WO2017159750A1 - Alkoxysilyl group-containing phosphorescent pigment and production method therefor - Google Patents
Alkoxysilyl group-containing phosphorescent pigment and production method therefor Download PDFInfo
- Publication number
- WO2017159750A1 WO2017159750A1 PCT/JP2017/010497 JP2017010497W WO2017159750A1 WO 2017159750 A1 WO2017159750 A1 WO 2017159750A1 JP 2017010497 W JP2017010497 W JP 2017010497W WO 2017159750 A1 WO2017159750 A1 WO 2017159750A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- bond
- reaction
- phosphorescent dye
- substituted
- Prior art date
Links
- LATUUEHAILYWGM-UHFFFAOYSA-N CC(c(cc1c2c3cccc2)ccc1[n]3-c1ccc(C)cc1)=O Chemical compound CC(c(cc1c2c3cccc2)ccc1[n]3-c1ccc(C)cc1)=O LATUUEHAILYWGM-UHFFFAOYSA-N 0.000 description 1
- 0 Cc(cc1)ccc1-[n]1c(ccc(C(O*(C(CC2)=O)C2=O)=N)c2)c2c2ccccc12 Chemical compound Cc(cc1)ccc1-[n]1c(ccc(C(O*(C(CC2)=O)C2=O)=N)c2)c2c2ccccc12 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B57/00—Other synthetic dyes of known constitution
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B62/00—Reactive dyes, i.e. dyes which form covalent bonds with the substrates or which polymerise with themselves
- C09B62/44—Reactive dyes, i.e. dyes which form covalent bonds with the substrates or which polymerise with themselves with the reactive group not directly attached to a heterocyclic ring
- C09B62/78—Reactive dyes, i.e. dyes which form covalent bonds with the substrates or which polymerise with themselves with the reactive group not directly attached to a heterocyclic ring with other reactive groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
Definitions
- the present invention relates to an alkoxysilyl group-containing phosphorescent dye and a method for producing the same, and more particularly, an alkoxysilyl group-containing phosphorescent used for producing phosphorescent dye-containing silica particles used for detection of biomolecules such as nucleic acids, proteins, peptides, and saccharides.
- the present invention relates to a dye and a method for producing the same.
- Fluorescent nanoparticles are present in addition to organic fluorescent dyes.
- Quantum Dots are well known as well-known fluorescent nanoparticles, with relatively high stability, strong fluorescence, multi-wavelength fluorescence with a single excitation light, and abundant color variations. Yes.
- fluorescent dye-containing silica particles containing harmless organic fluorescent dyes
- the fluorescent dye-containing silica particles are characterized by strong fluorescence because a large number of organic fluorescent dyes can be contained in silica.
- silica particles containing phosphorescent dyes that can be expected to have higher quantum efficiency than fluorescent dyes have not been studied.
- Silica particles containing organic phosphorescent dyes do not require an expensive filter that is necessary when using fluorescent dye-containing silica particles, and are not affected by background such as autofluorescence. There are advantages. Further, although the fluorescent dye-containing silica particles cannot be confirmed as fluorescence unless they are continuously excited, the phosphorescent dye-containing silica particles can be visually confirmed with phosphorescence once excited. However, organic phosphorescent dyes have very low luminous efficiency at room temperature, and few are known to emit light at room temperature in a solid state. Therefore, the phosphorescent pigment-containing silica particles have a problem that they do not emit light in a solid state at room temperature.
- the present invention provides an alkoxysilyl group-containing phosphorescent dye and a method for producing the same, which can be used for the production of phosphorescent dye-containing silica particles capable of emitting light in a solid state at room temperature, by solving the above problems. Aimed at that.
- the alkoxysilyl group-containing phosphorescent dye of the present invention is represented by the general formula X—Y—Q—Z—Si (R 1 ) n (OR 2 ) 3-n , where X is an organic phosphorescent dye.
- Y is a direct bond, or — (CH 2 ) p — (p is an integer of 1 to 10) or — (O—CH 2 CH 2 ) q — (q is an integer of 1 to 10), and Q is an amide bond , Ether bond, thioether bond, thioester bond, thiourea bond, disulfide bond and polyoxyethylene bond, and Z is — (CH 2 ) m — or — (CH 2 ) 2 NH ( CH 2 ) 3 —, R 1 and R 2 are alkyl groups having 1 to 4 carbon atoms, n is 0 or 1, and m is an integer of 1 to 10.
- the production method of the present invention is a production method of the above alkoxysilyl group-containing phosphorescent dye, wherein the organic phosphorescent dye comprises a succinimidyl ester group, an alcoholate group, an amino group, a mercapto group, a halogenated alkyl group, and It has one type of reactive group selected from the group consisting of terminal hydroxy group-containing polyoxyethylene groups, and includes a step of mixing the organic phosphorescent dye and a silane coupling agent.
- the phosphor dye-containing silica particles of the present invention are characterized by containing a condensate of the above alkoxysilyl group-containing phosphor dye.
- an expensive filter required when using fluorescent dye-containing silica particles is not required, and not only is not affected by the background such as autofluorescence, but also emits light in a solid state at room temperature. It has the excellent effect of being possible.
- the alkoxysilyl group-containing phosphorescent dye of the present invention is represented by the general formula XYQZ-Si (R 1 ) n (OR 2 ) 3-n , where X is an organic phosphorescent dye and Y is a direct bond or- (CH 2 ) p — (p is an integer of 1 to 10) or — (O—CH 2 CH 2 ) q — (q is an integer of 1 to 10), Q is an amide bond, an ether bond, a thioether bond, At least one selected from a thioester bond, a thiourea bond, a disulfide bond, and a polyoxyethylene bond, and Z is — (CH 2 ) m — or — (CH 2 ) 2 NH (CH 2 ) 3 — , R 1 and R 2 are alkyl groups having 1 to 4 carbon atoms, n is 0 or 1, and m is
- the organic phosphorescent dye (hereinafter also referred to as phosphorescent dye) used in the present invention is substituted or unsubstituted carbazole, substituted or unsubstituted dibenzofuran, substituted or unsubstituted thionaphthene, substituted or unsubstituted indole, substituted or unsubstituted. Mention may be made of at least one compound selected from the group consisting of 1,3,5-triazine. Preferably, it is carbazole and its substituted products.
- substituted or unsubstituted carbazole can be represented by the following general formula.
- R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 are each independently a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an alkenyl group, Alkynyl group, alkyl ester group, phosphate ester group, sulfate ester group, nitrile group, hydroxyl group, cyano group, sulfonyl group, aldehyde group, pyridyl group, carboxylic acid group, amino group, quaternary ammonium salt, or substituent
- the aromatic hydrocarbon group which may have is shown.
- the substituent of the aromatic hydrocarbon group which may have a substituent includes a halogen atom, an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group, an alkyl ester group, a phosphate ester group, a sulfate ester group, a nitrile.
- N-substituted carbazole is preferable.
- R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 other than N-substituted carbazole R 1 are a hydrogen atom, R 1 is an alkyl group having 1 to 4 carbon atoms, substituted Or it is an unsubstituted aromatic hydrocarbon.
- the substituent of the substituted aromatic hydrocarbon include one or more halogen atoms, alkyl groups having 1 to 4 carbon atoms, or alkoxy groups having 1 to 4 carbon atoms.
- N-methylphenyl carbazole N-ethyl carbazole, N-methoxyphenyl carbazole, N-phenyl carbazole, N-chlorophenyl carbazole, N-bromophenyl carbazole, N-iodophenyl carbazole, and the like.
- the substituent includes a halogen atom, an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group, an alkyl ester group, and a phosphate ester.
- a halogen atom an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group, an alkyl ester group, and a phosphate ester.
- the substituent of the aromatic hydrocarbon group which may have a substituent includes a halogen atom, an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group, an alkyl ester group, a phosphate ester group, a sulfate ester group, a nitrile.
- Y represents a direct bond or — (CH 2 ) p — (p is an integer of 1 to 10) or — (O—CH 2 CH 2 ) q — (q is an integer of 1 to 10).
- p is preferably from 1 to 8, more preferably from 1 to 4.
- Q is preferably 1 to 8, more preferably 1 to 4.
- the Q is at least one bond selected from an amide bond, an ether bond, a thioether bond, a thioester bond, a thiourea bond, a disulfide bond, and a polyoxyethylene bond.
- a polyoxyethylene bond Preferably, one of them, more preferably an amide bond or a polyoxyethylene bond.
- the amide bond can be represented by —CO (NR) —, wherein R is hydrogen or an alkyl group having 1 to 4 carbon atoms, preferably R is hydrogen or a methyl group, more preferably a methyl group. This is because in the case of a methyl group (hereinafter referred to as N-methylamide bond), stronger phosphorescence can be obtained.
- the polyoxyethylene bond can be represented by — (O—CH 2 CH 2 ) r —, where r is an integer of 1 to 10, preferably 1 to 5.
- a plurality of bonds selected from amide bonds, ether bonds, thioether bonds, thioester bonds, thiourea bonds, disulfide bonds, and polyoxyethylene bonds can be used.
- light can be emitted in a solid state at room temperature as in the case of using a single bond.
- the above Q can be represented by-[Q1-Q2]-.
- a bond selected from an amide bond, an ether bond, a thioether bond, a thioester bond, a thiourea bond, a disulfide bond, and a polyoxyethylene bond can be used independently.
- an N-methylamide bond can be used for Q1 and an ether bond can be used for Q2.
- the example is demonstrated using the following reaction formula.
- Compound I is an active ester of phosphorescent dye X, which is reacted with N-methylhydroxylamine to obtain N-methylhydroxyl of Compound II, and Compound II is reacted with a halogenated alkylsilane.
- compound IV in which an N-methylamide bond and an ether bond are linked can be obtained.
- the Q may include a direct bond of three types of bonds-[Q1-Q2-Q3]-, or a linking group L between the bonds.
- the linking group L examples include-[Q1-Q2-L-Q3]-.
- Q1, Q2, and Q3 a bond selected from an amide bond, an ether bond, a thioether bond, a thioester bond, a thiourea bond, a disulfide bond, and a polyoxyethylene bond can be used independently.
- L is — (CH 2 ) n — (n is an integer of 1 to 10).
- an N-methylamide bond can be used for Q1
- an ether bond can be used for Q2
- a thioester bond, an amide bond, or an N-methylamide bond can be used for Q3.
- the N-methylhydroxyl compound of compound II is reacted with a halogenated alkyl N-hydroxysuccinimide to obtain compound III which is an active ester in which an N-methylamide bond and an ether bond are linked.
- n in the formula of the halogenated alkyl N-hydroxysuccinimide and n in the formula of the compound III are integers of 1 to 10.
- compound III is reacted with mercaptosilane to obtain compound V.
- Compound V has a thioester bond as Q3.
- compound III is reacted with aminosilane to obtain compound VI.
- Compound VI has an amide bond as Q3.
- compound III is reacted with methylaminosilane to give compound VII.
- Compound VII has an N-methylamide bond as Q3.
- the example of the combination of a plurality of bonds described in the above reaction formula is an example, and combinations other than the above are also possible. Moreover, the combination of 4 or more types can also be used as needed.
- n in the formula of mercaptosilane, aminosilane, and methylaminosilane is an integer of 1 to 10.
- Z is — (CH 2 ) m — or — (CH 2 ) 2 NH (CH 2 ) 3 —, and m is an integer of 1 to 10. Preferred is — (CH 2 ) 3 —.
- R 1 and R 2 of Si (R 1 ) n (OR 2 ) 3-n are alkyl groups having 1 to 4 carbon atoms, preferably a methyl group, an ethyl group, an n-propyl group, more preferably a methyl group. Group or ethyl group.
- N is 0 or 1.
- the alkoxysilyl group-containing phosphorescent dye of the present invention can be produced using the following method. That is, the organic phosphorescent dye has one reactive group selected from the group consisting of a succinimidyl ester group, an alcoholate group, an amino group, a mercapto group, and a terminal hydroxy group-containing polyoxyethylene group,
- the method includes a step of mixing an organic phosphorescent dye and a silane coupling agent.
- the phosphorescent dye used in the present invention has the reactive group described above, and reacts with the silane coupling agent to form a covalent bond and bind to the silane coupling agent.
- the covalent bond is an amide bond, N-methylamide bond, ether bond, thioether bond, thioester bond, thiourea bond, disulfide bond or polyoxyethylene bond.
- aminoalkylsilane can be used as the silane coupling agent
- a succinimidyl ester group can be used as the reactive group of the phosphorescent dye.
- a methyl-substituted aminoalkylsilane can be used as the silane coupling agent, and a succinimidyl ester group can be used as the reactive group of the phosphorescent dye.
- a halogenated alkylsilane can be used as the silane coupling agent, and an alcoholate group can be used as the reactive group of the phosphorescent dye.
- mercaptosilane can be used as the silane coupling agent, and a halogenated alkyl group can be used as the reactive group of the phosphorescent dye.
- mercaptosilane When forming a thioester bond, mercaptosilane can be used as the silane coupling agent, and a succinimidyl ester group can be used as the reactive group of the phosphorescent dye.
- isothiocyanate silane When forming a thiourea bond, isothiocyanate silane can be used as the silane coupling agent, and an amino group can be used as the reactive group of the phosphorescent dye.
- mercaptosilane When a disulfide bond is formed, mercaptosilane can be used as the silane coupling agent, and a mercapto group can be used as the reactive group of the phosphorescent dye.
- glycidyloxyalkylsilane When forming a polyoxyethylene bond, glycidyloxyalkylsilane can be used as the silane coupling agent, and a terminal hydroxy group-containing polyoxyethylene group can be used as the reactive group of
- silane coupling agent aminoalkylsilane, glycidyloxyalkylsilane, mercaptosilane, isothiocyanate, isocyanate silane, halogenated silane and the like can be used.
- Aminoalkylsilane is preferable.
- aminoalkylsilanes include 3-aminopropyltriethoxysilane, 3- (2-aminoethylamino) propyltrimethoxysilane, 3- (2-aminoethylamino) propyldimethoxymethylsilane, 3- (2- Aminoethylamino) propyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 3-aminopropyltrimethoxysilane and the like can be mentioned, and 3-aminopropyltrimethoxysilane is preferred.
- glycidyloxyalkylsilane examples include diethoxy (3-glycidyloxypropyl) methylsilane, 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyl (dimethoxy) methylsilane, and triethoxy (3-glycidyloxypropyl) silane.
- Examples of mercaptosilane include 3-mercaptopropylmethylmethoxysilane and 3-mercaptopropyltrimethoxysilane.
- isocyanate silane examples include 3-isocyanatopropyltriethoxysilane and 3-isocyanatopropyltrimethoxysilane.
- examples of the isothiocyanate include 3-thiocyanatopropyltriethoxysilane.
- examples of the halogenated silane include (3-bromopropyl) trimethoxysilane, 3-trimethoxysilylpropyl chloride, 3-chloropropyldimethoxymethylsilane, 3-iodopropyltrimethoxysilane and the like.
- the reaction between the phosphorescent dye and the silane coupling agent can be performed by mixing and stirring at a temperature of room temperature to 60 ° C. using dichloromethane, chloroform, DMF or the like as a solvent. If necessary, the solvent can be removed under reduced pressure and the reaction product can be taken out.
- phosphorescent dye-containing silica particles can be produced using the alkoxysilyl group-containing phosphorescent dye of the present invention.
- the method for producing phosphorescent pigment-containing silica particles is not particularly limited as long as it is a method for producing silica particles using a silane coupling agent.
- a method in which an alkoxysilyl group-containing phosphorescent dye is mixed with an aqueous solution to form a dense fluorescent core, and the dense fluorescent core and a silica precursor are mixed to form a silica shell on the dense core can be used.
- Synthesis example 1 The synthesis of a carbazole-substituted product containing 3-aminopropyltrimethoxysilane (hereinafter abbreviated as APS) as an alkoxysilyl group will be described. In this synthesis example, an amide bond was used for the bond to the alkoxysilyl group.
- APS 3-aminopropyltrimethoxysilane
- bromophenylcarbazole body 2 The synthesis procedure of bromophenylcarbazole body 2 is shown below.
- Synthesis example 2 The synthesis of a carbazole substituted product containing 3-mercaptopropyltrimethoxysilane (hereinafter abbreviated as MPS) as an alkoxysilyl group will be described. In this synthesis example, a thioester bond was used for the bond to the alkoxysilyl group. A reaction example is shown below.
- the yield was 0.04 g and the yield was 35%.
- Synthesis example 3 The synthesis of a carbazole substituted product containing 3-mercaptopropyltrimethoxysilane (hereinafter abbreviated as MPS) as an alkoxysilyl group will be described. In this synthesis example, a thioether bond was used for the bond to the alkoxysilyl group. A reaction example is shown below.
- Synthesis example 4 The synthesis of a carbazole substituted product containing 3-methylaminopropyltriethoxysilane (hereinafter abbreviated as MAPS) as an alkoxysilyl group will be described. In this synthesis example, an N-methylamide bond was used for the bond to the alkoxysilyl group. A reaction example is shown below.
- MAPS 3-methylaminopropyltriethoxysilane
- Synthesis example 5 Chlorophenylcarbazole was used as the carbazole substituent, and 3-aminopropyltrimethoxysilane was used as the alkoxysilyl group. In this synthesis example, an amide bond was used for the bond to the alkoxysilyl group.
- Synthesis Example 6 The synthesis of a chlorocarbazole compound containing 3-methylaminopropyltriethoxysilane as an alkoxysilyl group will be described. In this synthesis example, an N-methylamide bond was used for the bond to the alkoxysilyl group. A reaction example is shown below.
- Synthesis example 8 The synthesis of methylphenylcarbazole containing 3-methylaminopropyltriethoxysilane as an alkoxysilyl group will be described. In this synthesis example, an N-methylamide bond was used for the bond to the alkoxysilyl group. A reaction example is shown below.
- Synthesis Example 9 The synthesis of a thionaphthene substituted product containing 3-aminopropyltriethoxysilane as an alkoxysilyl group will be described. In this synthesis example, an amide bond was used for the bond to the alkoxysilyl group.
- Synthesis Example 10 The synthesis of an indole substitution product containing 3-aminopropyltriethoxysilane as an alkoxysilyl group will be described. In this synthesis example, an amide bond was used for the bond to the alkoxysilyl group.
- Synthesis Example 11 The synthesis of a dibenzofuran substituted product containing 3-aminopropyltriethoxysilane as an alkoxysilyl group will be described. In this synthesis example, an amide bond was used for the bond to the alkoxysilyl group.
- Bromophenylcarbazole-APS body 1 dissolved in chloroform was hung on a slide glass and dried to prepare a film sample.
- the prepared sample was irradiated with ultraviolet rays, and the fading of the sample was observed with a digital camera or a fluorescence microscope every hour.
- FIG. 1 shows images observed by a digital camera before UV irradiation and after 1 to 6 hours of UV irradiation. No fading was observed even after 6 hours of UV irradiation.
- 2 and 3 show images observed with a fluorescence microscope. FIG. 2 and FIG. 3 differ in the observation location. Even when observed with a fluorescence microscope, no fading was observed after 6 hours of UV irradiation. A similar test was conducted on bromophenylcarbazole-APS bodies 2 and 3, but no photoregression was observed after 6 hours of ultraviolet irradiation.
- FIG. 4 to 8 are images observed with a fluorescence microscope
- FIG. 4 is a bromophenylcarbazole-MAPS form of Synthesis Example 4
- FIG. 5 is a chlorophenylcarbazole form-APS form of Synthesis Example 5
- FIG. 7 is an image of the methylphenylcarbazole-MAPS form of Synthesis Example 7
- FIG. 8 is an image of the methylphenylcarbazole-MAPS form of Synthesis Example 8.
- no fading was observed after 6 hours of ultraviolet irradiation. Similar effects were also observed in Synthesis Examples 9-11.
- the alkoxysilyl group-containing phosphorescent dye of the present invention can emit phosphorescence at room temperature in a solid state.
- organic phosphorescent dyes have a very low luminous efficiency at room temperature, and few are known to emit light at room temperature in a solid state.
- Conventional phosphorescent dye-containing silica particles do not emit light at room temperature in a solid state.
- the alkoxysilyl group-containing phosphorescent dye of the present invention emits phosphorescence at room temperature in a solid state, many uses can be expected as new nanoparticles containing the phosphorescent dye.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
Abstract
Provided are an alkoxysilyl group-containing phosphorescent pigment that can be used in production of phosphorescent pigment-containing silica particles that can emit light in a solid state at room temperature, and a method for producing the pigment. The alkoxysilyl group-containing phosphorescent pigment according to the present invention is represented by general formula X-Y-Q-Z-Si(R1)n(OR2)3-n, wherein X represents an organic phosphorescent pigment, Y represents a direct bond or -(CH2)p- (p represents an integer of 1-10) or -(O-CH2CH2)q- (q represents an integer of 1-10), Q represents at least one bond selected from an amide bond, an ether bond, a thioether bond, a thioester bond, a thiourea bond, a disulfide bond, and a polyoxyethylene bond, Z represents -(CH2)m- or -(CH2)2NH(CH2)3-, R1 and R2 represent an alkyl group having 1-4 carbon atoms, n represents 0 or 1, and m represents an integer of 1-10.
Description
本発明は、アルコキシシリル基含有燐光色素およびその製造方法に関し、さらに詳しくは核酸、タンパク質、ペプチド類、そして糖類等の生体分子の検出に用いる燐光色素含有シリカ粒子の製造に用いるアルコキシシリル基含有燐光色素およびその製造方法に関する。
TECHNICAL FIELD The present invention relates to an alkoxysilyl group-containing phosphorescent dye and a method for producing the same, and more particularly, an alkoxysilyl group-containing phosphorescent used for producing phosphorescent dye-containing silica particles used for detection of biomolecules such as nucleic acids, proteins, peptides, and saccharides. The present invention relates to a dye and a method for producing the same.
ニューバイオケミストリー分野では、現在特定遺伝子解析、遺伝子治療、テーラーメイド医療を目的とした研究が盛んに行われている。この分野では有機蛍光試薬を用いる研究が殆どであり蛍光色素が存在しなければ、DNA解析や抗体を含むタンパク質を用いた解析技術は完成しなかったと言われている。これらの分野で主に使用されている既存の蛍光試薬として、シアニン骨格を有するCy-dyeやローダミン骨格を有するAlexa Fluorなどの有機蛍光色素が多く用いられている。
In the field of new biochemistry, research aimed at specific gene analysis, gene therapy, and tailor-made medicine is being actively conducted. In this field, most studies use organic fluorescent reagents, and it is said that analysis techniques using DNA analysis and proteins including antibodies have not been completed without the presence of fluorescent dyes. As an existing fluorescent reagent mainly used in these fields, organic fluorescent dyes such as Cy-dye having a cyanine skeleton and Alexa Fluor having a rhodamine skeleton are often used.
また、有機蛍光色素の他に蛍光ナノ粒子が存在している。有名な蛍光ナノ粒子としてQuantum Dotsなどが良く知られており、比較的安定性も高く、強い蛍光や単一の励起光による多波長蛍光、色調のバリエーションが豊富であるなどの特徴を有している。しかし、セレンやカドミウムなどの毒性元素を含んでいるため、安全性に問題を抱えている。これに代わる新たな技術として無害な有機蛍光色素を含むシリカ粒子(以下、蛍光色素含有シリカ粒子という)の開発が行われている(例えば、特許文献1)。この蛍光色素含有シリカ粒子は、シリカの中に有機蛍光色素を多数含有させる事が可能なため蛍光が強いなどの特徴がある。一方、蛍光色素に比べ高い量子効率の期待できる燐光色素を含むシリカ粒子については検討されていない。
Fluorescent nanoparticles are present in addition to organic fluorescent dyes. Quantum Dots are well known as well-known fluorescent nanoparticles, with relatively high stability, strong fluorescence, multi-wavelength fluorescence with a single excitation light, and abundant color variations. Yes. However, since it contains toxic elements such as selenium and cadmium, it has a safety problem. Development of silica particles containing harmless organic fluorescent dyes (hereinafter referred to as fluorescent dye-containing silica particles) has been performed as a new technology that replaces this (for example, Patent Document 1). The fluorescent dye-containing silica particles are characterized by strong fluorescence because a large number of organic fluorescent dyes can be contained in silica. On the other hand, silica particles containing phosphorescent dyes that can be expected to have higher quantum efficiency than fluorescent dyes have not been studied.
有機燐光色素を含むシリカ粒子(以下、燐光色素含有シリカ粒子という)は、蛍光色素含有シリカ粒子を使用の際に必要となる高価なフィルターが不要となり、自家蛍光などのバックグラウンドの影響を受けない利点が存在する。また、蛍光色素含有シリカ粒子は励起させ続けなければ蛍光として確認ができないが、燐光色素含有シリカ粒子は、一旦励起させれば燐光を目視で確認することができる。しかしながら、有機燐光色素は、室温での発光効率が非常に低く、室温、固体状態で発光するものはほとんど知られていない。そのため、燐光色素含有シリカ粒子は、室温、固体状態で発光しないという問題がある。
Silica particles containing organic phosphorescent dyes (hereinafter referred to as phosphorescent dye-containing silica particles) do not require an expensive filter that is necessary when using fluorescent dye-containing silica particles, and are not affected by background such as autofluorescence. There are advantages. Further, although the fluorescent dye-containing silica particles cannot be confirmed as fluorescence unless they are continuously excited, the phosphorescent dye-containing silica particles can be visually confirmed with phosphorescence once excited. However, organic phosphorescent dyes have very low luminous efficiency at room temperature, and few are known to emit light at room temperature in a solid state. Therefore, the phosphorescent pigment-containing silica particles have a problem that they do not emit light in a solid state at room temperature.
そこで、本発明は、上記の課題を解決し、室温、固体状態で発光することの可能な燐光色素含有シリカ粒子の製造に用いることができる、アルコキシシリル基含有燐光色素およびその製造方法を提供することを目的とした。
Accordingly, the present invention provides an alkoxysilyl group-containing phosphorescent dye and a method for producing the same, which can be used for the production of phosphorescent dye-containing silica particles capable of emitting light in a solid state at room temperature, by solving the above problems. Aimed at that.
上記課題を解決するため、本発明のアルコキシシリル基含有燐光色素は、一般式X―Y-Q-Z-Si(R1)n(OR2)3-nで表され、Xが有機燐光色素、Yが直接結合あるいは-(CH2)p-(pは1から10の整数)または-(O-CH2CH2)q-(qは1から10の整数)であり、Qはアミド結合、エーテル結合、チオエーテル結合、チオエステル結合、チオウレア結合、ジスルフィド結合およびポリオキシエチレン結合から選択される少なくとも1種の結合であり、Zは-(CH2)m-または-(CH2)2NH(CH2)3-であり、R1とR2は炭素数1から4のアルキル基であり、nは0または1であり、mは1から10の整数であることを特徴とする。
In order to solve the above problems, the alkoxysilyl group-containing phosphorescent dye of the present invention is represented by the general formula X—Y—Q—Z—Si (R 1 ) n (OR 2 ) 3-n , where X is an organic phosphorescent dye. , Y is a direct bond, or — (CH 2 ) p — (p is an integer of 1 to 10) or — (O—CH 2 CH 2 ) q — (q is an integer of 1 to 10), and Q is an amide bond , Ether bond, thioether bond, thioester bond, thiourea bond, disulfide bond and polyoxyethylene bond, and Z is — (CH 2 ) m — or — (CH 2 ) 2 NH ( CH 2 ) 3 —, R 1 and R 2 are alkyl groups having 1 to 4 carbon atoms, n is 0 or 1, and m is an integer of 1 to 10.
また、本発明の製造方法は、上記のアルコキシシリル基含有燐光色素の製造方法であって、前記有機燐光色素が、スクシンイミジルエステル基、アルコラート基、アミノ基、メルカプト基、ハロゲン化アルキル基および末端ヒドロキシ基含有ポリオキシエチレン基からなる群から選択される1種の反応性基を有し、前記有機燐光色素とシランカップリング剤を混合する工程を含むことを特徴とする。
The production method of the present invention is a production method of the above alkoxysilyl group-containing phosphorescent dye, wherein the organic phosphorescent dye comprises a succinimidyl ester group, an alcoholate group, an amino group, a mercapto group, a halogenated alkyl group, and It has one type of reactive group selected from the group consisting of terminal hydroxy group-containing polyoxyethylene groups, and includes a step of mixing the organic phosphorescent dye and a silane coupling agent.
また、本発明の燐光色素含有シリカ粒子は、上記のアルコキシシリル基含有燐光色素の縮合体を含むことを特徴とする。
The phosphor dye-containing silica particles of the present invention are characterized by containing a condensate of the above alkoxysilyl group-containing phosphor dye.
本発明によれば、蛍光色素含有シリカ粒子を使用の際に必要となる高価なフィルターが不要となり、自家蛍光などのバックグラウンドの影響を受けないだけでなく、室温、固体状態で発光することが可能なという優れた効果を有する。
According to the present invention, an expensive filter required when using fluorescent dye-containing silica particles is not required, and not only is not affected by the background such as autofluorescence, but also emits light in a solid state at room temperature. It has the excellent effect of being possible.
以下、本発明の実施の形態について詳細に説明する。
本発明のアルコキシシリル基含有燐光色素は、一般式X―Y-Q-Z-Si(R1)n(OR2)3-nで表され、Xが有機燐光色素、Yが直接結合あるいは-(CH2)p-(pは1から10の整数)または-(O-CH2CH2)q-(qは1から10の整数)であり、Qはアミド結合、エーテル結合、チオエーテル結合、チオエステル結合、チオウレア結合、ジスルフィド結合およびポリオキシエチレン結合から選択される少なくとも1種の結合であり、Zは-(CH2)m-または-(CH2)2NH(CH2)3-であり、R1とR2は炭素数1から4のアルキル基であり、nは0または1であり、mは1から10の整数であることを特徴とするものである。 Hereinafter, embodiments of the present invention will be described in detail.
The alkoxysilyl group-containing phosphorescent dye of the present invention is represented by the general formula XYQZ-Si (R 1 ) n (OR 2 ) 3-n , where X is an organic phosphorescent dye and Y is a direct bond or- (CH 2 ) p — (p is an integer of 1 to 10) or — (O—CH 2 CH 2 ) q — (q is an integer of 1 to 10), Q is an amide bond, an ether bond, a thioether bond, At least one selected from a thioester bond, a thiourea bond, a disulfide bond, and a polyoxyethylene bond, and Z is — (CH 2 ) m — or — (CH 2 ) 2 NH (CH 2 ) 3 — , R 1 and R 2 are alkyl groups having 1 to 4 carbon atoms, n is 0 or 1, and m is an integer of 1 to 10.
本発明のアルコキシシリル基含有燐光色素は、一般式X―Y-Q-Z-Si(R1)n(OR2)3-nで表され、Xが有機燐光色素、Yが直接結合あるいは-(CH2)p-(pは1から10の整数)または-(O-CH2CH2)q-(qは1から10の整数)であり、Qはアミド結合、エーテル結合、チオエーテル結合、チオエステル結合、チオウレア結合、ジスルフィド結合およびポリオキシエチレン結合から選択される少なくとも1種の結合であり、Zは-(CH2)m-または-(CH2)2NH(CH2)3-であり、R1とR2は炭素数1から4のアルキル基であり、nは0または1であり、mは1から10の整数であることを特徴とするものである。 Hereinafter, embodiments of the present invention will be described in detail.
The alkoxysilyl group-containing phosphorescent dye of the present invention is represented by the general formula XYQZ-Si (R 1 ) n (OR 2 ) 3-n , where X is an organic phosphorescent dye and Y is a direct bond or- (CH 2 ) p — (p is an integer of 1 to 10) or — (O—CH 2 CH 2 ) q — (q is an integer of 1 to 10), Q is an amide bond, an ether bond, a thioether bond, At least one selected from a thioester bond, a thiourea bond, a disulfide bond, and a polyoxyethylene bond, and Z is — (CH 2 ) m — or — (CH 2 ) 2 NH (CH 2 ) 3 — , R 1 and R 2 are alkyl groups having 1 to 4 carbon atoms, n is 0 or 1, and m is an integer of 1 to 10.
本発明に用いる有機燐光色素(以下、燐光色素ともいう)は、置換または無置換のカルバゾール、置換または無置換のジベンゾフラン、置換または無置換のチオナフテン、置換または無置換のインドール、置換または無置換の1,3,5-トリアジンから成る群から選択される少なくとも1種の化合物を挙げることができる。好ましくは、カルバゾールおよびその置換体である。
The organic phosphorescent dye (hereinafter also referred to as phosphorescent dye) used in the present invention is substituted or unsubstituted carbazole, substituted or unsubstituted dibenzofuran, substituted or unsubstituted thionaphthene, substituted or unsubstituted indole, substituted or unsubstituted. Mention may be made of at least one compound selected from the group consisting of 1,3,5-triazine. Preferably, it is carbazole and its substituted products.
例えば、置換または無置換のカルバゾールは、以下の一般式で表すことができる。
For example, substituted or unsubstituted carbazole can be represented by the following general formula.
ここで、R1、R2、R3、R4、R5、R6、R7、R8、R9は、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、アルコキシ基、アルケニル基、アルキニル基、アルキルエステル基、リン酸エステル基、硫酸エステル基、ニトリル基、ヒドロキシル基、シアノ基、スルホニル基、アルデヒド基、ピリジル基、カルボン酸基、アミノ基、四級アンモニウム塩、または置換基を有してもよい芳香族炭化水素基を示す。ここで、四級アンモニウム塩の対イオンとしては、Cl-、Br-、I-、CH3SO3
-、CF3SO3
-等を挙げることができる。また、置換基を有してもよい芳香族炭化水素基の置換基としては、ハロゲン原子、アルキル基、アルコキシ基、アルケニル基、アルキニル基、アルキルエステル基、リン酸エステル基、硫酸エステル基、ニトリル基、ヒドロキシル基、シアノ基、スルホニル基、アルデヒド基、ピリジル基、カルボン酸基、アミノ基または四級アンモニウム塩を挙げることができる。
Here, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 are each independently a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an alkenyl group, Alkynyl group, alkyl ester group, phosphate ester group, sulfate ester group, nitrile group, hydroxyl group, cyano group, sulfonyl group, aldehyde group, pyridyl group, carboxylic acid group, amino group, quaternary ammonium salt, or substituent The aromatic hydrocarbon group which may have is shown. Here, as a counter ion of the quaternary ammonium salt, Cl − , Br − , I − , CH 3 SO 3 − , CF 3 SO 3 — and the like can be mentioned. In addition, the substituent of the aromatic hydrocarbon group which may have a substituent includes a halogen atom, an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group, an alkyl ester group, a phosphate ester group, a sulfate ester group, a nitrile. Groups, hydroxyl groups, cyano groups, sulfonyl groups, aldehyde groups, pyridyl groups, carboxylic acid groups, amino groups or quaternary ammonium salts.
置換カルバゾールとしては、N-置換カルバゾールが好ましい。N-置換カルバゾールR1以外のR2、R3、R4、R5、R6、R7、R8、R9が水素原子であり、R1が炭素数1から4のアルキル基、置換または無置換の芳香族炭化水素である。置換芳香族炭化水素の置換基としては、単数または複数の、ハロゲン原子、炭素数1から4のアルキル基、または炭素数1から4のアルコキシ基を挙げることができる。具体例としては、N-メチルフェニルカルバゾール、N-エチルカルバゾール、N-メトキシフェニルカルバゾール、N-フェニルカルバゾール、N-クロロフェニルカルバゾール、N-ブロモフェニルカルバゾール、N-ヨードフェニルカルバゾール等を挙げることができる。
As the substituted carbazole, N-substituted carbazole is preferable. R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 other than N-substituted carbazole R 1 are a hydrogen atom, R 1 is an alkyl group having 1 to 4 carbon atoms, substituted Or it is an unsubstituted aromatic hydrocarbon. Examples of the substituent of the substituted aromatic hydrocarbon include one or more halogen atoms, alkyl groups having 1 to 4 carbon atoms, or alkoxy groups having 1 to 4 carbon atoms. Specific examples include N-methylphenyl carbazole, N-ethyl carbazole, N-methoxyphenyl carbazole, N-phenyl carbazole, N-chlorophenyl carbazole, N-bromophenyl carbazole, N-iodophenyl carbazole, and the like.
また、置換ジベンゾフラン、置換チオナフテン、置換インドール、および置換1,3,5-トリアジンの場合の置換基としては、ハロゲン原子、アルキル基、アルコキシ基、アルケニル基、アルキニル基、アルキルエステル基、リン酸エステル基、硫酸エステル基、ニトリル基、ヒドロキシル基、シアノ基、スルホニル基、アルデヒド基、ピリジル基、カルボン酸基、アミノ基、四級アンモニウム塩、または置換基を有してもよい芳香族炭化水素基を示す。ここで、四級アンモニウム塩の対イオンとしては、Cl-、Br-、I-、CH3SO3
-、CF3SO3
-等を挙げることができる。また、置換基を有してもよい芳香族炭化水素基の置換基としては、ハロゲン原子、アルキル基、アルコキシ基、アルケニル基、アルキニル基、アルキルエステル基、リン酸エステル基、硫酸エステル基、ニトリル基、ヒドロキシル基、シアノ基、スルホニル基、アルデヒド基、ピリジル基、カルボン酸基、アミノ基または四級アンモニウム塩を挙げることができる。
In the case of substituted dibenzofuran, substituted thionaphthene, substituted indole, and substituted 1,3,5-triazine, the substituent includes a halogen atom, an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group, an alkyl ester group, and a phosphate ester. Group, sulfate group, nitrile group, hydroxyl group, cyano group, sulfonyl group, aldehyde group, pyridyl group, carboxylic acid group, amino group, quaternary ammonium salt, or aromatic hydrocarbon group which may have a substituent Indicates. Here, as a counter ion of the quaternary ammonium salt, Cl − , Br − , I − , CH 3 SO 3 − , CF 3 SO 3 — and the like can be mentioned. In addition, the substituent of the aromatic hydrocarbon group which may have a substituent includes a halogen atom, an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group, an alkyl ester group, a phosphate ester group, a sulfate ester group, a nitrile. Groups, hydroxyl groups, cyano groups, sulfonyl groups, aldehyde groups, pyridyl groups, carboxylic acid groups, amino groups or quaternary ammonium salts.
前記のYは、直接結合あるいは-(CH2)p-(pは1から10の整数)または-(O-CH2CH2)q-(qは1から10の整数)を示す。pは好ましくは1から8、より好ましくは1から4である。また、qは好ましくは1から8、より好ましくは1から4である。
Y represents a direct bond or — (CH 2 ) p — (p is an integer of 1 to 10) or — (O—CH 2 CH 2 ) q — (q is an integer of 1 to 10). p is preferably from 1 to 8, more preferably from 1 to 4. Q is preferably 1 to 8, more preferably 1 to 4.
また、前記のQは、アミド結合、エーテル結合、チオエーテル結合、チオエステル結合、チオウレア結合、ジスルフィド結合およびポリオキシエチレン結合から選択される少なくとも1種の結合である。好ましくは、それらの中の1種の結合、より好ましくは、アミド結合またはポリオキシエチレン結合である。なお、アミド結合は、-CO(NR)-で表すことができ、Rは水素または炭素数1から4のアルキル基であり、好ましくはRは水素またはメチル基、より好ましくはメチル基である。メチル基の場合(以下、N-メチルアミド結合という)、より強い燐光を得ることができるからである。また、ポリオキシエチレン結合は、-(O-CH2CH2)r-で表すことができ、rは1から10の整数、好ましくは1から5の整数である。
The Q is at least one bond selected from an amide bond, an ether bond, a thioether bond, a thioester bond, a thiourea bond, a disulfide bond, and a polyoxyethylene bond. Preferably, one of them, more preferably an amide bond or a polyoxyethylene bond. The amide bond can be represented by —CO (NR) —, wherein R is hydrogen or an alkyl group having 1 to 4 carbon atoms, preferably R is hydrogen or a methyl group, more preferably a methyl group. This is because in the case of a methyl group (hereinafter referred to as N-methylamide bond), stronger phosphorescence can be obtained. The polyoxyethylene bond can be represented by — (O—CH 2 CH 2 ) r —, where r is an integer of 1 to 10, preferably 1 to 5.
前記のQとして、アミド結合、エーテル結合、チオエーテル結合、チオエステル結合、チオウレア結合、ジスルフィド結合およびポリオキシエチレン結合から選択される複数の結合を用いることもできる。この場合も単数の結合を用いた場合と同様に、室温、固体状態で発光することができる。例えば、2種の結合を用いる場合、前記のQは、-[Q1-Q2]-で表すことができる。ここで、Q1とQ2には、それぞれ独立に、アミド結合、エーテル結合、チオエーテル結合、チオエステル結合、チオウレア結合、ジスルフィド結合およびポリオキシエチレン結合から選択される結合を用いることができる。例えば、Q1にN-メチルアミド結合、Q2にエーテル結合を用いることができる。その例について以下の反応式を用いて説明する。
As the Q, a plurality of bonds selected from amide bonds, ether bonds, thioether bonds, thioester bonds, thiourea bonds, disulfide bonds, and polyoxyethylene bonds can be used. In this case, light can be emitted in a solid state at room temperature as in the case of using a single bond. For example, when two types of bonds are used, the above Q can be represented by-[Q1-Q2]-. Here, for Q1 and Q2, a bond selected from an amide bond, an ether bond, a thioether bond, a thioester bond, a thiourea bond, a disulfide bond, and a polyoxyethylene bond can be used independently. For example, an N-methylamide bond can be used for Q1 and an ether bond can be used for Q2. The example is demonstrated using the following reaction formula.
上記の反応式中、化合物Iは、燐光色素Xの活性エステル体であり、N-メチルヒドロキシルアミンと反応させて化合物IIのN-メチルヒドロキシル体を得、化合物IIをハロゲン化アルキルシランと反応させて、N-メチルアミド結合とエーテル結合が連結した化合物IVを得ることができる。
In the above reaction formula, Compound I is an active ester of phosphorescent dye X, which is reacted with N-methylhydroxylamine to obtain N-methylhydroxyl of Compound II, and Compound II is reacted with a halogenated alkylsilane. Thus, compound IV in which an N-methylamide bond and an ether bond are linked can be obtained.
前記のQとして、3種の結合を用いる場合、前記のQは、3種の結合の直接結合-[Q1-Q2-Q3]-、または各結合の間に連結基Lを含んでもよい。連結基Lを含む場合として、例えば、-[Q1-Q2-L-Q3]-を挙げることができる。ここで、Q1,Q2,Q3には、それぞれ独立に、アミド結合、エーテル結合、チオエーテル結合、チオエステル結合、チオウレア結合、ジスルフィド結合およびポリオキシエチレン結合から選択される結合を用いることができる。また、Lは、-(CH2)n-(nは1から10の整数)である。例えば、Q1にN-メチルアミド結合を用い、Q2にエーテル結合を用い、Q3にチオエステル結合、アミド結合、またはN-メチルアミド結合を用いることができる。それらの例について以下の反応式を用いて説明する。
When three types of bonds are used as the Q, the Q may include a direct bond of three types of bonds-[Q1-Q2-Q3]-, or a linking group L between the bonds. Examples of the case where the linking group L is included include-[Q1-Q2-L-Q3]-. Here, as Q1, Q2, and Q3, a bond selected from an amide bond, an ether bond, a thioether bond, a thioester bond, a thiourea bond, a disulfide bond, and a polyoxyethylene bond can be used independently. L is — (CH 2 ) n — (n is an integer of 1 to 10). For example, an N-methylamide bond can be used for Q1, an ether bond can be used for Q2, and a thioester bond, an amide bond, or an N-methylamide bond can be used for Q3. These examples will be described using the following reaction formula.
上記の反応式では、化合物IIのN-メチルヒドロキシル体をハロゲン化アルキルN-ヒドロキシコハク酸イミドと反応させて、N-メチルアミド結合とエーテル結合が連結した活性エステル体である化合物IIIを得る。なお、上記の反応式中のハロゲン化アルキルN-ヒドロキシコハク酸イミドの式中のnと化合物IIIの式中のnは1から10の整数である。次に、以下に示す反応を行う。
In the above reaction formula, the N-methylhydroxyl compound of compound II is reacted with a halogenated alkyl N-hydroxysuccinimide to obtain compound III which is an active ester in which an N-methylamide bond and an ether bond are linked. In the above reaction formula, n in the formula of the halogenated alkyl N-hydroxysuccinimide and n in the formula of the compound III are integers of 1 to 10. Next, the following reaction is performed.
上記の反応式中、化合物IIIをメルカプトシランと反応させて、化合物Vを得る。化合物Vは、Q3としてチオエステル結合を有している。また、上記の反応式中、化合物IIIをアミノシランと反応させて、化合物VIを得る。化合物VIは、Q3としてアミド結合を有している。また、上記の反応式中、化合物IIIをメチルアミノシランと反応させて、化合物VIIを得る。化合物VIIは、Q3としてN-メチルアミド結合を有している。
なお、上記の反応式で説明した複数の結合の組み合わせの例は、一例であって、上記以外の組み合わせも可能である。また、必要に応じて4種以上の組み合わせも用いることができる。なお、上記の反応式中、メルカプトシラン、アミノシラン、メチルアミノシランの式中のnは1から10の整数である。 In the above reaction formula, compound III is reacted with mercaptosilane to obtain compound V. Compound V has a thioester bond as Q3. Further, in the above reaction formula, compound III is reacted with aminosilane to obtain compound VI. Compound VI has an amide bond as Q3. In the above reaction formula, compound III is reacted with methylaminosilane to give compound VII. Compound VII has an N-methylamide bond as Q3.
The example of the combination of a plurality of bonds described in the above reaction formula is an example, and combinations other than the above are also possible. Moreover, the combination of 4 or more types can also be used as needed. In the above reaction formula, n in the formula of mercaptosilane, aminosilane, and methylaminosilane is an integer of 1 to 10.
なお、上記の反応式で説明した複数の結合の組み合わせの例は、一例であって、上記以外の組み合わせも可能である。また、必要に応じて4種以上の組み合わせも用いることができる。なお、上記の反応式中、メルカプトシラン、アミノシラン、メチルアミノシランの式中のnは1から10の整数である。 In the above reaction formula, compound III is reacted with mercaptosilane to obtain compound V. Compound V has a thioester bond as Q3. Further, in the above reaction formula, compound III is reacted with aminosilane to obtain compound VI. Compound VI has an amide bond as Q3. In the above reaction formula, compound III is reacted with methylaminosilane to give compound VII. Compound VII has an N-methylamide bond as Q3.
The example of the combination of a plurality of bonds described in the above reaction formula is an example, and combinations other than the above are also possible. Moreover, the combination of 4 or more types can also be used as needed. In the above reaction formula, n in the formula of mercaptosilane, aminosilane, and methylaminosilane is an integer of 1 to 10.
また、前記のZは-(CH2)m-または-(CH2)2NH(CH2)3-であり、mは1から10の整数である。好ましくは-(CH2)3-である。
Z is — (CH 2 ) m — or — (CH 2 ) 2 NH (CH 2 ) 3 —, and m is an integer of 1 to 10. Preferred is — (CH 2 ) 3 —.
また、Si(R1)n(OR2)3-nのR1とR2は炭素数1から4のアルキル基であり、好ましくはメチル基、エチル基、n-プロピル基、より好ましくはメチル基またはエチル基である。また、nは0または1である。
In addition, R 1 and R 2 of Si (R 1 ) n (OR 2 ) 3-n are alkyl groups having 1 to 4 carbon atoms, preferably a methyl group, an ethyl group, an n-propyl group, more preferably a methyl group. Group or ethyl group. N is 0 or 1.
また、本発明のアルコキシシリル基含有燐光色素は、以下の方法を用いて製造できる。すなわち、前記有機燐光色素が、スクシンイミジルエステル基、アルコラート基、アミノ基、メルカプト基、および末端ヒドロキシ基含有ポリオキシエチレン基からなる群から選択される1種の反応性基を有し、前記有機燐光色素とシランカップリング剤を混合する工程を含むことを特徴とするものである。
Further, the alkoxysilyl group-containing phosphorescent dye of the present invention can be produced using the following method. That is, the organic phosphorescent dye has one reactive group selected from the group consisting of a succinimidyl ester group, an alcoholate group, an amino group, a mercapto group, and a terminal hydroxy group-containing polyoxyethylene group, The method includes a step of mixing an organic phosphorescent dye and a silane coupling agent.
本発明に用いる燐光色素は、上記の反応性基を有しており、シランカップリング剤と反応することで共有結合を形成してシランカップリング剤と結合する。共有結合として、アミド結合、N-メチルアミド結合、エーテル結合、チオエーテル結合、チオエステル結合、チオウレア結合、ジスルフィド結合またはポリオキシエチレン結合である。アミド結合を形成する場合、シランカップリング剤にはアミノアルキルシランを用い、燐光色素の反応性基としては、スクシンイミジルエステル基を用いることができる。また、N-メチルアミド結合を形成する場合、シランカップリング剤にはメチル置換アミノアルキルシランを用い、燐光色素の反応性基としては、スクシンイミジルエステル基を用いることができる。また、エーテル結合を形成する場合、シランカップリング剤にはハロゲン化アルキルシランを用い、燐光色素の反応性基としては、アルコラート基を用いることができる。また、チオエーテル結合を形成する場合、シランカップリング剤にはメルカプトシランを用い、燐光色素の反応性基としては、ハロゲン化アルキル基を用いることができる。また、チオエステル結合を形成する場合、シランカップリング剤にはメルカプトシランを用い、燐光色素の反応性基としては、スクシンイミジルエステル基を用いることができる。また、チオウレア結合を形成する場合、シランカップリング剤にはイソチオシアネートシランを用い、燐光色素の反応性基としては、アミノ基を用いることができる。また、ジスルフィド結合を形成する場合、シランカップリング剤にはメルカプトシランを用い、燐光色素の反応性基としては、メルカプト基を用いることができる。また、ポリオキシエチレン結合を形成する場合、シランカップリング剤にはグリシジルオキシアルキルシランを用い、燐光色素の反応性基としては、末端ヒドロキシ基含有ポリオキシエチレン基を用いることができる。
The phosphorescent dye used in the present invention has the reactive group described above, and reacts with the silane coupling agent to form a covalent bond and bind to the silane coupling agent. The covalent bond is an amide bond, N-methylamide bond, ether bond, thioether bond, thioester bond, thiourea bond, disulfide bond or polyoxyethylene bond. When an amide bond is formed, aminoalkylsilane can be used as the silane coupling agent, and a succinimidyl ester group can be used as the reactive group of the phosphorescent dye. When an N-methylamide bond is formed, a methyl-substituted aminoalkylsilane can be used as the silane coupling agent, and a succinimidyl ester group can be used as the reactive group of the phosphorescent dye. When an ether bond is formed, a halogenated alkylsilane can be used as the silane coupling agent, and an alcoholate group can be used as the reactive group of the phosphorescent dye. When forming a thioether bond, mercaptosilane can be used as the silane coupling agent, and a halogenated alkyl group can be used as the reactive group of the phosphorescent dye. When forming a thioester bond, mercaptosilane can be used as the silane coupling agent, and a succinimidyl ester group can be used as the reactive group of the phosphorescent dye. When forming a thiourea bond, isothiocyanate silane can be used as the silane coupling agent, and an amino group can be used as the reactive group of the phosphorescent dye. When a disulfide bond is formed, mercaptosilane can be used as the silane coupling agent, and a mercapto group can be used as the reactive group of the phosphorescent dye. When forming a polyoxyethylene bond, glycidyloxyalkylsilane can be used as the silane coupling agent, and a terminal hydroxy group-containing polyoxyethylene group can be used as the reactive group of the phosphorescent dye.
シランカップリング剤には、アミノアルキルシラン、グリシジルオキシアルキルシラン、メルカプトシラン、イソチオシアネート、イソシアネートシラン、ハロゲン化シラン等を用いることができる。好ましくは、アミノアルキルシランである。アミノアルキルシランの具体例としては、3-アミノプロピルトリエトキシシラン、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルジメトキシメチルシラン、3-(2-アミノエチルアミノ)プロピルトリエトキシシラン、3-アミノプロピルジエトキシメチルシラン、3-アミノプロピルトリメトキシシラン等を挙げることができるが、好ましくは3-アミノプロピルトリメトキシシランである。また、グリシジルオキシアルキルシランの具体例としては、ジエトキシ(3-グリシジルオキシプロピル)メチルシラン、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシジルオキシプロピル(ジメトキシ)メチルシラン、トリエトキシ(3-グリシジルオキシプロピル)シラン等を挙げることができる。また、メルカプトシランには、3-メルカプトプロピルメチルメトキシシランや3-メルカプトプロピルトリメトキシシランを挙げることができる。また、イソシアネートシランには、3-イソシアネートプロピルトリエトキシシランや3-イソシアネートプロピルトリメトキシシランを挙げることができる。また、イソチオシアネートには、3-チオシアナトプロピルトリエトキシシランを挙げることができる。また、ハロゲン化シランには、(3-ブロモプロピル)トリメトキシシラン、3-トリメトキシシリルプロピルクロライド、3-クロロプロピルジメトキシメチルシラン、3-ヨードプロピルトリメトキシシラン等を挙げることができる。
As the silane coupling agent, aminoalkylsilane, glycidyloxyalkylsilane, mercaptosilane, isothiocyanate, isocyanate silane, halogenated silane and the like can be used. Aminoalkylsilane is preferable. Specific examples of aminoalkylsilanes include 3-aminopropyltriethoxysilane, 3- (2-aminoethylamino) propyltrimethoxysilane, 3- (2-aminoethylamino) propyldimethoxymethylsilane, 3- (2- Aminoethylamino) propyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 3-aminopropyltrimethoxysilane and the like can be mentioned, and 3-aminopropyltrimethoxysilane is preferred. Specific examples of glycidyloxyalkylsilane include diethoxy (3-glycidyloxypropyl) methylsilane, 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyl (dimethoxy) methylsilane, and triethoxy (3-glycidyloxypropyl) silane. Etc. Examples of mercaptosilane include 3-mercaptopropylmethylmethoxysilane and 3-mercaptopropyltrimethoxysilane. Examples of the isocyanate silane include 3-isocyanatopropyltriethoxysilane and 3-isocyanatopropyltrimethoxysilane. In addition, examples of the isothiocyanate include 3-thiocyanatopropyltriethoxysilane. Examples of the halogenated silane include (3-bromopropyl) trimethoxysilane, 3-trimethoxysilylpropyl chloride, 3-chloropropyldimethoxymethylsilane, 3-iodopropyltrimethoxysilane and the like.
燐光色素とシランカップリング剤との反応は、溶媒にジクロロメタン、クロロホルム、DMF等を用い、室温から60℃の温度で、混合攪拌することにより行うことができる。必要に応じて溶媒を減圧等により除去して反応物を取り出すことができる。
The reaction between the phosphorescent dye and the silane coupling agent can be performed by mixing and stirring at a temperature of room temperature to 60 ° C. using dichloromethane, chloroform, DMF or the like as a solvent. If necessary, the solvent can be removed under reduced pressure and the reaction product can be taken out.
また、本発明のアルコキシシリル基含有燐光色素を用いて燐光色素含有シリカ粒子を製造することができる。燐光色素含有シリカ粒子を製造する方法は、シランカップリング剤を用いてシリカ粒子を製造する方法であれば特に限定されない。例えば、アルコキシシリル基含有燐光色素を水溶液と混合して密集蛍光コアを形成し、その密集蛍光コアとシリカ前駆体を混合して密集コア上にシリカ殻を形成する方法を用いることができる。
In addition, phosphorescent dye-containing silica particles can be produced using the alkoxysilyl group-containing phosphorescent dye of the present invention. The method for producing phosphorescent pigment-containing silica particles is not particularly limited as long as it is a method for producing silica particles using a silane coupling agent. For example, a method in which an alkoxysilyl group-containing phosphorescent dye is mixed with an aqueous solution to form a dense fluorescent core, and the dense fluorescent core and a silica precursor are mixed to form a silica shell on the dense core can be used.
以下、実施例を用いて本発明をさらに詳細に説明するが、本発明の範囲は以下の実施例により限定されるものではない。
Hereinafter, the present invention will be described in more detail using examples, but the scope of the present invention is not limited by the following examples.
合成例1
アルコキシシリル基として3-アミノプロピルトリメトキシシラン(以下、APSと略す)を含むカルバゾール置換体の合成について説明する。本合成例では、アルコキシシリル基との結合にアミド結合を用いた。
(1)ブロモフェニルカルバゾール体2の合成
ブロモフェニルカルバゾール体2の合成手順を以下に示す。 Synthesis example 1
The synthesis of a carbazole-substituted product containing 3-aminopropyltrimethoxysilane (hereinafter abbreviated as APS) as an alkoxysilyl group will be described. In this synthesis example, an amide bond was used for the bond to the alkoxysilyl group.
(1) Synthesis ofbromophenylcarbazole body 2 The synthesis procedure of bromophenylcarbazole body 2 is shown below.
アルコキシシリル基として3-アミノプロピルトリメトキシシラン(以下、APSと略す)を含むカルバゾール置換体の合成について説明する。本合成例では、アルコキシシリル基との結合にアミド結合を用いた。
(1)ブロモフェニルカルバゾール体2の合成
ブロモフェニルカルバゾール体2の合成手順を以下に示す。 Synthesis example 1
The synthesis of a carbazole-substituted product containing 3-aminopropyltrimethoxysilane (hereinafter abbreviated as APS) as an alkoxysilyl group will be described. In this synthesis example, an amide bond was used for the bond to the alkoxysilyl group.
(1) Synthesis of
50mlの二つ口フラスコに化合物1を0.2g[0.947mmol,ratio:1.0]、1-ブロモ-4-ヨードベンゼンを0.4g[1.42mmol,ratio:1.5]、銅を0.12g[1.89mmol,ratio:2.0]、炭酸カリウムを0.79g[5.68mmol,ratio:6.0]、DMF 10mlを入れ110℃で撹拌した。反応が進行したのを確認後、反応溶液をセライト濾過し、水に入れ室温で撹拌しながらpHが1以下になるように塩酸を加え、生じた沈殿を吸引濾過した。その後、真空乾燥させ化合物2を得た。収量は0.12g、収率は35%であった。
In a 50 ml two-necked flask, 0.2 g [0.947 mmol, ratio: 1.0] of Compound 1 and 0.4 g [1.42 mmol, ratio: 1.5] of 1-bromo-4-iodobenzene, copper 0.12 g [1.89 mmol, ratio: 2.0], potassium carbonate 0.79 g [5.68 mmol, ratio: 6.0], and DMF 10 ml were added and stirred at 110 ° C. After confirming that the reaction had progressed, the reaction solution was filtered through Celite, hydrochloric acid was added so that the pH was 1 or less while stirring at room temperature, and the resulting precipitate was filtered with suction. Thereafter, it was vacuum dried to obtain Compound 2. The yield was 0.12 g, and the yield was 35%.
(2)活性エステル体3の合成
活性エステル体3の合成手順を以下に示す。 (2) Synthesis of active ester body 3 The synthesis procedure of the active ester body 3 is shown below.
活性エステル体3の合成手順を以下に示す。 (2) Synthesis of active ester body 3 The synthesis procedure of the active ester body 3 is shown below.
ナス型フラスコに化合物2を0.12g(0.33mmol,ratio:1.0)、N-ヒドロキシコハク酸イミド0.04g(0.36mmol,ratio:1.1)を入れ、THF:クロロホルム=3:1の30mLで溶解させた。これに、THF:クロロホルム=1:4の20mLに溶解させたWSCI・HCl(水溶性カルボジイミド塩酸塩)の0.07g(0.36mmol,ratio:1.1)を20分かけてゆっくりと滴下し、滴下後3分間反応させた。反応が進行したことを確認した後、反応液を減圧留去させた。残渣をクロロホルムで溶解し蒸留水で3回洗浄を行った。その後クロロホルム層に無水硫酸マグネシウムを入れ、濾過、減圧留去して、真空乾燥させた。これをシリカゲルカラムクロマトグラフィー精製(Kanto 60N,クロロホルム100%)して活性エステル体3を得た。収量は0.09g、収率は59%であった。
In an eggplant-shaped flask, 0.12 g (0.33 mmol, ratio: 1.0) of Compound 2 and 0.04 g (0.36 mmol, ratio: 1.1) of N-hydroxysuccinimide were added, and THF: chloroform = 3. 1 was dissolved in 30 mL. To this, 0.07 g (0.36 mmol, ratio: 1.1) of WSCI · HCl (water-soluble carbodiimide hydrochloride) dissolved in 20 mL of THF: chloroform = 1: 4 was slowly added dropwise over 20 minutes. The mixture was reacted for 3 minutes after the dropping. After confirming that the reaction had progressed, the reaction solution was distilled off under reduced pressure. The residue was dissolved in chloroform and washed 3 times with distilled water. Thereafter, anhydrous magnesium sulfate was added to the chloroform layer, filtered, evaporated under reduced pressure, and vacuum dried. This was purified by silica gel column chromatography (Kanto 60N, chloroform 100%) to obtain active ester 3. The yield was 0.09 g, and the yield was 59%.
(3)活性エステル体3とAPSとの反応
活性エステル体3とAPSとの反応を以下に示す。 (3) Reaction of active ester 3 and APS The reaction of active ester 3 and APS is shown below.
活性エステル体3とAPSとの反応を以下に示す。 (3) Reaction of active ester 3 and APS The reaction of active ester 3 and APS is shown below.
ナス型フラスコに活性エステル体3を0.09g(0.19mmol,ratio:1.0)、3-アミノプロピルトリエトキシシラン0.042mL(0.19mmol,ratio:1.0)を入れ、DMF10mLで溶解させて室温で反応を開始した。反応が進行したことを確認した後、反応液を減圧留去させた。残渣をシリカゲルカラムクロマトグラフィー精製(Kanto 60N,クロロホルム:酢酸エチル=9.5:0.5)して目的物4(以下、ブロモフェニルカルバゾール-APS体1という)を得た。収量は0.03g、収率は27%であった。
In an eggplant-shaped flask, 0.09 g (0.19 mmol, ratio: 1.0) of active ester 3 and 0.042 mL (0.19 mmol, ratio: 1.0) of 3-aminopropyltriethoxysilane were placed, and 10 mL of DMF was added. Once dissolved, the reaction was started at room temperature. After confirming that the reaction had progressed, the reaction solution was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (Kanto 60N, chloroform: ethyl acetate = 9.5: 0.5) to obtain the desired product 4 (hereinafter referred to as bromophenylcarbazole-APS isomer 1). The yield was 0.03 g, and the yield was 27%.
合成例2
アルコキシシリル基として3-メルカプトプロピルトリメトキシシラン(以下、MPSと略す)を含むカルバゾール置換体の合成について説明する。本合成例では、アルコキシシリル基との結合にチオエステル結合を用いた。以下に反応例を示す。 Synthesis example 2
The synthesis of a carbazole substituted product containing 3-mercaptopropyltrimethoxysilane (hereinafter abbreviated as MPS) as an alkoxysilyl group will be described. In this synthesis example, a thioester bond was used for the bond to the alkoxysilyl group. A reaction example is shown below.
アルコキシシリル基として3-メルカプトプロピルトリメトキシシラン(以下、MPSと略す)を含むカルバゾール置換体の合成について説明する。本合成例では、アルコキシシリル基との結合にチオエステル結合を用いた。以下に反応例を示す。 Synthesis example 2
The synthesis of a carbazole substituted product containing 3-mercaptopropyltrimethoxysilane (hereinafter abbreviated as MPS) as an alkoxysilyl group will be described. In this synthesis example, a thioester bond was used for the bond to the alkoxysilyl group. A reaction example is shown below.
ナス型フラスコに炭酸カリウムを0.053g(0.38mmol,ratio:2.0)、3-メルカプトプロピルトリエトキシシラン0.069mL(0.285mmol,ratio:1.5)を入れ、1,4-Dioxane 5mLで溶解させてアルゴン雰囲気下、室温で撹拌した。これに1,4-Dioxane 5mLに溶解させた活性エステル体3を0.09g(0.19mmol,ratio:1.0)を滴下した。滴下後、80℃で反応を開始した。反応が進行したことを確認した後、反応液を吸引濾過し減圧留去させた。残渣をシリカゲルカラムクロマトグラフィー精製(Kanto 60N,クロロホルム:酢酸エチル=9.5:0.5)して目的物5(以下、ブロモフェニルカルバゾール-APS体2という)を得た。収量は0.04g、収率は35%であった。
In an eggplant-shaped flask, 0.053 g (0.38 mmol, ratio: 2.0) of potassium carbonate and 0.069 mL (0.285 mmol, ratio: 1.5) of 3-mercaptopropyltriethoxysilane were placed. Dioxane was dissolved in 5 mL and stirred at room temperature under an argon atmosphere. To this, 0.09 g (0.19 mmol, ratio: 1.0) of active ester 3 dissolved in 5 mL of 1,4-Dioxane was added dropwise. After dropping, the reaction was started at 80 ° C. After confirming that the reaction had progressed, the reaction solution was suction filtered and evaporated under reduced pressure. The residue was purified by silica gel column chromatography (Kanto 60N, chloroform: ethyl acetate = 9.5: 0.5) to obtain the target product 5 (hereinafter referred to as bromophenylcarbazole-APS isomer 2). The yield was 0.04 g and the yield was 35%.
合成例3
アルコキシシリル基として3-メルカプトプロピルトリメトキシシラン(以下、MPSと略す)を含むカルバゾール置換体の合成について説明する。本合成例では、アルコキシシリル基との結合にチオエーテル結合を用いた。以下に反応例を示す。 Synthesis example 3
The synthesis of a carbazole substituted product containing 3-mercaptopropyltrimethoxysilane (hereinafter abbreviated as MPS) as an alkoxysilyl group will be described. In this synthesis example, a thioether bond was used for the bond to the alkoxysilyl group. A reaction example is shown below.
アルコキシシリル基として3-メルカプトプロピルトリメトキシシラン(以下、MPSと略す)を含むカルバゾール置換体の合成について説明する。本合成例では、アルコキシシリル基との結合にチオエーテル結合を用いた。以下に反応例を示す。 Synthesis example 3
The synthesis of a carbazole substituted product containing 3-mercaptopropyltrimethoxysilane (hereinafter abbreviated as MPS) as an alkoxysilyl group will be described. In this synthesis example, a thioether bond was used for the bond to the alkoxysilyl group. A reaction example is shown below.
ナス型フラスコに化合物2(本合成例ではブロモフェニルカルバゾール体)を2.0g(5.46mmol,ratio:1.0)、塩化チオニル0.79mL(10.9mmol,rato:2.0)を入れ、クロロホルム 50mLで溶解させてアルゴン雰囲気下、60℃で反応を開始した。反応が進行したことを確認した後、反応液を減圧留去した。これに、エタノール10mLを加え室温で再度反応した。反応が進行したことを確認した後、反応液を減圧留去させた。残渣をシリカゲルカラムクロマトグラフィー精製(Kanto 60N,クロロホルム:ヘキサン=8:2)して化合物2aを得た。収量は1.4g、収率は65%であった。
In an eggplant-shaped flask, 2.0 g (5.46 mmol, ratio: 1.0) of compound 2 (bromophenylcarbazole in this synthesis example) and 0.79 mL (10.9 mmol, rato: 2.0) of thionyl chloride were placed. The reaction was started at 60 ° C. in an argon atmosphere after dissolving in 50 mL of chloroform. After confirming that the reaction had progressed, the reaction solution was distilled off under reduced pressure. To this, 10 mL of ethanol was added and reacted again at room temperature. After confirming that the reaction had progressed, the reaction solution was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (Kanto 60N, chloroform: hexane = 8: 2) to give compound 2a. The yield was 1.4 g, and the yield was 65%.
次に、ナス型フラスコに化合物2aを1.4g(3.55mmol,ratio:1.0)、水素化ホウ素ナトリウム1.34g(35.5mmol,rato:10.0)、を入れ、エタノール 100mLで溶解させて80℃で反応を開始した。反応が進行したことを確認した後、反応液を飽和重曹水に入れ室温で撹拌後、吸引濾過、真空乾燥させた。残渣をシリカゲルカラムクロマトグラフィー精製(Kanto 60N,クロロホルム:酢酸エチル=8:2)して化合物6を得た。収量は0.86g、収率は69%であった。
Next, 1.4 g (3.55 mmol, ratio: 1.0) of compound 2a and 1.34 g (35.5 mmol, rato: 10.0) of sodium borohydride were placed in an eggplant-shaped flask, and 100 mL of ethanol was added. After dissolution, the reaction was started at 80 ° C. After confirming that the reaction had progressed, the reaction solution was placed in a saturated aqueous sodium bicarbonate solution and stirred at room temperature, followed by suction filtration and vacuum drying. The residue was purified by silica gel column chromatography (Kanto 60N, chloroform: ethyl acetate = 8: 2) to give compound 6. The yield was 0.86 g and the yield was 69%.
次に、ナス型フラスコに化合物6を0.86g(2.44mmol,ratio:1.0)、塩化チオニル1.77mL(24.4mmol,ratio:10.0)を入れ、クロロホルム 50mLで溶解させて60℃で反応を開始した。反応が進行したことを確認した後、反応液を水、飽和重曹水の順に洗浄してクロロホルムで抽出した。これに硫酸マグネシウムを入れ、吸引濾過後、減圧留去させた。残渣をシリカゲルカラムクロマトグラフィー精製(Kanto 60N,クロロホルム:ヘキサン=6:4)して化合物7を得た。収量は0.55g、収率は60%であった。
Next, 0.86 g (2.44 mmol, ratio: 1.0) of compound 6 and 1.77 mL (24.4 mmol, ratio: 10.0) of thionyl chloride are placed in an eggplant-shaped flask and dissolved in 50 mL of chloroform. The reaction was started at 60 ° C. After confirming that the reaction had progressed, the reaction solution was washed with water and saturated aqueous sodium bicarbonate in this order and extracted with chloroform. Magnesium sulfate was added thereto, and the solution was suction filtered and distilled off under reduced pressure. The residue was purified by silica gel column chromatography (Kanto 60N, chloroform: hexane = 6: 4) to obtain Compound 7. The yield was 0.55 g, and the yield was 60%.
次に、ナス型フラスコに炭酸カリウムを0.075g(0.54mmol,ratio:2.0)、3-メルカプトプロピルトリエトキシシラン0.098mL(0.405mmol,rato:1.5)、化合物7を0.1g(0.27mmol,ratio:1.0)を入れ、アセトニトリル 10mLで溶解させてアルゴン雰囲気下、75℃で反応を開始した。反応が進行したことを確認した後、反応液を吸引濾過し減圧留去させた。残渣をシリカゲルカラムクロマトグラフィー精製(Kanto 60N,クロロホルム:ヘキサン=8:2)して目的物8(以下、ブロモフェニルカルバゾール-APS体3という)を得た。収量は0.063g、収率は43%であった。
Next, 0.075 g (0.54 mmol, ratio: 2.0) of potassium carbonate, 0.098 mL (0.405 mmol, rato: 1.5) of 3-mercaptopropyltriethoxysilane, and compound 7 were added to the eggplant type flask. 0.1 g (0.27 mmol, ratio: 1.0) was added, dissolved in 10 mL of acetonitrile, and the reaction was started at 75 ° C. under an argon atmosphere. After confirming that the reaction had progressed, the reaction solution was suction filtered and evaporated under reduced pressure. The residue was purified by silica gel column chromatography (Kanto 60N, chloroform: hexane = 8: 2) to obtain the desired product 8 (hereinafter referred to as bromophenylcarbazole-APS form 3). The yield was 0.063 g and the yield was 43%.
合成例4
アルコキシシリル基として3-メチルアミノプロピルトリエトキシシラン(以下、MAPSと略す)を含むカルバゾール置換体の合成について説明する。本合成例では、アルコキシシリル基との結合にN-メチルアミド結合を用いた。以下に反応例を示す。 Synthesis example 4
The synthesis of a carbazole substituted product containing 3-methylaminopropyltriethoxysilane (hereinafter abbreviated as MAPS) as an alkoxysilyl group will be described. In this synthesis example, an N-methylamide bond was used for the bond to the alkoxysilyl group. A reaction example is shown below.
アルコキシシリル基として3-メチルアミノプロピルトリエトキシシラン(以下、MAPSと略す)を含むカルバゾール置換体の合成について説明する。本合成例では、アルコキシシリル基との結合にN-メチルアミド結合を用いた。以下に反応例を示す。 Synthesis example 4
The synthesis of a carbazole substituted product containing 3-methylaminopropyltriethoxysilane (hereinafter abbreviated as MAPS) as an alkoxysilyl group will be described. In this synthesis example, an N-methylamide bond was used for the bond to the alkoxysilyl group. A reaction example is shown below.
ナス型フラスコに化合物3を0.09g[0.19mmol,ratio:1.0]、3-メチルアミノプロピルトリエトキシシラン0.042ml[0.19mmol,ratio:1.0]を入れ、DMF 10mLで溶解させて室温で反応を開始した。反応が進行したことを確認した後、反応液を減圧留去、真空乾燥させた。残渣をシリカゲルカラムクロマトグラフィー精製(Kanto 60N,クロロホルム:酢酸エチル=9.5:0.5)して目的物5(以下、ブロモフェニルカルバゾール-MAPS体という)を得た。収量は0.03g、収率は27%であった。
In an eggplant-shaped flask, 0.09 g [0.19 mmol, ratio: 1.0] of compound 3 and 0.042 ml [0.19 mmol, ratio: 1.0] of 3-methylaminopropyltriethoxysilane were placed, and 10 mL of DMF was added. Once dissolved, the reaction was started at room temperature. After confirming that the reaction had progressed, the reaction solution was distilled off under reduced pressure and vacuum dried. The residue was purified by silica gel column chromatography (Kanto 60N, chloroform: ethyl acetate = 9.5: 0.5) to obtain the target product 5 (hereinafter referred to as bromophenylcarbazole-MAPS form). The yield was 0.03 g, and the yield was 27%.
合成例5
カルバゾール置換体としてクロロフェニルカルバゾールを用い、アルコキシシリル基として3-アミノプロピルトリメトキシシランを用いた。本合成例では、アルコキシシリル基との結合にアミド結合を用いた。 Synthesis example 5
Chlorophenylcarbazole was used as the carbazole substituent, and 3-aminopropyltrimethoxysilane was used as the alkoxysilyl group. In this synthesis example, an amide bond was used for the bond to the alkoxysilyl group.
カルバゾール置換体としてクロロフェニルカルバゾールを用い、アルコキシシリル基として3-アミノプロピルトリメトキシシランを用いた。本合成例では、アルコキシシリル基との結合にアミド結合を用いた。 Synthesis example 5
Chlorophenylcarbazole was used as the carbazole substituent, and 3-aminopropyltrimethoxysilane was used as the alkoxysilyl group. In this synthesis example, an amide bond was used for the bond to the alkoxysilyl group.
(1)クロロフェニルカルバゾール体6の合成
クロロフェニルカルバゾール体6の合成手順を以下に示す。 (1) Synthesis of chlorophenylcarbazole body 6 A synthesis procedure of chlorophenylcarbazole body 6 is shown below.
クロロフェニルカルバゾール体6の合成手順を以下に示す。 (1) Synthesis of chlorophenylcarbazole body 6 A synthesis procedure of chlorophenylcarbazole body 6 is shown below.
50mlの二つ口フラスコに化合物1を0.4g[1.89mmol,ratio:1.0]、1-クロロ-4-ヨードベンゼンを0.68g[2.84mmol,ratio:1.5]、銅を0.24g[3.78mmol,ratio:2.0]、炭酸カリウムを1.56g[11.3mmol,ratio:6.0]、DMF 20mlを入れ室温で撹拌した。反応が進行したのを確認後、反応溶液をセライト濾過し、水に入れ室温で撹拌しながらpHは1以下になるように塩酸を加え、生じた沈殿を吸引濾過した。その後、真空乾燥させ化合物6を得た。収量は0.18g、収率は30%であった。
In a 50 ml two-necked flask, 0.4 g of compound 1 [1.89 mmol, ratio: 1.0], 1-chloro-4-iodobenzene 0.68 g [2.84 mmol, ratio: 1.5], copper 0.24 g [3.78 mmol, ratio: 2.0], 1.56 g [11.3 mmol, ratio: 6.0] of potassium carbonate, and 20 ml of DMF were added and stirred at room temperature. After confirming that the reaction had progressed, the reaction solution was filtered through Celite, hydrochloric acid was added so that the pH was 1 or less while stirring at room temperature, and the resulting precipitate was filtered with suction. Thereafter, it was vacuum dried to obtain Compound 6. The yield was 0.18 g, and the yield was 30%.
(2)活性エステル体7の合成
活性エステル体7の合成手順を以下に示す。 (2) Synthesis of active ester body 7 The synthesis procedure of the active ester body 7 is shown below.
活性エステル体7の合成手順を以下に示す。 (2) Synthesis of active ester body 7 The synthesis procedure of the active ester body 7 is shown below.
ナス型フラスコに化合物6を0.18g[0.559mmol,ratio:1.0]、N-ヒドロキシコハク酸イミド0.07g[0.615mmol,ratio:1.1]を入れ、[THF:クロロホルム=3:1]30mlで溶解させた。これに、[THF:クロロホルム=1:4]30mlに溶解させたWSCI/HCl 0.12g[0.615mmol,ratio:1.1]を20分かけてゆっくりと滴下し、滴下後3時間反応させた。反応が進行したことを確認した後、反応液を減圧留去させた。残渣をクロロホルムで溶解し蒸留水で3回洗浄を行った。その後クロロホルム層に無水硫酸マグネシウムを入れ、濾過、減圧留去して、真空乾燥させた。これをシリカゲルカラムクロマトグラフィー精製(Kanto 60N,クロロホルム100%)して目的物7を得た。収量は0.15g、収率は64%であった。
In an eggplant-shaped flask, 0.18 g [0.559 mmol, ratio: 1.0] of compound 6 and 0.07 g [0.615 mmol, ratio: 1.1] of N-hydroxysuccinimide were placed, and [THF: chloroform = 3: 1] Dissolved in 30 ml. To this, 0.12 g [0.615 mmol, ratio: 1.1] of WSCI / HCl dissolved in 30 ml of [THF: chloroform = 1: 4] was slowly added dropwise over 20 minutes, followed by reaction for 3 hours. It was. After confirming that the reaction had progressed, the reaction solution was distilled off under reduced pressure. The residue was dissolved in chloroform and washed 3 times with distilled water. Thereafter, anhydrous magnesium sulfate was added to the chloroform layer, filtered, evaporated under reduced pressure, and vacuum dried. This was purified by silica gel column chromatography (Kanto 60N, chloroform 100%) to obtain the intended product 7. The yield was 0.15 g, and the yield was 64%.
(3)活性エステル体7とAPSとの反応
活性エステル体7とAPSとの反応を以下に示す。 (3) Reaction of active ester 7 and APS The reaction of active ester 7 and APS is shown below.
活性エステル体7とAPSとの反応を以下に示す。 (3) Reaction of active ester 7 and APS The reaction of active ester 7 and APS is shown below.
ナス型フラスコに化合物7を0.15g[0.358mmol,ratio:1.0]、3-アミノプロピルトリエトキシシラン0.091ml[0.394mmol,ratio:1.1]を入れ、DMF 10mlで溶解させて室温で反応を開始した。反応が進行したことを確認した後、反応液を減圧留去、真空乾燥させた。残渣をシリカゲルカラムクロマトグラフィー精製(Kanto 60N,クロロホルム:酢酸エチル=9.5:0.5)して目的物8(以下、クロロフェニルカルバゾール-APS体1という)を得た。収量は0.064g、収率は34%であった。
Add 0.15 g [0.358 mmol, ratio: 1.0] of compound 7 and 0.091 ml [0.394 mmol, ratio: 1.1] of 3-aminopropyltriethoxysilane to an eggplant-shaped flask and dissolve in 10 ml of DMF. The reaction was started at room temperature. After confirming that the reaction had progressed, the reaction solution was distilled off under reduced pressure and vacuum dried. The residue was purified by silica gel column chromatography (Kanto 60N, chloroform: ethyl acetate = 9.5: 0.5) to obtain the target product 8 (hereinafter referred to as chlorophenylcarbazole-APS isomer 1). The yield was 0.064 g, and the yield was 34%.
合成例6
アルコキシシリル基として3-メチルアミノプロピルトリエトキシシランを含むクロロカルバゾール体の合成について説明する。本合成例では、アルコキシシリル基との結合にN-メチルアミド結合を用いた。以下に反応例を示す。 Synthesis Example 6
The synthesis of a chlorocarbazole compound containing 3-methylaminopropyltriethoxysilane as an alkoxysilyl group will be described. In this synthesis example, an N-methylamide bond was used for the bond to the alkoxysilyl group. A reaction example is shown below.
アルコキシシリル基として3-メチルアミノプロピルトリエトキシシランを含むクロロカルバゾール体の合成について説明する。本合成例では、アルコキシシリル基との結合にN-メチルアミド結合を用いた。以下に反応例を示す。 Synthesis Example 6
The synthesis of a chlorocarbazole compound containing 3-methylaminopropyltriethoxysilane as an alkoxysilyl group will be described. In this synthesis example, an N-methylamide bond was used for the bond to the alkoxysilyl group. A reaction example is shown below.
ナス型フラスコに化合物7を0.1g[0.239mmol,ratio:1.0]、3-メチルアミノメチルプロピルトリエトキシシラン0.065ml[0.236mmol,ratio:1.1]を入れ、DMF 7mlで溶解させて室温で反応を開始した。反応が進行したことを確認した後、反応液を減圧留去、真空乾燥させた。残渣をシリカゲルカラムクロマトグラフィー精製(Kanto 60N,クロロホルム:酢酸エチル=9:1)して目的物9(以下、クロロフェニルカルバゾール-MAPS体という)を得た。収量は0.038g、収率は30%であった。
In an eggplant-shaped flask, 0.1 g [0.239 mmol, ratio: 1.0] of Compound 7 and 0.065 ml [0.236 mmol, ratio: 1.1] of 3-methylaminomethylpropyltriethoxysilane were placed, and 7 ml of DMF was added. And the reaction was started at room temperature. After confirming that the reaction had progressed, the reaction solution was distilled off under reduced pressure and vacuum dried. The residue was purified by silica gel column chromatography (Kanto 60N, chloroform: ethyl acetate = 9: 1) to obtain the desired product 9 (hereinafter referred to as chlorophenylcarbazole-MAPS form). The yield was 0.038 g, and the yield was 30%.
合成例7
カルバゾール置換体としてメチルフェニルカルバゾール体を用い、アルコキシシリル基として3-アミノプロピルトリメトキシシランを用いた。本合成例では、アルコキシシリル基との結合にアミド結合を用いた。 Synthesis example 7
Methylphenylcarbazole was used as the carbazole substituent, and 3-aminopropyltrimethoxysilane was used as the alkoxysilyl group. In this synthesis example, an amide bond was used for the bond to the alkoxysilyl group.
カルバゾール置換体としてメチルフェニルカルバゾール体を用い、アルコキシシリル基として3-アミノプロピルトリメトキシシランを用いた。本合成例では、アルコキシシリル基との結合にアミド結合を用いた。 Synthesis example 7
Methylphenylcarbazole was used as the carbazole substituent, and 3-aminopropyltrimethoxysilane was used as the alkoxysilyl group. In this synthesis example, an amide bond was used for the bond to the alkoxysilyl group.
(1)メチルフェニルカルバゾール体10の合成
メチルフェニルカルバゾール体10の合成手順を以下に示す。 (1) Synthesis of methylphenylcarbazole body 10 A synthesis procedure of methylphenylcarbazole body 10 is shown below.
メチルフェニルカルバゾール体10の合成手順を以下に示す。 (1) Synthesis of methylphenylcarbazole body 10 A synthesis procedure of methylphenylcarbazole body 10 is shown below.
50mlの二つ口フラスコに化合物1を0.4g[1.89mmol,ratio:1.0]、1-クロロ-4-ヨードベンゼンを0.62g[2.84mmol,ratio:1.5]、銅を0.24g[3.78mmol,ratio:2.0]、炭酸カリウムを1.56g[11.3mmol,ratio:6.0]、DMF 20mlを入れ室温で撹拌した。反応が進行したのを確認後、反応溶液をセライト濾過し、水に入れ室温で撹拌しながらpHが1以下になるように塩酸を加え、生じた沈殿を吸引濾過した。その後、真空乾燥させ化合物10を得た。収量は0.21g、収率は37%であった。
In a 50 ml two-necked flask, 0.4 g of compound 1 [1.89 mmol, ratio: 1.0], 0.62 g of 1-chloro-4-iodobenzene [2.84 mmol, ratio: 1.5], copper 0.24 g [3.78 mmol, ratio: 2.0], 1.56 g [11.3 mmol, ratio: 6.0] of potassium carbonate, and 20 ml of DMF were added and stirred at room temperature. After confirming that the reaction had progressed, the reaction solution was filtered through Celite, hydrochloric acid was added so that the pH was 1 or less while stirring at room temperature, and the resulting precipitate was filtered with suction. Thereafter, it was vacuum dried to obtain Compound 10. The yield was 0.21 g and the yield was 37%.
(2)活性エステル体11の合成
活性エステル体11の合成手順を以下に示す。 (2) Synthesis of active ester 11 The procedure for synthesizing the active ester 11 is shown below.
活性エステル体11の合成手順を以下に示す。 (2) Synthesis of active ester 11 The procedure for synthesizing the active ester 11 is shown below.
(3)活性エステル体11とAPSとの反応
活性エステル体11とAPSとの反応を以下に示す。 (3) Reaction of active ester 11 and APS The reaction of active ester 11 and APS is shown below.
活性エステル体11とAPSとの反応を以下に示す。 (3) Reaction of active ester 11 and APS The reaction of active ester 11 and APS is shown below.
ナス型フラスコに化合物11を0.1g[0.251mmol,ratio:1.0]、3-アミノプロピルトリエトキシシラン0.064ml[0.276mmol,ratio:1.1]を入れ、DMF 7mlで溶解させて室温で反応を開始した。反応が進行したことを確認した後、反応液を減圧留去、真空乾燥させた。残渣をシリカゲルカラムクロマトグラフィー精製(Kanto 60N,クロロホルム:酢酸エチル=9.5:0.5)して目的物12(以下、メチルフェニルカルバゾール-APS体という)を得た。収量は0.049g、収率は39%であった。
In an eggplant-shaped flask, 0.1 g [0.251 mmol, ratio: 1.0] and 0.064 ml [0.276 mmol, ratio: 1.1] of 3-aminopropyltriethoxysilane were placed and dissolved in 7 ml of DMF. The reaction was started at room temperature. After confirming that the reaction had progressed, the reaction solution was distilled off under reduced pressure and vacuum dried. The residue was purified by silica gel column chromatography (Kanto 60N, chloroform: ethyl acetate = 9.5: 0.5) to obtain the desired product 12 (hereinafter referred to as methylphenylcarbazole-APS form). The yield was 0.049 g, and the yield was 39%.
合成例8
アルコキシシリル基として3-メチルアミノプロピルトリエトキシシランを含むメチルフェニルカルバゾールの合成について説明する。本合成例では、アルコキシシリル基との結合にN-メチルアミド結合を用いた。以下に反応例を示す。 Synthesis example 8
The synthesis of methylphenylcarbazole containing 3-methylaminopropyltriethoxysilane as an alkoxysilyl group will be described. In this synthesis example, an N-methylamide bond was used for the bond to the alkoxysilyl group. A reaction example is shown below.
アルコキシシリル基として3-メチルアミノプロピルトリエトキシシランを含むメチルフェニルカルバゾールの合成について説明する。本合成例では、アルコキシシリル基との結合にN-メチルアミド結合を用いた。以下に反応例を示す。 Synthesis example 8
The synthesis of methylphenylcarbazole containing 3-methylaminopropyltriethoxysilane as an alkoxysilyl group will be described. In this synthesis example, an N-methylamide bond was used for the bond to the alkoxysilyl group. A reaction example is shown below.
ナス型フラスコに化合物11を0.1g[0.251mmol,ratio:1.0]、3-アミノメチルプロピルトリエトキシシラン0.068ml[0.276mmol,ratio:1.1]を入れ、DMF 7mlで溶解させて室温で反応を開始した。反応が進行したことを確認した後、反応液を減圧留去、真空乾燥させた。残渣をシリカゲルカラムクロマトグラフィー精製(Kanto 60N,クロロホルム:酢酸エチル=9:1)して目的物13(以下、メチルフェニルカルバゾール-MAPS体という)を得た。収量は0.045g、収率は35%であった。
In an eggplant-shaped flask, 0.1 g [0.251 mmol, ratio: 1.0] of compound 11 and 0.068 ml [0.276 mmol, ratio: 1.1] of 3-aminomethylpropyltriethoxysilane were placed, and 7 ml of DMF was added. Once dissolved, the reaction was started at room temperature. After confirming that the reaction had progressed, the reaction solution was distilled off under reduced pressure and vacuum dried. The residue was purified by silica gel column chromatography (Kanto 60N, chloroform: ethyl acetate = 9: 1) to obtain the desired product 13 (hereinafter referred to as methylphenylcarbazole-MAPS form). The yield was 0.045 g, and the yield was 35%.
合成例9
アルコキシシリル基として3-アミノプロピルトリエトキシシランを含むチオナフテン置換体の合成について説明する。本合成例では、アルコキシシリル基との結合にアミド結合を用いた。 Synthesis Example 9
The synthesis of a thionaphthene substituted product containing 3-aminopropyltriethoxysilane as an alkoxysilyl group will be described. In this synthesis example, an amide bond was used for the bond to the alkoxysilyl group.
アルコキシシリル基として3-アミノプロピルトリエトキシシランを含むチオナフテン置換体の合成について説明する。本合成例では、アルコキシシリル基との結合にアミド結合を用いた。 Synthesis Example 9
The synthesis of a thionaphthene substituted product containing 3-aminopropyltriethoxysilane as an alkoxysilyl group will be described. In this synthesis example, an amide bond was used for the bond to the alkoxysilyl group.
(1)活性エステル体15の合成
活性エステル体15の合成手順を以下に示す。 (1) Synthesis of active ester 15 The procedure for synthesizing the active ester 15 is shown below.
活性エステル体15の合成手順を以下に示す。 (1) Synthesis of active ester 15 The procedure for synthesizing the active ester 15 is shown below.
ナス型フラスコに化合物14を0.2g[1.12mmol,ratio:1.0]、N-ヒドロキシコハク酸イミド0.14g[1.23mmol,raio:1.1]を入れ、[THF:クロロホルム=3:1]の30mlで溶解させた。これに、[THF:クロロホルム=1:4]30mlに溶解させたWSCI・HCl 0.24g[1.23mmol,ratio:1.1]を20分かけてゆっくりと滴下し、滴下後3時間反応させた。反応が進行したことを確認した後、反応液を減圧留去させた。残渣をクロロホルムで溶解し蒸留水で3回洗浄を行った。その後クロロホルム層に無水硫酸マグネシウムを入れ、濾過、減圧留去して、真空乾燥させた。これをシリカゲルカラムクロマトグラフィー精製(Kanto 60N,クロロホルム100%)して目的物15を得た。収量は0.13g、収率は42%であった。
In an eggplant-shaped flask, 0.2 g [1.12 mmol, ratio: 1.0] of compound 14 and 0.14 g [1.23 mmol, ratio: 1.1] of N-hydroxysuccinimide were placed, and [THF: chloroform = 3: 1] was dissolved in 30 ml. To this, 0.24 g [1.23 mmol, ratio: 1.1] of WSCI · HCl dissolved in 30 ml of [THF: chloroform = 1: 4] was slowly added dropwise over 20 minutes, followed by reaction for 3 hours. It was. After confirming that the reaction had progressed, the reaction solution was distilled off under reduced pressure. The residue was dissolved in chloroform and washed 3 times with distilled water. Thereafter, anhydrous magnesium sulfate was added to the chloroform layer, filtered, evaporated under reduced pressure, and vacuum dried. This was purified by silica gel column chromatography (Kanto 60N, chloroform 100%) to give the intended product 15. The yield was 0.13 g, and the yield was 42%.
(2)活性エステル体15とAPSとの反応
活性エステル体15とAPSとの反応を以下に示す。 (2) Reaction of active ester 15 and APS The reaction of active ester 15 and APS is shown below.
活性エステル体15とAPSとの反応を以下に示す。 (2) Reaction of active ester 15 and APS The reaction of active ester 15 and APS is shown below.
ナス型フラスコに化合物15を0.1g[0.363mmol,ratio:1.0]、3-アミノプロピルトリエトキシシラン0.093ml[0.399mmol,ratio:1.1]を入れ、DMF 7mlで溶解させて室温で反応を開始した。反応が進行したことを確認した後、反応液を減圧留去、真空乾燥させた。残渣をシリカゲルカラムクロマトグラフィー精製(Kanto 60N,クロロホルム:ヘキサン=9:1)して目的物16(以下、チオナフテン-APS体という)を得た。収量は0.056g、収率は40%であった。
In an eggplant-shaped flask, 0.1 g [0.363 mmol, ratio: 1.0] of compound 15 and 0.093 ml [0.399 mmol, ratio: 1.1] of 3-aminopropyltriethoxysilane were placed and dissolved in 7 ml of DMF. The reaction was started at room temperature. After confirming that the reaction had progressed, the reaction solution was distilled off under reduced pressure and vacuum dried. The residue was purified by silica gel column chromatography (Kanto 60N, chloroform: hexane = 9: 1) to obtain the target product 16 (hereinafter referred to as thionaphthene-APS form). The yield was 0.056 g, and the yield was 40%.
合成例10
アルコキシシリル基として3-アミノプロピルトリエトキシシランを含むインドール置換体の合成について説明する。本合成例では、アルコキシシリル基との結合にアミド結合を用いた。 Synthesis Example 10
The synthesis of an indole substitution product containing 3-aminopropyltriethoxysilane as an alkoxysilyl group will be described. In this synthesis example, an amide bond was used for the bond to the alkoxysilyl group.
アルコキシシリル基として3-アミノプロピルトリエトキシシランを含むインドール置換体の合成について説明する。本合成例では、アルコキシシリル基との結合にアミド結合を用いた。 Synthesis Example 10
The synthesis of an indole substitution product containing 3-aminopropyltriethoxysilane as an alkoxysilyl group will be described. In this synthesis example, an amide bond was used for the bond to the alkoxysilyl group.
(1)活性エステル体18の合成
活性エステル体18の合成手順を以下に示す。 (1) Synthesis of active ester form 18 The synthesis procedure of the active ester form 18 is shown below.
活性エステル体18の合成手順を以下に示す。 (1) Synthesis of active ester form 18 The synthesis procedure of the active ester form 18 is shown below.
ナス型フラスコに化合物17を0.2g[1.24mmol,ratio:1.0]、N-ヒドロキシコハク酸イミド0.156g[1.36mmol,raio:1.1]を入れ、[THF:クロロホルム=3:1] 30mlで溶解させた。これに、[THF:クロロホルム=1:4] 30mlに溶解させたWSCI・HCl 0.26g[1.36mmol,ratio:1.1]を20分かけてゆっくりと滴下し、滴下後3時間反応させた。反応が進行したことを確認した後、反応液を減圧留去させた。残渣をクロロホルムで溶解し蒸留水で3回洗浄を行った。その後クロロホルム層に無水硫酸マグネシウムを入れ、濾過、減圧留去して、真空乾燥させた。これをシリカゲルカラムクロマトグラフィー精製(Kano 60N,クロロホルム100%)して目的物18を得た。収量は0.12g、収率は37%であった。
In an eggplant-shaped flask, 0.2 g [1.24 mmol, ratio: 1.0] of Compound 17 and 0.156 g [1.36 mmol, ratio: 1.1] of N-hydroxysuccinimide were placed, and [THF: chloroform = 3: 1] Dissolved in 30 ml. [THF: chloroform = 1: 4] WSCI · HCl 0.26 g [1.36 mmol, ratio: 1.1] dissolved in 30 ml was slowly added dropwise over 20 minutes, and the mixture was reacted for 3 hours after the addition. It was. After confirming that the reaction had progressed, the reaction solution was distilled off under reduced pressure. The residue was dissolved in chloroform and washed 3 times with distilled water. Thereafter, anhydrous magnesium sulfate was added to the chloroform layer, filtered, evaporated under reduced pressure, and vacuum dried. This was purified by silica gel column chromatography (Kano 60N, chloroform 100%) to obtain the target product 18. The yield was 0.12 g, and the yield was 37%.
(2)活性エステル体18とAPSとの反応
活性エステル体18とAPSとの反応を以下に示す。 (2) Reaction between active ester 18 and APS The reaction between active ester 18 and APS is shown below.
活性エステル体18とAPSとの反応を以下に示す。 (2) Reaction between active ester 18 and APS The reaction between active ester 18 and APS is shown below.
ナス型フラスコに化合物18を0.1g[0.387mmol,ratio:1.0]、3-アミノプロピルトリエトキシシラン0.099ml[0.426mmol,ratio:1.1]を入れ、DMF 7mlで溶解させて室温で反応を開始した。反応が進行したことを確認した後、反応液を減圧留去、真空乾燥させた。残渣をシリカゲルカラムクロマトグラフィー精製(Kanto 60N,クロロホルム100%)して目的物19(以下、インドール-APS体という)を得た。収量は0.038g、収率は27%であった。
In an eggplant-shaped flask, 0.1 g [0.387 mmol, ratio: 1.0] of compound 18 and 0.099 ml [0.426 mmol, ratio: 1.1] of 3-aminopropyltriethoxysilane were placed and dissolved in 7 ml of DMF. The reaction was started at room temperature. After confirming that the reaction had progressed, the reaction solution was distilled off under reduced pressure and vacuum dried. The residue was purified by silica gel column chromatography (Kanto 60N, chloroform 100%) to obtain the desired product 19 (hereinafter referred to as indole-APS form). The yield was 0.038 g, and the yield was 27%.
合成例11
アルコキシシリル基として3-アミノプロピルトリエトキシシランを含むジベンゾフラン置換体の合成について説明する。本合成例では、アルコキシシリル基との結合にアミド結合を用いた。 Synthesis Example 11
The synthesis of a dibenzofuran substituted product containing 3-aminopropyltriethoxysilane as an alkoxysilyl group will be described. In this synthesis example, an amide bond was used for the bond to the alkoxysilyl group.
アルコキシシリル基として3-アミノプロピルトリエトキシシランを含むジベンゾフラン置換体の合成について説明する。本合成例では、アルコキシシリル基との結合にアミド結合を用いた。 Synthesis Example 11
The synthesis of a dibenzofuran substituted product containing 3-aminopropyltriethoxysilane as an alkoxysilyl group will be described. In this synthesis example, an amide bond was used for the bond to the alkoxysilyl group.
(1)活性エステル体21の合成
活性エステル体21の合成手順を以下に示す。 (1) Synthesis of active ester 21 The procedure for synthesizing the active ester 21 is shown below.
活性エステル体21の合成手順を以下に示す。 (1) Synthesis of active ester 21 The procedure for synthesizing the active ester 21 is shown below.
ナス型フラスコに化合物20を0.2g[0.942mmol,ratio:1.0]N-ヒドロキシコハク酸イミド 0.119g[1.03mmol,ratio:1.1]を入れ、[THF:クロロホルム=3:1] 30mlで溶解させた。これに、[THF:クロロホルム=1:4] 30mlに溶解させたWSCI・HCl 0.198g[1.03mmol,ratio:1.1]を20分かけてゆっくりと滴下し、滴下後3時間反応させた。反応が進行したことを確認した後、反応液を減圧留去させた。残渣をクロロホルムで溶解し蒸留水で3回洗浄を行った。その後クロロホルム層に無水硫酸マグネシウムを入れ、濾過、減圧留去して、真空乾燥させた。これをシリカゲルカラムクロマトグラフィー精製(Kanto 60N,クロロホルム100%)して目的物21を得た。収量は0.13g、収率は45%であった。
0.2 g [0.942 mmol, ratio: 1.0] N-hydroxysuccinimide 0.119 g [1.03 mmol, ratio: 1.1] was placed in an eggplant-shaped flask, and [THF: chloroform = 3]. : 1] 30 ml was dissolved. To this, 0.198 g [1.03 mmol, ratio: 1.1] of WSCI · HCl dissolved in 30 ml of [THF: chloroform = 1: 4] was slowly added dropwise over 20 minutes, followed by reaction for 3 hours. It was. After confirming that the reaction had progressed, the reaction solution was distilled off under reduced pressure. The residue was dissolved in chloroform and washed 3 times with distilled water. Thereafter, anhydrous magnesium sulfate was added to the chloroform layer, filtered, evaporated under reduced pressure, and vacuum dried. This was purified by silica gel column chromatography (Kanto 60N, chloroform 100%) to give the intended product 21. The yield was 0.13 g, and the yield was 45%.
(2)活性エステル体21とAPSとの反応
活性エステル体21とAPSとの反応を以下に示す。 (2) Reaction of active ester 21 and APS The reaction of active ester 21 and APS is shown below.
活性エステル体21とAPSとの反応を以下に示す。 (2) Reaction of active ester 21 and APS The reaction of active ester 21 and APS is shown below.
ナス型フラスコに化合物21を0.1g[0.323mmol,ratio:1.0]、3-アミノプロピルトリエトキシシラン0.083ml[0.355mmol,ratio:1.1]を入れ、DMF 7mlで溶解させて室温で反応を開始した。反応が進行したことを確認した後、反応液を減圧留去、真空乾燥させた。残渣をシリカゲルカラムクロマトグラフィー精製(Kanto 60N,クロロホルム100%)して目的物22(以下、ジベンゾフラン-APS体という)を得た。収量は0.05g、収率は37%であった。
In an eggplant-shaped flask, 0.1 g [0.323 mmol, ratio: 1.0] of compound 21 and 0.083 ml [0.355 mmol, ratio: 1.1] of 3-aminopropyltriethoxysilane were placed and dissolved in 7 ml of DMF. The reaction was started at room temperature. After confirming that the reaction had progressed, the reaction solution was distilled off under reduced pressure and vacuum dried. The residue was purified by silica gel column chromatography (Kanto 60N, chloroform 100%) to obtain the desired product 22 (hereinafter referred to as dibenzofuran-APS form). The yield was 0.05 g and the yield was 37%.
(紫外線退光試験)
クロロホルムに溶解させたブロモフェニルカルバゾール-APS体1をスライドガラス上に垂らし、乾燥させ膜状のサンプルを作製した。作製したサンプルに紫外線を照射して、1時間おきにデジタルカメラまたは蛍光顕微鏡でサンプルの退光を観察した。 (Ultraviolet light fading test)
Bromophenylcarbazole-APS body 1 dissolved in chloroform was hung on a slide glass and dried to prepare a film sample. The prepared sample was irradiated with ultraviolet rays, and the fading of the sample was observed with a digital camera or a fluorescence microscope every hour.
クロロホルムに溶解させたブロモフェニルカルバゾール-APS体1をスライドガラス上に垂らし、乾燥させ膜状のサンプルを作製した。作製したサンプルに紫外線を照射して、1時間おきにデジタルカメラまたは蛍光顕微鏡でサンプルの退光を観察した。 (Ultraviolet light fading test)
Bromophenylcarbazole-
紫外線退光試験には、以下の装置を用いた。
紫外線ランプ:アズワンSLUV-4、照射波長 365nm
デジタルカメラ:RICOH CX4
蛍光顕微鏡:OLYMPUS BX50
励起フィルター:ET395/40X
※ダイクロイックミラー T470pxr
吸収フィルター:ET525/20m The following apparatus was used for the ultraviolet light fading test.
Ultraviolet lamp: ASONE SLUV-4, irradiation wavelength 365 nm
Digital camera: RICOH CX4
Fluorescence microscope: OLYMPUS BX50
Excitation filter: ET395 / 40X
* Dichroic mirror T470pxr
Absorption filter: ET525 / 20m
紫外線ランプ:アズワンSLUV-4、照射波長 365nm
デジタルカメラ:RICOH CX4
蛍光顕微鏡:OLYMPUS BX50
励起フィルター:ET395/40X
※ダイクロイックミラー T470pxr
吸収フィルター:ET525/20m The following apparatus was used for the ultraviolet light fading test.
Ultraviolet lamp: ASONE SLUV-4, irradiation wavelength 365 nm
Digital camera: RICOH CX4
Fluorescence microscope: OLYMPUS BX50
Excitation filter: ET395 / 40X
* Dichroic mirror T470pxr
Absorption filter: ET525 / 20m
顕微鏡撮影条件は、以下の通りである。
露出時間:1.0sec
ISO感度:200
対物レンズ:10x The microscope photographing conditions are as follows.
Exposure time: 1.0 sec
ISO sensitivity: 200
Objective lens: 10x
露出時間:1.0sec
ISO感度:200
対物レンズ:10x The microscope photographing conditions are as follows.
Exposure time: 1.0 sec
ISO sensitivity: 200
Objective lens: 10x
(結果)
図1に、紫外線照射前と紫外線照射1時間~6時間後のデジタルカメラによる観察画像を示す。紫外線照射6時間後でも退光は認められなかった。また、図2と図3に蛍光顕微鏡による観察画像を示す。図2と図3では、観察箇所が異なる。蛍光顕微鏡で観察した場合でも、紫外線照射6時間後で退光は認められなかった。なお、ブロモフェニルカルバゾール-APS体2と3についても同様の試験を行ったが、紫外線照射6時間後で退光は認められなかった。 (result)
FIG. 1 shows images observed by a digital camera before UV irradiation and after 1 to 6 hours of UV irradiation. No fading was observed even after 6 hours of UV irradiation. 2 and 3 show images observed with a fluorescence microscope. FIG. 2 and FIG. 3 differ in the observation location. Even when observed with a fluorescence microscope, no fading was observed after 6 hours of UV irradiation. A similar test was conducted on bromophenylcarbazole-APS bodies 2 and 3, but no photoregression was observed after 6 hours of ultraviolet irradiation.
図1に、紫外線照射前と紫外線照射1時間~6時間後のデジタルカメラによる観察画像を示す。紫外線照射6時間後でも退光は認められなかった。また、図2と図3に蛍光顕微鏡による観察画像を示す。図2と図3では、観察箇所が異なる。蛍光顕微鏡で観察した場合でも、紫外線照射6時間後で退光は認められなかった。なお、ブロモフェニルカルバゾール-APS体2と3についても同様の試験を行ったが、紫外線照射6時間後で退光は認められなかった。 (result)
FIG. 1 shows images observed by a digital camera before UV irradiation and after 1 to 6 hours of UV irradiation. No fading was observed even after 6 hours of UV irradiation. 2 and 3 show images observed with a fluorescence microscope. FIG. 2 and FIG. 3 differ in the observation location. Even when observed with a fluorescence microscope, no fading was observed after 6 hours of UV irradiation. A similar test was conducted on bromophenylcarbazole-
また、図4~図8は蛍光顕微鏡による観察画像であり、図4は合成例4のブロモフェニルカルバゾール-MAPS体、図5は合成例5のクロロフェニルカルバゾール体-APS体、図6は合成例6のクロロフェニルカルバゾール-MAPS体、図7は合成例7のメチルフェニルカルバゾール-APS体、図8は合成例8のメチルフェニルカルバゾール-MAPS体の画像である。いずれにおいても紫外線照射6時間後で退光は認められなかった。また、合成例9~11についても同様の効果が認められた。このように、本発明のアルコキシシリル基含有燐光色素は、室温、固体状態で燐光を発光することが可能であることを確認した。
4 to 8 are images observed with a fluorescence microscope, FIG. 4 is a bromophenylcarbazole-MAPS form of Synthesis Example 4, FIG. 5 is a chlorophenylcarbazole form-APS form of Synthesis Example 5, and FIG. 7 is an image of the methylphenylcarbazole-MAPS form of Synthesis Example 7, and FIG. 8 is an image of the methylphenylcarbazole-MAPS form of Synthesis Example 8. In any case, no fading was observed after 6 hours of ultraviolet irradiation. Similar effects were also observed in Synthesis Examples 9-11. As described above, it was confirmed that the alkoxysilyl group-containing phosphorescent dye of the present invention can emit phosphorescence at room temperature in a solid state.
従来、有機燐光色素は、室温での発光効率が非常に低く、室温、固体状態で発光するものはほとんど知られておらず、従来の燐光色素含有シリカ粒子は、室温、固体状態で発光しない。これに対し、本発明のアルコキシシリル基含有燐光色素は、室温、固体状態で燐光を発光することから、燐光色素を含む新たなナノ粒子として多くの用途が期待できる。
Conventionally, organic phosphorescent dyes have a very low luminous efficiency at room temperature, and few are known to emit light at room temperature in a solid state. Conventional phosphorescent dye-containing silica particles do not emit light at room temperature in a solid state. On the other hand, since the alkoxysilyl group-containing phosphorescent dye of the present invention emits phosphorescence at room temperature in a solid state, many uses can be expected as new nanoparticles containing the phosphorescent dye.
Claims (4)
- 一般式X―Y-Q-Z-Si(R1)n(OR2)3-nで表され、Xが有機燐光色素、Yが直接結合あるいは-(CH2)p-(pは1から10の整数)または-(O-CH2CH2)q-(qは1から10の整数)であり、Qはアミド結合、エーテル結合、チオエーテル結合、チオエステル結合、チオウレア結合、ジスルフィド結合およびポリオキシエチレン結合から選択される少なくとも1種の結合であり、Zは-(CH2)m-または-(CH2)2NH(CH2)3-であり、R1とR2は炭素数1から4のアルキル基であり、nは0または1であり、mは1から10の整数であるアルコキシシリル基含有燐光色素。 Represented by the general formula X—Y—Q—Z—Si (R 1 ) n (OR 2 ) 3-n , where X is an organic phosphorescent dye and Y is a direct bond or — (CH 2 ) p — (p is from 1 Q is an integer of 10) or — (O—CH 2 CH 2 ) q — (q is an integer of 1 to 10), and Q is an amide bond, an ether bond, a thioether bond, a thioester bond, a thiourea bond, a disulfide bond, and a polyoxy At least one bond selected from ethylene bonds, Z is — (CH 2 ) m — or — (CH 2 ) 2 NH (CH 2 ) 3 —, and R 1 and R 2 are each from 1 to C carbon atoms An alkoxysilyl group-containing phosphorescent dye which is an alkyl group of 4, n is 0 or 1, and m is an integer of 1 to 10.
- 前記有機燐光色素が、置換または無置換のカルバゾール、置換または無置換のジベンゾフラン、置換または無置換のチオナフテン、置換または無置換のインドール、置換または無置換の1,3,5-トリアジンから成る群から選択される少なくとも1種の化合物である、請求項1記載のアルコキシシリル基含有燐光色素。 The organic phosphorescent dye is selected from the group consisting of substituted or unsubstituted carbazole, substituted or unsubstituted dibenzofuran, substituted or unsubstituted thionaphthene, substituted or unsubstituted indole, substituted or unsubstituted 1,3,5-triazine. The alkoxysilyl group-containing phosphorescent dye according to claim 1, which is at least one selected compound.
- 前記のカルバゾールが、N-置換カルバゾールである、請求項2記載のアルコキシシリル基含有燐光色素。 The alkoxysilyl group-containing phosphorescent dye according to claim 2, wherein the carbazole is N-substituted carbazole.
- 請求項1記載のアルコキシシリル基含有燐光色素の製造方法であって、
前記有機燐光色素が、スクシンイミジルエステル基、アルコラート基、アミノ基、メルカプト基、ハロゲン化アルキル基および末端ヒドロキシ基含有ポリオキシエチレン基からなる群から選択される1種の反応性基を有し、前記有機燐光色素とシランカップリング剤を混合する工程を含む、該製造方法。 A method for producing an alkoxysilyl group-containing phosphorescent dye according to claim 1,
The organic phosphorescent dye has one reactive group selected from the group consisting of a succinimidyl ester group, an alcoholate group, an amino group, a mercapto group, a halogenated alkyl group, and a terminal hydroxy group-containing polyoxyethylene group. The production method comprising a step of mixing the organic phosphorescent dye and a silane coupling agent.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016051356 | 2016-03-15 | ||
JP2016-051356 | 2016-03-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017159750A1 true WO2017159750A1 (en) | 2017-09-21 |
Family
ID=59851266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/010497 WO2017159750A1 (en) | 2016-03-15 | 2017-03-15 | Alkoxysilyl group-containing phosphorescent pigment and production method therefor |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017159750A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111073371A (en) * | 2019-12-30 | 2020-04-28 | 李洪芳 | Environment-friendly wear-resistant anticorrosive paint |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001294597A (en) * | 2000-04-12 | 2001-10-23 | Asahi Denka Kogyo Kk | Complex |
JP2006265306A (en) * | 2005-03-22 | 2006-10-05 | Univ Of Tokushima | Color material composition and color developing or luminescent product containing the same |
WO2007074722A1 (en) * | 2005-12-27 | 2007-07-05 | The Furukawa Electric Co., Ltd. | Fluorescent silica nano-particle, fluorescent nano-material, biochip using the material, and assay method |
JP2014503471A (en) * | 2010-10-14 | 2014-02-13 | アルマ・マーター・ステュディオラム−ウニベルシタッディ・ボローニャ | Multiple dye-doped silica nanoparticles featuring highly efficient energy transfer and tunable stalk shift |
WO2016068324A1 (en) * | 2014-10-31 | 2016-05-06 | 信一郎 礒部 | Alkoxysilyl group-containing organic el pigment and method for producing same |
-
2017
- 2017-03-15 WO PCT/JP2017/010497 patent/WO2017159750A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001294597A (en) * | 2000-04-12 | 2001-10-23 | Asahi Denka Kogyo Kk | Complex |
JP2006265306A (en) * | 2005-03-22 | 2006-10-05 | Univ Of Tokushima | Color material composition and color developing or luminescent product containing the same |
WO2007074722A1 (en) * | 2005-12-27 | 2007-07-05 | The Furukawa Electric Co., Ltd. | Fluorescent silica nano-particle, fluorescent nano-material, biochip using the material, and assay method |
JP2014503471A (en) * | 2010-10-14 | 2014-02-13 | アルマ・マーター・ステュディオラム−ウニベルシタッディ・ボローニャ | Multiple dye-doped silica nanoparticles featuring highly efficient energy transfer and tunable stalk shift |
WO2016068324A1 (en) * | 2014-10-31 | 2016-05-06 | 信一郎 礒部 | Alkoxysilyl group-containing organic el pigment and method for producing same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111073371A (en) * | 2019-12-30 | 2020-04-28 | 李洪芳 | Environment-friendly wear-resistant anticorrosive paint |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017173348A1 (en) | Ultra bright dimeric or polymeric dyes with rigid spacing groups | |
JP7344982B2 (en) | Compounds and fluorescently labeled biological substances using them | |
WO2014172819A1 (en) | Biocompatible strong-fluorescence mixed gold-silver cluster, preparation method and use thereof | |
WO2011088744A1 (en) | Photoluminescent nanoparticle, preparation, and application thereof | |
JP7064583B2 (en) | Fluorescent compounds and fluorescently labeled biological substances using them | |
CN104403663A (en) | Fluorescent probe for detecting endogenous H2S, as well as preparation method and application of fluorescent probe | |
JP7550076B2 (en) | Fluorescent dye and labeled biological material using same | |
CN110606859A (en) | Aggregation-induced emission compound, preparation method thereof and application thereof in detecting immune-related target analyte | |
US20030138791A1 (en) | 3-Spiro-cyanin fluorochromes and their use in bioassays | |
JP7241097B2 (en) | Terbium-containing ultra-bright-emitting lanthanide nanoparticles with longer excited-state lifetimes | |
CN103897698B (en) | The switchable magnetically conversion nano compound material and preparation method thereof of magnetic component | |
US20220283170A1 (en) | Compound and fluorescently labeled biological substance using the same | |
WO2017159750A1 (en) | Alkoxysilyl group-containing phosphorescent pigment and production method therefor | |
JP2006328032A (en) | Nucleic acid probe and method for fluorescence detection of multiple-stranded nucleic acid | |
CN101023091B (en) | Coupling agents comprising a photolabile protecting group and uses thereof, such as for the functionalisation of solid supports | |
CN105492575B (en) | Electroneutral metal complex as biomarker | |
CN108314636A (en) | A kind of polyaryl sulphur oscillation luminescent material and its preparation method and application | |
WO2016068324A1 (en) | Alkoxysilyl group-containing organic el pigment and method for producing same | |
Song et al. | Preparation and time-gated luminescence bioimaging application of ruthenium complex covalently bound silica nanoparticles | |
Tian et al. | Preparation and functionalization of a visible-light-excited europium complex-modified luminescent protein for cell imaging applications | |
US10927221B2 (en) | Dendrimeric metallacrowns | |
CN106749418A (en) | Iridium complex and preparation method and application thereof | |
WO2018181529A1 (en) | Phospha-rhodol compound, salt of same, and fluorescent dye using same | |
KR102172084B1 (en) | Gold nanocluster and method for producing the same and blood sugar sensor comprising the same | |
KR20120119934A (en) | Silica Nanotubes, Manufacturing method for the same and Their Applications as Multi-Chemosensors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17766746 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17766746 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |