WO2017159637A1 - Epoxy compound, curable composition, cured product, method for producing epoxy compound, and reactive diluent - Google Patents

Epoxy compound, curable composition, cured product, method for producing epoxy compound, and reactive diluent Download PDF

Info

Publication number
WO2017159637A1
WO2017159637A1 PCT/JP2017/010040 JP2017010040W WO2017159637A1 WO 2017159637 A1 WO2017159637 A1 WO 2017159637A1 JP 2017010040 W JP2017010040 W JP 2017010040W WO 2017159637 A1 WO2017159637 A1 WO 2017159637A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable composition
compound
monoepoxy compound
monoepoxy
cured product
Prior art date
Application number
PCT/JP2017/010040
Other languages
French (fr)
Japanese (ja)
Inventor
敦史 亀山
龍一 上野
央司 曾禰
鈴木 宏明
翔平 高田
隆史 關
Original Assignee
Jxエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016188868A external-priority patent/JP6691855B2/en
Priority claimed from JP2016188882A external-priority patent/JP6644659B2/en
Application filed by Jxエネルギー株式会社 filed Critical Jxエネルギー株式会社
Priority to KR1020187024749A priority Critical patent/KR102344209B1/en
Priority to EP17766636.9A priority patent/EP3431470B1/en
Priority to US16/084,375 priority patent/US10995079B2/en
Priority to CN201780014232.4A priority patent/CN109071477A/en
Publication of WO2017159637A1 publication Critical patent/WO2017159637A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
    • C07D303/06Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/12Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with hydrogen peroxide or inorganic peroxides or peracids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/14Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with organic peracids, or salts, anhydrides or esters thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/687Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/08Saturated oxiranes
    • C08G65/10Saturated oxiranes characterised by the catalysts used
    • C08G65/105Onium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/14Unsaturated oxiranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to an epoxy compound, a curable composition, a cured product, a method for producing an epoxy compound, and a reactive diluent.
  • a typical liquid curable composition containing an epoxy compound such as a bisphenol A type epoxy resin has a high viscosity and has a problem in handling.
  • the curable composition For the purpose of lowering the viscosity of the liquid curable composition, the curable composition has been made to contain a solvent, but in this method, the solvent is released when the curable composition is cured, There was a problem of adversely affecting the environment.
  • an epoxy compound such as butyl glycidyl ether or 1,2-epoxy-4-vinylcyclohexane is incorporated into the liquid curable composition as a reactive diluent.
  • Cited Document 1 Japanese Patent Laid-Open No. 49-126658 discloses an alicyclic diepoxy compound produced from an alicyclic diolefin compound having a specific naphthalene type skeleton. Since the alicyclic diepoxy compound is a needle-like crystal and is a solid, it is not suitable for use in a liquid curable composition.
  • an object of the present invention is to provide a monoepoxy compound capable of reducing the viscosity of the curable composition.
  • the present inventors cured the composition by irradiating the curable composition with active energy rays by using the monoepoxy compound and a cationic photopolymerization initiator in combination in the curable composition. It discovered that the adhesiveness of hardened
  • the present inventors remarkably improve the heat resistance of the cured product by setting the ratio of the specific stereoisomer to a specific numerical value or more in an epoxy compound containing a stereoisomer having a specific structure. It was further discovered that it can.
  • This invention is based on this knowledge and is providing the epoxy compound which can improve the heat resistance of hardened
  • the present invention includes the following inventions.
  • a monoepoxy compound represented by: (2) Stereoisomers containing a stereoisomer of the compound represented by the formula (1) and having a trans relationship between the bridgehead position of the norbornane skeleton and the vinyl group in the formula (1) by 13 C-NMR analysis
  • the monoepoxy compound according to (1) wherein the ratio of the peak area derived from the body to the total peak area in the chemical shift range of 140 to 145 ppm is 66% or more.
  • R 1 to R 6 are all hydrogen, and a stereoisomer in which the bridge head position of the norbornane skeleton and the vinyl group are in a trans relationship has the following chemical formula:
  • the monoepoxy compound according to (2) represented by any one of: (4)
  • the ratio of the total peak area in the chemical shift range of 140 to 142 ppm to the total peak area in the range of 140 to 145 ppm is 66% or more.
  • Curing comprising the monoepoxy compound according to any one of (1) to (5) and one selected from the group consisting of a curing agent, a thermal cationic polymerization initiator, and a photocationic polymerization initiator Sex composition.
  • the curing agent is one or more curing agents selected from the group consisting of a phenol compound, an amine compound, an acid anhydride compound, and an amide compound.
  • the thermal cationic polymerization initiator is selected from the group consisting of an aromatic sulfonium salt-based thermal cationic polymerization initiator, an aromatic iodonium salt-based thermal cationic polymerization initiator, and an aluminum complex-based thermal cationic polymerization initiator.
  • the curable composition according to (6). (9) The curable composition according to (6), wherein the cationic photopolymerization initiator is an aromatic sulfonium salt-based cationic photopolymerization initiator. (10) The curable composition according to any one of (6) to (9), further comprising another epoxy compound different from the monoepoxy compound.
  • the viscosity of the curable composition when contained in the curable composition, is prevented while preventing a decrease in heat resistance of the curable composition and a decrease in weight when the curable composition is cured. It is possible to provide a monoepoxy compound capable of lowering.
  • a monoepoxy compound capable of producing a cured product having high heat resistance can be provided.
  • FIG. 1 shows a 13 C-NMR chart of the monoepoxy compound (A) synthesized in Example I1-1.
  • FIG. 2 shows a 13 C-NMR chart of the monoepoxy compound (A-1) synthesized in Example III1.
  • FIG. 3 shows a gas chromatograph of the monoepoxy compound (A-1) synthesized in Example III1.
  • FIG. 4 shows a 13 C-NMR chart of the monoepoxy compound (A-2) synthesized in Example III2.
  • FIG. 5 shows a gas chromatograph of the monoepoxy compound (A-2) synthesized in Example III2.
  • FIG. 6 shows a 13 C-NMR chart of the monoepoxy compound (A-3) synthesized in Example III4.
  • FIG. 7 shows a gas chromatograph of the monoepoxy compound (A-3) synthesized in Example III4.
  • the composition are based on mass unless otherwise specified.
  • the epoxy equivalent is defined by the mass of a monoepoxy compound containing 1 equivalent of an epoxy group, and can be measured according to JIS K7236.
  • the monoepoxy compound of the present invention is a monoepoxy compound represented by the following formula (1). (Wherein R 1 to R 6 are each independently selected from the group consisting of hydrogen, an alkyl group, and an alkoxy group.)
  • R 1 to R 6 are each independently selected from the group consisting of hydrogen, an alkyl group, and an alkoxy group. 1 to 10 is preferable, and 1 to 5 is more preferable. Further, it may be a linear alkyl group or a branched alkyl group.
  • the alkoxy group preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms. Particularly preferably R 1 to R 6 are hydrogen.
  • the monoepoxy compound of the present invention represented by the above formula (1) preferably has an epoxy equivalent of 110 to 1000 g / eq, more preferably 150 to 500 g / eq, and 160 to 300 g / eq. More preferably it is.
  • the method for producing a monoepoxy compound of the present invention preferably comprises a step of reacting the compound represented by the above formula (2) with peracid, and the amount of peracid used is the above formula (2). 0.10 to 1.80 moles with respect to 1.00 mole of the compound represented by formula (1).
  • the monoepoxy compound of the present invention when the purity of the monoepoxy compound obtained by the above-described production method is low, it is preferable to purify by distillation or a column.
  • peracids examples include organic peracids such as performic acid, peracetic acid, perbenzoic acid, and trifluoroperacetic acid, hydrogen peroxide, and the like.
  • organic peracids such as performic acid, peracetic acid, perbenzoic acid, and trifluoroperacetic acid, hydrogen peroxide, and the like.
  • performic acid, peracetic acid and hydrogen peroxide are preferable because they are industrially available at low cost and have high stability.
  • the amount of peracid used in the production of the monoepoxy compound of the present invention is preferably 0.10 to 1.80 moles relative to 1.00 mole of the compound represented by the above formula (2). More preferably, it is 50 to 1.50 mol.
  • a compound satisfying the above formula (2) can be obtained by subjecting 5-vinyl-2-norbornene (VNB) and 1,3-butadiene to a Diels-Alder reaction.
  • VNB can be obtained by subjecting 1,3-butadiene and cyclopentadiene to a Diels-Alder reaction.
  • the monoepoxy compound of the present invention is derived from a stereoisomer in which the bridge head position of the norbornane skeleton and the vinyl group in the above formula (1) are in a trans relationship according to 13 C-NMR analysis.
  • the ratio of the peak area to the total peak area in the chemical shift range of 140 to 145 ppm is preferably 66% or more.
  • the total peak in the chemical shift range of 140 to 145 ppm of the peak area derived from the stereoisomer in which the bridge head position of the norbornane skeleton in the above formula (1) and the vinyl group are in a trans relationship by 13 C-NMR analysis.
  • the ratio to the area is more preferably 70% or more.
  • R 1 to R 6 in the monoepoxy compound represented by the above formula (1) are all hydrogen, the following two are listed as stereoisomers in which the bridgehead position of the norbornane skeleton and the vinyl group are in a trans relationship. It is done.
  • the total peak area in the range of 140 to 142 ppm of chemical shift is 140 It is preferable that the ratio to the total peak area in the range of ⁇ 145 ppm is 66% or more.
  • the ratio of the total peak area in the chemical shift range of 140 to 142 ppm to the total peak area in the range of 140 to 145 ppm is 70% or more. What is characterized by being is more preferable.
  • the area of the peak first generated from the low magnetic field side is in the range of 140 to 145 ppm.
  • the ratio with respect to the total peak area is preferably 35% or more, and more preferably 40% or more.
  • the monoepoxy compound obtained by the production method described in (2) above is subjected to preparative distillation, whereby the bridgehead position of the norbornane skeleton in the monoepoxy compound represented by the above formula (1) by 13 C-NMR analysis
  • the ratio of the peak area derived from the stereoisomer in which the vinyl group and the vinyl group are in a trans relationship to the total peak area at a shift value of 140 to 145 ppm can be adjusted.
  • the monoepoxy compound obtained by the production method described in the above (2) is subjected to preparative distillation, so that a chemical shift of 140 to 142 ppm is obtained in 13 C-NMR analysis of the compound represented by the above formula (1).
  • the ratio of the total peak area in the range of 140 to 145 ppm to the total peak area can be adjusted. For example, the ratio can be adjusted by silica gel chromatography or liquid chromatography.
  • the monoepoxy compound of the present invention is contained in a curable composition
  • the heat resistance of the curable composition is lowered and the weight is reduced when the curable composition is cured.
  • the curable composition can be plasticized or reduced in viscosity. Therefore, it can be suitably used in the fields of various coatings such as cans, plastics, paper, and wood, inks, adhesives, sealing agents, electrical / electronic materials, carbon fiber reinforced resins, and the like.
  • three-dimensional modeling materials More specifically, three-dimensional modeling materials, acid removers, furniture coatings, decorative coatings, automotive undercoats, finish coatings, beverage cans and other can coatings, UV curable inks, optical disc recording layer protective films, color filter protection Film, optical disk bonding adhesive, optical material adhesive, semiconductor element die bonding, organic EL display sealing material, CCD, infrared sensor and other light receiving device sealing materials, LED and organic EL light emitting device It can be suitably used for sealing materials, optical wiring boards, optical connectors, optical semiconductor-related members such as lenses, optical waveguides, photoresists, composite glass such as tempered glass and security glass, and the like. Moreover, it is useful also as a monomer which comprises a polymer, and a silane coupling agent precursor.
  • the monoepoxy compound of the present invention can be suitably used as a constituent component of a reactive diluent.
  • the reactive diluent includes an epoxy group-containing compound, so that it has high reactivity and can be plasticized or viscosity-adjusted (decreased) in the curable composition. .
  • the adhesiveness of the cured product obtained by curing this with active energy rays is dramatically improved. Can be improved.
  • the curable composition of this invention has high heat resistance.
  • the curable composition comprises the monoepoxy compound of a preferred embodiment described in the description item of “(3) Monoepoxy compound comprising a stereoisomer”.
  • the heat resistance of the cured product obtained by curing can be better improved.
  • the content of the monoepoxy compound in the curable composition is preferably 1 to 90 parts by mass and more preferably 5 to 75 parts by mass with respect to 100 parts by mass of the curable composition.
  • Curable composition The curable composition of the present invention comprises a monoepoxy compound represented by the above formula (1), a curing agent, a thermal cationic polymerization initiator, or a photocationic polymerization initiator. .
  • the curable composition of the present invention further includes another epoxy compound different from the monoepoxy compound.
  • the curable composition of this invention may contain the monoepoxy compound represented by 2 or more types of said Formula (1).
  • the viscosity of the curable composition can be reduced. Moreover, the fall of the heat resistance of the hardened
  • cured material which hardened this by the active energy ray by making the curable composition contain the monoepoxy compound represented by the said Formula (1) and a photocationic polymerization initiator is drastically improved. Can be improved.
  • the curable composition of this invention has high heat resistance.
  • other compounds as described later may be included, but from the viewpoint of the adhesiveness of the cured product, the above-mentioned composition included in the curable composition of the present invention.
  • the content of the monoepoxy compound represented by the formula (1) is preferably 1 to 90% by mass, and more preferably 5 to 75% by mass.
  • the heat resistance of the cured product obtained by curing the curable composition can be improved.
  • the content of the monoepoxy compound in the curable composition is preferably 1 to 90 parts by mass and more preferably 5 to 75 parts by mass with respect to 100 parts by mass of the curable composition.
  • an acid anhydride curing agent As the curing agent which can be contained in the curing agent curable composition of the present invention, an acid anhydride curing agent, an amine curing agent, a phenolic curing agent and a latent curing agent, and the like.
  • acid anhydride curing agents include hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, methylnadic acid anhydride, methylbutenyltetrahydroanhydride.
  • Phthalic acid hydrogenated methyl nadic anhydride, trialkyltetrahydrophthalic anhydride, cyclohexanetricarboxylic anhydride, methylcyclohexene dicarboxylic anhydride, methylcyclohexanetetracarboxylic dianhydride, maleic anhydride, phthalic anhydride, succinic anhydride Acid, dodecenyl succinic anhydride, octenyl succinic anhydride, pyromellitic anhydride, trimellitic anhydride, alkylstyrene-maleic anhydride copolymer, chlorendic anhydride, polyazelinic anhydride, benzoic anhydride Enone tetracarboxylic acid, ethylene glycol bisanhydro trimellitate, glycerol tris trimellitate, glycerol bis (anhydro trimellitate) monoacetate, benzophenone tetracarboxylic acid,
  • amine curing agents include polyoxyethylenediamine, polyoxypropylenediamine, polyoxybutylenediamine, polyoxypentylenediamine, polyoxyethylenetriamine, polyoxypropylenetriamine, polyoxybutylenetriamine, polyoxypentylenetriamine, diethylenetriamine, Triethylenetetramine, tetraethylenepentamine, m-xylenediamine, trimethylhexamethylenediamine, 2-methylpentamethylenediamine, diethylaminopropylamine, isophoronediamine, 1,3-bisaminomethylcyclohexane, bis (4-aminocyclohexyl) Methane, norbornanediamine, 1,2-diaminocyclohexane, diaminodiphenylmethane, metaphenylenediamine, di Mino diphenyl sulfone, and the like N- aminoethyl piperazine.
  • phenolic curing agent examples include a xylylene skeleton-containing phenol novolak resin, a dicyclopentadiene skeleton-containing phenol novolak resin, a biphenyl skeleton-containing phenol novolak resin, a fluorene skeleton-containing phenol novolak resin, a terpene skeleton-containing phenol novolak resin, bisphenol A novolak, and bisphenol F.
  • Novolak bisphenol S novolak, bisphenol AP novolak, bisphenol C novolak, bisphenol E novolak, bisphenol Z novolak, biphenol novolak, tetramethylbisphenol A novolak, dimethylbisphenol A novolak, tetramethylbisphenol F novolak, dimethylbisphenol F novolak, tetramethylbisphenol S Novora Dimethylbisphenol S novolak, tetramethyl-4,4'-biphenol novolak, trishydroxyphenylmethane novolak, resorcinol novolak, hydroquinone novolak, pyrogallol novolak, diisopropylidene novolak, 1,1-di-4-hydroxyphenylfluorene novolak Phenolic polybutadiene novolak, phenol novolak, cresol novolak, ethylphenol novolak, butylphenol novolak, octylphenol novolak, naphthol no
  • latent curing agent examples include dicyandiamide, adipic acid dihydrazide, sebacic acid dihydrazide, dodecanedioic acid dihydrazide, isophthalic acid dihydrazide, ketimine, imidazole compound, dihydrazide compound, and amine adduct based latent curing agent.
  • the curable composition of the present invention may contain one kind or two or more kinds of curing agents as described above.
  • the curing agent is at least one selected from the group consisting of an acid anhydride curing agent, an amine curing agent, a phenol curing agent and a latent curing agent. It is an agent.
  • the content of the curing agent in the curable composition of the present invention is preferably changed as appropriate according to the type of the curing agent to be used.
  • an acid anhydride type curing agent, an amine type curing agent or a phenol type curing agent is used as the curing agent, it is 0.5 to 1.5 equivalents relative to 1 equivalent of the epoxy group of the entire curable composition. It is preferably 0.8 to 1.2 equivalents.
  • the amount is preferably 1 to 30 parts by mass and more preferably 5 to 20 parts by mass with respect to 100 parts by mass of the curable composition.
  • the curable composition of the present invention may further contain a curing accelerator.
  • the curing accelerator include triphenylphosphine, triphenylbenzylphosphonium tetraphenylborate, tetrabutylphosphonium diethylphosphorodithioate, tetraphenylphosphonium bromide, tetrabutylphosphonium acetate, tetra-n-butylphosphonium bromide, tetra-n.
  • the content of the curing accelerator in the curable composition of the present invention is preferably 0.1 to 6 parts by mass with respect to 100 parts by mass of the total amount of the curable composition.
  • Thermal cationic polymerization initiator that can be contained in the curable composition of the present invention is at least one selected from aromatic sulfonium, aromatic iodonium, aromatic diazonium, pyridinium, and the like. At least one selected from a cation and BF 4 ⁇ , PF 6 ⁇ , SbF 6 ⁇ , AsF 6 ⁇ , CF 3 SO 3 ⁇ , (CF 3 SO 2 ) 2 N ⁇ and B (C 6 F 5 ) 4 ⁇ Thermal anionic polymerization initiators such as onium salts and aluminum complexes composed of these anions.
  • Aromatic sulfonium salt-based thermal cationic polymerization initiators include (2-ethoxy-1-methyl-2-oxoethyl) methyl-2-naphthalenylsulfonium hexafluoroantimonate, 4- (methoxycarbonyloxy) phenylbenzylmethyl Sulfonium hexafluoroantimonate, 4-acetoxyphenyldimethylsulfonium hexafluoroantimonate, 4-hydroxyphenylbenzylmethylsulfonium hexafluoroantimonate, 4-hydroxyphenyl (o-methylbenzyl) methylsulfonium hexafluoroantimonate, 4-hydroxyphenyl ( ⁇ -naphthylmethyl) methylsulfonium hexafluoroantimonate, diphenyl-4- (phenylthio) phenylsulfonium hexafluoroa Timonate, triphenyl
  • aromatic iodonium salt-based thermal cationic polymerization initiators include phenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, diphenyliodonium tetrafluoroborate, diphenyliodonium tetrakis (pentafluorophenyl) borate, diphenyliodonium hexafluoro Phosphate, diphenyliodonium trifluoromethanesulfonate, bis (dodecylphenyl) iodonium hexafluorophosphate, bis (dodecylphenyl) iodonium hexafluoroantimonate, bis (dodecylphenyl) iodonium tetrafluoroborate, bis (dodecylphenyl) iodonium tetrakis (penta Fluor
  • aromatic diazonium salt-based thermal cationic polymerization initiator examples include phenyldiazonium hexafluorophosphate, phenyldiazonium hexafluoroantimonate, phenyldiazonium tetrafluoroborate, and phenyldiazonium tetrakis (pentafluorophenyl) borate.
  • pyridinium salt-based thermal cationic polymerization initiators include 1-benzyl-2-cyanopyridinium hexafluorophosphate, 1-benzyl-2-cyanopyridinium hexafluoroantimonate, 1-benzyl-2-cyanopyridinium tetrafluoro Borate, 1-benzyl-2-cyanopyridinium tetrakis (pentafluorophenyl) borate, 1- (naphthylmethyl) -2-cyanopyridinium hexafluorophosphate, 1- (naphthylmethyl) -2-cyanopyridinium hexafluoroantimonate, 1 Examples include-(naphthylmethyl) -2-cyanopyridinium tetrafluoroborate, 1- (naphthylmethyl) -2-cyanopyridinium tetrakis (pentafluorophenyl) borate, and the
  • Examples of the aluminum complex-based thermal cationic polymerization initiator include aluminum carboxylate, aluminum alkoxide, aluminum chloride, aluminum (alkoxide) acetoacetate chelate, acetoacetonatoaluminum, ethylacetoacetoaluminum and the like.
  • Examples of the phosphonium salt-based thermal cationic polymerization initiator include ethyltriphenylphosphonium hexafluoroantimonate and tetrabutylphosphonium hexafluoroantimonate.
  • Quaternary ammonium salt-based thermal cationic polymerization initiators include N, N-dimethyl-N-benzylanilinium hexafluoroantimonate, N, N-diethyl-N-benzylanilinium tetrafluoroborate, N, N-dimethyl.
  • the curable composition of the present invention may contain one or more thermal cationic polymerization initiators as described above.
  • the thermal cationic polymerization initiator is an aromatic sulfonium salt-based thermal cationic polymerization initiator, an aromatic iodonium salt-based thermal cationic polymerization initiator, and an aluminum complex. It is selected from the group consisting of thermal cationic polymerization initiators of the system.
  • the content of the thermal cationic polymerization initiator in the curable composition of the present invention is preferably changed as appropriate according to the type of the thermal cationic polymerization initiator to be used.
  • a thermal cationic polymerization initiator when used, it is preferably 0.1 to 15 parts by mass, more preferably 0.3 to 7 parts by mass with respect to 100 parts by mass of the curable composition.
  • the photocationic polymerization initiator contained in the curable composition of the present invention is a cationic species or Lewis acid by irradiation with active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams.
  • active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams.
  • active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams.
  • active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams.
  • the cationic photopolymerization initiator contained in the curable composition of the present invention for example, compounds such as onium salts, metallocene complexes, and iron-allene complexes can be used.
  • the onium salt aromatic sulfonium salt, aromatic iodonium salt, aromatic diazonium salt, aromatic phosphonium salt, aromatic selenium salt and the like are used, and as counter ions thereof, CF 3 SO 3 ⁇ , BF 4 ⁇ , PF 6 ⁇ , AsF 6 ⁇ , and SbF 6 ⁇ are used.
  • CF 3 SO 3 ⁇ , BF 4 ⁇ , PF 6 ⁇ , AsF 6 ⁇ , and SbF 6 ⁇ are used.
  • an initiator is used.
  • the curable composition of this invention may contain 2 or more types of photocationic polymerization initiators.
  • Aromatic sulfonium salts include diphenyl-4- (phenylthio) phenylsulfonium hexafluorophosphate, 4,4'-bis (diphenylsulfonio) diphenyl sulfide bishexafluorophosphate, 4,4'-bis [di ( ⁇ -hydroxy Ethoxy) phenylsulfonio] diphenylsulfide bishexafluoroantimonate, 4,4′-bis [di ( ⁇ -hydroxyethoxy) phenylsulfonio] diphenylsulfide bishexafluorophosphate, 7- [di (p-toluyl) sulfonio] -2-Isopropylthioxanthone hexafluoroantimonate, 7- [di (p-toluyl) sulfonio] -2-isopropylthioxanthone
  • Aromatic iodonium salts include diphenyliodonium tetrakis (pentafluorophenyl) borate, diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, di (4-nonylphenyl) iodonium hexafluorophosphate, (4-methoxyphenyl) phenyliodonium Examples include hexafluoroantimonate and bis (4-t-butylphenyl) iodonium hexafluorophosphate.
  • aromatic diazonium salt examples include benzenediazonium hexafluoroantimonate, benzenediazonium hexafluorophosphate, benzenediazonium tetrafluoroborate, 4-chlorobenzenediazonium hexafluorophosphate, and the like.
  • aromatic phosphonium salt examples include benzyltriphenylphosphonium hexafluoroantimonate.
  • aromatic selenium salts examples include triphenyl selenium hexafluorophosphate.
  • Iron-allene complexes include xylene-cyclopentadienyl iron (II) hexafluoroantimonate, cumene-cyclopentadienyl iron (II) hexafluorophosphate, xylene-cyclopentadienyl iron (II) tris (trifluoro Methylsulfonyl) methanide and the like.
  • the content of the cationic photopolymerization initiator in the curable composition of the present invention is such that the epoxy composition is contained in 100 parts by mass of the monoepoxy compound contained in the curable composition, or other epoxy compounds described later.
  • the amount is preferably 0.1 to 20 parts by mass, more preferably 0.3 to 15 parts by mass with respect to 100 parts by mass of the total amount.
  • epoxy compounds contained in the curable composition of the present invention are compounds other than the monoepoxy compound represented by the above formula (1), and molecules It is a compound which has 1 or more of epoxy groups in it, Preferably it is 2 or more, and if it is such a compound, it will not specifically limit.
  • Examples of other epoxy compounds contained in the curable composition of the present invention include glycidyl ether type epoxides, glycidyl ester type epoxides, glycidyl amine type epoxides, and alicyclic epoxides.
  • the other epoxy compound may be an epoxy resin obtained by polymerizing glycidyl ether type epoxide, glycidyl ester type epoxide, glycidyl amine type epoxide, alicyclic epoxide, or the like.
  • Examples of the glycidyl ether type epoxide include bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, tetramethylbiphenol diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, and brominated bisphenol A diglycidyl ether.
  • Glycidyl ester type epoxides include glycidyl methacrylate, phthalic acid diglycidyl ester, isophthalic acid diglycidyl ester, terephthalic acid diglycidyl ester, cyclohexanedicarboxylic acid diglycidyl ester, trimetic acid triglycidyl ester and the like. Examples include mold polyepoxides.
  • Examples of the glycidylamine type epoxide include N, N-diglycidylaniline, N, N-diglycidyltoluidine, N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane, N, N, N ′, N′-tetraglycidyl.
  • Glycidyl aromatic amines such as diaminodiphenylsulfone, N, N, N ′, N′-tetraglycidyldiethyldiphenylmethane, bis (N, N-diglycidylaminocyclohexyl) methane (N, N, N ′, N′-tetraglycidyl) Hydride of diaminodiphenylmethane), N, N, N ′, N′-tetraglycidyl-1,3- (bisaminomethyl) cyclohexane (hydride of N, N, N ′, N′-tetraglycidylxylylenediamine) , Trisglycidylmelamine, triglycidyl-p-aminophenol, N-g Glycidyl heterocyclic amines such as glycidyl 4-glycidyl oxy pyrrolidone.
  • Alicyclic epoxides include vinylcyclohexene dioxide, limonene dioxide, dicyclopentadiene dioxide, bis (2,3-epoxycyclopentyl) ether, ethylene glycol bisepoxy dicyclopentyl ether, 3,4-epoxy-6-methylcyclohexane.
  • the content of the other epoxy compound is preferably 1 to 99% by mass, and preferably 5 to 95% by mass with respect to the curable composition of the present invention. Is more preferable.
  • the content ratio of the monoepoxy compound and the other epoxy compound different from the monoepoxy compound is preferably 1:99 to 75:25 on a mass basis. More preferably, it is 95 to 50:50.
  • the other epoxy compound different from the monoepoxy compound is an epoxy resin.
  • the other epoxy compound different from the monoepoxy compound is selected from the group consisting of a glycidyl ether type epoxide, a glycidyl ester type epoxide, and an alicyclic epoxide.
  • the curable composition of the present invention may further contain a reactive diluent for reducing the viscosity.
  • the reactive diluent include monoepoxy compound (A) prepared by the method described in Example I1, butyl glycidyl ether, 2-ethylhexyl glycidyl ether, glycidyl ether of C12-13 mixed alcohol, 1, 2 -Epoxy-4-vinylcyclohexane and the like.
  • the curable composition may contain one or more reactive diluents as described above. What is necessary is just to adjust the mixing ratio of a reactive diluent suitably so that the curable composition containing a reactive diluent may become a desired viscosity.
  • the curable composition of the present invention may further contain an oxetane compound.
  • the oxetane compound include 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, 3-ethyl-3-hydroxymethyloxetane, 3-ethyl-3- (phenoxymethyl) oxetane, di [( 3-ethyl-3-oxetanyl) methyl] ether, 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane, 3-ethyl-3- (cyclohexyloxymethyl) oxetane, phenol novolac oxetane, 1,3-bis [ (3-Ethyloxetane-3-yl)] methoxybenzene, oxetanylsilsesquioxane, oxetanyl silicate, bis [1
  • the content of the oxetane compound in the curable composition is preferably 1 to 90% by mass, and more preferably 5 to 85% by mass.
  • the curable composition of the present invention may further contain a vinyl ether compound.
  • the vinyl ether compound include monofunctional vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, and butyl vinyl ether, ethylene glycol divinyl ether, butanediol divinyl ether, cyclohexanedimethanol divinyl ether, cyclohexanediol divinyl ether, and trimethylolpropane trivinyl ether.
  • Polyfunctional vinyl ethers such as pentaerythritol tetravinyl ether, glycerol trivinyl ether, triethylene glycol divinyl ether, diethylene glycol divinyl ether, hydroxyethyl vinyl ether, hydroxybutyl vinyl ether, cyclohexanedimethanol monovinyl ether, cyclohexanediol monovinyl Ether, 9-hydroxynonyl vinyl ether, propylene glycol monovinyl ether, neopentyl glycol monovinyl ether, glycerol divinyl ether, glycerol monovinyl ether, trimethylolpropane divinyl ether, trimethylolpropane monovinyl ether, pentaerythritol monovinyl ether, pentaerythritol divinyl ether, penta Vinyl ether compounds having a hydroxyl group such as erythri
  • the content of the vinyl ether compound in the curable composition is preferably 1 to 90% by mass, and more preferably 5 to 85% by mass.
  • the curable composition of the present invention may further contain a compound having a hydroxyl group.
  • the curing reaction can be allowed to proceed slowly.
  • the compound having a hydroxyl group include ethylene glycol, diethylene glycol, glycerin and the like.
  • the curable composition of the present invention may contain one or more compounds having a hydroxyl group as described above.
  • the content of the compound having a hydroxyl group in the curable composition of the present invention is preferably 0.1 to 10% by mass, and preferably 0.2 to 8% by mass. More preferred.
  • the curable composition of the present invention may further contain a solvent.
  • the solvent include methyl ethyl ketone, ethyl acetate, toluene, methanol and ethanol.
  • the curable composition of the present invention may contain various additives as long as the characteristics are not impaired.
  • additives include fillers, silane coupling agents, mold release agents, colorants, flame retardants, antioxidants, light stabilizers and plasticizers, antifoaming agents, light stabilizers, pigments, dyes, and the like.
  • the cured product of the present invention is obtained by curing the curable composition of the present invention described above.
  • the method of hardening a curable composition is not specifically limited, It can carry out suitably by a heating or light irradiation.
  • the curing reaction can be performed by primary heating at 60 to 120 ° C. for 10 to 150 minutes and secondary heating at 130 to 200 ° C. for 60 to 300 minutes. Further, for example, the curing reaction is performed by primary heating at 60 to 100 ° C. for 10 to 150 minutes, secondary heating at 120 to 160 ° C. for 10 to 150 minutes, and tertiary heating at 180 to 250 ° C. for 10 to 150 minutes. It can be carried out.
  • the curable composition when the curable composition is cured by heating, it is preferable to heat the curable composition in a multistage manner in consideration of the high reactivity of the monoepoxy compound of the present invention.
  • hardening reaction can fully advance.
  • primary heating at 40 to 70 ° C. for 10 to 150 minutes
  • secondary heating at 71 to 100 ° C. for 10 to 150 minutes
  • tertiary heating at 101 to 140 ° C. for 10 to 180 minutes
  • 141 to 170 ° C The curing reaction can be performed by quaternary heating for 10 to 150 minutes and quintic heating for 10 to 150 minutes at 171 to 220 ° C.
  • the present invention is not limited to this, and it is preferable to carry out by appropriately changing in consideration of the content of the monoepoxy compound and the other compounds contained in the curable composition.
  • the type and conditions of the active energy rays to be used are appropriately changed according to the composition of the curable composition. It is preferable to do. In one embodiment, it is more preferable to irradiate with ultraviolet rays so that the integrated light amount represented by the product of irradiation intensity and irradiation time is 10 to 5000 mJ / cm 2 .
  • the curable composition and the cured product of the present invention are applied on a substrate such as an adhesive, a pressure-sensitive adhesive, a metal, a resin film, glass, paper, and wood. Paints, surface protection films for semiconductor elements and organic thin film elements (for example, organic electroluminescence elements and organic thin film solar cell elements), coating agents such as hard coating agents, antifouling films and antireflection films, lenses, prisms, filters, Image display materials, lens arrays, optical semiconductor element sealing materials and reflector materials, semiconductor element sealing materials, optical waveguides, light guide plates, light diffusion plates, diffraction elements, optical adhesives, and other optical members, casting Examples include materials, interlayer insulators, protective insulating films for printed alignment substrates, and fiber-reinforced composite materials.
  • a substrate such as an adhesive, a pressure-sensitive adhesive, a metal, a resin film, glass, paper, and wood. Paints, surface protection films for semiconductor elements and organic thin film elements (for example, organic electroluminescence elements and organic thin film solar cell elements
  • the reactive diluent of the present invention comprises at least a monoepoxy compound represented by the above formula (1).
  • the reactive diluent of the present invention can be mixed with another epoxy compound different from the monoepoxy compound.
  • the mixing ratio with other different epoxy compounds is preferably 1:99 to 75:25, more preferably 5:95 to 50:50 on a mass basis.
  • a preferred embodiment of the present invention, aspect I of the present invention includes the following inventions.
  • a curable composition comprising the monoepoxy compound according to (1), another epoxy compound different from the monoepoxy compound, and a curing agent or a thermal cationic polymerization initiator.
  • the content ratio of the monoepoxy compound according to (1) above to another epoxy compound different from the monoepoxy compound is 1:99 to 75:25 on a mass basis.
  • the curable composition according to (2), wherein (4) The curable composition according to (2) or (3), wherein the curing agent is one or more curing agents selected from the group consisting of a phenol compound, an amine compound, an acid anhydride compound, and an amide compound. object.
  • the other epoxy compound different from the monoepoxy compound is selected from the group consisting of a glycidyl ether type epoxide, a glycidyl ester type epoxide, and an alicyclic epoxide, according to any one of (2) to (4) Curable composition.
  • the thermal cationic polymerization initiator is selected from the group consisting of an aromatic sulfonium salt-based thermal cationic polymerization initiator, an aromatic iodonium salt-based thermal cationic polymerization initiator, and an aluminum complex-based thermal cationic polymerization initiator.
  • the curable composition when contained in the curable composition, prevents the decrease in the heat resistance of the curable composition and the weight loss when the curable composition is cured.
  • a monoepoxy compound capable of reducing the viscosity of the product can be provided.
  • a preferred embodiment of the present invention, aspect II of the present invention includes the following inventions.
  • the curable composition according to (1) further comprising another epoxy compound different from the monoepoxy compound.
  • the content ratio of the monoepoxy compound and the other epoxy compound different from the monoepoxy compound in the curable composition is 1:99 to 75:25 on a mass basis.
  • a preferred embodiment of the present invention, aspect III of the present invention includes the following inventions.
  • (1) a monoepoxy compound in which the ratio of the peak area derived from the stereoisomer having the above relationship to the total peak area in the chemical shift range of 140 to 145 ppm is 66% or more.
  • R 1 to R 6 are each independently selected from the group consisting of hydrogen, an alkyl group and an alkoxy group
  • the monoepoxy compound according to (1), wherein R 1 to R 6 are all hydrogen, and a stereoisomer in which the bridge position of the norbornane skeleton and the vinyl group are in a trans relationship is represented by the following chemical formula: .
  • the curing agent according to (5) wherein the curing agent is one or more curing agents selected from the group consisting of a phenolic curing agent, an amine curing agent, an acid anhydride curing agent, and an amide curing agent.
  • Curable composition (7) A cured product of the curable composition according to (5) or (6).
  • a monoepoxy compound capable of producing a cured product having high heat resistance can be provided.
  • Example of embodiment I of the present invention I-1.
  • Example I1 Synthesis of monoepoxy compound (A) (1) Synthesis of monoepoxy compound (A) (Example I1-1) A reaction vessel equipped with a thermometer, a stirrer, a reflux tube, and a dropping device was charged with 3132 g of a diolefin compound represented by the following formula (3), 3132 g of toluene, and sodium acetate, and 38% excess was stirred while stirring at ⁇ 5 ° C. Acetic acid aqueous solution 3783g was dripped over 5 hours. Stirring was continued at -5 ° C as it was, and the reaction was carried out for 17 hours.
  • liquid separation operation was performed. Distillation was performed at a pressure of 2 hPa and a column bottom temperature of 130 to 140 ° C. to obtain 2109 g of a colorless and transparent liquid.
  • liquid separation extraction operation was performed using 450 g of chloroform.
  • the organic layer was washed with 300 mL of 10% aqueous sodium thiosulfate solution, 300 mL of 10% aqueous sodium carbonate solution, and 300 mL of pure water.
  • the solvent was distilled off with a rotary evaporator. Distillation was performed at a pressure of 3 hPa and a tower bottom temperature of 140 to 160 ° C. to obtain 50.1 g of a target monoepoxy compound (A) represented by the above formula (1).
  • Example I2 Preparation and Evaluation of Curable Composition Containing Monoepoxy Compound (A) (Part 1: Combination of Epoxy Compound (IB-1) and Curing Agent) (1) Preparation of Example I2-1 Curable Composition 13 parts by mass of the monoepoxy compound (A) obtained in Example I1-1, 100 parts by mass of the epoxy compound (IB-1), and 91 parts of the curing agent. 2 parts by mass of a mass part and a curing accelerator were blended to prepare a curable composition.
  • Example I2-1 Weight reduction rate of cured product of curable composition
  • Comparative Examples I2-1 to I2-4 were cured by heating at 100 ° C. for 2 hours and at 160 ° C. for 4 hours in a hot air circulating oven, and the curable compositions were cured. A cured product was obtained.
  • the glass transition temperature of the cured product obtained as described above was measured with a differential scanning calorimeter DSC7020 manufactured by Hitachi High-Tech Science Inc. at a rate of 10 ° C./min from 30 to 300 ° C. to determine the heat resistance of the cured product. .
  • the glass transition temperature referred to herein is one that is described in JIS K7121 "transition temperature Measurement of Plastics""midpoint glass transition temperature: T mg" was measured according to. The measurement results are summarized in Table I-1.
  • Epoxy compound (IB-1) bisphenol A type liquid epoxy resin, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name YD-128
  • IC-1 Butyl glycidyl ether (manufactured by Yokkaichi Synthesis, trade name: DY-BP)
  • IC-2 2-ethylhexyl glycidyl ether (manufactured by Yokkaichi Synthesis, trade name: Epogosay 2EH)
  • IC-3 Glycidyl ether of C12-13 mixed alcohol (manufactured by Yokkaichi Chemical Co., Ltd., trade name: EPOGOSE EN)
  • Hardener Mixture of methylhexahydrophthalic anhydride and hexahydrophthalic anhydride, manufactured by Shin Nippon Rika Co., Ltd., trade name: Jamaicacid MH-700 Curing accelerator: 2-ethyl-4-methylimidazole, manufactured by Shi
  • Example I3 Preparation and Evaluation of Curable Composition Containing Monoepoxy Compound (A) (Part 2: Combination of Epoxy Compound (IB-2) and Curing Agent) (1)
  • Example I3-1 17 parts by mass of the monoepoxy compound (A) obtained in Example I1-1, 100 parts by mass of the epoxy compound (IB-2), 129 parts by mass of the curing agent, and 2 parts by mass of the curing accelerator were blended. A curable composition was prepared.
  • Example I3-1 Weight reduction rate of cured product of curable composition
  • Comparative Examples I3-1 to I3-4 were cured by heating in a hot air circulating oven at 100 ° C. for 2 hours, 160 ° C. for 2 hours, and 220 ° C. for 2 hours.
  • a cured product of the curable composition was obtained.
  • the weight loss rate was calculated in the same manner as in Example I2-1.
  • the measurement results are summarized in Table I-2.
  • Epoxy compound (IB-2) 3 ′, 4′-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate, manufactured by Daicel, trade name: Celoxide 2021P
  • Example I4 Preparation and Evaluation of Curable Composition Containing Monoepoxy Compound (A) (Part 3: Combination of Epoxy Compound (IB-1) and Thermal Cationic Initiator) (1)
  • Example I4-1 40 parts by mass of the monoepoxy compound (A) obtained in Example I1-1, 60 parts by mass of the epoxy compound (IB-1) and 1 part by mass of a thermal cationic polymerization initiator were blended to prepare a curable composition. did.
  • Example I4-1 Weight reduction rate of cured product of curable composition
  • Comparative Examples I4-1 to I4-4 were cured by heating in a hot air circulating oven at 80 ° C. for 2 hours, 120 ° C. for 2 hours, and 180 ° C. for 2 hours.
  • a cured product of the curable composition was obtained.
  • the weight loss rate was calculated in the same manner as in Example I2-1.
  • the measurement results are summarized in Table I-3.
  • IC-4 1,2-epoxy-4-vinylcyclohexane (Daicel, trade name: Celoxide 2000)
  • Thermal cationic polymerization initiator aromatic sulfonium salt, manufactured by Sanshin Chemical Industry, trade name: SI-80L
  • Example I5 Preparation and Evaluation of Curable Composition Containing Monoepoxy Compound (A) (Part 4: Combination with Epoxy Compound (IB-2) and Thermal Cationic Initiator) (1)
  • Example I5-1 50 parts by mass of the monoepoxy compound (A) obtained in Example I1-1, 50 parts by mass of the epoxy compound (IB-2) and 1 part by mass of a thermal cationic polymerization initiator were blended to prepare a curable composition. did.
  • Example I5-1 Weight reduction rate of cured product of curable composition
  • the curable compositions obtained in Example I5-1 and Comparative Examples I5-1 to I5-4 were heated in a hot air circulating oven at 60 ° C. for 2 hours, 80 ° C. for 2 hours, 120 ° C. for 1 hour, 150 ° C. for 1 hour, It hardened
  • the weight loss rate was calculated in the same manner as in Example I2-1. The measurement results are summarized in Table I-4.
  • Example I6 Preparation and evaluation of curable composition containing monoepoxy compound (A) (Part 5: Combination of various epoxy compounds and thermal cationic polymerization initiator) (1) Examples I6-1 to I6-6 and Comparative Examples I6-1 to I6-12 A curable composition was obtained in the same manner as in Example I2-1 except that the composition of the curable composition was changed as shown in Tables I-5 to I-7 using the following components.
  • Epoxy compound (IB-4) A phenol novolac type epoxy resin, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name: YDPN-638 was used.
  • Epoxy compound (IB-6) Hydrogenated bisphenol A liquid epoxy resin, manufactured by Mitsubishi Chemical Corporation, trade name: YX8000 was used.
  • Epoxy compound (IB-9) Cyclohexanedicarboxylic acid diglycidyl ester, a reagent manufactured by Tokyo Chemical Industry Co., Ltd. was used.
  • Epoxy compound (IB-10) Vinylcyclohexene dioxide and a reagent manufactured by Sigma-Aldrich were used.
  • Example I6-1 The curable composition obtained as described above was cured by heating in a hot air circulating oven at 150 ° C. for 1 hour, 180 ° C. for 1 hour, and 240 ° C. for 2 hours to obtain a cured product of the curable composition.
  • Example I6-2 The curable composition obtained as described above was cured by heating at 120 ° C. for 1 hour and at 220 ° C. for 2 hours in a hot air circulating oven to obtain a cured product of the curable composition.
  • Example I6-3 The curable composition obtained as described above was cured by heating in a hot air circulating oven at 150 ° C. for 1 hour, 170 ° C. for 1 hour, and 210 ° C. for 2 hours to obtain a cured product of the curable composition. .
  • Example I6-4 The curable composition obtained as described above was cured by heating at 120 ° C. for 1 hour and at 220 ° C. for 2 hours in a hot air circulating oven to obtain a cured product of the curable composition.
  • Example I6-5 The curable composition obtained as described above was cured by heating in a hot air circulating oven at 110 ° C. for 1 hour, 170 ° C. for 1 hour, and 220 ° C.
  • Example I6-6 The curable composition obtained as described above was cured by heating in a hot air circulating oven at 110 ° C. for 1 hour, 130 ° C. for 1 hour, and 220 ° C. for 2 hours to obtain a cured product of the curable composition. . (a ') Comparative Example I6-1 The curable composition obtained as described above was cured by heating in a hot air circulating oven at 150 ° C. for 1 hour, 180 ° C. for 1 hour, and 240 ° C. for 2 hours to obtain a cured product of the curable composition. .
  • Evaluation of weight reduction rate When each measurement result of the weight reduction rate of the cured product is equal to or less than the reference value described for each experimental section in each table, the evaluation criteria for the weight reduction rate shall be satisfied.
  • Evaluation of heat resistance When each measurement result of the heat resistance of the cured product is equal to or greater than the standard value described for each experimental section in each table, the heat resistance evaluation standard shall be satisfied.
  • Comprehensive evaluation When all the above three evaluation criteria are satisfied, the comprehensive evaluation is evaluated as ⁇ .
  • Example I7 Preparation and Evaluation of Curable Composition Containing Monoepoxy Compound (A) (Part 6: Combination with Various Oxetane Compounds and Thermal Cationic Polymerization Initiator) (1)
  • Examples I7-1 to I7-4 and Comparative Examples I7-1 to I7-8 A curable composition was obtained in the same manner as in Example I2-1 except that the composition of the curable composition was changed as shown in Tables I-8 and I-9 using the following components.
  • Epoxy compound (IB-1) Bisphenol A type liquid epoxy resin, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name: YD-128 was used.
  • Example I7-1 The curable composition obtained as described above was cured by heating at 120 ° C. for 1 hour, 140 ° C. for 1 hour, and 220 ° C. for 2 hours in a hot air circulating oven to obtain a cured product of the curable composition.
  • Example I7-2 The curable composition obtained as described above was cured by heating at 110 ° C. for 1 hour, 150 ° C. for 1 hour, and 220 ° C. for 2 hours in a hot air circulating oven to obtain a cured product of the curable composition. .
  • Example I7-3 The curable composition obtained as described above was cured by heating in a hot air circulating oven at 110 ° C. for 1 hour, 130 ° C. for 1 hour, and 220 ° C. for 2 hours to obtain a cured product of the curable composition.
  • Example I7-4 The curable composition obtained as described above was cured by heating at 120 ° C. for 1 hour, 170 ° C. for 1 hour, and 220 ° C. for 2 hours in a hot air circulating oven to obtain a cured product of the curable composition. .
  • (a ') Comparative Example I7-1 The curable composition obtained as described above was cured by heating at 120 ° C. for 1 hour, 140 ° C.
  • Evaluation of weight reduction rate When each measurement result of the weight reduction rate of the cured product is equal to or less than the reference value described for each experimental section in each table, the evaluation criteria for the weight reduction rate shall be satisfied.
  • Evaluation of heat resistance When each measurement result of the heat resistance of the cured product is equal to or greater than the standard value described for each experimental section in each table, the heat resistance evaluation standard shall be satisfied.
  • Comprehensive evaluation When all the above three evaluation criteria are satisfied, the comprehensive evaluation is evaluated as ⁇ .
  • Example I8 Preparation and Evaluation of Curable Composition Containing Monoepoxy Compound (A) (Part 7: Combination with Various Thermal Cationic Initiators) (1) Examples I8-1 to I8-4 and Comparative Examples I8-1 to I8-8 A curable composition was obtained in the same manner as in Example I2-1 except that the composition of the curable composition was changed as shown in Tables I-10 and I-11 using the following components.
  • Epoxy compound (IB-1) Bisphenol A type liquid epoxy resin, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name: YD-128 was used.
  • (ii) Monoepoxy compound (A) The monoepoxy compound (A) obtained in Example I1-1 was used.
  • Reactive diluent IC-2
  • 2-Ethylhexyl glycidyl ether manufactured by Yokkaichi Gosei Co., Ltd., trade name: Epogosay 2EH was used.
  • IE-3 Thermal cationic polymerization initiator 4-hydroxyphenylbenzylmethylsulfonium hexafluoroantimonate, manufactured by Sanshin Chemical Industry Co., Ltd., trade name: SI-100L was used.
  • Thermal cationic polymerization initiator (IE-4) Bis [4- (di (4- (2-hydroxyethoxy)) phenylsulfonio) phenyl] sulfide bishexafluoroantimonate, manufactured by ADEKA, Adeka Arcles SP-170 was used.
  • Thermal cationic polymerization initiator (IE-5) Diphenyl-4- (phenylthio) phenylsulfonium hexafluoroantimonate, CPI-101A manufactured by San Apro was used.
  • Example I8-1 The curable composition obtained as described above was cured by heating at 115 ° C. for 1 hour, 130 ° C. for 1 hour, 190 ° C. for 1 hour, and 240 ° C. for 2 hours in a hot air circulating oven. A cured product was obtained.
  • Example I8-2 The curable composition obtained as described above was cured by heating at 120 ° C. for 1 hour and 240 ° C. for 2 hours in a hot air circulating oven to obtain a cured product of the curable composition.
  • Example I8-3 The curable composition obtained as described above was cured by heating at 80 ° C. for 1 hour, 140 ° C. for 1 hour, and 180 ° C. for 2 hours in a hot air circulating oven to obtain a cured product of the curable composition.
  • Example I8-4 The curable composition obtained as described above was cured by heating at 140 ° C. for 1 hour, 160 ° C. for 1 hour, and 240 ° C. for 2 hours in a hot air circulating oven to obtain a cured product of the curable composition. . (a ') Comparative Example I8-1 The curable composition obtained as described above was cured by heating at 115 ° C. for 1 hour, 130 ° C.
  • Evaluation of weight reduction rate When each measurement result of the weight reduction rate of the cured product is equal to or less than the reference value described for each experimental section in each table, the evaluation criteria for the weight reduction rate shall be satisfied.
  • Evaluation of heat resistance When each measurement result of the heat resistance of the cured product is equal to or greater than the standard value described for each experimental section in each table, the heat resistance evaluation standard shall be satisfied.
  • Comprehensive evaluation When all the above three evaluation criteria are satisfied, the comprehensive evaluation is evaluated as ⁇ .
  • Example II Example of embodiment II of the present invention II-1.
  • Example II1 Preparation and Evaluation of Curable Composition Containing Monoepoxy Compound (A) (Part 1: Combination with Epoxy Compound (IIB-1) and Photocationic Initiator (IID-1)) (1)
  • Example II1-1 Preparation of curable composition
  • the monoepoxy compound (A) obtained as described above, the other epoxy compound (IIB-1) and the photocationic polymerization initiator (IID-1) have the following composition.
  • a curable composition was prepared.
  • ⁇ Curable composition composition Monoepoxy compound (A) 25 parts by mass (monoepoxy compound produced by the method described in Example I1-1) ⁇ 75 parts by mass of other epoxy compound (IIB-1) (bisphenol A type liquid epoxy resin, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name: YD-128) Photocationic polymerization initiator (IID-1) 10 parts by mass (aromatic sulfonium salt: diphenyl-4- (phenylthio) phenylsulfonium hexafluorophosphate 50% propylene carbonate solution, product of San Apro, trade name: CPI-100P)
  • Example II1-2 and Example II1-3 A curable composition was obtained in the same manner as in Example II1-1 except that the contents of the monoepoxy compound (A) and other epoxy compounds (IIB-1) were changed to the amounts shown in Table II-1.
  • Comparative Example II1-1 A curable composition was produced in the same manner as in Example II1-1 except that the monoepoxy compound (A) was changed to 1,2-epoxy-4-vinylcyclohexane (manufactured by Daicel, trade name: Celoxide 2000). .
  • Example II-2 Preparation and Evaluation of Curable Composition Containing Monoepoxy Compound (A) (Part 2: Combination with Epoxy Compound (IIB-13) and Photocationic Polymerization Initiator (IID-1)) (1)
  • Example II2-1 Preparation of curable composition
  • the monoepoxy compound (A) obtained as described above, the other epoxy compound (IIB-13), and the photocationic polymerization initiator (IID-1) have the following composition.
  • a curable composition was prepared.
  • ⁇ Curable composition composition Monoepoxy compound (A) 50 parts by mass (monoepoxy compound produced by the method described in Example I1-1) -50 parts by mass of other epoxy compound (IIB-13) ((3,3 ′, 4,4′-diepoxy) bicyclohexyl, manufactured by Daicel, trade name: Celoxide 8000)
  • Example II2-2 A curable composition was obtained in the same manner as in Example II2-1 except that the contents of the monoepoxy compound (A) and other epoxy compounds (IIB-13) were changed to the amounts shown in Table II-2.
  • Comparative Example II2-2 A curable composition was prepared in the same manner as in Comparative Example II2-1 except that the contents of 1,2-epoxy-4-vinylcyclohexane and other epoxy compounds (IIB-13) were changed to those shown in Table II-2. Got.
  • Example II3 Preparation and Evaluation of Curable Composition Containing Monoepoxy Compound (A) (Part 3: Combination with Various Epoxy Compounds and Photocationic Polymerization Initiator (IID-1)) (1) Examples II3-1 to II3-8 and Comparative Examples II3-1 to II3-8 A curable composition was obtained in the same manner as in Example II1-1 except that the composition of the curable composition was changed as shown in Tables II-3 and II-4 using the following components. (i) Epoxy compound (IIB-2) 3 ′, 4′-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate, manufactured by Daicel Corporation, trade name: Celoxide 2021P was used.
  • Epoxy compound (IIB-3) A cresol novolac type epoxy resin, manufactured by DIC, trade name: N-660 was used.
  • Epoxy compound (IIB-5) Bisphenol F type liquid epoxy resin, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name: YDF-170 was used.
  • Epoxy compound (IIB-6) Hydrogenated bisphenol A liquid epoxy resin, manufactured by Mitsubishi Chemical Corporation, trade name: YX8000 was used.
  • Epoxy compound (IIB-8) Tetramethylene glycol diglycidyl ether and a reagent manufactured by Tokyo Chemical Industry Co., Ltd. were used.
  • Epoxy compound (IIB-9) Cyclohexanedicarboxylic acid diglycidyl ester, a reagent manufactured by Tokyo Chemical Industry Co., Ltd. was used.
  • Epoxy compound (IIB-11) 1,2-epoxy- (2-oxiranyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol, manufactured by Daicel Corporation, trade name: EHPE3150 was used.
  • Epoxy compound (IIB-14) Tetrahydroindene diepoxide produced by the method described in JP 2012-116390 A was used.
  • Monoepoxy compound (A) The monoepoxy compound produced by the method described in Example I1-1 was used.
  • Example II4 Preparation and Evaluation of Curable Composition Containing Monoepoxy Compound (A) (Part 4: Combination with Various Oxetane Compounds and Photocationic Polymerization Initiator (IID-1)) (1) Examples II4-1 and II4-2 and Comparative Examples II4-1 and II4-2 A curable composition was obtained in the same manner as in Example II1-1 except that the composition of the curable composition was changed as shown in Table II-5 using the following components. (i) Monoepoxy compound (A) The monoepoxy compound produced by the method described in Example I1-1 was used.
  • Photocationic polymerization initiator (v) A 50% propylene carbonate solution of diphenyl-4- (phenylthio) phenylsulfonium hexafluorophosphate, CPI-100P, manufactured by San Apro, was used.
  • Example II-5 Preparation and Evaluation of Curable Composition Containing Monoepoxy Compound (A) (Part 5: Combination with Epoxy Compound (IIB-1) and Various Photocationic Polymerization Initiators) (1) Examples II5-1 and II5-2 and Comparative Examples II5-1 and II5-2 A curable composition was obtained in the same manner as in Example II1-1 except that the composition of the curable composition was changed as shown in Table II-6 using the following components. (i) Epoxy compound (IIB-1) Bisphenol A type liquid epoxy resin, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name: YD-128 was used.
  • Photocationic polymerization initiator (IID-3) Bis [4- (di (4- (2-hydroxyethoxy)) phenylsulfonio) phenyl] sulfide bishexafluoroantimonate, manufactured by ADEKA, Adeka Arcles SP-170 was used.
  • Example III Example of embodiment III of the invention III-1.
  • Example III1 Synthesis of monoepoxy compound (A-1) In a reaction vessel equipped with a thermometer, a stirrer, a reflux tube and a dropping device, 3132 g of a diolefin compound represented by the following formula (3), 3132 g of toluene and sodium acetate Then, 3783 g of 38% aqueous solution of peracetic acid was added dropwise over 5 hours while stirring at ⁇ 5 ° C. Stirring was continued at -5 ° C as it was, and the reaction was carried out for 17 hours. Subsequently, after performing the neutralization process using 10% sodium sulfite aqueous solution, liquid separation operation was performed. Distillation was performed at a pressure of 2 hPa and a column bottom temperature of 130 to 140 ° C. to obtain 2109 g of a monoepoxy compound (A-1) satisfying the above formula (1), which is a colorless and transparent liquid.
  • the obtained monoepoxy compound (A-1) was subjected to 13 C-NMR analysis under the following conditions.
  • the peak area derived from the stereoisomer in which the bridgehead position of the norbornane skeleton and the vinyl group are in a trans relationship, that is, the compounds represented by the following formulas (4 ′) and (5 ′), has a chemical shift of 140 to 145 ppm.
  • the ratio with respect to the total peak area in the range was 77.03%.
  • An NMR chart of the monoepoxy compound (A-1) is shown in FIG.
  • the ratio of the total peak area of the monoepoxy compound (A-1) in the chemical shift range of 140 to 142 ppm to the total peak area in the range of 140 to 145 ppm is 77.03%. there were. Further, according to the NMR chart of FIG. 2, the total peak area in the range of 140 to 145 ppm of the first peak area generated from the low magnetic field side in the chemical shift range of 140 to 142 ppm of the monoepoxy compound (A-1). The ratio to was 61.40%.
  • the monoepoxy compound (A-1) was analyzed by gas chromatography under the following conditions.
  • a gas chromatograph of the monoepoxy compound (A-1) is shown in FIG. (Gas chromatography analysis conditions)
  • Measuring instrument Agilent 6850 series manufactured by Agilent Technologies, Inc. Column: HP-1, dimethylpolysiloxane, length: 60.0 m, inner diameter: 250 ⁇ m, film thickness: 0.25 ⁇ m
  • Carrier gas N 2 Flow rate: 1.3 mL / min Sample inlet temperature: 140 ° C. Detector temperature: 250 ° C Sample injection volume: 0.2 ⁇ L
  • Temperature rising conditions 80 ° C. (3 minutes), 80 to 150 ° C. (10 ° C./min), 150 to 250 ° C. (5 ° C./min), 250 ° C. (20 minutes)
  • Example III2 Synthesis of monoepoxy compound (A-2) In a reaction vessel equipped with a thermometer, a stirrer, a reflux tube and a dropping device, 6.4 g of 35% hydrogen peroxide, H 3 PW 12 O 0.36 g of 40 was added and stirred at 60 ° C. for 30 minutes. After cooling at 40 ° C., 80.11 g of the diolefin compound represented by the above formula (3), 0.13 g of cetylpyridinium chloride, and 596 g of chloroform were added. Thereafter, 44.84 g of 35% hydrogen peroxide was dropped while stirring at 40 ° C., and the reaction was carried out at 40 ° C. for 6 hours.
  • liquid separation extraction operation was performed using 450 g of chloroform.
  • the organic layer was washed with 300 mL of 10% aqueous sodium thiosulfate solution, 300 mL of 10% aqueous sodium carbonate solution, and 300 mL of pure water.
  • the solvent was distilled off with a rotary evaporator. Distillation was performed at a pressure of 3 hPa and a column bottom temperature of 140 to 170 ° C., and 4.9 g of the desired monoepoxy compound (A-2) was obtained at a column bottom temperature of 167 ° C.
  • the obtained monoepoxy compound (A-2) was subjected to 13 C-NMR analysis under the above conditions.
  • the ratio of the peak area derived from the stereoisomer in which the bridge position of the norbornane skeleton and the vinyl group are in a trans relationship to the total peak area at a shift value of 140 to 145 ppm was 64.89%.
  • the NMR chart of the monoepoxy compound (A-2) is shown in FIG.
  • the ratio of the total peak area of the monoepoxy compound (A-2) in the chemical shift range of 140 to 142 ppm to the total peak area in the range of 140 to 145 ppm is 64.89%. there were. Further, according to the NMR chart of FIG. 4, the total peak area in the range of 140 to 145 ppm of the first peak area generated from the low magnetic field side in the range of 140 to 142 ppm of the chemical shift of the monoepoxy compound (A-2). The ratio to the percentage was 31.04%.
  • the monoepoxy compound (A-2) was analyzed by gas chromatography as described above.
  • a gas chromatograph of the monoepoxy compound (A-2) is shown in FIG.
  • Example III3 Preparation and Evaluation of Curable Composition Containing Monoepoxy Compound with Variable Stereoisomer Content and Thermal Cationic Polymerization Initiator (Part 1)
  • Example III3-1 The monoepoxy compound (A-1) obtained as described above, the other epoxy compound (IIIB-1) and the thermal cationic polymerization initiator were mixed so as to have the following composition to obtain a curable composition. .
  • Example III3-2 A curable composition was obtained in the same manner as in Example III3-1 except that the monoepoxy compound (A-1) was changed to the monoepoxy compound (A-2).
  • Example III-4 Synthesis of monoepoxy compound (A-3)
  • A-2 In distillation during synthesis of monoepoxy compound (A-2), a fraction of 12.6 g was obtained at a tower bottom temperature of 151 ° C (A -3).
  • the obtained monoepoxy compound (A-3) was subjected to 13 C-NMR analysis under the above conditions.
  • the ratio of the peak area derived from the stereoisomer in which the bridge position of the norbornane skeleton and the vinyl group are in a trans relationship to the total peak area at a shift value of 140 to 145 ppm was 72.32%.
  • An NMR chart of the monoepoxy compound (A-3) is shown in FIG.
  • the ratio of the total peak area of the monoepoxy compound (A-3) in the chemical shift range of 140 to 142 ppm to the total peak area in the range of 140 to 145 ppm is 72.32%. there were. Further, according to the NMR chart of FIG. 6, the total peak area in the range of 140 to 145 ppm of the first peak area generated from the low magnetic field side in the chemical shift range of 140 to 142 ppm of the monoepoxy compound (A-3). The ratio to was 43.45%.
  • the monoepoxy compound (A-3) was analyzed by gas chromatography as described above.
  • a gas chromatograph of the monoepoxy compound (A-3) is shown in FIG.
  • Example III5 Preparation and Evaluation of Curable Composition Containing Monoepoxy Compound with Variable Stereoisomer Content and Thermal Cationic Polymerization Initiator (Part 2: Combination with Other Epoxy Compounds)
  • Example III5-1 The monoepoxy compound (A-1) obtained as described above, the other epoxy compound (IIIB-2), and the thermal cationic polymerization initiator were mixed so as to have the following composition to obtain a curable composition. .
  • composition of curable composition > ⁇ 40 parts by mass of monoepoxy compound (A-1) ⁇ 60 parts by mass of other epoxy compound (IIIB-2) (bisphenol A type liquid epoxy resin, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name YD-128) ⁇ Thermal cationic polymerization initiator 1 part by mass (aromatic sulfonium salt, manufactured by Sanshin Chemical Industry Co., Ltd., trade name: SI-80L)
  • Example III5-2 A curable composition was obtained in the same manner as in Example III5-1 except that the monoepoxy compound (A-1) was changed to the monoepoxy compound (A-3) synthesized as follows.
  • Example III5-3 A curable composition was obtained in the same manner as in Example III5-1 except that the monoepoxy compound (A-1) was changed to the monoepoxy compound (A-2).
  • Example III6 Preparation and evaluation of curable composition containing monoepoxy compound with varying stereoisomer content and acid anhydride curing agent (Part 1)
  • Example III6-1 The monoepoxy compound (A-1) obtained as described above, the other epoxy compound (IIIB-1), an acid anhydride curing agent and a curing accelerator are mixed so as to have the following composition and cured. A composition was obtained.
  • Example 6-2 A curable composition was obtained in the same manner as in Example (III6-1) except that the monoepoxy compound (A-1) was changed to the monoepoxy compound (A-2).
  • Example III7 Preparation and Evaluation of Curable Composition Containing Monoepoxy Compound with Varying Stereoisomer Content and Acid Anhydride Curing Agent (Part 2: Combination with Other Epoxy Compound)
  • Example III7-1 The monoepoxy compound (A-1) obtained as described above, the other epoxy compound (IIIB-2), an acid anhydride curing agent and a curing accelerator are mixed so as to have the following composition, and then cured. A composition was obtained.
  • ⁇ Composition of curable composition> -Mono epoxy compound (A-1) 55.5 parts by mass-Other epoxy compounds (IIIB-2) 100 parts by mass-Acid anhydride curing agent 125 parts by mass-Curing accelerator 3 parts by mass
  • Example III7-2 A curable composition was obtained in the same manner as in Example III7-1 except that the monoepoxy compound (A-1) was changed to the monoepoxy compound (A-2).

Abstract

Disclosed are a monoepoxy compound of formula (1), a curable composition containing the same, a cured product thereof, a method for producing the monoepoxy compound, and a reactive diluent containing the monoepoxy compound. The monoepoxy compound of formula (1) is useful in that, when contained in a curable composition, the monoepoxy compound makes it possible to lower the viscosity of a curable composition while preventing lowering of the heat resistance of the curable composition and weight loss during curing of the curable composition. (In the formula, R1 to R6 each independently are selected from the group consisting of hydrogen, alkyl groups, and alkoxy groups.)

Description

エポキシ化合物、硬化性組成物、硬化物、エポキシ化合物の製造方法および反応性希釈剤Epoxy compound, curable composition, cured product, method for producing epoxy compound, and reactive diluent 関連出願の参照Reference to related applications
 本特許出願は、先に出願された日本国における特許出願である特願2016-49712号(出願日:2016年3月14日)、特願2016-107724号(出願日:2016年5月30日)、特願2016-120014号(出願日:2016年6月16日)、特願2016-188868号(出願日:2016年月9日27日)、および特願2016-188882号(出願日:2016年9月27日)に基づく優先権の主張を伴うものである。この先の特許出願における全開示内容は、引用することにより本明細書の一部とされる。 The present patent application is filed in Japanese Patent Application No. 2016-49712 (filing date: March 14, 2016) and Japanese Patent Application No. 2016-107724 (filing date: May 30, 2016), which are previously filed in Japan. Japanese Patent Application No. 2016-122014 (Filing Date: June 16, 2016), Japanese Patent Application No. 2016-188868 (Filing Date: May 9, 2016 27th), and Japanese Patent Application No. 2016-188882 (Filing Date) : September 27, 2016) with priority claim. The entire disclosure of this earlier patent application is hereby incorporated by reference.
 本発明は、エポキシ化合物、硬化性組成物、硬化物、エポキシ化合物の製造方法および反応性希釈剤に関する。 The present invention relates to an epoxy compound, a curable composition, a cured product, a method for producing an epoxy compound, and a reactive diluent.
 ビスフェノールA型エポキシ樹脂等のエポキシ化合物を含んでなる代表的な液状硬化性組成物は、粘度が高く、その取り扱いには問題があった。液状硬化性組成物の低粘度化を目的として、硬化性組成物に溶剤を含有させることが行われているが、この方法では、硬化性組成物の硬化の際に溶剤が放出されてしまい、環境に悪影響を与えてしまうという問題があった。 A typical liquid curable composition containing an epoxy compound such as a bisphenol A type epoxy resin has a high viscosity and has a problem in handling. For the purpose of lowering the viscosity of the liquid curable composition, the curable composition has been made to contain a solvent, but in this method, the solvent is released when the curable composition is cured, There was a problem of adversely affecting the environment.
 このような問題に鑑み、ブチルグリシジルエーテルや1,2-エポキシ-4-ビニルシクロヘキサン等のエポキシ化合物等を、反応性希釈剤として、液状硬化性組成物に含有させることが行われている。 In view of such a problem, an epoxy compound such as butyl glycidyl ether or 1,2-epoxy-4-vinylcyclohexane is incorporated into the liquid curable composition as a reactive diluent.
 しかしながら、このようなエポキシ化合物を用いる方法では、硬化性組成物の粘度を十分に低下させることができない、硬化性組成物の耐熱性を過度に低下させてしまう、硬化性組成物を硬化させた際の重量減少率を増加させてしまう等の問題があった。 However, in the method using such an epoxy compound, the viscosity of the curable composition cannot be sufficiently lowered, the heat resistance of the curable composition is excessively lowered, and the curable composition is cured. There was a problem such as increasing the weight reduction rate.
 一方、耐熱性、耐候性等の優れた硬化性組成物として脂環式エポキシ化合物の実用化が進んでいる。ここで、引用文献1(特開昭49-126658号公報)には、特定のナフタレンタイプの骨格を持つ脂環式ジオレフィン化合物から製造された脂環式ジエポキシ化合物が開示されているが、これらの脂環式ジエポキシ化合物は針状結晶であり、固体であるため、液状硬化性組成物に用いることには適していない。 On the other hand, alicyclic epoxy compounds have been put into practical use as curable compositions having excellent heat resistance and weather resistance. Here, Cited Document 1 (Japanese Patent Laid-Open No. 49-126658) discloses an alicyclic diepoxy compound produced from an alicyclic diolefin compound having a specific naphthalene type skeleton. Since the alicyclic diepoxy compound is a needle-like crystal and is a solid, it is not suitable for use in a liquid curable composition.
特開昭49-126658号公報JP-A 49-126658
 本発明は、上記問題に鑑みてなされたものであり、硬化性組成物に含有させたとき、硬化性組成物の耐熱性の低下およびこの硬化性組成物を硬化させた際の重量減少を防止しつつ、硬化性組成物の粘度を低下させることができるモノエポキシ化合物の提供をその目的とするものである。 The present invention has been made in view of the above problems, and when it is contained in a curable composition, it prevents a decrease in heat resistance of the curable composition and a decrease in weight when the curable composition is cured. However, an object of the present invention is to provide a monoepoxy compound capable of reducing the viscosity of the curable composition.
 また、本発明者らは、このモノエポキシ化合物と光カチオン重合開始剤とを併用して硬化性組成物に含有させることにより、この硬化性組成物に活性エネルギー線を照射することにより硬化させた硬化物の密着性を飛躍的に向上させることができるということを見出した。本発明はかかる知見に基づくものであり、本発明の解決しようとする課題は、密着性に優れる硬化物を得ることのできる硬化性組成物を提供することである。 In addition, the present inventors cured the composition by irradiating the curable composition with active energy rays by using the monoepoxy compound and a cationic photopolymerization initiator in combination in the curable composition. It discovered that the adhesiveness of hardened | cured material can be improved dramatically. This invention is based on this knowledge, and the subject which this invention tends to solve is providing the curable composition which can obtain the hardened | cured material which is excellent in adhesiveness.
 さらに、本発明者らは、特定の構造を有する立体異性体を含むエポキシ化合物において、特定の立体異性体の割合を特定の数値以上とすることにより、硬化物の耐熱性を顕著に向上することができることをさらに知見した。本発明は、かかる知見に基づくものであり、硬化物の耐熱性を顕著に向上することのできるエポキシ化合物を提供することである。 Furthermore, the present inventors remarkably improve the heat resistance of the cured product by setting the ratio of the specific stereoisomer to a specific numerical value or more in an epoxy compound containing a stereoisomer having a specific structure. It was further discovered that it can. This invention is based on this knowledge and is providing the epoxy compound which can improve the heat resistance of hardened | cured material notably.
 すなわち、本発明は以下の発明を包含する。
(1)下記式(1):
Figure JPOXMLDOC01-appb-C000004
(式中、R乃至Rは、それぞれ独立して、水素、アルキル基およびアルコキシ基からなる群より選択される。)
で表される、モノエポキシ化合物。
(2)前記式(1)で表される化合物の立体異性体を含み、13C-NMR分析による、前記式(1)におけるノルボルナン骨格の橋頭位とビニル基とがトランスの関係にある立体異性体に由来するピーク面積の、化学シフト140~145ppmの範囲における総ピーク面積に対する割合が、66%以上である、(1)に記載のモノエポキシ化合物。
(3)R乃至Rは全て水素であり、ノルボルナン骨格の橋頭位とビニル基とがトランスの関係にある立体異性体が、下記化学式:
Figure JPOXMLDOC01-appb-C000005
のいずれかで表される、(2)に記載のモノエポキシ化合物。
(4)前記式(1)で表される化合物の13C-NMR分析において、化学シフト140~142ppmの範囲における総ピーク面積の、140~145ppmの範囲における総ピーク面積に対する割合が、66%以上である、(1)に記載のモノエポキシ化合物。
(5)前記式(1)で表される化合物の13C-NMR分析において、化学シフト140~142ppmの範囲におけるピークのうち、低磁場側から1番目に生じるピークの面積の、140~145ppmの範囲における総ピーク面積に対する割合が、35%以上である、(2)~(4)のいずれかに記載のモノエポキシ化合物。
(6)(1)~(5)のいずれかに記載のモノエポキシ化合物と、硬化剤、熱カチオン重合開始剤、および光カチオン重合開始剤からなる群より選択される1種とを含む、硬化性組成物。
(7)前記硬化剤が、フェノール化合物、アミン化合物、酸無水物系化合物およびアミド化合物からなる群より選択される1以上の硬化剤である、(6)に記載の硬化性組成物。
(8)前記熱カチオン重合開始剤が、芳香族スルホニウム塩系の熱カチオン重合開始剤、芳香族ヨードニウム塩系の熱カチオン重合開始剤、およびアルミニウム錯体系の熱カチオン重合開始剤からなる群から選択される、(6)に記載の硬化性組成物。
(9)前記光カチオン重合開始剤が、芳香族スルホニウム塩系の光カチオン重合開始剤である、(6)に記載の硬化性組成物。
(10)前記モノエポキシ化合物と異なるその他のエポキシ化合物をさらに含む、(6)~(9)のいずれかに記載の硬化性組成物。
(11)前記モノエポキシ化合物と異なるその他のエポキシ化合物が、グリシジルエーテル型エポキシド、グリシジルエステル型エポキシド、脂環式エポキシド、およびエポキシ樹脂からなる群から選択される、(10)に記載の硬化性組成物。
(12)前記硬化性組成物における、前記モノエポキシ化合物と、前記モノエポキシ化合物と異なるその他のエポキシ化合物との含有量比が、質量基準で、1:99~75:25である、(10)または(11)に記載の硬化性組成物。
(13)(6)~(12)のいずれかに記載の硬化性組成物を硬化させる工程を含む、硬化物の製造方法。
(14)(6)~(12)のいずれかに記載の硬化性組成物の硬化物。
(15)(1)に記載のモノエポキシ化合物を製造する方法であって、
 下記式(2):
Figure JPOXMLDOC01-appb-C000006
(式中、R乃至Rは、それぞれ独立して、水素、アルキル基およびアルコキシ基からなる群より選択される。)
で表される化合物と、過酸とを反応させる工程を含んでなり、
 該過酸の使用量が、該式(2)で表される化合物1.00モルに対して、0.10~1.80モルであることを特徴とする、方法。
(16)前記過酸が、過酸化水素または有機過酸である、(15)に記載の方法。
(17)(1)に記載のモノエポキシ化合物を少なくとも含む、反応性希釈剤。
That is, the present invention includes the following inventions.
(1) The following formula (1):
Figure JPOXMLDOC01-appb-C000004
(Wherein R 1 to R 6 are each independently selected from the group consisting of hydrogen, an alkyl group, and an alkoxy group.)
A monoepoxy compound represented by:
(2) Stereoisomers containing a stereoisomer of the compound represented by the formula (1) and having a trans relationship between the bridgehead position of the norbornane skeleton and the vinyl group in the formula (1) by 13 C-NMR analysis The monoepoxy compound according to (1), wherein the ratio of the peak area derived from the body to the total peak area in the chemical shift range of 140 to 145 ppm is 66% or more.
(3) R 1 to R 6 are all hydrogen, and a stereoisomer in which the bridge head position of the norbornane skeleton and the vinyl group are in a trans relationship has the following chemical formula:
Figure JPOXMLDOC01-appb-C000005
The monoepoxy compound according to (2), represented by any one of:
(4) In 13 C-NMR analysis of the compound represented by the formula (1), the ratio of the total peak area in the chemical shift range of 140 to 142 ppm to the total peak area in the range of 140 to 145 ppm is 66% or more. The monoepoxy compound according to (1), wherein
(5) In the 13 C-NMR analysis of the compound represented by the formula (1), the area of the peak first generated from the low magnetic field side in the range of 140 to 142 ppm of chemical shift is 140 to 145 ppm. The monoepoxy compound according to any one of (2) to (4), wherein the ratio to the total peak area in the range is 35% or more.
(6) Curing comprising the monoepoxy compound according to any one of (1) to (5) and one selected from the group consisting of a curing agent, a thermal cationic polymerization initiator, and a photocationic polymerization initiator Sex composition.
(7) The curable composition according to (6), wherein the curing agent is one or more curing agents selected from the group consisting of a phenol compound, an amine compound, an acid anhydride compound, and an amide compound.
(8) The thermal cationic polymerization initiator is selected from the group consisting of an aromatic sulfonium salt-based thermal cationic polymerization initiator, an aromatic iodonium salt-based thermal cationic polymerization initiator, and an aluminum complex-based thermal cationic polymerization initiator. The curable composition according to (6).
(9) The curable composition according to (6), wherein the cationic photopolymerization initiator is an aromatic sulfonium salt-based cationic photopolymerization initiator.
(10) The curable composition according to any one of (6) to (9), further comprising another epoxy compound different from the monoepoxy compound.
(11) The curable composition according to (10), wherein the other epoxy compound different from the monoepoxy compound is selected from the group consisting of a glycidyl ether type epoxide, a glycidyl ester type epoxide, an alicyclic epoxide, and an epoxy resin. object.
(12) In the curable composition, a content ratio of the monoepoxy compound and another epoxy compound different from the monoepoxy compound is 1:99 to 75:25 on a mass basis. (10) Or the curable composition as described in (11).
(13) A method for producing a cured product, comprising a step of curing the curable composition according to any one of (6) to (12).
(14) A cured product of the curable composition according to any one of (6) to (12).
(15) A method for producing the monoepoxy compound according to (1),
Following formula (2):
Figure JPOXMLDOC01-appb-C000006
(Wherein R 1 to R 6 are each independently selected from the group consisting of hydrogen, an alkyl group, and an alkoxy group.)
Comprising a step of reacting a compound represented by
The method, wherein the amount of the peracid used is 0.10 to 1.80 mol with respect to 1.00 mol of the compound represented by the formula (2).
(16) The method according to (15), wherein the peracid is hydrogen peroxide or an organic peracid.
(17) A reactive diluent comprising at least the monoepoxy compound according to (1).
 本発明によれば、硬化性組成物に含有させたとき、硬化性組成物の耐熱性の低下およびこの硬化性組成物を硬化させた際の重量減少を防止しつつ、硬化性組成物の粘度を低下させることができるモノエポキシ化合物を提供することができる。 According to the present invention, when contained in the curable composition, the viscosity of the curable composition is prevented while preventing a decrease in heat resistance of the curable composition and a decrease in weight when the curable composition is cured. It is possible to provide a monoepoxy compound capable of lowering.
 また、本発明によれば、密着性が飛躍的に向上された硬化物を得ることのできる硬化性組成物を提供することができる。 Moreover, according to the present invention, it is possible to provide a curable composition capable of obtaining a cured product having dramatically improved adhesion.
 さらに、本発明によれば、高い耐熱性を有する硬化物の作製が可能なモノエポキシ化合物を提供することができる。 Furthermore, according to the present invention, a monoepoxy compound capable of producing a cured product having high heat resistance can be provided.
図1は、実施例I1-1で合成したモノエポキシ化合物(A)の13C-NMRチャートを表す。FIG. 1 shows a 13 C-NMR chart of the monoepoxy compound (A) synthesized in Example I1-1. 図2は、実施例III1で合成したモノエポキシ化合物(A-1)の13C-NMRチャートを表す。FIG. 2 shows a 13 C-NMR chart of the monoepoxy compound (A-1) synthesized in Example III1. 図3は、実施例III1で合成したモノエポキシ化合物(A-1)のガスクロマトグラフを表す。FIG. 3 shows a gas chromatograph of the monoepoxy compound (A-1) synthesized in Example III1. 図4は、実施例III2で合成したモノエポキシ化合物(A-2)の13C-NMRチャートを表す。FIG. 4 shows a 13 C-NMR chart of the monoepoxy compound (A-2) synthesized in Example III2. 図5は、実施例III2で合成したモノエポキシ化合物(A-2)のガスクロマトグラフを表す。FIG. 5 shows a gas chromatograph of the monoepoxy compound (A-2) synthesized in Example III2. 図6は、実施例III4で合成したモノエポキシ化合物(A-3)の13C-NMRチャートを表す。FIG. 6 shows a 13 C-NMR chart of the monoepoxy compound (A-3) synthesized in Example III4. 図7は、実施例III4で合成したモノエポキシ化合物(A-3)のガスクロマトグラフを表す。FIG. 7 shows a gas chromatograph of the monoepoxy compound (A-3) synthesized in Example III4.
1.定義
 本明細書において、配合を示す「部」、「%」等は特に断らない限り質量基準である。
 本明細書において、エポキシ当量とは、1当量のエポキシ基を含むモノエポキシ化合物の質量で定義され、JIS K7236に準じて測定することができる。
1. Definitions In the present specification, “parts”, “%”, etc. indicating the composition are based on mass unless otherwise specified.
In this specification, the epoxy equivalent is defined by the mass of a monoepoxy compound containing 1 equivalent of an epoxy group, and can be measured according to JIS K7236.
2.モノエポキシ化合物
(1)モノエポキシ化合物
 本発明のモノエポキシ化合物は、下記式(1)で表されるモノエポキシ化合物である。
Figure JPOXMLDOC01-appb-C000007
(式中、R乃至Rはそれぞれ独立して、水素、アルキル基およびアルコキシ基からなる群より選択される。)
2. Mono epoxy compound
(1) Monoepoxy Compound The monoepoxy compound of the present invention is a monoepoxy compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000007
(Wherein R 1 to R 6 are each independently selected from the group consisting of hydrogen, an alkyl group, and an alkoxy group.)
 本発明のモノエポキシ化合物は、上記式(1)中、R乃至Rはそれぞれ独立して、水素、アルキル基およびアルコキシ基からなる群より選択されるが、該アルキル基が有する炭素数は、1~10であることが好ましく、1~5であることがより好ましい。また、直鎖状のアルキル基であっても、分岐鎖状のアルキル基であってもよい。該アルコキシ基が有する炭素数は、1~10であることが好ましく、1~5であることがより好ましい。
特に好ましくはR乃至Rは水素である。
In the monoepoxy compound of the present invention, in the above formula (1), R 1 to R 6 are each independently selected from the group consisting of hydrogen, an alkyl group, and an alkoxy group. 1 to 10 is preferable, and 1 to 5 is more preferable. Further, it may be a linear alkyl group or a branched alkyl group. The alkoxy group preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms.
Particularly preferably R 1 to R 6 are hydrogen.
 上記式(1)で表される本発明のモノエポキシ化合物は、エポキシ当量が、110~1000g/eqであることが好ましく、150~500g/eqであることがより好ましく、160~300g/eqであることがさらに好ましい。 The monoepoxy compound of the present invention represented by the above formula (1) preferably has an epoxy equivalent of 110 to 1000 g / eq, more preferably 150 to 500 g / eq, and 160 to 300 g / eq. More preferably it is.
(2)モノエポキシ化合物の製造方法
 上記式(1)を満たす本発明のモノエポキシ化合物は、下記式(2)で表される化合物と、過酸とを反応させる工程を含んでなる方法により得ることができる。
Figure JPOXMLDOC01-appb-C000008
(式中、R乃至Rは、それぞれ独立して、水素、アルキル基およびアルコキシ基からなる群より選択される。)
(2) Production method of monoepoxy compound The monoepoxy compound of the present invention satisfying the above formula (1) is obtained by a method comprising a step of reacting a compound represented by the following formula (2) with peracid. be able to.
Figure JPOXMLDOC01-appb-C000008
(Wherein R 1 to R 6 are each independently selected from the group consisting of hydrogen, an alkyl group, and an alkoxy group.)
 本発明のモノエポキシ化合物の製造方法は、好ましくは、上記式(2)で表される化合物と、過酸とを反応させる工程を含んでなり、過酸の使用量が、上記式(2)で表される化合物1.00モルに対して、0.10~1.80モルであることを特徴とする。 The method for producing a monoepoxy compound of the present invention preferably comprises a step of reacting the compound represented by the above formula (2) with peracid, and the amount of peracid used is the above formula (2). 0.10 to 1.80 moles with respect to 1.00 mole of the compound represented by formula (1).
 本発明のモノエポキシ化合物の製造にあたっては、上述の製造方法で得られたモノエポキシ化合物の純度が低い場合は、蒸留やカラムにより精製を行うことが好ましい。 In the production of the monoepoxy compound of the present invention, when the purity of the monoepoxy compound obtained by the above-described production method is low, it is preferable to purify by distillation or a column.
 本発明のモノエポキシ化合物の製造に使用することのできる過酸としては、例えば、過ギ酸、過酢酸、過安息香酸、トリフルオロ過酢酸等の有機過酸や過酸化水素等が挙げられる。これらの中でも、過ギ酸、過酢酸や過酸化水素は、工業的に安価に入手可能であり、かつ安定性が高いため好ましい。 Examples of peracids that can be used in the production of the monoepoxy compound of the present invention include organic peracids such as performic acid, peracetic acid, perbenzoic acid, and trifluoroperacetic acid, hydrogen peroxide, and the like. Among these, performic acid, peracetic acid and hydrogen peroxide are preferable because they are industrially available at low cost and have high stability.
 本発明のモノエポキシ化合物の製造における過酸の使用量は、上記式(2)で表される化合物1.00モルに対して、0.10~1.80モルであることが好ましく、0.50~1.50モルであることがさらに好ましい。 The amount of peracid used in the production of the monoepoxy compound of the present invention is preferably 0.10 to 1.80 moles relative to 1.00 mole of the compound represented by the above formula (2). More preferably, it is 50 to 1.50 mol.
 上記式(2)を満たす化合物は、5-ビニル-2-ノルボルネン(VNB)と、1,3-ブタジエンとをディールズ・アルダー反応させることにより得ることができる。なお、VNBは、1,3-ブタジエンとシクロペンタジエンとをディールズ・アルダー反応させることにより得ることができる。
Figure JPOXMLDOC01-appb-C000009
A compound satisfying the above formula (2) can be obtained by subjecting 5-vinyl-2-norbornene (VNB) and 1,3-butadiene to a Diels-Alder reaction. VNB can be obtained by subjecting 1,3-butadiene and cyclopentadiene to a Diels-Alder reaction.
Figure JPOXMLDOC01-appb-C000009
(3)立体異性体を含んでなるモノエポキシ化合物
 上記式(1)で表されるモノエポキシ化合物におけるR乃至Rが全て水素である場合、本発明のモノエポキシ化合物は、以下のような立体異性体を含んでなることが想定される。
Figure JPOXMLDOC01-appb-C000010
(3) Monoepoxy compound comprising a stereoisomer When R 1 to R 6 in the monoepoxy compound represented by the above formula (1) are all hydrogen, the monoepoxy compound of the present invention is as follows: It is envisioned to comprise stereoisomers.
Figure JPOXMLDOC01-appb-C000010
 ここで、本発明のモノエポキシ化合物の一つの実施態様として、13C-NMR分析による、上記式(1)におけるノルボルナン骨格の橋頭位とビニル基とがトランスの関係にある立体異性体に由来するピーク面積の、化学シフト140~145ppmの範囲における総ピーク面積に対する割合が、66%以上であることを特徴とするものが好ましい。
 本発明のモノエポキシ化合物がこのような特徴を有することにより、これを含む硬化性組成物を硬化させた硬化物の耐熱性をよりよく向上させることができる。
Here, as one embodiment of the monoepoxy compound of the present invention, it is derived from a stereoisomer in which the bridge head position of the norbornane skeleton and the vinyl group in the above formula (1) are in a trans relationship according to 13 C-NMR analysis. The ratio of the peak area to the total peak area in the chemical shift range of 140 to 145 ppm is preferably 66% or more.
When the monoepoxy compound of the present invention has such characteristics, the heat resistance of a cured product obtained by curing a curable composition containing the compound can be improved.
 また、13C-NMR分析による、上記式(1)におけるノルボルナン骨格の橋頭位とビニル基とがトランスの関係にある立体異性体に由来するピーク面積の、化学シフト140~145ppmの範囲における総ピーク面積に対する割合は、70%以上であることがより好ましい。 In addition, the total peak in the chemical shift range of 140 to 145 ppm of the peak area derived from the stereoisomer in which the bridge head position of the norbornane skeleton in the above formula (1) and the vinyl group are in a trans relationship by 13 C-NMR analysis. The ratio to the area is more preferably 70% or more.
 上記式(1)で表されるモノエポキシ化合物におけるR乃至Rが全て水素である場合、ノルボルナン骨格の橋頭位と、ビニル基とがトランスの関係にある立体異性体として以下の2つが挙げられる。
Figure JPOXMLDOC01-appb-C000011
When R 1 to R 6 in the monoepoxy compound represented by the above formula (1) are all hydrogen, the following two are listed as stereoisomers in which the bridgehead position of the norbornane skeleton and the vinyl group are in a trans relationship. It is done.
Figure JPOXMLDOC01-appb-C000011
 ここで、本発明のモノエポキシ化合物の他の一つの実施態様として、上記式(1)で表される化合物の13C-NMR分析において、化学シフト140~142ppmの範囲における総ピーク面積の、140~145ppmの範囲における総ピーク面積に対する割合が、66%以上であることを特徴とするものが好ましい。 Here, as another embodiment of the monoepoxy compound of the present invention, in the 13 C-NMR analysis of the compound represented by the above formula (1), the total peak area in the range of 140 to 142 ppm of chemical shift is 140 It is preferable that the ratio to the total peak area in the range of ˜145 ppm is 66% or more.
 また、上記式(1)で表される化合物の13C-NMR分析において、化学シフト140~142ppmの範囲における総ピーク面積の、140~145ppmの範囲における総ピーク面積に対する割合が、70%以上であることを特徴とするものがより好ましい。 In the 13 C-NMR analysis of the compound represented by the above formula (1), the ratio of the total peak area in the chemical shift range of 140 to 142 ppm to the total peak area in the range of 140 to 145 ppm is 70% or more. What is characterized by being is more preferable.
 また、上記式(1)で表される化合物の13C-NMR分析において、化学シフト140~142ppmの範囲におけるピークのうち、低磁場側から1番目に生じるピークの面積の、140~145ppmの範囲における総ピーク面積に対する割合が、35%以上であることが好ましく、40%以上であることがより好ましい。 Further, in the 13 C-NMR analysis of the compound represented by the above formula (1), among the peaks in the chemical shift range of 140 to 142 ppm, the area of the peak first generated from the low magnetic field side is in the range of 140 to 145 ppm. The ratio with respect to the total peak area is preferably 35% or more, and more preferably 40% or more.
 上記(2)に記載された製造方法により得られるモノエポキシ化合物を、分取蒸留することにより、13C-NMR分析による、上記式(1)で表されるモノエポキシ化合物におけるノルボルナン骨格の橋頭位とビニル基とがトランスの関係にある立体異性体に由来するピーク面積の、シフト値140~145ppmにおける総ピーク面積に対する割合を調整することができる。また、上記(2)に記載された製造方法により得られるモノエポキシ化合物を、分取蒸留することにより、上記式(1)で表される化合物の13C-NMR分析において、化学シフト140~142ppmの範囲における総ピーク面積の、140~145ppmの範囲における総ピーク面積に対する割合を調整することができる。これらに限られず、例えば、シリカゲルクロマトグラフィーや液体クロマトグラフィーによっても、該割合を調整することができる。 The monoepoxy compound obtained by the production method described in (2) above is subjected to preparative distillation, whereby the bridgehead position of the norbornane skeleton in the monoepoxy compound represented by the above formula (1) by 13 C-NMR analysis The ratio of the peak area derived from the stereoisomer in which the vinyl group and the vinyl group are in a trans relationship to the total peak area at a shift value of 140 to 145 ppm can be adjusted. Further, the monoepoxy compound obtained by the production method described in the above (2) is subjected to preparative distillation, so that a chemical shift of 140 to 142 ppm is obtained in 13 C-NMR analysis of the compound represented by the above formula (1). The ratio of the total peak area in the range of 140 to 145 ppm to the total peak area can be adjusted. For example, the ratio can be adjusted by silica gel chromatography or liquid chromatography.
(4)モノエポキシ化合物の有用性
 本発明のモノエポキシ化合物は、硬化性組成物に含有させたとき、硬化性組成物の耐熱性の低下およびこの硬化性組成物を硬化させた際の重量減少を防止しつつ、硬化性組成物を可塑化あるいは低粘度化することができる。そのため、缶、プラスチック、紙、木材等の様々なコーティング、インク、接着剤、シーリング剤、電気・電子材料、炭素繊維強化樹脂等の分野において好適に使用することができる。
(4) Usefulness of monoepoxy compound When the monoepoxy compound of the present invention is contained in a curable composition, the heat resistance of the curable composition is lowered and the weight is reduced when the curable composition is cured. While preventing this, the curable composition can be plasticized or reduced in viscosity. Therefore, it can be suitably used in the fields of various coatings such as cans, plastics, paper, and wood, inks, adhesives, sealing agents, electrical / electronic materials, carbon fiber reinforced resins, and the like.
 より具体的には、三次元造形材料、酸除去剤、家具コーティング、装飾コーティング、自動車下塗り、仕上げ塗り、飲料缶およびその他缶のコーティング、UV硬化型インク、光ディスク記録層の保護膜、カラーフィルター保護膜、光ディスク貼り合わせ用接着剤、光学材料用接着材、半導体素子のダイボンディング、有機ELディスプレイのシール材、CCD,赤外線センサー等の受光装置の封止材、LEDや有機EL等の発光装置の封止材、光配線板、光コネクタ、レンズ等の光学半導体関連部材、光導波路、フォトレジスト、強化ガラスや防犯ガラス等の複合ガラス等に好適に使用することができる。また、ポリマーを構成するモノマーや、シランカップリング剤前駆体としても有用である。 More specifically, three-dimensional modeling materials, acid removers, furniture coatings, decorative coatings, automotive undercoats, finish coatings, beverage cans and other can coatings, UV curable inks, optical disc recording layer protective films, color filter protection Film, optical disk bonding adhesive, optical material adhesive, semiconductor element die bonding, organic EL display sealing material, CCD, infrared sensor and other light receiving device sealing materials, LED and organic EL light emitting device It can be suitably used for sealing materials, optical wiring boards, optical connectors, optical semiconductor-related members such as lenses, optical waveguides, photoresists, composite glass such as tempered glass and security glass, and the like. Moreover, it is useful also as a monomer which comprises a polymer, and a silane coupling agent precursor.
 また、本発明のモノエポキシ化合物は、反応性希釈剤の構成成分として好適に用いることができる。なお、本発明において、反応性希釈剤とは、エポキシ基を有する化合物を含むため、高い反応性を有するとともに、硬化性組成物の可塑化あるいは粘度調整(低下)することのできる添加剤である。 In addition, the monoepoxy compound of the present invention can be suitably used as a constituent component of a reactive diluent. In the present invention, the reactive diluent includes an epoxy group-containing compound, so that it has high reactivity and can be plasticized or viscosity-adjusted (decreased) in the curable composition. .
 さらに、上記式(1)で表されるモノエポキシ化合物と、光カチオン重合開始剤とを硬化性組成物に含有させることにより、これを活性エネルギー線により硬化させた硬化物の密着性を飛躍的に向上させることができる。また、本発明の硬化性組成物は、高い耐熱性を有する。 Furthermore, by containing the monoepoxy compound represented by the above formula (1) and the cationic photopolymerization initiator in the curable composition, the adhesiveness of the cured product obtained by curing this with active energy rays is dramatically improved. Can be improved. Moreover, the curable composition of this invention has high heat resistance.
 さらに、硬化性組成物が上記「(3)立体異性体を含んでなるモノエポキシ化合物」の記載項目中に記載された好ましい実施態様のモノエポキシ化合物を含んでなることにより、この硬化性組成物を硬化させた硬化物の耐熱性をよりよく向上させることができる。硬化性組成物における該モノエポキシ化合物の含有量は、硬化性組成物100質量部に対し、1~90質量部であることが好ましく、5~75質量部であることがより好ましい。該モノエポキシ化合物と熱カチオン重合開始剤とを組み合わせることにより、硬化物の耐熱性をより一層向上させることができる。さらに、硬化物の透明性を向上させることができる。 Furthermore, the curable composition comprises the monoepoxy compound of a preferred embodiment described in the description item of “(3) Monoepoxy compound comprising a stereoisomer”. The heat resistance of the cured product obtained by curing can be better improved. The content of the monoepoxy compound in the curable composition is preferably 1 to 90 parts by mass and more preferably 5 to 75 parts by mass with respect to 100 parts by mass of the curable composition. By combining the monoepoxy compound and the thermal cationic polymerization initiator, the heat resistance of the cured product can be further improved. Furthermore, the transparency of the cured product can be improved.
3.硬化性組成物
 本発明の硬化性組成物は、上記式(1)で表されるモノエポキシ化合物、硬化剤、熱カチオン重合開始剤、または光カチオン重合開始剤を含んでなることを特徴とする。また、本発明の硬化性組成物は、さらに、前記モノエポキシ化合物と異なるその他のエポキシ化合物を含んでなることを特徴とする。なお、本発明の硬化性組成物は、2種以上の上記式(1)で表されるモノエポキシ化合物を含んでいてもよい。
3. Curable composition The curable composition of the present invention comprises a monoepoxy compound represented by the above formula (1), a curing agent, a thermal cationic polymerization initiator, or a photocationic polymerization initiator. . In addition, the curable composition of the present invention further includes another epoxy compound different from the monoepoxy compound. In addition, the curable composition of this invention may contain the monoepoxy compound represented by 2 or more types of said Formula (1).
 本発明の硬化性組成物が上記式(1)で表されるモノエポキシ化合物を含んでなることにより、硬化性組成物の粘度を低下させることができる。また、硬化性組成物を硬化させた硬化物の耐熱性の低下およびこの硬化性組成物を硬化させた際に生じうる重量減少を抑制することができる。 When the curable composition of the present invention contains the monoepoxy compound represented by the above formula (1), the viscosity of the curable composition can be reduced. Moreover, the fall of the heat resistance of the hardened | cured material which hardened the curable composition and the weight reduction which may arise when this curable composition is hardened can be suppressed.
 また、上記式(1)で表されるモノエポキシ化合物と、光カチオン重合開始剤とを硬化性組成物に含有させることにより、これを活性エネルギー線により硬化させた硬化物の密着性を飛躍的に向上させることができる。また、本発明の硬化性組成物は、高い耐熱性を有する。ここで、本発明の硬化性組成物中に、後述するような他の化合物が含まれてもよいが、硬化物の密着性という観点からは、本発明の硬化性組成物中に含まれる上記式(1)で表されるモノエポキシ化合物の含有量は、1~90質量%であることが好ましく、5~75質量%であることがより好ましい。 Moreover, the adhesiveness of the hardened | cured material which hardened this by the active energy ray by making the curable composition contain the monoepoxy compound represented by the said Formula (1) and a photocationic polymerization initiator is drastically improved. Can be improved. Moreover, the curable composition of this invention has high heat resistance. Here, in the curable composition of the present invention, other compounds as described later may be included, but from the viewpoint of the adhesiveness of the cured product, the above-mentioned composition included in the curable composition of the present invention. The content of the monoepoxy compound represented by the formula (1) is preferably 1 to 90% by mass, and more preferably 5 to 75% by mass.
 さらに、本発明の硬化性組成物の好ましい一つの実施態様として、上記「(3)立体異性体を含んでなるモノエポキシ化合物」の記載項目中に記載された好ましい実施態様のモノエポキシ化合物と、硬化剤、熱カチオン重合開始剤、または光カチオン重合開始剤とを含んでなる。該硬化性組成物が該モノエポキシ化合物を含んでなることにより、この硬化性組成物を硬化させた硬化物の耐熱性をよりよく向上させることができる。硬化性組成物における該モノエポキシ化合物の含有量は、硬化性組成物100質量部に対し、1~90質量部であることが好ましく、5~75質量部であることがより好ましい。 Furthermore, as one preferred embodiment of the curable composition of the present invention, a monoepoxy compound of a preferred embodiment described in the description item of “(3) Monoepoxy compound comprising a stereoisomer”, A curing agent, a thermal cationic polymerization initiator, or a photocationic polymerization initiator. When the curable composition contains the monoepoxy compound, the heat resistance of the cured product obtained by curing the curable composition can be improved. The content of the monoepoxy compound in the curable composition is preferably 1 to 90 parts by mass and more preferably 5 to 75 parts by mass with respect to 100 parts by mass of the curable composition.
(1)硬化剤
 本発明の硬化性組成物に含有させることのできる硬化剤としては、酸無水物系硬化剤、アミン系硬化剤、フェノール系硬化剤および潜在性硬化剤等が挙げられる。
 酸無水物系硬化剤としては、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、メチルナジック酸無水物、メチルブテニルテトラヒドロ無水フタル酸、水素化メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、シクロヘキサントリカルボン酸無水物、メチルシクロヘキセンジカルボン酸無水物、メチルシクロヘキサンテトラカルボン酸二無水物、無水マレイン酸、無水フタル酸、無水コハク酸、ドデセニル無水コハク酸、オクテニルコハク酸無水物、無水ピロメリット酸、無水トリメリット酸、アルキルスチレン-無水マレイン酸共重合体、クロレンド酸無水物、ポリアゼライン酸無水物、無水ベンゾフェノンテトラカルボン酸、エチレングリコールビスアンヒドロトリメリテート、グリセロールトリストリメリテート、グリセリンビス(アンヒドロトリメリテート)モノアセテート、ベンゾフェノンテトラカルボン酸、ポリアジピン酸無水物、ポリセバシン酸無水物、ポリ(エチルオクタデカン二酸)無水物、ポリ(フェニルヘキサデカン二酸)無水物、ヘット酸無水物、ノルボルナン-2,3-ジカルボン酸無水物等が挙げられる。
(1) As the curing agent which can be contained in the curing agent curable composition of the present invention, an acid anhydride curing agent, an amine curing agent, a phenolic curing agent and a latent curing agent, and the like.
Examples of acid anhydride curing agents include hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, methylnadic acid anhydride, methylbutenyltetrahydroanhydride. Phthalic acid, hydrogenated methyl nadic anhydride, trialkyltetrahydrophthalic anhydride, cyclohexanetricarboxylic anhydride, methylcyclohexene dicarboxylic anhydride, methylcyclohexanetetracarboxylic dianhydride, maleic anhydride, phthalic anhydride, succinic anhydride Acid, dodecenyl succinic anhydride, octenyl succinic anhydride, pyromellitic anhydride, trimellitic anhydride, alkylstyrene-maleic anhydride copolymer, chlorendic anhydride, polyazelinic anhydride, benzoic anhydride Enone tetracarboxylic acid, ethylene glycol bisanhydro trimellitate, glycerol tris trimellitate, glycerol bis (anhydro trimellitate) monoacetate, benzophenone tetracarboxylic acid, polyadipic anhydride, poly sebacic anhydride, poly ( And ethyl octadecanedioic acid anhydride, poly (phenylhexadecanedioic acid) anhydride, het acid anhydride, norbornane-2,3-dicarboxylic acid anhydride, and the like.
 アミン系硬化剤としては、ポリオキシエチレンジアミン、ポリオキシプロピレンジアミン、ポリオキシブチレンジアミン、ポリオキシペンチレンジアミン、ポリオキシエチレントリアミン、ポリオキシプロピレントリアミン、ポリオキシブチレントリアミン、ポリオキシペンチレントリアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、m-キシレンジアミン、トリメチルヘキサメチレンジアミン、2-メチルペンタメチレンジアミン、ジエチルアミノプロピルアミン、イソフォロンジアミン、1,3-ビスアミノメチルシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、ノルボルナンジアミン、1,2-ジアミノシクロヘキサン、ジアミノジフェニルメタン、メタフェニレンジアミン、ジアミノジフェニルスルフォン、N-アミノエチルピペラジン等が挙げられる。 Examples of amine curing agents include polyoxyethylenediamine, polyoxypropylenediamine, polyoxybutylenediamine, polyoxypentylenediamine, polyoxyethylenetriamine, polyoxypropylenetriamine, polyoxybutylenetriamine, polyoxypentylenetriamine, diethylenetriamine, Triethylenetetramine, tetraethylenepentamine, m-xylenediamine, trimethylhexamethylenediamine, 2-methylpentamethylenediamine, diethylaminopropylamine, isophoronediamine, 1,3-bisaminomethylcyclohexane, bis (4-aminocyclohexyl) Methane, norbornanediamine, 1,2-diaminocyclohexane, diaminodiphenylmethane, metaphenylenediamine, di Mino diphenyl sulfone, and the like N- aminoethyl piperazine.
 フェノール系硬化剤としては、キシリレン骨格含有フェノールノボラック樹脂、ジシクロペンタジエン骨格含有フェノールノボラック樹脂、ビフェニル骨格含有フェノールノボラック樹脂、フルオレン骨格含有フェノールノボラック樹脂、テルペン骨格含有フェノールノボラック樹脂、ビスフェノールAノボラック、ビスフェノールFノボラック、ビスフェノールSノボラック、ビスフェノールAPノボラック、ビスフェノールCノボラック、ビスフェノールEノボラック、ビスフェノールZノボラック、ビフェノールノボラック、テトラメチルビスフェノールAノボラック、ジメチルビスフェノールAノボラック、テトラメチルビスフェノールFノボラック、ジメチルビスフェノールFノボラック、テトラメチルビスフェノールSノボラック、ジメチルビスフェノールSノボラック、テトラメチル-4,4’-ビフェノールノボラック、トリスヒドロキシフェニルメタンノボラック、レゾルシノールノボラック、ハイドロキノンノボラック、ピロガロールノボラック、ジイソプロピリデンノボラック、1,1-ジ-4-ヒドロキシフェニルフルオレンノボラック、フェノール化ポリブタジエンノボラック、フェノールノボラック、クレゾール類ノボラック、エチルフェノール類ノボラック、ブチルフェノール類ノボラック、オクチルフェノール類ノボラック、ナフトール類ノボラック等が挙げられる。 Examples of the phenolic curing agent include a xylylene skeleton-containing phenol novolak resin, a dicyclopentadiene skeleton-containing phenol novolak resin, a biphenyl skeleton-containing phenol novolak resin, a fluorene skeleton-containing phenol novolak resin, a terpene skeleton-containing phenol novolak resin, bisphenol A novolak, and bisphenol F. Novolak, bisphenol S novolak, bisphenol AP novolak, bisphenol C novolak, bisphenol E novolak, bisphenol Z novolak, biphenol novolak, tetramethylbisphenol A novolak, dimethylbisphenol A novolak, tetramethylbisphenol F novolak, dimethylbisphenol F novolak, tetramethylbisphenol S Novora Dimethylbisphenol S novolak, tetramethyl-4,4'-biphenol novolak, trishydroxyphenylmethane novolak, resorcinol novolak, hydroquinone novolak, pyrogallol novolak, diisopropylidene novolak, 1,1-di-4-hydroxyphenylfluorene novolak Phenolic polybutadiene novolak, phenol novolak, cresol novolak, ethylphenol novolak, butylphenol novolak, octylphenol novolak, naphthol novolak, and the like.
 潜在性硬化剤としては、ジシアンジアミド、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド、ドデカン二酸ジヒドラジド、イソフタル酸ジヒドラジド、ケチミン、イミダゾール化合物、ジヒドラジド化合物、アミンアダクト系潜在性硬化剤等が挙げられる。本発明の硬化性組成物は、上記したような硬化剤を1種または2種以上含んでいてもよい。 Examples of the latent curing agent include dicyandiamide, adipic acid dihydrazide, sebacic acid dihydrazide, dodecanedioic acid dihydrazide, isophthalic acid dihydrazide, ketimine, imidazole compound, dihydrazide compound, and amine adduct based latent curing agent. The curable composition of the present invention may contain one kind or two or more kinds of curing agents as described above.
 本発明の硬化性組成物の好ましい実施態様においては、硬化剤が、酸無水物系硬化剤、アミン系硬化剤、フェノール系硬化剤および潜在性硬化剤からなる群より選択される1以上の硬化剤である。 In a preferred embodiment of the curable composition of the present invention, the curing agent is at least one selected from the group consisting of an acid anhydride curing agent, an amine curing agent, a phenol curing agent and a latent curing agent. It is an agent.
 本発明の硬化性組成物における硬化剤の含有量は、使用する硬化剤の種類に応じ適宜変更することが好ましい。例えば、硬化剤として酸無水物系硬化剤、アミン系硬化剤またはフェノール系硬化剤を使用する場合、硬化性組成物全体のエポキシ基1当量に対して、0.5~1.5当量であることが好ましく、0.8~1.2当量であることがより好ましい。例えば、硬化剤として潜在性硬化剤を使用する場合、硬化性組成物100質量部に対し、1~30質量部であることが好ましく、5~20質量部であることがより好ましい。 The content of the curing agent in the curable composition of the present invention is preferably changed as appropriate according to the type of the curing agent to be used. For example, when an acid anhydride type curing agent, an amine type curing agent or a phenol type curing agent is used as the curing agent, it is 0.5 to 1.5 equivalents relative to 1 equivalent of the epoxy group of the entire curable composition. It is preferably 0.8 to 1.2 equivalents. For example, when a latent curing agent is used as the curing agent, the amount is preferably 1 to 30 parts by mass and more preferably 5 to 20 parts by mass with respect to 100 parts by mass of the curable composition.
(2)硬化促進剤
 本発明の硬化性組成物は、硬化促進剤をさらに含んでいてもよい。硬化促進剤としては、例えば、トリフェニルホスフィン、トリフェニルベンジルホスホニウムテトラフェニルボレート、テトラブチルホスホニウムジエチルホスホロジチオエート、テトラフェニルホスホニウムブロマイド、テトラブチルホスホニウムアセテート、テトラ-n-ブチルホスホニウムブロマイド、テトラ-n-ブチルホスホニウムベンゾトリアゾレート、テトラ-n-ブチルホスホニウムテトラフルオロボレート、テトラ-n-ブチルホスホニウムテトラフェニルボレート、メチルトリフェニルホスホニウムブロマイド、エチルトリフェニルホスホニウムブロマイド、エチルトリフェニルホスホニウムアイオダイド、エチルトリフェニルホスホニウムアセテート、メチルトリ-n-ブチルホスホニウムジメチルホスフェート、n-ブチルトリフェニルホスホニウムブロマイド、ベンジルトリフェニルホスホニウムクロライド、テトラフェニルホスホニウムテトラフェニルボレート等のホスフィン類とその第四級塩、2-エチル-4-メチルイミダゾール、1,2-ジメチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、2-メチルイミダゾール、2-フェニルイミダゾール、1-(2-シアノエチル)-2-エチル-4-メチルイミダゾール、2,4-ジアミノ-6-[2-メチルイミダゾリル-(1)]エチル-s-トリアジン、2-フェニルイミダゾリン、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール等のイミダゾール類、トリス(ジメチルアミノメチル)フェノール、ベンジルジメチルアミン、テトラブチルアンモニウムブロミド等の3級アミンとその第四級塩、1,8-ジアザビシクロ(5,4,0)ウンデセン-7、1,5-ジアザビシクロ(4,3,0)ノネン-5等の超強塩基性の有機化合物、オクチル酸亜鉛、ラウリン酸亜鉛、ステアリン酸亜鉛、オクチル酸錫等の有機カルボン酸金属塩、ベンゾイルアセトン亜鉛キレート、ジベンゾイルメタン亜鉛キレートおよびアセト酢酸エチル亜鉛キレート等の金属-有機キレート化合物、テトラ-n-ブチルスルホニウム-o,o-ジエチルホスホロジチオネート等が挙げられる。本発明の硬化性組成物は、上記したような硬化促進剤を1種または2種以上含んでいてもよい。
(2) Curing accelerator The curable composition of the present invention may further contain a curing accelerator. Examples of the curing accelerator include triphenylphosphine, triphenylbenzylphosphonium tetraphenylborate, tetrabutylphosphonium diethylphosphorodithioate, tetraphenylphosphonium bromide, tetrabutylphosphonium acetate, tetra-n-butylphosphonium bromide, tetra-n. -Butylphosphonium benzotriazolate, tetra-n-butylphosphonium tetrafluoroborate, tetra-n-butylphosphonium tetraphenylborate, methyltriphenylphosphonium bromide, ethyltriphenylphosphonium bromide, ethyltriphenylphosphonium iodide, ethyltriphenyl Phosphonium acetate, methyltri-n-butylphosphonium dimethyl phosphate, n Phosphines such as butyltriphenylphosphonium bromide, benzyltriphenylphosphonium chloride, tetraphenylphosphonium tetraphenylborate and quaternary salts thereof, 2-ethyl-4-methylimidazole, 1,2-dimethylimidazole, 1-benzyl-2 -Phenylimidazole, 2-methylimidazole, 2-phenylimidazole, 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole, 2,4-diamino-6- [2-methylimidazolyl- (1)] ethyl Imidazoles such as -s-triazine, 2-phenylimidazoline, 2,3-dihydro-1H-pyrrolo [1,2-a] benzimidazole, tris (dimethylaminomethyl) phenol, benzyldimethylamine, tetrabutylammonium Super strong basicity such as tertiary amines such as amide and quaternary salts thereof, 1,8-diazabicyclo (5,4,0) undecene-7, 1,5-diazabicyclo (4,3,0) nonene-5 Organic compounds, organic carboxylic acid metal salts such as zinc octylate, zinc laurate, zinc stearate, tin octylate, metal-organic chelate compounds such as benzoylacetone zinc chelate, dibenzoylmethane zinc chelate and ethyl zinc acetoacetate chelate Tetra-n-butylsulfonium-o, o-diethyl phosphorodithioate and the like. The curable composition of the present invention may contain one or more of the above-described curing accelerators.
 本発明の硬化性組成物における硬化促進剤の含有量は、硬化性組成物の総量100質量部に対し、0.1~6質量部であることが好ましい。 The content of the curing accelerator in the curable composition of the present invention is preferably 0.1 to 6 parts by mass with respect to 100 parts by mass of the total amount of the curable composition.
(3)熱カチオン重合開始剤
 本発明の硬化性組成物に含有させることのできる熱カチオン重合開始剤としては、芳香族スルホニウム、芳香族ヨードニウム、芳香族ジアゾニウムおよびピリジニウムなどから選ばれる少なくとも1種のカチオンと、BF 、PF 、SbF 、AsF 、CFSO 、(CFSOおよびB(C から選ばれる少なくとも1種のアニオンとから構成されるオニウム塩、アルミニウム錯体等の熱カチオン重合開始剤が挙げられる。
(3) Thermal cationic polymerization initiator The thermal cationic polymerization initiator that can be contained in the curable composition of the present invention is at least one selected from aromatic sulfonium, aromatic iodonium, aromatic diazonium, pyridinium, and the like. At least one selected from a cation and BF 4 , PF 6 , SbF 6 , AsF 6 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N and B (C 6 F 5 ) 4 Thermal anionic polymerization initiators such as onium salts and aluminum complexes composed of these anions.
 芳香族スルホニウム塩系の熱カチオン重合開始剤としては、(2-エトキシ-1-メチル-2-オキソエチル)メチル-2-ナフタレニルスルホニウムヘキサフルオロアンチモネート、4-(メトキシカルボニルオキシ)フェニルベンジルメチルスルホニウムヘキサフルオロアンチモネート、4-アセトキシフェニルジメチルスルホニウムヘキサフルオロアンチモネート、4-ヒドロキシフェニルベンジルメチルスルホニウムヘキサフルオロアンチモネート、4-ヒドロキシフェニル(o-メチルベンジル)メチルスルホニウムヘキサフルオロアンチモネート、4-ヒドロキシフェニル(α-ナフチルメチル)メチルスルホニウムヘキサフルオロアンチモネート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムヘキサフルオロアンチモネート、ビス[4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル]スルフィドビスヘキサフルオロアンチモネート、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィドビスヘキサフルオロアンチモネートなどのヘキサフルオロアンチモネート塩、(2-エトキシ-1-メチル-2-オキソエチル)メチル-2-ナフタレニルスルホニウムヘキサフルオロホスフェート、4-アセトキシフェニルベンジルメチルスルホニウムヘキサフルオロホスフェート、4-ヒドロキシフェニル(o-メチルベンジル)メチルスルホニウムヘキサフルオロホスフェート、4-ヒドロキシフェニル(α-ナフチルメチル)メチルスルホニウムヘキサフルオロホスフェート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムヘキサフルオロホスフェート、ビス[4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル]スルフィドビスヘキサフルオロホスフェート、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィドビスヘキサフルオロホスフェートなどのヘキサフルオロホスフェート塩、4-ヒドロキシフェニル(o-メチルベンジル)メチルスルホニウムヘキサフルオロアルセネート、4-ヒドロキシフェニルベンジルメチルスルホニウムヘキサフルオロアルセネートなどのヘキサフルオロアルセネート塩、(2-エトキシ-1-メチル-2-オキソエチル)メチル-2-ナフタレニルスルホニウムテトラフルオロボレート、4-ヒドロキシフェニル(o-メチルベンジル)メチルスルホニウムテトラフルオロボレート、4-ヒドロキシフェニルベンジルメチルスルホニウムテトラフルオロボレート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウムテトラフルオロボレート、ビス[4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル]スルフィドビステトラフルオロボレート、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィドビステトラフルオロボレートなどのテトラフルオロボレート塩、4-ヒドロキシフェニル(o-メチルベンジル)メチルスルホニウムトリフルオロメタンスルホン酸塩、4-ヒドロキシフェニルベンジルメチルスルホニウムトリフルオロメタンスルホン酸塩などのトリフルオロメタンスルホン酸塩、ジフェニル-4-(フェニルチオ)フェニルスルホニウムトリフルオロメタンスルホン酸塩などのトリフルオロメタンスルホン酸塩、4-ヒドロキシフェニル(α-ナフチルメチル)メチルスルホニウムビス(トリフルオロメタンスルホン)イミド、4-ヒドロキシフェニルベンジルメチルスルホニウムビス(トリフルオロメタンスルホン)イミドなどのビス(トリフルオロメタンスルホン)イミド塩、(2-エトキシ-1-メチル-2-オキソエチル)メチル-2-ナフタレニルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、4-(メトキシカルボニルオキシ)フェニルベンジルメチルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、4-ヒドロキシフェニル(o-メチルベンジル)メチルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、4-ヒドロキシフェニル(α-ナフチルメチル)メチルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、4-ヒドロキシフェニルベンジルメチルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、ビス[4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル]スルフィドテトラキス(ペンタフルオロフェニル)ボレート、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィドテトラキス(ペンタフルオロフェニル)ボレートなどのテトラキス(ペンタフルオロフェニル)ボレート塩等が挙げられる。 Aromatic sulfonium salt-based thermal cationic polymerization initiators include (2-ethoxy-1-methyl-2-oxoethyl) methyl-2-naphthalenylsulfonium hexafluoroantimonate, 4- (methoxycarbonyloxy) phenylbenzylmethyl Sulfonium hexafluoroantimonate, 4-acetoxyphenyldimethylsulfonium hexafluoroantimonate, 4-hydroxyphenylbenzylmethylsulfonium hexafluoroantimonate, 4-hydroxyphenyl (o-methylbenzyl) methylsulfonium hexafluoroantimonate, 4-hydroxyphenyl (Α-naphthylmethyl) methylsulfonium hexafluoroantimonate, diphenyl-4- (phenylthio) phenylsulfonium hexafluoroa Timonate, triphenylsulfonium hexafluoroantimonate, bis [4- (di (4- (2-hydroxyethoxy)) phenylsulfonio) phenyl] sulfide bishexafluoroantimonate, bis [4- (diphenylsulfonio) phenyl] Hexafluoroantimonate salts such as sulfide bishexafluoroantimonate, (2-ethoxy-1-methyl-2-oxoethyl) methyl-2-naphthalenylsulfonium hexafluorophosphate, 4-acetoxyphenylbenzylmethylsulfonium hexafluorophosphate, 4-hydroxyphenyl (o-methylbenzyl) methylsulfonium hexafluorophosphate, 4-hydroxyphenyl (α-naphthylmethyl) methylsulfonium hexafluorophosphate Fate, diphenyl-4- (phenylthio) phenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluorophosphate, bis [4- (di (4- (2-hydroxyethoxy)) phenylsulfonio) phenyl] sulfide bishexafluorophosphate, Hexafluorophosphate salts such as bis [4- (diphenylsulfonio) phenyl] sulfide bishexafluorophosphate, 4-hydroxyphenyl (o-methylbenzyl) methylsulfonium hexafluoroarsenate, 4-hydroxyphenylbenzylmethylsulfonium hexafluoroarce Hexafluoroarsenate salts such as sulfonate, (2-ethoxy-1-methyl-2-oxoethyl) methyl-2-naphthalenylsulfonium Trafluoroborate, 4-hydroxyphenyl (o-methylbenzyl) methylsulfonium tetrafluoroborate, 4-hydroxyphenylbenzylmethylsulfonium tetrafluoroborate, diphenyl-4- (phenylthio) phenylsulfonium tetrafluoroborate, triphenylsulfonium tetrafluoroborate Tetrafluoroborate such as bis [4- (di (4- (2-hydroxyethoxy)) phenylsulfonio) phenyl] sulfide bistetrafluoroborate, bis [4- (diphenylsulfonio) phenyl] sulfide bistetrafluoroborate Salt, 4-hydroxyphenyl (o-methylbenzyl) methylsulfonium trifluoromethanesulfonate, 4-hydroxyphenylbenzylmethylsulfate Trifluoromethanesulfonates such as phonium trifluoromethanesulfonate, trifluoromethanesulfonates such as diphenyl-4- (phenylthio) phenylsulfonium trifluoromethanesulfonate, 4-hydroxyphenyl (α-naphthylmethyl) methylsulfonium bis Bis (trifluoromethanesulfone) imide salts such as (trifluoromethanesulfone) imide, 4-hydroxyphenylbenzylmethylsulfonium bis (trifluoromethanesulfone) imide, (2-ethoxy-1-methyl-2-oxoethyl) methyl-2-naphtha Renylsulfonium tetrakis (pentafluorophenyl) borate, 4- (methoxycarbonyloxy) phenylbenzylmethylsulfonium tetrakis (pentafluorophenyl) Borate, 4-hydroxyphenyl (o-methylbenzyl) methylsulfonium tetrakis (pentafluorophenyl) borate, 4-hydroxyphenyl (α-naphthylmethyl) methylsulfonium tetrakis (pentafluorophenyl) borate, 4-hydroxyphenylbenzylmethylsulfonium tetrakis (Pentafluorophenyl) borate, diphenyl-4- (phenylthio) phenylsulfonium tetrakis (pentafluorophenyl) borate, triphenylsulfonium tetrakis (pentafluorophenyl) borate, bis [4- (di (4- (2-hydroxyethoxy)) ) Phenylsulfonio) phenyl] sulfide tetrakis (pentafluorophenyl) borate, bis [4- (diphenylsulfonio) phenyl] Sulfide tetrakis (pentafluorophenyl) tetrakis borate (pentafluorophenyl) borate salts.
 芳香族ヨードニウム塩系の熱カチオン重合開始剤の具体例としては、フェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロアンチモネート、ジフェニルヨードニウムテトラフルオロボレート、ジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムトリフルオロメタンスルホン酸塩、ビス(ドデシルフェニル)ヨードニウムヘキサフルオロホスフェート、ビス(ドデシルフェニル)ヨードニウムヘキサフルオロアンチモネート、ビス(ドデシルフェニル)ヨードニウムテトラフルオロボレート、ビス(ドデシルフェニル)ヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムヘキサフルオロホスフェート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムヘキサフルオロアンチモネート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムテトラフルオロボレート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。 Specific examples of aromatic iodonium salt-based thermal cationic polymerization initiators include phenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, diphenyliodonium tetrafluoroborate, diphenyliodonium tetrakis (pentafluorophenyl) borate, diphenyliodonium hexafluoro Phosphate, diphenyliodonium trifluoromethanesulfonate, bis (dodecylphenyl) iodonium hexafluorophosphate, bis (dodecylphenyl) iodonium hexafluoroantimonate, bis (dodecylphenyl) iodonium tetrafluoroborate, bis (dodecylphenyl) iodonium tetrakis (penta Fluorophenyl) borate, 4-methylphenol Nyl-4- (1-methylethyl) phenyliodonium hexafluorophosphate, 4-methylphenyl-4- (1-methylethyl) phenyliodonium hexafluoroantimonate, 4-methylphenyl-4- (1-methylethyl) phenyl Examples thereof include iodonium tetrafluoroborate and 4-methylphenyl-4- (1-methylethyl) phenyliodonium tetrakis (pentafluorophenyl) borate.
 芳香族ジアゾニウム塩系の熱カチオン重合開始剤の具体例としては、フェニルジアゾニウムヘキサフルオロホスフェート、フェニルジアゾニウムヘキサフルオロアンチモネート、フェニルジアゾニウムテトラフルオロボレートおよびフェニルジアゾニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。 Specific examples of the aromatic diazonium salt-based thermal cationic polymerization initiator include phenyldiazonium hexafluorophosphate, phenyldiazonium hexafluoroantimonate, phenyldiazonium tetrafluoroborate, and phenyldiazonium tetrakis (pentafluorophenyl) borate.
 ピリジニウム塩系の熱カチオン重合開始剤の具体例としては、1-ベンジル-2-シアノピリジニウムヘキサフルオロホスフェート、1-ベンジル-2-シアノピリジニウムヘキサフルオロアンチモネート、1-ベンジル-2-シアノピリジニウムテトラフルオロボレート、1-ベンジル-2-シアノピリジニウムテトラキス(ペンタフルオロフェニル)ボレート、1-(ナフチルメチル)-2-シアノピリジニウムヘキサフルオロホスフェート、1-(ナフチルメチル)-2-シアノピリジニウムヘキサフルオロアンチモネート、1-(ナフチルメチル)-2-シアノピリジニウムテトラフルオロボレート、1-(ナフチルメチル)-2-シアノピリジニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。 Specific examples of pyridinium salt-based thermal cationic polymerization initiators include 1-benzyl-2-cyanopyridinium hexafluorophosphate, 1-benzyl-2-cyanopyridinium hexafluoroantimonate, 1-benzyl-2-cyanopyridinium tetrafluoro Borate, 1-benzyl-2-cyanopyridinium tetrakis (pentafluorophenyl) borate, 1- (naphthylmethyl) -2-cyanopyridinium hexafluorophosphate, 1- (naphthylmethyl) -2-cyanopyridinium hexafluoroantimonate, 1 Examples include-(naphthylmethyl) -2-cyanopyridinium tetrafluoroborate, 1- (naphthylmethyl) -2-cyanopyridinium tetrakis (pentafluorophenyl) borate, and the like.
 アルミニウム錯体系の熱カチオン重合開始剤としては、アルミニウムのカルボン酸塩、アルミニウムアルコキシド、塩化アルミニウム、アルミニウム(アルコキシド)アセト酢酸キレート、アセトアセトナトアルミニウム、エチルアセトアセタトアルミニウム等が挙げられる。 Examples of the aluminum complex-based thermal cationic polymerization initiator include aluminum carboxylate, aluminum alkoxide, aluminum chloride, aluminum (alkoxide) acetoacetate chelate, acetoacetonatoaluminum, ethylacetoacetoaluminum and the like.
 ホスホニウム塩系の熱カチオン重合開始剤としては、エチルトリフェニルホスホニウムヘキサフルオロアンチモネート、テトラブチルホスホニウムヘキサフルオロアンチモネート等が挙げられる。 Examples of the phosphonium salt-based thermal cationic polymerization initiator include ethyltriphenylphosphonium hexafluoroantimonate and tetrabutylphosphonium hexafluoroantimonate.
 4級アンモニウム塩系の熱カチオン重合開始剤としては、N,N-ジメチル-N-ベンジルアニリニウムヘキサフルオロアンチモネート、N,N-ジエチル-N-ベンジルアニリニウムテトラフルオロボレート、N,N-ジメチル-N-ベンジルピリジニウムヘキサフルオロアンチモネート、N,N-ジエチル-N-ベンジルピリジニウムトリフルオロメタンスルホン酸、N,N-ジメチル-N-(4-メトキシベンジル)ピリジニウムヘキサフルオロアンチモネート、N,N-ジエチル-N-(4-メトキシベンジル)ピリジニウムヘキサフルオロアンチモネート、N,N-ジエチル-N-(4-メトキシベンジル)トルイジニウムヘキサフルオロアンチモネート、N,N-ジメチル-N-(4-メトキシベンジル)トルイジニウムヘキサフルオロアンチモネート等が挙げられる。 Quaternary ammonium salt-based thermal cationic polymerization initiators include N, N-dimethyl-N-benzylanilinium hexafluoroantimonate, N, N-diethyl-N-benzylanilinium tetrafluoroborate, N, N-dimethyl. -N-benzylpyridinium hexafluoroantimonate, N, N-diethyl-N-benzylpyridinium trifluoromethanesulfonic acid, N, N-dimethyl-N- (4-methoxybenzyl) pyridinium hexafluoroantimonate, N, N-diethyl -N- (4-methoxybenzyl) pyridinium hexafluoroantimonate, N, N-diethyl-N- (4-methoxybenzyl) toluidinium hexafluoroantimonate, N, N-dimethyl-N- (4-methoxybenzyl ) Toluidinium hex Hexafluoroantimonate and the like.
 本発明の硬化性組成物は、上記したような熱カチオン重合開始剤を1種または2種以上含んでいてもよい。 The curable composition of the present invention may contain one or more thermal cationic polymerization initiators as described above.
 本発明の硬化性組成物のさらに好ましい実施態様においては、前記熱カチオン重合開始剤が、芳香族スルホニウム塩系の熱カチオン重合開始剤、芳香族ヨードニウム塩系の熱カチオン重合開始剤、およびアルミニウム錯体系の熱カチオン重合開始剤からなる群から選択されることを特徴とする。 In a further preferred embodiment of the curable composition of the present invention, the thermal cationic polymerization initiator is an aromatic sulfonium salt-based thermal cationic polymerization initiator, an aromatic iodonium salt-based thermal cationic polymerization initiator, and an aluminum complex. It is selected from the group consisting of thermal cationic polymerization initiators of the system.
 本発明の硬化性組成物における熱カチオン重合開始剤の含有量は、使用する熱カチオン重合開始剤の種類に応じ適宜変更することが好ましい。例えば、熱カチオン重合開始剤を使用する場合、硬化性組成物100質量部に対し、0.1~15質量部であることが好ましく、0.3~7質量部であることがより好ましい。 The content of the thermal cationic polymerization initiator in the curable composition of the present invention is preferably changed as appropriate according to the type of the thermal cationic polymerization initiator to be used. For example, when a thermal cationic polymerization initiator is used, it is preferably 0.1 to 15 parts by mass, more preferably 0.3 to 7 parts by mass with respect to 100 parts by mass of the curable composition.
(4)光カチオン重合開始剤
 本発明の硬化性組成物に含まれる光カチオン重合開始剤は、可視光線、紫外線、X線、電子線のような活性エネルギー線の照射によって、カチオン種又はルイス酸を発生させ、カチオン重合性化合物の重合反応を開始するものである。本発明の硬化性組成物に含まれる光カチオン重合開始剤としては、例えば、オニウム塩やメタロセン錯体、鉄-アレン錯体などの化合物を用いることができる。オニウム塩としては、芳香族スルホニウム塩、芳香族ヨードニウム塩、芳香族ジアゾニウム塩、芳香族ホスホニウム塩および芳香族セレニウム塩などが用いられ、これらの対イオンとしては、CFSO 、BF 、PF 、AsF 、およびSbF などのアニオンが用いられる。これらの中でも、300nm以上の波長領域でも紫外線吸収特性を有することから、硬化性に優れ、良好な機械強度や接着強度を有する硬化物を与えることができるため、芳香族スルホニウム塩系の光カチオン重合開始剤を使用することがより好ましい。また、本発明の硬化性組成物は、2種以上の光カチオン重合開始剤を含んでいてもよい。
(4) Photocationic polymerization initiator The photocationic polymerization initiator contained in the curable composition of the present invention is a cationic species or Lewis acid by irradiation with active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams. To initiate the polymerization reaction of the cationically polymerizable compound. As the cationic photopolymerization initiator contained in the curable composition of the present invention, for example, compounds such as onium salts, metallocene complexes, and iron-allene complexes can be used. As the onium salt, aromatic sulfonium salt, aromatic iodonium salt, aromatic diazonium salt, aromatic phosphonium salt, aromatic selenium salt and the like are used, and as counter ions thereof, CF 3 SO 3 , BF 4 , PF 6 , AsF 6 , and SbF 6 are used. Among these, since it has ultraviolet absorption characteristics even in a wavelength region of 300 nm or more, it can provide a cured product having excellent curability and good mechanical strength and adhesive strength. More preferably, an initiator is used. Moreover, the curable composition of this invention may contain 2 or more types of photocationic polymerization initiators.
 芳香族スルホニウム塩としては、ジフェニル-4-(フェニルチオ)フェニルスルホニウムヘキサフルオロホスフェート、4,4’-ビス(ジフェニルスルホニオ)ジフェニルスルフィドビスヘキサフルオロホスフェート、4,4’-ビス〔ジ(β-ヒドロキシエトキシ)フェニルスルホニオ〕ジフェニルスルフィドビスヘキサフルオロアンチモネート、4,4’-ビス〔ジ(β-ヒドロキシエトキシ)フェニルスルホニオ〕ジフェニルスルフィドビスヘキサフルオロホスフェート、7-〔ジ(p-トルイル)スルホニオ〕-2-イソプロピルチオキサントンヘキサフルオロアンチモネート、7-〔ジ(p-トルイル)スルホニオ〕-2-イソプロピルチオキサントンテトラキス(ペンタフルオロフェニル)ボレート、4-フェニルカルボニル-4’-ジフェニルスルホニオ-ジフェニルスルフィドヘキサフルオロホスフェート、4-(p-tert-ブチルフェニルカルボニル)-4’-ジフェニルスルホニオ-ジフェニルスルフィドヘキサフルオロアンチモネート、4-(p-tert-ブチルフェニルカルボニル)-4’-ジ(p-トルイル)スルホニオ-ジフェニルスルフィドテトラキス(ペンタフルオロフェニル)ボレート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムトリフルオロメタンスルホン酸塩、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィドビスヘキサフルオロアンチモネート、(4-メトキシフェニル)ジフェニルスルホニウムヘキサフルオロアンチモネート等が挙げられる。 Aromatic sulfonium salts include diphenyl-4- (phenylthio) phenylsulfonium hexafluorophosphate, 4,4'-bis (diphenylsulfonio) diphenyl sulfide bishexafluorophosphate, 4,4'-bis [di (β-hydroxy Ethoxy) phenylsulfonio] diphenylsulfide bishexafluoroantimonate, 4,4′-bis [di (β-hydroxyethoxy) phenylsulfonio] diphenylsulfide bishexafluorophosphate, 7- [di (p-toluyl) sulfonio] -2-Isopropylthioxanthone hexafluoroantimonate, 7- [di (p-toluyl) sulfonio] -2-isopropylthioxanthone tetrakis (pentafluorophenyl) borate, 4-phenylcarboni 4'-diphenylsulfonio-diphenylsulfide hexafluorophosphate, 4- (p-tert-butylphenylcarbonyl) -4'-diphenylsulfonio-diphenylsulfide hexafluoroantimonate, 4- (p-tert-butylphenyl) Carbonyl) -4'-di (p-toluyl) sulfonio-diphenyl sulfide tetrakis (pentafluorophenyl) borate, diphenyl-4- (phenylthio) phenylsulfonium hexafluoroantimonate, triphenylsulfonium trifluoromethanesulfonate, bis [4 -(Diphenylsulfonio) phenyl] sulfide bishexafluoroantimonate, (4-methoxyphenyl) diphenylsulfonium hexafluoroantimonate, etc. .
 芳香族ヨードニウム塩としては、ジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロアンチモネート、ジ(4-ノニルフェニル)ヨードニウムヘキサフルオロホスフェート、(4-メトキシフェニル)フェニルヨードニウムヘキサフルオロアンチモネート、ビス(4-t-ブチルフェニル)ヨードニウムヘキサフルオロホスフェート等が挙げられる。 Aromatic iodonium salts include diphenyliodonium tetrakis (pentafluorophenyl) borate, diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, di (4-nonylphenyl) iodonium hexafluorophosphate, (4-methoxyphenyl) phenyliodonium Examples include hexafluoroantimonate and bis (4-t-butylphenyl) iodonium hexafluorophosphate.
 芳香族ジアゾニウム塩としては、ベンゼンジアゾニウムヘキサフルオロアンチモネート、ベンゼンジアゾニウムヘキサフルオロホスフェート、 ベンゼンジアゾニウムテトラフルオロボレート、4-クロロベンゼンジアゾニウムヘキサフルオロホスフェート等が挙げられる。 Examples of the aromatic diazonium salt include benzenediazonium hexafluoroantimonate, benzenediazonium hexafluorophosphate, benzenediazonium tetrafluoroborate, 4-chlorobenzenediazonium hexafluorophosphate, and the like.
 芳香族ホスホニウム塩としては、ベンジルトリフェニルホスホニウムヘキサフルオロアンチモネート等が挙げられる。 Examples of the aromatic phosphonium salt include benzyltriphenylphosphonium hexafluoroantimonate.
 芳香族セレニウム塩としては、トリフェニルセレニウムヘキサフルオロホスフェート等が挙げられる。 Examples of aromatic selenium salts include triphenyl selenium hexafluorophosphate.
 鉄-アレン錯体としては、キシレン-シクロペンタジエニル鉄(II)ヘキサフルオロアンチモネート、クメン-シクロペンタジエニル鉄(II)ヘキサフルオロホスフェート、キシレン-シクロペンタジエニル鉄(II)トリス(トリフルオロメチルスルホニル)メタナイド等が挙げられる。 Iron-allene complexes include xylene-cyclopentadienyl iron (II) hexafluoroantimonate, cumene-cyclopentadienyl iron (II) hexafluorophosphate, xylene-cyclopentadienyl iron (II) tris (trifluoro Methylsulfonyl) methanide and the like.
 本発明の硬化性組成物における光カチオン重合開始剤の含有量は、硬化性組成物に含まれるモノエポキシ化合物100質量部に対し、または硬化性組成物が、後述するその他のエポキシ化合物、後述するオキセタン化合物および/またはビニルエーテルを含む場合は、それらの総量100質量部に対し、0.1~20質量部であることが好ましく、0.3~15質量部であることがより好ましい。光カチオン重合開始剤の含有量を上記数値範囲とすることにより、硬化物の耐熱性をより一層向上させることができる。また、硬化物の透明性をより向上させることができる。 The content of the cationic photopolymerization initiator in the curable composition of the present invention is such that the epoxy composition is contained in 100 parts by mass of the monoepoxy compound contained in the curable composition, or other epoxy compounds described later. When the oxetane compound and / or vinyl ether is included, the amount is preferably 0.1 to 20 parts by mass, more preferably 0.3 to 15 parts by mass with respect to 100 parts by mass of the total amount. By making content of a photocationic polymerization initiator into the said numerical range, the heat resistance of hardened | cured material can be improved further. Moreover, transparency of hardened | cured material can be improved more.
(5)前記モノエポキシ化合物と異なるその他のエポキシ化合物
 本発明の硬化性組成物に含まれるその他のエポキシ化合物としては、上記式(1)で表されるモノエポキシ化合物以外の化合物であって、分子中にエポキシ基を1個以上、好ましくは2個以上有する化合物であり、このような化合物であれば特に限定されるものではない。
(5) Other epoxy compounds different from the above monoepoxy compound Other epoxy compounds contained in the curable composition of the present invention are compounds other than the monoepoxy compound represented by the above formula (1), and molecules It is a compound which has 1 or more of epoxy groups in it, Preferably it is 2 or more, and if it is such a compound, it will not specifically limit.
 本発明の硬化性組成物に含まれるその他のエポキシ化合物としては、例えば、グリシジルエーテル型エポキシド、グリシジルエステル型エポキシド、グリシジルアミン型エポキシドおよび脂環式エポキシド等が挙げられる。また、その他のエポキシ化合物は、グリシジルエーテル型エポキシド、グリシジルエステル型エポキシド、グリシジルアミン型エポキシドおよび脂環式エポキシド等が重合したエポキシ樹脂であってもよい。 Examples of other epoxy compounds contained in the curable composition of the present invention include glycidyl ether type epoxides, glycidyl ester type epoxides, glycidyl amine type epoxides, and alicyclic epoxides. The other epoxy compound may be an epoxy resin obtained by polymerizing glycidyl ether type epoxide, glycidyl ester type epoxide, glycidyl amine type epoxide, alicyclic epoxide, or the like.
 グリシジルエーテル型エポキシドとしては、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、テトラメチルビフェノールジグリシジルエーテル、水素化ビスフェノールAジグリシジルエーテル、臭素化ビスフェノールAジグリシジルエーテル等の二価フェノールのグリシジルエーテル、ジヒドロキシナフチルクレゾールトリグリシジルエーテル、トリス(ヒドロキシフェニル)メタントリグリシジルエーテル、テトラキス(ヒドロキシフェニル)エタンテトラグリシジルエーテル、ジナフチルトリオールトリグリシジルエーテル、フェノールノボラックグリシジルエーテル、クレゾールノボラックグリシジルエーテル、キシリレン骨格含有フェノールノボラックグリシジルエーテル、ジシクロペンタジエン骨格含有フェノールノボラックグリシジルエーテル、ビフェニル骨格含有フェノールノボラックグリシジルエーテル、テルペン骨格含有フェノールノボラックグリシジルエーテル、ビスフェノールAノボラックグリシジルエーテル、ビスフェノールFノボラックグリシジルエーテル、ビスフェノールSノボラックグリシジルエーテル、ビスフェノールAPノボラックグリシジルエーテル、ビスフェノールCノボラックグリシジルエーテル、ビスフェノールEノボラックグリシジルエーテル、ビスフェノールZノボラックグリシジルエーテル、ビフェノールノボラックグリシジルエーテル、テトラメチルビスフェノールAノボラックグリシジルエーテル、ジメチルビスフェノールAノボラックグリシジルエーテル、テトラメチルビスフェノールFノボラックグリシジルエーテル、ジメチルビスフェノールFノボラックグリシジルエーテル、テトラメチルビスフェノールSノボラックグリシジルエーテル、ジメチルビスフェノールSノボラックグリシジルエーテル、テトラメチル-4,4’-ビフェノールノボラックグリシジルエーテル、トリスヒドロキシフェニルメタンノボラックグリシジルエーテル、レゾルシノールノボラックグリシジルエーテル、ハイドロキノンノボラックグリシジルエーテル、ピロガロールノボラックグリシジルエーテル、ジイソプロピリデンノボラックグリシジルエーテル、1,1-ジ-4-ヒドロキシフェニルフルオレンノボラックグリシジルエーテル、フェノール化ポリブタジエンノボラックグリシジルエーテル、エチルフェノールノボラックグリシジルエーテル、ブチルフェノールノボラックグリシジルエーテル、オクチルフェノールノボラックグリシジルエーテル、ナフトールノボラックグリシジルエーテル、水素化フェノールノボラックグリシジルエーテル等の多価フェノールのグリシジルエーテル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、テトラメチレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、シクロヘキサンジメチロールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル等の二価アルコールのグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、グリセリントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、ソルビトールヘキサグリシジルエーテル、ポリグリセリンポリグリシジルエーテル等の多価アルコールのグリシジルエーテル、トリグリシジルイソシアヌレート等が挙げられる。 Examples of the glycidyl ether type epoxide include bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, tetramethylbiphenol diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, and brominated bisphenol A diglycidyl ether. Glycidyl ether of dihydric phenol, dihydroxynaphthylcresol triglycidyl ether, tris (hydroxyphenyl) methane triglycidyl ether, tetrakis (hydroxyphenyl) ethanetetraglycidyl ether, dinaphthyltriol triglycidyl ether, phenol novolac glycidyl ether, cresol novolac glycidyl ether, Phenolic novolak containing xylylene skeleton Ricidyl ether, dicyclopentadiene skeleton-containing phenol novolac glycidyl ether, biphenyl skeleton-containing phenol novolak glycidyl ether, terpene skeleton-containing phenol novolac glycidyl ether, bisphenol A novolac glycidyl ether, bisphenol F novolac glycidyl ether, bisphenol S novolac glycidyl ether, bisphenol AP Novolak glycidyl ether, bisphenol C novolac glycidyl ether, bisphenol E novolac glycidyl ether, bisphenol Z novolac glycidyl ether, biphenol novolac glycidyl ether, tetramethylbisphenol A novolac glycidyl ether, dimethylbisphenol A novolac glycidyl Ether, tetramethylbisphenol F novolac glycidyl ether, dimethyl bisphenol F novolak glycidyl ether, tetramethyl bisphenol S novolac glycidyl ether, dimethyl bisphenol S novolac glycidyl ether, tetramethyl-4,4'-biphenol novolac glycidyl ether, trishydroxyphenylmethane novolak Glycidyl ether, resorcinol novolak glycidyl ether, hydroquinone novolak glycidyl ether, pyrogallol novolak glycidyl ether, diisopropylidene novolac glycidyl ether, 1,1-di-4-hydroxyphenylfluorene novolac glycidyl ether, phenolized polybutadiene novolac glycidyl ether , Ethylphenol novolak glycidyl ether, butylphenol novolak glycidyl ether, octylphenol novolak glycidyl ether, naphthol novolak glycidyl ether, glycidyl ether of polyhydric phenol such as hydrogenated phenol novolac glycidyl ether, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, Tetramethylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, cyclohexane dimethylol diglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether and other dihydric alcohol glycidyl ether, trimethylolpropane triglycidyl ether The Serine triglycidyl ether, pentaerythritol tetraglycidyl ether, sorbitol hexaglycidyl ether, glycidyl ether of polyhydric alcohol such as polyglycerol polyglycidyl ether, triglycidyl isocyanurate and the like.
 グリシジルエステル型エポキシドとしては、グリシジルメタクリレート、フタル酸ジグリシジルエステル、イソフタル酸ジグリシジルエステル、テレフタル酸ジグリシジルエステル、シクロヘキサンジカルボン酸ジグリシジルエステル、トリメット酸トリグリシジルエステル等のカルボン酸のグリシジルエステルやグリシジルエステル型のポリエポキシド等が挙げられる。 Glycidyl ester type epoxides include glycidyl methacrylate, phthalic acid diglycidyl ester, isophthalic acid diglycidyl ester, terephthalic acid diglycidyl ester, cyclohexanedicarboxylic acid diglycidyl ester, trimetic acid triglycidyl ester and the like. Examples include mold polyepoxides.
 グリシジルアミン型エポキシドとしては、N,N-ジグリシジルアニリン、N,N-ジグリシジルトルイジン、N,N,N’,N’-テトラグリシジルジアミノジフェニルメタン、N,N,N’,N’-テトラグリシジルジアミノジフェニルスルホン、N,N,N’,N’-テトラグリシジルジエチルジフェニルメタン等のグリシジル芳香族アミン、ビス(N,N-ジグリシジルアミノシクロヘキシル)メタン(N,N,N’,N’-テトラグリシジルジアミノジフェニルメタンの水素化物)、N,N,N’,N’-テトラグリシジル-1,3-(ビスアミノメチル)シクロヘキサン(N,N,N’,N’-テトラグリシジルキシリレンジアミンの水素化物)、トリスグリシジルメラミン、トリグリシジル-p-アミノフェノール、N-グリシジル-4-グリシジルオキシピロリドン等のグリシジル複素環式アミン等が挙げられる。 Examples of the glycidylamine type epoxide include N, N-diglycidylaniline, N, N-diglycidyltoluidine, N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane, N, N, N ′, N′-tetraglycidyl. Glycidyl aromatic amines such as diaminodiphenylsulfone, N, N, N ′, N′-tetraglycidyldiethyldiphenylmethane, bis (N, N-diglycidylaminocyclohexyl) methane (N, N, N ′, N′-tetraglycidyl) Hydride of diaminodiphenylmethane), N, N, N ′, N′-tetraglycidyl-1,3- (bisaminomethyl) cyclohexane (hydride of N, N, N ′, N′-tetraglycidylxylylenediamine) , Trisglycidylmelamine, triglycidyl-p-aminophenol, N-g Glycidyl heterocyclic amines such as glycidyl 4-glycidyl oxy pyrrolidone.
 脂環式エポキシドとしては、ビニルシクロヘキセンジオキシド、リモネンジオキシド、ジシクロペンタジエンジオキシド、ビス(2,3-エポキシシクロペンチル)エーテル、エチレングリコールビスエポキシジシクロペンチルエーテル、3,4-エポキシ-6-メチルシクロへキシルメチル 3’,4’-エポキシ-6’-メチルシクロヘキサンカルボキシレート、3,4-エポキシシクロへキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート、3,4-エポキシ-1-メチルシクロへキシル 3,4-エポキシ-1-メチルヘキサンカルボキシレート、3,4-エポキシ-3-メチルシクロへキシルメチル 3,4-エポキシ-3-メチルヘキサンカルボキシレート、3,4-エポキシ-5-メチルシクロへキシルメチル 3,4-エポキシ-5-メチルシクロヘキサンカルボキシレート、2-(3,4-エポキシシクロへキシル-5,5-スピロ-3,4-エポキシ)シクロヘキサン-メタジオキサン、メチレンビス(3,4-エポキシシクロヘキサン)、(3,3’,4,4’-ジエポキシ)ビシクロヘキシル、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-(2-オキシラニル)シクロヘキサン付加物、テトラヒドロインデンジエポキシド等が挙げられる。本発明の硬化性組成物は、上記したようなその他のエポキシ化合物を1または2種以上含んでいてもよい。 Alicyclic epoxides include vinylcyclohexene dioxide, limonene dioxide, dicyclopentadiene dioxide, bis (2,3-epoxycyclopentyl) ether, ethylene glycol bisepoxy dicyclopentyl ether, 3,4-epoxy-6-methylcyclohexane. Hexylmethyl 3 ', 4'-epoxy-6'-methylcyclohexanecarboxylate, 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate, 3,4-epoxy-1-methylcyclohexyl 3,4- Epoxy-1-methylhexanecarboxylate, 3,4-epoxy-3-methylcyclohexylmethyl, 3,4-epoxy-3-methylhexanecarboxylate, 3,4-epoxy-5-methylcyclohexylmethyl 3,4-epoxy-5-methylcyclohexanecarboxylate, 2- (3,4-epoxycyclohexyl-5,5-spiro-3,4-epoxy) cyclohexane-metadioxane, methylenebis (3,4-epoxycyclohexane ), (3,3 ′, 4,4′-diepoxy) bicyclohexyl, 1,2-epoxy- (2-oxiranyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol, tetrahydroindene An epoxide etc. are mentioned. The curable composition of the present invention may contain one or more other epoxy compounds as described above.
 硬化物の耐熱性という観点からは、上記したその他のエポキシ化合物の含有量は、本発明の硬化性組成物に対して1~99質量%であることが好ましく、5~95質量%であることがより好ましい。 From the viewpoint of the heat resistance of the cured product, the content of the other epoxy compound is preferably 1 to 99% by mass, and preferably 5 to 95% by mass with respect to the curable composition of the present invention. Is more preferable.
 本発明の硬化性組成物において、モノエポキシ化合物と、該モノエポキシ化合物と異なるその他のエポキシ化合物との含有量比は、質量基準で、1:99~75:25であることが好ましく、5:95~50:50であることがより好ましい。 In the curable composition of the present invention, the content ratio of the monoepoxy compound and the other epoxy compound different from the monoepoxy compound is preferably 1:99 to 75:25 on a mass basis. More preferably, it is 95 to 50:50.
 本発明の硬化性組成物の好ましい実施態様において、前記モノエポキシ化合物と異なるその他のエポキシ化合物はエポキシ樹脂である。 In a preferred embodiment of the curable composition of the present invention, the other epoxy compound different from the monoepoxy compound is an epoxy resin.
 本発明の硬化性組成物のさらに好ましい実施態様において、前記モノエポキシ化合物と異なるその他のエポキシ化合物が、グリシジルエーテル型エポキシド、グリシジルエステル型エポキシド、および脂環式エポキシドからなる群から選択されることを特徴とする。 In a further preferred embodiment of the curable composition of the present invention, the other epoxy compound different from the monoepoxy compound is selected from the group consisting of a glycidyl ether type epoxide, a glycidyl ester type epoxide, and an alicyclic epoxide. Features.
(6)反応性希釈剤
 本発明の硬化性組成物は、低粘度化のために、反応性希釈剤をさらに含んでいてもよい。反応性希釈剤としては、例えば、実施例I1に記載された方法で調製されたモノエポキシ化合物(A)、ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、C12-13混合アルコールのグリシジルエーテル、1,2-エポキシ-4-ビニルシクロヘキサン等が挙げられる。硬化性組成物は、上記したような反応性希釈剤を1種または2種以上含んでいてもよい。反応性希釈剤の混合比率は、反応性希釈剤を含む硬化性組成物が所望の粘度となるように、適宜調整すればよい。
(6) Reactive Diluent The curable composition of the present invention may further contain a reactive diluent for reducing the viscosity. Examples of the reactive diluent include monoepoxy compound (A) prepared by the method described in Example I1, butyl glycidyl ether, 2-ethylhexyl glycidyl ether, glycidyl ether of C12-13 mixed alcohol, 1, 2 -Epoxy-4-vinylcyclohexane and the like. The curable composition may contain one or more reactive diluents as described above. What is necessary is just to adjust the mixing ratio of a reactive diluent suitably so that the curable composition containing a reactive diluent may become a desired viscosity.
(7)オキセタン化合物
 本発明の硬化性組成物は、オキセタン化合物をさらに含んでいてもよい。オキセタン化合物としては、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、3-エチル-3-ヒドロキシメチルオキセタン、3-エチル-3-(フェノキシメチル)オキセタン、ジ[(3-エチル-3-オキセタニル)メチル]エーテル、3-エチル-3-(2-エチルヘキシルオキシメチル)オキセタン、3-エチル-3-(シクロヘキシルオキシメチル)オキセタン、フェノールノボラックオキセタン、1,3-ビス[(3-エチルオキセタン-3-イル)]メトキシベンゼン、オキセタニルシルセスキオキサン、オキセタニルシリケート、ビス[1-エチル(3-オキセタニル)]メチルエーテル、4,4’-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル、4,4’-ビス(3-エチル-3-オキセタニルメトキシ)ビフェニル、エチレングリコール(3-エチル-3-オキセタニルメチル)エーテル、ジエチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、ビス(3-エチル-3-オキセタニルメチル)ジフェノエート、トリメチロールプロパンプロパントリス(3-エチル-3-オキセタニルメチル)エーテル、ペンタエリスリトールテトラキス(3-エチル-3-オキセタニルメチル)エーテル、フェノールノボラック型オキセタン等が挙げられる。本発明の硬化性組成物は、上記したようなオキセタン化合物を1種または2種以上含んでいてもよい。
(7) Oxetane compound The curable composition of the present invention may further contain an oxetane compound. Examples of the oxetane compound include 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, 3-ethyl-3-hydroxymethyloxetane, 3-ethyl-3- (phenoxymethyl) oxetane, di [( 3-ethyl-3-oxetanyl) methyl] ether, 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane, 3-ethyl-3- (cyclohexyloxymethyl) oxetane, phenol novolac oxetane, 1,3-bis [ (3-Ethyloxetane-3-yl)] methoxybenzene, oxetanylsilsesquioxane, oxetanyl silicate, bis [1-ethyl (3-oxetanyl)] methyl ether, 4,4′-bis [(3-ethyl-3 -Oxetanyl) methoxymethyl] biphenyl, 4,4'-bis (3 Ethyl-3-oxetanylmethoxy) biphenyl, ethylene glycol (3-ethyl-3-oxetanylmethyl) ether, diethylene glycol bis (3-ethyl-3-oxetanylmethyl) ether, bis (3-ethyl-3-oxetanylmethyl) diphenoate, Examples include trimethylolpropanepropane tris (3-ethyl-3-oxetanylmethyl) ether, pentaerythritol tetrakis (3-ethyl-3-oxetanylmethyl) ether, phenol novolac oxetane, and the like. The curable composition of the present invention may contain one or more oxetane compounds as described above.
 硬化物の耐熱性という観点からは、硬化性組成物におけるオキセタン化合物の含有量は、1~90質量%であることが好ましく、5~85質量%であることがより好ましい。 From the viewpoint of heat resistance of the cured product, the content of the oxetane compound in the curable composition is preferably 1 to 90% by mass, and more preferably 5 to 85% by mass.
(8)ビニルエーテル化合物
 本発明の硬化性組成物は、ビニルエーテル化合物をさらに含んでいてもよい。ビニルエーテル化合物としては、例えば、メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテルなどの単官能ビニルエーテル、エチレングリコールジビニルエーテル、ブタンジオールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、シクロヘキサンジオールジビニルエーテル、トリメチロールプロパントリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、グリセロールトリビニルエーテル、トリエチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル等の多官能ビニルエーテル、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、シクロヘキサンジメタノールモノビニルエーテル、シクロヘキサンジオールモノビニルエーテル、9-ヒドロキシノニルビニルエーテル、プロピレングリコールモノビニルエーテル、ネオペンチルグリコールモノビニルエーテル、グリセロールジビニルエーテル、グリセロールモノビニルエーテル、トリメチロールプロパンジビニルエーテル、トリメチロールプロパンモノビニルエーテル、ペンタエリスリトールモノビニルエーテル、ペンタエリスリトールジビニルエーテル、ペンタエリスリトールトリビニルエーテル、ジエチレングリコールモノビニルエーテル、トリエチレングリコールモノビニルエーテル、テトラエチレングリコールモノビニルエーテル、トリシクロデカンジオールモノビニルエーテル、トリシクロデカンジメタノールモノビニルエーテル等の水酸基を有するビニルエーテル化合物およびアクリル酸2-(2-ビニロキシエトキシ)エチル、メタクリル酸2-(2-ビニロキシエトキシ)エチル等の異種の官能基を有するビニルエーテル等が挙げられる。本発明の硬化性組成物は、上記したようなビニルエーテル化合物を1種または2種以上含んでいてもよい。
(8) Vinyl ether compound The curable composition of the present invention may further contain a vinyl ether compound. Examples of the vinyl ether compound include monofunctional vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, and butyl vinyl ether, ethylene glycol divinyl ether, butanediol divinyl ether, cyclohexanedimethanol divinyl ether, cyclohexanediol divinyl ether, and trimethylolpropane trivinyl ether. Polyfunctional vinyl ethers such as pentaerythritol tetravinyl ether, glycerol trivinyl ether, triethylene glycol divinyl ether, diethylene glycol divinyl ether, hydroxyethyl vinyl ether, hydroxybutyl vinyl ether, cyclohexanedimethanol monovinyl ether, cyclohexanediol monovinyl Ether, 9-hydroxynonyl vinyl ether, propylene glycol monovinyl ether, neopentyl glycol monovinyl ether, glycerol divinyl ether, glycerol monovinyl ether, trimethylolpropane divinyl ether, trimethylolpropane monovinyl ether, pentaerythritol monovinyl ether, pentaerythritol divinyl ether, penta Vinyl ether compounds having a hydroxyl group such as erythritol trivinyl ether, diethylene glycol monovinyl ether, triethylene glycol monovinyl ether, tetraethylene glycol monovinyl ether, tricyclodecanediol monovinyl ether, tricyclodecane dimethanol monovinyl ether, and acrylic acid 2- ( - vinyloxy) ethyl, vinyl ether or the like having a different functional group such as methacrylic acid 2- (2-vinyloxy ethoxy) ethyl. The curable composition of the present invention may contain one or more vinyl ether compounds as described above.
 硬化物の耐熱性という観点からは、硬化性組成物におけるビニルエーテル化合物の含有量は、1~90質量%であることが好ましく、5~85質量%であることがより好ましい。 From the viewpoint of the heat resistance of the cured product, the content of the vinyl ether compound in the curable composition is preferably 1 to 90% by mass, and more preferably 5 to 85% by mass.
(9)水酸基を有する化合物
 本発明の硬化性組成物は、水酸基を有する化合物をさらに含んでいてもよい。硬化性組成物が、水酸基を有する化合物を含むことにより、硬化反応を緩やかに進行させることができる。水酸基を有する化合物としては、例えば、エチレングリコール、ジエチレングリコール、グリセリン等が挙げられる。本発明の硬化性組成物は、上記したような水酸基を有する化合物を1種または2種以上含んでいてもよい。
(9) Compound having hydroxyl group The curable composition of the present invention may further contain a compound having a hydroxyl group. When the curable composition contains a compound having a hydroxyl group, the curing reaction can be allowed to proceed slowly. Examples of the compound having a hydroxyl group include ethylene glycol, diethylene glycol, glycerin and the like. The curable composition of the present invention may contain one or more compounds having a hydroxyl group as described above.
 硬化物の耐熱性という観点から、本発明の硬化性組成物における水酸基を有する化合物の含有量は、0.1~10質量%であることが好ましく、0.2~8質量%であることがより好ましい。 From the viewpoint of heat resistance of the cured product, the content of the compound having a hydroxyl group in the curable composition of the present invention is preferably 0.1 to 10% by mass, and preferably 0.2 to 8% by mass. More preferred.
(10)その他の構成成分
 本発明の硬化性組成物は、溶剤をさらに含んでいてもよい。溶剤としては、例えば、メチルエチルケトン、酢酸エチル、トルエン、メタノールおよびエタノール等が挙げられる。
(10) Other components The curable composition of the present invention may further contain a solvent. Examples of the solvent include methyl ethyl ketone, ethyl acetate, toluene, methanol and ethanol.
 本発明の硬化性組成物は、その特性を損なわない範囲において、各種添加剤を含んでいてもよい。添加剤としては、例えば、充填剤、シランカップリング剤、離型剤、着色剤、難燃剤、酸化防止剤、光安定剤および可塑剤、消泡剤、光安定剤、顔料や染料等の着色剤、可塑剤、pH調整剤、着色防止剤、艶消し剤、消臭剤、耐候剤、帯電防止剤、糸摩擦低減剤、スリップ剤、イオン交換剤等が挙げられる。 The curable composition of the present invention may contain various additives as long as the characteristics are not impaired. Examples of additives include fillers, silane coupling agents, mold release agents, colorants, flame retardants, antioxidants, light stabilizers and plasticizers, antifoaming agents, light stabilizers, pigments, dyes, and the like. Agents, plasticizers, pH adjusters, anti-coloring agents, matting agents, deodorants, weathering agents, antistatic agents, yarn friction reducing agents, slip agents, ion exchange agents and the like.
(11)硬化性組成物の製造
 本発明の硬化性組成物の製造においては、当業者に広く知られた技術常識に従い、硬化性組成物にさらに含有させる成分、および硬化性組成物の調製方法を適宜選択することができる。
(11) Manufacture of curable composition In manufacture of the curable composition of this invention, according to the technical common knowledge widely known to those skilled in the art, the component further contained in a curable composition, and the preparation method of a curable composition Can be appropriately selected.
4.硬化物とその製造方法
 本発明の硬化物は、上述の本発明の硬化性組成物を硬化させることにより得られたものである。硬化性組成物の硬化の方法は特に限定されるものではないが、加熱または光照射により適宜行うことができる。
4). Cured product and production method thereof The cured product of the present invention is obtained by curing the curable composition of the present invention described above. Although the method of hardening a curable composition is not specifically limited, It can carry out suitably by a heating or light irradiation.
(1)硬化の条件
 加熱により、硬化性組成物を硬化させる場合、多段階的に硬化性組成物を加熱することが好ましい。これにより、硬化反応を十分に進めることができる。例えば、60~120℃で10~150分の一次加熱と、130~200℃で60~300分の二次加熱とにより硬化反応を行うことができる。また、例えば、60~100℃で10~150分の一次加熱と、120~160℃で10~150分の二次加熱と、180~250℃で10~150分の三次加熱とにより硬化反応を行うことができる。
(1) When the curable composition is cured by heating under curing conditions , it is preferable to heat the curable composition in multiple steps. Thereby, hardening reaction can fully be advanced. For example, the curing reaction can be performed by primary heating at 60 to 120 ° C. for 10 to 150 minutes and secondary heating at 130 to 200 ° C. for 60 to 300 minutes. Further, for example, the curing reaction is performed by primary heating at 60 to 100 ° C. for 10 to 150 minutes, secondary heating at 120 to 160 ° C. for 10 to 150 minutes, and tertiary heating at 180 to 250 ° C. for 10 to 150 minutes. It can be carried out.
 また、加熱により、硬化性組成物を硬化させる場合、本発明のモノエポキシ化合物の反応性の高さを考慮し、多段階的に硬化性組成物を加熱することが好ましい。これにより、硬化反応を十分に進めることができる。例えば、40~70℃で10~150分の一次加熱と、71~100℃で10~150分の二次加熱と、101~140℃で10~180分の三次加熱と、141~170℃で10~150分の四次加熱と、171~220℃で10~150分の五次加熱とにより硬化反応を行うことができる。しかしながら、これに限定されるものではなく、モノエポキシ化合物の含有量、硬化性組成物に含まれるその他の化合物などの特性を考慮し、適宜変更して行うことが好ましい。 Further, when the curable composition is cured by heating, it is preferable to heat the curable composition in a multistage manner in consideration of the high reactivity of the monoepoxy compound of the present invention. Thereby, hardening reaction can fully advance. For example, primary heating at 40 to 70 ° C. for 10 to 150 minutes, secondary heating at 71 to 100 ° C. for 10 to 150 minutes, tertiary heating at 101 to 140 ° C. for 10 to 180 minutes, and 141 to 170 ° C. The curing reaction can be performed by quaternary heating for 10 to 150 minutes and quintic heating for 10 to 150 minutes at 171 to 220 ° C. However, the present invention is not limited to this, and it is preferable to carry out by appropriately changing in consideration of the content of the monoepoxy compound and the other compounds contained in the curable composition.
 さらに、可視光線、紫外線、X線、電子線のような活性エネルギー線の照射により硬化性組成物を硬化させる場合、硬化性組成物の組成に応じ、使用する活性エネルギー線種や条件を適宜変更することが好ましい。一つの実施態様において、照射強度と照射時間の積で表される積算光量が、10~5000mJ/cmとなるように、紫外線を照射することがさらに好ましい。硬化性組成物への積算光量を上記数値範囲とすることにより、光カチオン重合開始剤由来の活性種を十分に発生させることができる。また、生産性を向上させることもできる。 Furthermore, when the curable composition is cured by irradiation with active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams, the type and conditions of the active energy rays to be used are appropriately changed according to the composition of the curable composition. It is preferable to do. In one embodiment, it is more preferable to irradiate with ultraviolet rays so that the integrated light amount represented by the product of irradiation intensity and irradiation time is 10 to 5000 mJ / cm 2 . By setting the integrated light quantity to the curable composition within the above numerical range, active species derived from the photocationic polymerization initiator can be sufficiently generated. In addition, productivity can be improved.
(2)硬化物の用途
 本発明の硬化性組成物および硬化物の用途としては、具体的には、接着剤、粘着剤、金属、樹脂フィルム、ガラス、紙、木材等の基材上に塗布する塗料、半導体素子や有機薄膜素子(例えば、有機エレクトロルミネッセンス素子や有機薄膜太陽電池素子)の表面保護膜、ハードコート剤、防汚膜および反射防止膜等のコーティング剤、レンズ、プリズム、フィルター、画像表示材料、レンズアレイ、光半導体素子の封止材やリフレクター材料、半導体素子の封止材、光導波路、導光板、光拡散板、回折素子および光学用接着剤等の各種光学部材、注型材料、層間絶縁体、プリント配向基板用保護絶縁膜および繊維強化複合材料等の材料等が挙げられる。
(2) Use of cured product Specifically, the curable composition and the cured product of the present invention are applied on a substrate such as an adhesive, a pressure-sensitive adhesive, a metal, a resin film, glass, paper, and wood. Paints, surface protection films for semiconductor elements and organic thin film elements (for example, organic electroluminescence elements and organic thin film solar cell elements), coating agents such as hard coating agents, antifouling films and antireflection films, lenses, prisms, filters, Image display materials, lens arrays, optical semiconductor element sealing materials and reflector materials, semiconductor element sealing materials, optical waveguides, light guide plates, light diffusion plates, diffraction elements, optical adhesives, and other optical members, casting Examples include materials, interlayer insulators, protective insulating films for printed alignment substrates, and fiber-reinforced composite materials.
5.反応性希釈剤
 本発明の反応性希釈剤は、上記式(1)で表されるモノエポキシ化合物を少なくとも含んでなる。
 また、本発明の反応性希釈剤は、前記モノエポキシ化合物と異なるその他のエポキシ化合物と混合することができ、この場合、上記式(1)で表されるモノエポキシ化合物と、該モノエポキシ化合物と異なるその他のエポキシ化合物との混合量比は、質量基準で、1:99~75:25であることが好ましく、5:95~50:50であることがより好ましい。
 モノエポキシ化合物と、その他のエポキシ化合物の混合量比を上記数値範囲とすることにより、混合物の粘度をより一層低下させることができると共に、これを硬化させた硬化物の耐熱性をより向上させることができる。
5). Reactive Diluent The reactive diluent of the present invention comprises at least a monoepoxy compound represented by the above formula (1).
In addition, the reactive diluent of the present invention can be mixed with another epoxy compound different from the monoepoxy compound. In this case, the monoepoxy compound represented by the above formula (1), the monoepoxy compound, The mixing ratio with other different epoxy compounds is preferably 1:99 to 75:25, more preferably 5:95 to 50:50 on a mass basis.
By setting the mixing ratio of the monoepoxy compound and other epoxy compounds in the above numerical range, the viscosity of the mixture can be further reduced, and the heat resistance of the cured product obtained by curing the mixture can be further improved. Can do.
 本発明の好ましい一つの実施態様である本発明の態様Iは、以下の発明を包含する。
(1)下記式(1):
Figure JPOXMLDOC01-appb-C000012
(式中、R乃至Rはそれぞれ独立して、水素、アルキル基およびアルコキシ基からなる群より選択される)
で表される、モノエポキシ化合物。
(2)(1)に記載のモノエポキシ化合物、該モノエポキシ化合物と異なるその他のエポキシ化合物、および硬化剤または熱カチオン重合開始剤を含んでなる、硬化性組成物。
(3)前記硬化性組成物における、前記(1)に記載のモノエポキシ化合物と、該モノエポキシ化合物と異なるその他のエポキシ化合物との含有量比が、質量基準で、1:99~75:25である、(2)に記載の硬化性組成物。
(4)前記硬化剤が、フェノール化合物、アミン化合物、酸無水物系化合物およびアミド化合物からなる群より選択される1以上の硬化剤である、(2)または(3)に記載の硬化性組成物。
(5)前記モノエポキシ化合物と異なるその他のエポキシ化合物が、エポキシ樹脂である、(2)~(4)のいずれかに記載の硬化性組成物。
(6)前記モノエポキシ化合物と異なるその他のエポキシ化合物が、グリシジルエーテル型エポキシド、グリシジルエステル型エポキシド、および脂環式エポキシドからなる群から選択される、(2)~(4)のいずれかに記載の硬化性組成物。
(7)前記熱カチオン重合開始剤が、芳香族スルホニウム塩系の熱カチオン重合開始剤、芳香族ヨードニウム塩系の熱カチオン重合開始剤、およびアルミニウム錯体系の熱カチオン重合開始剤からなる群から選択される、(2)~(4)のいずれかに記載の硬化性組成物。
(8)(2)~(7)のいずれかに記載の硬化性組成物の硬化物。
(9)(1)に記載のモノエポキシ化合物の製造方法であって、
 下記式(2):
Figure JPOXMLDOC01-appb-C000013
(式中、R乃至Rはそれぞれ独立して、水素、アルキル基およびアルコキシ基からなる群より選択される)
で表される化合物と、過酸とを反応させる工程を含んでなり、
 前記過酸の使用量が、下記式(2)で表される化合物1.00モルに対して、0.10~1.80モルであることを特徴とする、方法。
(10)前記過酸が、過酸化水素または有機過酸である、(9)に記載の方法。
(11)(2)~(7)のいずれかに記載の硬化性組成物を硬化させる工程を含む、硬化物の製造方法。
(12)(1)に記載のモノエポキシ化合物を少なくとも含む、反応性希釈剤。
A preferred embodiment of the present invention, aspect I of the present invention, includes the following inventions.
(1) The following formula (1):
Figure JPOXMLDOC01-appb-C000012
(Wherein R 1 to R 6 are each independently selected from the group consisting of hydrogen, an alkyl group and an alkoxy group)
A monoepoxy compound represented by:
(2) A curable composition comprising the monoepoxy compound according to (1), another epoxy compound different from the monoepoxy compound, and a curing agent or a thermal cationic polymerization initiator.
(3) In the curable composition, the content ratio of the monoepoxy compound according to (1) above to another epoxy compound different from the monoepoxy compound is 1:99 to 75:25 on a mass basis. The curable composition according to (2), wherein
(4) The curable composition according to (2) or (3), wherein the curing agent is one or more curing agents selected from the group consisting of a phenol compound, an amine compound, an acid anhydride compound, and an amide compound. object.
(5) The curable composition according to any one of (2) to (4), wherein the other epoxy compound different from the monoepoxy compound is an epoxy resin.
(6) The other epoxy compound different from the monoepoxy compound is selected from the group consisting of a glycidyl ether type epoxide, a glycidyl ester type epoxide, and an alicyclic epoxide, according to any one of (2) to (4) Curable composition.
(7) The thermal cationic polymerization initiator is selected from the group consisting of an aromatic sulfonium salt-based thermal cationic polymerization initiator, an aromatic iodonium salt-based thermal cationic polymerization initiator, and an aluminum complex-based thermal cationic polymerization initiator. The curable composition according to any one of (2) to (4).
(8) A cured product of the curable composition according to any one of (2) to (7).
(9) A method for producing the monoepoxy compound according to (1),
Following formula (2):
Figure JPOXMLDOC01-appb-C000013
(Wherein R 1 to R 6 are each independently selected from the group consisting of hydrogen, an alkyl group and an alkoxy group)
Comprising a step of reacting a compound represented by
The method according to claim 1, wherein the amount of the peracid used is 0.10 to 1.80 mol with respect to 1.00 mol of the compound represented by the following formula (2).
(10) The method according to (9), wherein the peracid is hydrogen peroxide or an organic peracid.
(11) A method for producing a cured product, comprising a step of curing the curable composition according to any one of (2) to (7).
(12) A reactive diluent comprising at least the monoepoxy compound according to (1).
 本発明の態様Iによれば、硬化性組成物に含有させたとき、硬化性組成物の耐熱性の低下およびこの硬化性組成物を硬化させた際の重量減少を防止しつつ、硬化性組成物の粘度を低下させることができるモノエポキシ化合物を提供することができる。 According to the aspect I of the present invention, when contained in the curable composition, the curable composition prevents the decrease in the heat resistance of the curable composition and the weight loss when the curable composition is cured. A monoepoxy compound capable of reducing the viscosity of the product can be provided.
 本発明の好ましい一つの実施態様である本発明の態様IIは、以下の発明を包含する。
(1)下記式(1)で表されるモノエポキシ化合物:
Figure JPOXMLDOC01-appb-C000014
(式中、R乃至Rはそれぞれ独立して、水素、アルキル基およびアルコキシ基からなる群より選択される置換基を表す)
と、光カチオン重合開始剤とを含む、硬化性組成物。
(2)前記モノエポキシ化合物と異なるその他のエポキシ化合物をさらに含む、(1)に記載の硬化性組成物。
(3)前記硬化性組成物における、前記モノエポキシ化合物と、前記モノエポキシ化合物と異なるその他のエポキシ化合物との含有量比が、質量基準で、1:99~75:25である、(2)に記載の硬化性組成物。
(4)前記モノエポキシ化合物と異なるその他のエポキシ化合物が、グリシジルエーテル型エポキシド、グリシジルエステル型エポキシド、および脂環式エポキシドからなる群から選択される、(2)または(3)に記載の硬化性組成物。
(5)前記光カチオン重合開始剤が、芳香族スルホニウム塩系の光カチオン重合開始剤である、(1)~(4)のいずれかに記載の硬化性組成物。
(6)(1)~(5)のいずれかに記載の硬化性組成物の硬化物。
A preferred embodiment of the present invention, aspect II of the present invention, includes the following inventions.
(1) Monoepoxy compound represented by the following formula (1):
Figure JPOXMLDOC01-appb-C000014
(Wherein R 1 to R 6 each independently represents a substituent selected from the group consisting of hydrogen, an alkyl group and an alkoxy group)
And a photocationic polymerization initiator.
(2) The curable composition according to (1), further comprising another epoxy compound different from the monoepoxy compound.
(3) The content ratio of the monoepoxy compound and the other epoxy compound different from the monoepoxy compound in the curable composition is 1:99 to 75:25 on a mass basis. (2) The curable composition according to 1.
(4) The curability according to (2) or (3), wherein the other epoxy compound different from the monoepoxy compound is selected from the group consisting of a glycidyl ether type epoxide, a glycidyl ester type epoxide, and an alicyclic epoxide. Composition.
(5) The curable composition according to any one of (1) to (4), wherein the photocationic polymerization initiator is an aromatic sulfonium salt-based photocationic polymerization initiator.
(6) A cured product of the curable composition according to any one of (1) to (5).
 本発明の態様IIによれば、密着性が飛躍的に向上された硬化物を得ることのできる硬化性組成物を提供することができる。 According to the embodiment II of the present invention, it is possible to provide a curable composition capable of obtaining a cured product having dramatically improved adhesion.
 本発明の好ましい一つの実施態様である本発明の態様IIIは、以下の発明を包含する。
(1)下記式(1)で表される化合物の立体異性体を含むモノエポキシ化合物であって、13C-NMR分析による、下記式(1)におけるノルボルナン骨格の橋頭位とビニル基とがトランスの関係にある立体異性体に由来するピーク面積の、化学シフト140~145ppmの範囲における総ピーク面積に対する割合が、66%以上である、モノエポキシ化合物。
Figure JPOXMLDOC01-appb-C000015
(式中、R乃至Rはそれぞれ独立して、水素、アルキル基およびアルコキシ基からなる群より選択される)
(2)R乃至Rは全て水素であり、ノルボルナン骨格の橋頭位と、ビニル基とがトランスの関係にある立体異性体が下記化学式で表される、(1)に記載のモノエポキシ化合物。
Figure JPOXMLDOC01-appb-C000016
(3)前記式(1)で表される化合物の13C-NMR分析において、化学シフト140~142ppmの範囲における総ピーク面積の、140~145ppmの範囲における総ピーク面積に対する割合が、66%以上である、モノエポキシ化合物。
(4)前記式(1)で表される化合物の13C-NMR分析において、化学シフト140~142ppmの範囲におけるピークのうち、低磁場側から1番目に生じるピークの面積の、140~145ppmの範囲における総ピーク面積に対する割合が、35%以上である、(1)~(3)のいずれかに記載のモノエポキシ化合物。
(5)(1)~(4)のいずれかに記載のモノエポキシ化合物と、熱カチオン重合開始剤、光カチオン重合開始剤、または硬化剤と、を含む硬化性組成物。
(6)前記硬化剤が、フェノール系硬化剤、アミン系硬化剤、酸無水物系硬化剤およびアミド系硬化剤からなる群より選択される1以上の硬化剤である、(5)に記載の硬化性組成物。
(7)(5)または(6)に記載の硬化性組成物の硬化物。
A preferred embodiment of the present invention, aspect III of the present invention, includes the following inventions.
(1) a monoepoxy compound comprising a stereoisomer of a compound represented by the following formula (1), by 13 C-NMR analysis, and the bridgehead position and vinyl groups norbornane skeleton in the following formula (1) trans A monoepoxy compound in which the ratio of the peak area derived from the stereoisomer having the above relationship to the total peak area in the chemical shift range of 140 to 145 ppm is 66% or more.
Figure JPOXMLDOC01-appb-C000015
(Wherein R 1 to R 6 are each independently selected from the group consisting of hydrogen, an alkyl group and an alkoxy group)
(2) The monoepoxy compound according to (1), wherein R 1 to R 6 are all hydrogen, and a stereoisomer in which the bridge position of the norbornane skeleton and the vinyl group are in a trans relationship is represented by the following chemical formula: .
Figure JPOXMLDOC01-appb-C000016
(3) In 13 C-NMR analysis of the compound represented by the formula (1), the ratio of the total peak area in the chemical shift range of 140 to 142 ppm to the total peak area in the range of 140 to 145 ppm is 66% or more. A monoepoxy compound.
(4) In the 13 C-NMR analysis of the compound represented by the formula (1), 140 to 145 ppm of the area of the peak first generated from the low magnetic field side among the peaks in the chemical shift range of 140 to 142 ppm. The monoepoxy compound according to any one of (1) to (3), wherein the ratio to the total peak area in the range is 35% or more.
(5) A curable composition comprising the monoepoxy compound according to any one of (1) to (4) and a thermal cationic polymerization initiator, a photocationic polymerization initiator, or a curing agent.
(6) The curing agent according to (5), wherein the curing agent is one or more curing agents selected from the group consisting of a phenolic curing agent, an amine curing agent, an acid anhydride curing agent, and an amide curing agent. Curable composition.
(7) A cured product of the curable composition according to (5) or (6).
 本発明の態様IIIによれば、高い耐熱性を有する硬化物の作製が可能なモノエポキシ化合物を提供することができる。 According to the embodiment III of the present invention, a monoepoxy compound capable of producing a cured product having high heat resistance can be provided.
 以下、実施例により、本発明をさらに詳細に説明するが、本発明がこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
I.本発明の態様Iの実施例
I-1.実施例I1:モノエポキシ化合物(A)の合成
(1)モノエポキシ化合物(A)の合成(実施例I1-1)
 温度計、攪拌機、還流管、滴下装置を備えた反応容器に、下記式(3)で表されるジオレフィン化合物3132g、トルエン3132gおよび酢酸ナトリウムを投入し、-5℃で攪拌しながら38%過酢酸水溶液3783gを5時間かけて滴下した。そのまま-5℃で攪拌を継続し、17時間反応を行った。
 次いで、10%亜硫酸ナトリウム水溶液を用いて中和処理を行った後、分液操作を行った。圧力2hPa、塔底温度130~140℃で蒸留を行い、無色透明の液体2109gを得た。
I. Example of embodiment I of the present invention
I-1. Example I1: Synthesis of monoepoxy compound (A)
(1) Synthesis of monoepoxy compound (A) (Example I1-1)
A reaction vessel equipped with a thermometer, a stirrer, a reflux tube, and a dropping device was charged with 3132 g of a diolefin compound represented by the following formula (3), 3132 g of toluene, and sodium acetate, and 38% excess was stirred while stirring at −5 ° C. Acetic acid aqueous solution 3783g was dripped over 5 hours. Stirring was continued at -5 ° C as it was, and the reaction was carried out for 17 hours.
Subsequently, after performing the neutralization process using 10% sodium sulfite aqueous solution, liquid separation operation was performed. Distillation was performed at a pressure of 2 hPa and a column bottom temperature of 130 to 140 ° C. to obtain 2109 g of a colorless and transparent liquid.
 得られた液体は、図1で示す13C-NMRスペクトルおよびLC-MSによる精密質量測定において、理論構造に相当する[M+H]=191.1439が得られたことから、上記式(1)を満たす目的のモノエポキシ化合物(A)であることを確認した。 Since the obtained liquid obtained [M + H] + = 191.1439 corresponding to the theoretical structure in the accurate mass measurement by 13 C-NMR spectrum and LC-MS shown in FIG. 1, the above formula (1) It confirmed that it was the objective monoepoxy compound (A) which satisfy | fills.
 なお、13C-NMRスペクトルから、式(4)、式(5)で表される立体異性体がそれぞれ75:25の混合物であることが確認された。モノエポキシ化合物(A)の粘度をE型粘度計を用いて測定したところ、11.0mPa・sであった。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
From the 13 C-NMR spectrum, it was confirmed that the stereoisomers represented by formula (4) and formula (5) were 75:25 mixtures, respectively. When the viscosity of the monoepoxy compound (A) was measured using an E-type viscometer, it was 11.0 mPa · s.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
(2)モノエポキシ化合物(A)の合成(実施例I1-2)
 ねじ口試験管に、アパタイト0.25gおよび(CetylPy)(NH)[H1242]を0.17gを秤取り、よく混合した。これらの混合物に、下記式(3)で表されるジオレフィン化合物1.21g、35%過酸化水素水1.05g、トルエン0.20gを加えた。20℃で6時間攪拌した後、反応混合物にトルエン10mLを加えてろ過を行い、酢酸エチル100mLを用いてろ液の分液抽出操作を行った。有機層を純水30mL、飽和食塩水30mLで洗浄した。硫酸マグネシウムによって脱水操作を行った後、ロータリーエバポレーターで溶媒を留去した。カラムクロマトグラフィーで精製を行い、上記式(1)を満たす目的のモノエポキシ化合物(A)0.54gを得た。
Figure JPOXMLDOC01-appb-C000020
(2) Synthesis of monoepoxy compound (A) (Example I1-2)
In a screw test tube, 0.25 g of apatite and 0.17 g of (CetylPy) 9 (NH 4 ) [H 2 W 12 O 42 ] were weighed and mixed well. To these mixtures, 1.21 g of a diolefin compound represented by the following formula (3), 1.05 g of 35% hydrogen peroxide water, and 0.20 g of toluene were added. After stirring at 20 ° C. for 6 hours, 10 mL of toluene was added to the reaction mixture for filtration, and the filtrate was subjected to liquid separation extraction operation using 100 mL of ethyl acetate. The organic layer was washed with 30 mL of pure water and 30 mL of saturated saline. After dehydrating with magnesium sulfate, the solvent was distilled off with a rotary evaporator. Purification was performed by column chromatography to obtain 0.54 g of the desired monoepoxy compound (A) satisfying the above formula (1).
Figure JPOXMLDOC01-appb-C000020
(3)モノエポキシ化合物(A)の合成(実施例I1-3)
 温度計、攪拌機、還流管、滴下装置を備えた反応容器に、35%過酸化水素6.4g、HPW1240を0.36gを投入し、60℃で30分撹拌した。40℃で冷却した後、上記式(3)で表されるジオレフィン化合物80.11g、セチルピリジニウムクロリド0.13g、クロロホルム596gを加えた。その後、40℃で攪拌しながら35%過酸化水素44.84gを滴下した後、40℃で6時間反応を行なった。反応後、クロロホルム450gを用いて分液抽出操作を行った。有機層を10%チオ硫酸ナトリウム水溶液300mL、10%炭酸ナトリウム水溶液300mL、純水300mLで洗浄した。硫酸マグネシウムによって脱水操作を行った後、ロータリーエバポレーターで溶媒を留去した。圧力3hPa、塔底温度140~160℃で蒸留を行い、上記式(1)で表される目的のモノエポキシ化合物(A)50.1gを得た。
(3) Synthesis of monoepoxy compound (A) (Example I1-3)
In a reaction vessel equipped with a thermometer, a stirrer, a reflux tube, and a dropping device, 6.4 g of 35% hydrogen peroxide and 0.36 g of H 3 PW 12 O 40 were added and stirred at 60 ° C. for 30 minutes. After cooling at 40 ° C., 80.11 g of the diolefin compound represented by the above formula (3), 0.13 g of cetylpyridinium chloride, and 596 g of chloroform were added. Thereafter, 44.84 g of 35% hydrogen peroxide was dropped while stirring at 40 ° C., and the reaction was carried out at 40 ° C. for 6 hours. After the reaction, liquid separation extraction operation was performed using 450 g of chloroform. The organic layer was washed with 300 mL of 10% aqueous sodium thiosulfate solution, 300 mL of 10% aqueous sodium carbonate solution, and 300 mL of pure water. After dehydrating with magnesium sulfate, the solvent was distilled off with a rotary evaporator. Distillation was performed at a pressure of 3 hPa and a tower bottom temperature of 140 to 160 ° C. to obtain 50.1 g of a target monoepoxy compound (A) represented by the above formula (1).
(4)式(6)で表されるジエポキシ化合物の合成(比較例I1-1)
 温度計、攪拌機、還流管、滴下装置を備えた反応容器に、下記式(3)で表されるジオレフィン化合物8.5g、クロロホルム50mLを投入し、-5℃で攪拌しながら8%過安息香酸クロロホルム溶液130mLを5時間かけて滴下した。そのまま-5℃で攪拌を継続し、反応を行った。
(4) Synthesis of diepoxy compound represented by formula (6) (Comparative Example I1-1)
Into a reaction vessel equipped with a thermometer, a stirrer, a reflux tube, and a dropping device, 8.5 g of diolefin compound represented by the following formula (3) and 50 mL of chloroform were added, and 8% perbenzoic acid was stirred at −5 ° C. The acid chloroform solution 130mL was dripped over 5 hours. Stirring was continued as it was at −5 ° C. to carry out the reaction.
 次いで、5%水酸化ナトリウム水溶液を用いて中和処理を行った後、分液操作を行った。硫酸ナトリウムによって脱水操作を行った後、ロータリーエバポレーターで溶媒を留去した。圧力1hPaで蒸留を行い、無色の固体として下記式(6)で表されるジエポキシ化合物5.8gを得た。
Figure JPOXMLDOC01-appb-C000021
Subsequently, after performing the neutralization process using 5% sodium hydroxide aqueous solution, liquid separation operation was performed. After dehydrating with sodium sulfate, the solvent was distilled off with a rotary evaporator. Distillation was performed at a pressure of 1 hPa to obtain 5.8 g of a diepoxy compound represented by the following formula (6) as a colorless solid.
Figure JPOXMLDOC01-appb-C000021
I-2.実施例I2:モノエポキシ化合物(A)を含む硬化性組成物の調製とその評価(その1:エポキシ化合物(IB-1)および硬化剤との組合せ)
(1)実施例I2-1硬化性組成物の作製
 実施例I1-1で得られたモノエポキシ化合物(A)を13質量部、エポキシ化合物(IB-1)を100質量部、硬化剤を91質量部および硬化促進剤を2質量部配合し、硬化性組成物を作製した。
I-2. Example I2: Preparation and Evaluation of Curable Composition Containing Monoepoxy Compound (A) (Part 1: Combination of Epoxy Compound (IB-1) and Curing Agent)
(1) Preparation of Example I2-1 Curable Composition 13 parts by mass of the monoepoxy compound (A) obtained in Example I1-1, 100 parts by mass of the epoxy compound (IB-1), and 91 parts of the curing agent. 2 parts by mass of a mass part and a curing accelerator were blended to prepare a curable composition.
(2)比較例I2-1~I2-4
 硬化性組成物の組成を下記表I-1に示されるように変更した以外は、実施例I2-1と同様にして硬化性組成物を作製した。
(2) Comparative Examples I2-1 to I2-4
A curable composition was prepared in the same manner as in Example I2-1 except that the composition of the curable composition was changed as shown in Table I-1.
(3)物性評価
(硬化性組成物の粘度)
 実施例および比較例において得られた硬化性組成物の粘度をE型粘度計を用いて測定した。なお、測定温度は、25℃とした。測定結果を表I-1にまとめた。
(3) Physical property evaluation
(Viscosity of curable composition)
The viscosities of the curable compositions obtained in Examples and Comparative Examples were measured using an E-type viscometer. The measurement temperature was 25 ° C. The measurement results are summarized in Table I-1.
(硬化性組成物の硬化物の重量減少率)
 実施例I2-1および比較例I2-1~I2-4において得られた硬化性組成物を、熱風循環オーブンにより、100℃2時間、160℃4時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。重量減量率を以下のようにして算出し、表I-1にまとめた。
 重量減少率(%)=(硬化性組成物の重量-硬化性組成物の硬化物の重量)/硬化性組成物の重量×100
(Weight reduction rate of cured product of curable composition)
The curable compositions obtained in Example I2-1 and Comparative Examples I2-1 to I2-4 were cured by heating at 100 ° C. for 2 hours and at 160 ° C. for 4 hours in a hot air circulating oven, and the curable compositions were cured. A cured product was obtained. The weight loss rate was calculated as follows and summarized in Table I-1.
Weight reduction rate (%) = (weight of curable composition−weight of curable composition) / weight of curable composition × 100
(硬化性組成物の硬化物の耐熱性)
 上記のようにして得た硬化物のガラス転移温度を、日立ハイテクサイエンス製示差走査熱量計DSC7020により、30~300℃まで10℃/minで昇温して測定し、硬化物の耐熱性とした。なお、ここでいうガラス転移温度は、JIS K7121「プラスチックの転移温度測定法」に記載されているうち「中点ガラス転移温度:Tmg」に基づいて測定した。測定結果を表I-1にまとめた。
(Heat resistance of cured product of curable composition)
The glass transition temperature of the cured product obtained as described above was measured with a differential scanning calorimeter DSC7020 manufactured by Hitachi High-Tech Science Inc. at a rate of 10 ° C./min from 30 to 300 ° C. to determine the heat resistance of the cured product. . The glass transition temperature referred to herein is one that is described in JIS K7121 "transition temperature Measurement of Plastics""midpoint glass transition temperature: T mg" was measured according to. The measurement results are summarized in Table I-1.
(総合評価)
 上記実施例および比較例において得られた硬化性組成物の総合評価を以下の評価基準に従い、評価した。評価結果を表I-1にまとめた。
○:粘度300mPa・s未満、重量減少率5%未満かつ耐熱性140℃以上
△:粘度300mPa・s未満、重量減少率5%未満かつ耐熱性120℃以上140℃未満
×:粘度300mPa・s以上、重量減少率5%以上および/または耐熱性120℃未満であり、実用上問題があった。
(Comprehensive evaluation)
The overall evaluation of the curable compositions obtained in the above Examples and Comparative Examples was evaluated according to the following evaluation criteria. The evaluation results are summarized in Table I-1.
○: Viscosity less than 300 mPa · s, weight reduction rate less than 5% and heat resistance of 140 ° C. or more Δ: Viscosity less than 300 mPa · s, weight reduction rate of less than 5% and heat resistance of 120 ° C. or more and less than 140 ° C. x: Viscosity of 300 mPa · s or more The weight loss rate was 5% or more and / or the heat resistance was less than 120 ° C., and there was a problem in practical use.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
(表I-1の説明)
 エポキシ化合物(IB-1):ビスフェノールA型液状エポキシ樹脂、新日鉄住金化学製、商品名YD-128
IC-1:ブチルグリシジルエーテル(四日市合成製、商品名:DY-BP)
IC-2:2-エチルヘキシルグルシジルエーテル(四日市合成製、商品名:エポゴーセー2EH)
IC-3:C12-13混合アルコールのグリシジルエーテル(四日市合成製、商品名:エポゴーセーEN)
硬化剤:メチルヘキサヒドロ無水フタル酸およびヘキサヒドロ無水フタル酸の混合物、新日本理化製、商品名:リカシッドMH-700
硬化促進剤:2-エチル-4-メチルイミダゾール、四国化成製、商品名:キュアゾール2E4MZ
(Explanation of Table I-1)
Epoxy compound (IB-1): bisphenol A type liquid epoxy resin, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name YD-128
IC-1: Butyl glycidyl ether (manufactured by Yokkaichi Synthesis, trade name: DY-BP)
IC-2: 2-ethylhexyl glycidyl ether (manufactured by Yokkaichi Synthesis, trade name: Epogosay 2EH)
IC-3: Glycidyl ether of C12-13 mixed alcohol (manufactured by Yokkaichi Chemical Co., Ltd., trade name: EPOGOSE EN)
Hardener: Mixture of methylhexahydrophthalic anhydride and hexahydrophthalic anhydride, manufactured by Shin Nippon Rika Co., Ltd., trade name: Ricacid MH-700
Curing accelerator: 2-ethyl-4-methylimidazole, manufactured by Shikoku Chemicals, trade name: Curesol 2E4MZ
I-3.実施例I3:モノエポキシ化合物(A)を含む硬化性組成物の調製とその評価(その2:エポキシ化合物(IB-2)および硬化剤との組合せ)
(1)実施例I3-1
 実施例I1-1で得られたモノエポキシ化合物(A)を17質量部、エポキシ化合物(IB-2)を100質量部、硬化剤を129質量部および硬化促進剤を2質量部を配合し、硬化性組成物を作製した。
I-3. Example I3: Preparation and Evaluation of Curable Composition Containing Monoepoxy Compound (A) (Part 2: Combination of Epoxy Compound (IB-2) and Curing Agent)
(1) Example I3-1
17 parts by mass of the monoepoxy compound (A) obtained in Example I1-1, 100 parts by mass of the epoxy compound (IB-2), 129 parts by mass of the curing agent, and 2 parts by mass of the curing accelerator were blended. A curable composition was prepared.
(2)比較例I3-1~I3-4
 硬化性組成物の組成を下記表I-2に示されるように変更した以外は、実施例I3-1と同様にして硬化性組成物を作製した。
(2) Comparative Examples I3-1 to I3-4
A curable composition was prepared in the same manner as in Example I3-1 except that the composition of the curable composition was changed as shown in Table I-2 below.
(3)物性評価
(硬化性組成物の粘度)
 実施例および比較例において得られた硬化性組成物の粘度を実施例I2-1と同様にして測定した。測定結果を表I-2にまとめた。
(3) Physical property evaluation
(Viscosity of curable composition)
The viscosities of the curable compositions obtained in the examples and comparative examples were measured in the same manner as in Example I2-1. The measurement results are summarized in Table I-2.
(硬化性組成物の硬化物の重量減少率)
 実施例I3-1および比較例I3-1~I3-4において得られた硬化性組成物を、熱風循環オーブンにより、100℃2時間、160℃2時間、220℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。重量減量率を実施例I2-1と同様にして算出した。測定結果を表I-2にまとめた。
(Weight reduction rate of cured product of curable composition)
The curable compositions obtained in Example I3-1 and Comparative Examples I3-1 to I3-4 were cured by heating in a hot air circulating oven at 100 ° C. for 2 hours, 160 ° C. for 2 hours, and 220 ° C. for 2 hours. A cured product of the curable composition was obtained. The weight loss rate was calculated in the same manner as in Example I2-1. The measurement results are summarized in Table I-2.
(硬化性組成物の硬化物の耐熱性)
 上記のようにして得た硬化物の耐熱性を実施例I2-1と同様にして測定した。測定結果を表I-2にまとめた。
(Heat resistance of cured product of curable composition)
The heat resistance of the cured product obtained as described above was measured in the same manner as in Example I2-1. The measurement results are summarized in Table I-2.
(総合評価)
 上記実施例および比較例において得られた硬化性組成物の総合評価を以下の評価基準に従い、評価した。評価結果を表I-2にまとめた。
○:粘度70mPa・s未満、重量減少率5%未満かつ耐熱性200℃以上
△:粘度70mPa・s未満、重量減少率5%未満かつ耐熱性180℃以上200℃未満×:粘度70mPa・s以上、重量減少率5%以上および/または耐熱性180℃未満であり実用上問題があった。
(Comprehensive evaluation)
The overall evaluation of the curable compositions obtained in the above Examples and Comparative Examples was evaluated according to the following evaluation criteria. The evaluation results are summarized in Table I-2.
○: Viscosity less than 70 mPa · s, weight reduction rate less than 5% and heat resistance of 200 ° C. or more Δ: Viscosity less than 70 mPa · s, weight reduction rate of less than 5% and heat resistance of 180 ° C. or more and less than 200 ° C. x: Viscosity of 70 mPa · s or more The weight loss rate was 5% or more and / or the heat resistance was less than 180 ° C., which had practical problems.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
(表I-2の説明)
 エポキシ化合物(IB-2):3’,4’-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート、ダイセル製、商品名:セロキサイド2021P
(Explanation of Table I-2)
Epoxy compound (IB-2): 3 ′, 4′-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate, manufactured by Daicel, trade name: Celoxide 2021P
I-4.実施例I4:モノエポキシ化合物(A)を含む硬化性組成物の調製とその評価(その3:エポキシ化合物(IB-1)および熱カチオン重合開始剤との組合せ)
(1)実施例I4-1
 実施例I1-1で得られたモノエポキシ化合物(A)を40質量部、エポキシ化合物(IB-1)を60質量部および熱カチオン重合開始剤を1質量部配合し、硬化性組成物を作製した。
I-4. Example I4: Preparation and Evaluation of Curable Composition Containing Monoepoxy Compound (A) (Part 3: Combination of Epoxy Compound (IB-1) and Thermal Cationic Initiator)
(1) Example I4-1
40 parts by mass of the monoepoxy compound (A) obtained in Example I1-1, 60 parts by mass of the epoxy compound (IB-1) and 1 part by mass of a thermal cationic polymerization initiator were blended to prepare a curable composition. did.
(2)比較例I4-1~I4-4
 硬化性組成物の組成を下記表I-3に示されるように変更した以外は、実施例I4-1と同様にして硬化性組成物を作製した。
(2) Comparative Examples I4-1 to I4-4
A curable composition was produced in the same manner as in Example I4-1 except that the composition of the curable composition was changed as shown in Table I-3 below.
(3)物性評価
(硬化性組成物の粘度)
 実施例および比較例において得られた硬化性組成物の粘度を実施例I2-1と同様にして測定した。測定結果を表I-3にまとめた。
(3) Physical property evaluation
(Viscosity of curable composition)
The viscosities of the curable compositions obtained in the examples and comparative examples were measured in the same manner as in Example I2-1. The measurement results are summarized in Table I-3.
(硬化性組成物の硬化物の重量減少率)
 実施例I4-1および比較例I4-1~I4-4において得られた硬化性組成物を、熱風循環オーブンにより、80℃2時間、120℃2時間、180℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。重量減量率を実施例I2-1と同様にして算出した。測定結果を表I-3にまとめた。
(Weight reduction rate of cured product of curable composition)
The curable compositions obtained in Example I4-1 and Comparative Examples I4-1 to I4-4 were cured by heating in a hot air circulating oven at 80 ° C. for 2 hours, 120 ° C. for 2 hours, and 180 ° C. for 2 hours. A cured product of the curable composition was obtained. The weight loss rate was calculated in the same manner as in Example I2-1. The measurement results are summarized in Table I-3.
(硬化性組成物の硬化物の耐熱性)
 上記のようにして得た硬化物の耐熱性を実施例I2-1と同様にして測定した。測定結果を表I-3にまとめた。
(Heat resistance of cured product of curable composition)
The heat resistance of the cured product obtained as described above was measured in the same manner as in Example I2-1. The measurement results are summarized in Table I-3.
(総合評価)
 上記実施例および比較例において得られた硬化性組成物の総合評価を以下の評価基準に従い、評価した。評価結果を表I-3にまとめた。
○:粘度300mPa・s未満、重量減少率5%未満かつ耐熱性130℃以上
△:粘度300mPa・s未満、重量減少率5%未満かつ耐熱性110℃以上130℃未満
×:粘度300mPa・s以上、重量減少率5%以上および/または耐熱性110℃未満であり、実用上問題があった。
(Comprehensive evaluation)
The overall evaluation of the curable compositions obtained in the above Examples and Comparative Examples was evaluated according to the following evaluation criteria. The evaluation results are summarized in Table I-3.
○: Viscosity less than 300 mPa · s, weight reduction rate less than 5% and heat resistance of 130 ° C. or more Δ: Viscosity less than 300 mPa · s, weight reduction rate of less than 5% and heat resistance of 110 ° C. or more and less than 130 ° C. x: Viscosity of 300 mPa · s or more The weight loss rate was 5% or more and / or the heat resistance was less than 110 ° C., and there was a problem in practical use.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
(表I-3の説明)
 IC-4:1,2-エポキシ-4-ビニルシクロヘキサン(ダイセル製、商品名:セロキサイド2000)
 熱カチオン重合開始剤:芳香族スルホニウム塩、三新化学工業製、商品名:SI-80L
(Explanation of Table I-3)
IC-4: 1,2-epoxy-4-vinylcyclohexane (Daicel, trade name: Celoxide 2000)
Thermal cationic polymerization initiator: aromatic sulfonium salt, manufactured by Sanshin Chemical Industry, trade name: SI-80L
I-5.実施例I5:モノエポキシ化合物(A)を含む硬化性組成物の調製とその評価(その4:エポキシ化合物(IB-2)および熱カチオン重合開始剤との組合せ)
(1)実施例I5-1
 実施例I1-1で得られたモノエポキシ化合物(A)を50質量部、エポキシ化合物(IB-2)を50質量部および熱カチオン重合開始剤を1質量部配合し、硬化性組成物を作製した。
I-5. Example I5: Preparation and Evaluation of Curable Composition Containing Monoepoxy Compound (A) (Part 4: Combination with Epoxy Compound (IB-2) and Thermal Cationic Initiator)
(1) Example I5-1
50 parts by mass of the monoepoxy compound (A) obtained in Example I1-1, 50 parts by mass of the epoxy compound (IB-2) and 1 part by mass of a thermal cationic polymerization initiator were blended to prepare a curable composition. did.
(2)比較例I5-1~I5-4
 硬化性組成物の組成を下記表I-4に示されるように変更した以外は、実施例I5-1と同様にして硬化性組成物を作製した。
(2) Comparative Examples I5-1 to I5-4
A curable composition was produced in the same manner as in Example I5-1 except that the composition of the curable composition was changed as shown in Table I-4 below.
(3)物性評価
(硬化性組成物の粘度)
 実施例および比較例において得られた硬化性組成物の粘度を実施例I2-1と同様にして測定した。測定結果を表I-4にまとめた。
(3) Physical property evaluation
(Viscosity of curable composition)
The viscosities of the curable compositions obtained in the examples and comparative examples were measured in the same manner as in Example I2-1. The measurement results are summarized in Table I-4.
(硬化性組成物の硬化物の重量減少率)
 実施例I5-1および比較例I5-1~I5-4において得られた硬化性組成物を、熱風循環オーブンにより、60℃2時間、80℃2時間、120℃1時間、150℃1時間、180℃1時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。重量減量率を実施例I2-1と同様にして算出した。測定結果を表I-4にまとめた。
(Weight reduction rate of cured product of curable composition)
The curable compositions obtained in Example I5-1 and Comparative Examples I5-1 to I5-4 were heated in a hot air circulating oven at 60 ° C. for 2 hours, 80 ° C. for 2 hours, 120 ° C. for 1 hour, 150 ° C. for 1 hour, It hardened | cured by heating at 180 degreeC for 1 hour, and the hardened | cured material of the curable composition was obtained. The weight loss rate was calculated in the same manner as in Example I2-1. The measurement results are summarized in Table I-4.
(硬化性組成物の硬化物の耐熱性)
 上記のようにして得た硬化物の耐熱性を実施例I2-1と同様にして測定した。測定結果を表I-4にまとめた。
(Heat resistance of cured product of curable composition)
The heat resistance of the cured product obtained as described above was measured in the same manner as in Example I2-1. The measurement results are summarized in Table I-4.
(総合評価)
 上記実施例および比較例において得られた硬化性組成物の総合評価を以下の評価基準に従い、評価した。評価結果を表I-4にまとめた。
○:粘度70mPa・s未満、重量減少率5%未満かつ耐熱性150℃以上
△:粘度70mPa・s未満、重量減少率5%未満かつ耐熱性130℃以上150℃未満×:粘度70mPa・s以上、重量減少率5%以上および/または耐熱性130℃未満であり実用上問題があった。
(Comprehensive evaluation)
The overall evaluation of the curable compositions obtained in the above Examples and Comparative Examples was evaluated according to the following evaluation criteria. The evaluation results are summarized in Table I-4.
○: Viscosity less than 70 mPa · s, weight reduction rate less than 5% and heat resistance of 150 ° C. or more Δ: Viscosity less than 70 mPa · s, weight reduction rate of less than 5% and heat resistance of 130 ° C. or more and less than 150 ° C. x: Viscosity of 70 mPa · s or more The weight loss rate was 5% or more and / or the heat resistance was less than 130 ° C., which had practical problems.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
I-6.実施例I6:モノエポキシ化合物(A)を含む硬化性組成物の調製とその評価(その5:各種エポキシ化合物および熱カチオン重合開始剤との組合せ)
(1)実施例I6-1~I6-6および比較例I6-1~I6-12
 硬化性組成物の組成を、以下の成分を用いて表I-5~I-7に示されるように変更した以外は、実施例I2-1と同様にして、硬化性組成物を得た。
(i)エポキシ化合物(IB-2)
 3’,4’-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート、ダイセル社製、商品名:セロキサイド2021Pを用いた。
(ii)エポキシ化合物(IB-4)
 フェノールノボラック型エポキシ樹脂、新日鉄住金化学社製、商品名:YDPN-638を用いた。
(iii)エポキシ化合物(IB-6)
 水素化ビスフェノールA型液状エポキシ樹脂、三菱化学社製、商品名:YX8000を用いた。
(iv)エポキシ化合物(IB-9)
 シクロヘキサンジカルボン酸ジグリシジルエステル、東京化成工業社製試薬を用いた。
(v)エポキシ化合物(IB-10)
 ビニルシクロヘキセンジオキシド、シグマアルドリッチ社製試薬を用いた。
(vi)エポキシ化合物(IB-11)
 2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-(2-オキシラニル)シクロヘキサン付加物、ダイセル社製、商品名:EHPE3150を用いた。
(vii)エポキシ化合物(IB-12)
 (3,3’,4,4’-ジエポキシ)ビシクロへキシル、ダイセル社製、商品名:セロキサイド8000を用いた。
(viii) モノエポキシ化合物(A)
 実施例I1-1で得られたモノエポキシ化合物(A)を用いた。
(ix)反応性希釈剤(IC-2)
 2-エチルヘキシルグリシジルエーテル、四日市合成社製、商品名:エポゴーセー2EHを用いた。
(x)熱カチオン重合開始剤(IE-2)
 4-アセトキシフェニルジメチルスルホニウムヘキサフルオロアンチモネート、三新化学工業社製、商品名:SI-150Lを用いた。
I-6. Example I6: Preparation and evaluation of curable composition containing monoepoxy compound (A) (Part 5: Combination of various epoxy compounds and thermal cationic polymerization initiator)
(1) Examples I6-1 to I6-6 and Comparative Examples I6-1 to I6-12
A curable composition was obtained in the same manner as in Example I2-1 except that the composition of the curable composition was changed as shown in Tables I-5 to I-7 using the following components.
(i) Epoxy compound (IB-2)
3 ′, 4′-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate, manufactured by Daicel Corporation, trade name: Celoxide 2021P was used.
(ii) Epoxy compound (IB-4)
A phenol novolac type epoxy resin, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name: YDPN-638 was used.
(iii) Epoxy compound (IB-6)
Hydrogenated bisphenol A liquid epoxy resin, manufactured by Mitsubishi Chemical Corporation, trade name: YX8000 was used.
(iv) Epoxy compound (IB-9)
Cyclohexanedicarboxylic acid diglycidyl ester, a reagent manufactured by Tokyo Chemical Industry Co., Ltd. was used.
(v) Epoxy compound (IB-10)
Vinylcyclohexene dioxide and a reagent manufactured by Sigma-Aldrich were used.
(vi) Epoxy compound (IB-11)
1,2-epoxy- (2-oxiranyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol, manufactured by Daicel Corporation, trade name: EHPE3150 was used.
(vii) Epoxy compound (IB-12)
(3,3 ′, 4,4′-diepoxy) bicyclohexyl, manufactured by Daicel Corporation, trade name: Celoxide 8000 was used.
(viii) Monoepoxy compound (A)
The monoepoxy compound (A) obtained in Example I1-1 was used.
(ix) Reactive diluent (IC-2)
2-Ethylhexyl glycidyl ether, manufactured by Yokkaichi Gosei Co., Ltd., trade name: Epogosay 2EH was used.
(x) Thermal cationic polymerization initiator (IE-2)
4-acetoxyphenyldimethylsulfonium hexafluoroantimonate, manufactured by Sanshin Chemical Industry Co., Ltd., trade name: SI-150L was used.
(2)物性評価
(硬化性組成物の粘度)
 実施例および比較例において得られた硬化性組成物の粘度を実施例I2-1と同様にして測定した。測定結果を表I-5~I-7にまとめた。
(2) Physical property evaluation
(Viscosity of curable composition)
The viscosities of the curable compositions obtained in the examples and comparative examples were measured in the same manner as in Example I2-1. The measurement results are summarized in Tables I-5 to I-7.
(硬化性組成物の硬化物の重量減少率)
 上記のようにして得られた硬化性組成物を、以下の条件で加熱し、硬化物を得た。
(a)実施例I6-1
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、150℃1時間、180℃1時間、240℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(b)実施例I6-2
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、120℃1時間、220℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(c)実施例I6-3
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、150℃1時間、170℃1時間、210℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(d)実施例I6-4
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、120℃1時間、220℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(e)実施例I6-5
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、110℃1時間、170℃1時間、220℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(f)実施例I6-6
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、110℃1時間、130℃1時間、220℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(a')比較例I6-1
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、150℃1時間、180℃1時間、240℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(b')比較例I6-2
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、150℃1時間、180℃1時間、240℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(c')比較例I6-3
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、120℃1時間、220℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(d')比較例I6-4
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、120℃1時間、220℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(e')比較例I6-5
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、150℃1時間、170℃1時間、210℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(f')比較例I6-6
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、150℃1時間、170℃1時間、210℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(g')比較例I6-7
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、120℃1時間、220℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(h')比較例I6-8
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、120℃1時間、220℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(i')比較例I6-9
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、110℃1時間、170℃1時間、220℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(j')比較例I6-10
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、110℃1時間、170℃1時間、220℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(k')比較例I6-11
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、110℃1時間、130℃1時間、220℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(l')比較例I6-12
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、110℃1時間、130℃1時間、220℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
 上記のようにして得た硬化物の重量減量率を実施例I2-1と同様にして算出した。測定結果を表I-5~I-7にまとめた。
(Weight reduction rate of cured product of curable composition)
The curable composition obtained as described above was heated under the following conditions to obtain a cured product.
(a) Example I6-1
The curable composition obtained as described above was cured by heating in a hot air circulating oven at 150 ° C. for 1 hour, 180 ° C. for 1 hour, and 240 ° C. for 2 hours to obtain a cured product of the curable composition. .
(b) Example I6-2
The curable composition obtained as described above was cured by heating at 120 ° C. for 1 hour and at 220 ° C. for 2 hours in a hot air circulating oven to obtain a cured product of the curable composition.
(c) Example I6-3
The curable composition obtained as described above was cured by heating in a hot air circulating oven at 150 ° C. for 1 hour, 170 ° C. for 1 hour, and 210 ° C. for 2 hours to obtain a cured product of the curable composition. .
(d) Example I6-4
The curable composition obtained as described above was cured by heating at 120 ° C. for 1 hour and at 220 ° C. for 2 hours in a hot air circulating oven to obtain a cured product of the curable composition.
(e) Example I6-5
The curable composition obtained as described above was cured by heating in a hot air circulating oven at 110 ° C. for 1 hour, 170 ° C. for 1 hour, and 220 ° C. for 2 hours to obtain a cured product of the curable composition. .
(f) Example I6-6
The curable composition obtained as described above was cured by heating in a hot air circulating oven at 110 ° C. for 1 hour, 130 ° C. for 1 hour, and 220 ° C. for 2 hours to obtain a cured product of the curable composition. .
(a ') Comparative Example I6-1
The curable composition obtained as described above was cured by heating in a hot air circulating oven at 150 ° C. for 1 hour, 180 ° C. for 1 hour, and 240 ° C. for 2 hours to obtain a cured product of the curable composition. .
(b ′) Comparative Example I6-2
The curable composition obtained as described above was cured by heating in a hot air circulating oven at 150 ° C. for 1 hour, 180 ° C. for 1 hour, and 240 ° C. for 2 hours to obtain a cured product of the curable composition. .
(c ′) Comparative Example I6-3
The curable composition obtained as described above was cured by heating at 120 ° C. for 1 hour and at 220 ° C. for 2 hours in a hot air circulating oven to obtain a cured product of the curable composition.
(d ') Comparative Example I6-4
The curable composition obtained as described above was cured by heating at 120 ° C. for 1 hour and at 220 ° C. for 2 hours in a hot air circulating oven to obtain a cured product of the curable composition.
(e ') Comparative Example I6-5
The curable composition obtained as described above was cured by heating in a hot air circulating oven at 150 ° C. for 1 hour, 170 ° C. for 1 hour, and 210 ° C. for 2 hours to obtain a cured product of the curable composition. .
(f ') Comparative Example I6-6
The curable composition obtained as described above was cured by heating in a hot air circulating oven at 150 ° C. for 1 hour, 170 ° C. for 1 hour, and 210 ° C. for 2 hours to obtain a cured product of the curable composition. .
(g ′) Comparative Example I6-7
The curable composition obtained as described above was cured by heating at 120 ° C. for 1 hour and at 220 ° C. for 2 hours in a hot air circulating oven to obtain a cured product of the curable composition.
(h ') Comparative Example I6-8
The curable composition obtained as described above was cured by heating at 120 ° C. for 1 hour and at 220 ° C. for 2 hours in a hot air circulating oven to obtain a cured product of the curable composition.
(i ') Comparative Example I6-9
The curable composition obtained as described above was cured by heating in a hot air circulating oven at 110 ° C. for 1 hour, 170 ° C. for 1 hour, and 220 ° C. for 2 hours to obtain a cured product of the curable composition. .
(j ') Comparative Example I6-10
The curable composition obtained as described above was cured by heating in a hot air circulating oven at 110 ° C. for 1 hour, 170 ° C. for 1 hour, and 220 ° C. for 2 hours to obtain a cured product of the curable composition. .
(k ') Comparative Example I6-11
The curable composition obtained as described above was cured by heating in a hot air circulating oven at 110 ° C. for 1 hour, 130 ° C. for 1 hour, and 220 ° C. for 2 hours to obtain a cured product of the curable composition. .
(l ') Comparative Example I6-12
The curable composition obtained as described above was cured by heating in a hot air circulating oven at 110 ° C. for 1 hour, 130 ° C. for 1 hour, and 220 ° C. for 2 hours to obtain a cured product of the curable composition. .
The weight loss rate of the cured product obtained as described above was calculated in the same manner as in Example I2-1. The measurement results are summarized in Tables I-5 to I-7.
(硬化性組成物の硬化物の耐熱性)
 上記のようにして得た硬化物の耐熱性を実施例I2-1と同様にして測定した。測定結果を表I-5~I-7にまとめた。
(Heat resistance of cured product of curable composition)
The heat resistance of the cured product obtained as described above was measured in the same manner as in Example I2-1. The measurement results are summarized in Tables I-5 to I-7.
(総合評価)
 上記実施例I6-1~I6-6および比較例I6-1~I6-12において得られた硬化性組成物の総合評価を、表I-5~I-7にまとめた粘度、重量減少率および耐熱性の測定結果と、各実験区の実施例とその対応する比較例に共通に設定した表I-5~I-7に記載の粘度、重量減少率および耐熱性の基準値を用いて、以下の評価基準に従い総合評価を行った。評価結果を表I-5~I-7にまとめた。
評価基準
粘度の評価:硬化性組成物の粘度の各測定結果が各表の各実験区ごとに記載された基準値以下の場合に粘度の評価基準を満たすものとする。
重量減少率の評価:硬化物の重量減少率の各測定結果が各表の各実験区ごとに記載された基準値以下の場合に重量減少率の評価基準を満たすものとする。
耐熱性の評価:硬化物の耐熱性の各測定結果が各表の各実験区ごとに記載された基準値以上の場合に耐熱性の評価基準を満たすものとする。
総合評価:上の3つの評価基準の全てを満たす場合に総合評価を○と評価する。
(Comprehensive evaluation)
A comprehensive evaluation of the curable compositions obtained in Examples I6-1 to I6-6 and Comparative Examples I6-1 to I6-12 is summarized in Tables I-5 to I-7. Using the measurement results of the heat resistance and the viscosity, weight reduction rate and heat resistance reference values described in Tables I-5 to I-7 set in common in the examples of each experimental section and the corresponding comparative examples, Comprehensive evaluation was performed according to the following evaluation criteria. The evaluation results are summarized in Tables I-5 to I-7.
Evaluation of evaluation standard viscosity: When each measurement result of the viscosity of the curable composition is equal to or less than the standard value described for each experimental section in each table, the evaluation standard of the viscosity is satisfied.
Evaluation of weight reduction rate: When each measurement result of the weight reduction rate of the cured product is equal to or less than the reference value described for each experimental section in each table, the evaluation criteria for the weight reduction rate shall be satisfied.
Evaluation of heat resistance: When each measurement result of the heat resistance of the cured product is equal to or greater than the standard value described for each experimental section in each table, the heat resistance evaluation standard shall be satisfied.
Comprehensive evaluation: When all the above three evaluation criteria are satisfied, the comprehensive evaluation is evaluated as ◯.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
I-7.実施例I7:モノエポキシ化合物(A)を含む硬化性組成物の調製とその評価(その6:各種オキセタン化合物および熱カチオン重合開始剤との組合せ)
(1)実施例I7-1~I7-4および比較例I7-1~I7-8
 硬化性組成物の組成を、以下の成分を用いて表I-8およびI-9に示されるように変更した以外は、実施例I2-1と同様にして、硬化性組成物を得た。
(i)エポキシ化合物(IB-1)
 ビスフェノールA型液状エポキシ樹脂、新日鉄住金化学社製、商品名:YD-128を用いた。
(ii) モノエポキシ化合物(A)
 実施例I1-1で得られたモノエポキシ化合物(A)を用いた。
(iii)反応性希釈剤(IC-2)
 2-エチルヘキシルグリシジルエーテル、四日市合成社製、商品名:エポゴーセー2EHを用いた。
(iv)オキセタン化合物(ID-1)
 1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、東亞合成社製、商品名:アロンオキセタンOXT-121を用いた。
(v)オキセタン化合物(ID-2)
 3-エチル-3-ヒドロキシメチルオキセタン、東亞合成社製、商品名:アロンオキセタンOXT-101を用いた。
(vi)オキセタン化合物(ID-3)
 ジ[(3-エチル-3-オキセタニル)メチル]エーテル、東亞合成社製、商品名:アロンオキセタンOXT-221を用いた。
(vii)オキセタン化合物(ID-4)
 3-エチル-3-(2-エチルヘキシルオキシメチル)オキセタン、東亞合成社製、商品名:アロンオキセタンOXT-212を用いた。
(viii)熱カチオン重合開始剤(IE-2)
 4-アセトキシフェニルジメチルスルホニウムヘキサフルオロアンチモネート、三新化学工業社製、商品名:SI-150Lを用いた。
I-7. Example I7: Preparation and Evaluation of Curable Composition Containing Monoepoxy Compound (A) (Part 6: Combination with Various Oxetane Compounds and Thermal Cationic Polymerization Initiator)
(1) Examples I7-1 to I7-4 and Comparative Examples I7-1 to I7-8
A curable composition was obtained in the same manner as in Example I2-1 except that the composition of the curable composition was changed as shown in Tables I-8 and I-9 using the following components.
(i) Epoxy compound (IB-1)
Bisphenol A type liquid epoxy resin, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name: YD-128 was used.
(ii) Monoepoxy compound (A)
The monoepoxy compound (A) obtained in Example I1-1 was used.
(iii) Reactive diluent (IC-2)
2-Ethylhexyl glycidyl ether, manufactured by Yokkaichi Gosei Co., Ltd., trade name: Epogosay 2EH was used.
(iv) Oxetane compound (ID-1)
1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, manufactured by Toagosei Co., Ltd., trade name: Alonoxetane OXT-121 was used.
(v) Oxetane compound (ID-2)
3-ethyl-3-hydroxymethyloxetane manufactured by Toagosei Co., Ltd., trade name: Aron Oxetane OXT-101 was used.
(vi) Oxetane compound (ID-3)
Di [(3-ethyl-3-oxetanyl) methyl] ether, manufactured by Toagosei Co., Ltd., trade name: Aron oxetane OXT-221 was used.
(vii) Oxetane compound (ID-4)
3-ethyl-3- (2-ethylhexyloxymethyl) oxetane manufactured by Toagosei Co., Ltd., trade name: Aron oxetane OXT-212 was used.
(viii) Thermal cationic polymerization initiator (IE-2)
4-acetoxyphenyldimethylsulfonium hexafluoroantimonate, manufactured by Sanshin Chemical Industry Co., Ltd., trade name: SI-150L was used.
(2)物性評価
(硬化性組成物の粘度)
 実施例および比較例において得られた硬化性組成物の粘度を実施例I2-1と同様にして測定した。測定結果を表I-8およびI-9にまとめた。
(2) Physical property evaluation
(Viscosity of curable composition)
The viscosities of the curable compositions obtained in the examples and comparative examples were measured in the same manner as in Example I2-1. The measurement results are summarized in Tables I-8 and I-9.
(硬化性組成物の硬化物の重量減少率)
 上記のようにして得られた硬化性組成物を、以下の条件で加熱し、硬化物を得た。
(a)実施例I7-1
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、120℃1時間、140℃1時間、220℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(b)実施例I7-2
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、110℃1時間、150℃1時間、220℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(c)実施例I7-3
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、110℃1時間、130℃1時間、220℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(d)実施例I7-4
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、120℃1時間、170℃1時間、220℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(a')比較例I7-1
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、120℃1時間、140℃1時間、220℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(b')比較例I7-2
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、120℃1時間、140℃1時間、220℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(c')比較例I7-3
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、110℃1時間、150℃1時間、220℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(d')比較例I7-4
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、110℃1時間、150℃1時間、220℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(e')比較例I7-5
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、110℃1時間、130℃1時間、220℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(f')比較例I7-6
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、110℃1時間、130℃1時間、220℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(g')比較例I7-7
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、120℃1時間、170℃1時間、220℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(h')比較例I7-8
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、120℃1時間、170℃1時間、220℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
 上記のようにして得た硬化物の重量減量率を実施例I2-1と同様にして算出した。測定結果を表I-8およびI-9にまとめた。
(Weight reduction rate of cured product of curable composition)
The curable composition obtained as described above was heated under the following conditions to obtain a cured product.
(a) Example I7-1
The curable composition obtained as described above was cured by heating at 120 ° C. for 1 hour, 140 ° C. for 1 hour, and 220 ° C. for 2 hours in a hot air circulating oven to obtain a cured product of the curable composition. .
(b) Example I7-2
The curable composition obtained as described above was cured by heating at 110 ° C. for 1 hour, 150 ° C. for 1 hour, and 220 ° C. for 2 hours in a hot air circulating oven to obtain a cured product of the curable composition. .
(c) Example I7-3
The curable composition obtained as described above was cured by heating in a hot air circulating oven at 110 ° C. for 1 hour, 130 ° C. for 1 hour, and 220 ° C. for 2 hours to obtain a cured product of the curable composition. .
(d) Example I7-4
The curable composition obtained as described above was cured by heating at 120 ° C. for 1 hour, 170 ° C. for 1 hour, and 220 ° C. for 2 hours in a hot air circulating oven to obtain a cured product of the curable composition. .
(a ') Comparative Example I7-1
The curable composition obtained as described above was cured by heating at 120 ° C. for 1 hour, 140 ° C. for 1 hour, and 220 ° C. for 2 hours in a hot air circulating oven to obtain a cured product of the curable composition. .
(b ′) Comparative Example I7-2
The curable composition obtained as described above was cured by heating at 120 ° C. for 1 hour, 140 ° C. for 1 hour, and 220 ° C. for 2 hours in a hot air circulating oven to obtain a cured product of the curable composition. .
(c ′) Comparative Example I7-3
The curable composition obtained as described above was cured by heating at 110 ° C. for 1 hour, 150 ° C. for 1 hour, and 220 ° C. for 2 hours in a hot air circulating oven to obtain a cured product of the curable composition. .
(d ') Comparative Example I7-4
The curable composition obtained as described above was cured by heating at 110 ° C. for 1 hour, 150 ° C. for 1 hour, and 220 ° C. for 2 hours in a hot air circulating oven to obtain a cured product of the curable composition. .
(e ') Comparative Example I7-5
The curable composition obtained as described above was cured by heating in a hot air circulating oven at 110 ° C. for 1 hour, 130 ° C. for 1 hour, and 220 ° C. for 2 hours to obtain a cured product of the curable composition. .
(f ') Comparative Example I7-6
The curable composition obtained as described above was cured by heating in a hot air circulating oven at 110 ° C. for 1 hour, 130 ° C. for 1 hour, and 220 ° C. for 2 hours to obtain a cured product of the curable composition. .
(g ′) Comparative Example I7-7
The curable composition obtained as described above was cured by heating at 120 ° C. for 1 hour, 170 ° C. for 1 hour, and 220 ° C. for 2 hours in a hot air circulating oven to obtain a cured product of the curable composition. .
(h ') Comparative Example I7-8
The curable composition obtained as described above was cured by heating at 120 ° C. for 1 hour, 170 ° C. for 1 hour, and 220 ° C. for 2 hours in a hot air circulating oven to obtain a cured product of the curable composition. .
The weight loss rate of the cured product obtained as described above was calculated in the same manner as in Example I2-1. The measurement results are summarized in Tables I-8 and I-9.
(硬化性組成物の硬化物の耐熱性)
 上記のようにして得た硬化物の耐熱性を実施例I2-1と同様にして測定した。測定結果を表I-8およびI-9にまとめた。
(Heat resistance of cured product of curable composition)
The heat resistance of the cured product obtained as described above was measured in the same manner as in Example I2-1. The measurement results are summarized in Tables I-8 and I-9.
(総合評価)
 上記実施例I7-1~I7-4および比較例I7-1~I7-8において得られた硬化性組成物の総合評価を、表I-8およびI-9にまとめた粘度、重量減少率および耐熱性の測定結果と、各実験区の実施例とその対応する比較例に共通に設定した表I-8およびI-9に記載の粘度、重量減少率および耐熱性の基準値を用いて、以下の評価基準に従い総合評価を行った。評価結果を表I-8およびI-9にまとめた。
評価基準
粘度の評価:硬化性組成物の粘度の各測定結果が各表の各実験区ごとに記載された基準値以下の場合に粘度の評価基準を満たすものとする。
重量減少率の評価:硬化物の重量減少率の各測定結果が各表の各実験区ごとに記載された基準値以下の場合に重量減少率の評価基準を満たすものとする。
耐熱性の評価:硬化物の耐熱性の各測定結果が各表の各実験区ごとに記載された基準値以上の場合に耐熱性の評価基準を満たすものとする。
総合評価:上の3つの評価基準の全てを満たす場合に総合評価を○と評価する。
(Comprehensive evaluation)
A comprehensive evaluation of the curable compositions obtained in Examples I7-1 to I7-4 and Comparative Examples I7-1 to I7-8 is summarized in Tables I-8 and I-9. Using the measurement results of heat resistance and the viscosity, weight loss rate and heat resistance reference values listed in Tables I-8 and I-9 set in common in the examples of each experimental section and the corresponding comparative examples, Comprehensive evaluation was performed according to the following evaluation criteria. The evaluation results are summarized in Tables I-8 and I-9.
Evaluation of evaluation standard viscosity: When each measurement result of the viscosity of the curable composition is equal to or less than the standard value described for each experimental section in each table, the evaluation standard of the viscosity is satisfied.
Evaluation of weight reduction rate: When each measurement result of the weight reduction rate of the cured product is equal to or less than the reference value described for each experimental section in each table, the evaluation criteria for the weight reduction rate shall be satisfied.
Evaluation of heat resistance: When each measurement result of the heat resistance of the cured product is equal to or greater than the standard value described for each experimental section in each table, the heat resistance evaluation standard shall be satisfied.
Comprehensive evaluation: When all the above three evaluation criteria are satisfied, the comprehensive evaluation is evaluated as ◯.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
I-8.実施例I8:モノエポキシ化合物(A)を含む硬化性組成物の調製とその評価(その7:各種熱カチオン重合開始剤との組合せ)
(1)実施例I8-1~I8-4および比較例I8-1~I8-8
 硬化性組成物の組成を、以下の成分を用いて表I-10およびI-11に示されるように変更した以外は、実施例I2-1と同様にして、硬化性組成物を得た。
(i)エポキシ化合物(IB-1)
 ビスフェノールA型液状エポキシ樹脂、新日鉄住金化学社製、商品名:YD-128を用いた。
(ii) モノエポキシ化合物(A)
 実施例I1-1で得られたモノエポキシ化合物(A)を用いた。
(iii)反応性希釈剤(IC-2)
 2-エチルヘキシルグリシジルエーテル、四日市合成社製、商品名:エポゴーセー2EHを用いた。
(iv)熱カチオン重合開始剤(IE-3)
 4-ヒドロキシフェニルベンジルメチルスルホニウムヘキサフルオロアンチモネート、三新化学工業社製、商品名:SI-100Lを用いた。
(v)熱カチオン重合開始剤(IE-4)
 ビス[4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル]スルフィドビスヘキサフルオロアンチモネート、ADEKA社製、アデカアークルズSP-170を用いた。
(vi)熱カチオン重合開始剤(IE-5)
 ジフェニル-4-(フェニルチオ)フェニルスルホニウムヘキサフルオロアンチモネート、サンアプロ社製、CPI-101Aを用いた。
(vii)熱カチオン重合開始剤(IE-6)
 4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、東京化成工業社製試薬を用いた。
I-8. Example I8: Preparation and Evaluation of Curable Composition Containing Monoepoxy Compound (A) (Part 7: Combination with Various Thermal Cationic Initiators)
(1) Examples I8-1 to I8-4 and Comparative Examples I8-1 to I8-8
A curable composition was obtained in the same manner as in Example I2-1 except that the composition of the curable composition was changed as shown in Tables I-10 and I-11 using the following components.
(i) Epoxy compound (IB-1)
Bisphenol A type liquid epoxy resin, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name: YD-128 was used.
(ii) Monoepoxy compound (A)
The monoepoxy compound (A) obtained in Example I1-1 was used.
(iii) Reactive diluent (IC-2)
2-Ethylhexyl glycidyl ether, manufactured by Yokkaichi Gosei Co., Ltd., trade name: Epogosay 2EH was used.
(iv) Thermal cationic polymerization initiator (IE-3)
4-hydroxyphenylbenzylmethylsulfonium hexafluoroantimonate, manufactured by Sanshin Chemical Industry Co., Ltd., trade name: SI-100L was used.
(v) Thermal cationic polymerization initiator (IE-4)
Bis [4- (di (4- (2-hydroxyethoxy)) phenylsulfonio) phenyl] sulfide bishexafluoroantimonate, manufactured by ADEKA, Adeka Arcles SP-170 was used.
(vi) Thermal cationic polymerization initiator (IE-5)
Diphenyl-4- (phenylthio) phenylsulfonium hexafluoroantimonate, CPI-101A manufactured by San Apro was used.
(vii) Thermal cationic polymerization initiator (IE-6)
4-methylphenyl-4- (1-methylethyl) phenyliodonium tetrakis (pentafluorophenyl) borate, a reagent manufactured by Tokyo Chemical Industry Co., Ltd. was used.
(2)物性評価
(硬化性組成物の粘度)
 実施例および比較例において得られた硬化性組成物の粘度を実施例I2-1と同様にして測定した。測定結果を表I-10およびI-11にまとめた。
(2) Physical property evaluation
(Viscosity of curable composition)
The viscosities of the curable compositions obtained in the examples and comparative examples were measured in the same manner as in Example I2-1. The measurement results are summarized in Tables I-10 and I-11.
(硬化性組成物の硬化物の重量減少率)
 上記のようにして得られた硬化性組成物を、以下の条件で加熱し、硬化物を得た。
(a)実施例I8-1
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、115℃1時間、130℃1時間、190℃1時間、240℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(b)実施例I8-2
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、120℃1時間、240℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(c)実施例I8-3
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、80℃1時間、140℃1時間、180℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(d)実施例I8-4
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、140℃1時間、160℃1時間、240℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(a')比較例I8-1
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、115℃1時間、130℃1時間、190℃1時間、240℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(b')比較例I8-2
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、115℃1時間、130℃1時間、190℃1時間、240℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(c')比較例I8-3
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、120℃1時間、240℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(d')比較例I8-4
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、120℃1時間、240℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(e')比較例I8-5
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、80℃1時間、140℃1時間、180℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(f')比較例I8-6
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、80℃1時間、140℃1時間、180℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(g') 比較例I8-7
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、140℃1時間、160℃1時間、240℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
(h') 比較例I8-8
 上記のようにして得られた硬化性組成物を、熱風循環オーブンにより、140℃1時間、160℃1時間、240℃2時間加熱することにより硬化させ、硬化性組成物の硬化物を得た。
 上記のようにして得た硬化物の重量減量率を実施例I2-1と同様にして算出した。測定結果を表I-10およびI-11にまとめた。
(Weight reduction rate of cured product of curable composition)
The curable composition obtained as described above was heated under the following conditions to obtain a cured product.
(a) Example I8-1
The curable composition obtained as described above was cured by heating at 115 ° C. for 1 hour, 130 ° C. for 1 hour, 190 ° C. for 1 hour, and 240 ° C. for 2 hours in a hot air circulating oven. A cured product was obtained.
(b) Example I8-2
The curable composition obtained as described above was cured by heating at 120 ° C. for 1 hour and 240 ° C. for 2 hours in a hot air circulating oven to obtain a cured product of the curable composition.
(c) Example I8-3
The curable composition obtained as described above was cured by heating at 80 ° C. for 1 hour, 140 ° C. for 1 hour, and 180 ° C. for 2 hours in a hot air circulating oven to obtain a cured product of the curable composition. .
(d) Example I8-4
The curable composition obtained as described above was cured by heating at 140 ° C. for 1 hour, 160 ° C. for 1 hour, and 240 ° C. for 2 hours in a hot air circulating oven to obtain a cured product of the curable composition. .
(a ') Comparative Example I8-1
The curable composition obtained as described above was cured by heating at 115 ° C. for 1 hour, 130 ° C. for 1 hour, 190 ° C. for 1 hour, and 240 ° C. for 2 hours in a hot air circulating oven. A cured product was obtained.
(b ′) Comparative Example I8-2
The curable composition obtained as described above was cured by heating at 115 ° C. for 1 hour, 130 ° C. for 1 hour, 190 ° C. for 1 hour, and 240 ° C. for 2 hours in a hot air circulating oven. A cured product was obtained.
(c ') Comparative Example I8-3
The curable composition obtained as described above was cured by heating at 120 ° C. for 1 hour and 240 ° C. for 2 hours in a hot air circulating oven to obtain a cured product of the curable composition.
(d ′) Comparative Example I8-4
The curable composition obtained as described above was cured by heating at 120 ° C. for 1 hour and 240 ° C. for 2 hours in a hot air circulating oven to obtain a cured product of the curable composition.
(e ') Comparative Example I8-5
The curable composition obtained as described above was cured by heating at 80 ° C. for 1 hour, 140 ° C. for 1 hour, and 180 ° C. for 2 hours in a hot air circulating oven to obtain a cured product of the curable composition. .
(f ') Comparative Example I8-6
The curable composition obtained as described above was cured by heating at 80 ° C. for 1 hour, 140 ° C. for 1 hour, and 180 ° C. for 2 hours in a hot air circulating oven to obtain a cured product of the curable composition. .
(g ') Comparative Example I8-7
The curable composition obtained as described above was cured by heating at 140 ° C. for 1 hour, 160 ° C. for 1 hour, and 240 ° C. for 2 hours in a hot air circulating oven to obtain a cured product of the curable composition. .
(h ') Comparative Example I8-8
The curable composition obtained as described above was cured by heating at 140 ° C. for 1 hour, 160 ° C. for 1 hour, and 240 ° C. for 2 hours in a hot air circulating oven to obtain a cured product of the curable composition. .
The weight loss rate of the cured product obtained as described above was calculated in the same manner as in Example I2-1. The measurement results are summarized in Tables I-10 and I-11.
(硬化性組成物の硬化物の耐熱性)
 上記のようにして得た硬化物の耐熱性を実施例I2-1と同様にして測定した。測定結果を表I-10およびI-11にまとめた。
(Heat resistance of cured product of curable composition)
The heat resistance of the cured product obtained as described above was measured in the same manner as in Example I2-1. The measurement results are summarized in Tables I-10 and I-11.
(総合評価)
 上記実施例I8-1~I8-4および比較例I8-1~I8-8において得られた硬化性組成物の総合評価を、表I-10およびI-11にまとめた粘度、重量減少率および耐熱性の測定結果と、各実験区の実施例とその対応する比較例に共通に設定した表I-10およびI-11に記載の粘度、重量減少率および耐熱性の基準値を用いて、以下の評価基準に従い総合評価を行った。評価結果を表I-10およびI-11にまとめた。
評価基準
粘度の評価:硬化性組成物の粘度の各測定結果が各表の各実験区ごとに記載された基準値以下の場合に粘度の評価基準を満たすものとする。
重量減少率の評価:硬化物の重量減少率の各測定結果が各表の各実験区ごとに記載された基準値以下の場合に重量減少率の評価基準を満たすものとする。
耐熱性の評価:硬化物の耐熱性の各測定結果が各表の各実験区ごとに記載された基準値以上の場合に耐熱性の評価基準を満たすものとする。
総合評価:上の3つの評価基準の全てを満たす場合に総合評価を○と評価する。
(Comprehensive evaluation)
The overall evaluation of the curable compositions obtained in Examples I8-1 to I8-4 and Comparative Examples I8-1 to I8-8 is summarized in Tables I-10 and I-11. Using the measurement results of heat resistance and the viscosity, weight loss rate and heat resistance reference values described in Tables I-10 and I-11 set in common in the examples of each experimental section and the corresponding comparative examples, Comprehensive evaluation was performed according to the following evaluation criteria. The evaluation results are summarized in Tables I-10 and I-11.
Evaluation of evaluation standard viscosity: When each measurement result of the viscosity of the curable composition is equal to or less than the standard value described for each experimental section in each table, the evaluation standard of the viscosity is satisfied.
Evaluation of weight reduction rate: When each measurement result of the weight reduction rate of the cured product is equal to or less than the reference value described for each experimental section in each table, the evaluation criteria for the weight reduction rate shall be satisfied.
Evaluation of heat resistance: When each measurement result of the heat resistance of the cured product is equal to or greater than the standard value described for each experimental section in each table, the heat resistance evaluation standard shall be satisfied.
Comprehensive evaluation: When all the above three evaluation criteria are satisfied, the comprehensive evaluation is evaluated as ◯.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
II.本発明の態様IIの実施例
II-1.実施例II1:モノエポキシ化合物(A)を含む硬化性組成物の調製とその評価(その1:エポキシ化合物(IIB-1)および光カチオン重合開始剤(IID-1)との組合せ)
(1)実施例II1-1
 硬化性組成物の作製
 上記のようにして得られたモノエポキシ化合物(A)と、その他のエポキシ化合物(IIB-1)と、光カチオン重合開始剤(IID-1)とを下記の組成となるように混合し、硬化性組成物を作製した。
<硬化性組成物組成>
・モノエポキシ化合物(A)   25質量部(実施例I1-1に記載された方法で製造されたモノエポキシ化合物)
・その他のエポキシ化合物(IIB-1)   75質量部(ビスフェノールA型液状エポキシ樹脂、新日鉄住金化学製、商品名:YD-128)
・光カチオン重合開始剤(IID-1)   10質量部(芳香族スルホニウム塩:ジフェニル-4-(フェニルチオ)フェニルスルホニウムヘキサフルオロホスフェートのプロピレンカーボネート50%溶液、サンアプロ社製、商品名:CPI-100P)
II. Example of embodiment II of the present invention
II-1. Example II1: Preparation and Evaluation of Curable Composition Containing Monoepoxy Compound (A) (Part 1: Combination with Epoxy Compound (IIB-1) and Photocationic Initiator (IID-1))
(1) Example II1-1
Preparation of curable composition The monoepoxy compound (A) obtained as described above, the other epoxy compound (IIB-1) and the photocationic polymerization initiator (IID-1) have the following composition. Thus, a curable composition was prepared.
<Curable composition composition>
Monoepoxy compound (A) 25 parts by mass (monoepoxy compound produced by the method described in Example I1-1)
・ 75 parts by mass of other epoxy compound (IIB-1) (bisphenol A type liquid epoxy resin, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name: YD-128)
Photocationic polymerization initiator (IID-1) 10 parts by mass (aromatic sulfonium salt: diphenyl-4- (phenylthio) phenylsulfonium hexafluorophosphate 50% propylene carbonate solution, product of San Apro, trade name: CPI-100P)
(2)実施例II1-2および実施例II1-3
 モノエポキシ化合物(A)およびその他のエポキシ化合物(IIB-1)の含有量を表II-1に示す量に変更した以外は、実施例II1-1と同様にして硬化性組成物を得た。
(2) Example II1-2 and Example II1-3
A curable composition was obtained in the same manner as in Example II1-1 except that the contents of the monoepoxy compound (A) and other epoxy compounds (IIB-1) were changed to the amounts shown in Table II-1.
(3)比較例II1-1
 モノエポキシ化合物(A)を1,2-エポキシ-4-ビニルシクロヘキサン(ダイセル社製、商品名:セロキサイド2000)に変更した以外は、実施例II1-1と同様にして硬化性組成物を作製した。
(3) Comparative Example II1-1
A curable composition was produced in the same manner as in Example II1-1 except that the monoepoxy compound (A) was changed to 1,2-epoxy-4-vinylcyclohexane (manufactured by Daicel, trade name: Celoxide 2000). .
(4)比較例II1-2および比較例II1-3
 1,2-エポキシ-4-ビニルシクロヘキサンおよびその他のエポキシ化合物(IIB-1)の含有量を表II-1に示す量に変更した以外は、比較例II1-1と同様にして硬化性組成物を得た。
(4) Comparative Example II1-2 and Comparative Example II1-3
Curable composition as in Comparative Example II1-1 except that the content of 1,2-epoxy-4-vinylcyclohexane and other epoxy compounds (IIB-1) was changed to the amounts shown in Table II-1 Got.
(5)硬化性組成物の性能評価
<密着性試験(剥離強度の測定)>
 上記実施例II1-1~II1-3および比較例II1-1~II1-3において得られた硬化性組成物を、PETフィルム(東洋紡社製、商品名:コスモシャインA4300)上に5μm厚となるように塗布し、同様のPETフィルムとラミネートした。次いで、積算光量が、1,500mJ/cm2となるように紫外線光を室温(23℃)で照射し、硬化性組成物を硬化させ、積層フィルムを得た。
 この積層フィルムから、長さ150mm、幅30mmの短冊状試験片を切り出し、東洋精機社製ストログラフE-Lにより90度剥離強度(23℃、剥離速度300mm/min)を測定した。測定結果を表II-1にまとめた。なお、剥離強度が非常に高く、PETフィルムの凝集破壊が生じたものについては測定不能と記載した。これは、接着力がPETフィルムの凝集力以上であるため、接着力が非常に優れることを意味する。
(5) Performance evaluation of curable composition
<Adhesion test (measurement of peel strength)>
The curable compositions obtained in Examples II1-1 to II1-3 and Comparative Examples II1-1 to II1-3 are 5 μm thick on a PET film (manufactured by Toyobo Co., Ltd., trade name: Cosmo Shine A4300). And laminated with the same PET film. Next, ultraviolet light was irradiated at room temperature (23 ° C.) so that the integrated light amount was 1,500 mJ / cm 2, and the curable composition was cured to obtain a laminated film.
From this laminated film, a strip-shaped test piece having a length of 150 mm and a width of 30 mm was cut out, and the 90 ° peel strength (23 ° C., peel rate 300 mm / min) was measured by a strograph EL made by Toyo Seiki Co., Ltd. The measurement results are summarized in Table II-1. In addition, it described that it was impossible to measure about the thing whose peeling strength was very high and the cohesive failure of PET film produced. This means that the adhesive force is very excellent because the adhesive force is greater than the cohesive force of the PET film.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
II-2.実施例II2:モノエポキシ化合物(A)を含む硬化性組成物の調製とその評価(その2:エポキシ化合物(IIB-13)および光カチオン重合開始剤(IID-1)との組合せ)
(1)実施例II2-1
 硬化性組成物の作製
 上記のようにして得られたモノエポキシ化合物(A)と、その他のエポキシ化合物(IIB-13)と、光カチオン重合開始剤(IID-1)とを下記の組成となるように混合し、硬化性組成物を作製した。
<硬化性組成物組成>
・モノエポキシ化合物(A)   50質量部(実施例I1-1に記載された方法で製造されたモノエポキシ化合物)
・その他のエポキシ化合物(IIB-13)   50質量部((3,3’,4,4’-ジエポキシ)ビシクロへキシル、ダイセル社製、商品名:セロキサイド8000)
・光カチオン重合開始剤(IID-1)   10質量部(芳香族スルホニウム塩:ジフェニル-4-(フェニルチオ)フェニルスルホニウムヘキサフルオロホスフェートのプロピレンカーボネート50%溶液、サンアプロ社製、商品名:CPI-100P)
II-2. Example II2: Preparation and Evaluation of Curable Composition Containing Monoepoxy Compound (A) (Part 2: Combination with Epoxy Compound (IIB-13) and Photocationic Polymerization Initiator (IID-1))
(1) Example II2-1
Preparation of curable composition The monoepoxy compound (A) obtained as described above, the other epoxy compound (IIB-13), and the photocationic polymerization initiator (IID-1) have the following composition. Thus, a curable composition was prepared.
<Curable composition composition>
Monoepoxy compound (A) 50 parts by mass (monoepoxy compound produced by the method described in Example I1-1)
-50 parts by mass of other epoxy compound (IIB-13) ((3,3 ′, 4,4′-diepoxy) bicyclohexyl, manufactured by Daicel, trade name: Celoxide 8000)
Photocationic polymerization initiator (IID-1) 10 parts by mass (aromatic sulfonium salt: diphenyl-4- (phenylthio) phenylsulfonium hexafluorophosphate 50% propylene carbonate solution, product of San Apro, trade name: CPI-100P)
(2)実施例II2-2
 モノエポキシ化合物(A)およびその他のエポキシ化合物(IIB-13)の含有量を表II-2に示す量に変更した以外は、実施例II2-1と同様にして硬化性組成物を得た。
(2) Example II2-2
A curable composition was obtained in the same manner as in Example II2-1 except that the contents of the monoepoxy compound (A) and other epoxy compounds (IIB-13) were changed to the amounts shown in Table II-2.
(3)比較例II2-1
 モノエポキシ化合物(A)を1,2-エポキシ-4-ビニルシクロヘキサンに変更した以外は、実施例II2-1と同様にして硬化性組成物を作製した。
(3) Comparative Example II2-1
A curable composition was prepared in the same manner as in Example II2-1 except that the monoepoxy compound (A) was changed to 1,2-epoxy-4-vinylcyclohexane.
(4)比較例II2-2
 1,2-エポキシ-4-ビニルシクロヘキサンおよびその他のエポキシ化合物(IIB-13)の含有量を表II-2に示す量に変更した以外は、比較例II2-1と同様にして硬化性組成物を得た。
(4) Comparative Example II2-2
A curable composition was prepared in the same manner as in Comparative Example II2-1 except that the contents of 1,2-epoxy-4-vinylcyclohexane and other epoxy compounds (IIB-13) were changed to those shown in Table II-2. Got.
(5)硬化性組成物の性能評価
<密着性試験(剥離強度の測定)>
 上記実施例II2-1およびII2-2並びに比較例II2-1およびII2-2において得られた硬化性組成物を、実施例II1(5)に記載された方法に従い、積層フィルムを得て、剥離強度を測定した。測定結果を表II-2にまとめた。なお、剥離強度が非常に高く、PETフィルムの凝集破壊が生じたものについては測定不能と記載した。これは、接着力がPETフィルムの凝集力以上であるため、接着力が非常に優れることを意味する。
(5) Performance evaluation of curable composition
<Adhesion test (measurement of peel strength)>
A laminate film was obtained from the curable compositions obtained in Examples II2-1 and II2-2 and Comparative Examples II2-1 and II2-2 according to the method described in Example II1 (5), and then peeled off. The strength was measured. The measurement results are summarized in Table II-2. In addition, it described that it was impossible to measure about the thing whose peeling strength was very high and the cohesive failure of PET film produced. This means that the adhesive force is very excellent because the adhesive force is greater than the cohesive force of the PET film.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
II-3.実施例II3:モノエポキシ化合物(A)を含む硬化性組成物の調製とその評価(その3:各種エポキシ化合物および光カチオン重合開始剤(IID-1)との組合せ)
(1)実施例II3-1~II3-8および比較例II3-1~II3-8
 硬化性組成物の組成を、以下の成分を用いて表II-3およびII-4に示されるように変更した以外は、実施例II1-1と同様にして、硬化性組成物を得た。
(i)エポキシ化合物(IIB-2)
 3’,4’-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート、ダイセル社製、商品名:セロキサイド2021Pを用いた。
(ii)エポキシ化合物(IIB-3)
 クレゾールノボラック型エポキシ樹脂、DIC社製、商品名:N-660を用いた。
(iii)エポキシ化合物(IIB-5)
 ビスフェノールF型液状エポキシ樹脂、新日鉄住金化学社製、商品名:YDF-170を用いた。
(iv)エポキシ化合物(IIB-6)
 水素化ビスフェノールA型液状エポキシ樹脂、三菱化学社製、商品名:YX8000を用いた。
(v)エポキシ化合物(IIB-8)
 テトラメチレングリコールジグリシジルエーテル、東京化成工業社製試薬を用いた。
(vi)エポキシ化合物(IIB-9)
 シクロヘキサンジカルボン酸ジグリシジルエステル、東京化成工業社製試薬を用いた。
(vii)エポキシ化合物(IIB-11)
 2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-(2-オキシラニル)シクロヘキサン付加物、ダイセル社製、商品名:EHPE3150を用いた。
(viii)エポキシ化合物(IIB-14)
 特開2012-116390号公報に記載された方法で製造されたテトラヒドロインデンジエポキシドを用いた。
(ix) モノエポキシ化合物(A)
実施例I1-1に記載された方法で製造されたモノエポキシ化合物を用いた。
(x)1,2-エポキシ-4-ビニルシクロヘキサン
 1,2-エポキシ-4-ビニルシクロヘキサン、ダイセル社製、商品名:セロキサイド2000を用いた。
(xi)光カチオン重合開始剤(IID-1)
 ジフェニル-4-(フェニルチオ)フェニルスルホニウムヘキサフルオロホスフェートのプロピレンカーボネート50%溶液、サンアプロ社製、CPI-100Pを用いた。
II-3. Example II3: Preparation and Evaluation of Curable Composition Containing Monoepoxy Compound (A) (Part 3: Combination with Various Epoxy Compounds and Photocationic Polymerization Initiator (IID-1))
(1) Examples II3-1 to II3-8 and Comparative Examples II3-1 to II3-8
A curable composition was obtained in the same manner as in Example II1-1 except that the composition of the curable composition was changed as shown in Tables II-3 and II-4 using the following components.
(i) Epoxy compound (IIB-2)
3 ′, 4′-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate, manufactured by Daicel Corporation, trade name: Celoxide 2021P was used.
(ii) Epoxy compound (IIB-3)
A cresol novolac type epoxy resin, manufactured by DIC, trade name: N-660 was used.
(iii) Epoxy compound (IIB-5)
Bisphenol F type liquid epoxy resin, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name: YDF-170 was used.
(iv) Epoxy compound (IIB-6)
Hydrogenated bisphenol A liquid epoxy resin, manufactured by Mitsubishi Chemical Corporation, trade name: YX8000 was used.
(v) Epoxy compound (IIB-8)
Tetramethylene glycol diglycidyl ether and a reagent manufactured by Tokyo Chemical Industry Co., Ltd. were used.
(vi) Epoxy compound (IIB-9)
Cyclohexanedicarboxylic acid diglycidyl ester, a reagent manufactured by Tokyo Chemical Industry Co., Ltd. was used.
(vii) Epoxy compound (IIB-11)
1,2-epoxy- (2-oxiranyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol, manufactured by Daicel Corporation, trade name: EHPE3150 was used.
(viii) Epoxy compound (IIB-14)
Tetrahydroindene diepoxide produced by the method described in JP 2012-116390 A was used.
(ix) Monoepoxy compound (A)
The monoepoxy compound produced by the method described in Example I1-1 was used.
(x) 1,2-epoxy-4-vinylcyclohexane 1,2-epoxy-4-vinylcyclohexane, manufactured by Daicel Corporation, trade name: Celoxide 2000 was used.
(xi) Photocationic polymerization initiator (IID-1)
A 50% propylene carbonate solution of diphenyl-4- (phenylthio) phenylsulfonium hexafluorophosphate, CPI-100P, manufactured by San Apro, was used.
(2)硬化性組成物の性能評価
<密着性試験(剥離強度の測定)>
 上記実施例II3-1~II3-8および比較例II3-1~II3-8において得られた硬化性組成物を、実施例II1(5)に記載された方法に従い、積層フィルムを得て、剥離強度を測定した。測定結果を表II-3およびII-4にまとめた。なお、剥離強度が非常に高く、PETフィルムの凝集破壊が生じたものについては測定不能と記載した。これは、接着力がPETフィルムの凝集力以上であるため、接着力が非常に優れることを意味する。
(2) Performance evaluation of curable composition
<Adhesion test (measurement of peel strength)>
A laminate film was obtained from the curable compositions obtained in Examples II3-1 to II3-8 and Comparative Examples II3-1 to II3-8 according to the method described in Example II1 (5), and then peeled off. The strength was measured. The measurement results are summarized in Tables II-3 and II-4. In addition, it described that it was impossible to measure about the thing whose peeling strength was very high and the cohesive failure of PET film produced. This means that the adhesive force is very excellent because the adhesive force is greater than the cohesive force of the PET film.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
II-4.実施例II4:モノエポキシ化合物(A)を含む硬化性組成物の調製とその評価(その4:各種オキセタン化合物および光カチオン重合開始剤(IID-1)との組合せ)
(1)実施例II4-1およびII4-2並びに比較例II4-1およびII4-2
 硬化性組成物の組成を、以下の成分を用いて表II-5に示されるように変更した以外は、実施例II1-1と同様にして、硬化性組成物を得た。
(i)モノエポキシ化合物(A)
 実施例I1-1に記載された方法で製造されたモノエポキシ化合物を用いた。
(ii)1,2-エポキシ-4-ビニルシクロヘキサン
 1,2-エポキシ-4-ビニルシクロヘキサン、ダイセル社製、商品名:セロキサイド2000を用いた。
(iii)オキセタン化合物(IIC-2)
 3-エチル-3-ヒドロキシメチルオキセタン、東亞合成社製、商品名:アロンオキセタンOXT-101を用いた。
(iv)オキセタン化合物(IIC-3)
 ジ[(3-エチル-3-オキセタニル)メチル]エーテル、東亞合成社製、商品名:アロンオキセタンOXT-221を用いた。
(v)光カチオン重合開始剤(IID-1)
 ジフェニル-4-(フェニルチオ)フェニルスルホニウムヘキサフルオロホスフェートのプロピレンカーボネート50%溶液、サンアプロ社製、CPI-100Pを用いた。
II-4. Example II4: Preparation and Evaluation of Curable Composition Containing Monoepoxy Compound (A) (Part 4: Combination with Various Oxetane Compounds and Photocationic Polymerization Initiator (IID-1))
(1) Examples II4-1 and II4-2 and Comparative Examples II4-1 and II4-2
A curable composition was obtained in the same manner as in Example II1-1 except that the composition of the curable composition was changed as shown in Table II-5 using the following components.
(i) Monoepoxy compound (A)
The monoepoxy compound produced by the method described in Example I1-1 was used.
(ii) 1,2-epoxy-4-vinylcyclohexane 1,2-epoxy-4-vinylcyclohexane, manufactured by Daicel Corporation, trade name: Celoxide 2000 was used.
(iii) Oxetane compound (IIC-2)
3-ethyl-3-hydroxymethyloxetane manufactured by Toagosei Co., Ltd., trade name: Aron Oxetane OXT-101 was used.
(iv) Oxetane compound (IIC-3)
Di [(3-ethyl-3-oxetanyl) methyl] ether, manufactured by Toagosei Co., Ltd., trade name: Aron oxetane OXT-221 was used.
(v) Photocationic polymerization initiator (IID-1)
A 50% propylene carbonate solution of diphenyl-4- (phenylthio) phenylsulfonium hexafluorophosphate, CPI-100P, manufactured by San Apro, was used.
(2)硬化性組成物の性能評価
<密着性試験(剥離強度の測定)>
 上記実施例II4-1およびII4-2並びに比較例II4-1およびII4-2において得られた硬化性組成物を、実施例II1(5)に記載された方法に従い、積層フィルムを得て、剥離強度を測定した。測定結果を表II-5にまとめた。
(2) Performance evaluation of curable composition
<Adhesion test (measurement of peel strength)>
A laminate film was obtained from the curable compositions obtained in Examples II4-1 and II4-2 and Comparative Examples II4-1 and II4-2 according to the method described in Example II1 (5), and then peeled off. The strength was measured. The measurement results are summarized in Table II-5.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
II-5.実施例II5:モノエポキシ化合物(A)を含む硬化性組成物の調製とその評価(その5:エポキシ化合物(IIB-1)および各種光カチオン重合開始剤との組合せ)
(1)実施例II5-1およびII5-2並びに比較例II5-1およびII5-2
 硬化性組成物の組成を、以下の成分を用いて表II-6に示されるように変更した以外は、実施例II1-1と同様にして、硬化性組成物を得た。
(i)エポキシ化合物(IIB-1)
 ビスフェノールA型液状エポキシ樹脂、新日鉄住金化学社製、商品名:YD-128を用いた。
(ii)モノエポキシ化合物(A)
 実施例I1-1に記載された方法で製造されたモノエポキシ化合物を用いた。
(iii)1,2-エポキシ-4-ビニルシクロヘキサン
 1,2-エポキシ-4-ビニルシクロヘキサン、ダイセル社製、商品名:セロキサイド2000を用いた。
(iv)光カチオン重合開始剤(IID-2)
 ジフェニル-4-(フェニルチオ)フェニルスルホニウムヘキサフルオロアンチモネート、サンアプロ社製、CPI-101Aを用いた。
(v)光カチオン重合開始剤(IID-3)
 ビス[4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル]スルフィドビスヘキサフルオロアンチモネート、ADEKA社製、アデカアークルズSP-170を用いた。
II-5. Example II5: Preparation and Evaluation of Curable Composition Containing Monoepoxy Compound (A) (Part 5: Combination with Epoxy Compound (IIB-1) and Various Photocationic Polymerization Initiators)
(1) Examples II5-1 and II5-2 and Comparative Examples II5-1 and II5-2
A curable composition was obtained in the same manner as in Example II1-1 except that the composition of the curable composition was changed as shown in Table II-6 using the following components.
(i) Epoxy compound (IIB-1)
Bisphenol A type liquid epoxy resin, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name: YD-128 was used.
(ii) Monoepoxy compound (A)
The monoepoxy compound produced by the method described in Example I1-1 was used.
(iii) 1,2-epoxy-4-vinylcyclohexane 1,2-epoxy-4-vinylcyclohexane, manufactured by Daicel Corporation, trade name: Celoxide 2000 was used.
(iv) Photocationic polymerization initiator (IID-2)
Diphenyl-4- (phenylthio) phenylsulfonium hexafluoroantimonate, CPI-101A manufactured by San Apro was used.
(v) Photocationic polymerization initiator (IID-3)
Bis [4- (di (4- (2-hydroxyethoxy)) phenylsulfonio) phenyl] sulfide bishexafluoroantimonate, manufactured by ADEKA, Adeka Arcles SP-170 was used.
(2)硬化性組成物の性能評価
<密着性試験(剥離強度の測定)>
 上記実施例II5-1およびII5-2並びに比較例II5-1およびII5-2において得られた硬化性組成物を、実施例II1(5)に記載された方法に従い、積層フィルムを得て、剥離強度を測定した。測定結果を表II-6にまとめた。なお、剥離強度が非常に高く、PETフィルムの凝集破壊が生じたものについては測定不能と記載した。これは、接着力がPETフィルムの凝集力以上であるため、接着力が非常に優れることを意味する。
(2) Performance evaluation of curable composition
<Adhesion test (measurement of peel strength)>
A laminate film was obtained from the curable compositions obtained in Examples II5-1 and II5-2 and Comparative Examples II5-1 and II5-2 according to the method described in Example II1 (5), and then peeled off. The strength was measured. The measurement results are summarized in Table II-6. In addition, it described that it was impossible to measure about the thing whose peeling strength was very high and the cohesive failure of PET film produced. This means that the adhesive force is very excellent because the adhesive force is greater than the cohesive force of the PET film.
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
III.本発明の態様IIIの実施例
III-1.実施例III1:モノエポキシ化合物(A-1)の合成
 温度計、攪拌機、還流管、滴下装置を備えた反応容器に、下記式(3)で表されるジオレフィン化合物3132g、トルエン3132gおよび酢酸ナトリウムを投入し、-5℃で攪拌しながら38%過酢酸水溶液3783gを5時間かけて滴下した。そのまま-5℃で攪拌を継続し、17時間反応を行った。
 次いで、10%亜硫酸ナトリウム水溶液を用いて中和処理を行った後、分液操作を行った。圧力2hPa、塔底温度130~140℃で蒸留を行い、無色透明の液体である、上記式(1)を満たすモノエポキシ化合物(A-1)を2109g得た。
III. Example of embodiment III of the invention
III-1. Example III1: Synthesis of monoepoxy compound (A-1) In a reaction vessel equipped with a thermometer, a stirrer, a reflux tube and a dropping device, 3132 g of a diolefin compound represented by the following formula (3), 3132 g of toluene and sodium acetate Then, 3783 g of 38% aqueous solution of peracetic acid was added dropwise over 5 hours while stirring at −5 ° C. Stirring was continued at -5 ° C as it was, and the reaction was carried out for 17 hours.
Subsequently, after performing the neutralization process using 10% sodium sulfite aqueous solution, liquid separation operation was performed. Distillation was performed at a pressure of 2 hPa and a column bottom temperature of 130 to 140 ° C. to obtain 2109 g of a monoepoxy compound (A-1) satisfying the above formula (1), which is a colorless and transparent liquid.
 得られたモノエポキシ化合物(A-1)を下記条件にて13C-NMR分析を行った。ノルボルナン骨格の橋頭位と、ビニル基とがトランスの関係にある立体異性体、すなわち下記式(4’)および(5’)で表される化合物に由来するピーク面積の、化学シフト140~145ppmの範囲における総ピーク面積に対する割合は、77.03%であった。モノエポキシ化合物(A-1)のNMRチャートを図2に表す。(NMR分析条件)
測定機器:アジレント・テクノロジー社製DD2
プローブ:One
測定モード:完全デカップリング
積算回数:512
繰り返し時間:2.13s
測定時間:25分
溶媒:重クロロホルム
温度:23℃ 
内部標準:重クロロホルム
The obtained monoepoxy compound (A-1) was subjected to 13 C-NMR analysis under the following conditions. The peak area derived from the stereoisomer in which the bridgehead position of the norbornane skeleton and the vinyl group are in a trans relationship, that is, the compounds represented by the following formulas (4 ′) and (5 ′), has a chemical shift of 140 to 145 ppm. The ratio with respect to the total peak area in the range was 77.03%. An NMR chart of the monoepoxy compound (A-1) is shown in FIG. (NMR analysis conditions)
Measuring instrument: DD2 manufactured by Agilent Technologies
Probe: One
Measurement mode: Complete decoupling integration count: 512
Repeat time: 2.13s
Measurement time: 25 minutes Solvent: Deuterated chloroform Temperature: 23 ° C
Internal standard: deuterated chloroform
 図2のNMRチャートによれば、モノエポキシ化合物(A-1)の、化学シフト140~142ppmの範囲における総ピーク面積の、140~145ppmの範囲における総ピーク面積に対する割合は、77.03%であった。また、図2のNMRチャートによれば、モノエポキシ化合物(A-1)の、化学シフト140~142ppmの範囲において低磁場側から1番目に生じるピーク面積の、140~145ppmの範囲における総ピーク面積に対する割合は、61.40%であった。 According to the NMR chart of FIG. 2, the ratio of the total peak area of the monoepoxy compound (A-1) in the chemical shift range of 140 to 142 ppm to the total peak area in the range of 140 to 145 ppm is 77.03%. there were. Further, according to the NMR chart of FIG. 2, the total peak area in the range of 140 to 145 ppm of the first peak area generated from the low magnetic field side in the chemical shift range of 140 to 142 ppm of the monoepoxy compound (A-1). The ratio to was 61.40%.
 また、モノエポキシ化合物(A-1)について下記条件にてガスクロマトグラフィー分析を行った。モノエポキシ化合物(A-1)のガスクロマトグラフを図3に示す。
(ガスクロマトグラフィー分析条件)
測定機器:アジレント・テクノロジー株式会社製Agilent6850シリーズ
カラム:HP-1、ジメチルポリシロキサン、長さ:60.0m、内径:250μm、膜厚:0.25μm
キャリアガス:N
流速:1.3mL/分
試料注入口温度:140℃
検出器温度:250℃
試料注入量:0.2μL
昇温条件:80℃(3分間)、80~150℃(10℃/分)、150~250℃(5℃/分)、250℃(20分間)
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
The monoepoxy compound (A-1) was analyzed by gas chromatography under the following conditions. A gas chromatograph of the monoepoxy compound (A-1) is shown in FIG.
(Gas chromatography analysis conditions)
Measuring instrument: Agilent 6850 series manufactured by Agilent Technologies, Inc. Column: HP-1, dimethylpolysiloxane, length: 60.0 m, inner diameter: 250 μm, film thickness: 0.25 μm
Carrier gas: N 2
Flow rate: 1.3 mL / min Sample inlet temperature: 140 ° C.
Detector temperature: 250 ° C
Sample injection volume: 0.2 μL
Temperature rising conditions: 80 ° C. (3 minutes), 80 to 150 ° C. (10 ° C./min), 150 to 250 ° C. (5 ° C./min), 250 ° C. (20 minutes)
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
III-2.実施例III2:モノエポキシ化合物(A-2)の合成
 温度計、攪拌機、還流管、滴下装置を備えた反応容器に、35%過酸化水素を6.4g、HPW1240を0.36g投入し、60℃で30分撹拌した。40℃で冷却した後、上記式(3)で表されるジオレフィン化合物80.11g、セチルピリジニウムクロリド0.13g、クロロホルム596gを加えた。その後、40℃で攪拌しながら35%過酸化水素44.84gを滴下した後、40℃で6時間反応を行なった。反応後、クロロホルム450gを用いて分液抽出操作を行った。有機層を10%チオ硫酸ナトリウム水溶液300mL、10%炭酸ナトリウム水溶液300mL、純水300mLで洗浄した。硫酸マグネシウムによって脱水操作を行った後、ロータリーエバポレーターで溶媒を留去した。圧力3hPa、塔底温度140~170℃で蒸留を行い、塔底温度167℃で目的のモノエポキシ化合物(A-2)4.9gを得た。
III-2. Example III2: Synthesis of monoepoxy compound (A-2) In a reaction vessel equipped with a thermometer, a stirrer, a reflux tube and a dropping device, 6.4 g of 35% hydrogen peroxide, H 3 PW 12 O 0.36 g of 40 was added and stirred at 60 ° C. for 30 minutes. After cooling at 40 ° C., 80.11 g of the diolefin compound represented by the above formula (3), 0.13 g of cetylpyridinium chloride, and 596 g of chloroform were added. Thereafter, 44.84 g of 35% hydrogen peroxide was dropped while stirring at 40 ° C., and the reaction was carried out at 40 ° C. for 6 hours. After the reaction, liquid separation extraction operation was performed using 450 g of chloroform. The organic layer was washed with 300 mL of 10% aqueous sodium thiosulfate solution, 300 mL of 10% aqueous sodium carbonate solution, and 300 mL of pure water. After dehydrating with magnesium sulfate, the solvent was distilled off with a rotary evaporator. Distillation was performed at a pressure of 3 hPa and a column bottom temperature of 140 to 170 ° C., and 4.9 g of the desired monoepoxy compound (A-2) was obtained at a column bottom temperature of 167 ° C.
 得られたモノエポキシ化合物(A-2)を上記条件にて13C-NMR分析を行った。ノルボルナン骨格の橋頭位と、ビニル基とがトランスの関係にある立体異性体に由来するピーク面積の、シフト値140~145ppmにおける総ピーク面積に対する割合は、64.89%であった。モノエポキシ化合物(A-2)のNMRチャートを図4に表す。 The obtained monoepoxy compound (A-2) was subjected to 13 C-NMR analysis under the above conditions. The ratio of the peak area derived from the stereoisomer in which the bridge position of the norbornane skeleton and the vinyl group are in a trans relationship to the total peak area at a shift value of 140 to 145 ppm was 64.89%. The NMR chart of the monoepoxy compound (A-2) is shown in FIG.
 図4のNMRチャートによれば、モノエポキシ化合物(A-2)の、化学シフト140~142ppmの範囲における総ピーク面積の、140~145ppmの範囲における総ピーク面積に対する割合は、64.89%であった。また、図4のNMRチャートによれば、モノエポキシ化合物(A-2)の、化学シフト140~142ppmの範囲において低磁場側から1番目に生じるピーク面積の、140~145ppmの範囲における総ピーク面積に対する割合は、31.04%であった。 According to the NMR chart of FIG. 4, the ratio of the total peak area of the monoepoxy compound (A-2) in the chemical shift range of 140 to 142 ppm to the total peak area in the range of 140 to 145 ppm is 64.89%. there were. Further, according to the NMR chart of FIG. 4, the total peak area in the range of 140 to 145 ppm of the first peak area generated from the low magnetic field side in the range of 140 to 142 ppm of the chemical shift of the monoepoxy compound (A-2). The ratio to the percentage was 31.04%.
 また、モノエポキシ化合物(A-2)について、上記同様ガスクロマトグラフィー分析を行った。モノエポキシ化合物(A-2)のガスクロマトグラフを図5に示す。
Figure JPOXMLDOC01-appb-C000041
The monoepoxy compound (A-2) was analyzed by gas chromatography as described above. A gas chromatograph of the monoepoxy compound (A-2) is shown in FIG.
Figure JPOXMLDOC01-appb-C000041
III-3.実施例III3:立体異性体含有率を変動させたモノエポキシ化合物と熱カチオン重合開始剤を含む硬化性組成物の調製とその評価(その1)
(実施例III3-1)
 上記のようにして得られたモノエポキシ化合物(A-1)、その他のエポキシ化合物(IIIB-1)および熱カチオン重合開始剤を下記の組成となるように混合し、硬化性組成物を得た。
<硬化性組成物の組成>
・モノエポキシ化合物(A-1)   60質量部
・その他のエポキシ化合物(IIIB-1)   40質量部(3’,4’-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート、ダイセル製、商品名:セロキサイド2021P)
・熱カチオン重合開始剤   1質量部(芳香族スルホニウム塩、三新化学工業社製、商品名:SI-80L)
III-3. Example III3: Preparation and Evaluation of Curable Composition Containing Monoepoxy Compound with Variable Stereoisomer Content and Thermal Cationic Polymerization Initiator (Part 1)
Example III3-1
The monoepoxy compound (A-1) obtained as described above, the other epoxy compound (IIIB-1) and the thermal cationic polymerization initiator were mixed so as to have the following composition to obtain a curable composition. .
<Composition of curable composition>
Monoepoxy compound (A-1) 60 parts by mass Other epoxy compound (IIIB-1) 40 parts by mass (3 ′, 4′-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate, manufactured by Daicel, trade name: Celoxide 2021P)
・ Thermal cationic polymerization initiator 1 part by mass (aromatic sulfonium salt, manufactured by Sanshin Chemical Industry Co., Ltd., trade name: SI-80L)
(実施例III3-2)
 モノエポキシ化合物(A-1)をモノエポキシ化合物(A-2)に変更した以外は、実施例III3-1と同様にして硬化性組成物を得た。
(Example III3-2)
A curable composition was obtained in the same manner as in Example III3-1 except that the monoepoxy compound (A-1) was changed to the monoepoxy compound (A-2).
<耐熱性評価>
 上記実施例および比較例より得られた硬化性組成物を、熱風循環オーブンにより、60℃にて2時間、80℃にて2時間、120℃にて1時間、150℃にて1時間、180℃にて1時間加熱し、硬化物を得た。
 得られた硬化物のガラス転移温度を、SIIナノテクノロジー製示差走査熱量計DSC7020により、30~300℃まで10℃/minで昇温して測定し、硬化物の耐熱性とした。なお、ここでいうガラス転移温度は、JIS K7121「プラスチックの転移温度測定法」に記載されているうち「中間点ガラス転移温度:Tmg」に基づいて測定した。測定結果を表III-1にまとめた。
<Heat resistance evaluation>
The curable compositions obtained from the above examples and comparative examples were heated in a hot air circulating oven at 60 ° C. for 2 hours, 80 ° C. for 2 hours, 120 ° C. for 1 hour, 150 ° C. for 1 hour, 180 Heated at 0 ° C. for 1 hour to obtain a cured product.
The glass transition temperature of the obtained cured product was measured by increasing the temperature from 30 to 300 ° C. at 10 ° C./min using a differential scanning calorimeter DSC7020 manufactured by SII Nanotechnology, and was regarded as the heat resistance of the cured product. The glass transition temperature here was measured based on “intermediate glass transition temperature: T mg ” described in JIS K7121 “Plastic Transition Temperature Measurement Method”. The measurement results are summarized in Table III-1.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
III-4.実施例III4:モノエポキシ化合物(A-3)の合成
 モノエポキシ化合物(A-2)の合成時の蒸留において、塔底温度151℃で12.6gの留分を得た(A-3)。
 得られたモノエポキシ化合物(A-3)を上記条件にて13C-NMR分析を行った。ノルボルナン骨格の橋頭位と、ビニル基とがトランスの関係にある立体異性体に由来するピーク面積の、シフト値140~145ppmにおける総ピーク面積に対する割合は、72.32%であった。モノエポキシ化合物(A-3)のNMRチャートを図6に表す。
III-4. Example III4: Synthesis of monoepoxy compound (A-3) In distillation during synthesis of monoepoxy compound (A-2), a fraction of 12.6 g was obtained at a tower bottom temperature of 151 ° C (A -3).
The obtained monoepoxy compound (A-3) was subjected to 13 C-NMR analysis under the above conditions. The ratio of the peak area derived from the stereoisomer in which the bridge position of the norbornane skeleton and the vinyl group are in a trans relationship to the total peak area at a shift value of 140 to 145 ppm was 72.32%. An NMR chart of the monoepoxy compound (A-3) is shown in FIG.
 図6のNMRチャートによれば、モノエポキシ化合物(A-3)の、化学シフト140~142ppmの範囲における総ピーク面積の、140~145ppmの範囲における総ピーク面積に対する割合は、72.32%であった。また、図6のNMRチャートによれば、モノエポキシ化合物(A-3)の、化学シフト140~142ppmの範囲において低磁場側から1番目に生じるピーク面積の、140~145ppmの範囲における総ピーク面積に対する割合は、43.45%であった。 According to the NMR chart of FIG. 6, the ratio of the total peak area of the monoepoxy compound (A-3) in the chemical shift range of 140 to 142 ppm to the total peak area in the range of 140 to 145 ppm is 72.32%. there were. Further, according to the NMR chart of FIG. 6, the total peak area in the range of 140 to 145 ppm of the first peak area generated from the low magnetic field side in the chemical shift range of 140 to 142 ppm of the monoepoxy compound (A-3). The ratio to was 43.45%.
 また、モノエポキシ化合物(A-3)について、上記同様ガスクロマトグラフィー分析を行った。モノエポキシ化合物(A-3)のガスクロマトグラフを図7に示す。 The monoepoxy compound (A-3) was analyzed by gas chromatography as described above. A gas chromatograph of the monoepoxy compound (A-3) is shown in FIG.
III-5.実施例III5:立体異性体含有率を変動させたモノエポキシ化合物と熱カチオン重合開始剤を含む硬化性組成物の調製とその評価(その2:その他のエポキシ化合物との組合せ)
(実施例III5-1)
 上記のようにして得られたモノエポキシ化合物(A-1)、その他のエポキシ化合物(IIIB-2)および熱カチオン重合開始剤を下記の組成となるように混合し、硬化性組成物を得た。
<硬化性組成物の組成>
・モノエポキシ化合物(A-1)   40質量部
・その他のエポキシ化合物(IIIB-2)   60質量部(ビスフェノールA型液状エポキシ樹脂、新日鉄住金化学製、商品名YD-128)
・熱カチオン重合開始剤   1質量部(芳香族スルホニウム塩、三新化学工業社製、商品名:SI-80L)
III-5. Example III5: Preparation and Evaluation of Curable Composition Containing Monoepoxy Compound with Variable Stereoisomer Content and Thermal Cationic Polymerization Initiator (Part 2: Combination with Other Epoxy Compounds)
Example III5-1
The monoepoxy compound (A-1) obtained as described above, the other epoxy compound (IIIB-2), and the thermal cationic polymerization initiator were mixed so as to have the following composition to obtain a curable composition. .
<Composition of curable composition>
・ 40 parts by mass of monoepoxy compound (A-1) ・ 60 parts by mass of other epoxy compound (IIIB-2) (bisphenol A type liquid epoxy resin, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name YD-128)
・ Thermal cationic polymerization initiator 1 part by mass (aromatic sulfonium salt, manufactured by Sanshin Chemical Industry Co., Ltd., trade name: SI-80L)
(実施例III5-2)
 モノエポキシ化合物(A-1)を下記のようにして合成したモノエポキシ化合物(A-3)に変更した以外は、実施例III5-1と同様にして硬化性組成物を得た。
(Example III5-2)
A curable composition was obtained in the same manner as in Example III5-1 except that the monoepoxy compound (A-1) was changed to the monoepoxy compound (A-3) synthesized as follows.
(実施例III5-3)
 モノエポキシ化合物(A-1)をモノエポキシ化合物(A-2)に変更した以外は、実施例III5-1と同様にして硬化性組成物を得た。
Example III5-3
A curable composition was obtained in the same manner as in Example III5-1 except that the monoepoxy compound (A-1) was changed to the monoepoxy compound (A-2).
<耐熱性評価>
 上記実施例および比較例より得られた硬化性組成物を、熱風循環オーブンにより、80℃にて1時間、120℃にて2時間、180℃にて2時間加熱し、硬化物を得た。
 得られた硬化物のガラス転移温度を、実施例III3-1同様測定した。測定結果を表III-2にまとめた。
<Heat resistance evaluation>
The curable compositions obtained from the above examples and comparative examples were heated in a hot air circulating oven at 80 ° C. for 1 hour, 120 ° C. for 2 hours, and 180 ° C. for 2 hours to obtain a cured product.
The glass transition temperature of the obtained cured product was measured in the same manner as in Example III3-1. The measurement results are summarized in Table III-2.
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
III-6.実施例III6:立体異性体含有率を変動させたモノエポキシ化合物と酸無水系硬化剤を含む硬化性組成物の調製とその評価(その1)
(実施例III6-1)
 上記のようにして得られたモノエポキシ化合物(A-1)、その他のエポキシ化合物(IIIB-1)、酸無水物系硬化剤および硬化促進剤を下記の組成となるように混合し、硬化性組成物を得た。
<硬化性組成物の組成>
・モノエポキシ化合物(A-1)   50質量部
・その他のエポキシ化合物(IIIB-1)   100質量部
・酸無水物系硬化剤   155質量部(4-メチルヘキサヒドロ無水フタル酸とヘキサヒドロ無水フタル酸との混合物、モノエポキシ化合物(A-1)およびその他のエポキシ化合物(IIIB-1)1当量に対して、0.9当量相当、新日本理化社製、商品名:MH-700)
・硬化促進剤   3質量部(2-エチル-4-メチルイミダゾール、四国化成社製、商品名:2E4MZ)
III-6. Example III6: Preparation and evaluation of curable composition containing monoepoxy compound with varying stereoisomer content and acid anhydride curing agent (Part 1)
Example III6-1
The monoepoxy compound (A-1) obtained as described above, the other epoxy compound (IIIB-1), an acid anhydride curing agent and a curing accelerator are mixed so as to have the following composition and cured. A composition was obtained.
<Composition of curable composition>
Monoepoxy compound (A-1) 50 parts by mass Other epoxy compound (IIIB-1) 100 parts by mass Acid anhydride curing agent 155 parts by mass (4-methylhexahydrophthalic anhydride and hexahydrophthalic anhydride , Equivalent of 0.9 equivalent to 1 equivalent of monoepoxy compound (A-1) and other epoxy compound (IIIB-1), manufactured by Shin Nippon Rika Co., Ltd., trade name: MH-700)
Curing accelerator 3 parts by mass (2-ethyl-4-methylimidazole, manufactured by Shikoku Kasei Co., Ltd., trade name: 2E4MZ)
(実施例6-2)
 モノエポキシ化合物(A-1)をモノエポキシ化合物(A-2)に変更した以外は、実施例(III6-1)と同様にして硬化性組成物を得た。
(Example 6-2)
A curable composition was obtained in the same manner as in Example (III6-1) except that the monoepoxy compound (A-1) was changed to the monoepoxy compound (A-2).
<耐熱性評価>
 上記実施例および比較例より得られた硬化性組成物を、熱風循環オーブンにより、100にて2時間、160℃にて2時間、220℃にて2時間加熱し、硬化物を得た。
 得られた硬化物のガラス転移温度を、実施例III3-1同様測定した。測定結果を表III-3にまとめた。
<Heat resistance evaluation>
The curable compositions obtained from the above Examples and Comparative Examples were heated in a hot air circulating oven at 100 for 2 hours, at 160 ° C. for 2 hours, and at 220 ° C. for 2 hours to obtain a cured product.
The glass transition temperature of the obtained cured product was measured in the same manner as in Example III3-1. The measurement results are summarized in Table III-3.
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
III-7.実施例III7:立体異性体含有率を変動させたモノエポキシ化合物と酸無水系硬化剤を含む硬化性組成物の調製とその評価(その2:その他のエポキシ化合物との組合せ)
(実施例III7-1)
 上記のようにして得られたモノエポキシ化合物(A-1)、その他のエポキシ化合物(IIIB-2)、酸無水物系硬化剤および硬化促進剤を下記の組成となるように混合し、硬化性組成物を得た。
<硬化性組成物の組成>
・モノエポキシ化合物(A-1)   55.5質量部
・その他のエポキシ化合物(IIIB-2)   100質量部
・酸無水物系硬化剤   125質量部
・硬化促進剤   3質量部
III-7. Example III7: Preparation and Evaluation of Curable Composition Containing Monoepoxy Compound with Varying Stereoisomer Content and Acid Anhydride Curing Agent (Part 2: Combination with Other Epoxy Compound)
Example III7-1
The monoepoxy compound (A-1) obtained as described above, the other epoxy compound (IIIB-2), an acid anhydride curing agent and a curing accelerator are mixed so as to have the following composition, and then cured. A composition was obtained.
<Composition of curable composition>
-Mono epoxy compound (A-1) 55.5 parts by mass-Other epoxy compounds (IIIB-2) 100 parts by mass-Acid anhydride curing agent 125 parts by mass-Curing accelerator 3 parts by mass
(実施例III7-2)
 モノエポキシ化合物(A-1)をモノエポキシ化合物(A-2)に変更した以外は、実施例III7-1と同様にして硬化性組成物を得た。
Example III7-2
A curable composition was obtained in the same manner as in Example III7-1 except that the monoepoxy compound (A-1) was changed to the monoepoxy compound (A-2).
<耐熱性評価>
 上記実施例および比較例より得られた硬化性組成物を、熱風循環オーブンにより、100にて2時間、160℃にて4時間加熱し、硬化物を得た。
 得られた硬化物のガラス転移温度を、実施例III3-1同様測定した。測定結果を表III-4にまとめた。
Figure JPOXMLDOC01-appb-T000045
<Heat resistance evaluation>
The curable compositions obtained from the above examples and comparative examples were heated in a hot air circulating oven at 100 for 2 hours and at 160 ° C. for 4 hours to obtain a cured product.
The glass transition temperature of the obtained cured product was measured in the same manner as in Example III3-1. The measurement results are summarized in Table III-4.
Figure JPOXMLDOC01-appb-T000045

Claims (17)

  1.  下記式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式中、R乃至Rは、それぞれ独立して、水素、アルキル基およびアルコキシ基からなる群より選択される。)
    で表される、モノエポキシ化合物。
    Following formula (1):
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 to R 6 are each independently selected from the group consisting of hydrogen, an alkyl group, and an alkoxy group.)
    A monoepoxy compound represented by:
  2.  前記式(1)で表される化合物の立体異性体を含み、13C-NMR分析による、前記式(1)におけるノルボルナン骨格の橋頭位とビニル基とがトランスの関係にある立体異性体に由来するピーク面積の、化学シフト140~145ppmの範囲における総ピーク面積に対する割合が、66%以上である、請求項1に記載のモノエポキシ化合物。 It includes a stereoisomer of the compound represented by the formula (1), and is derived from a stereoisomer in which the bridgehead position of the norbornane skeleton and the vinyl group in the formula (1) are in a trans relationship according to 13 C-NMR analysis. The monoepoxy compound according to claim 1, wherein the ratio of the peak area to the total peak area in the chemical shift range of 140 to 145 ppm is 66% or more.
  3.  R乃至Rは全て水素であり、ノルボルナン骨格の橋頭位とビニル基とがトランスの関係にある立体異性体が、下記化学式:
    Figure JPOXMLDOC01-appb-C000002
    のいずれかで表される、請求項2に記載のモノエポキシ化合物。
    R 1 to R 6 are all hydrogen, and a stereoisomer in which the bridge position of the norbornane skeleton and the vinyl group are in a trans relationship has the following chemical formula:
    Figure JPOXMLDOC01-appb-C000002
    The monoepoxy compound of Claim 2 represented by either of these.
  4.  前記式(1)で表される化合物の13C-NMR分析において、化学シフト140~142ppmの範囲における総ピーク面積の、140~145ppmの範囲における総ピーク面積に対する割合が、66%以上である、請求項1に記載のモノエポキシ化合物。 In the 13 C-NMR analysis of the compound represented by the formula (1), the ratio of the total peak area in the chemical shift range of 140 to 142 ppm to the total peak area in the range of 140 to 145 ppm is 66% or more. The monoepoxy compound according to claim 1.
  5.  前記式(1)で表される化合物の13C-NMR分析において、化学シフト140~142ppmの範囲におけるピークのうち、低磁場側から1番目に生じるピークの面積の、140~145ppmの範囲における総ピーク面積に対する割合が、35%以上である、請求項2~4のいずれか一項に記載のモノエポキシ化合物。 In the 13 C-NMR analysis of the compound represented by the formula (1), out of the peaks in the chemical shift range of 140 to 142 ppm, the area of the peak first generated from the low magnetic field side is the total in the range of 140 to 145 ppm. The monoepoxy compound according to any one of claims 2 to 4, wherein the ratio to the peak area is 35% or more.
  6.  請求項1~5のいずれか一項に記載のモノエポキシ化合物と、硬化剤、熱カチオン重合開始剤、および光カチオン重合開始剤からなる群より選択される1種とを含む、硬化性組成物。 A curable composition comprising the monoepoxy compound according to any one of claims 1 to 5 and one selected from the group consisting of a curing agent, a thermal cationic polymerization initiator, and a photocationic polymerization initiator. .
  7.  前記硬化剤が、フェノール化合物、アミン化合物、酸無水物系化合物およびアミド化合物からなる群より選択される1以上の硬化剤である、請求項6に記載の硬化性組成物。 The curable composition according to claim 6, wherein the curing agent is one or more curing agents selected from the group consisting of a phenol compound, an amine compound, an acid anhydride compound, and an amide compound.
  8.  前記熱カチオン重合開始剤が、芳香族スルホニウム塩系の熱カチオン重合開始剤、芳香族ヨードニウム塩系の熱カチオン重合開始剤、およびアルミニウム錯体系の熱カチオン重合開始剤からなる群から選択される、請求項6に記載の硬化性組成物。 The thermal cationic polymerization initiator is selected from the group consisting of an aromatic sulfonium salt-based thermal cationic polymerization initiator, an aromatic iodonium salt-based thermal cationic polymerization initiator, and an aluminum complex-based thermal cationic polymerization initiator. The curable composition according to claim 6.
  9.  前記光カチオン重合開始剤が、芳香族スルホニウム塩系の光カチオン重合開始剤である、請求項6に記載の硬化性組成物。 The curable composition according to claim 6, wherein the photocationic polymerization initiator is an aromatic sulfonium salt-based photocationic polymerization initiator.
  10.  前記モノエポキシ化合物と異なるその他のエポキシ化合物をさらに含む、請求項6~9のいずれか一項に記載の硬化性組成物。 The curable composition according to any one of claims 6 to 9, further comprising another epoxy compound different from the monoepoxy compound.
  11.  前記モノエポキシ化合物と異なるその他のエポキシ化合物が、グリシジルエーテル型エポキシド、グリシジルエステル型エポキシド、脂環式エポキシド、およびエポキシ樹脂からなる群から選択される、請求項10に記載の硬化性組成物。 The curable composition according to claim 10, wherein the other epoxy compound different from the monoepoxy compound is selected from the group consisting of a glycidyl ether type epoxide, a glycidyl ester type epoxide, an alicyclic epoxide, and an epoxy resin.
  12.  前記硬化性組成物における、前記モノエポキシ化合物と、前記モノエポキシ化合物と異なるその他のエポキシ化合物との含有量比が、質量基準で、1:99~75:25である、請求項10または11に記載の硬化性組成物。 The content ratio of the monoepoxy compound and another epoxy compound different from the monoepoxy compound in the curable composition is 1:99 to 75:25 on a mass basis. The curable composition as described.
  13.  請求項6~12のいずれか一項に記載の硬化性組成物を硬化させる工程を含む、硬化物の製造方法。 A method for producing a cured product, comprising a step of curing the curable composition according to any one of claims 6 to 12.
  14.  請求項6~12のいずれか一項に記載の硬化性組成物の硬化物。 A cured product of the curable composition according to any one of claims 6 to 12.
  15.  請求項1に記載のモノエポキシ化合物を製造する方法であって、
     下記式(2):
    Figure JPOXMLDOC01-appb-C000003
    (式中、R乃至Rは、それぞれ独立して、水素、アルキル基およびアルコキシ基からなる群より選択される。)
    で表される化合物と、過酸とを反応させる工程を含んでなり、
     該過酸の使用量が、該式(2)で表される化合物1.00モルに対して、0.10~1.80モルであることを特徴とする、方法。
    A method for producing the monoepoxy compound according to claim 1, comprising:
    Following formula (2):
    Figure JPOXMLDOC01-appb-C000003
    (Wherein R 1 to R 6 are each independently selected from the group consisting of hydrogen, an alkyl group, and an alkoxy group.)
    Comprising a step of reacting a compound represented by
    The method, wherein the amount of the peracid used is 0.10 to 1.80 mol with respect to 1.00 mol of the compound represented by the formula (2).
  16.  前記過酸が、過酸化水素または有機過酸である、請求項15に記載の方法。 The method according to claim 15, wherein the peracid is hydrogen peroxide or an organic peracid.
  17.  請求項1に記載のモノエポキシ化合物を少なくとも含む、反応性希釈剤。 A reactive diluent comprising at least the monoepoxy compound according to claim 1.
PCT/JP2017/010040 2016-03-14 2017-03-13 Epoxy compound, curable composition, cured product, method for producing epoxy compound, and reactive diluent WO2017159637A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187024749A KR102344209B1 (en) 2016-03-14 2017-03-13 Epoxy compound, curable composition, cured product, method for preparing epoxy compound and reactive diluent
EP17766636.9A EP3431470B1 (en) 2016-03-14 2017-03-13 Epoxy compound, curable composition, cured product, method for producing epoxy compound, and reactive diluent
US16/084,375 US10995079B2 (en) 2016-03-14 2017-03-13 Epoxy compound, curable composition, cured product, method of producing epoxy compound, and reactive diluent
CN201780014232.4A CN109071477A (en) 2016-03-14 2017-03-13 Epoxide, solidification compound, solidfied material, the preparation method of epoxide and reactive diluent

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2016-049712 2016-03-14
JP2016049712 2016-03-14
JP2016-107724 2016-05-30
JP2016107724 2016-05-30
JP2016120014 2016-06-16
JP2016-120014 2016-06-16
JP2016188868A JP6691855B2 (en) 2016-05-30 2016-09-27 Curable composition and cured product obtained by curing the same
JP2016-188868 2016-09-27
JP2016-188882 2016-09-27
JP2016188882A JP6644659B2 (en) 2016-03-14 2016-09-27 Epoxy compound, curable composition, cured product, method for producing epoxy compound, and reactive diluent

Publications (1)

Publication Number Publication Date
WO2017159637A1 true WO2017159637A1 (en) 2017-09-21

Family

ID=59852144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010040 WO2017159637A1 (en) 2016-03-14 2017-03-13 Epoxy compound, curable composition, cured product, method for producing epoxy compound, and reactive diluent

Country Status (2)

Country Link
KR (1) KR102344209B1 (en)
WO (1) WO2017159637A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018145430A (en) * 2017-03-08 2018-09-20 パナソニックIpマネジメント株式会社 Ultraviolet-curable resin composition, method of manufacturing organic el light-emitting device, and organic el light-emitting device
WO2020209241A1 (en) 2019-04-09 2020-10-15 Jxtgエネルギー株式会社 Curable composition and cured product of same
WO2021112062A1 (en) 2019-12-02 2021-06-10 Eneos株式会社 Alicyclic acrylate compound, alicyclic epoxy acrylate compound, curable composition, and cured article
WO2022163795A1 (en) * 2021-01-29 2022-08-04 Eneos株式会社 Curable composition, and cured product thereof
WO2023100828A1 (en) * 2021-11-30 2023-06-08 Eneos株式会社 Curable composition and cured product thereof
WO2023112982A1 (en) * 2021-12-17 2023-06-22 積水化学工業株式会社 Curable resin composition for electronic device
JP7468064B2 (en) 2020-03-30 2024-04-16 Jnc株式会社 Cationically polymerizable composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4844245A (en) * 1971-10-11 1973-06-26
JPS49175B1 (en) * 1970-11-30 1974-01-05
JPS49126658A (en) * 1973-04-13 1974-12-04
JPS59147016A (en) * 1983-02-07 1984-08-23 ユニオン,カ−バイド,コ−ポレ−シヨン Mixture of epoxy containing organic substance
JPH041185A (en) * 1990-04-19 1992-01-06 Nippon Oil Co Ltd Production of diepoxy compound
JP2015209464A (en) * 2014-04-25 2015-11-24 日本化薬株式会社 (meth)acrylate compound and resin composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4003935A (en) * 1971-10-11 1977-01-18 Firmenich S.A. 7-Methyl-octahydro-1,4-methano-naphthalen-6-one
JP2001310938A (en) * 2000-04-28 2001-11-06 Showa Denko Kk Polymerizable composition, its cured product and production method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49175B1 (en) * 1970-11-30 1974-01-05
JPS4844245A (en) * 1971-10-11 1973-06-26
JPS49126658A (en) * 1973-04-13 1974-12-04
JPS59147016A (en) * 1983-02-07 1984-08-23 ユニオン,カ−バイド,コ−ポレ−シヨン Mixture of epoxy containing organic substance
JPH041185A (en) * 1990-04-19 1992-01-06 Nippon Oil Co Ltd Production of diepoxy compound
JP2015209464A (en) * 2014-04-25 2015-11-24 日本化薬株式会社 (meth)acrylate compound and resin composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018145430A (en) * 2017-03-08 2018-09-20 パナソニックIpマネジメント株式会社 Ultraviolet-curable resin composition, method of manufacturing organic el light-emitting device, and organic el light-emitting device
JP7029696B2 (en) 2017-03-08 2022-03-04 パナソニックIpマネジメント株式会社 Ultraviolet curable resin composition, manufacturing method of organic EL light emitting device and organic EL light emitting device
WO2020209241A1 (en) 2019-04-09 2020-10-15 Jxtgエネルギー株式会社 Curable composition and cured product of same
WO2021112062A1 (en) 2019-12-02 2021-06-10 Eneos株式会社 Alicyclic acrylate compound, alicyclic epoxy acrylate compound, curable composition, and cured article
JP7468064B2 (en) 2020-03-30 2024-04-16 Jnc株式会社 Cationically polymerizable composition
WO2022163795A1 (en) * 2021-01-29 2022-08-04 Eneos株式会社 Curable composition, and cured product thereof
WO2023100828A1 (en) * 2021-11-30 2023-06-08 Eneos株式会社 Curable composition and cured product thereof
WO2023112982A1 (en) * 2021-12-17 2023-06-22 積水化学工業株式会社 Curable resin composition for electronic device

Also Published As

Publication number Publication date
KR102344209B1 (en) 2021-12-27
KR20180126462A (en) 2018-11-27

Similar Documents

Publication Publication Date Title
WO2017164238A1 (en) Curable composition and cured object obtained by curing same
WO2017159637A1 (en) Epoxy compound, curable composition, cured product, method for producing epoxy compound, and reactive diluent
US10464943B2 (en) Epoxy compound, curable composition containing the same, and cured product obtained by curing curable composition
TWI730065B (en) Epoxy compound, curable composition, hardened product, epoxy compound manufacturing method and reactive diluent
JP6644659B2 (en) Epoxy compound, curable composition, cured product, method for producing epoxy compound, and reactive diluent
CN109312056B (en) Epoxy compound, curable composition containing same, and cured product obtained by curing curable composition
JP6921627B2 (en) Epoxy compounds, curable compositions containing them, and cured products obtained by curing curable compositions.
JP2020180295A (en) Epoxy compound, curable composition containing the same and cured product obtained by curing curable composition
JP2020083954A (en) Diepoxy compound, curable composition containing the same, and cured product obtained by curing curable composition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187024749

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017766636

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017766636

Country of ref document: EP

Effective date: 20181015

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766636

Country of ref document: EP

Kind code of ref document: A1