WO2017159849A1 - Catheter pump and treatment method - Google Patents

Catheter pump and treatment method Download PDF

Info

Publication number
WO2017159849A1
WO2017159849A1 PCT/JP2017/010914 JP2017010914W WO2017159849A1 WO 2017159849 A1 WO2017159849 A1 WO 2017159849A1 JP 2017010914 W JP2017010914 W JP 2017010914W WO 2017159849 A1 WO2017159849 A1 WO 2017159849A1
Authority
WO
WIPO (PCT)
Prior art keywords
tubular portion
proximal
impeller
distal
blood
Prior art date
Application number
PCT/JP2017/010914
Other languages
French (fr)
Japanese (ja)
Inventor
畑優
森武寿
竹村知晃
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2017159849A1 publication Critical patent/WO2017159849A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • A61M60/226Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller the blood flow through the rotating member having mainly radial components
    • A61M60/232Centrifugal pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/13Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel by means of a catheter allowing explantation, e.g. catheter pumps temporarily introduced via the vascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/165Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart
    • A61M60/17Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart inside a ventricle, e.g. intraventricular balloon pumps
    • A61M60/174Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart inside a ventricle, e.g. intraventricular balloon pumps discharging the blood to the ventricle or arterial system via a cannula internal to the ventricle or arterial system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • A61M60/221Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller the blood flow through the rotating member having both radial and axial components, e.g. mixed flow pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/408Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being mechanical, e.g. transmitted by a shaft or cable
    • A61M60/411Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being mechanical, e.g. transmitted by a shaft or cable generated by an electromotor
    • A61M60/416Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being mechanical, e.g. transmitted by a shaft or cable generated by an electromotor transmitted directly by the motor rotor drive shaft
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/50Details relating to control
    • A61M60/508Electronic control means, e.g. for feedback regulation
    • A61M60/515Regulation using real-time patient data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/81Pump housings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • A61M60/825Contact bearings, e.g. ball-and-cup or pivot bearings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/855Constructional details other than related to driving of implantable pumps or pumping devices
    • A61M60/857Implantable blood tubes

Definitions

  • the present invention relates to a catheter pump and a treatment method for assisting cardiac output.
  • Patent Document 1 describes a catheter pump that is used by being percutaneously inserted from the femoral artery and reaching the left ventricle from the aorta.
  • This catheter pump has a tubular cannula extending from the left ventricle to the aorta and an impeller rotating inside the cannula. By rotating the impeller inside the cannula, blood inside the cannula can flow from the left ventricle into the aorta and assist in cardiac output.
  • Patent Document 1 The catheter pump described in Patent Document 1 has a great influence on the aortic valve because the cannula is in contact with the aortic valve. However, if the cannula is made thin, it becomes difficult to ensure the necessary flow rate.
  • the present invention has been made to solve the above-described problems, and can provide a catheter pump and a treatment method capable of reducing the influence on a heart valve, ensuring a sufficient flow rate, and promoting blood to a coronary vein.
  • the purpose is to provide.
  • a catheter pump that achieves the above object is a catheter pump that is inserted into a heart chamber to assist blood flow, and is provided with an inflow port through which blood flows in on the distal side and out of blood on the proximal side.
  • a tubular body provided with a discharge port, which can be radially contracted and expanded; a long shaft portion to which a proximal portion of the cannula is connected; and a rotatable shaft inside the cannula,
  • a treatment method for achieving the above object is a treatment method for assisting blood flow by inserting the catheter pump into the heart chamber, inserting the catheter pump into a blood vessel, and moving the distal tubular portion to the left. Placing in the ventricle, placing the intermediate tubular portion in contact with the aortic valve, placing the proximal tubular portion in the aorta, and rotating the impeller to move blood in the left ventricle from the inlet into the cannula Aspirating and releasing into the aorta from the outlet.
  • the catheter pump and the treatment method configured as described above can reduce the influence on the heart valve to be inserted because the diameter of the intermediate tubular portion is smaller than the diameter of the proximal tubular portion. Moreover, since the diameter of the proximal tubular portion is larger than the diameter of the intermediate tubular portion and can accommodate an impeller having a high discharge pressure, the pressure loss due to the small inner diameter of the intermediate tubular portion is large, and a sufficient flow rate can be secured. Furthermore, since the discharge port is located on the outer peripheral surface of the proximal tubular portion having a diameter larger than that of the intermediate tubular portion or on the outer peripheral surface inclined with respect to the central axis of the impeller at the proximal end portion, blood is located on the side from the discharge port. Is released.
  • emitted to the aorta can be guide
  • the catheter pump 10 is a device used for the treatment of acute heart failure.
  • the catheter pump 10 is percutaneously inserted into a blood vessel and introduced into the heart to operate and assist in cardiac output.
  • the side of the device to be inserted into the blood vessel is referred to as “distal side”, and the proximal side for operation is referred to as “proximal side”.
  • the catheter pump 10 includes a long shaft portion 20, a cannula 30 disposed on the distal side of the shaft portion 20, and a drive rotatably disposed inside the shaft portion 20.
  • a shaft 40, an impeller 50 fixed to the distal portion of the drive shaft 40, and an outer sheath 60 through which the shaft portion 20 passes are provided.
  • the shaft portion 20 includes a shaft body 21 that is a tubular body, and a first hub 22 that houses a proximal portion of the drive shaft 40.
  • the shaft body 21 has a first lumen 23 inside.
  • the drive shaft 40 is rotatably accommodated in the first lumen 23.
  • a bearing 24 that rotatably supports the drive shaft 40 is provided at the distal portion of the first lumen 23.
  • the bearing 24 is, for example, a tube made of a low friction material at least on the inner peripheral surface.
  • the constituent material of the shaft body 21 is preferably a material having hardness and flexibility.
  • polyolefin such as polyethylene and polypropylene
  • polyester such as polyamide and polyethylene terephthalate
  • tetrafluoroethylene / ethylene copolymer Fluorine polymers such as ETFE), PEEK (polyetheretherketone), polyimide, polytetrafluoroethylene (PTFE) and the like are preferably used. It is also possible to add a metal blade or coil to the material to increase the rigidity.
  • Examples of the low friction material constituting the bearing 24 include fluorine resin materials such as PTFE and ETFE. Note that the bearing may not be provided.
  • the first hub 22 is fixed to the proximal portion of the shaft body 21. Inside the first hub 22, a first connecting portion 41 provided at the proximal portion of the drive shaft 40 is disposed.
  • the drive shaft 40 is a long tube body for receiving the rotational force from the drive device 90 provided outside the body and rotating the impeller 50 at the distal portion.
  • the drive shaft 40 has a guide wire lumen 42 into which a guide wire or the like can be inserted.
  • the guide wire lumen 42 may not be on the drive shaft 40.
  • the drive shaft 40 only needs to be able to transmit the torque generated by the drive device 90.
  • the drive shaft 40 is composed of a multi-layer coiled tube such as a three-layer coil in which a thin round wire or a flat wire is alternately wound in the right and left and right winding directions. Is done.
  • the drive shaft 40 includes a first connection portion 41 that can be connected to the second connection portion 91 provided on the rotation shaft 92 of the external drive device 90 in the first hub 22.
  • the driving device 90 has, for example, a motor 93 in order to rotate the rotating shaft 92.
  • the operation of the driving device 90 is controlled by the control unit 100.
  • the control unit 100 includes a CPU (Central Processing Unit) and a storage circuit, and is connected to interfaces such as a keyboard, a mouse, and a monitor.
  • CPU Central Processing Unit
  • the control unit 100 is a computer, for example.
  • the cannula 30 may be provided with a sensor for acquiring biological information, and the control unit 100 may be connected with an acquisition information receiving device.
  • a sensor for acquiring biological information is located in the proximal tubular portion 32 of the cannula 30 on the base side from the discharge port 83. Thereby, the impeller 50 can acquire biological information immediately after the discharged fluid.
  • the biological information is blood flow rate, flow velocity, and the like.
  • the cannula 30 is a flexible deformable tube body having a flow path for circulating blood inside.
  • the cannula 30 can be elastically deformed so as to contract in the radial direction, and can return to its original shape by its own elastic force.
  • the cannula 30 includes a distal tubular portion 31 located at the distal portion, a proximal tubular portion 32 located at the proximal portion, and an intermediate tubular portion 33 located between the distal tubular portion 31 and the proximal tubular portion 32. And have. Further, the cannula 30 is located between the distal tubular portion 31 and the intermediate tubular portion 33, and is located between the proximal tubular portion 32 and the intermediate tubular portion 33.
  • the cannula 30 has a tip tube 70 that is located on the distal side of the distal tubular portion 31 and into which a guide wire can be inserted, and a connecting wire 75 that connects the tip tube 70 and the distal tubular portion 31. ing.
  • the distal tubular portion 31, the distal change portion 34, the intermediate tubular portion 33, the intermediate change portion 35, the proximal tubular portion 32 and the proximal end portion 36 are a flexible deformable membrane body 80 and a tube body 80.
  • a support body 81 for maintaining the shape is integrally formed.
  • the support 81 has a tube shape in which the wire is braided in a mesh shape, can be elastically deformed so as to contract toward the central axis of the tube, and returns to its original shape by its own elastic force. be able to.
  • the support body 81 is disposed inside the film body 80, but may be disposed outside the film body 80 or embedded inside the film body 80 as long as the film body 80 can be supported.
  • the distal tubular portion 31 is a portion inserted into the left ventricle H (see FIG. 5).
  • the distal tubular portion 31 has a substantially constant inner diameter and outer diameter along the axial direction.
  • the distal tubular portion 31 includes an inflow port 82 having an internal flow channel opened at a distal end.
  • the inflow port 82 is a part into which blood flows when the pump is operated.
  • the proximal tubular portion 32 is a part located in the ascending aorta A (see FIG. 5).
  • the proximal tubular portion 32 has a substantially constant inner diameter and outer diameter along the axial direction.
  • the proximal tubular portion 32 includes a plurality of discharge ports 83 that penetrate from the inner peripheral surface to the outer peripheral surface.
  • the discharge port 83 is a part that discharges pressurized blood when the pump is operated.
  • the plurality of discharge ports 83 are provided side by side in the circumferential direction of the proximal tubular portion 32.
  • the discharge port 83 is configured by concentrating a support body 81 as a wire between adjacent discharge ports 83 and cutting out a film body 80 at a position where the support body 81 is not provided.
  • the discharge port 83 is provided from the proximal portion of the distal tubular portion 31 to the distal portion of the proximal end portion 36.
  • the shape of the discharge port 83 is not particularly limited. However, since the discharge port 83 is provided at the proximal end portion 36 whose diameter decreases toward the proximal side, a shape in which the circumferential width decreases toward the proximal side is preferable.
  • the edge of the discharge port 83 is preferably configured with a curve so that the pressure loss is small.
  • the proximal side of the edge of the discharge port 83 may be configured such that the radius of the curve is larger and the pressure loss is smaller than the distal side of the edge of the discharge port 83.
  • the discharge port 83 may be provided only in the proximal tubular portion 32 or may be provided only in the proximal end portion 36.
  • the intermediate tubular portion 33 is a portion that passes through the inside of the aortic valve V and is in contact with the aortic valve V (see FIG. 5).
  • the intermediate tubular portion 33 is located between the distal tubular portion 31 and the proximal tubular portion 32.
  • the intermediate tubular portion 33 has a substantially constant inner diameter and outer diameter along the axial direction.
  • the inner and outer diameters of the intermediate tubular portion 33 are smaller than the inner and outer diameters of the distal tubular portion 31 and the proximal tubular portion 32.
  • the flow path inside the intermediate tubular portion 33 circulates the blood flowing from the distal tubular portion 31 to the proximal tubular portion 32.
  • the minimum total channel area (the cross-sectional area of the inner diameter at the position where the inner diameter is minimum) inside the intermediate tubular portion 33 is smaller than the total channel area of the discharge port 83 (the total area of the plurality of discharge ports 83). Further, the minimum total channel area inside the intermediate tubular portion 33 is smaller than the total channel area of the inlet 82 (the cross-sectional area of the inner diameter of the inlet 82).
  • the distal change portion 34 has an outer diameter and an inner diameter that are tapered from the distal tubular portion 31 toward the intermediate tubular portion 33, and smoothly connects the distal tubular portion 31 and the intermediate tubular portion 33. Since the inner diameter of the distal change portion 34 decreases in a tapered manner toward the proximal side, the flow rate of blood flowing toward the proximal side can be increased while minimizing the pressure loss. Further, since the outer diameter and the inner diameter of the distal change portion 34 change in a taper shape, the distal change portion 34 can be easily expanded and contracted in the radial direction as compared with a case where the distal change portion 34 changes in a step shape. It is. Note that the outer diameter and the inner diameter of the distal change portion 34 may change stepwise.
  • the outer peripheral surface of the distal change portion 34 can contact the aortic valve V located outside the intermediate tubular portion 33. For this reason, the distal change portion 34 has a structure that hardly moves to the ascending aorta A beyond the aortic valve V. Thus, the distal change 34 serves to hold the cannula 30 in place. Further, as shown in FIG. 6, even when the catheter pump 10 is moved in the proximal direction by the flow of blood, the outer peripheral surface of the distal change portion 34 is on the central axis side of the distal surface of the aortic valve V. Touch along. At this time, since the diameter of the distal change portion 34 is changed, the contact area between the distal change portion 34 and the aortic valve V is large, and the backflow of blood can be restricted.
  • the intermediate changing portion 35 has an outer diameter and an inner diameter that increase in a tapered shape from the intermediate tubular portion 33 toward the proximal tubular portion 32, and smoothly connects the intermediate tubular portion 33 and the proximal tubular portion 32. Since the inner diameter of the intermediate change portion 35 increases in a tapered shape along the axial direction, the flow rate of blood flowing toward the proximal side can be reduced while minimizing the pressure loss. Further, since the outer diameter and the inner diameter of the intermediate change portion 35 change in a taper shape, the intermediate change portion 35 can be easily expanded and contracted in the radial direction as compared with a case where the intermediate change portion 35 changes in a step shape. . In addition, the outer diameter and inner diameter of the intermediate change portion 35 may change in a step shape.
  • the outer peripheral surface of the intermediate change part 35 can contact the aortic valve V located outside the intermediate tubular part 33.
  • the intermediate changing portion 35 has a structure that is difficult to move to the left atrium H beyond the aortic valve V. Accordingly, the intermediate changing portion 35 serves to hold the cannula 30 in an appropriate position. Therefore, it may have a surface marker that can be easily recognized by the ultrasonic probe and a metal marker that can be recognized by the X-ray contrast apparatus so that the intermediate tubular portion 33 is arranged at a more appropriate position.
  • the outer peripheral surface of the intermediate change portion 35 is close to the aortic valve V. Since it contacts the central axis side of the distal surface, the radial movement of the aortic valve V can be limited. Further, as shown in FIG. 8, even if the aortic valve V is pushed in the direction (proximal direction) opposite to the opening direction (distal direction) of the aortic valve V, the opening force of the aortic valve V causes the distal direction. The movement of the moving catheter pump 10 can be limited.
  • the proximal end portion 36 is located closer to the proximal side than the proximal tubular portion 32.
  • the proximal portion of the proximal end portion 36 is fixed to the outer peripheral surface of the distal portion of the shaft body 21.
  • the proximal end portion 36 has an outer diameter and an inner diameter that are tapered from the proximal tubular portion 32 toward the distal portion of the shaft body 21, and smoothly connects the proximal tubular portion 32 and the shaft body 21. Since the outer diameter and inner diameter of the proximal end portion 36 change in a tapered shape, the proximal end portion 36 can be easily expanded and contracted in the radial direction as compared with a case where the proximal end portion 36 changes in a stepped shape.
  • the outer diameter and inner diameter of the proximal end portion 36 may change in a step shape.
  • the outer diameter of the wire constituting the support 81 is, for example, 0.01 to 1 mm, preferably 0.05 to 0.2 mm. It is desirable that the wire is made of a material having shape memory properties.
  • the constituent material of the support 81 is, for example, a shape memory alloy to which a shape memory effect or superelasticity is imparted by heat treatment, stainless steel, titanium, elastic urethane rubber, fluoro rubber, perprene, silicone or other resin, carbon fiber Etc. are suitable.
  • As the shape memory alloy Ni—Ti, Cu—Al—Ni, Cu—Zn—Al, rubber metal, or a combination thereof is suitable.
  • the thickness of the film body 80 is, for example, 0.05 to 1 mm.
  • the constituent material of the film body 80 is preferably a stretchable material such as silicone resin or latex, or a resin material such as polyethylene terephthalate or urethane.
  • the axial length L1 of the distal tubular portion 31 is a length that can be accommodated in the left ventricle H, and is, for example, 5 to 150 mm, and preferably 20 to 80 mm.
  • the length L2 in the axial direction of the intermediate tubular portion 33 is preferably a length that can pass through the aortic valve V, for example, 0.5 to 30 mm, and more preferably 3 to 15 mm.
  • the axial length L3 of the proximal tubular portion 32 is a length that can be accommodated in the ascending aorta A, and is, for example, 3 to 30 mm, and preferably 5 to 15 mm.
  • the overall length of the cannula 30 in the axial direction is, for example, 15 to 210 mm.
  • the outer diameter D1 of the distal tubular portion 31 is an outer diameter that can pass through the aortic valve V at least in a contracted state, and is preferably 0.2 to 20 mm when contracted and 5 to 50 mm when expanded, for example.
  • the outer diameter D2 of the intermediate tubular portion 33 is an outer diameter that can pass through the aortic valve V in a contracted state, and is preferably 0.2 to 20 mm when contracted, and 4 to 30 mm when expanded.
  • the outer diameter D3 of the proximal tubular portion 32 is an outer diameter that can be disposed in the ascending aorta A, and is preferably 0.2 to 20 mm when contracted and 5 to 45 mm when expanded, for example.
  • the tip tube 70 is a tube body into which a guide wire can be inserted into the lumen 43.
  • the proximal portion of the tip tube 70 is straight and connected to the connecting wire 75.
  • the distal portion of the tip tube 70 is curved.
  • the tip tube 70 is located on the distal side of the distal tubular portion 31.
  • the axial center of the proximal portion of the tip tube 70 is located on the extension line of the axial center of the distal tubular portion 31.
  • the axis of the proximal portion of the tip tube 70 may be on an extension line of the edge of the distal tubular portion 31.
  • the tip tube 70 may be disposed on the outer sheath 60 or the wall surface of the distal tubular portion 31.
  • the distal portion of the tip tube 70 When the guide wire is inserted into the lumen 43, the distal portion of the tip tube 70 can be elastically deformed by the rigidity of the guide wire and can be extended linearly. When the guide wire is pulled out from the tip tube 70, the distal portion of the tip tube 70 returns to the original curved state by its own elastic force. For this reason, the sharp tip part of the tip tube 70 becomes difficult to contact a biological tissue, and safety can be ensured.
  • the connecting wire 75 is a plurality of wires (four in this embodiment) that connect the distal end of the distal tubular portion 31 and the proximal end of the tip tube 70.
  • the plurality of connecting wires 75 are arranged evenly in the circumferential direction of the distal tubular portion 31.
  • the connecting wire 75 can use the same wire as the wire used for the support 81 described above.
  • the connecting wire 75 may be made of a material different from that of the support 81.
  • the impeller 50 is located inside the proximal tubular portion 32 of the cannula 30.
  • the impeller 50 can be elastically deformed so as to contract in the radial direction or the axial direction, and can return to its original shape by its own elastic force.
  • the impeller 50 is, for example, a centrifugal impeller fixed to the distal portion of the drive shaft 40.
  • the centrifugal impeller is an impeller 50 used for a centrifugal pump.
  • the centrifugal impeller is arranged between two rotating plates 51 that are arranged apart from each other in the rotation axis direction, and is rotated between the rotating plates 51 so that fluid flows radially outward. And a centrifugal blade 52 (blade) for extruding.
  • a suction port 53 which is an opening for taking in fluid between the two rotation plates 51, is provided on the center side of the distal rotation plate 51, and a discharge port 54 that discharges fluid to the outside in the radial direction of the centrifugal blade 52. Is provided. If the fluid is pushed out toward the discharge port 83, the impeller 50 is not limited to the centrifugal pump, and may be, for example, a mixed flow type pump or an axial flow type pump.
  • the discharge port 83 provided in the proximal tubular portion 32 and the proximal end portion 36 is located on the radially outer side (discharge direction) of the impeller 50. For this reason, the blood discharged from the impeller 50 is effectively discharged from the discharge port 83 to the outside of the cannula 30.
  • the impeller 50 may not be directly fixed to the drive shaft 40.
  • a cylindrical rotary shaft may be fixed to the center of the impeller 50, and the drive shaft 40 may be fixed to the rotary shaft.
  • the flow rate of blood discharged from the impeller 50 is, for example, 0.1 to 8 Lpm (L / min) under heartbeat.
  • the rotation speed of the impeller 50 is preferably set so as to obtain a desired flow rate, and is set within a range of 10 to 50000 rpm, for example.
  • the constituent material of the impeller 50 is not particularly limited as long as it is elastically deformed and has a rigidity sufficient to exhibit the function as the impeller, but the same material as the film body 80 and the support body 81 can be used. Resins such as urethane rubber, fluororubber, and silicone are suitable.
  • the outer sheath 60 is branched from the outer sheath main body 61, which is a tube having a second lumen 62 therein, a second hub 63 provided on the proximal side of the outer sheath main body 61, and the second hub 63. And a port 64 communicating with the lumen 62.
  • a three-way cock 65 is provided at the port 64.
  • the port 64 may be used for injecting a purge solution for reducing blood inflow into the first lumen 23 and the guide wire lumen 42 and friction between the drive shaft 40 and the outer sheath 60.
  • the outer sheath body 61 can accommodate the shaft portion 20 in the second lumen 62.
  • the second lumen 62 can be accommodated while the cannula 30 and the impeller 50 are deformed.
  • the cannula 30 has the second lumen 62. It is guided smoothly and can be easily accommodated in the second lumen 62.
  • the outer sheath 60 may not be integrated with the outer sheath body 61 but may be inserted through the lumen of the outer sheath body 61. In that case, a port similar to the port 64 may be installed at the proximal end of the outer sheath 60, and the outer sheath body 61 has a function as an introducer sheath.
  • the inner diameter of the outer sheath body 61 can accommodate the contracted cannula 30 and the impeller 50, for example, 0.3 to 20.1 mm, and more preferably 1 to 10 mm.
  • PCI percutaneous coronary angioplasty
  • a case of performing (Percutaneous Coronary Intervention) will be described as an example.
  • PCI is a treatment technique for expanding a stenosis or occlusion in a coronary artery so as to be expanded by a balloon catheter to restore blood flow.
  • the cannula 30 and the impeller 50 are accommodated in the outer sheath body 61, and the cannula 30 and the impeller 50 are contracted.
  • the patient is given local or general anesthesia and an anticoagulant is administered.
  • the introducer sheath is placed in the femoral artery by puncturing the skin by the Seldinger method or the like.
  • the position where the introducer sheath is installed is not limited as long as the catheter pump 10 can be introduced into the left ventricle H.
  • the guide wire 110 is inserted into the femoral artery via the introducer sheath, and reaches the left ventricle H through the descending aorta, the ascending aorta A, and the aortic valve V.
  • the proximal end portion of the guide wire 110 is inserted into the lumen 43 of the distal tube 70 or the guide wire lumen 42, and the catheter pump 10 is inserted into the introducer sheath along the guide wire 110.
  • the catheter pump 10 is pushed along the guide wire 110 to reach the left ventricle H through the descending aorta, the ascending aorta A, and the aortic valve V as shown in FIG. Thereafter, the guide wire 110 is removed.
  • the outer sheath 60 is moved to the proximal side while the position of the first hub 22 is maintained. Thereby, the cannula 30 and the impeller 50 are discharged from the distal opening of the outer sheath body 61 into the blood vessel or the heart. As shown in FIGS. 4 and 5, the cannula 30 and the impeller 50 released into the blood vessel or the heart return to the original shape by their own elastic force. At this time, the intermediate tubular portion 33 having a small outer diameter of the cannula 30 is matched with the position of the aortic valve V using an ultrasonic probe or an X-ray device.
  • the distal tubular portion 31 having the inflow port 82 is located in the left ventricle H, and the proximal tubular portion 32 having the discharge port 83 is located in the ascending aorta A.
  • the discharge port 83 is located between the aortic valve V and the coronary artery port O.
  • the discharge port 83 may not be located between the aortic valve V and the coronary artery port O.
  • the 1st connection part 41 of the 1st hub 22 is connected with the 2nd connection part 91 of the drive device 90 (refer FIG. 1).
  • the drive unit 90 is operated by operating the control unit 100.
  • the drive shaft 40 rotates and the impeller 50 connected to the drive shaft 40 rotates.
  • the impeller 50 rotates, a proximal flow occurs within the cannula 30.
  • blood flows into the cannula 30 from the inlet 82 in the left ventricle H, and blood is discharged into the ascending aorta A from the discharge port 83 in the ascending aorta A.
  • the rotational speed is gradually increased while monitoring the position, flow rate, left intracardiac pressure, aortic pressure, blood pressure, and the like of the cannula 30 and the impeller 50.
  • the positions of the cannula 30 and the impeller 50 can be confirmed by an ultrasonic probe or X-ray contrast.
  • the flow rate of the catheter pump 10 is specified from the number of rotations of the driving device 90 controlled by the control unit 100, the left heart pressure, the aortic pressure, and the like.
  • Left intracardiac pressure, aortic pressure, blood pressure, and the like can be measured by a pulse pressure measuring device, and the pulse pressure measuring device may be provided in the control unit 100. After reaching the desired flow rate or left chamber pressure, the rotational speed is fixed and maintained.
  • the impeller 50 rotates, and blood sucked from the inlet 82 in the left ventricle H flows into the distal tubular portion 31. Since the inner diameter of the distal tubular portion 31 can be set larger than the inner diameter of the intermediate tubular portion 33 located in the aortic valve V, a large inlet 82 in the left ventricle H can be secured. For this reason, the pressure loss of the blood at the time of inhaling into the inflow port 82 can be reduced as much as possible.
  • the inner tubular portion 33 has an inner diameter that is smaller than the inner diameter of the distal tubular portion 31. For this reason, when blood reaches the intermediate tubular portion 33 from the distal tubular portion 31, the flow velocity increases. At this time, since the inner diameter of the distal change portion 34 is tapered toward the proximal side, the blood flow velocity can be changed while minimizing the pressure loss.
  • the blood that has entered the intermediate tubular portion 33 flows through the intermediate changing portion 35 to the proximal tubular portion 32.
  • the inner diameter of the proximal tubular portion 32 is larger than the inner diameter of the intermediate tubular portion 33. For this reason, when the blood reaches the proximal tubular portion 32 from the intermediate tubular portion 33, the flow velocity decreases. At this time, since the inner diameter of the intermediate change portion 35 increases in a tapered shape toward the proximal side, the blood flow velocity can be changed while minimizing the pressure loss.
  • the blood that has entered the proximal tubular portion 32 is sucked into the rotating impeller 50 and discharged in a radially outward direction or a direction inclined more proximally than the radially outer side.
  • the distal portion of the impeller 50 is located in the intermediate tubular portion 33 or the intermediate change portion 35, blood can be sucked into the impeller 50 before reaching the proximal tubular portion 32.
  • the blood discharged from the impeller 50 is discharged to the ascending aorta A through the discharge port 83.
  • the edge part of the discharge port 83 is configured by a curve, the pressure loss can be minimized.
  • the blood discharged from the discharge port 83 is oriented in a radially outward direction or a direction inclined more proximally than the radially outer side. For this reason, blood easily reaches the coronary artery opening O located on the radially outer side of the discharge port 83 or on the proximal side of the discharge port 83. For this reason, being oriented in a radially outward direction or a direction inclined more proximally than the radially outward direction can increase the blood inflow pressure to the coronary artery C and promote inflow.
  • a PCI guide wire 111 is inserted into the femoral artery or the radial artery or the like and guided to the ascending aorta A.
  • the guide wire 111 that has reached the ascending aorta A is inserted into the coronary ostium O.
  • the discharge port 83 of the cannula 30 is provided on the outer peripheral surface inclined with respect to the outer peripheral surface of the proximal tubular portion 32 and the axial center of the proximal end portion 36. That is, the opening direction of the discharge port 83 is inclined with respect to the axial center direction of the cannula 30. For this reason, it can suppress that the guide wire 111 for PCI is accidentally inserted in the discharge port 83, and safety is high.
  • the balloon catheter 112 is inserted into the coronary artery C along the PCI guide wire 111, the balloon is expanded, and the stenosis part or the obstruction part is pushed and expanded. Thereafter, the balloon is deflated, the balloon catheter 112 is removed, and the PCI guide wire 111 is removed. Thereafter, the operation of the catheter pump 10 is continued as needed to continue assisting cardiac output.
  • the operating time of the catheter pump 10 is, for example, several minutes to several hours.
  • the controller 100 When stopping the operation of the catheter pump 10, the controller 100 is controlled by the control unit 100, and the rotation of the impeller 50 is gradually stopped.
  • the outer sheath 60 is moved relatively to the distal side with respect to the cannula 30 and the impeller 50. Thereby, the cannula 30 and the impeller 50 are accommodated in the second lumen 62 of the outer sheath body 61 while contracting in the radial direction.
  • the catheter pump 10 is extracted from the blood vessel through the introducer sheath. Thereafter, the introducer sheath is removed from the blood vessel, and the puncture site of the femoral artery is stopped to complete the procedure.
  • the sheath can be removed during continuous driving, and infection from the puncture portion can be prevented.
  • the catheter pump 10 is a pump that is inserted into the heart chamber and assists the flow of blood, and is provided with an inflow port 82 through which blood flows into the distal side and is proximal.
  • a tube body provided with a discharge port 83 through which blood flows out, a cannula 30 that can be contracted and expanded in a radial direction, a long shaft portion 20 to which a proximal portion of the cannula 30 is connected,
  • An impeller 50 that is rotatably disposed therein and generates a blood flow from the inlet 82 to the discharge port 83, and the cannula 30 includes a proximal tubular portion in which the impeller 50 is rotatably disposed.
  • a proximal end portion 36 which is located on the proximal side of the proximal tubular portion 32 and has a portion whose inner diameter decreases toward the proximal side and which is connected to the shaft portion 20, and the proximal tubular portion 32 Distal of The intermediate tubular portion 33 having an inner diameter smaller than that of the proximal tubular portion 32, and the intermediate tubular portion 33 located on the distal side of the intermediate tubular portion 33.
  • a distal tubular portion 31 in which the inlet 82 is located, and the outlet 83 is at least of an outer peripheral surface inclined relative to the outer peripheral surface of the proximal tubular portion 32 and the central axis of the impeller 50 of the proximal end portion 36. Located on one side.
  • the catheter pump 10 configured as described above can reduce the influence on the heart valve to be inserted. Further, since the inner diameter of the proximal tubular portion 32 is larger than the inner diameter of the intermediate tubular portion 33 and can accommodate the impeller 50 having a high discharge pressure, a sufficient flow rate can be secured even if the inner tubular portion 33 has a small inner diameter.
  • the discharge port 83 is located on the outer peripheral surface of the proximal tubular portion 32 having a diameter larger than that of the intermediate tubular portion 33 or on the outer peripheral surface inclined with respect to the central axis of the impeller 50 of the proximal end portion 36, blood Is discharged laterally from the discharge port 83. For this reason, the blood discharged to the ascending aorta A can be guided to the coronary artery opening O located on the wall surface of the ascending aorta A, and the inflow of blood into the coronary artery C can be promoted.
  • the impeller 50 is a centrifugal impeller (or mixed flow impeller).
  • the centrifugal impeller or the mixed flow impeller
  • the centrifugal impeller can be reasonably disposed without difficulty in correspondence with the shape in which the inner diameter increases from the intermediate tubular portion 33 toward the proximal tubular portion 32. For this reason, it is structurally advantageous as a catheter in which it is desirable to reduce the diameter as much as possible for insertion into a thin blood vessel.
  • the discharge port 83 is located in the discharge direction of the impeller 50. Thereby, the pressure loss of the blood pressurized by the impeller 50 becomes small, and a high flow rate and a high head can be secured.
  • the total channel area of the discharge port 83 is larger than the minimum total channel area in the intermediate tubular portion 33. Therefore, the blood that has passed through the intermediate tubular portion 33 having a small total channel area can be discharged as much as possible without loss. Therefore, the flow rate at the discharge port 83 can be ensured as large as possible.
  • the distal tubular portion 31 has an inner diameter larger than that of the intermediate tubular portion 33.
  • the total channel area of the inflow port 82 is larger than the minimum total channel area in the intermediate tubular portion 33.
  • the present invention also includes a treatment method (therapeutic method) for assisting blood flow by inserting the catheter pump 10 into the heart chamber.
  • a treatment method for assisting blood flow by inserting the catheter pump 10 into the heart chamber.
  • the catheter pump 10 is inserted into the blood vessel, the distal tubular portion 31 is disposed in the left ventricle H, the intermediate tubular portion 33 is disposed at a position in contact with the aortic valve V, and the proximal tubular portion 32 is ascending.
  • a step of rotating the impeller 50 to suck blood in the left ventricle H from the inflow port 82 into the cannula 30 and discharge from the discharge port 83 into the ascending aorta A.
  • the treatment method configured as described above can reduce the influence on the aortic valve V because the diameter of the intermediate tubular portion 33 in contact with the aortic valve V is smaller than the diameter of the proximal tubular portion 32. Moreover, since the inner diameter of the proximal tubular portion 32 arranged in the ascending aorta A is larger than the inner diameter of the intermediate tubular portion 33 and can accommodate the impeller 50 having a high discharge pressure, it is sufficient even if the inner tubular portion 33 has a small inner diameter. Secures a high flow rate.
  • the treatment method is less than 90 degrees from the discharge port 83 in the radial direction of the impeller 50 or from the radial direction to the proximal side. Releases blood in a direction inclined at an angle. Thereby, the inflow of blood into the coronary artery C can be promoted via the coronary artery O located on the wall surface of the ascending aorta A.
  • the treatment method further includes a step of inserting the guide wire 111 (long body) into the coronary artery C while rotating the impeller 50 to discharge blood from the discharge port 83 into the ascending aorta A.
  • the discharge port 83 of the catheter pump 10 is located on the outer peripheral surface of the proximal tubular portion 32 or the outer peripheral surface inclined with respect to the central axis of the impeller 50 of the proximal end portion 36. Therefore, it becomes difficult for the guide wire 111 to erroneously enter the cannula 30 from the discharge port 83, and safety is improved.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made by those skilled in the art within the technical idea of the present invention.
  • the form of the discharge port is not particularly limited as long as blood can be discharged.
  • the discharge port 121 may be a triangle having a corner on the proximal side.
  • parts having the same functions as those in the above-described embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the discharge ports 122 may be provided in a plurality of rows (two rows in the figure) in the axial direction.
  • the discharge port 123 may be provided only in the proximal end portion 36 without being provided in the proximal tubular portion 32 as in the third modified example illustrated in FIG.
  • the shape of the distal tubular portion and the inlet is not particularly limited.
  • the inflow ports 124 penetrating from the inner peripheral surface to the outer peripheral surface are arranged in the circumferential direction on the side surface of the distal tubular portion 31. May be provided.
  • the inflow port 124 has a quadrangular shape, but the shape is not particularly limited.
  • 9B in addition to the inflow port 82, the side surface of the distal tubular portion 31 is provided with an inflow port 125 penetrating from the inner peripheral surface to the outer peripheral surface. Also good.
  • the inflow ports 125 may be arranged in a circumferential direction and provided in a plurality of rows in the axial direction. Further, as in the third modification shown in FIG. 9C, the distal tubular portion 126 is not provided with an inflow port at the distal end, and penetrates from the inner peripheral surface to the outer peripheral surface on the side surface. An inflow port 127 may be provided.
  • the inner diameter and the outer diameter of the cannula 130 may be tapered from the distal tubular portion 132 toward the intermediate tubular portion 131.
  • the inner diameter and the outer diameter of the distal tubular portion 141 of the cannula 140 may be tapered toward the proximal side.
  • the length of the intermediate tubular portion 151 of the cannula 150 in the axial direction may be as short as the operating range of the aortic valve V.
  • the discharge port 163 of the proximal tubular portion 161 is configured by only the support 81 by removing the film body 162 of the proximal tubular portion 161. May be.
  • the discharge port 173 of the proximal tubular portion 171 is configured by cutting out the membrane body 172 and the support body 174 of the proximal tubular portion 171 together. May be.
  • the support 181 may be a helical wire.
  • the support body 191 may be configured by arranging a plurality of ring bodies 192 that are folded back in a wave shape in the axial direction. Adjacent ring bodies 192 may be connected or not connected.
  • the impeller 200 may be a mixed flow type impeller.
  • the proximal end 202 of the blade 201 of the impeller 200 is located distal to the proximal end 206 of the discharge port 205.
  • the distal end 203 of the blade 201 of the impeller 200 is located on the distal side of the distal end 207 of the discharge port 205. For this reason, the blood discharged from the impeller 200 while being inclined can be efficiently discharged from the discharge port 205.
  • the proximal end 202 of the blade 201 of the mixed flow type impeller 200 may be located more distally than the distal end 211 of the discharge port 210. . Even with such a configuration, blood discharged from the impeller 200 at an inclination can be efficiently discharged from the discharge port 215.
  • the discharge port 220 is not provided in the proximal tubular portion 32, but is inclined to the proximal end portion 36 located on the proximal side of the proximal tubular portion 32. It may be provided only in.
  • the impeller 200 is a mixed flow type. Thereby, the blood discharged from the impeller 200 while being inclined is efficiently discharged from the discharge port 220 of the proximal end portion 36 substantially perpendicular to the discharge direction.
  • the space on the proximal side of the discharge port 220 inside the cannula 30 becomes smaller, it becomes difficult to generate vortices, and the pressure loss can be further reduced.
  • the discharge port 230 may be provided in the proximal tubular portion 32 and the proximal end portion 36.
  • the impeller 200 is a mixed flow type. Thereby, blood discharged from the impeller 200 while being inclined is efficiently discharged from the discharge port 230 provided in both the proximal tubular portion 32 and the proximal end portion 36. Further, since the space closer to the discharge port 230 inside the cannula 30 becomes smaller, vortices are less likely to be generated, and pressure loss can be further reduced.
  • a plurality of impellers 240 may be provided in the axial direction.
  • a control plate 241 for controlling the blood flow may be provided between the two impellers 240.
  • the constituent material of the control plate 241 the same material as that of the film body 80 can be used.
  • the impeller 250 may be an axial flow type impeller.
  • the impeller 50 may be rotationally driven by a motor 260 disposed inside the shaft body 21.
  • a drive shaft for transmitting a driving force from the outside is not provided, and a cable 261 for transmitting power to the motor 260 is installed inside the shaft body 21.
  • an adjustment plate 270 for adjusting the direction of blood flow may be provided around the discharge port 83 outside or inside the proximal tubular portion 32. .
  • the adjustment plate 270 By providing the adjustment plate 270, the direction of blood flow is adjusted, and pressure loss is reduced.
  • the adjustment plate 270 is fixed to the film body 80 or the support body 81.
  • the constituent material of the adjustment plate 270 the same material as that of the film body 80, the support body 81, or the impeller 50 can be used.
  • the catheter pump 10 may have a marker made of an X-ray contrast material at any position.

Abstract

Provided are a catheter pump and a treatment method that are capable of reducing the impact on cardiac valves, retaining an adequate flow rate, and facilitating flow of blood to coronary veins. This catheter pump (10) is inserted into a heart chamber to assist the flow of blood, and has a deformable cannula (30) which is provided with an inflow port (82) on the distal side thereof and discharge ports (83) on the proximal side thereof, and an impeller (50) disposed inside the cannula (30). The cannula (30) has: a proximal tubular part (32) within which the impeller (50) is disposed; a proximal end (36) which is located on the proximal side of the proximal tubular part (32), and the inner diameter of which decreases toward the proximal side; an intermediate tubular part (33) which is located on the distal side of the proximal tubular part (32), and which has an inner diameter smaller than that of the proximal tubular part (32); and a distal tubular part (31) which is located on the distal side of the intermediate tubular part (33), and at which the inflow port (82) is located, wherein the discharge ports (83) are located in the outer peripheral surface of the proximal tubular part (32) and the proximal end (36).

Description

カテーテルポンプおよび処置方法Catheter pump and treatment method
 本発明は、心拍出を補助するためのカテーテルポンプおよび処置方法に関する。 The present invention relates to a catheter pump and a treatment method for assisting cardiac output.
 心機能が低下する心不全は、死亡率が高い重大な健康問題である。心不全になると、全身の組織における代謝に必要な血液量を心臓より拍出できない状態となる。このため、近年、急性心不全を対象に、心拍出を補助する補助デバイスが開発されている。例えば特許文献1には、大腿動脈から経皮的に挿入し、大動脈から左心室内へ到達させて使用されるカテーテルポンプが記載されている。このカテーテルポンプは、左心室から大動脈まで延びる管状のカニューレと、カニューレの内部で回転するインペラとを有している。カニューレの内部のインペラを回転させることで、カニューレの内部の血液が左心室から大動脈内へ流れ、心拍出を補助することができる。 心 Heart failure with reduced cardiac function is a serious health problem with a high mortality rate. When heart failure occurs, the amount of blood necessary for metabolism in tissues throughout the body cannot be pumped out of the heart. For this reason, in recent years, auxiliary devices for assisting cardiac output have been developed for acute heart failure. For example, Patent Document 1 describes a catheter pump that is used by being percutaneously inserted from the femoral artery and reaching the left ventricle from the aorta. This catheter pump has a tubular cannula extending from the left ventricle to the aorta and an impeller rotating inside the cannula. By rotating the impeller inside the cannula, blood inside the cannula can flow from the left ventricle into the aorta and assist in cardiac output.
米国特許第8734331号明細書U.S. Pat. No. 8,734,331
 特許文献1に記載のカテーテルポンプは、カニューレが大動脈弁と接するため、大動脈弁への影響が大きい。しかしながら、カニューレを細くすると、必要な流量を確保することが困難となる。 The catheter pump described in Patent Document 1 has a great influence on the aortic valve because the cannula is in contact with the aortic valve. However, if the cannula is made thin, it becomes difficult to ensure the necessary flow rate.
 また、心不全においては、心拍出の低下に伴い、心臓を栄養する冠動脈への血液の流入が低下するため、血液流入を促すことが望まれる場合がある。 Also, in heart failure, there is a case where it is desired to promote blood inflow because the inflow of blood into the coronary arteries that nourish the heart decreases as the cardiac output decreases.
 本発明は、上述した課題を解決するためになされたものであり、心臓の弁への影響を低減でき、十分な流量を確保でき、かつ冠静脈へ血液を促すことができるカテーテルポンプおよび処置方法を提供することを目的とする。 The present invention has been made to solve the above-described problems, and can provide a catheter pump and a treatment method capable of reducing the influence on a heart valve, ensuring a sufficient flow rate, and promoting blood to a coronary vein. The purpose is to provide.
 上記目的を達成するカテーテルポンプは、心腔内に挿入されて血液の流れを補助するカテーテルポンプであって、遠位側に血液が流入する流入口が設けられるとともに近位側に血液が流出する放出口が設けられる管体であって径方向に収縮および拡張可能なカニューレと、前記カニューレの近位部が連結される長尺なシャフト部と、前記カニューレの内部に回転可能に配置され、前記流入口から前記放出口へ向かう血液の流れを生じさせるインペラと、を有し、前記カニューレは、内部にインペラが回転可能に配置された近位管状部と、前記近位管状部の近位側に位置して近位側に向かって内径が減少する部位を備えるとともに前記シャフト部に連結されている近位端部と、前記近位管状部の遠位側に位置して前記近位管状部と連通し、前記近位管状部よりも内径が小さい中間管状部と、前記中間管状部の遠位側に位置して前記中間管状部と連通し、前記流入口が位置する遠位管状部と、を有し、前記放出口は、前記近位管状部の外周面および前記近位端部の前記インペラの中心軸に対して傾斜する外周面の少なくとも一方に位置する。 A catheter pump that achieves the above object is a catheter pump that is inserted into a heart chamber to assist blood flow, and is provided with an inflow port through which blood flows in on the distal side and out of blood on the proximal side. A tubular body provided with a discharge port, which can be radially contracted and expanded; a long shaft portion to which a proximal portion of the cannula is connected; and a rotatable shaft inside the cannula, An impeller for creating a blood flow from the inlet to the outlet, wherein the cannula has a proximal tubular portion in which the impeller is rotatably disposed, and a proximal side of the proximal tubular portion A proximal end connected to the shaft portion and having a portion with an inner diameter decreasing toward the proximal side and located on the distal side of the proximal tubular portion Communicating with the front An intermediate tubular portion having an inner diameter smaller than that of the proximal tubular portion, a distal tubular portion located on a distal side of the intermediate tubular portion, communicating with the intermediate tubular portion, and having the inflow port located therein, The discharge port is located on at least one of an outer peripheral surface of the proximal tubular portion and an outer peripheral surface inclined with respect to a central axis of the impeller at the proximal end portion.
 上記目的を達成する処置方法は、上記のカテーテルポンプを心腔内に挿入して血液の流れを補助する処置方法であって、前記カテーテルポンプを血管内に挿入し、前記遠位管状部を左心室に配置し、前記中間管状部を大動脈弁と接する位置に配置し、前記近位管状部を大動脈に配置するステップと、前記インペラを回転させて左心室内の血液を流入口からカニューレ内へ吸引し、放出口から大動脈内へ放出するステップと、を有する。 A treatment method for achieving the above object is a treatment method for assisting blood flow by inserting the catheter pump into the heart chamber, inserting the catheter pump into a blood vessel, and moving the distal tubular portion to the left. Placing in the ventricle, placing the intermediate tubular portion in contact with the aortic valve, placing the proximal tubular portion in the aorta, and rotating the impeller to move blood in the left ventricle from the inlet into the cannula Aspirating and releasing into the aorta from the outlet.
 上記のように構成したカテーテルポンプおよび処置方法は、中間管状部の径が近位管状部の径よりも小さいため、挿入する心臓の弁への影響を低減できる。また、近位管状部の径は、中間管状部の径よりも大きく、吐出圧の高いインペラを収容できるため、中間管状部の内径が小さいことによる圧力損失が大きく、十分な流量を確保できる。さらに、放出口が、中間管状部よりも径の大きい近位管状部の外周面か、近位端部のインペラの中心軸に対して傾斜する外周面に位置するため、血液が放出口から側方へ放出される。このため、大動脈へ放出された血液を、大動脈の壁面に設けられる冠動脈口へ導き、冠動脈への血液の流入を促すことができる。 The catheter pump and the treatment method configured as described above can reduce the influence on the heart valve to be inserted because the diameter of the intermediate tubular portion is smaller than the diameter of the proximal tubular portion. Moreover, since the diameter of the proximal tubular portion is larger than the diameter of the intermediate tubular portion and can accommodate an impeller having a high discharge pressure, the pressure loss due to the small inner diameter of the intermediate tubular portion is large, and a sufficient flow rate can be secured. Furthermore, since the discharge port is located on the outer peripheral surface of the proximal tubular portion having a diameter larger than that of the intermediate tubular portion or on the outer peripheral surface inclined with respect to the central axis of the impeller at the proximal end portion, blood is located on the side from the discharge port. Is released. For this reason, the blood discharged | emitted to the aorta can be guide | induced to the coronary artery opening provided in the wall surface of an aorta, and the inflow of the blood to a coronary artery can be accelerated | stimulated.
実施形態に係るカテーテルポンプを示す平面図である。It is a top view which shows the catheter pump which concerns on embodiment. カテーテルポンプの遠位部を示す断面図である。It is sectional drawing which shows the distal part of a catheter pump. 外シースに収容されたカテーテルポンプを左心室に挿入した状態を示す断面図である。It is sectional drawing which shows the state which inserted the catheter pump accommodated in the outer sheath into the left ventricle. カテーテルポンプを左心室に挿入した状態を示す断面図である。It is sectional drawing which shows the state which inserted the catheter pump into the left ventricle. カテーテルポンプを作動させた状態を示す断面図である。It is sectional drawing which shows the state which act | operated the catheter pump. カテーテルポンプが生体内で近位側へ移動した状態を示す断面図である。It is sectional drawing which shows the state which the catheter pump moved to the proximal side in the biological body. カテーテルポンプが生体内で遠位側へ移動した状態を示す断面図である。It is sectional drawing which shows the state which the catheter pump moved to the distal side in the living body. カテーテルポンプが生体内で遠位側へ移動した状態を示す断面図である。It is sectional drawing which shows the state which the catheter pump moved to the distal side in the living body. カテーテルポンプの変形例を示す平面図であり、(A)は第1の変形例、(B)は第2の変形例、(C)は第3の変形例を示す。It is a top view which shows the modification of a catheter pump, (A) shows a 1st modification, (B) shows a 2nd modification, (C) shows a 3rd modification. カテーテルポンプの変形例を示す平面図であり、(A)は第4の変形例、(B)は第5の変形例、(C)は第6の変形例を示す。It is a top view which shows the modification of a catheter pump, (A) shows a 4th modification, (B) shows a 5th modification, (C) shows a 6th modification. カテーテルポンプの変形例を示す平面図であり、(A)は第7の変形例、(B)は第8の変形例を示す。It is a top view which shows the modification of a catheter pump, (A) shows a 7th modification, (B) shows an 8th modification. カテーテルポンプの変形例を示す平面図であり、(A)は第9の変形例、(B)は第10の変形例を示す。It is a top view which shows the modification of a catheter pump, (A) shows a 9th modification, (B) shows a 10th modification. カテーテルポンプの第11の変形例を示す断面図である。It is sectional drawing which shows the 11th modification of a catheter pump. カテーテルポンプの第12の変形例を示す断面図である。It is sectional drawing which shows the 12th modification of a catheter pump. カテーテルポンプの第13の変形例を示す断面図である。It is sectional drawing which shows the 13th modification of a catheter pump. カテーテルポンプの第14の変形例を示す断面図である。It is sectional drawing which shows the 14th modification of a catheter pump. カテーテルポンプの変形例を示す平面図であり、(A)は第15の変形例、(B)は第16の変形例を示す。It is a top view which shows the modification of a catheter pump, (A) shows a 15th modification, (B) shows a 16th modification. カテーテルポンプの第17の変形例を示す断面図である。除去する際の状態を示す断面図である。It is sectional drawing which shows the 17th modification of a catheter pump. It is sectional drawing which shows the state at the time of removing. カテーテルポンプの第18の変形例を示す断面図である。It is sectional drawing which shows the 18th modification of a catheter pump.
 以下、図面を参照して、本発明の実施の形態を説明する。なお、図面の寸法比率は、説明の都合上、誇張されて実際の比率とは異なる場合がある。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In addition, the dimension ratio of drawing is exaggerated on account of description, and may differ from an actual ratio.
 本発明の実施形態に係るカテーテルポンプ10は、急性心不全の治療に用いられるデバイスである。カテーテルポンプ10は、経皮的に血管内に挿入され、心臓まで導入されて作動し、心拍出を補助する。なお、本明細書では、デバイスの血管に挿入する側を「遠位側」、操作する手元側を「近位側」と称することとする。 The catheter pump 10 according to the embodiment of the present invention is a device used for the treatment of acute heart failure. The catheter pump 10 is percutaneously inserted into a blood vessel and introduced into the heart to operate and assist in cardiac output. In this specification, the side of the device to be inserted into the blood vessel is referred to as “distal side”, and the proximal side for operation is referred to as “proximal side”.
 カテーテルポンプ10は、図1、2に示すように、長尺なシャフト部20と、シャフト部20の遠位側に配置されるカニューレ30と、シャフト部20の内部に回転可能に配置される駆動シャフト40と、駆動シャフト40の遠位部に固定されたインペラ50と、シャフト部20が貫通する外シース60とを備えている。 As shown in FIGS. 1 and 2, the catheter pump 10 includes a long shaft portion 20, a cannula 30 disposed on the distal side of the shaft portion 20, and a drive rotatably disposed inside the shaft portion 20. A shaft 40, an impeller 50 fixed to the distal portion of the drive shaft 40, and an outer sheath 60 through which the shaft portion 20 passes are provided.
 シャフト部20は、管体であるシャフト本体21と、駆動シャフト40の近位部を収容する第1ハブ22とを有している。シャフト本体21は、内部に第1ルーメン23を有する。この第1ルーメン23に、駆動シャフト40が回転可能に収容されている。第1ルーメン23の遠位部には、駆動シャフト40を回転可能に支持する軸受24が設けられる。軸受24は、例えば、少なくとも内周面が低摩擦材料の管体である。 The shaft portion 20 includes a shaft body 21 that is a tubular body, and a first hub 22 that houses a proximal portion of the drive shaft 40. The shaft body 21 has a first lumen 23 inside. The drive shaft 40 is rotatably accommodated in the first lumen 23. A bearing 24 that rotatably supports the drive shaft 40 is provided at the distal portion of the first lumen 23. The bearing 24 is, for example, a tube made of a low friction material at least on the inner peripheral surface.
 シャフト本体21の構成材料は、硬度があってかつ柔軟性がある材質であることが好ましく、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリアミド、ポリエチレンテレフタレートなどのポリエステル、テトラフルオロエチレン・エチレン共重合体(ETFE)等のフッ素系ポリマー、PEEK(ポリエーテルエーテルケトン)、ポリイミド、ポリテトラフルオロエチレン(PTFE)などが好ましく使用される。また、剛性を増すために前記材料に金属のブレードやコイルを加えることも可能である。 The constituent material of the shaft body 21 is preferably a material having hardness and flexibility. For example, polyolefin such as polyethylene and polypropylene, polyester such as polyamide and polyethylene terephthalate, tetrafluoroethylene / ethylene copolymer ( Fluorine polymers such as ETFE), PEEK (polyetheretherketone), polyimide, polytetrafluoroethylene (PTFE) and the like are preferably used. It is also possible to add a metal blade or coil to the material to increase the rigidity.
 軸受24を構成する低摩擦材料は、例えば、PTFE、ETFE等のフッ素系樹脂材料が挙げられる。なお、軸受は、設けられなくてもよい。 Examples of the low friction material constituting the bearing 24 include fluorine resin materials such as PTFE and ETFE. Note that the bearing may not be provided.
 第1ハブ22は、シャフト本体21の近位部に固定されている。この第1ハブ22の内部に、駆動シャフト40の近位部に設けられる第1連結部41が配置される。 The first hub 22 is fixed to the proximal portion of the shaft body 21. Inside the first hub 22, a first connecting portion 41 provided at the proximal portion of the drive shaft 40 is disposed.
 駆動シャフト40は、体外に設けられる駆動装置90から回転力を受けて、遠位部のインペラ50を回転させるための長尺な管体である。駆動シャフト40は、ガイドワイヤ等を挿入可能なガイドワイヤルーメン42を有している。ガイドワイヤルーメン42は駆動シャフト40に無くてもよい。駆動シャフト40は、駆動装置90によって生じるトルクを伝達できればよく、例えば、細径の丸線もしくは平線を右左右と巻き方向を交互にしている3層コイルなどの多層コイル状の管体で構成される。もしくは、1層以上からなるスプリングで構成される管体や、樹脂チューブにブレードが編み込まれたブレードチューブ、または金属パイプに螺旋状の切り込みを加え、屈曲を可能にしたスパイラルカットパイプであってもよい。駆動シャフト40は、第1ハブ22内に、外部の駆動装置90の回転軸92に設けられる第2連結部91と連結可能な第1連結部41を有している。駆動装置90は、回転軸92を回転させるために、例えばモータ93を有している。駆動装置90の動作は、制御部100により制御される。制御部100は、CPU(Central Processing Unit)および記憶回路を備え、キーボードやマウス、モニターなどのインターフェースが接続される。制御部100は、例えばコンピュータである。また、カニューレ30には生体情報を取得するためのセンサーが設置されていてもよく、制御部100には取得情報の受信装置が接続されていてもよい。生体情報を取得するためのセンサーは、カニューレ30の近位管状部32内で、放出口83よりも基部側に位置する。それによって、インペラ50によって、吐出された流体直後の生体情報を取得することができる。生体情報とは、血液の血流量や流速等のことである。 The drive shaft 40 is a long tube body for receiving the rotational force from the drive device 90 provided outside the body and rotating the impeller 50 at the distal portion. The drive shaft 40 has a guide wire lumen 42 into which a guide wire or the like can be inserted. The guide wire lumen 42 may not be on the drive shaft 40. The drive shaft 40 only needs to be able to transmit the torque generated by the drive device 90. For example, the drive shaft 40 is composed of a multi-layer coiled tube such as a three-layer coil in which a thin round wire or a flat wire is alternately wound in the right and left and right winding directions. Is done. Or, it can be a tube made of a spring consisting of one or more layers, a blade tube in which a blade is knitted into a resin tube, or a spiral cut pipe that can be bent by adding a spiral cut to a metal pipe. Good. The drive shaft 40 includes a first connection portion 41 that can be connected to the second connection portion 91 provided on the rotation shaft 92 of the external drive device 90 in the first hub 22. The driving device 90 has, for example, a motor 93 in order to rotate the rotating shaft 92. The operation of the driving device 90 is controlled by the control unit 100. The control unit 100 includes a CPU (Central Processing Unit) and a storage circuit, and is connected to interfaces such as a keyboard, a mouse, and a monitor. The control unit 100 is a computer, for example. The cannula 30 may be provided with a sensor for acquiring biological information, and the control unit 100 may be connected with an acquisition information receiving device. A sensor for acquiring biological information is located in the proximal tubular portion 32 of the cannula 30 on the base side from the discharge port 83. Thereby, the impeller 50 can acquire biological information immediately after the discharged fluid. The biological information is blood flow rate, flow velocity, and the like.
 カニューレ30は、血液を流通させる流路を内部に有する、柔軟に変形可能な管体である。カニューレ30は、径方向に収縮するように弾性的に変形でき、かつ自己の弾性力により元の形状へ戻ることができる。カニューレ30は、遠位部に位置する遠位管状部31と、近位部に位置する近位管状部32と、遠位管状部31と近位管状部32の間に位置する中間管状部33と、を有している。さらに、カニューレ30は、遠位管状部31と中間管状部33の間に位置して外径および内径が変化する遠位変化部34と、近位管状部32と中間管状部33の間に位置して外径および内径が変化する中間変化部35と、近位管状部32の近位側でシャフト本体21に連結されて外径および内径が変化する近位端部36とを有している。さらに、カニューレ30は、遠位管状部31の遠位側に位置してガイドワイヤを挿入可能な先端チューブ70と、先端チューブ70と遠位管状部31とを連結する連結ワイヤ75とを有している。 The cannula 30 is a flexible deformable tube body having a flow path for circulating blood inside. The cannula 30 can be elastically deformed so as to contract in the radial direction, and can return to its original shape by its own elastic force. The cannula 30 includes a distal tubular portion 31 located at the distal portion, a proximal tubular portion 32 located at the proximal portion, and an intermediate tubular portion 33 located between the distal tubular portion 31 and the proximal tubular portion 32. And have. Further, the cannula 30 is located between the distal tubular portion 31 and the intermediate tubular portion 33, and is located between the proximal tubular portion 32 and the intermediate tubular portion 33. And an intermediate change portion 35 whose outer diameter and inner diameter change, and a proximal end portion 36 which is connected to the shaft body 21 on the proximal side of the proximal tubular portion 32 and changes in outer diameter and inner diameter. . Further, the cannula 30 has a tip tube 70 that is located on the distal side of the distal tubular portion 31 and into which a guide wire can be inserted, and a connecting wire 75 that connects the tip tube 70 and the distal tubular portion 31. ing.
 遠位管状部31、遠位変化部34、中間管状部33、中間変化部35、近位管状部32および近位端部36は、柔軟に変形可能な膜体80と、膜体80を管形状に維持するための支持体81によって、一体的に構成されている。支持体81は、線材が網目状に編組されて管形状となっており、管の中心軸に向かって収縮するように弾性的に変形可能であり、かつ自己の弾性力により元の形状へ戻ることができる。支持体81は、膜体80の内側に配置されるが、膜体80を支持可能であれば、膜体80の外側もしくは膜体80の内部に埋め込まれて配置されてもよい。 The distal tubular portion 31, the distal change portion 34, the intermediate tubular portion 33, the intermediate change portion 35, the proximal tubular portion 32 and the proximal end portion 36 are a flexible deformable membrane body 80 and a tube body 80. A support body 81 for maintaining the shape is integrally formed. The support 81 has a tube shape in which the wire is braided in a mesh shape, can be elastically deformed so as to contract toward the central axis of the tube, and returns to its original shape by its own elastic force. be able to. The support body 81 is disposed inside the film body 80, but may be disposed outside the film body 80 or embedded inside the film body 80 as long as the film body 80 can be supported.
 遠位管状部31は、左心室Hへ挿入される部位である(図5を参照)。遠位管状部31は、軸心方向に沿って略一定の内径および外径を有している。遠位管状部31は、遠位側の端部に、内部の流路が開口する流入口82を備える。流入口82は、ポンプが作動した際に血液が流入する部位である。 The distal tubular portion 31 is a portion inserted into the left ventricle H (see FIG. 5). The distal tubular portion 31 has a substantially constant inner diameter and outer diameter along the axial direction. The distal tubular portion 31 includes an inflow port 82 having an internal flow channel opened at a distal end. The inflow port 82 is a part into which blood flows when the pump is operated.
 近位管状部32は、上行大動脈Aに位置する部位である(図5を参照)。近位管状部32は、軸心方向に沿って略一定の内径および外径を有する。近位管状部32は、内周面から外周面へ貫通する複数の放出口83を備える。放出口83は、ポンプが作動した際に加圧された血液を放出する部位である。複数の放出口83は、近位管状部32の周方向に並んで設けられる。放出口83は、隣接する放出口83の間に線材である支持体81を集中させて、支持体81が設けられない位置の膜体80を切り出すことで構成される。放出口83は、本実施形態では、遠位管状部31の近位部から近位端部36の遠位部に跨って設けられる。放出口83の形状は、特に限定されないが、近位側へ向かって径が小さくなる近位端部36に設けられるため、近位側に向かって周方向の幅が狭くなる形状が好ましい。放出口83の縁部は、圧力損失が小さいように、曲線で構成されることが好ましい。放出口83の縁部の近位側は、放出口83の縁部の遠位側よりも曲線の半径が大きく、圧力損失が小さいように構成されてもよい。なお、放出口83は、近位管状部32のみに設けられてもよく、または近位端部36のみに設けられてもよい。 The proximal tubular portion 32 is a part located in the ascending aorta A (see FIG. 5). The proximal tubular portion 32 has a substantially constant inner diameter and outer diameter along the axial direction. The proximal tubular portion 32 includes a plurality of discharge ports 83 that penetrate from the inner peripheral surface to the outer peripheral surface. The discharge port 83 is a part that discharges pressurized blood when the pump is operated. The plurality of discharge ports 83 are provided side by side in the circumferential direction of the proximal tubular portion 32. The discharge port 83 is configured by concentrating a support body 81 as a wire between adjacent discharge ports 83 and cutting out a film body 80 at a position where the support body 81 is not provided. In the present embodiment, the discharge port 83 is provided from the proximal portion of the distal tubular portion 31 to the distal portion of the proximal end portion 36. The shape of the discharge port 83 is not particularly limited. However, since the discharge port 83 is provided at the proximal end portion 36 whose diameter decreases toward the proximal side, a shape in which the circumferential width decreases toward the proximal side is preferable. The edge of the discharge port 83 is preferably configured with a curve so that the pressure loss is small. The proximal side of the edge of the discharge port 83 may be configured such that the radius of the curve is larger and the pressure loss is smaller than the distal side of the edge of the discharge port 83. The discharge port 83 may be provided only in the proximal tubular portion 32 or may be provided only in the proximal end portion 36.
 中間管状部33は、大動脈弁Vの内側を通り、大動脈弁Vと接する部位である(図5を参照)。中間管状部33は、遠位管状部31と近位管状部32の間に位置している。中間管状部33は、軸心方向に沿って略一定の内径および外径を有している。中間管状部33の内径および外径は、遠位管状部31および近位管状部32の内径および外径よりも小さい。中間管状部33の内部の流路は、遠位管状部31から流入した血液を、近位管状部32へ流通させる。中間管状部33の内部の最少の流路総面積(内径が最少の位置の内径の断面積)は、放出口83の流路総面積(複数の放出口83の面積の合計)よりも小さい。また、中間管状部33の内部の最少の流路総面積は、流入口82の流路総面積(流入口82の内径の断面積)よりも小さい。 The intermediate tubular portion 33 is a portion that passes through the inside of the aortic valve V and is in contact with the aortic valve V (see FIG. 5). The intermediate tubular portion 33 is located between the distal tubular portion 31 and the proximal tubular portion 32. The intermediate tubular portion 33 has a substantially constant inner diameter and outer diameter along the axial direction. The inner and outer diameters of the intermediate tubular portion 33 are smaller than the inner and outer diameters of the distal tubular portion 31 and the proximal tubular portion 32. The flow path inside the intermediate tubular portion 33 circulates the blood flowing from the distal tubular portion 31 to the proximal tubular portion 32. The minimum total channel area (the cross-sectional area of the inner diameter at the position where the inner diameter is minimum) inside the intermediate tubular portion 33 is smaller than the total channel area of the discharge port 83 (the total area of the plurality of discharge ports 83). Further, the minimum total channel area inside the intermediate tubular portion 33 is smaller than the total channel area of the inlet 82 (the cross-sectional area of the inner diameter of the inlet 82).
 遠位変化部34は、遠位管状部31から中間管状部33へ向かって外径および内径がテーパ状に減少し、遠位管状部31と中間管状部33を滑らかに繋いている。遠位変化部34は、近位側に向かって内径がテーパ状に減少するため、圧力損失を極力小さくしつつ、近位側へ向かって流れる血液の流速を増加させることができる。また、遠位変化部34の外径および内径がテーパ状に変化するため、段差状(ステップ状)に変化する場合と比較して、遠位変化部34は、径方向へ拡張および収縮が容易である。なお、遠位変化部34の外径および内径は、段差状に変化してもよい。遠位変化部34の外周面は、中間管状部33の外側に位置する大動脈弁Vと接触することができる。このため、遠位変化部34は、大動脈弁Vを超えて上行大動脈Aへ移動し難い構造となっている。したがって、遠位変化部34は、カニューレ30を適正な位置に保持する役割を果たす。また、図6に示すように、血液の流れによって近位方向へカテーテルポンプ10が移動しても、遠位変化部34の外周面が、大動脈弁Vの遠位側の面の中心軸側に沿うように接触する。このとき、遠位変化部34の径が変化しているため、遠位変化部34と大動脈弁Vの接触面積が大きく、血液の逆流を制限できる。 The distal change portion 34 has an outer diameter and an inner diameter that are tapered from the distal tubular portion 31 toward the intermediate tubular portion 33, and smoothly connects the distal tubular portion 31 and the intermediate tubular portion 33. Since the inner diameter of the distal change portion 34 decreases in a tapered manner toward the proximal side, the flow rate of blood flowing toward the proximal side can be increased while minimizing the pressure loss. Further, since the outer diameter and the inner diameter of the distal change portion 34 change in a taper shape, the distal change portion 34 can be easily expanded and contracted in the radial direction as compared with a case where the distal change portion 34 changes in a step shape. It is. Note that the outer diameter and the inner diameter of the distal change portion 34 may change stepwise. The outer peripheral surface of the distal change portion 34 can contact the aortic valve V located outside the intermediate tubular portion 33. For this reason, the distal change portion 34 has a structure that hardly moves to the ascending aorta A beyond the aortic valve V. Thus, the distal change 34 serves to hold the cannula 30 in place. Further, as shown in FIG. 6, even when the catheter pump 10 is moved in the proximal direction by the flow of blood, the outer peripheral surface of the distal change portion 34 is on the central axis side of the distal surface of the aortic valve V. Touch along. At this time, since the diameter of the distal change portion 34 is changed, the contact area between the distal change portion 34 and the aortic valve V is large, and the backflow of blood can be restricted.
 中間変化部35は、中間管状部33から近位管状部32へ向かって外径および内径がテーパ状に増加し、中間管状部33と近位管状部32を滑らかに繋いている。中間変化部35は、軸心方向に沿って内径がテーパ状に増加するため、圧力損失を極力小さくしつつ、近位側へ向かって流れる血液の流速を減少させることができる。また、中間変化部35の外径および内径がテーパ状に変化するため、段差状に変化する場合と比較して、中間変化部35は、径方向に向かって拡張および収縮することが容易である。なお、中間変化部35の外径および内径は、段差状に変化してもよい。中間変化部35の外周面は、中間管状部33の外側に位置する大動脈弁Vと接触することができる。このため、中間変化部35は、大動脈弁Vを超えて左心房Hへ移動し難い構造となっている。したがって、中間変化部35は、カニューレ30を適正な位置に保持する役割を果たす。そのため、中間管状部33がより適正な位置に配置されるよう、超音波プローブで認識しやすい表面加工やX線造影装置で認識可能な金属マーカーを有していてもよい。また、図7に示すように、インペラ50が血液を吐出することで受ける反力によって、遠位方向へカテーテルポンプ10が移動しても、中間変化部35の外周面が、大動脈弁Vの近位側の面の中心軸側に接触するため、大動脈弁Vの径方向の動きを制限できる。また、図8に示すように、大動脈弁Vの開く向き(近位方向)と逆向き(遠位方向)に大動脈弁Vが押し込まれても、大動脈弁Vの開く力によって、遠位方向へ移動するカテーテルポンプ10の動きを制限できる。 The intermediate changing portion 35 has an outer diameter and an inner diameter that increase in a tapered shape from the intermediate tubular portion 33 toward the proximal tubular portion 32, and smoothly connects the intermediate tubular portion 33 and the proximal tubular portion 32. Since the inner diameter of the intermediate change portion 35 increases in a tapered shape along the axial direction, the flow rate of blood flowing toward the proximal side can be reduced while minimizing the pressure loss. Further, since the outer diameter and the inner diameter of the intermediate change portion 35 change in a taper shape, the intermediate change portion 35 can be easily expanded and contracted in the radial direction as compared with a case where the intermediate change portion 35 changes in a step shape. . In addition, the outer diameter and inner diameter of the intermediate change portion 35 may change in a step shape. The outer peripheral surface of the intermediate change part 35 can contact the aortic valve V located outside the intermediate tubular part 33. For this reason, the intermediate changing portion 35 has a structure that is difficult to move to the left atrium H beyond the aortic valve V. Accordingly, the intermediate changing portion 35 serves to hold the cannula 30 in an appropriate position. Therefore, it may have a surface marker that can be easily recognized by the ultrasonic probe and a metal marker that can be recognized by the X-ray contrast apparatus so that the intermediate tubular portion 33 is arranged at a more appropriate position. In addition, as shown in FIG. 7, even if the catheter pump 10 moves in the distal direction due to the reaction force received by the impeller 50 discharging blood, the outer peripheral surface of the intermediate change portion 35 is close to the aortic valve V. Since it contacts the central axis side of the distal surface, the radial movement of the aortic valve V can be limited. Further, as shown in FIG. 8, even if the aortic valve V is pushed in the direction (proximal direction) opposite to the opening direction (distal direction) of the aortic valve V, the opening force of the aortic valve V causes the distal direction. The movement of the moving catheter pump 10 can be limited.
 近位端部36は、近位管状部32よりも近位側に位置している。近位端部36の近位部は、シャフト本体21の遠位部の外周面に固着されている。近位端部36は、近位管状部32からシャフト本体21の遠位部へ向かって外径および内径がテーパ状に減少し、近位管状部32とシャフト本体21を滑らかに繋いている。近位端部36の外径および内径がテーパ状に変化するため、段差状に変化する場合と比較して、近位端部36は、径方向へ拡張および収縮が容易である。なお、近位端部36の外径および内径は、段差状に変化してもよい。 The proximal end portion 36 is located closer to the proximal side than the proximal tubular portion 32. The proximal portion of the proximal end portion 36 is fixed to the outer peripheral surface of the distal portion of the shaft body 21. The proximal end portion 36 has an outer diameter and an inner diameter that are tapered from the proximal tubular portion 32 toward the distal portion of the shaft body 21, and smoothly connects the proximal tubular portion 32 and the shaft body 21. Since the outer diameter and inner diameter of the proximal end portion 36 change in a tapered shape, the proximal end portion 36 can be easily expanded and contracted in the radial direction as compared with a case where the proximal end portion 36 changes in a stepped shape. The outer diameter and inner diameter of the proximal end portion 36 may change in a step shape.
 支持体81を構成する線材の外径は、例えば0.01~1mmであり、好ましくは0.05~0.2mmである。線材は、形状記憶性を有した材料で構成されることが望ましい。支持体81の構成材料は、例えば、熱処理により形状記憶効果や超弾性が付与される形状記憶合金、ステンレス、チタン、もしくは弾性力を有するウレタンゴム、フッ素ゴム、ペルプレン、シリコーン等の樹脂、カーボンファイバーなどが好適である。形状記憶合金としては、Ni-Ti系、Cu-Al-Ni系、Cu-Zn-Al系、ゴムメタルまたはこれらの組み合わせなどが好適である。 The outer diameter of the wire constituting the support 81 is, for example, 0.01 to 1 mm, preferably 0.05 to 0.2 mm. It is desirable that the wire is made of a material having shape memory properties. The constituent material of the support 81 is, for example, a shape memory alloy to which a shape memory effect or superelasticity is imparted by heat treatment, stainless steel, titanium, elastic urethane rubber, fluoro rubber, perprene, silicone or other resin, carbon fiber Etc. are suitable. As the shape memory alloy, Ni—Ti, Cu—Al—Ni, Cu—Zn—Al, rubber metal, or a combination thereof is suitable.
 膜体80の厚さは、例えば0.05~1mmである。膜体80の構成材料は、シリコーン樹脂やラテックスなどの伸縮材料、ポリエチレンテレフタレート、ウレタンなどの樹脂材料などが好適である。 The thickness of the film body 80 is, for example, 0.05 to 1 mm. The constituent material of the film body 80 is preferably a stretchable material such as silicone resin or latex, or a resin material such as polyethylene terephthalate or urethane.
 遠位管状部31の軸心方向の長さL1は、左心室H内に収容可能な長さであり、例えば5~150mmであり、好ましくは20~80mmである。中間管状部33の軸心方向の長さL2は、大動脈弁Vを通過できる長さであることが好ましく、例えば0.5~30mmであり、より好ましくは3~15mmである。近位管状部32の軸心方向の長さL3は、上行大動脈Aに収容可能な長さであり、例えば3~30mmであり、好ましくは5~15mmである。カニューレ30全体の軸心方向の長さは、例えば15~210mmである。 The axial length L1 of the distal tubular portion 31 is a length that can be accommodated in the left ventricle H, and is, for example, 5 to 150 mm, and preferably 20 to 80 mm. The length L2 in the axial direction of the intermediate tubular portion 33 is preferably a length that can pass through the aortic valve V, for example, 0.5 to 30 mm, and more preferably 3 to 15 mm. The axial length L3 of the proximal tubular portion 32 is a length that can be accommodated in the ascending aorta A, and is, for example, 3 to 30 mm, and preferably 5 to 15 mm. The overall length of the cannula 30 in the axial direction is, for example, 15 to 210 mm.
 遠位管状部31の外径D1は、少なくとも収縮した状態で大動脈弁Vを通過できる外径であり、例えば収縮時径0.2~20mm、拡張時5~50mmであることが好ましい。中間管状部33の外径D2は、収縮した状態で大動脈弁Vを通過できる外径であり、例えば収縮時0.2~20mm、拡張時4~30mmであることが好ましい。近位管状部32の外径D3は、上行大動脈Aに配置可能な外径であり、例えば収縮時0.2~20mm、拡張時5~45mmであることが好ましい。 The outer diameter D1 of the distal tubular portion 31 is an outer diameter that can pass through the aortic valve V at least in a contracted state, and is preferably 0.2 to 20 mm when contracted and 5 to 50 mm when expanded, for example. The outer diameter D2 of the intermediate tubular portion 33 is an outer diameter that can pass through the aortic valve V in a contracted state, and is preferably 0.2 to 20 mm when contracted, and 4 to 30 mm when expanded. The outer diameter D3 of the proximal tubular portion 32 is an outer diameter that can be disposed in the ascending aorta A, and is preferably 0.2 to 20 mm when contracted and 5 to 45 mm when expanded, for example.
 先端チューブ70は、内腔43にガイドワイヤを挿入可能な管体である。先端チューブ70の近位部は、直線状であり、連結ワイヤ75に連結されている。先端チューブ70の遠位部は、湾曲している。先端チューブ70は、遠位管状部31よりも遠位側に位置している。先端チューブ70の近位部の軸心は、遠位管状部31の軸心の延長線上に位置する。先端チューブ70の近位部の軸心は、遠位管状部31の辺縁の延長線上であってもよい。また先端チューブ70は、外シース60もしくは遠位管状部31の壁面に配置されていてもよい。先端チューブ70の遠位部は、内腔43にガイドワイヤが挿入されることで、ガイドワイヤの剛性によって弾性的に変形し、直線状に伸びることができる。先端チューブ70からガイドワイヤを引き抜くと、先端チューブ70の遠位部が自己の弾性力により元の湾曲した状態に戻る。このため、先端チューブ70の鋭利な先端部が生体組織に接触し難くなり、安全性を確保できる。 The tip tube 70 is a tube body into which a guide wire can be inserted into the lumen 43. The proximal portion of the tip tube 70 is straight and connected to the connecting wire 75. The distal portion of the tip tube 70 is curved. The tip tube 70 is located on the distal side of the distal tubular portion 31. The axial center of the proximal portion of the tip tube 70 is located on the extension line of the axial center of the distal tubular portion 31. The axis of the proximal portion of the tip tube 70 may be on an extension line of the edge of the distal tubular portion 31. The tip tube 70 may be disposed on the outer sheath 60 or the wall surface of the distal tubular portion 31. When the guide wire is inserted into the lumen 43, the distal portion of the tip tube 70 can be elastically deformed by the rigidity of the guide wire and can be extended linearly. When the guide wire is pulled out from the tip tube 70, the distal portion of the tip tube 70 returns to the original curved state by its own elastic force. For this reason, the sharp tip part of the tip tube 70 becomes difficult to contact a biological tissue, and safety can be ensured.
 連結ワイヤ75は、遠位管状部31の遠位側の端部と、先端チューブ70の近位側の端部とを連結する複数(本実施形態では4本)のワイヤである。複数の連結ワイヤ75は、遠位管状部31の周方向に均等に並んで配置されている。連結ワイヤ75は、前述の支持体81に使用される線材と同様の線材を使用できる。なお、連結ワイヤ75は、支持体81と異なる材料により構成されてもよい。 The connecting wire 75 is a plurality of wires (four in this embodiment) that connect the distal end of the distal tubular portion 31 and the proximal end of the tip tube 70. The plurality of connecting wires 75 are arranged evenly in the circumferential direction of the distal tubular portion 31. The connecting wire 75 can use the same wire as the wire used for the support 81 described above. The connecting wire 75 may be made of a material different from that of the support 81.
 インペラ50は、カニューレ30の近位管状部32の内部に位置している。インペラ50は、径方向もしくは軸方向に収縮するように弾性的に変形でき、かつ自己の弾性力により元の形状へ戻ることができる。インペラ50は、駆動シャフト40の遠位部に固定される、例えば遠心型インペラである。遠心型インペラは、遠心ポンプに用いられるインペラ50であり、回転軸方向に離れて配置される2枚の回転板51と、回転板51の間に配置されて回転することで径方向外側へ流体を押し出す遠心羽根52(羽根)とを備えている。遠位側の回転板51の中心側に、2枚の回転板51の間に流体を取り込む開口である吸入口53が設けられ、遠心羽根52の径方向外側に、流体を吐出する吐出口54が設けられる。なお、放出口83に向かって流体が押し出されるのであれば、インペラ50は遠心ポンプに限定されず、例えば斜流型のポンプや、軸流型のポンプであってもよい。 The impeller 50 is located inside the proximal tubular portion 32 of the cannula 30. The impeller 50 can be elastically deformed so as to contract in the radial direction or the axial direction, and can return to its original shape by its own elastic force. The impeller 50 is, for example, a centrifugal impeller fixed to the distal portion of the drive shaft 40. The centrifugal impeller is an impeller 50 used for a centrifugal pump. The centrifugal impeller is arranged between two rotating plates 51 that are arranged apart from each other in the rotation axis direction, and is rotated between the rotating plates 51 so that fluid flows radially outward. And a centrifugal blade 52 (blade) for extruding. A suction port 53, which is an opening for taking in fluid between the two rotation plates 51, is provided on the center side of the distal rotation plate 51, and a discharge port 54 that discharges fluid to the outside in the radial direction of the centrifugal blade 52. Is provided. If the fluid is pushed out toward the discharge port 83, the impeller 50 is not limited to the centrifugal pump, and may be, for example, a mixed flow type pump or an axial flow type pump.
 インペラ50の径方向外側(吐出方向)には、近位管状部32および近位端部36に設けられる放出口83が位置している。このため、インペラ50から吐出された血液は、放出口83からカニューレ30の外部へ効果的に放出される。なお、インペラ50は、駆動シャフト40に直接固定されなくてもよい。例えば、インペラ50の中心に円柱状の回転軸を固定し、この回転軸に駆動シャフト40が固定されてもよい。 The discharge port 83 provided in the proximal tubular portion 32 and the proximal end portion 36 is located on the radially outer side (discharge direction) of the impeller 50. For this reason, the blood discharged from the impeller 50 is effectively discharged from the discharge port 83 to the outside of the cannula 30. The impeller 50 may not be directly fixed to the drive shaft 40. For example, a cylindrical rotary shaft may be fixed to the center of the impeller 50, and the drive shaft 40 may be fixed to the rotary shaft.
 インペラ50から吐出される血液の流量は、心臓拍動下で例えば0.1~8Lpm(L/min)である。インペラ50の回転数は、所望の流量を得られるように設定されることが好ましく、例えば10~50000rpmの範囲内で設定される。 The flow rate of blood discharged from the impeller 50 is, for example, 0.1 to 8 Lpm (L / min) under heartbeat. The rotation speed of the impeller 50 is preferably set so as to obtain a desired flow rate, and is set within a range of 10 to 50000 rpm, for example.
 インペラ50の構成材料は、弾性的に変形し、かつインペラとしての機能を発揮できる程度の剛性を有するのであれば特に限定されないが、膜体80や支持体81と同様の材料を利用でき、例えば、ウレタンゴム、フッ素ゴム、シリコーン等の樹脂が好適である。 The constituent material of the impeller 50 is not particularly limited as long as it is elastically deformed and has a rigidity sufficient to exhibit the function as the impeller, but the same material as the film body 80 and the support body 81 can be used. Resins such as urethane rubber, fluororubber, and silicone are suitable.
 外シース60は、内部に第2ルーメン62を有する管体である外シース本体61と、外シース本体61の近位側に設けられる第2ハブ63と、第2ハブ63から分岐して第2ルーメン62に連通するポート64とを有している。ポート64には、三方活栓65が設けられている。ポート64は、第1ルーメン23やガイドワイヤルーメン42への血液の流入や、駆動シャフト40と外シース60との摩擦を低減するためのパージ液を注入するために使用されてもよい。外シース本体61は、第2ルーメン62内にシャフト部20を収容できる。また、第2ルーメン62は、カニューレ30およびインペラ50を変形させつつ収容できる。このとき、遠位変化部34、中間変化部35および近位端部36がテーパ状であるため、外シース本体61内にカニューレ30およびインペラ50を収容する際に、カニューレ30が第2ルーメン62へ滑らかに誘導され、第2ルーメン62への収容が容易である。また、外シース60は、外シース本体61と一体ではなく、外シース本体61の内腔を通って挿入されてもよい。その場合、ポート64と同様のポートが外シース60近位端に設置されてもよく、外シース本体61はイントロデューサシースとしての機能を有することになる。 The outer sheath 60 is branched from the outer sheath main body 61, which is a tube having a second lumen 62 therein, a second hub 63 provided on the proximal side of the outer sheath main body 61, and the second hub 63. And a port 64 communicating with the lumen 62. A three-way cock 65 is provided at the port 64. The port 64 may be used for injecting a purge solution for reducing blood inflow into the first lumen 23 and the guide wire lumen 42 and friction between the drive shaft 40 and the outer sheath 60. The outer sheath body 61 can accommodate the shaft portion 20 in the second lumen 62. Further, the second lumen 62 can be accommodated while the cannula 30 and the impeller 50 are deformed. At this time, since the distal change portion 34, the intermediate change portion 35, and the proximal end portion 36 are tapered, when the cannula 30 and the impeller 50 are accommodated in the outer sheath body 61, the cannula 30 has the second lumen 62. It is guided smoothly and can be easily accommodated in the second lumen 62. Further, the outer sheath 60 may not be integrated with the outer sheath body 61 but may be inserted through the lumen of the outer sheath body 61. In that case, a port similar to the port 64 may be installed at the proximal end of the outer sheath 60, and the outer sheath body 61 has a function as an introducer sheath.
 外シース本体61の内径は、収縮させたカニューレ30およびインペラ50を収容できることが好ましく、例えば0.3~20.1mmであり、より好ましくは1~10mmである。 It is preferable that the inner diameter of the outer sheath body 61 can accommodate the contracted cannula 30 and the impeller 50, for example, 0.3 to 20.1 mm, and more preferably 1 to 10 mm.
 次に、狭心症や心筋梗塞などの虚血性心疾患の治療のために、本実施形態に係るカテーテルポンプ10を使用して心拍出を補助しつつ、経皮的冠動脈形成術(PCI:Percutaneous Coronary Intervention)を行う場合を例として説明する。PCIは、冠動脈の狭窄部や閉塞部をバルーンカテーテルによって押し広げるように拡張し、血流を回復させる治療術である。 Next, for treatment of ischemic heart diseases such as angina pectoris and myocardial infarction, percutaneous coronary angioplasty (PCI: PCI) while assisting cardiac output using the catheter pump 10 according to the present embodiment. A case of performing (Percutaneous Coronary Intervention) will be described as an example. PCI is a treatment technique for expanding a stenosis or occlusion in a coronary artery so as to be expanded by a balloon catheter to restore blood flow.
 初めに、包装からカテーテルポンプ10を取り出し、水中で試験運転した後、外シース本体61の内部にカニューレ30およびインペラ50を収容し、カニューレ30およびインペラ50を収縮させる。 First, after removing the catheter pump 10 from the package and performing a test operation in water, the cannula 30 and the impeller 50 are accommodated in the outer sheath body 61, and the cannula 30 and the impeller 50 are contracted.
 次に、患者に局所麻酔または全身麻酔を施し、抗凝固薬を投与する。次に、セルジンガー法等により、皮膚を穿刺して大腿動脈にイントロデューサシースを設置する。なお、イントロデューサシースを設置する位置は、カテーテルポンプ10を左心室Hへ導入可能であれば、限定されない。続いて、ガイドワイヤ110をイントロデューサシースを介して大腿動脈に挿入し、下行大動脈、上行大動脈A、大動脈弁Vを通って左心室Hまで到達させる。 Next, the patient is given local or general anesthesia and an anticoagulant is administered. Next, the introducer sheath is placed in the femoral artery by puncturing the skin by the Seldinger method or the like. The position where the introducer sheath is installed is not limited as long as the catheter pump 10 can be introduced into the left ventricle H. Subsequently, the guide wire 110 is inserted into the femoral artery via the introducer sheath, and reaches the left ventricle H through the descending aorta, the ascending aorta A, and the aortic valve V.
 次に、先端チューブ70の内腔43もしくはガイドワイヤルーメン42にガイドワイヤ110の基端部を挿入し、カテーテルポンプ10を、ガイドワイヤ110に沿ってイントロデューサシースに挿入する。次に、カテーテルポンプ10をガイドワイヤ110に沿って押し進め、図3に示すように、下行大動脈、上行大動脈A、大動脈弁Vを通って左心室Hまで到達させる。この後、ガイドワイヤ110を抜去する。 Next, the proximal end portion of the guide wire 110 is inserted into the lumen 43 of the distal tube 70 or the guide wire lumen 42, and the catheter pump 10 is inserted into the introducer sheath along the guide wire 110. Next, the catheter pump 10 is pushed along the guide wire 110 to reach the left ventricle H through the descending aorta, the ascending aorta A, and the aortic valve V as shown in FIG. Thereafter, the guide wire 110 is removed.
 次に、第1ハブ22の位置を保持した状態で外シース60を近位側に移動させる。これにより、外シース本体61の遠位側開口部からカニューレ30およびインペラ50が血管または心臓内に放出される。血管または心臓内に放出されたカニューレ30およびインペラ50は、図4、5に示すように、自己の弾性力によって元の形状に戻る。このとき、カニューレ30の外径の小さい中間管状部33を、超音波プローブもしくはX線装置を用いて大動脈弁Vの位置に一致させる。これにより、流入口82を有する遠位管状部31は左心室Hに位置し、放出口83を有する近位管状部32は上行大動脈Aに位置する。放出口83は、大動脈弁Vと冠動脈口Oの間に位置する。なお、放出口83は、大動脈弁Vと冠動脈口Oの間に位置しなくてもよい。この後、第1ハブ22の第1連結部41を、駆動装置90の第2連結部91に連結する(図1を参照)。 Next, the outer sheath 60 is moved to the proximal side while the position of the first hub 22 is maintained. Thereby, the cannula 30 and the impeller 50 are discharged from the distal opening of the outer sheath body 61 into the blood vessel or the heart. As shown in FIGS. 4 and 5, the cannula 30 and the impeller 50 released into the blood vessel or the heart return to the original shape by their own elastic force. At this time, the intermediate tubular portion 33 having a small outer diameter of the cannula 30 is matched with the position of the aortic valve V using an ultrasonic probe or an X-ray device. Thereby, the distal tubular portion 31 having the inflow port 82 is located in the left ventricle H, and the proximal tubular portion 32 having the discharge port 83 is located in the ascending aorta A. The discharge port 83 is located between the aortic valve V and the coronary artery port O. The discharge port 83 may not be located between the aortic valve V and the coronary artery port O. Then, the 1st connection part 41 of the 1st hub 22 is connected with the 2nd connection part 91 of the drive device 90 (refer FIG. 1).
 次に、制御部100を操作して、駆動装置90を作動させる。これにより、駆動シャフト40が回転し、駆動シャフト40に連結されたインペラ50が回転する。インペラ50が回転すると、カニューレ30の内部に近位方向への流れが生じる。これにより、左心室H内の流入口82から血液がカニューレ30内に流入し、上行大動脈A内の放出口83から、血液が上行大動脈Aへ放出される。そして、カニューレ30およびインペラ50の位置、流量、左心内圧、大動脈圧、血圧等を監視しつつ、回転数を徐々に上昇させる。カニューレ30およびインペラ50の位置は、超音波プローブやX線造影により確認できる。カテーテルポンプ10の流量は、制御部100により制御する駆動装置90の回転数、左心内圧、大動脈圧等から特定される。左心内圧、大動脈圧、血圧等は、脈圧測定装置により測定でき、脈圧測定装置は制御部100に設けられていてもよい。所望の流量もしくは左室内圧に到達した後、回転数を固定して維持する。 Next, the drive unit 90 is operated by operating the control unit 100. Thereby, the drive shaft 40 rotates and the impeller 50 connected to the drive shaft 40 rotates. As the impeller 50 rotates, a proximal flow occurs within the cannula 30. As a result, blood flows into the cannula 30 from the inlet 82 in the left ventricle H, and blood is discharged into the ascending aorta A from the discharge port 83 in the ascending aorta A. Then, the rotational speed is gradually increased while monitoring the position, flow rate, left intracardiac pressure, aortic pressure, blood pressure, and the like of the cannula 30 and the impeller 50. The positions of the cannula 30 and the impeller 50 can be confirmed by an ultrasonic probe or X-ray contrast. The flow rate of the catheter pump 10 is specified from the number of rotations of the driving device 90 controlled by the control unit 100, the left heart pressure, the aortic pressure, and the like. Left intracardiac pressure, aortic pressure, blood pressure, and the like can be measured by a pulse pressure measuring device, and the pulse pressure measuring device may be provided in the control unit 100. After reaching the desired flow rate or left chamber pressure, the rotational speed is fixed and maintained.
 インペラ50が回転し、左心室H内の流入口82から吸入された血液は、遠位管状部31に流入する。遠位管状部31の内径は、大動脈弁Vに位置する中間管状部33の内径よりも大きく設定できるため、左心室H内の流入口82を大きく確保できる。このため、流入口82へ吸入する際の血液の圧力損失を、極力低減できる。 The impeller 50 rotates, and blood sucked from the inlet 82 in the left ventricle H flows into the distal tubular portion 31. Since the inner diameter of the distal tubular portion 31 can be set larger than the inner diameter of the intermediate tubular portion 33 located in the aortic valve V, a large inlet 82 in the left ventricle H can be secured. For this reason, the pressure loss of the blood at the time of inhaling into the inflow port 82 can be reduced as much as possible.
 流入口82から遠位管状部31に入った血液は、遠位変化部34を通って中間管状部33へ流れる。中間管状部33の内径は、遠位管状部31の内径よりも小さい。このため、血液が遠位管状部31から中間管状部33へ到達すると、流速が増加する。このとき、遠位変化部34の内径が、近位側に向かってテーパ状に減少するため、圧力損失を極力小さくしつつ、血液の流速を変化させることができる。 The blood that has entered the distal tubular portion 31 from the inlet 82 flows through the distal changing portion 34 to the intermediate tubular portion 33. The inner tubular portion 33 has an inner diameter that is smaller than the inner diameter of the distal tubular portion 31. For this reason, when blood reaches the intermediate tubular portion 33 from the distal tubular portion 31, the flow velocity increases. At this time, since the inner diameter of the distal change portion 34 is tapered toward the proximal side, the blood flow velocity can be changed while minimizing the pressure loss.
 中間管状部33に入った血液は、中間変化部35を通って近位管状部32へ流れる。近位管状部32の内径は、中間管状部33の内径よりも大きい。このため、血液が中間管状部33から近位管状部32へ到達すると、流速が減少する。このとき、中間変化部35の内径が、近位側に向かってテーパ状に増加するため、圧力損失を極力小さくしつつ、血液の流速を変化させることができる。 The blood that has entered the intermediate tubular portion 33 flows through the intermediate changing portion 35 to the proximal tubular portion 32. The inner diameter of the proximal tubular portion 32 is larger than the inner diameter of the intermediate tubular portion 33. For this reason, when the blood reaches the proximal tubular portion 32 from the intermediate tubular portion 33, the flow velocity decreases. At this time, since the inner diameter of the intermediate change portion 35 increases in a tapered shape toward the proximal side, the blood flow velocity can be changed while minimizing the pressure loss.
 近位管状部32に入った血液は、回転するインペラ50に吸入されて、径方向外側方向または径方向外側よりも近位側へ傾いた方向へ吐出される。なお、インペラ50の遠位部が中間管状部33や中間変化部35に位置する場合には、血液は、近位管状部32に到達する前にインペラ50に吸入され得る。 The blood that has entered the proximal tubular portion 32 is sucked into the rotating impeller 50 and discharged in a radially outward direction or a direction inclined more proximally than the radially outer side. When the distal portion of the impeller 50 is located in the intermediate tubular portion 33 or the intermediate change portion 35, blood can be sucked into the impeller 50 before reaching the proximal tubular portion 32.
 インペラ50から吐出された血液は、放出口83を通って上行大動脈Aへ放出される。このとき、放出口83の縁部が曲線で構成されているため、圧力損失を極力小さくすることができる。 The blood discharged from the impeller 50 is discharged to the ascending aorta A through the discharge port 83. At this time, since the edge part of the discharge port 83 is configured by a curve, the pressure loss can be minimized.
 放出口83から放出される血液は、径方向外側方向または径方向外側よりも近位側へ傾いた方向へ方向づけられている。このため、血液は放出口83の径方向外側または放出口83よりも近位側に位置する冠動脈口Oへ到達しやすい。このため、径方向外側方向または径方向外側よりも近位側へ傾いた方向へ方向づけられていることは冠動脈Cへの血液の流入圧を上昇させ、流入を促すことができる。 The blood discharged from the discharge port 83 is oriented in a radially outward direction or a direction inclined more proximally than the radially outer side. For this reason, blood easily reaches the coronary artery opening O located on the radially outer side of the discharge port 83 or on the proximal side of the discharge port 83. For this reason, being oriented in a radially outward direction or a direction inclined more proximally than the radially outward direction can increase the blood inflow pressure to the coronary artery C and promote inflow.
 次に、経皮的冠動脈形成術(PCI)のために、PCI用のガイドワイヤ111を大腿動脈もしくは橈骨動脈等に挿入し、上行大動脈Aまで導く。次に、上行大動脈Aへ到達したガイドワイヤ111を、冠動脈口Oへ挿入する。このとき、カニューレ30の放出口83は、近位管状部32の外周面および近位端部36の軸心に対して傾斜した外周面に設けられている。すなわち、放出口83の開口方向は、カニューレ30の軸心方向に対して傾斜している。このため、PCI用のガイドワイヤ111が放出口83に誤って挿入されることを抑制でき、安全性が高い。 Next, for percutaneous coronary angioplasty (PCI), a PCI guide wire 111 is inserted into the femoral artery or the radial artery or the like and guided to the ascending aorta A. Next, the guide wire 111 that has reached the ascending aorta A is inserted into the coronary ostium O. At this time, the discharge port 83 of the cannula 30 is provided on the outer peripheral surface inclined with respect to the outer peripheral surface of the proximal tubular portion 32 and the axial center of the proximal end portion 36. That is, the opening direction of the discharge port 83 is inclined with respect to the axial center direction of the cannula 30. For this reason, it can suppress that the guide wire 111 for PCI is accidentally inserted in the discharge port 83, and safety is high.
 次に、PCI用のガイドワイヤ111に沿ってバルーンカテーテル112を冠動脈Cに挿入し、バルーンを拡張させて、狭窄部や閉塞部を押し広げる。この後、バルーンを収縮させてバルーンカテーテル112を抜去し、PCI用のガイドワイヤ111を抜去する。この後、必要に応じて、カテーテルポンプ10の作動を継続し、心拍出を補助し続ける。カテーテルポンプ10の作動時間は、例えば数分から数時間である。 Next, the balloon catheter 112 is inserted into the coronary artery C along the PCI guide wire 111, the balloon is expanded, and the stenosis part or the obstruction part is pushed and expanded. Thereafter, the balloon is deflated, the balloon catheter 112 is removed, and the PCI guide wire 111 is removed. Thereafter, the operation of the catheter pump 10 is continued as needed to continue assisting cardiac output. The operating time of the catheter pump 10 is, for example, several minutes to several hours.
 カテーテルポンプ10の作動を停止する際には、制御部100により駆動装置90を制御し、インペラ50の回転を徐々に停止させる。次に、カテーテルポンプ10を下行大動脈まで移動させた後、外シース60をカニューレ30およびインペラ50に対して相対的に遠位側へ移動させる。これにより、カニューレ30およびインペラ50が、径方向へ収縮しつつ外シース本体61の第2ルーメン62に収容される。次に、イントロデューサシースを介してカテーテルポンプ10を血管から抜去する。この後、イントロデューサシースを血管から抜去し、大腿動脈の穿刺部位を止血して、手技が完了する。なお、カテーテルポンプ10を長時間作動させる場合には、イントロデューサシースにピールシースを用いることで、連続駆動している最中にシースを抜去し、穿刺部からの感染を防止することができる。 When stopping the operation of the catheter pump 10, the controller 100 is controlled by the control unit 100, and the rotation of the impeller 50 is gradually stopped. Next, after the catheter pump 10 is moved to the descending aorta, the outer sheath 60 is moved relatively to the distal side with respect to the cannula 30 and the impeller 50. Thereby, the cannula 30 and the impeller 50 are accommodated in the second lumen 62 of the outer sheath body 61 while contracting in the radial direction. Next, the catheter pump 10 is extracted from the blood vessel through the introducer sheath. Thereafter, the introducer sheath is removed from the blood vessel, and the puncture site of the femoral artery is stopped to complete the procedure. In addition, when operating the catheter pump 10 for a long time, by using a peel sheath as the introducer sheath, the sheath can be removed during continuous driving, and infection from the puncture portion can be prevented.
 以上のように、本実施形態に係るカテーテルポンプ10は、心腔内に挿入されて血液の流れを補助するポンプであって、遠位側に血液が流入する流入口82が設けられるとともに近位側に血液が流出する放出口83が設けられる管体であり、径方向へ収縮および拡張可能なカニューレ30と、カニューレ30の近位部が連結される長尺なシャフト部20と、カニューレ30の内部に回転可能に配置され、流入口82から放出口83へ向かう血液の流れを生じさせるインペラ50と、を有し、カニューレ30は、内部にインペラ50が回転可能に配置された近位管状部32と、近位管状部32の近位側に位置して近位側に向かって内径が減少する部位を備えるとともにシャフト部20に連結されている近位端部36と、近位管状部32の遠位側に位置して近位管状部32と連通し、近位管状部32よりも内径が小さい中間管状部33と、中間管状部33の遠位側に位置して中間管状部33と連通し、流入口82が位置する遠位管状部31と、を有し、放出口83は、近位管状部32の外周面および近位端部36のインペラ50の中心軸に対して傾斜する外周面の少なくとも一方に位置する。 As described above, the catheter pump 10 according to the present embodiment is a pump that is inserted into the heart chamber and assists the flow of blood, and is provided with an inflow port 82 through which blood flows into the distal side and is proximal. A tube body provided with a discharge port 83 through which blood flows out, a cannula 30 that can be contracted and expanded in a radial direction, a long shaft portion 20 to which a proximal portion of the cannula 30 is connected, An impeller 50 that is rotatably disposed therein and generates a blood flow from the inlet 82 to the discharge port 83, and the cannula 30 includes a proximal tubular portion in which the impeller 50 is rotatably disposed. 32, a proximal end portion 36 which is located on the proximal side of the proximal tubular portion 32 and has a portion whose inner diameter decreases toward the proximal side and which is connected to the shaft portion 20, and the proximal tubular portion 32 Distal of The intermediate tubular portion 33 having an inner diameter smaller than that of the proximal tubular portion 32, and the intermediate tubular portion 33 located on the distal side of the intermediate tubular portion 33. A distal tubular portion 31 in which the inlet 82 is located, and the outlet 83 is at least of an outer peripheral surface inclined relative to the outer peripheral surface of the proximal tubular portion 32 and the central axis of the impeller 50 of the proximal end portion 36. Located on one side.
 上記のように構成したカテーテルポンプ10は、中間管状部33の径が近位管状部32の径よりも小さいため、挿入する心臓の弁への影響を低減できる。また、近位管状部32の内径は、中間管状部33の内径よりも大きく、吐出圧の高いインペラ50を収容できるため、中間管状部33の内径が小さくても、十分な流量を確保できる。さらに、放出口83が、中間管状部33よりも径の大きい近位管状部32の外周面か、近位端部36のインペラ50の中心軸に対して傾斜する外周面に位置するため、血液が放出口83から側方へ放出される。このため、上行大動脈Aへ放出された血液を、上行大動脈Aの壁面に位置する冠動脈口Oへ導き、冠動脈Cへの血液の流入を促すことができる。 Since the diameter of the intermediate tubular portion 33 is smaller than the diameter of the proximal tubular portion 32, the catheter pump 10 configured as described above can reduce the influence on the heart valve to be inserted. Further, since the inner diameter of the proximal tubular portion 32 is larger than the inner diameter of the intermediate tubular portion 33 and can accommodate the impeller 50 having a high discharge pressure, a sufficient flow rate can be secured even if the inner tubular portion 33 has a small inner diameter. Further, since the discharge port 83 is located on the outer peripheral surface of the proximal tubular portion 32 having a diameter larger than that of the intermediate tubular portion 33 or on the outer peripheral surface inclined with respect to the central axis of the impeller 50 of the proximal end portion 36, blood Is discharged laterally from the discharge port 83. For this reason, the blood discharged to the ascending aorta A can be guided to the coronary artery opening O located on the wall surface of the ascending aorta A, and the inflow of blood into the coronary artery C can be promoted.
 また、インペラ50は、遠心型インペラ(または斜流型インペラ)である。これにより、軸流型インペラの場合と比較して、流体の高流量と高圧力を同時に得ることができる。このため、近位管状部32よりも内径が小さく流量を確保し難い中間管状部33に流路が設けられても、望ましい流量を確保できる。さらに、中間管状部33から近位管状部32に向かって内径が大きくなる形状に対応させて、遠心型インペラ(または斜流型インペラ)を無理なく合理的に配置できる。このため、細い血管に挿入するためにできるだけ小径化することが望ましいカテーテルとして、構造的に有利である。 The impeller 50 is a centrifugal impeller (or mixed flow impeller). Thereby, compared with the case of an axial-flow type impeller, the high flow volume and high pressure of a fluid can be obtained simultaneously. For this reason, even if a flow path is provided in the intermediate tubular portion 33 whose inner diameter is smaller than that of the proximal tubular portion 32 and it is difficult to secure the flow rate, a desirable flow rate can be secured. Further, the centrifugal impeller (or the mixed flow impeller) can be reasonably disposed without difficulty in correspondence with the shape in which the inner diameter increases from the intermediate tubular portion 33 toward the proximal tubular portion 32. For this reason, it is structurally advantageous as a catheter in which it is desirable to reduce the diameter as much as possible for insertion into a thin blood vessel.
 また、インペラ50の吐出方向に、放出口83が位置する。これにより、インペラ50により加圧された血液の圧力損失が小さくなり、高流量及び高揚程を確保できる。 Also, the discharge port 83 is located in the discharge direction of the impeller 50. Thereby, the pressure loss of the blood pressurized by the impeller 50 becomes small, and a high flow rate and a high head can be secured.
 また、放出口83の流路総面積は、中間管状部33における最少の流路総面積よりも大きい。これにより、流路総面積が小さい中間管状部33を通った血液を、できるだけ損失なく放出できる。したがって、放出口83における流量をできるだけ大きく確保できる。 Also, the total channel area of the discharge port 83 is larger than the minimum total channel area in the intermediate tubular portion 33. Thereby, the blood that has passed through the intermediate tubular portion 33 having a small total channel area can be discharged as much as possible without loss. Therefore, the flow rate at the discharge port 83 can be ensured as large as possible.
 また、遠位管状部31は、中間管状部33よりも内径が大きい。流入口82の流路総面積は、中間管状部33における最少の流路総面積よりも大きい。これにより、圧力損失を小さくでき、流路総面積が小さい中間管状部33へ十分な量の血液を供給でき、流量をできるだけ大きく確保できる。 Further, the distal tubular portion 31 has an inner diameter larger than that of the intermediate tubular portion 33. The total channel area of the inflow port 82 is larger than the minimum total channel area in the intermediate tubular portion 33. As a result, the pressure loss can be reduced, a sufficient amount of blood can be supplied to the intermediate tubular portion 33 having a small total channel area, and the flow rate can be secured as high as possible.
 また、本発明は、上記のカテーテルポンプ10を心腔内に挿入して血液の流れを補助する処置方法(治療方法)をも含む。当該処置方法は、カテーテルポンプ10を血管内に挿入し、遠位管状部31を左心室Hに配置し、中間管状部33を大動脈弁Vと接する位置に配置し、近位管状部32を上行大動脈Aに配置するステップと、インペラ50を回転させて左心室H内の血液を流入口82からカニューレ30内へ吸引し、放出口83から上行大動脈A内へ放出するステップと、を有する。 The present invention also includes a treatment method (therapeutic method) for assisting blood flow by inserting the catheter pump 10 into the heart chamber. In this treatment method, the catheter pump 10 is inserted into the blood vessel, the distal tubular portion 31 is disposed in the left ventricle H, the intermediate tubular portion 33 is disposed at a position in contact with the aortic valve V, and the proximal tubular portion 32 is ascending. And a step of rotating the impeller 50 to suck blood in the left ventricle H from the inflow port 82 into the cannula 30 and discharge from the discharge port 83 into the ascending aorta A.
 上記のように構成した処置方法は、大動脈弁Vに接する中間管状部33の径が近位管状部32の径よりも小さいため、大動脈弁Vへの影響を低減できる。また、上行大動脈Aに配置する近位管状部32の内径は、中間管状部33の内径よりも大きく、吐出圧の高いインペラ50を収容できるため、中間管状部33の内径が小さくても、十分な流量を確保できる。 The treatment method configured as described above can reduce the influence on the aortic valve V because the diameter of the intermediate tubular portion 33 in contact with the aortic valve V is smaller than the diameter of the proximal tubular portion 32. Moreover, since the inner diameter of the proximal tubular portion 32 arranged in the ascending aorta A is larger than the inner diameter of the intermediate tubular portion 33 and can accommodate the impeller 50 having a high discharge pressure, it is sufficient even if the inner tubular portion 33 has a small inner diameter. Secures a high flow rate.
 また、上記処置方法は、インペラ50を回転させて血液を放出口83から上行大動脈A内へ放出するステップにおいて、放出口83からインペラ50の径方向または径方向から近位側に90度未満の角度で傾いた方向へ血液を放出する。これにより、上行大動脈Aの壁面に位置する冠動脈Oを介して、冠動脈Cへの血液の流入を促すことができる。 Further, in the step of rotating the impeller 50 to discharge blood into the ascending aorta A from the discharge port 83, the treatment method is less than 90 degrees from the discharge port 83 in the radial direction of the impeller 50 or from the radial direction to the proximal side. Releases blood in a direction inclined at an angle. Thereby, the inflow of blood into the coronary artery C can be promoted via the coronary artery O located on the wall surface of the ascending aorta A.
 また、上記処置方法は、インペラ50を回転させて血液を放出口83から上行大動脈A内へ放出しつつ、冠動脈Cにガイドワイヤ111(長尺体)を挿入するステップをさらに有する。カテーテルポンプ10の放出口83は、近位管状部32の外周面または近位端部36のインペラ50の中心軸に対して傾斜する外周面に位置している。したがって、ガイドワイヤ111が放出口83からカニューレ30の内部に誤って入り難くなり、安全性が向上する。 The treatment method further includes a step of inserting the guide wire 111 (long body) into the coronary artery C while rotating the impeller 50 to discharge blood from the discharge port 83 into the ascending aorta A. The discharge port 83 of the catheter pump 10 is located on the outer peripheral surface of the proximal tubular portion 32 or the outer peripheral surface inclined with respect to the central axis of the impeller 50 of the proximal end portion 36. Therefore, it becomes difficult for the guide wire 111 to erroneously enter the cannula 30 from the discharge port 83, and safety is improved.
 なお、本発明は、上述した実施形態のみに限定されるものではなく、本発明の技術的思想内において当業者により種々変更が可能である。例えば、放出口の形態は、血液を放出できれば、特に限定されない。例えば図9(A)に示す第1の変形例のように、放出口121は、近位側に角を有する三角形であってもよい。なお、以降では、上述した実施形態と同様の機能を有する部位には、同一の符号を付し、説明を省略する。また、図9(B)に示す第2の変形例のように、放出口122は、軸心方向に複数列(図の例は2列)で設けられてもよい。また、図9(C)に示す第3の変形例のように、放出口123は、近位管状部32に設けられずに近位端部36のみに設けられてもよい。 Note that the present invention is not limited to the above-described embodiment, and various modifications can be made by those skilled in the art within the technical idea of the present invention. For example, the form of the discharge port is not particularly limited as long as blood can be discharged. For example, as in the first modification shown in FIG. 9A, the discharge port 121 may be a triangle having a corner on the proximal side. In the following, parts having the same functions as those in the above-described embodiment are denoted by the same reference numerals and description thereof is omitted. Further, as in the second modification shown in FIG. 9B, the discharge ports 122 may be provided in a plurality of rows (two rows in the figure) in the axial direction. Moreover, the discharge port 123 may be provided only in the proximal end portion 36 without being provided in the proximal tubular portion 32 as in the third modified example illustrated in FIG.
 また、遠位管状部および流入口の形態は、特に限定されない。例えば図9(A)に示す第1の変形例のように、流入口82の他に、遠位管状部31の側面に、内周面から外周面へ貫通する流入口124が周方向に並んで設けられてもよい。流入口124は、四角形であるが、形状は特に限定されない。また、図9(B)に示す第2の変形例のように、流入口82の他に、遠位管状部31の側面に、内周面から外周面へ貫通する流入口125が設けられてもよい。流入口125は、周方向に並び、かつ軸心方向に複数列で設けられてもよい。また、図9(C)に示す第3の変形例のように、遠位管状部126は、遠位側端部に流入口が設けられず、側面に、内周面から外周面へ貫通する流入口127が設けられてもよい。 Further, the shape of the distal tubular portion and the inlet is not particularly limited. For example, as in the first modification shown in FIG. 9A, in addition to the inflow port 82, the inflow ports 124 penetrating from the inner peripheral surface to the outer peripheral surface are arranged in the circumferential direction on the side surface of the distal tubular portion 31. May be provided. The inflow port 124 has a quadrangular shape, but the shape is not particularly limited. 9B, in addition to the inflow port 82, the side surface of the distal tubular portion 31 is provided with an inflow port 125 penetrating from the inner peripheral surface to the outer peripheral surface. Also good. The inflow ports 125 may be arranged in a circumferential direction and provided in a plurality of rows in the axial direction. Further, as in the third modification shown in FIG. 9C, the distal tubular portion 126 is not provided with an inflow port at the distal end, and penetrates from the inner peripheral surface to the outer peripheral surface on the side surface. An inflow port 127 may be provided.
 また、図10(A)に示す第4の変形例のように、カニューレ130の内径および外径が、遠位管状部132から中間管状部131へ向かってテーパ状に減少してもよい。また、図10(B)に示す第5の変形例のように、カニューレ140の遠位管状部141の内径および外径が、近位側へ向かってテーパ状に増加してもよい。また、図10(C)に示す第6の変形例のように、カニューレ150の中間管状部151の軸心方向への長さが、大動脈弁Vの動作範囲程度に短くてもよい。これにより、カニューレ150が血管内で軸心方向へ移動し難くなり、適切な位置をより維持できる。 Further, as in the fourth modification shown in FIG. 10A, the inner diameter and the outer diameter of the cannula 130 may be tapered from the distal tubular portion 132 toward the intermediate tubular portion 131. 10B, the inner diameter and the outer diameter of the distal tubular portion 141 of the cannula 140 may be tapered toward the proximal side. 10C, the length of the intermediate tubular portion 151 of the cannula 150 in the axial direction may be as short as the operating range of the aortic valve V. In the sixth modification shown in FIG. This makes it difficult for the cannula 150 to move in the axial direction within the blood vessel, so that an appropriate position can be more maintained.
 また、図11(A)に示す第7の変形例のように、近位管状部161の放出口163は、近位管状部161の膜体162を取り除くことで、支持体81のみで構成されてもよい。また、図11(B)に示す第8の変形例のように、近位管状部171の放出口173は、近位管状部171の膜体172および支持体174を一緒に切り抜くことで構成されてもよい。 Further, as in the seventh modification shown in FIG. 11A, the discharge port 163 of the proximal tubular portion 161 is configured by only the support 81 by removing the film body 162 of the proximal tubular portion 161. May be. Further, as in the eighth modification shown in FIG. 11B, the discharge port 173 of the proximal tubular portion 171 is configured by cutting out the membrane body 172 and the support body 174 of the proximal tubular portion 171 together. May be.
 また、図12(A)に示す第9の変形例のように、支持体181は、螺旋状の線材であってもよい。また、図12(B)に示す第10の変形例のように、支持体191は、波状に折り返された環体192が軸心方向に複数並んで構成されてもよい。隣接する環体192同士は、連結されても、連結されていなくてもよい。 Further, as in the ninth modification shown in FIG. 12A, the support 181 may be a helical wire. Further, as in the tenth modification shown in FIG. 12B, the support body 191 may be configured by arranging a plurality of ring bodies 192 that are folded back in a wave shape in the axial direction. Adjacent ring bodies 192 may be connected or not connected.
 また、図13に示す第11の変形例のように、インペラ200は、斜流型インペラであってもよい。インペラ200の羽根201の近位端202は、放出口205の近位端206よりも遠位側に位置している。また、インペラ200の羽根201の遠位端203は、放出口205の遠位端207よりも遠位側に位置している。このため、インペラ200から傾斜して吐出される血液を、放出口205から効率よく放出することができる。 Further, as in the eleventh modification shown in FIG. 13, the impeller 200 may be a mixed flow type impeller. The proximal end 202 of the blade 201 of the impeller 200 is located distal to the proximal end 206 of the discharge port 205. Further, the distal end 203 of the blade 201 of the impeller 200 is located on the distal side of the distal end 207 of the discharge port 205. For this reason, the blood discharged from the impeller 200 while being inclined can be efficiently discharged from the discharge port 205.
 また、図14に示す第12の変形例のように、斜流型のインペラ200の羽根201の近位端202が、放出口210の遠位端211よりも遠位側に位置してもよい。このような構成であっても、インペラ200から傾斜して吐出される血液を、放出口215から効率よく放出することができる。 Further, as in the twelfth modification shown in FIG. 14, the proximal end 202 of the blade 201 of the mixed flow type impeller 200 may be located more distally than the distal end 211 of the discharge port 210. . Even with such a configuration, blood discharged from the impeller 200 at an inclination can be efficiently discharged from the discharge port 215.
 また、図15に示す第13の変形例のように、放出口220は、近位管状部32に設けられずに、近位管状部32の近位側に位置する傾斜した近位端部36にのみ設けられてもよい。さらに、インペラ200は、斜流型である。これにより、インペラ200から傾斜して吐出される血液が、吐出方向と略垂直な近位端部36の放出口220から効率よく放出される。また、カニューレ30の内部の放出口220よりも近位側の空間が小さくなるため、渦が発生し難くなり、圧力損失をさらに低減できる。 Further, as in the thirteenth modification shown in FIG. 15, the discharge port 220 is not provided in the proximal tubular portion 32, but is inclined to the proximal end portion 36 located on the proximal side of the proximal tubular portion 32. It may be provided only in. Further, the impeller 200 is a mixed flow type. Thereby, the blood discharged from the impeller 200 while being inclined is efficiently discharged from the discharge port 220 of the proximal end portion 36 substantially perpendicular to the discharge direction. In addition, since the space on the proximal side of the discharge port 220 inside the cannula 30 becomes smaller, it becomes difficult to generate vortices, and the pressure loss can be further reduced.
 また、図16に示す第14の変形例のように、放出口230は、近位管状部32および近位端部36に設けられてもよい。さらに、インペラ200は、斜流型である。これにより、インペラ200から傾斜して吐出される血液が、近位管状部32および近位端部36の両方に設けられる放出口230から効率よく放出される。また、カニューレ30の内部の放出口230よりも近位側の空間が小さくなるため、渦が発生し難くなり、圧力損失をさらに低減できる。 Further, as in the fourteenth modification shown in FIG. 16, the discharge port 230 may be provided in the proximal tubular portion 32 and the proximal end portion 36. Further, the impeller 200 is a mixed flow type. Thereby, blood discharged from the impeller 200 while being inclined is efficiently discharged from the discharge port 230 provided in both the proximal tubular portion 32 and the proximal end portion 36. Further, since the space closer to the discharge port 230 inside the cannula 30 becomes smaller, vortices are less likely to be generated, and pressure loss can be further reduced.
 また、図17(A)に示す第15の変形例のように、インペラ240は、軸方向に複数設けられてもよい。この場合、2つのインペラ240の間に、血液の流れを制御するための制御板241が設けられてもよい。制御板241の構成材料は、膜体80と同様の材料を利用できる。また、図17(B)に示す第16の変形例のように、インペラ250は、軸流型インペラであってもよい。 Further, as in the fifteenth modification shown in FIG. 17A, a plurality of impellers 240 may be provided in the axial direction. In this case, a control plate 241 for controlling the blood flow may be provided between the two impellers 240. As the constituent material of the control plate 241, the same material as that of the film body 80 can be used. Further, as in the sixteenth modification shown in FIG. 17B, the impeller 250 may be an axial flow type impeller.
 また、図18に示す第17の変形例のように、インペラ50は、シャフト本体21の内部に配置されるモータ260により回転駆動されてもよい。この場合、外部から駆動力を伝達する駆動シャフトは設けられず、モータ260に電力を送電するためのケーブル261がシャフト本体21の内部に設置される。 Further, as in the seventeenth modification shown in FIG. 18, the impeller 50 may be rotationally driven by a motor 260 disposed inside the shaft body 21. In this case, a drive shaft for transmitting a driving force from the outside is not provided, and a cable 261 for transmitting power to the motor 260 is installed inside the shaft body 21.
 また、図19に示す第18の変形例のように、近位管状部32の外部もしくは内部の放出口83周囲に、血液の流れの向きを調節するための調節板270が設けられてもよい。調節板270が設けられることで、血液の流れの向きが調節され、圧力損失が低減する。調節板270は、膜体80または支持体81に固定される。調節板270の構成材料は、膜体80、支持体81またはインペラ50と同様の材料を利用できる。 Further, as in the eighteenth modification shown in FIG. 19, an adjustment plate 270 for adjusting the direction of blood flow may be provided around the discharge port 83 outside or inside the proximal tubular portion 32. . By providing the adjustment plate 270, the direction of blood flow is adjusted, and pressure loss is reduced. The adjustment plate 270 is fixed to the film body 80 or the support body 81. As the constituent material of the adjustment plate 270, the same material as that of the film body 80, the support body 81, or the impeller 50 can be used.
 また、カテーテルポンプ10は、いずれかの位置に、X線造影性材料からなるマーカーを有してもよい。 Further, the catheter pump 10 may have a marker made of an X-ray contrast material at any position.
 さらに、本出願は、2016年3月18日に出願された日本特許出願番号2016-55196号に基づいており、それらの開示内容は、参照され、全体として、組み入れられている。 Furthermore, this application is based on Japanese Patent Application No. 2016-55196 filed on Mar. 18, 2016, the disclosures of which are referenced and incorporated as a whole.
  10  カテーテルポンプ、
  20  シャフト部、
  21  シャフト本体、
  30、130、140、150  カニューレ、
  31、126、132、141  遠位管状部、
  32、161、171  近位管状部、
  33、131、151  中間管状部、
  34  遠位変化部、
  35  中間変化部、
  36  近位端部、
  40  駆動シャフト、
  42  ガイドワイヤルーメン、
  50、200、240、250  インペラ、
  52  遠心羽根(羽根)、
  60  外シース、
  61  外シース本体、
  80、162、172  膜体、
  81、174、181、191  支持体、
  82、124、125、127  流入口、
  83、121、122、123、163、173、205、210、220、230  放出口、
  90  駆動装置、
  93、260  モータ、
  111  ガイドワイヤ(長尺体)、
  112  バルーンカテーテル、
  201  羽根、
  202  羽根の近位端、
  203  羽根の遠位端、
  206  放出口の近位端、
  207、211  放出口の遠位端、
  270  調節板、
  D1 遠位管状部の外径、
  D2 中間管状部の外径、
  D3 近位管状部の外径、
  A  上行大動脈、
  C  冠動脈、
  H  左心室、
  O  冠動脈口、
  V  大動脈弁。
10 catheter pump,
20 shaft part,
21 Shaft body,
30, 130, 140, 150 cannula,
31, 126, 132, 141 distal tubular section,
32, 161, 171 proximal tubular section,
33, 131, 151 Intermediate tubular part,
34 Distal change,
35 Intermediate change part,
36 proximal end,
40 drive shaft,
42 Guidewire lumen,
50, 200, 240, 250 impeller,
52 Centrifugal blade (blade),
60 outer sheath,
61 outer sheath body,
80, 162, 172 film body,
81, 174, 181, 191 support,
82, 124, 125, 127 inlet,
83, 121, 122, 123, 163, 173, 205, 210, 220, 230 outlet,
90 drive device,
93, 260 motor,
111 guide wire (long body),
112 balloon catheter,
201 feathers,
202 proximal end of the wing,
203 distal end of the vane,
206 proximal end of the outlet,
207, 211 The distal end of the outlet,
270 adjustment plate,
D1 the outer diameter of the distal tubular section,
D2 outer diameter of the intermediate tubular part,
D3 the outer diameter of the proximal tubular section,
A Ascending aorta,
C coronary artery,
H Left ventricle,
O coronary artery orifice,
V Aortic valve.

Claims (9)

  1.  心腔内に挿入されて血液の流れを補助するカテーテルポンプであって、
     遠位側に血液が流入する流入口が設けられるとともに近位側に血液が流出する放出口が設けられる管体であって径方向に収縮および拡張可能なカニューレと、
     前記カニューレの近位部が連結される長尺なシャフト部と、
     前記カニューレの内部に回転可能に配置され、前記流入口から前記放出口へ向かう血液の流れを生じさせるインペラと、を有し、
     前記カニューレは、内部にインペラが回転可能に配置された近位管状部と、
     前記近位管状部の近位側に位置して近位側に向かって内径が減少する部位を備えるとともに前記シャフト部に連結されている近位端部と、
     前記近位管状部の遠位側に位置して前記近位管状部と連通し、前記近位管状部よりも内径が小さい中間管状部と、
     前記中間管状部の遠位側に位置して前記中間管状部と連通し、前記流入口が位置する遠位管状部と、を有し、
     前記放出口は、前記近位管状部の外周面および前記近位端部の前記インペラの中心軸に対して傾斜する外周面の少なくとも一方に位置するカテーテルポンプ。
    A catheter pump that is inserted into the heart chamber to assist the flow of blood,
    A cannula that is provided with an inflow port through which blood flows in on the distal side and a discharge port through which blood flows out on the proximal side and can be contracted and expanded in a radial direction;
    An elongated shaft portion to which the proximal portion of the cannula is coupled;
    An impeller rotatably disposed within the cannula and creating a flow of blood from the inlet toward the outlet;
    The cannula includes a proximal tubular portion having an impeller rotatably disposed therein;
    A proximal end portion that is located on the proximal side of the proximal tubular portion and has a portion that decreases in inner diameter toward the proximal side and is connected to the shaft portion;
    An intermediate tubular portion located on the distal side of the proximal tubular portion, communicating with the proximal tubular portion, having a smaller inner diameter than the proximal tubular portion;
    A distal tubular portion located distal to the intermediate tubular portion, communicating with the intermediate tubular portion, and wherein the inflow port is located;
    The discharge port is a catheter pump located on at least one of an outer peripheral surface of the proximal tubular portion and an outer peripheral surface inclined with respect to a central axis of the impeller at the proximal end portion.
  2.  前記インペラは、遠心型インペラまたは斜流型インペラである請求項1に記載のカテーテルポンプ。 The catheter pump according to claim 1, wherein the impeller is a centrifugal impeller or a mixed flow impeller.
  3.  前記インペラの吐出方向に、前記放出口が位置する請求項1または2に記載のカテーテルポンプ。 The catheter pump according to claim 1 or 2, wherein the discharge port is located in a discharge direction of the impeller.
  4.  前記インペラの羽根の近位端は、前記放出口の近位端よりも遠位側に位置し、
     前記インペラの羽根の遠位端は、前記放出口の遠位端よりも遠位側に位置する請求項1~3のいずれか1項に記載のカテーテルポンプ。
    The proximal end of the impeller blade is located distal to the proximal end of the outlet;
    The catheter pump according to any one of claims 1 to 3, wherein a distal end of the impeller blade is located on a more distal side than a distal end of the discharge port.
  5.  前記インペラは、斜流型インペラであり、前記放出口は、前記近位管状部よりも近位側に位置する請求項1~4のいずれか1項に記載のカテーテルポンプ。 The catheter pump according to any one of claims 1 to 4, wherein the impeller is a mixed flow type impeller, and the discharge port is located closer to the proximal side than the proximal tubular portion.
  6.  前記インペラの吐出方向を制御するための制御板を有する請求項1~5のいずれか1項に記載のカテーテルポンプ。 The catheter pump according to any one of claims 1 to 5, further comprising a control plate for controlling a discharge direction of the impeller.
  7.  請求項1に記載のカテーテルポンプを心腔内に挿入して血液の流れを補助する処置方法であって、
     前記カテーテルポンプを血管内に挿入し、前記遠位管状部を左心室に配置し、前記中間管状部を大動脈弁と接する位置に配置し、前記近位管状部を上行大動脈に配置するステップと、
     前記インペラを回転させて左心室内の血液を流入口からカニューレ内へ吸引し、放出口から上行大動脈内へ放出するステップと、を有する処置方法。
    A treatment method for assisting blood flow by inserting the catheter pump according to claim 1 into a heart chamber,
    Inserting the catheter pump into a blood vessel, placing the distal tubular portion in the left ventricle, placing the intermediate tubular portion in contact with the aortic valve, and placing the proximal tubular portion in the ascending aorta;
    And rotating the impeller to suck blood from the left ventricle into the cannula from the inlet and release it from the outlet into the ascending aorta.
  8.  前記インペラを回転させて血液を前記放出口から上行大動脈内へ放出するステップにおいて、前記放出口から前記インペラの径方向または径方向から近位側に90度未満の角度で傾いた方向へ血液を放出する請求項7に記載の処置方法。 In the step of rotating the impeller to discharge blood from the discharge port into the ascending aorta, the blood is discharged from the discharge port in the radial direction of the impeller or in a direction inclined at an angle of less than 90 degrees from the radial direction to the proximal side. The treatment method according to claim 7, which is released.
  9.  前記インペラを回転させて血液を前記放出口から上行大動脈内へ放出しつつ、冠動脈に長尺体を挿入するステップをさらに有する請求項7または8に記載の処置方法。 The treatment method according to claim 7 or 8, further comprising a step of inserting a long body into the coronary artery while rotating the impeller to discharge blood from the discharge port into the ascending aorta.
PCT/JP2017/010914 2016-03-18 2017-03-17 Catheter pump and treatment method WO2017159849A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-055196 2016-03-18
JP2016055196A JP2019080594A (en) 2016-03-18 2016-03-18 Catheter pump and treatment method

Publications (1)

Publication Number Publication Date
WO2017159849A1 true WO2017159849A1 (en) 2017-09-21

Family

ID=59850986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010914 WO2017159849A1 (en) 2016-03-18 2017-03-17 Catheter pump and treatment method

Country Status (2)

Country Link
JP (1) JP2019080594A (en)
WO (1) WO2017159849A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10722631B2 (en) 2018-02-01 2020-07-28 Shifamed Holdings, Llc Intravascular blood pumps and methods of use and manufacture
JP2021502847A (en) * 2017-11-13 2021-02-04 シファメド・ホールディングス・エルエルシー Intravascular fluid transfer devices, systems, and usage
US11185677B2 (en) 2017-06-07 2021-11-30 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
CN114129890A (en) * 2021-12-23 2022-03-04 苏州心擎医疗技术有限公司 Intervention assembly of catheter pump, use method of intervention assembly and intervention type blood pump system
CN114259645A (en) * 2022-01-11 2022-04-01 丰凯利医疗器械(上海)有限公司 Blood pumping device
CN114340718A (en) * 2019-09-05 2022-04-12 波士顿科学国际有限公司 Circulation support device with integrated cannula
US11368081B2 (en) 2018-01-24 2022-06-21 Kardion Gmbh Magnetic coupling element with a magnetic bearing function
CN115227962A (en) * 2022-03-15 2022-10-25 苏州心擎医疗技术有限公司 Catheter pump and method for folding pump head of catheter pump
US11654275B2 (en) 2019-07-22 2023-05-23 Shifamed Holdings, Llc Intravascular blood pumps with struts and methods of use and manufacture
US11724089B2 (en) 2019-09-25 2023-08-15 Shifamed Holdings, Llc Intravascular blood pump systems and methods of use and control thereof
US11754075B2 (en) 2018-07-10 2023-09-12 Kardion Gmbh Impeller for an implantable, vascular support system
US11944805B2 (en) 2020-01-31 2024-04-02 Kardion Gmbh Pump for delivering a fluid and method of manufacturing a pump
JP7469814B2 (en) 2018-07-20 2024-04-17 カルディオン ゲーエムベーハー Supply line for a pump unit of a cardiac assist system, cardiac assist system, and method for manufacturing a supply line for a pump unit of a cardiac assist system - Patents.com
US11964145B2 (en) 2020-07-13 2024-04-23 Shifamed Holdings, Llc Intravascular blood pumps and methods of manufacture and use

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3004009U (en) * 1994-05-10 1994-11-08 株式会社ヴァーユ Balloon catheter
JP2004057817A (en) * 2002-06-21 2004-02-26 Helmut Mueckter Blood pump with impeller
JP2011505902A (en) * 2007-12-07 2011-03-03 メディカル バリュー パートナーズ エルエルシー Medical equipment
US20120041255A1 (en) * 2004-08-13 2012-02-16 Procyrion, Inc. Method And Apparatus For Long-Term Assisting A Left Ventricle To Pump Blood
US20140128659A1 (en) * 2012-03-26 2014-05-08 Procyrion, Inc. Systems and methods for fluid flows and/or pressures for circulation and perfusion enhancement
JP2014091049A (en) * 2012-11-05 2014-05-19 Jarvik Robert Support stent for through-valve conduit
US20140275725A1 (en) * 2013-03-13 2014-09-18 Thoratec Corporation Fluid handling system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3004009U (en) * 1994-05-10 1994-11-08 株式会社ヴァーユ Balloon catheter
JP2004057817A (en) * 2002-06-21 2004-02-26 Helmut Mueckter Blood pump with impeller
US20120041255A1 (en) * 2004-08-13 2012-02-16 Procyrion, Inc. Method And Apparatus For Long-Term Assisting A Left Ventricle To Pump Blood
JP2011505902A (en) * 2007-12-07 2011-03-03 メディカル バリュー パートナーズ エルエルシー Medical equipment
US20140128659A1 (en) * 2012-03-26 2014-05-08 Procyrion, Inc. Systems and methods for fluid flows and/or pressures for circulation and perfusion enhancement
JP2014091049A (en) * 2012-11-05 2014-05-19 Jarvik Robert Support stent for through-valve conduit
US20140275725A1 (en) * 2013-03-13 2014-09-18 Thoratec Corporation Fluid handling system

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11185677B2 (en) 2017-06-07 2021-11-30 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US11717670B2 (en) 2017-06-07 2023-08-08 Shifamed Holdings, LLP Intravascular fluid movement devices, systems, and methods of use
JP2021502847A (en) * 2017-11-13 2021-02-04 シファメド・ホールディングス・エルエルシー Intravascular fluid transfer devices, systems, and usage
JP7319266B2 (en) 2017-11-13 2023-08-01 シファメド・ホールディングス・エルエルシー Intravascular fluid transfer devices, systems and methods of use
US11511103B2 (en) 2017-11-13 2022-11-29 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US11368081B2 (en) 2018-01-24 2022-06-21 Kardion Gmbh Magnetic coupling element with a magnetic bearing function
US11804767B2 (en) 2018-01-24 2023-10-31 Kardion Gmbh Magnetic coupling element with a magnetic bearing function
US11229784B2 (en) 2018-02-01 2022-01-25 Shifamed Holdings, Llc Intravascular blood pumps and methods of use and manufacture
US10722631B2 (en) 2018-02-01 2020-07-28 Shifamed Holdings, Llc Intravascular blood pumps and methods of use and manufacture
US11754075B2 (en) 2018-07-10 2023-09-12 Kardion Gmbh Impeller for an implantable, vascular support system
JP7469814B2 (en) 2018-07-20 2024-04-17 カルディオン ゲーエムベーハー Supply line for a pump unit of a cardiac assist system, cardiac assist system, and method for manufacturing a supply line for a pump unit of a cardiac assist system - Patents.com
US11654275B2 (en) 2019-07-22 2023-05-23 Shifamed Holdings, Llc Intravascular blood pumps with struts and methods of use and manufacture
CN114340718A (en) * 2019-09-05 2022-04-12 波士顿科学国际有限公司 Circulation support device with integrated cannula
JP2022546598A (en) * 2019-09-05 2022-11-04 ボストン サイエンティフィック サイムド,インコーポレイテッド Cannula-integrated circulatory support device
JP7375172B2 (en) 2019-09-05 2023-11-07 ボストン サイエンティフィック サイムド,インコーポレイテッド Cannula-integrated circulatory support device
US11724089B2 (en) 2019-09-25 2023-08-15 Shifamed Holdings, Llc Intravascular blood pump systems and methods of use and control thereof
US11944805B2 (en) 2020-01-31 2024-04-02 Kardion Gmbh Pump for delivering a fluid and method of manufacturing a pump
US11964145B2 (en) 2020-07-13 2024-04-23 Shifamed Holdings, Llc Intravascular blood pumps and methods of manufacture and use
CN114129890A (en) * 2021-12-23 2022-03-04 苏州心擎医疗技术有限公司 Intervention assembly of catheter pump, use method of intervention assembly and intervention type blood pump system
WO2023134693A1 (en) * 2022-01-11 2023-07-20 丰凯利医疗器械(上海)有限公司 Blood pumping device
CN114259645A (en) * 2022-01-11 2022-04-01 丰凯利医疗器械(上海)有限公司 Blood pumping device
CN115227962B (en) * 2022-03-15 2023-10-10 心擎医疗(苏州)股份有限公司 Catheter pump and method for folding pump head of catheter pump
CN115227962A (en) * 2022-03-15 2022-10-25 苏州心擎医疗技术有限公司 Catheter pump and method for folding pump head of catheter pump

Also Published As

Publication number Publication date
JP2019080594A (en) 2019-05-30

Similar Documents

Publication Publication Date Title
WO2017159849A1 (en) Catheter pump and treatment method
CN110944689B (en) Intravascular fluid movement devices, systems, and methods of use
US10960116B2 (en) Percutaneous heart pump
US11931560B2 (en) Devices and methods for treating edema
JP5641546B2 (en) Catheter pump
US11660426B2 (en) Devices and methods for treating edema
US11793996B2 (en) Devices and methods for treating edema
JP4476328B2 (en) Intracardiac blood pump
US6976996B1 (en) Transport pump and organ stabilization apparatus including related methods
US11724095B2 (en) Devices and methods for treating edema
US11717652B2 (en) Devices and methods for treating edema
US11957891B2 (en) Percutaneous blood pump and introducer system
JPH02203867A (en) Feed catheter for blood pump of intra-aortic location type and using method therefor
EP3930600A2 (en) Devices and methods for treating edema
WO2019188918A1 (en) Medical device and usage for treatment
WO2018187225A1 (en) Antegrade hemodynamic support
US20220387755A1 (en) Echolucent Intravascular Cannula and Echolucent Locating of Portions of Intravascular Medical Devices
CN116328173A (en) Monitoring catheter, monitoring system and method for assisting heart in pumping blood
WO2023150634A2 (en) Pump systems and methods

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766844

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP