WO2017159435A1 - Three-phase ac power source apparatus - Google Patents

Three-phase ac power source apparatus Download PDF

Info

Publication number
WO2017159435A1
WO2017159435A1 PCT/JP2017/008868 JP2017008868W WO2017159435A1 WO 2017159435 A1 WO2017159435 A1 WO 2017159435A1 JP 2017008868 W JP2017008868 W JP 2017008868W WO 2017159435 A1 WO2017159435 A1 WO 2017159435A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
current
distribution line
load
series circuit
Prior art date
Application number
PCT/JP2017/008868
Other languages
French (fr)
Japanese (ja)
Inventor
三野 和明
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2017159435A1 publication Critical patent/WO2017159435A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output

Definitions

  • the present invention relates to a three-phase AC power supply device including a three-phase AC generator.
  • Patent Document 1 in a configuration in which a single-phase load is connected to each phase of a three-phase AC power supply, an inverter circuit is provided to supply a current from a phase with a small load current to a phase with a large load current. Is disclosed. This patent document 1 makes it possible to balance the current flowing in each phase by reducing the unbalance of the phase current of the three-phase current.
  • Patent Document 1 since the inverter circuit is always driven to constantly balance the phase current, power consumption by the inverter circuit is large, and heat generation of the inverter circuit is large, so heat dissipation is considered. There is a need. Therefore, when a heat dissipation mechanism is provided, there is a problem that the apparatus becomes large.
  • an object of the present invention is to provide a three-phase AC power supply apparatus that can be reduced in size by reducing power consumption and suppressing heat generation.
  • the three-phase alternating current power supply device is a three-phase alternating current in which a first load is connected to the first phase distribution line, a second load is connected to the second phase distribution line, and a third load is connected to the third phase distribution line.
  • Supply current excess determining means for determining whether any of the current exceeds the rated current, the distribution line of the phase through which the supply current determined by the supply current excess determining means exceeds the rated current, and the other two-phase Current supply means for forming a current path between at least one of the distribution lines.
  • At least one of the distribution line of the phase (hereinafter sometimes referred to as “one distribution line”) through which the supply current determined by the supply current excess determination means exceeds the rated current and the other two-phase distribution lines is provided.
  • a current path By configuring a current path with one, a part of the current flowing in one of the connected distribution lines is supplied to the other, or conversely, a part of the current is supplied from the other.
  • the part which exceeds a rated current among the electric currents which flow through one distribution line can be supplemented with the electric current which flows into the distribution line of another phase.
  • the three-phase AC generator does not need to be driven so that a current exceeding the rated current is output, and fuel consumption can be suppressed.
  • the control by the current supply means is performed after exceeding the rated current, the power consumption can be suppressed as compared with the case where the control is always performed, and as a result, the fuel consumption can be suppressed.
  • the control since the control is not always performed, heat generation of the control unit can be suppressed.
  • the current supply means includes a plurality of switching elements connected in series, a connection point of the first series circuit connected to the first phase distribution line, a connection point of the plurality of switching elements of the first series circuit, A first choke coil provided between the first phase distribution line and a plurality of switching elements are connected in series, and a connection point of the first choke coil is connected to the second phase distribution line, and the second series A second choke coil provided between a connection point of the plurality of switching elements of the circuit and the second phase distribution line and a plurality of switching elements are connected in series, and the connection point is connected to the third phase distribution line.
  • a third choke coil provided between the third series circuit to be connected, a connection point of the plurality of switching elements of the third series circuit, and the third phase distribution line, the first series circuit, the first 2 Control means for controlling switching of each switching element of the column circuit and the third series circuit, and the first series circuit, the second series circuit, and the third series circuit may be connected in parallel. .
  • Switching elements of each of the first series circuit, the second series circuit, and the third series circuit are provided in a common heat sink, and the control means is a switching element connected to a phase in which a supply current exceeding a rated current flows.
  • the switching control may be performed on the switching element provided at the most thermally separated position.
  • heat concentration can be suppressed, the failure rate of switching elements can be reduced, the service life can be extended, and the cooling parts such as heat sinks and fans can be downsized.
  • the switching elements of the first series circuit, the second series circuit, and the third series circuit are provided at equal intervals on a common heat sink, and the control means is connected to the other two-phase distribution line. Each switching element may be subjected to switching control.
  • This configuration can prevent the heat generated by the switching element from being concentrated locally.
  • the control means may alternately control switching between a switching element connected to one of the other two-phase distribution lines and a switching element connected to the other of the other two-phase distribution lines.
  • This configuration can prevent the heat generated by the switching element from being concentrated locally.
  • the current supply means performs control after the rated current is exceeded, the inverter circuit is not always driven. Therefore, power consumption can be suppressed. Further, heat generation of the inverter circuit can be suppressed. Therefore, the heat dissipation mechanism can be reduced, which can contribute to the downsizing of the device.
  • FIG. 1 is a diagram illustrating a three-phase AC power supply apparatus according to the first embodiment.
  • FIG. 2 is a circuit diagram of the three-phase AC power supply device.
  • FIG. 3 is a diagram illustrating a waveform of a load current and a waveform of a current equal to or lower than the rated current per phase.
  • FIG. 4 is a diagram showing a current path of the three-phase AC power supply device at timing (I) in FIG.
  • FIG. 5 is a diagram illustrating a current path of the three-phase AC power supply device at timing (II) in FIG.
  • FIG. 6 is a diagram showing the current value of each phase of the generator that changes with time.
  • FIG. 7 is a diagram illustrating a structure of a three-phase AC power supply device.
  • FIG. 1 is a diagram illustrating a three-phase AC power supply apparatus according to the first embodiment.
  • FIG. 2 is a circuit diagram of the three-phase AC power supply device.
  • FIG. 3 is a diagram
  • FIG. 8 is a flowchart of processing executed by the control unit.
  • FIG. 9 is a diagram illustrating a current path of the three-phase AC power supply device.
  • FIG. 10 is a diagram showing the current value (amplitude value) of each phase of the generator that changes with time.
  • FIG. 11 is a diagram showing the current value (amplitude value) of each phase of the generator that changes with time.
  • FIG. 1 is a diagram showing a three-phase AC power supply device 1 according to the present embodiment.
  • the three-phase AC power supply 1 generates power using a heat engine generator and supplies it to each power consumer.
  • Loads 11, 12, and 13 illustrated in FIG. 1 are electric power consumers and the like to which electric power is supplied from the three-phase AC power supply device 1.
  • the three-phase AC power supply device 1 includes a diesel engine 2, a generator (motor generator) 3 connected to the diesel engine 2 via a shaft mechanism 2A, current detection circuits 4A, 4B, 4C, and a load current supply circuit 5.
  • the control unit 6 is provided.
  • the generator 3 is an example of the “three-phase AC generator” according to the present invention.
  • the generator 3 is a three-phase AC generator using a diesel engine 2 as a drive source.
  • the drive source of the generator 3 may be a gasoline engine, a gas turbine engine, or the like.
  • Loads 11, 12, and 13 are connected to distribution lines of each phase (R phase, T phase, and S phase) of the generator 3.
  • a load 11 is connected to the R-phase distribution line of the generator 3.
  • a load 12 is connected to the T-phase distribution line of the generator 3.
  • a load 13 is connected to the S-phase distribution line of the generator 3.
  • the R-phase distribution line is an example of the “first-phase distribution line” according to the present invention.
  • the T-phase distribution line is an example of the “second phase distribution line” according to the present invention.
  • the S-phase distribution line is an example of the “third-phase distribution line” according to the present invention.
  • the load 11 is an example of the “first load” according to the present invention.
  • the load 12 is an example of a “second load” according to the present invention.
  • the load 13 is an example of a “third load” according to the present invention.
  • the current detection circuits 4 ⁇ / b> A, 4 ⁇ / b> B, and 4 ⁇ / b> C are provided on the R-phase, T-phase, and S-phase distribution lines of the generator 3.
  • the current detection circuits 4 ⁇ / b> A, 4 ⁇ / b> B, and 4 ⁇ / b> C have a current transformer, for example, and detect currents flowing through the distribution lines of each phase of the generator 3.
  • the current flowing through the distribution lines of each phase is supplied to the loads 11, 12, and 13.
  • load currents supplied to the loads 11, 12, and 13 are represented by I R , I T , and I S , respectively.
  • Load current I R, I T, I S varies depending on the severity (power consumption of each electric power consumer) of each load 11, 12 and 13.
  • the current detection circuits 4A, 4B, and 4C are examples of the “supply current detection unit” according to the present invention.
  • the currents detected by the current detection circuits 4A, 4B, and 4C are the load currents I R , I T , I S.
  • the load current supply circuit 5 is connected to each of the R-phase, S-phase, and T-phase distribution lines, and constitutes a current path between the one-phase distribution line and the other-phase distribution lines. And a part of electric current which flows into the distribution line of one phase is supplied to the distribution line of another phase. A specific configuration of the load current supply circuit 5 will be described later.
  • the load current supply circuit 5 is an example of the “current supply unit” according to the present invention.
  • the control unit 6 includes a microcomputer or the like, and determines whether there is a current exceeding the rated current per phase of the generator 3 among the currents of the respective phases detected by the current detection circuits 4A, 4B, and 4C. .
  • the control unit 6 seems to form a current path between the distribution line of the phase through which the current flows and the distribution line of the other phase.
  • the load current supply circuit 5 is controlled. As a result, of the current flowing through one distribution line, the portion exceeding the rated current per phase is supplemented by the current flowing through the distribution line of the other phase.
  • the diesel engine 2 drives the generator 3 in accordance with the largest load, and the fuel consumption is not substantially changed until the current output from the generator 3 reaches the rated current per phase.
  • the generator 3 is driven in a state where the current output from the generator 3 exceeds the rated current per phase, the windings of the phase in which the rated current per phase of the generator 3 exceeds the temperature are high. As a result, the generator burns out or stops due to the operation of the temperature protection circuit.
  • the load current I R, I T, among the I S, more than the rated current per phase minute by so compensated by the current flowing through the distribution line of the other phase, the load current Even if I R , I T , and I S exceed the rated current per phase, the current output from the generator 3 can be suppressed. For this reason, the diesel engine 2 does not need to drive the generator 3 so that a current exceeding the rated current per phase is output, and the operation continues without stopping the power generation or damaging the generator. Can be made.
  • the control unit 6 is an example of “supply current excess determination means”, “current supply means”, and “control means” according to the present invention.
  • FIG. 2 is a circuit diagram of the three-phase AC power supply device 1.
  • the load current supply circuit 5 includes a series circuit of switching elements Q1 and Q2, a series circuit of switching elements Q3 and Q4, a series circuit of switching elements Q5 and Q6, and a capacitor C1.
  • the series circuit of the switching elements Q1 and Q2 is an example of the “first series circuit” according to the present invention.
  • the series circuit of the switching elements Q3 and Q4 is an example of the “second series circuit” according to the present invention.
  • the series circuit of the switching elements Q5 and Q6 is an example of the “third series circuit” according to the present invention.
  • each series circuit includes two switching elements, but the present invention is not limited to only two switching elements.
  • two switching elements connected in series on the high side may be arranged, and two switching elements connected in series on the low side may be arranged, and each series circuit may be configured by a total of four switching elements.
  • two switching elements connected in parallel on the high side may be arranged with two switching elements connected in parallel on the low side.
  • the switching elements Q1 to Q6 are MOSFETs or IGBTs, and their control terminals (gates) are connected to the control unit 6.
  • the switching elements Q1 to Q6 are turned on and off when a control signal is input to the control terminal from the control unit 6.
  • connection point of the switching elements Q1, Q2 is connected to the R-phase distribution line of the generator 3 via the choke coil L1.
  • a connection point between the switching elements Q3 and Q4 is connected to a T-phase distribution line of the generator 3 through a choke coil L2.
  • the connection point of the switching elements Q5 and Q6 is connected to the S-phase distribution line of the generator 3 via the choke coil L3.
  • the choke coil L1 is an example of the “first choke coil” according to the present invention.
  • the choke coil L2 is an example of the “second choke coil” according to the present invention.
  • the choke coil L3 is an example of the “third choke coil” according to the present invention.
  • the control unit 6 is connected to the gates of the switching elements Q1 to Q6.
  • the control unit 6 outputs a gate signal to the switching elements Q1 to Q6 based on the current detected by the current detection circuits 4A, 4B, and 4C, and performs switching control of the switching elements Q1 to Q6.
  • the control unit 6 determines whether there is a current exceeding the rated current per phase of the generator 3 among the currents detected by the current detection circuits 4A, 4B, and 4C.
  • the load 11 is heavy load
  • the load 12 is a light load
  • the load currents I R supplied to the load 11 exceeds a rated current per phase of the generator 3 described To do.
  • the three-phase AC power supply device 1 turns on and off each switching element of the load current supply circuit 5 so that a current path is configured between the R-phase distribution line and the T-phase distribution line. Then, the load current I minute exceeding the rated current per phase of R, compensates for some of the current flowing in the distribution line of the T-phase, rated current per phase current output from the R-phase of the generator 3 Make sure that: As a result, the generator 3 can be driven so as not to exceed the rated current per phase, and as a result, a generator with a small rated capacity can be applied, so that deterioration in fuel consumption of the diesel engine 2 can be suppressed.
  • the current of each phase of the generator 3 below the rated current per phase is represented by I R1 , I S1 , and IT 1 , respectively.
  • the load current I R is a diagram showing the waveform of I S, the waveform of I T, the current below the rated current per phase I R1, I S1, I T1 .
  • FIG. 4 is a diagram illustrating a current path of the three-phase AC power supply device 1 at the timing (I) in FIG.
  • FIG. 5 is a diagram illustrating a current path of the three-phase AC power supply device 1 at the timing (II) in FIG.
  • the waveform of the current I R1, I S1, I T1 of FIG. 3 shows a current waveform when the three-phase alternating current from the generator 3 and equilibrated.
  • the three-phase currents output from the generator 3 at equilibrium have the same amplitude and a phase difference of 120 °.
  • no current is supplied from the other phase distribution line to the S phase distribution line, and the current flowing through the S phase distribution line is not supplied to the other phase distribution line.
  • the current I S1 input / output to / from the S phase of the machine 3 is always the same as the load current I S to the load 13.
  • the load current I R is positive, the load current I T is negative, the load current I S is zero.
  • the load current I R supplied to the load 11 flows to distribution line of the load 12 through the T-phase.
  • the control unit 6 turns on the switching elements Q2, Q3 of the load current supply circuit 5.
  • the R-phase distribution line and the T-phase distribution line are connected via the choke coils L1 and L2.
  • a portion of the load current I T flowing through the distribution line of the T-phase (the current I T2) is a choke coil L2, switching element Q3, capacitor C1, switching element Q2, the choke It flows in the order of the coil L1, and is supplied to the R-phase distribution line.
  • the load current I R is negative, the load current I T is positive, the load current I S is zero. That is, the timing (I) shown in FIG. 3 and the polarity of the current are opposite.
  • the load current I R is negative, the load current I T is zero, the load current I S is positive.
  • the load current I S to be supplied to the load 13, through the load 11 to the distribution lines as R phase.
  • the control unit 6 turns on the switching elements Q1, Q4 of the load current supply circuit 5.
  • the R-phase distribution line and the T-phase distribution line are connected via the choke coils L1 and L2. As indicated by arrows in FIG.
  • a portion of the load current I R flowing through the distribution line of the R-phase (the current I R2) is a choke coil L1, switching elements Q1, capacitor C1, switching element Q4, a choke It flows in the order of the coil L2, and is supplied to the T-phase distribution line.
  • the load current I R is positive, the load current I T is zero, the load current I S is negative. That is, the timing (II) shown in FIG. 3 and the polarity of the current are opposite.
  • a part of the current flowing through the T-phase distribution line flows in the order of the choke coil L2, the switching element Q4, the capacitor C1, the switching element Q1, and the choke coil L1, contrary to the arrow in FIG. Supplied to the electric wire.
  • the arbitrary timing is extracted and described. However, at any timing, the load current exceeding the rated current per phase is allocated to the other phases.
  • the AC current output from the generator 3 can be compensated with a part of the current flowing through the electric wire so that it is equal to or lower than the rated current per phase.
  • FIG. 6 is a diagram showing the current value (amplitude value) of each phase of the generator 3 that changes with time.
  • the control unit 6 drives the load current supply circuit 5 as described above.
  • the current is interchanged between the R-phase distribution line and the T-phase distribution line.
  • the output current from the R phase of the generator 3 decreases to the rated current per phase.
  • the output current from the T phase of the generator 3 increases after the control delay time B has elapsed.
  • the control unit 6 loads the load current according to the timing.
  • the currents I R1 , I S1 , and IT 1 for each phase of the generator 3 can be suppressed below the rated current per phase.
  • the current I R1 , I S1 and IT 1 can be balanced three-phase alternating current.
  • the output current from each phase of the generator 3 can be suppressed below the rated current per phase of the generator 3, and the fuel consumption reduction of the diesel engine 2 can be suppressed. Further, since the load current supply circuit 5 is driven only when the load current exceeds the rated current per phase of the generator 3, the load current supply circuit 5 is compared with the case where the load current supply circuit 5 is always driven. Power consumption can be suppressed.
  • the load current I R is greater than the rated current per phase
  • a distribution line of the distribution line and T-phase of the R-phase but are connected via a choke coil L1, L2, R
  • the phase distribution line and the S phase distribution line may be connected via choke coils L1 and L3.
  • FIG. 7 is a diagram showing the structure of the three-phase AC power supply device 1.
  • elements including choke coils L1, L2, L3, switching elements Q1 to Q6, and the like are mounted on the substrate 20.
  • the switching elements Q1 to Q6 are attached to a common heat sink 21 provided on the substrate 20.
  • the switching elements Q1 to Q6 are connected to the heat sink 21 and arranged at substantially equal intervals.
  • the control unit 6 when the load current I R is greater than the rated current per phase, the control unit 6, the switching of the switching element Q1, thermally distant switching element Q3 from Q2, Q4 connected to the distribution line of the R-phase Control.
  • the heat generation is large and heat concentration is likely to occur.
  • the heat source can be dispersed and the thermal stress on the switching element is reduced. Can be lowered.
  • the failure rate of the switching element can be reduced and the life can be extended.
  • it is possible to configure without using a fan it is possible to extend the service life.
  • control unit 6 When switching elements Q5 and Q6 have a structure provided at a position thermally distant from switching elements Q1 and Q2, control unit 6 performs switching control of switching elements Q5 and Q6 so that an R-phase distribution line and What is necessary is just to make it a current path be comprised between the distribution lines of S phase.
  • FIG. 8 is a flowchart of processing executed by the control unit 6.
  • the control unit 6 acquires the current detected by the current detection circuits 4A, 4B, 4C (S1). The control unit 6 determines whether any of the detected currents exceeds the rated current per phase (S2). When exceeding (S2: YES), the control unit 6 controls the load current supply circuit 5 to connect the distribution line of the phase in which the load current exceeding the rated current per phase flows and the distribution line of the other phase. (S3).
  • the control unit 6 determines whether or not the current detected by the current detection circuits 4A, 4B, and 4C is equal to or lower than the rated current per phase (S4).
  • the control unit 6 continues to drive the load current supply circuit 5.
  • the control unit 6 stops driving the load current supply circuit 5 (S5).
  • Embodiment 2 The present embodiment is different from the first embodiment in that both the distribution line of the phase in which the load current exceeding the rated current per phase flows and the other two-phase distribution lines are connected via the choke coil. .
  • FIG. 9 is a diagram illustrating a current path of the three-phase AC power supply device 1.
  • the load 13 is a heavy load, shows an example in which the load current I S is greater than the rated current per phase.
  • I S the load current
  • FIG. 9 it is assumed that the current flows in the direction from the generator 3 to the loads 11, 12, and 13.
  • Load current I R is positive is I T, at the timing the load current I S is negative, the load current I R, I T flows through the load 13 to the distribution line of the street S phase.
  • control unit 6 turns on switching elements Q2, Q3, and Q5.
  • the R-phase distribution line and the S-phase distribution line are connected via the choke coils L1, L3, and the T-phase distribution line and the S-phase distribution line are connected via the choke coils L2, L3.
  • Is done. 9 a part of the current I R1 output from the R phase of the generator 3 (referred to as current I R2 ) is a choke coil L1, a switching element Q2, a capacitor C1, and a switching element Q5.
  • the choke coil L3 flows in this order and is supplied to the S-phase distribution line. That is,
  • the total current of the current I R2 from the R-phase distribution line and the current I T2 from the T-phase distribution line is input to the S-phase distribution line. Considering the direction of current (positive or negative), it can be expressed by
  • FIG. 10 is a diagram showing the current value (amplitude value) of each phase of the generator 3 that changes with time.
  • the control unit 6 drives the load current supply circuit 5 as described above, Current is interchanged between the S-phase distribution line and the R and T-phase distribution lines.
  • the output current from the S phase of the generator 3 decreases to the rated current per phase.
  • the output current from the R and T phases of the generator 3 increases after the control delay time D has elapsed.
  • the increase in the output current from the T phase is substantially the same as the increase in the output current from the R phase.
  • each of the generators 3 is similar to the first embodiment.
  • the currents I R1 , I S1 , and IT 1 for the phases can be suppressed to be equal to or lower than the rated current per phase. As a result, the diesel engine 2 can be continuously operated safely.
  • the switching elements Q5 and Q6 connected to the S-phase distribution line, the switching elements Q1 and Q2, and the switching elements Q3 and Q4 Is approximately the same distance thermally. For this reason, by controlling the switching of each of the switching elements Q1 and Q2 and the switching elements Q3 and Q4, it is possible to suppress the heat concentration as compared with the case where only one of them is controlled. By suppressing the heat concentration, the failure rate of the switching element can be reduced and the life can be extended.
  • the load current supply circuit 5 is driven only when the load current exceeds the rated current per phase of the generator 3, the load current supply circuit 5 is compared with the case where the load current supply circuit 5 is always driven. Can be suppressed.
  • the S-phase distribution line and the R and T-phase distribution lines are connected simultaneously, but the R and T-phase distribution lines are alternately connected to the S-phase distribution line. You may make it do.
  • the period for supplying current by turning on the switching elements Q2 and Q5 and the period for supplying current by turning on the switching elements Q3 and Q5 are alternately repeated. That is, current supply from the R phase and current supply from the T phase are alternately performed (see FIG. 11).
  • a current twice as large as the current IR2 in the case of FIG. 9 flows from the R-phase distribution line to the S-phase distribution line, and from the T-phase distribution line to the S-phase distribution line in FIG.
  • the constant is set so that a current twice as large as the current IT2 flows.
  • FIG. 11 is a diagram showing the current value (amplitude value) of each phase of the generator 3 that changes with time.
  • the output current from the S-phase of the generator 3 is reduced to the rated current per phase.
  • the output current from the 3 R and T phases repeats increasing and decreasing alternately.
  • the currents I R1 , I S1 , and I T1 for each phase of the generator 3 are obtained. It can be suppressed below the rated current per phase. As a result, the diesel engine 2 can be continuously operated safely.
  • the three-phase AC power supply apparatus 1 is shown in FIG.
  • local heat concentration can be suppressed.
  • the failure rate of the switching element can be reduced and the life can be extended.
  • the current detection circuits 4A, 4B, and 4C are configured to detect supply currents to the first, second, and third loads.
  • a two-phase current is used. Can be obtained by calculation.
  • two supply currents are detected using the current detection circuits (4A, 4B), and the remaining one-phase supply current is determined as the current.
  • a method of calculating by the calculating means and detecting the supply current may be used.
  • the current detection circuits 4A and 4B and the current calculation unit described above are an example of the “supply current detection unit” according to the present invention.
  • a three-phase AC power source is generated using a generator powered by a heat engine such as a diesel engine, and a single-phase load is connected to each phase.
  • a heat engine such as a diesel engine
  • a single-phase load is connected to each phase.
  • the lead-in wire from the wire to the interior is three-phase, and it is not converted into single-phase alternating current in the house, and each phase has a single-phase load. May be connected.
  • current imbalance occurs, a large current exceeding the rating flows in a part of the lead-in wire, and the electric wire may generate heat and the insulating coating of the electric wire may be deteriorated.
  • the present invention is applied, the deterioration can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

A three-phase AC power source apparatus (1) detects currents flowing through power distribution lines at the respective phases of a generator (3), and determines whether or not any one of the detected currents exceeds a rated current. The three-phase AC power source apparatus (1) controls switching of the respective switching elements (Q1-Q6) of a load current supply circuit (5) so as to form a current path passing through choke coils (L1, L2, L3) between a power distribution line of the phase in which the current determined to exceed the rated current flows and at least one of the power distribution lines of the other two phases.

Description

三相交流電源装置Three-phase AC power supply
 本発明は、三相交流発電機を備えた三相交流電源装置に関する。 The present invention relates to a three-phase AC power supply device including a three-phase AC generator.
 特許文献1には、三相交流電源の各相に単相負荷が接続された構成において、インバータ回路を設けて、負荷電流が小さい相からの電流を負荷電流が大きい相へ供給する平衡化装置が開示されている。この特許文献1は、三相電流の相電流の不平衡を小さくして、各相に流れる電流の平衡化を可能としている。 In Patent Document 1, in a configuration in which a single-phase load is connected to each phase of a three-phase AC power supply, an inverter circuit is provided to supply a current from a phase with a small load current to a phase with a large load current. Is disclosed. This patent document 1 makes it possible to balance the current flowing in each phase by reducing the unbalance of the phase current of the three-phase current.
実開平2-125548号公報Japanese Utility Model Publication No. 2-125548
 しかしながら、特許文献1では、インバータ回路を常時駆動して、常時相電流の平衡化を行っているため、インバータ回路による消費電力が大きく、また、インバータ回路の発熱が大きくなるため、放熱を考慮する必要がある。そのために放熱機構を設けると、機器が大型化するといった課題もある。 However, in Patent Document 1, since the inverter circuit is always driven to constantly balance the phase current, power consumption by the inverter circuit is large, and heat generation of the inverter circuit is large, so heat dissipation is considered. There is a need. Therefore, when a heat dissipation mechanism is provided, there is a problem that the apparatus becomes large.
 そこで、本発明の目的は、消費電力を低減し、発熱を抑えることで小型化可能な三相交流電源装置を提供することにある。 Therefore, an object of the present invention is to provide a three-phase AC power supply apparatus that can be reduced in size by reducing power consumption and suppressing heat generation.
 本発明に係る三相交流電源装置は、第1相配電線に第1負荷が接続され、第2相配電線に第2負荷が接続され、第3相配電線に第3負荷が接続される三相交流発電機と、前記三相交流発電機から前記第1負荷、前記第2負荷及び前記第3負荷それぞれへの供給電流を検出する供給電流検出手段と、前記供給電流検出手段が検出する供給電流の何れかが、定格電流を超えたか否かを判定する供給電流超過判定手段と、前記供給電流超過判定手段が定格電流を超えたと判定した供給電流が流れる相の配電線と、他の二相の配電線の少なくとも一方との間に電流経路を構成する電流供給手段と、を備えることを特徴とする。 The three-phase alternating current power supply device according to the present invention is a three-phase alternating current in which a first load is connected to the first phase distribution line, a second load is connected to the second phase distribution line, and a third load is connected to the third phase distribution line. A generator, supply current detection means for detecting a supply current from the three-phase AC generator to the first load, the second load, and the third load, and a supply current detected by the supply current detection means Supply current excess determining means for determining whether any of the current exceeds the rated current, the distribution line of the phase through which the supply current determined by the supply current excess determining means exceeds the rated current, and the other two-phase Current supply means for forming a current path between at least one of the distribution lines.
 この構成では、供給電流超過判定手段が定格電流を超えたと判定した供給電流が流れる相の配電線(以下「一の配電線」ということがある。)と、他の二相の配電線の少なくとも一方との間に電流経路が構成されることで、接続される配電線の一方に流れる電流の一部が他方へ供給され、又はその逆に電流の一部が他方から供給される。これにより、一の配電線に流れる電流のうち定格電流を超える分を、他の相の配電線に流れる電流で補うことができる。その結果、三相交流発電機は、定格電流を超える電流が出力されるように駆動する必要がなく、燃費を抑えることができる。また、定格電流を超えてから、電流供給手段による制御を行うため、常時制御を行う場合と比べて、消費電力を抑えることができ、結果、燃費を抑えることができる。また、常時制御を行わないため、制御部の発熱を抑えることができる。 In this configuration, at least one of the distribution line of the phase (hereinafter sometimes referred to as “one distribution line”) through which the supply current determined by the supply current excess determination means exceeds the rated current and the other two-phase distribution lines is provided. By configuring a current path with one, a part of the current flowing in one of the connected distribution lines is supplied to the other, or conversely, a part of the current is supplied from the other. Thereby, the part which exceeds a rated current among the electric currents which flow through one distribution line can be supplemented with the electric current which flows into the distribution line of another phase. As a result, the three-phase AC generator does not need to be driven so that a current exceeding the rated current is output, and fuel consumption can be suppressed. Further, since the control by the current supply means is performed after exceeding the rated current, the power consumption can be suppressed as compared with the case where the control is always performed, and as a result, the fuel consumption can be suppressed. In addition, since the control is not always performed, heat generation of the control unit can be suppressed.
 前記電流供給手段は、複数のスイッチング素子が直列接続され、その接続点が前記第1相配電線に接続される第1直列回路と、前記第1直列回路の前記複数のスイッチング素子の接続点と、前記第1相配電線との間に設けられた第1チョークコイルと、複数のスイッチング素子が直列接続され、その接続点が前記第2相配電線に接続される第2直列回路と、前記第2直列回路の前記複数のスイッチング素子の接続点と、前記第2相配電線との間に設けられた第2チョークコイルと、複数のスイッチング素子が直列接続され、その接続点が前記第3相配電線に接続される第3直列回路と、前記第3直列回路の前記複数のスイッチング素子の接続点と、前記第3相配電線との間に設けられた第3チョークコイルと、前記第1直列回路、前記第2直列回路及び前記第3直列回路それぞれのスイッチング素子をスイッチング制御する制御手段と、を備え、前記第1直列回路、前記第2直列回路及び前記第3直列回路は並列接続されている、構成でもよい。 The current supply means includes a plurality of switching elements connected in series, a connection point of the first series circuit connected to the first phase distribution line, a connection point of the plurality of switching elements of the first series circuit, A first choke coil provided between the first phase distribution line and a plurality of switching elements are connected in series, and a connection point of the first choke coil is connected to the second phase distribution line, and the second series A second choke coil provided between a connection point of the plurality of switching elements of the circuit and the second phase distribution line and a plurality of switching elements are connected in series, and the connection point is connected to the third phase distribution line. A third choke coil provided between the third series circuit to be connected, a connection point of the plurality of switching elements of the third series circuit, and the third phase distribution line, the first series circuit, the first 2 Control means for controlling switching of each switching element of the column circuit and the third series circuit, and the first series circuit, the second series circuit, and the third series circuit may be connected in parallel. .
 この構成では、定格電流を超えてから、スイッチング素子のスイッチング制御を行うため、常時スイッチング素子をスイッチングする場合と比べて、消費電力を抑えることができる。 In this configuration, since switching control of the switching element is performed after the rated current is exceeded, power consumption can be suppressed as compared with the case where the switching element is constantly switched.
 前記第1直列回路、前記第2直列回路及び前記第3直列回路それぞれのスイッチング素子は、共通のヒートシンクに設けられ、前記制御手段は、定格電流を超える供給電流が流れる相に接続されるスイッチング素子から、熱的に最も離れた位置に設けられるスイッチング素子をスイッチング制御する、構成でもよい。 Switching elements of each of the first series circuit, the second series circuit, and the third series circuit are provided in a common heat sink, and the control means is a switching element connected to a phase in which a supply current exceeding a rated current flows. In other words, the switching control may be performed on the switching element provided at the most thermally separated position.
 この構成では、熱集中を抑えることができ、スイッチング素子の故障率の低減、長寿命化、ヒートシンクやファンなどの冷却部品の小型化を実現できる。 In this configuration, heat concentration can be suppressed, the failure rate of switching elements can be reduced, the service life can be extended, and the cooling parts such as heat sinks and fans can be downsized.
 前記第1直列回路、前記第2直列回路及び前記第3直列回路それぞれのスイッチング素子は、共通のヒートシンクに等間隔で設けられ、前記制御手段は、前記他の二相の配電線に接続されるスイッチング素子をそれぞれスイッチング制御してもよい。 The switching elements of the first series circuit, the second series circuit, and the third series circuit are provided at equal intervals on a common heat sink, and the control means is connected to the other two-phase distribution line. Each switching element may be subjected to switching control.
 この構成では、スイッチング素子の発熱が局所的に集中しないようにできる。 This configuration can prevent the heat generated by the switching element from being concentrated locally.
 前記制御手段は、前記他の二相の配電線の一方に接続されるスイッチング素子と、前記他の二相の配電線の他方に接続されるスイッチング素子とを交互にスイッチング制御してもよい。 The control means may alternately control switching between a switching element connected to one of the other two-phase distribution lines and a switching element connected to the other of the other two-phase distribution lines.
 この構成では、スイッチング素子の発熱が局所的に集中しないようにできる。 This configuration can prevent the heat generated by the switching element from being concentrated locally.
 本発明によれば、定格電流を超えてから、電流供給手段による制御を行うため、インバータ回路を常時駆動させない。従って、消費電力を抑えることができる。また、インバータ回路の発熱を抑えることもできる。よって、放熱機構を小さくすることもでき、機器の小型化に寄与することができる。 According to the present invention, since the current supply means performs control after the rated current is exceeded, the inverter circuit is not always driven. Therefore, power consumption can be suppressed. Further, heat generation of the inverter circuit can be suppressed. Therefore, the heat dissipation mechanism can be reduced, which can contribute to the downsizing of the device.
図1は、実施形態1に係る三相交流電源装置を示す図である。FIG. 1 is a diagram illustrating a three-phase AC power supply apparatus according to the first embodiment. 図2は、三相交流電源装置の回路図である。FIG. 2 is a circuit diagram of the three-phase AC power supply device. 図3は、負荷電流の波形と、1相あたりの定格電流以下の電流の波形とを示す図である。FIG. 3 is a diagram illustrating a waveform of a load current and a waveform of a current equal to or lower than the rated current per phase. 図4は、図3のタイミング(I)での三相交流電源装置の電流経路を示す図である。FIG. 4 is a diagram showing a current path of the three-phase AC power supply device at timing (I) in FIG. 図5は、図3のタイミング(II)での三相交流電源装置の電流経路を示す図である。FIG. 5 is a diagram illustrating a current path of the three-phase AC power supply device at timing (II) in FIG. 図6は、時間経過に伴い変化する発電機の各相の電流値を示す図である。FIG. 6 is a diagram showing the current value of each phase of the generator that changes with time. 図7は、三相交流電源装置の構造を示す図である。FIG. 7 is a diagram illustrating a structure of a three-phase AC power supply device. 図8は、制御部が実行する処理のフローチャートである。FIG. 8 is a flowchart of processing executed by the control unit. 図9は、三相交流電源装置の電流経路を示す図である。FIG. 9 is a diagram illustrating a current path of the three-phase AC power supply device. 図10は、時間経過に伴い変化する発電機の各相の電流値(振幅値)を示す図である。FIG. 10 is a diagram showing the current value (amplitude value) of each phase of the generator that changes with time. 図11は、時間経過に伴い変化する発電機の各相の電流値(振幅値)を示す図である。FIG. 11 is a diagram showing the current value (amplitude value) of each phase of the generator that changes with time.
(実施形態1)
 図1は、本実施形態に係る三相交流電源装置1を示す図である。
(Embodiment 1)
FIG. 1 is a diagram showing a three-phase AC power supply device 1 according to the present embodiment.
 三相交流電源装置1は、熱機関発電機を利用して発電し、各電力需要家に供給する。図1に示す負荷11,12,13は、三相交流電源装置1から電力が供給される電力需要家等である。 The three-phase AC power supply 1 generates power using a heat engine generator and supplies it to each power consumer. Loads 11, 12, and 13 illustrated in FIG. 1 are electric power consumers and the like to which electric power is supplied from the three-phase AC power supply device 1.
 三相交流電源装置1は、ディーゼルエンジン2と、軸機構2Aを介してディーゼルエンジン2に接続する発電機(モータジェネレータ)3と、電流検出回路4A,4B,4Cと、負荷電流供給回路5と、制御部6とを備えている。発電機3は、本発明に係る「三相交流発電機」の一例である。 The three-phase AC power supply device 1 includes a diesel engine 2, a generator (motor generator) 3 connected to the diesel engine 2 via a shaft mechanism 2A, current detection circuits 4A, 4B, 4C, and a load current supply circuit 5. The control unit 6 is provided. The generator 3 is an example of the “three-phase AC generator” according to the present invention.
 発電機3はディーゼルエンジン2を駆動源とする三相交流発電機である。なお、発電機3の駆動源は、ディーゼルエンジン2以外に、ガソリンエンジン、ガスタービンエンジンなどであってもよい。発電機3の各相(R相、T相、S相)の配電線には負荷11,12,13が接続されている。発電機3のR相の配電線には負荷11が接続されている。発電機3のT相の配電線には負荷12が接続されている。発電機3のS相の配電線には負荷13が接続されている。 The generator 3 is a three-phase AC generator using a diesel engine 2 as a drive source. In addition to the diesel engine 2, the drive source of the generator 3 may be a gasoline engine, a gas turbine engine, or the like. Loads 11, 12, and 13 are connected to distribution lines of each phase (R phase, T phase, and S phase) of the generator 3. A load 11 is connected to the R-phase distribution line of the generator 3. A load 12 is connected to the T-phase distribution line of the generator 3. A load 13 is connected to the S-phase distribution line of the generator 3.
 R相の配電線は、本発明に係る「第1相配電線」の一例である。T相の配電線は、本発明に係る「第2相配電線」の一例である。S相の配電線は、本発明に係る「第3相配電線」の一例である。負荷11は、本発明に係る「第1負荷」の一例である。負荷12は、本発明に係る「第2負荷」の一例である。負荷13は、本発明に係る「第3負荷」の一例である。 The R-phase distribution line is an example of the “first-phase distribution line” according to the present invention. The T-phase distribution line is an example of the “second phase distribution line” according to the present invention. The S-phase distribution line is an example of the “third-phase distribution line” according to the present invention. The load 11 is an example of the “first load” according to the present invention. The load 12 is an example of a “second load” according to the present invention. The load 13 is an example of a “third load” according to the present invention.
 電流検出回路4A,4B,4Cは、発電機3のR相、T相、S相それぞれの配電線に設けられている。電流検出回路4A,4B,4Cは、例えばカレントトランスを有し、発電機3の各相の配電線を流れる電流を検出する。各相の配電線を流れる電流は、負荷11,12,13へ供給される。以下では、負荷11,12,13へ供給される負荷電流を、それぞれI,I,Iで表す。負荷電流I,I,Iは、各負荷11,12,13の軽重(各電力需要家の電力消費)に応じて変化する。電流検出回路4A,4B,4Cは、本発明に係る「供給電流検出手段」の一例である。なお、以下に説明する本実施形態の制御を行わない場合(負荷電流供給回路5を駆動しない場合)、電流検出回路4A,4B,4Cが検出する電流は、負荷電流I,I,Iである。 The current detection circuits 4 </ b> A, 4 </ b> B, and 4 </ b> C are provided on the R-phase, T-phase, and S-phase distribution lines of the generator 3. The current detection circuits 4 </ b> A, 4 </ b> B, and 4 </ b> C have a current transformer, for example, and detect currents flowing through the distribution lines of each phase of the generator 3. The current flowing through the distribution lines of each phase is supplied to the loads 11, 12, and 13. Hereinafter, load currents supplied to the loads 11, 12, and 13 are represented by I R , I T , and I S , respectively. Load current I R, I T, I S varies depending on the severity (power consumption of each electric power consumer) of each load 11, 12 and 13. The current detection circuits 4A, 4B, and 4C are examples of the “supply current detection unit” according to the present invention. When the control of the present embodiment described below is not performed (when the load current supply circuit 5 is not driven), the currents detected by the current detection circuits 4A, 4B, and 4C are the load currents I R , I T , I S.
 負荷電流供給回路5は、R相、S相、T相それぞれの配電線に接続されていて、一の相の配電線と他の相の配電線との間に電流経路を構成する。そして、一の相の配電線に流れる電流の一部を、他の相の配電線に供給する。負荷電流供給回路5の具体的な構成については後述する。負荷電流供給回路5は、本発明に係る「電流供給手段」の一例である。 The load current supply circuit 5 is connected to each of the R-phase, S-phase, and T-phase distribution lines, and constitutes a current path between the one-phase distribution line and the other-phase distribution lines. And a part of electric current which flows into the distribution line of one phase is supplied to the distribution line of another phase. A specific configuration of the load current supply circuit 5 will be described later. The load current supply circuit 5 is an example of the “current supply unit” according to the present invention.
 制御部6はマイコン等を有し、電流検出回路4A,4B,4Cが検出する各相の電流のうち、発電機3の1相あたりの定格電流を超えたものがあるか否かを判定する。発電機3の1相あたりの定格電流を超えた電流がある場合、制御部6は、その電流が流れる相の配電線と、他の相の配電線との間に電流経路が形成されるように、負荷電流供給回路5を制御する。その結果、一の配電線を流れる電流のうち、1相あたりの定格電流を超える分が、他の相の配電線を流れる電流により補われるようになる。 The control unit 6 includes a microcomputer or the like, and determines whether there is a current exceeding the rated current per phase of the generator 3 among the currents of the respective phases detected by the current detection circuits 4A, 4B, and 4C. . When there is a current exceeding the rated current per phase of the generator 3, the control unit 6 seems to form a current path between the distribution line of the phase through which the current flows and the distribution line of the other phase. In addition, the load current supply circuit 5 is controlled. As a result, of the current flowing through one distribution line, the portion exceeding the rated current per phase is supplemented by the current flowing through the distribution line of the other phase.
 ディーゼルエンジン2は、最も大きい負荷に合わせて発電機3を駆動し、発電機3から出力される電流が、1相あたりの定格電流となるまでは燃費は略変わらない。しかしながら、発電機3から出力される電流が、1相あたりの定格電流を超えた状態で発電機3を駆動すると、発電機3の1相あたりの定格電流が超えた相の巻線などが高温になり、発電機が焼損したり、温度保護回路の作動により停止したりしてしまう。そこで、前記のように、負荷電流I,I,Iのうち、1相あたりの定格電流を超える分を、他の相の配電線を流れる電流で補うようにすることで、負荷電流I,I,Iが1相あたりの定格電流を超えていても、発電機3から出力する電流は抑えられる。このため、ディーゼルエンジン2は、1相あたりの定格電流を超える電流が出力されるように発電機3を駆動する必要がなく、発電が停止したり、発電機が破損したりすることなく継続動作させることができる。 The diesel engine 2 drives the generator 3 in accordance with the largest load, and the fuel consumption is not substantially changed until the current output from the generator 3 reaches the rated current per phase. However, when the generator 3 is driven in a state where the current output from the generator 3 exceeds the rated current per phase, the windings of the phase in which the rated current per phase of the generator 3 exceeds the temperature are high. As a result, the generator burns out or stops due to the operation of the temperature protection circuit. Therefore, as described above, the load current I R, I T, among the I S, more than the rated current per phase minute, by so compensated by the current flowing through the distribution line of the other phase, the load current Even if I R , I T , and I S exceed the rated current per phase, the current output from the generator 3 can be suppressed. For this reason, the diesel engine 2 does not need to drive the generator 3 so that a current exceeding the rated current per phase is output, and the operation continues without stopping the power generation or damaging the generator. Can be made.
 制御部6は、本発明に係る「供給電流超過判定手段」、「電流供給手段」及び「制御手段」の一例である。 The control unit 6 is an example of “supply current excess determination means”, “current supply means”, and “control means” according to the present invention.
 図2は、三相交流電源装置1の回路図である。 FIG. 2 is a circuit diagram of the three-phase AC power supply device 1.
 負荷電流供給回路5は、スイッチング素子Q1,Q2の直列回路と、スイッチング素子Q3,Q4の直列回路と、スイッチング素子Q5,Q6の直列回路と、キャパシタC1とが並列接続されて構成されている。スイッチング素子Q1,Q2の直列回路は、本発明に係る「第1直列回路」の一例である。スイッチング素子Q3,Q4の直列回路は、本発明に係る「第2直列回路」の一例である。スイッチング素子Q5,Q6の直列回路は、本発明に係る「第3直列回路」の一例である。 The load current supply circuit 5 includes a series circuit of switching elements Q1 and Q2, a series circuit of switching elements Q3 and Q4, a series circuit of switching elements Q5 and Q6, and a capacitor C1. The series circuit of the switching elements Q1 and Q2 is an example of the “first series circuit” according to the present invention. The series circuit of the switching elements Q3 and Q4 is an example of the “second series circuit” according to the present invention. The series circuit of the switching elements Q5 and Q6 is an example of the “third series circuit” according to the present invention.
 なお、本実施形態では、各直列回路はそれぞれ二つのスイッチング素子からなっているが、本発明は、二つのスイッチング素子のみに限定されない。たとえば、ハイサイド側に直列に接続された二つのスイッチング素子が、ローサイド側に直列に接続された二つのスイッチング素子が配置され、計4つのスイッチング素子により、各直列回路が構成されていてもよい。また、ハイサイド側に並列に接続された二つのスイッチング素子が、ローサイド側に並列に接続された二つのスイッチング素子が配置される構成でも構わない。 In the present embodiment, each series circuit includes two switching elements, but the present invention is not limited to only two switching elements. For example, two switching elements connected in series on the high side may be arranged, and two switching elements connected in series on the low side may be arranged, and each series circuit may be configured by a total of four switching elements. . Further, two switching elements connected in parallel on the high side may be arranged with two switching elements connected in parallel on the low side.
 スイッチング素子Q1~Q6はMOSFET又はIGBTであって、それぞれの制御端子(ゲート)は制御部6に接続されている。スイッチング素子Q1~Q6は、制御端子に制御部6から制御信号が入力されることで、オンオフする。 The switching elements Q1 to Q6 are MOSFETs or IGBTs, and their control terminals (gates) are connected to the control unit 6. The switching elements Q1 to Q6 are turned on and off when a control signal is input to the control terminal from the control unit 6.
 スイッチング素子Q1,Q2の接続点は、チョークコイルL1を介して発電機3のR相の配電線に接続されている。スイッチング素子Q3,Q4の接続点は、チョークコイルL2を介して発電機3のT相の配電線に接続されている。スイッチング素子Q5,Q6の接続点は、チョークコイルL3を介して発電機3のS相の配電線に接続されている。チョークコイルL1は、本発明に係る「第1チョークコイル」の一例である。チョークコイルL2は、本発明に係る「第2チョークコイル」の一例である。チョークコイルL3は、本発明に係る「第3チョークコイル」の一例である。 The connection point of the switching elements Q1, Q2 is connected to the R-phase distribution line of the generator 3 via the choke coil L1. A connection point between the switching elements Q3 and Q4 is connected to a T-phase distribution line of the generator 3 through a choke coil L2. The connection point of the switching elements Q5 and Q6 is connected to the S-phase distribution line of the generator 3 via the choke coil L3. The choke coil L1 is an example of the “first choke coil” according to the present invention. The choke coil L2 is an example of the “second choke coil” according to the present invention. The choke coil L3 is an example of the “third choke coil” according to the present invention.
 制御部6には、スイッチング素子Q1~Q6のゲートが接続されている。制御部6は、電流検出回路4A,4B,4Cが検出する電流に基づいて、スイッチング素子Q1~Q6にゲート信号を出力し、スイッチング素子Q1~Q6をスイッチング制御する。 The control unit 6 is connected to the gates of the switching elements Q1 to Q6. The control unit 6 outputs a gate signal to the switching elements Q1 to Q6 based on the current detected by the current detection circuits 4A, 4B, and 4C, and performs switching control of the switching elements Q1 to Q6.
 具体的には、制御部6は、電流検出回路4A,4B,4Cが検出した電流のなかで、発電機3の1相あたりの定格電流を超えたものがあるか否かを判定する。以下に、負荷11が重負荷であり、負荷12,13が軽負荷であって、負荷11に供給される負荷電流Iが、発電機3の1相あたりの定格電流を超えた場合について説明する。 Specifically, the control unit 6 determines whether there is a current exceeding the rated current per phase of the generator 3 among the currents detected by the current detection circuits 4A, 4B, and 4C. Hereinafter, the load 11 is heavy load, the load 12 is a light load, the load currents I R supplied to the load 11 exceeds a rated current per phase of the generator 3 described To do.
 この場合、三相交流電源装置1は、例えば、R相の配電線とT相の配電線との間に電流経路が構成されるように、負荷電流供給回路5の各スイッチング素子をオンオフする。そして、負荷電流Iの1相あたりの定格電流を超える分を、T相の配電線に流れる電流の一部で補い、発電機3のR相から出力される電流が1相あたりの定格電流以下となるようにする。これにより、1相あたりの定格電流を超えないように発電機3を駆動することができ、結果として定格容量が小さい発電機を適用できるので、ディーゼルエンジン2の燃費の悪化を抑制できる。以下では、1相あたりの定格電流以下の発電機3の各相の電流をそれぞれIR1,IS1,IT1で表す。 In this case, for example, the three-phase AC power supply device 1 turns on and off each switching element of the load current supply circuit 5 so that a current path is configured between the R-phase distribution line and the T-phase distribution line. Then, the load current I minute exceeding the rated current per phase of R, compensates for some of the current flowing in the distribution line of the T-phase, rated current per phase current output from the R-phase of the generator 3 Make sure that: As a result, the generator 3 can be driven so as not to exceed the rated current per phase, and as a result, a generator with a small rated capacity can be applied, so that deterioration in fuel consumption of the diesel engine 2 can be suppressed. In the following, the current of each phase of the generator 3 below the rated current per phase is represented by I R1 , I S1 , and IT 1 , respectively.
 図3は、負荷電流I,I,Iの波形と、1相あたりの定格電流以下の電流IR1,IS1,IT1の波形とを示す図である。図4は、図3のタイミング(I)での三相交流電源装置1の電流経路を示す図である。図5は、図3のタイミング(II)での三相交流電源装置1の電流経路を示す図である。 3, the load current I R, is a diagram showing the waveform of I S, the waveform of I T, the current below the rated current per phase I R1, I S1, I T1 . FIG. 4 is a diagram illustrating a current path of the three-phase AC power supply device 1 at the timing (I) in FIG. FIG. 5 is a diagram illustrating a current path of the three-phase AC power supply device 1 at the timing (II) in FIG.
 なお、図3の電流IR1,IS1,IT1の波形は、発電機3からの三相交流電流を平衡化したときの電流波形を示す。平衡時の発電機3から出力される三相電流はそれぞれの振幅が同じで、それぞれの位相差が120°の関係となる。また、以下の例では、他の相の配電線からS相の配電線には電流を供給せず、また、S相の配電線に流れる電流を他の相の配電線に供給しないため、発電機3のS相に入出力される電流IS1は、負荷13への負荷電流Iと常に同じである。 The waveform of the current I R1, I S1, I T1 of FIG. 3 shows a current waveform when the three-phase alternating current from the generator 3 and equilibrated. The three-phase currents output from the generator 3 at equilibrium have the same amplitude and a phase difference of 120 °. In the following example, no current is supplied from the other phase distribution line to the S phase distribution line, and the current flowing through the S phase distribution line is not supplied to the other phase distribution line. The current I S1 input / output to / from the S phase of the machine 3 is always the same as the load current I S to the load 13.
 図3に示すタイミング(I)では、負荷電流Iは正であり、負荷電流Iは負であり、負荷電流Iはゼロである。なお、負荷11に供給される負荷電流Iは負荷12を通りT相の配電線に流れる。このタイミング(I)では、制御部6は、負荷電流供給回路5のスイッチング素子Q2,Q3をオンにする。これにより、R相の配電線とT相の配電線とがチョークコイルL1,L2を介して接続される。そして、図4の矢印で示すように、T相の配電線に流れる負荷電流Iの一部(電流IT2とする)が、チョークコイルL2、スイッチング素子Q3、キャパシタC1、スイッチング素子Q2、チョークコイルL1の順に流れ、R相の配電線に供給される。 At a timing (I) shown in FIG. 3, the load current I R is positive, the load current I T is negative, the load current I S is zero. The load current I R supplied to the load 11 flows to distribution line of the load 12 through the T-phase. At this timing (I), the control unit 6 turns on the switching elements Q2, Q3 of the load current supply circuit 5. As a result, the R-phase distribution line and the T-phase distribution line are connected via the choke coils L1 and L2. As indicated by arrows in FIG. 4, a portion of the load current I T flowing through the distribution line of the T-phase (the current I T2) is a choke coil L2, switching element Q3, capacitor C1, switching element Q2, the choke It flows in the order of the coil L1, and is supplied to the R-phase distribution line.
 電流IT2がR相の配電線に供給されることにより、重負荷の負荷11には定格電流を超える負荷電流Iが供給されるが、発電機3が出力する電流IR1は電流IT2分だけIよりも小さくなる。このとき、|IR1|=|I|-|IT2|で表せる。また、負荷電流Iの一部(電流IT2)がR相の配電線に供給されることにより、発電機3のT相には、負荷電流Iから電流IT2だけ小さい電流IT1が入力される。すなわち、|IT1|=|I|-|IT2|で表せる。 By current I T2 is supplied to the distribution line of the R-phase, although the load 11 of the heavy load is supplied load current I R that exceeds the rated current, a current I R1 output from the generator 3 a current I T2 It is smaller than the amount corresponding I R. At this time, | I R1 | = | I R | − | I T2 | Further, since the portion of the load current I T (current I T2) is supplied to the distribution line of the R phase, the T-phase of the generator 3, the load current current from the I T I T2 only a small current I T1 are Entered. That is, | I T1 | = | I T | − | I T2 |
 図3に示すタイミング(III)では、負荷電流Iは負であり、負荷電流Iは正であり、負荷電流Iはゼロである。すなわち、図3に示すタイミング(I)と電流の極性が反対である。この場合、図4の矢印と反対に、R相の配電線に流れる負荷電流Iの一部が、チョークコイルL1、スイッチング素子Q2、キャパシタC1、スイッチング素子Q3、チョークコイルL2の順に流れ、T相の配電線に供給される。 At a timing (III) shown in FIG. 3, the load current I R is negative, the load current I T is positive, the load current I S is zero. That is, the timing (I) shown in FIG. 3 and the polarity of the current are opposite. In this case, as opposed to the arrow in FIG. 4, a portion of the load current I R flowing through the distribution line of the R-phase, the choke coil L1, the switching element Q2, capacitor C1, switching element Q3, in this order of the choke coil L2, T Supplied to phase distribution lines.
 図3に示すタイミング(II)では、負荷電流Iは負であり、負荷電流Iはゼロであり、負荷電流Iは正である。なお、負荷13に供給される負荷電流Iは、負荷11を通りR相の配電線に流れる。このタイミング(II)では、制御部6は、負荷電流供給回路5のスイッチング素子Q1,Q4をオンにする。これにより、R相の配電線とT相の配電線とがチョークコイルL1,L2を介して接続される。そして、図5の矢印で示すように、R相の配電線に流れる負荷電流Iの一部(電流IR2とする)が、チョークコイルL1、スイッチング素子Q1、キャパシタC1、スイッチング素子Q4、チョークコイルL2の順に流れ、T相の配電線に供給される。 At a timing (II) shown in FIG. 3, the load current I R is negative, the load current I T is zero, the load current I S is positive. The load current I S to be supplied to the load 13, through the load 11 to the distribution lines as R phase. At this timing (II), the control unit 6 turns on the switching elements Q1, Q4 of the load current supply circuit 5. As a result, the R-phase distribution line and the T-phase distribution line are connected via the choke coils L1 and L2. As indicated by arrows in FIG. 5, a portion of the load current I R flowing through the distribution line of the R-phase (the current I R2) is a choke coil L1, switching elements Q1, capacitor C1, switching element Q4, a choke It flows in the order of the coil L2, and is supplied to the T-phase distribution line.
 電流IR2がR相の配電線に供給されることにより、重負荷の負荷11には1相あたりの定格電流を超える負荷電流I(電流IR1+電流IR2)が供給されるが、発電機3へ入力される電流IR1は電流IR2の分だけIよりも小さくなる。このとき、電流が流れる方向が発電機3から負荷11,12,13方向のときを正とすると、|IR1|=|I|-|IR2|で表せる。また、負荷電流Iはゼロであるが、負荷電流Iの一部(電流IR2)がT相の配電線に供給されることにより、発電機3のT相には電流IR2が入力される。すなわち、|IT1|=|IR2|で表せる。 By supplying the current I R2 to the R-phase distribution line, a load current I R (current I R1 + current I R2 ) exceeding the rated current per phase is supplied to the load 11 of the heavy load. The current I R1 input to the generator 3 is smaller than I R by the current I R2 . At this time, when the direction in which the current flows is from the generator 3 to the load 11, 12, 13 is positive, it can be expressed by | I R1 | = | I R | − | I R2 |. Although the load current I T is zero, the load current by part of I R (current I R2) is supplied to the distribution line of the T-phase, the current I R2 is input to the T-phase of the generator 3 Is done. That is, | I T1 | = | I R2 |
 図3に示すタイミング(IV)では、負荷電流Iは正であり、負荷電流Iはゼロであり、負荷電流Iは負である。すなわち、図3に示すタイミング(II)と電流の極性が反対である。この場合、図5の矢印と反対に、T相の配電線に流れる電流の一部が、チョークコイルL2、スイッチング素子Q4、キャパシタC1、スイッチング素子Q1、チョークコイルL1の順に流れ、R相の配電線に供給される。 At a timing (IV) shown in FIG. 3, the load current I R is positive, the load current I T is zero, the load current I S is negative. That is, the timing (II) shown in FIG. 3 and the polarity of the current are opposite. In this case, a part of the current flowing through the T-phase distribution line flows in the order of the choke coil L2, the switching element Q4, the capacitor C1, the switching element Q1, and the choke coil L1, contrary to the arrow in FIG. Supplied to the electric wire.
 なお、図3、図4及び図5では、任意のタイミングを抽出して説明したが、何れのタイミングであっても、負荷電流の1相あたりの定格電流を超える分を、他の相の配電線に流れる電流の一部で補い、発電機3から出力される交流電流が、1相あたりの定格電流以下となるようにできる。 3, 4, and 5, the arbitrary timing is extracted and described. However, at any timing, the load current exceeding the rated current per phase is allocated to the other phases. The AC current output from the generator 3 can be compensated with a part of the current flowing through the electric wire so that it is equal to or lower than the rated current per phase.
 図6は、時間経過に伴い変化する発電機3の各相の電流値(振幅値)を示す図である。 FIG. 6 is a diagram showing the current value (amplitude value) of each phase of the generator 3 that changes with time.
 負荷11が重負荷となり、発電機3のR相からの出力電流が、1相あたりの定格電流を超えると(タイミングA)、前記したように、制御部6は負荷電流供給回路5を駆動し、R相の配電線とT相の配電線との間で電流を融通し合う。その結果、制御遅延時間Bの経過後に、発電機3のR相からの出力電流は、1相あたりの定格電流まで低下する。また、発電機3のT相からの出力電流は、制御遅延時間Bの経過後に増加する。 When the load 11 becomes a heavy load and the output current from the R phase of the generator 3 exceeds the rated current per phase (timing A), the control unit 6 drives the load current supply circuit 5 as described above. The current is interchanged between the R-phase distribution line and the T-phase distribution line. As a result, after the control delay time B elapses, the output current from the R phase of the generator 3 decreases to the rated current per phase. Further, the output current from the T phase of the generator 3 increases after the control delay time B has elapsed.
 このように、負荷11,12,13の何れかが重負荷となり、負荷電流が発電機3の1相あたりの定格電流を超えた場合であっても、制御部6がタイミングに応じて負荷電流供給回路5を制御することで、発電機3の各相に対する電流IR1,IS1,IT1を、1相あたりの定格電流以下に抑えることができる。さらに、発電機3の各相の配電線間で融通し合う電流(たとえば、上述の実施形態ではIR2,IT2)を調整することで、図3の波形に示すように、電流IR1,IS1,IT1を平衡三相交流とすることができる。その結果、発電機3の各相からの出力電流を、発電機3の1相あたりの定格電流以下に抑えることができ、ディーゼルエンジン2の燃費低下を抑制できる。また、負荷電流が発電機3の1相あたりの定格電流を超えたときのみ負荷電流供給回路5を駆動するため、負荷電流供給回路5を常時駆動する場合と対比して、負荷電流供給回路5の消費電力量を抑えることができる。 As described above, even when any one of the loads 11, 12, and 13 becomes a heavy load and the load current exceeds the rated current per one phase of the generator 3, the control unit 6 loads the load current according to the timing. By controlling the supply circuit 5, the currents I R1 , I S1 , and IT 1 for each phase of the generator 3 can be suppressed below the rated current per phase. Further, by adjusting the current (for example, I R2 , IT 2 in the above-described embodiment) interchanged between the distribution lines of each phase of the generator 3, the current I R1 , I S1 and IT 1 can be balanced three-phase alternating current. As a result, the output current from each phase of the generator 3 can be suppressed below the rated current per phase of the generator 3, and the fuel consumption reduction of the diesel engine 2 can be suppressed. Further, since the load current supply circuit 5 is driven only when the load current exceeds the rated current per phase of the generator 3, the load current supply circuit 5 is compared with the case where the load current supply circuit 5 is always driven. Power consumption can be suppressed.
 本実施形態では、負荷電流Iが1相あたりの定格電流を超えた場合、R相の配電線とT相の配電線とを、チョークコイルL1,L2を介して接続しているが、R相の配電線とS相の配電線とをチョークコイルL1,L3を介して接続するようにしてもよい。詳しくは、三相交流電源装置1の構造に応じて、適宜変更することが好ましい。 In the present embodiment, when the load current I R is greater than the rated current per phase, and a distribution line of the distribution line and T-phase of the R-phase, but are connected via a choke coil L1, L2, R The phase distribution line and the S phase distribution line may be connected via choke coils L1 and L3. In detail, it is preferable to change appropriately according to the structure of the three-phase alternating current power supply device 1.
 図7は、三相交流電源装置1の構造を示す図である。この例では、基板20上にチョークコイルL1,L2,L3、スイッチング素子Q1~Q6等を含む素子が実装されている。スイッチング素子Q1~Q6は、基板20上に設けられた共通のヒートシンク21に取り付けられている。スイッチング素子Q1~Q6は、ヒートシンク21に略等間隔で接続され配列されている。この場合、負荷電流Iが1相あたりの定格電流を超えた場合、制御部6は、R相の配電線に接続されるスイッチング素子Q1,Q2から熱的に遠いスイッチング素子Q3,Q4をスイッチング制御する。 FIG. 7 is a diagram showing the structure of the three-phase AC power supply device 1. In this example, elements including choke coils L1, L2, L3, switching elements Q1 to Q6, and the like are mounted on the substrate 20. The switching elements Q1 to Q6 are attached to a common heat sink 21 provided on the substrate 20. The switching elements Q1 to Q6 are connected to the heat sink 21 and arranged at substantially equal intervals. In this case, when the load current I R is greater than the rated current per phase, the control unit 6, the switching of the switching element Q1, thermally distant switching element Q3 from Q2, Q4 connected to the distribution line of the R-phase Control.
 スイッチング素子Q1,Q2をスイッチング制御した場合、その発熱は大きく、熱集中が起こり易くなる。このため、熱的に遠いスイッチング素子Q3,Q4をスイッチング制御して、R相の配電線とT相の配電線とを接続するようにすることで、熱源を分散でき、スイッチング素子に対する熱ストレスを下げることができる。その結果、スイッチング素子の故障率の低減、長寿命化を実現できる。さらに、熱源を分散することによるヒートシンクやファンの小型化、低コスト化も可能になる。また、ファンを使わずに構成することも可能になるため、長寿命化も実現できる。 When the switching elements Q1 and Q2 are subjected to switching control, the heat generation is large and heat concentration is likely to occur. For this reason, by switching the thermally distant switching elements Q3 and Q4 and connecting the R-phase distribution line and the T-phase distribution line, the heat source can be dispersed and the thermal stress on the switching element is reduced. Can be lowered. As a result, the failure rate of the switching element can be reduced and the life can be extended. Furthermore, it is possible to reduce the size and cost of the heat sink and fan by dispersing the heat source. In addition, since it is possible to configure without using a fan, it is possible to extend the service life.
 なお、スイッチング素子Q5,Q6がスイッチング素子Q1,Q2から熱的に遠い位置に設けられる構造である場合には、制御部6はスイッチング素子Q5,Q6をスイッチング制御して、R相の配電線とS相の配電線との間に電流経路が構成されるようにすればよい。 When switching elements Q5 and Q6 have a structure provided at a position thermally distant from switching elements Q1 and Q2, control unit 6 performs switching control of switching elements Q5 and Q6 so that an R-phase distribution line and What is necessary is just to make it a current path be comprised between the distribution lines of S phase.
 図8は、制御部6が実行する処理のフローチャートである。 FIG. 8 is a flowchart of processing executed by the control unit 6.
 制御部6は、電流検出回路4A,4B,4Cが検出した電流を取得する(S1)。制御部6は検出電流の何れかが1相あたりの定格電流を超えているか否かを判定する(S2)。超えている場合(S2:YES)、制御部6は負荷電流供給回路5を制御し、1相あたりの定格電流を超える負荷電流が流れる相の配電線と、他の相の配電線とを接続する(S3)。 The control unit 6 acquires the current detected by the current detection circuits 4A, 4B, 4C (S1). The control unit 6 determines whether any of the detected currents exceeds the rated current per phase (S2). When exceeding (S2: YES), the control unit 6 controls the load current supply circuit 5 to connect the distribution line of the phase in which the load current exceeding the rated current per phase flows and the distribution line of the other phase. (S3).
 その後、制御部6は、電流検出回路4A,4B,4Cが検出した電流が1相あたりの定格電流以下となった否かを判定する(S4)。1相あたりの定格電流以下となっていない場合(S4:NO)、制御部6は負荷電流供給回路5を駆動し続ける。1相あたりの定格電流以下となった場合(S4:YES)、制御部6は負荷電流供給回路5の駆動を停止する(S5)。このように、負荷電流供給回路5は常時駆動しないため、消費電力は抑えられる。 Thereafter, the control unit 6 determines whether or not the current detected by the current detection circuits 4A, 4B, and 4C is equal to or lower than the rated current per phase (S4). When the current is not less than the rated current per phase (S4: NO), the control unit 6 continues to drive the load current supply circuit 5. When it becomes below the rated current per phase (S4: YES), the control unit 6 stops driving the load current supply circuit 5 (S5). Thus, since the load current supply circuit 5 is not always driven, power consumption can be suppressed.
 S2で負荷電流I,I,Iの何れかも1相あたりの定格電流を超えていないと判定された場合(S2:NO)、又は、S5での負荷電流供給回路5の駆動停止後、制御部6はS1の処理を再実行する。 If it is determined in S2 that none of the load currents I R , I T , and I S exceeds the rated current per phase (S2: NO), or after the drive of the load current supply circuit 5 is stopped in S5 The control unit 6 re-executes the process of S1.
(実施形態2)
 本実施形態では、1相あたりの定格電流を超える負荷電流が流れる相の配電線と、他の二相の配電線の両方とをチョークコイルを介して接続する点で、実施形態1と相違する。
(Embodiment 2)
The present embodiment is different from the first embodiment in that both the distribution line of the phase in which the load current exceeding the rated current per phase flows and the other two-phase distribution lines are connected via the choke coil. .
 図9は、三相交流電源装置1の電流経路を示す図である。図9は、負荷13が重負荷であって、負荷電流Iが1相あたりの定格電流を超えた場合の例を示す。図9では、電流が流れる方向が発電機3から負荷11,12,13方向のときを正とする。 FIG. 9 is a diagram illustrating a current path of the three-phase AC power supply device 1. 9, the load 13 is a heavy load, shows an example in which the load current I S is greater than the rated current per phase. In FIG. 9, it is assumed that the current flows in the direction from the generator 3 to the loads 11, 12, and 13.
 負荷電流I,Iが正であり、負荷電流Iが負であるタイミングでは、負荷電流I,Iは、負荷13を通りS相の配電線に流れる。このタイミングにおいて、制御部6は、スイッチング素子Q2,Q3,Q5をオンにする。そうすると、R相の配電線とS相の配電線とがチョークコイルL1,L3を介して接続され、また、T相の配電線とS相の配電線とがチョークコイルL2,L3を介して接続される。そして、図9の矢印で示すように、発電機3のR相から出力される電流IR1の一部(電流IR2とする)が、チョークコイルL1、スイッチング素子Q2、キャパシタC1、スイッチング素子Q5、チョークコイルL3の順に流れ、S相の配電線に供給される。すなわち、|IR1|=|I|+|IR2|で表せる。 Load current I R, is positive is I T, at the timing the load current I S is negative, the load current I R, I T flows through the load 13 to the distribution line of the street S phase. At this timing, control unit 6 turns on switching elements Q2, Q3, and Q5. Then, the R-phase distribution line and the S-phase distribution line are connected via the choke coils L1, L3, and the T-phase distribution line and the S-phase distribution line are connected via the choke coils L2, L3. Is done. 9, a part of the current I R1 output from the R phase of the generator 3 (referred to as current I R2 ) is a choke coil L1, a switching element Q2, a capacitor C1, and a switching element Q5. The choke coil L3 flows in this order and is supplied to the S-phase distribution line. That is, | I R1 | = | I R | + | I R2 |
 また、発電機3のT相から出力される電流IT1の一部(電流IT2とする)が、チョークコイルL2、スイッチング素子Q3,Q5、チョークコイルL3の順に流れ、S相の配電線に供給される。すなわち、|IT1|=|I|+|IT2|で表せる。 Further, a part of the current IT1 output from the T phase of the generator 3 (referred to as current IT2 ) flows in the order of the choke coil L2, the switching elements Q3 and Q5, and the choke coil L3 to the S phase distribution line. Supplied. That is, | I T1 | = | I T | + | I T2 |
 S相の配電線には、R相の配電線からの電流IR2とT相の配電線からの電流IT2との合計の電流が入力される。電流の方向(正負)を考慮すると、|IS1|=|I|-|IR2+IT2|で表せる。 The total current of the current I R2 from the R-phase distribution line and the current I T2 from the T-phase distribution line is input to the S-phase distribution line. Considering the direction of current (positive or negative), it can be expressed by | I S1 | = | I S | − | I R2 + I T2 |.
 図10は、時間経過に伴い変化する発電機3の各相の電流値(振幅値)を示す図である。 FIG. 10 is a diagram showing the current value (amplitude value) of each phase of the generator 3 that changes with time.
 負荷13が重負荷となり、発電機3のS相からの出力電流が1相あたりの定格電流を超えると(タイミングC)、前記したように、制御部6は負荷電流供給回路5を駆動し、S相の配電線とR,T相の配電線との間で電流を融通し合う。なお、この例では、|IR2|=|IT2|とする。その結果、制御遅延時間Dの経過後に、発電機3のS相からの出力電流は、1相あたりの定格電流まで低下する。また、発電機3のR,T相からの出力電流は、制御遅延時間Dの経過後に増加する。なお、前記のように、|IR2|=|IT2|であるので、T相からの出力電流の増加分とR相からの出力電流の増加分はほぼ同じである。 When the load 13 becomes a heavy load and the output current from the S phase of the generator 3 exceeds the rated current per phase (timing C), the control unit 6 drives the load current supply circuit 5 as described above, Current is interchanged between the S-phase distribution line and the R and T-phase distribution lines. In this example, | I R2 | = | I T2 |. As a result, after the control delay time D has elapsed, the output current from the S phase of the generator 3 decreases to the rated current per phase. The output current from the R and T phases of the generator 3 increases after the control delay time D has elapsed. As described above, since | I R2 | = | I T2 |, the increase in the output current from the T phase is substantially the same as the increase in the output current from the R phase.
 このように、1相あたりの定格電流を超える負荷電流が流れる相の配電線と、他の二相の配電線の両方とを接続しても、実施形態1と同様に、発電機3の各相に対する電流IR1,IS1,IT1を、1相あたりの定格電流以下に抑えることができる。その結果、ディーゼルエンジン2を安全に継続運転させることができる。 Thus, even if both the phase distribution line in which the load current exceeding the rated current per phase flows and the other two-phase distribution lines are connected, each of the generators 3 is similar to the first embodiment. The currents I R1 , I S1 , and IT 1 for the phases can be suppressed to be equal to or lower than the rated current per phase. As a result, the diesel engine 2 can be continuously operated safely.
 三相交流電源装置1が図7に示す構造である場合、本実施形態のように、S相の配電線に接続されるスイッチング素子Q5,Q6と、スイッチング素子Q1,Q2及びスイッチング素子Q3,Q4とは熱的に略同じ距離である。このため、スイッチング素子Q1,Q2及びスイッチング素子Q3,Q4それぞれをスイッチング制御することで、一方のみをスイッチング制御する場合と比べて熱集中を抑えることができる。熱集中を抑えることで、スイッチング素子の故障率の低減、長寿命化を実現できる。 When the three-phase AC power supply device 1 has the structure shown in FIG. 7, as in this embodiment, the switching elements Q5 and Q6 connected to the S-phase distribution line, the switching elements Q1 and Q2, and the switching elements Q3 and Q4 Is approximately the same distance thermally. For this reason, by controlling the switching of each of the switching elements Q1 and Q2 and the switching elements Q3 and Q4, it is possible to suppress the heat concentration as compared with the case where only one of them is controlled. By suppressing the heat concentration, the failure rate of the switching element can be reduced and the life can be extended.
 さらに、負荷電流が発電機3の1相あたりの定格電流を超えたときのみ負荷電流供給回路5を駆動するため、負荷電流供給回路5を常時駆動する場合と対比して、負荷電流供給回路5の駆動電力量を抑えることができる。 Furthermore, since the load current supply circuit 5 is driven only when the load current exceeds the rated current per phase of the generator 3, the load current supply circuit 5 is compared with the case where the load current supply circuit 5 is always driven. Can be suppressed.
また、装置の稼働率が低くなるので、長寿命化が可能となる。 In addition, since the operating rate of the apparatus is lowered, the service life can be extended.
 なお、図9での説明では、S相の配電線と、R,T相の配電線とを同時に接続しているが、R,T相の配電線を交互に、S相の配電線と接続するようにしてもよい。例えば、図9で説明したタイミングでは、スイッチング素子Q2,Q5をオンすることで、電流を供給する期間と、スイッチング素子Q3,Q5をオンすることで、電流を供給する期間とを交互に繰り返す。すなわち、R相からの電流供給とT相からの電流供給とを交互に行う(図11参照)。このとき、R相の配電線からS相の配電線には、図9の場合の電流IR2の2倍の電流が流れ、T相の配電線からS相の配電線には、図9の場合の電流IT2の2倍の電流が流れるように定数設定される。 In the description of FIG. 9, the S-phase distribution line and the R and T-phase distribution lines are connected simultaneously, but the R and T-phase distribution lines are alternately connected to the S-phase distribution line. You may make it do. For example, at the timing described with reference to FIG. 9, the period for supplying current by turning on the switching elements Q2 and Q5 and the period for supplying current by turning on the switching elements Q3 and Q5 are alternately repeated. That is, current supply from the R phase and current supply from the T phase are alternately performed (see FIG. 11). At this time, a current twice as large as the current IR2 in the case of FIG. 9 flows from the R-phase distribution line to the S-phase distribution line, and from the T-phase distribution line to the S-phase distribution line in FIG. The constant is set so that a current twice as large as the current IT2 flows.
 図11は、時間経過に伴い変化する発電機3の各相の電流値(振幅値)を示す図である。 FIG. 11 is a diagram showing the current value (amplitude value) of each phase of the generator 3 that changes with time.
 R相の配電線と、T相の配電線とを交互にS相の配電線に接続する場合、発電機3のS相からの出力電流は、1相あたりの定格電流まで低下し、発電機3のR,T相からの出力電流は、交互に増加と減少を繰り返す。 When the R-phase distribution line and the T-phase distribution line are alternately connected to the S-phase distribution line, the output current from the S-phase of the generator 3 is reduced to the rated current per phase. The output current from the 3 R and T phases repeats increasing and decreasing alternately.
 このように、R相の配電線とT相の配電線とを交互にS相の配電線に接続する場合であっても、発電機3の各相に対する電流IR1,IS1,IT1を、1相あたりの定格電流以下に抑えることができる。その結果、ディーゼルエンジン2を安全に継続運転させることができる。 Thus, even when the R-phase distribution line and the T-phase distribution line are alternately connected to the S-phase distribution line, the currents I R1 , I S1 , and I T1 for each phase of the generator 3 are obtained. It can be suppressed below the rated current per phase. As a result, the diesel engine 2 can be continuously operated safely.
 また、R相の配電線に接続されるスイッチング素子Q1,Q2と、T相に接続されるスイッチング素子Q5,Q6とを交互にスイッチング制御するため、三相交流電源装置1が、例えば図7に示す構造である場合、局所的な熱集中を抑えることができる。熱集中を抑えることで、スイッチング素子の故障率の低減、長寿命化を実現できる。 Further, in order to perform switching control alternately between the switching elements Q1 and Q2 connected to the R-phase distribution line and the switching elements Q5 and Q6 connected to the T-phase, the three-phase AC power supply apparatus 1 is shown in FIG. In the case of the structure shown, local heat concentration can be suppressed. By suppressing the heat concentration, the failure rate of the switching element can be reduced and the life can be extended.
 なお、上述の実施形態では、電流検出回路4A,4B,4Cが第1、第2、第3負荷それぞれへの供給電流を検出する構成としているが、3相3線の場合、2相の電流を検出すれば、残りの相の供給電流は演算により求めることが可能である。よって、例えば、第1、第2、第3負荷それぞれへの供給電流のうち、電流検出回路(4A、4B)を使って2つの供給電流を検出し、残りの1相の供給電流を、電流算出手段により演算し供給電流を検出するという方法でも構わない。この場合、上述の電流検出回路4A、4B及び電流算出手段が、本発明に係る「供給電流検出手段」の一例となる。 In the above-described embodiment, the current detection circuits 4A, 4B, and 4C are configured to detect supply currents to the first, second, and third loads. However, in the case of a three-phase three-wire, a two-phase current is used. Can be obtained by calculation. Thus, for example, among the supply currents to the first, second, and third loads, two supply currents are detected using the current detection circuits (4A, 4B), and the remaining one-phase supply current is determined as the current. A method of calculating by the calculating means and detecting the supply current may be used. In this case, the current detection circuits 4A and 4B and the current calculation unit described above are an example of the “supply current detection unit” according to the present invention.
 本発明の適用例を以下に記載する。 Examples of application of the present invention are described below.
 (1)電力系統が整備されていない離島等の地域では、例えばディーゼルエンジン等の熱機関を動力にした発電機を用いて三相交流電源を生成し、各相に単相負荷が接続されるというケースがある。このような場合、電流不平衡が起こると、ディーゼルエンジンの燃費悪化に直結してしまうため、本発明を適用して燃費悪化を低減することができる。また、電流不平衡が起こらなくなれば、ディーゼルエンジンの容量を小さくすることも可能となるので、さらなる燃費向上が図られる。 (1) In areas such as remote islands where power systems are not maintained, for example, a three-phase AC power source is generated using a generator powered by a heat engine such as a diesel engine, and a single-phase load is connected to each phase. There is a case. In such a case, when current imbalance occurs, the fuel efficiency of the diesel engine is directly deteriorated. Therefore, the fuel efficiency deterioration can be reduced by applying the present invention. Further, if current imbalance does not occur, the capacity of the diesel engine can be reduced, so that the fuel efficiency can be further improved.
 (2)欧州やその他日本国外では家庭用であっても、電線から屋内への引き込み線が三相になっており、家屋内で単相交流に変換されることなく、各相に単相負荷が接続される構成になっている場合がある。このような場合、電流不平衡が起こると、引き込み線の一部に定格を超える大電流が流れ、電線が発熱して電線の絶縁被覆が劣化するおそれがある。本発明を適用すれば、当該劣化を抑制することも可能となる。 (2) Even if it is for home use outside Europe and other countries in Japan, the lead-in wire from the wire to the interior is three-phase, and it is not converted into single-phase alternating current in the house, and each phase has a single-phase load. May be connected. In such a case, when current imbalance occurs, a large current exceeding the rating flows in a part of the lead-in wire, and the electric wire may generate heat and the insulating coating of the electric wire may be deteriorated. When the present invention is applied, the deterioration can be suppressed.
B,D…制御遅延時間
C1…キャパシタ
,I,I…負荷電流
R1,IS1,IT1…相電流
R2,IT2…電流
L1,L2,L3…チョークコイル
Q1,Q2,Q3,Q4,Q5,Q6…スイッチング素子
1…三相交流電源装置
2…ディーゼルエンジン
2A…軸機構
3…発電機(三相交流発電機)
4A,4B,4C…電流検出回路(供給電流検出手段)
5…負荷電流供給回路
6…制御部(供給電流超過判定手段、電流供給手段)
11,12,13…負荷
20…基板
21…ヒートシンク
B, D ... control delay time C1 ... capacitor I R, I S, I T ... load current I R1, I S1, I T1 ... phase current I R2, I T2 ... current L1, L2, L3 ... choke coil Q1, Q2 , Q3, Q4, Q5, Q6 ... switching element 1 ... three-phase AC power supply device 2 ... diesel engine 2A ... shaft mechanism 3 ... generator (three-phase AC generator)
4A, 4B, 4C ... Current detection circuit (supply current detection means)
5 ... Load current supply circuit 6 ... Control unit (supply current excess determination means, current supply means)
11, 12, 13 ... load 20 ... substrate 21 ... heat sink

Claims (5)

  1.  第1相配電線に第1負荷が接続され、第2相配電線に第2負荷が接続され、第3相配電線に第3負荷が接続される三相交流発電機と、
     前記三相交流発電機から前記第1負荷、前記第2負荷及び前記第3負荷それぞれへの供給電流を検出する供給電流検出手段と、
     前記供給電流検出手段が検出する供給電流の何れかが、定格電流を超えたか否かを判定する供給電流超過判定手段と、
     前記供給電流超過判定手段が定格電流を超えたと判定した供給電流が流れる相の配電線と、他の二相の配電線の少なくとも一方との間に電流経路を構成する電流供給手段と、
     を備える三相交流電源装置。
    A three-phase AC generator in which a first load is connected to the first phase distribution line, a second load is connected to the second phase distribution line, and a third load is connected to the third phase distribution line;
    Supply current detection means for detecting supply current from the three-phase AC generator to the first load, the second load, and the third load;
    Supply current excess determination means for determining whether any of the supply currents detected by the supply current detection means exceeds a rated current;
    A current supply means that constitutes a current path between the distribution line of the phase through which the supply current determined that the supply current excess determination means exceeds the rated current, and at least one of the other two-phase distribution lines;
    A three-phase AC power supply device.
  2.  前記電流供給手段は、
     複数のスイッチング素子が直列接続され、その接続点が前記第1相配電線に接続される第1直列回路と、
     前記第1直列回路の前記複数のスイッチング素子の接続点と、前記第1相配電線との間に設けられた第1チョークコイルと、
     複数のスイッチング素子が直列接続され、その接続点が前記第2相配電線に接続される第2直列回路と、
     前記第2直列回路の前記複数のスイッチング素子の接続点と、前記第2相配電線との間に設けられた第2チョークコイルと、
     複数のスイッチング素子が直列接続され、その接続点が前記第3相配電線に接続される第3直列回路と、
     前記第3直列回路の前記複数のスイッチング素子の接続点と、前記第3相配電線との間に設けられた第3チョークコイルと、
     前記第1直列回路、前記第2直列回路及び前記第3直列回路それぞれのスイッチング素子をスイッチング制御する制御手段と、
     を備え、
     前記第1直列回路、前記第2直列回路及び前記第3直列回路は並列接続されている、
     請求項1に記載の三相交流電源装置。
    The current supply means includes
    A plurality of switching elements are connected in series, and a first series circuit in which a connection point is connected to the first phase distribution line;
    A first choke coil provided between a connection point of the plurality of switching elements of the first series circuit and the first phase distribution line;
    A second series circuit in which a plurality of switching elements are connected in series, the connection point of which is connected to the second phase distribution line;
    A second choke coil provided between a connection point of the plurality of switching elements of the second series circuit and the second phase distribution line;
    A plurality of switching elements connected in series, a third series circuit whose connection point is connected to the third phase distribution line;
    A third choke coil provided between a connection point of the plurality of switching elements of the third series circuit and the third phase distribution line;
    Control means for controlling switching of the switching elements of the first series circuit, the second series circuit, and the third series circuit;
    With
    The first series circuit, the second series circuit, and the third series circuit are connected in parallel.
    The three-phase alternating current power supply device according to claim 1.
  3.  前記第1直列回路、前記第2直列回路及び前記第3直列回路それぞれのスイッチング素子は、共通のヒートシンクに設けられ、
     前記制御手段は、
     定格電流を超える供給電流が流れる相に接続されるスイッチング素子から、熱的に最も離れた位置に設けられるスイッチング素子をスイッチング制御する、
     請求項2に記載の三相交流電源装置。
    The switching elements of the first series circuit, the second series circuit, and the third series circuit are provided in a common heat sink,
    The control means includes
    Switching control is performed on a switching element provided at a position thermally farthest from a switching element connected to a phase in which a supply current exceeding the rated current flows.
    The three-phase alternating current power supply device according to claim 2.
  4.  前記第1直列回路、前記第2直列回路及び前記第3直列回路それぞれのスイッチング素子は、共通のヒートシンクに等間隔で設けられ、
     前記制御手段は、
     前記他の二相の配電線に接続されるスイッチング素子をそれぞれスイッチング制御する、
     請求項2に記載の三相交流電源装置。
    The switching elements of the first series circuit, the second series circuit, and the third series circuit are provided at equal intervals on a common heat sink,
    The control means includes
    Switching control each switching element connected to the other two-phase distribution line,
    The three-phase alternating current power supply device according to claim 2.
  5.  前記制御手段は、
     前記他の二相の配電線の一方に接続されるスイッチング素子と、前記他の二相の配電線の他方に接続されるスイッチング素子とを交互にスイッチング制御する、
     請求項4に記載の三相交流電源装置。
    The control means includes
    Switching control is alternately performed between a switching element connected to one of the other two-phase distribution lines and a switching element connected to the other of the other two-phase distribution lines.
    The three-phase alternating current power supply device according to claim 4.
PCT/JP2017/008868 2016-03-17 2017-03-07 Three-phase ac power source apparatus WO2017159435A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016053546 2016-03-17
JP2016-053546 2016-03-17

Publications (1)

Publication Number Publication Date
WO2017159435A1 true WO2017159435A1 (en) 2017-09-21

Family

ID=59850815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008868 WO2017159435A1 (en) 2016-03-17 2017-03-07 Three-phase ac power source apparatus

Country Status (1)

Country Link
WO (1) WO2017159435A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3535589A (en) * 1966-10-18 1970-10-20 Bendix Corp Unbalanced load protection circuit for ac generator
US4264856A (en) * 1979-03-23 1981-04-28 Basler Electric Company System for maintaining excitation of an alternating current generator during excessive output current conditions
JPS6077224U (en) * 1983-10-28 1985-05-30 澤藤電機株式会社 Engine generator overvoltage/overcurrent prevention device
JP2004320861A (en) * 2003-04-14 2004-11-11 Denso Corp Controller for three-phase motor-generator for vehicle
JP2012191802A (en) * 2011-03-11 2012-10-04 Toshiba Mach Co Ltd Inverter power generation apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3535589A (en) * 1966-10-18 1970-10-20 Bendix Corp Unbalanced load protection circuit for ac generator
US4264856A (en) * 1979-03-23 1981-04-28 Basler Electric Company System for maintaining excitation of an alternating current generator during excessive output current conditions
JPS6077224U (en) * 1983-10-28 1985-05-30 澤藤電機株式会社 Engine generator overvoltage/overcurrent prevention device
JP2004320861A (en) * 2003-04-14 2004-11-11 Denso Corp Controller for three-phase motor-generator for vehicle
JP2012191802A (en) * 2011-03-11 2012-10-04 Toshiba Mach Co Ltd Inverter power generation apparatus

Similar Documents

Publication Publication Date Title
US11177648B2 (en) System and method for compact motor control with redundant power structures
AU2005281207B2 (en) Polyphase current supplying circuit and driver apparatus
US9065377B2 (en) Load commutated inverter drive systems for high power drive applications
JP5253523B2 (en) Harmonic current compensator
JP4706349B2 (en) DC power supply device and compressor drive device
JP4640152B2 (en) Drive controller for compressor for air conditioner
JP6191478B2 (en) Power converter
JP7414923B2 (en) Open winding motor drive device and refrigeration cycle device
JP2012165509A (en) Inrush current prevention circuit for power supply apparatus
US20150357939A1 (en) Cascaded h-bridge inverter capable of operating in bypass mode
US11601076B2 (en) Motor driving apparatus and refrigeration cycle equipment
US8217618B2 (en) Energy-saving controller for three-phase induction motors
JP2012231567A (en) Three-phase inverter type power generator
JP2012231628A (en) Voltage regulation device
WO2013179771A1 (en) Converter device, and motor drive device using same
WO2017159435A1 (en) Three-phase ac power source apparatus
JP2004135437A (en) Motor controller
JP2015027255A (en) Parallel structure power device and control method therefor
JP2010288360A (en) Power converter
CN110086389B (en) Power generation equipment and movable generator set running off grid
JP2006034000A (en) Rush current prevention circuit for air conditioner
WO2015186232A1 (en) Rotating electric machine system or rotating electric machine system control method
JP2001145351A (en) Automatic voltage regulator
JP5689016B2 (en) Power supply
JP2002238167A (en) System inter-linking system

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766437

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP