coli DH5α 균주에 삽입 하였다. 선별된 균주로부터 pSCEC_CJ7_CbFdh를 수득하고 퓨트레신 생산 균주인 코리네박테리움 속 미생물 KCCM11240P (대한민국 공개특허 제2013-0082478호)과 KCCM11401P (대한민국 공개특허 제2014-0017243호)에 2500 V로 일렉트로포레이션 (electrophoration)하였다. The CbFdh PCR product that can be inserted into pSCEC_CJ7 was obtained using the primers of SEQ ID NOs: 7 and 8 in the same manner as the CbFdh PCR product obtaining condition obtained in Example 1 above. PSCEC_CJ7 and CbFdh PCR products treated with restriction enzymes XbaI and SalI were linked to the E. coli DH5α strain. PSCEC_CJ7_CbFdh was obtained from the selected strains and electroporated at 2500 V in the microorganisms of the Corynebacterium genus, the putrescine-producing strain KCCM11240P (Korean Patent No. 2013-0082478) and KCCM11401P (Korean Patent No. 2014-0017243). (electrophoration).
상기 일렉트로포레이션하여 수득한 균주를 50 ㎍/ℓ 스펙티노마이신 (spectinomycin)을 포함한 BHIS 평판 배지 (Braine heart infusion 37 g/ℓ, 소르비톨 91 g/ℓ, 한천 2 %)에 도말하여 배양함으로써 콜로니를 형성시켰다. 상기 선별된 균주는 50 ㎍/ℓ 스펙티노마이신 (spectinomycin)을 포함한 CM 배지 (glucose 10 g/ℓ, polypeptone 10 g/ℓ, yeast extract 5 g/ℓ, beef extract 5 g/ℓ, NaCl 2.5 g/ℓ, Urea 2 g/ℓ, pH 6.8)에서 진탕 배양하여 최종 선별하였다. pSCEC_CJ7_CbFdh가 삽입된 KCCM11240P 균주를 KCCM11240P/pSCEC_CJ7_CbFdh (CC04-0081)로 명명하고 pSCEC_CJ7가 삽입된 KCCM11240P 균주를 KCCM11240P/pSCEC_CJ7로 명명하였다. 마찬가지로 pSCEC_CJ7_CbFdh가 삽입된 KCCM11401P 균주를 KCCM11401P/pSCEC_CJ7_CbFdh로 명명하고 pSCEC_CJ7가 삽입된 KCCM11401P 균주를 KCCM11401P/pSCEC_CJ7로 명명하였다. Colonies were cultured by plating the strains obtained by electroporation in BHIS plate medium (Braine heart infusion 37 g / l, sorbitol 91 g / l, agar 2%) containing 50 μg / l spectinomycin. Formed. The selected strains were CM medium containing 50 μg / l spectinomycin (glucose 10 g / l, polypeptone 10 g / l, yeast extract 5 g / l, beef extract 5 g / l, NaCl 2.5 g / 1 L, Urea 2 g / L, pH 6.8) was finally selected by shaking culture. KCCM11240P strain with pSCEC_CJ7_CbFdh inserted was named KCCM11240P / pSCEC_CJ7_CbFdh (CC04-0081) and KCCM11240P strain with pSCEC_CJ7 was named KCCM11240P / pSCEC_CJ7. Similarly, the KCCM11401P strain into which pSCEC_CJ7_CbFdh was inserted was named KCCM11401P / pSCEC_CJ7_CbFdh, and the KCCM11401P strain into which pSCEC_CJ7 was inserted was named KCCM11401P / pSCEC_CJ7.
이 중, CC04-0081 균주를 2016 년 1 월 8 일자로 부다페스트조약하의 국제기탁기관인 한국미생물보존센터 (Korea Culture center of Microorganisms, KCCM)에 수탁번호 KCCM11798P로 기탁하였다.Among them, the CC04-0081 strain was deposited with the accession number KCCM11798P to the Korea Culture Center of Microorganisms (KCCM), an international depository institution under the Budapest Treaty on January 8, 2016.
실시예 3: 코리네박테리움 속 미생물에서의 CbFdh의 활성 평가Example 3: Evaluation of CbFdh Activity in Microorganisms of the Genus Corynebacterium
CbFdh가 삽입된 코리네박테리움 속 균주의 포름산 탈탄산효소 활성을 확인하기 위하여 포름산 (formic acid)를 첨가한 배지에서 포름산 농도 변화를 분석하였다 (도 3). CbFdh가 강화된 균주와 공벡터가 삽입된 균주의 배양액에 0 g/ℓ, 2 g/ℓ, 10 g/ℓ 농도의 포름산을 배양액에 첨가하였다. 강화 균주와 공벡터 삽입 균주는 KCCM11240P/pSCEC_CJ7_CbFdh와 KCCM11240P/pSCEC_CJ7를 사용하였다. In order to confirm formic acid decarboxylase activity of the strain of Corynebacterium sp. Into which CbFdh was inserted, formic acid concentration change was analyzed in a medium containing formic acid (FIG. 3). Formic acid at concentrations of 0 g / L, 2 g / L, and 10 g / L was added to the culture medium of the CbFdh-enhanced strain and the empty vector-inserted strain. Reinforcing strains and empty vector insertion strains were KCCM11240P / pSCEC_CJ7_CbFdh and KCCM11240P / pSCEC_CJ7.
배양 결과 공벡터가 포함된 균주의 경우, 2 g/ℓ 및 10 g/ℓ 포름산이 첨가되었을 때 포름산이 배양액에 그대로 남아 있는 것을 확인할 수 있었다. 반면 CbFdh가 강화된 균주는 2 g/ℓ 의 포름산을 24 시간 안에 모두 분해하는 것을 확인할 수 있었다. 그리고 10 g/ℓ 의 포름산이 첨가된 경우에는 32 시간 내에 모두 분해하지 못하였지만, 지속적으로 포름산이 감소되는 것을 확인할 수 있었다. 반응 32 시간째에 대조군 균주와 비교해 볼 때 80 % 정도의 포름산이 전환되었음을 확인할 수 있었다.In the case of the strain containing the empty vector as a result of the culture, it was confirmed that formic acid remained in the culture solution when 2 g / L and 10 g / L formic acid was added. On the other hand, the CbFdh-enhanced strains could be found to degrade all of 2 g / L formic acid within 24 hours. In addition, when 10 g / L formic acid was added, all decomposition could not be performed within 32 hours, but it was confirmed that formic acid was continuously decreased. As compared with the control strain at 32 hours after the reaction, it was confirmed that about 80% of formic acid was converted.
CbFdh 강화 균주 및 대조군 균주 배양을 통한 포름산 변화량 분석을 통하여 CbFdh 강화 균주는 포름산을 분해하는 것으로 확인되었다. 이 결과를 통하여 코리네박테리움 속 균주에 도입된 CbFdh가 정상적으로 발현하여 기능을 유지하고 있음을 확인하였다. Analysis of formic acid change through the culture of CbFdh enriched strain and control strain confirmed that the CbFdh enriched strain degraded formic acid. Through this result, it was confirmed that CbFdh introduced into the strain of Corynebacterium is normally expressed and maintains its function.
실시예 4: CbFdh 강화 퓨트레신 균주의 생산능 평가 Example 4 Evaluation of Production Capacity of CbFdh Enhanced Putrescine Strains
CbFdh 강화 퓨트레신 균주의 생산능을 평가하기 위하여 제작된 4 종의 코리네박테리움 글루타미쿰 변이주 (KCCM11240P/pSCEC_CJ7_CbFdh, KCCM11240P/pSCEC_CJ7, KCCM11401P/pSCEC_CJ7_CbFdh, KCCM11401P/pSCEC_CJ7)를 각각 1 mM 아르기닌 함유 CM 평판 배지 (glucose 1 %, polypeptone 1 %, yeast extract 0.5 %, beef extract 0.5 %, NaCl 0.25 %, urea 0.2 %, 50 % NaOH 100 ㎕, 50 μg 스펙티노마이신, agar 2 %, pH 6.8, 1 ℓ 기준)에 도말하여 30 ℃에서 24 시간 동안 배양하였다. 이로부터 배양된 각 균주를 25 ㎖의 역가 배지 (Glucose 8 %, 대두단백질 0.25 %, 옥수수고형 0.50 %, (NH4)2SO4 4 %, KH2PO4 0.1 %, MgSO4·7H2O 0.05 %, urea 0.15 %, 바이오틴 100 ㎍, 티아민 염산염 3 mg, 칼슘-판토텐산 3 mg, 니코틴아미드 3 mg, CaCO3 5 %, 50 ㎍ 스펙티노마이신, 1 ℓ 기준)에 한 백금이 정도로 접종한 후 이를 30 ℃에서 200 rpm으로, KCCM11240P/pSCEC_CJ7_CbFdh 및 KCCM11240P/pSCEC_CJ7 균주의 경우 98 시간, KCCM11401P/pSCEC_CJ7_CbFdh 및 KCCM11401P/pSCEC_CJ7 균주의 경우 104 시간 동안 진탕 배양하였다. Four kinds of Corynebacterium glutamicum mutants (KCCM11240P / pSCEC_CJ7_CbFdh, KCCM11240P / pSCEC_CJ7, KCCM11401P / pSCEC_CJ7_CbFdh / KCCM1141PJJ) containing KCCM11401PJ / CCEC11401PJJ, respectively containing Flat media (glucose 1%, polypeptone 1%, yeast extract 0.5%, beef extract 0.5%, NaCl 0.25%, urea 0.2%, 50% NaOH 100 μl, 50 μg spectinomycin, agar 2%, pH 6.8, 1 L Base plate) and incubated for 24 hours at 30 ℃. Each strain was incubated with 25 ml of titer medium (Glucose 8%, soy protein 0.25%, corn solid 0.50%, (NH 4 ) 2 SO 4 4%, KH 2 PO 4 0.1%, MgSO 4 · 7H 2 O 0.05%, urea 0.15%, biotin 100 μg, thiamine hydrochloride 3 mg, calcium-pantothenic acid 3 mg, nicotinamide 3 mg, CaCO 3 5%, 50 μg spectinomycin, based on 1 L) It was incubated at 200 rpm for 30 hours for 98 hours for the KCCM11240P / pSCEC_CJ7_CbFdh and KCCM11240P / pSCEC_CJ7 strains, and 104 hours for the KCCM11401P / pSCEC_CJ7_CbFdh and KCCM11401P / pSCEC_CJ7 strains.
각 배양물로부터 생산된 퓨트레신 농도를 측정하고 그 결과를 하기 표 1에 나타내었다.The putrescine concentration produced from each culture was measured and the results are shown in Table 1 below.
균주명Strain name 포름산 첨가량 (g/ℓ)Formic acid addition amount (g / ℓ) 퓨트레신(g/ℓ)Putrescine (g / ℓ)
KCCM11240P/pSCEC_CJ7KCCM11240P / pSCEC_CJ7 00 12.212.2
KCCM11240P/pSCEC_CJ7KCCM11240P / pSCEC_CJ7 55 12.312.3
KCCM11240P/pSCEC_CJ7_CbFdhKCCM11240P / pSCEC_CJ7_CbFdh 00 13.413.4
KCCM11240P/pSCEC_CJ7_CbFdhKCCM11240P / pSCEC_CJ7_CbFdh 55 13.113.1
KCCM11401P/pSCEC_CJ7KCCM11401P / pSCEC_CJ7 00 11.411.4
KCCM11401P/pSCEC_CJ7KCCM11401P / pSCEC_CJ7 55 10.710.7
KCCM11401P/pSCEC_CJ7_CbFdhKCCM11401P / pSCEC_CJ7_CbFdh 00 12.012.0
KCCM11401P/pSCEC_CJ7_CbFdhKCCM11401P / pSCEC_CJ7_CbFdh 55 12.012.0
배양액에 존재하는 퓨트레신 농도는 HPLC를 이용하여 분석하였다. 상기 표 1에 나타난 바와 같이, KCCM11240P/pSCEC_CJ7 균주의 경우 5 g/ℓ 포름산의 유무에 따라서 퓨트레신 생성량이 크게 변화되지 않았다. 반면 KCCM11240P/pSCEC_CJ7_CbFdh 가 도입된 균주는 5g/ℓ 포름산 유무와 상관없이 KCCM11240P/pSCEC_CJ7 균주 대비 생산량이 7 % 이상 증가되는 것을 확인하였다. 포름산의 유무와 상관없이 Fdh 강화 균주의 퓨트레신 생산량이 증가되는 것을 확인하였다. Putrescine concentration present in the culture was analyzed using HPLC. As shown in Table 1, in the case of KCCM11240P / pSCEC_CJ7 strain, putrescine production was not significantly changed depending on the presence of 5 g / L formic acid. On the other hand, the strain introduced KCCM11240P / pSCEC_CJ7_CbFdh was confirmed to increase the production more than 7% compared to the KCCM11240P / pSCEC_CJ7 strain regardless of the presence or absence of 5g / ℓ formic acid. It was confirmed that putrescine production of the Fdh-enhanced strain was increased with or without formic acid.
또한, 포름산 첨가 없이 동일 배지에서 평가된 KCCM11401P/pSCEC_CJ7 균주의 경우 11.4 g/ℓ의 퓨트레신이 생산되었으며, 5 g/ℓ의 포름산이 첨가된 배지에서 배양된 균주는 6 % 정도 수율이 감소 (10.7 g/ℓ)되는 것을 확인하였다. 반면에 CbFdh가 강화된 균주인 KCCM11401P/pSCEC_CJ7_CbFdh의 경우 포름산의 유무와 상관 없이 동일량의 퓨트레신이 생성 (12.0 g/ℓ)되는 것을 확인하였다. KCCM11401P/pSCEC_CJ7_CbFdh 균주와 KCCM11401P/pSCEC_CJ7 균주로부터 생산된 퓨트레신을 분석하였을 때, CbFdh가 강화된 균주는 KCCM11401P/pSCEC_CJ7 보다 5 %이상 퓨트레신 생산량이 증가되는 것을 확인할 수 있었다. 포름산의 유무와 무관하게 CbFdh 강화 균주가 퓨트레신 생산능이 향상된 것을 확인하였다.In addition, 11.4 g / L of putrescine was produced for the KCCM11401P / pSCEC_CJ7 strain evaluated in the same medium without addition of formic acid, and the strains cultured in the medium to which 5 g / L of formic acid was added reduced the yield by about 6% (10.7). g / l). On the other hand, the CbFdh-enhanced strain KCCM11401P / pSCEC_CJ7_CbFdh was confirmed to produce the same amount of putrescine (12.0 g / L) regardless of the presence or absence of formic acid. When analyzing putrescine produced from KCCM11401P / pSCEC_CJ7_CbFdh and KCCM11401P / pSCEC_CJ7 strains, it was confirmed that the CbFdh-enhanced strains increased putrescine production by 5% or more than KCCM11401P / pSCEC_CJ7. With or without formic acid, it was confirmed that the CbFdh-enhanced strain improved putrescine production capacity.
상기 결과를 종합하면, 퓨트레신 생산 균주에 포름산 탈수소효소 (CbFdh)가 도입된 형질전환 균주는 퓨트레신 생산량이 더욱 증가하는 것을 확인하였으며, 이는 포름산의 첨가 여부와는 무관하게 나타나는 효과이다. 이에, 본원을 통해 퓨트레신을 효율적으로 대량 생산할 수 있을 것으로 기대된다.In summary, the transformed strain in which formic acid dehydrogenase (CbFdh) was introduced into the putrescine producing strain was confirmed to further increase the putrescine production, which is an effect regardless of the addition of formic acid. Accordingly, the present invention is expected to be able to efficiently mass-produce putrescine.
이상의 설명으로부터, 본원이 속하는 기술분야의 당업자는 본원이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본원의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.From the above description, those skilled in the art will appreciate that the present invention can be implemented in other specific forms without changing the technical spirit or essential features. In this regard, it should be understood that the embodiments described above are exemplary in all respects and not limiting. The scope of the present application should be construed that all changes or modifications derived from the meaning and scope of the following claims and equivalent concepts rather than the detailed description are included in the scope of the present application.
Figure PCTKR2017000134-appb-I000001
Figure PCTKR2017000134-appb-I000001

Claims (10)

  1. 포름산 탈수소효소 (formate dehydrogenase, Fdh)의 활성이 변형 전 활성에 비하여 증가된, 퓨트레신을 생산하는 코리네박테리움 속 미생물.A microorganism of the genus Corynebacterium producing putrescine, in which the activity of formate dehydrogenase (Fdh) is increased compared to the activity before transformation.
  2. 제1항에 있어서, 상기 Fdh가 캔디다 보이디니 (Candida boidinii) 유래인, 미생물.2. The method of claim 1, wherein the Candida Fdh show dini (Candida boidinii ) from microorganisms.
  3. 제1항에 있어서, 상기 Fdh가 서열번호 10의 아미노산 서열로 구성되는, 미생물.The microorganism of claim 1, wherein the Fdh consists of the amino acid sequence of SEQ ID NO: 10.
  4. 제1항에 있어서, 추가로 오르니틴 디카르복실라아제 (ornithine decarboxylase, ODC)의 활성이 도입된, 미생물.The microorganism according to claim 1, wherein the activity of ornithine decarboxylase (ODC) is further introduced.
  5. 제1항에 있어서, 추가로 아세틸트랜스퍼라아제의 활성이 내재적 활성에 비해 약화된, 미생물.The microorganism of claim 1, further wherein the activity of acetyltransferase is weakened relative to intrinsic activity.
  6. 제1항에 있어서, 추가로 퓨트레신 배출 활성을 나타내는 단백질 활성이 내재적 활성에 비해 증가된, 미생물.The microorganism of claim 1, wherein the protein activity exhibiting putrescine excretion activity is increased compared to endogenous activity.
  7. 제1항에 있어서, 상기 미생물이 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)인, 미생물.The microorganism of claim 1, wherein the microorganism is Corynebacterium glutamicum .
  8. (a) 제1항 내지 제7항 중 어느 한 항의 미생물을 배지에서 배양하는 단계; 및(a) culturing the microorganism of any one of claims 1 to 7 in a medium; And
    (b) 상기 단계에서 수득되는 미생물 또는 배지로부터 퓨트레신을 회수하는 단계를 포함하는, 퓨트레신 생산 방법.(b) recovering putrescine from the microorganism or medium obtained in the step, putrescine production method.
  9. 제8항에 있어서, 상기 배양하는 단계는 상기 미생물을 포름산을 포함하지 않는 배지에서 배양하는 것인, 방법.The method of claim 8, wherein the culturing is culturing the microorganism in a medium free of formic acid.
  10. 제8항에 있어서, 상기 미생물을 배양하는 단계는 호기성 조건에서 배양하는 것인, 방법.The method of claim 8, wherein culturing the microorganism is culturing in aerobic conditions.
PCT/KR2017/000134 2016-03-15 2017-01-05 Putrescine-producing microorganism and method for producing putrescine using same WO2017159976A1 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
SG11201807791TA SG11201807791TA (en) 2016-03-15 2017-01-05 Putrescine-producing microorganism and method for producing putrescine using the same
US16/083,193 US11124812B2 (en) 2016-03-15 2017-01-05 Putrescine-producing microorganism and method for producing putrescine using the same
RU2018134282A RU2727666C2 (en) 2016-03-15 2017-01-05 Putrescine-producing microorganism and a method of producing putrescine using said microorganism
JP2018545348A JP6786616B2 (en) 2016-03-15 2017-01-05 Microorganisms that produce putrescine and putrescine production methods using them
CA3017944A CA3017944C (en) 2016-03-15 2017-01-05 Putrescine-producing microorganism and method for producing putrescine using the same
NZ745668A NZ745668A (en) 2016-03-15 2017-01-05 Putrescine-producing microorganism and method for producing putrescine using the same
CN201780017515.4A CN109072246B (en) 2016-03-15 2017-01-05 Microorganism for producing putrescine and method for producing putrescine by using same
EP17766877.9A EP3431605A4 (en) 2016-03-15 2017-01-05 Putrescine-producing microorganism and method for producing putrescine using same
MX2018010929A MX2018010929A (en) 2016-03-15 2017-01-05 Putrescine-producing microorganism and method for producing putrescine using same.
BR112018068816-9A BR112018068816B1 (en) 2016-03-15 2017-01-05 MICROORGANISM CORYNEBACTERIUM GLUTAMICUM PUTRESCINE PRODUCER AND METHOD TO PRODUCE PUTRESCINE USING THE SAME
AU2017232873A AU2017232873A1 (en) 2016-03-15 2017-01-05 Putrescine-Producing Microorganism and Method for Producing Putrescine Using the Same
PH12018501981A PH12018501981A1 (en) 2016-03-15 2018-09-13 Putrescine-producing microorganism and method for producing putrescine using the same
AU2020250273A AU2020250273B2 (en) 2016-03-15 2020-10-08 Putrescine-producing microorganism and method for producing putrescine using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0030898 2016-03-15
KR1020160030898A KR101871037B1 (en) 2016-03-15 2016-03-15 Microorganisms producing putrescine and method for producing putrescine using the same

Publications (1)

Publication Number Publication Date
WO2017159976A1 true WO2017159976A1 (en) 2017-09-21

Family

ID=59851705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000134 WO2017159976A1 (en) 2016-03-15 2017-01-05 Putrescine-producing microorganism and method for producing putrescine using same

Country Status (15)

Country Link
US (1) US11124812B2 (en)
EP (1) EP3431605A4 (en)
JP (1) JP6786616B2 (en)
KR (1) KR101871037B1 (en)
CN (1) CN109072246B (en)
AU (2) AU2017232873A1 (en)
BR (1) BR112018068816B1 (en)
CA (1) CA3017944C (en)
CL (1) CL2018002572A1 (en)
MX (1) MX2018010929A (en)
NZ (1) NZ745668A (en)
PH (1) PH12018501981A1 (en)
RU (1) RU2727666C2 (en)
SG (1) SG11201807791TA (en)
WO (1) WO2017159976A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006065095A1 (en) 2004-12-16 2006-06-22 Cj Corporation Novel promoter nucleic acid derived from corynebacterium genus bacteria, expression cassette comprising the promoter and vector comprising the cassette, host cell comprising the vector and method for expressing a gene using the cell
WO2009096689A2 (en) 2008-01-28 2009-08-06 Cj Cheiljedang Corporation Improved promoter and a production method for l-lysine using the same
KR20090107920A (en) * 2008-04-10 2009-10-14 한국과학기술원 Variant Microorganism Having Putrescine Producing Ability and Method for Preparing Putrescine Using the Same
KR20130082478A (en) 2012-01-11 2013-07-19 씨제이제일제당 (주) Microorganisms for producing putrescine and process for producing putrescine using them
KR20140017243A (en) 2012-07-31 2014-02-11 서강대학교산학협력단 Dielectric resonator using electromagnetic wave and cavity resonance, apparatus and method for sensing glucose thereof
WO2014148743A1 (en) 2013-03-20 2014-09-25 씨제이제일제당 (주) Recombinant microorganism for putrescine production and method for producing putrescine using same
KR20150028121A (en) * 2013-09-05 2015-03-13 삼성전자주식회사 Corynebacterium comprising NAD+ dependent formate dehydrogenase gene and a method for producing of C4 dicarboxylic acid using the same
KR20150124398A (en) * 2014-04-25 2015-11-05 씨제이제일제당 (주) Microorganisms for producing putrescine and process for producing putrescine using them

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009125924A2 (en) * 2008-04-10 2009-10-15 한국과학기술원 Mutant microorganism with high ability of producing putrescine and preparation of putrescine using same
KR101231897B1 (en) * 2010-08-03 2013-02-08 한국과학기술원 Varient Microorganism Having Cadaverine Producing Ability and Method for Preparing Cadaverine Using the Same
KR101348461B1 (en) * 2010-12-08 2014-01-08 씨제이제일제당 (주) Microorganisms for producing putrescine and process for producing putrescine using the same
GB201322992D0 (en) * 2013-12-24 2014-02-12 Stichting Dienst Landbouwkundi New Process
US10072150B2 (en) * 2014-12-22 2018-09-11 INVISTA North America S.à r.l. Methods and materials for the production of monomers for nylon-4/polyester production

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006065095A1 (en) 2004-12-16 2006-06-22 Cj Corporation Novel promoter nucleic acid derived from corynebacterium genus bacteria, expression cassette comprising the promoter and vector comprising the cassette, host cell comprising the vector and method for expressing a gene using the cell
KR100620092B1 (en) 2004-12-16 2006-09-08 씨제이 주식회사 Novel promoter nucleic acid derived from corynebacterium genus bacteria expression cassette comprising the promoter and vector comprising the cassette host cell comprising the vector and method for expressing a gene using the cell
WO2009096689A2 (en) 2008-01-28 2009-08-06 Cj Cheiljedang Corporation Improved promoter and a production method for l-lysine using the same
KR20090107920A (en) * 2008-04-10 2009-10-14 한국과학기술원 Variant Microorganism Having Putrescine Producing Ability and Method for Preparing Putrescine Using the Same
KR20130082478A (en) 2012-01-11 2013-07-19 씨제이제일제당 (주) Microorganisms for producing putrescine and process for producing putrescine using them
KR20140017243A (en) 2012-07-31 2014-02-11 서강대학교산학협력단 Dielectric resonator using electromagnetic wave and cavity resonance, apparatus and method for sensing glucose thereof
WO2014148743A1 (en) 2013-03-20 2014-09-25 씨제이제일제당 (주) Recombinant microorganism for putrescine production and method for producing putrescine using same
KR20140115244A (en) 2013-03-20 2014-09-30 씨제이제일제당 (주) Microorganisms having putrescine productivity and process for producing putrescine using the same
KR20150028121A (en) * 2013-09-05 2015-03-13 삼성전자주식회사 Corynebacterium comprising NAD+ dependent formate dehydrogenase gene and a method for producing of C4 dicarboxylic acid using the same
KR20150124398A (en) * 2014-04-25 2015-11-05 씨제이제일제당 (주) Microorganisms for producing putrescine and process for producing putrescine using them

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
APPL ENVIRON MICROBIOL, vol. 78, no. 9, 2012, pages 3325 - 3337
F.M. AUSUBEL ET AL.: "Current Protocols in Molecular Biology", JOHN WILEY & SONS, INC.
J. SAMBROOK ET AL.: "Molecular Cloning, A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
MICROBIOLOGY, vol. 158, 2012, pages 2428 - 2439
NGUYEN ET AL.: "Fermentative Production of the Diamine Putrescine: System Metabolic Engineering of Corynebacterium Glutamicum", METABOLITES, vol. 5, no. 2, 24 April 2015 (2015-04-24), pages 211 - 231, XP055370877 *
See also references of EP3431605A4

Also Published As

Publication number Publication date
JP6786616B2 (en) 2020-11-18
KR20170107615A (en) 2017-09-26
RU2018134282A (en) 2020-04-15
AU2020250273B2 (en) 2022-09-01
AU2017232873A1 (en) 2018-09-13
EP3431605A4 (en) 2019-10-02
RU2018134282A3 (en) 2020-04-15
RU2727666C2 (en) 2020-07-22
KR101871037B1 (en) 2018-06-26
CN109072246A (en) 2018-12-21
SG11201807791TA (en) 2018-10-30
NZ745668A (en) 2020-01-31
AU2020250273A1 (en) 2020-11-05
JP2019506178A (en) 2019-03-07
CN109072246B (en) 2022-03-15
US20200002737A1 (en) 2020-01-02
US11124812B2 (en) 2021-09-21
PH12018501981A1 (en) 2019-06-24
EP3431605A1 (en) 2019-01-23
BR112018068816B1 (en) 2022-07-26
CA3017944C (en) 2022-09-20
MX2018010929A (en) 2018-11-19
CL2018002572A1 (en) 2019-01-04
CA3017944A1 (en) 2017-09-21
BR112018068816A2 (en) 2019-01-22

Similar Documents

Publication Publication Date Title
EP2665809B1 (en) A microorganism having enhanced l-amino acids productivity and process for producing l-amino acids using the same
EP0931833B1 (en) Method of producing L-serine by fermentation
KR101592140B1 (en) Corynebacterium sp. having xylose availability and process for preparing L-lysine employing the same
CA2860616C (en) L-threonine and l-tryptophan producing bacterial strain and method of making same
WO2021162189A1 (en) Corynebacterium glutamicum mutant strain having improved l-glutamic acid production ability, and method for producing l-glutamic acid using same
WO2015064917A1 (en) Microorganism of corynebacterium sp. having enhanced l-lysine producibility and method for producing l-lysine using same
WO2021112469A1 (en) Novel branched-chain amino acid aminotransferase mutant and leucine production method using same
WO2016171392A1 (en) Gluconate repressor variant, l-lysine producing microorganism comprising same, and method for producing l-lysine using same
WO2022225322A1 (en) Novel f0f1 atp synthase subunit alpha variant and method for producing xmp or gmp using same
CA1306963C (en) Process for producing l-threonine and l-isoleucine
WO2014175663A1 (en) Corynebacterium sp. microorganism having improved l-arginine productivity and method for producing l-arginine using same
WO2017069567A1 (en) Recombinant microorganism for producing l-threonine and method for producing l-threonine by using same
WO2013109121A1 (en) Recombinant microorganism with improved putrescine productivity, and method for producing putrescine using same
WO2017159976A1 (en) Putrescine-producing microorganism and method for producing putrescine using same
WO2022225320A1 (en) Novel phosphoglycerate dehydrogenase variant, and method for producing xap or gmp using same
WO2022225319A1 (en) Novel l-serine ammonia-lyase variant and method for producing xmp or gmp, using same
WO2016032158A1 (en) Corynebacterium microorganism having l-lysine producing ability and method for producing l-lysine using same
WO2022225100A1 (en) Novel bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase variant and method for producing xmp or gmp using same
KR20220101509A (en) GlxR protein variant or threonine production method using the same
KR101687474B1 (en) Microorganism of the genus corynebacterium with enhanced l-arginine productivity and method for producing l-arginine using the same
KR102419166B1 (en) Novel glutamine-hydrolyzing GMP synthase variant and a method for producing purine nucleotide using the same
WO2023063547A1 (en) Corynebacterium glutamicum variant having improved l-lysine production ability and method for producing l-lysine by using same
WO2022163916A1 (en) Novel dahp synthase variant, and method for producing l-lysine using same
WO2014208884A1 (en) L-threonine-producing microorganism and production method for l-threonine using same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018545348

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/010929

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2017232873

Country of ref document: AU

Date of ref document: 20170105

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3017944

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11201807791T

Country of ref document: SG

WWE Wipo information: entry into national phase

Ref document number: 2017766877

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018068816

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017766877

Country of ref document: EP

Effective date: 20181015

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766877

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112018068816

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180917