WO2017159221A1 - Electrochromic rendering/displaying device - Google Patents

Electrochromic rendering/displaying device Download PDF

Info

Publication number
WO2017159221A1
WO2017159221A1 PCT/JP2017/006119 JP2017006119W WO2017159221A1 WO 2017159221 A1 WO2017159221 A1 WO 2017159221A1 JP 2017006119 W JP2017006119 W JP 2017006119W WO 2017159221 A1 WO2017159221 A1 WO 2017159221A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
electrochromic
electrolyte
electrochromic material
film
Prior art date
Application number
PCT/JP2017/006119
Other languages
French (fr)
Japanese (ja)
Inventor
英之 牧
昌芳 樋口
Original Assignee
学校法人 慶應義塾
国立研究開発法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 慶應義塾, 国立研究開発法人物質・材料研究機構 filed Critical 学校法人 慶應義塾
Priority to JP2018505376A priority Critical patent/JP6775204B2/en
Publication of WO2017159221A1 publication Critical patent/WO2017159221A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes

Definitions

  • the present invention relates to an electrochromic drawing / display device, and in particular, no special driving electronic circuit for local voltage / current is required, and local color change (coloring / decoloring / discoloration) with a simple structure.
  • the present invention relates to an electrochromic drawing / display device that can be used.
  • An electrochromic material in which a color change can be obtained reversibly by electrochemical oxidation / reduction by applying voltage / current.
  • Such electrochromic materials include inorganic materials and organic materials.
  • Inorganic materials include oxides (oxides such as tungsten oxide, vanadium oxide, molybdenum oxide, iridium oxide, rhodium oxide, nickel oxide, and chromium oxide), metal complex systems (complexes such as Prussian blue and ruthenium purple), and nitriding
  • There are various material systems such as physical systems (such as indium nitride).
  • organic material systems there are various material systems such as viologen-based compounds, leuco dye-based compounds, terephthalic acid compounds, polyoxotungstates, and polymer systems (such as conductive polymer compounds and metallo supramolecular polymers).
  • an electrochromic material layer and an electrolyte layer are sandwiched between electrodes and a voltage is applied to cause a color change mainly by utilizing an electrochemical reaction such as oxidation / reduction.
  • the electrochromic layer includes a liquid type and a solid type
  • the electrolyte layer includes a liquid type, a gel type, and a solid type.
  • display devices such as electronic paper, display and viewfinder, and light shielding devices such as light control glass, electronic curtain, sunglasses and anti-glare mirror are known.
  • Non-patent Document 1 As an electronic paper display, full-color electronic paper using a viologen compound system (Non-patent Document 1), color electronic paper using a metallo supramolecular polymer (Patent Document 1), and one using Prussian blue (non-patent) Reference 2).
  • Patent Document 1 As an electronic paper display, full-color electronic paper using a viologen compound system (Non-patent Document 1), color electronic paper using a metallo supramolecular polymer (Patent Document 1), and one using Prussian blue (non-patent) Reference 2).
  • Patent Document 1 As an electronic paper display, full-color electronic paper using a viologen compound system (Non-patent Document 1), color electronic paper using a metallo supramolecular polymer (Patent Document 1), and one using Prussian blue (non-patent) Reference 2).
  • Patent Document 2 As an electronic paper display, full-color electronic paper using a viologen compound system (Non-patent Document 1), color electronic paper using
  • an electrochromic printing device that prepares a drawing tool (pen) with a liquid or solid electrolyte attached to the tip of the electrochromic film, injects colored ions from the electrolyte at the tip, and draws and erases.
  • Patent Document 2 a drawing tool with a liquid or solid electrolyte attached to the tip of the electrochromic film, injects colored ions from the electrolyte at the tip, and draws and erases.
  • a separate touch screen or touch panel matrix switch, resistive film method, surface acoustic wave method, infrared method, electromagnetic induction
  • the position information of the touch part is electrically read and displayed on the electronic paper or display based on the position information Since a mechanism is required, a separate driving electronic circuit is required in addition to a complicated structure, which increases costs.
  • voltage and current can be applied to the color of the entire screen using a structure in which an electrochromic material is sandwiched between conductive thin-film sheet electrodes such as transparent conductive thin films. Can be changed. However, since a two-dimensional sheet-like electrode is used, local voltage / current application cannot be performed, so only the color of the entire screen is changed, and the local color cannot be changed. If it is desired to change the color partially, it is the same as the above-described electronic paper and display, and patterning of electrodes for applying a local voltage / current and a dedicated electronic circuit for driving it are required.
  • the touch screen / touch panel matrix switch, resistive film method, surface acoustic wave method, infrared method, electromagnetic induction, etc. is used separately as with electronic paper and display devices.
  • System, capacitance system, etc. and it is necessary to attach to devices such as light control glass, electronic curtain, sunglasses, anti-glare mirror, etc. Therefore, a separate electronic circuit for driving is required as well as a complicated structure.
  • Patent Document 2 a drawing tool (pen) having a liquid or solid electrolyte portion attached to the tip is prepared for an electrochromic film, and colored ions are injected from the tip electrolyte to draw and erase.
  • an electrochromic printing apparatus has been proposed, there is a problem that a special drawing tool is required to attach a liquid or solid electrolyte to the tip and inject colored ions from the tip.
  • Electronic whiteboards that do not use electrochromics include electronic whiteboards that combine whiteboard projectors and hardware software, but they consist of a combination of complex and expensive software and hardware. Become.
  • the present invention has been made to solve the above-described conventional problems, and does not require a special driving electronic circuit for local voltage / current, and locally changes color (coloring / discharging) with a simple structure. It is an object of the present invention to provide an electrochromic drawing / display device that can be (color / discolored).
  • the present invention relates to a substrate, a lower conductive film disposed on the substrate, an electrochromic material and an electrolyte disposed on the lower conductive film, and a spacer having an insulating property on the electrochromic material and the electrolyte.
  • the transfected runner Mick drawing and display device is obtained by solving the above problems.
  • the present invention also provides a substrate, a lower conductive film disposed on the substrate, an electrochromic material and an electrolyte disposed on the lower conductive film, a conductor drawing tool, the drawing tool and the electro Means for applying a voltage between the chromic material and the electrolyte, and when the drawing tool is brought into contact with the electrochromic material and the electrolyte, the contact point is locally energized, and an electric field is applied only to the electrochromic material immediately below the contact point.
  • the above-mentioned problem is similarly solved by an electrochromic drawing / display device characterized in that, when applied, the color of the electrochromic material changes locally.
  • the electrochromic material can be disposed under or on the electrolyte.
  • a conductive film can be disposed on the electrochromic material and the electrolyte.
  • the electrochromic material can be a metallo supramolecular polymer or a conductive polymer compound.
  • carbon nanotubes can be mixed in the electrochromic material.
  • a power source can be built in the drawing tool.
  • local erasure and discoloration can be achieved by changing the magnitude and polarity of the voltage.
  • an erasing electrode can be disposed on the electrochromic material and the electrolyte or conductive film.
  • a higher voltage can be applied as the distance increases according to the distance from the erasing electrode disposed on the conductive film.
  • a pen-type and touch-type electrochromic device capable of drawing without using a special electrode pattern, a driving electronic circuit, and a special drawing tool is realized, and in an apparatus using an electrochromic material
  • a device that changes the color of only the part touched with a finger or a touch pen can be provided.
  • the pen-type and touch-type electrochromic device based on the principle of the present invention does not require a special driving electronic circuit for local voltage / current, and has a simple structure for local color change (coloring and coloring). Erasing / discoloring).
  • Sectional drawing which shows (A) structure and (B) operation principle of the touch-type electrochromic device which concerns on 1st Embodiment of this invention.
  • Figure showing the drawing example Diagram comparing the switching characteristics of electrochromic devices in polymer only and polymer / CNT blends
  • Sectional drawing which shows the structure of the touch-type electrochromic device which concerns on 2nd Embodiment of this invention.
  • Sectional drawing which shows the structure of the touch-type electrochromic device which concerns on 3rd Embodiment of this invention.
  • Sectional drawing which similarly shows the structure of the touch-type electrochromic device which concerns on 7th Embodiment of this invention
  • Sectional drawing which shows the structure of the pen-type electrochromic device using the drawing tool which concerns on 8th Embodiment of this invention.
  • Sectional drawing which shows the structure of the pen-type electrochromic device using the drawing tool which concerns on 9th Embodiment of this invention.
  • Sectional drawing which shows the structure of the pen-type electrochromic device using the drawing tool which concerns on 10th Embodiment of this invention.
  • Sectional drawing which shows the structure of the pen-type electrochromic device using the drawing tool which concerns on 11th Embodiment of this invention.
  • Sectional drawing which shows the structure of the pen-type electrochromic device using the drawing tool which concerns on 12th Embodiment of this invention.
  • FIG. 1A shows the configuration of a touch-type electrochromic device according to the first embodiment of the present invention.
  • an electrochromic material 14 is disposed on a glass or plastic substrate 10 having a conductive film (lower conductive film) 12 such as a transparent conductive film, and a liquid, gel, or solid electrolyte is formed thereon. 16 is arranged.
  • a conductive film 18 can be disposed on the electrolyte 16.
  • a transparent film 26 with an upper transparent conductive film 24 sandwiching an insulator 20 and a spacer 22 is disposed thereon.
  • the transparent film 26 with the upper transparent conductive film 24 is pressed with an object such as a conductive / non-conductive finger 30 or a touch pen, the transparent film 26 is bent and the insulator 20 The gap formed by the spacer 22 is eliminated, and the upper transparent conductive film 24 and the conductive film 18 or the electrolyte 16 thereunder are in electrical contact with each other and are locally energized.
  • a voltage is applied from the power source 28 between the upper transparent conductive film 24 and the lower conductive film 12
  • an electric field B is applied from the local contact A obtained by bending toward the lower conductive film 12. Therefore, since the electric field B is applied only to the electrochromic material 14 immediately below the contact A, the electrochromic material 14 immediately below the contact A can be locally changed (colored, decolored, discolored) C.
  • a touch-type electrochromic device is realized, and in an apparatus using an electrochromic material, the color of a part touched by an object of any shape, such as a finger or a touch pen, regardless of conductivity or non-conductivity is locally applied.
  • Device can be provided.
  • the touch-type electrochromic device based on this embodiment does not require a touch panel or touch screen for detecting the touch part, and can directly change the color of the touch part. Therefore, there is no need for position detection and driving electronic circuits required for touch panels and touch screens, and there is no need for special driving electronic circuits for local voltages and currents. Color change is possible.
  • the object to be pressed for color change may be any object regardless of the presence or absence of conductivity or the shape. Since objects that are necessary for pressing do not need electrostatic conductivity, they may be worn with bare hands and fingers, or with gloves, and can be touch pens or sticks, both conductive and non-conductive. Any material or shape can be used as long as it can be pressed regardless of whether it is conductive or non-conductive, such as an object, a shape with a large contact area such as an eraser or a blackboard eraser.
  • Fig. 2 shows an actual photograph during operation of the touch-type electrochromic device.
  • a line or a picture having an arbitrary shape can be drawn by pressing the transparent film with the upper transparent conductive film with a non-conductive touch pen.
  • the substrate 10 may be any material. Any material system may be used, such as all solid materials such as glass, ceramics, and semiconductors, and plastic materials such as PET.
  • the thickness of the substrate 10 may be any thickness. When it is thin, it becomes a flexible device, and a flexible display device and a light control device capable of bending can be realized.
  • the color of the substrate 10 may be transparent, may have color, or may be opaque. In particular, when using transmitted light as in a light control device, it is better to be transparent. In the case of transparency, it is also possible to place a background panel behind it or arrange another display, and it can be used in combination with what is placed on the background.
  • a white substrate it can also be used as the background of a display device such as an electronic notepad (notebook) or electronic whiteboard having a white background.
  • a transparent substrate may be used and a colored background film or substrate may be attached separately behind the transparent substrate.
  • the lower conductive film 12 on the substrate 10 may be transparent or not transparent.
  • a transparent conductive film such as ITO, an oxide semiconductor, or an organic conductive film.
  • an opaque electrode such as metal may be used.
  • the electrochromic material 14 may be any material type electrochromic material as long as the color changes with voltage and current.
  • a material system includes an inorganic material system and an organic material system.
  • inorganic materials include oxides (tungsten oxide, vanadium oxide, molybdenum oxide, iridium oxide, rhodium oxide, nickel oxide, chromium oxide, etc.), metal complexes (prussian blue, ruthenium purple, and other complexes).
  • nitride materials such as indium nitride).
  • organic material systems include various material systems such as viologen-based compounds, leuco dye-based compounds, terephthalic acid compounds, polyoxotungstates, and polymer systems (such as conductive polymer compounds and metallo supramolecular polymers).
  • the conductive polymer compound refers to an organic polymer that exhibits electrical conductivity by chemical or electrochemical doping.
  • Metallo supramolecular polymers are obtained by complex formation of transition metal ions such as iron, ruthenium, copper and cobalt, transition metal ions such as europium and organic ligands having two or more sites that can coordinate with them. Refers to a polymeric supramolecule.
  • the electrochromic layer includes a liquid type and a solid type, and any material system may be used.
  • Electrochromic materials differ in voltage and speed required for color change (coloring / decoloring / discoloration) depending on the material.
  • an electrochromic device it is more preferable that the response of the color change is faster, and when an electrochromic material that can change the color at high speed is used, the drawing speed in the electrochromic device is improved and the operability can be improved. is there.
  • a metallo supramolecular polymer or a conductive polymer compound has a response of about 1 second or less, and is an electrochromic device suitable for drawing.
  • the electrolyte 16 disposed on the electrochromic material 14 may be any of liquid, gel, and solid electrolytes. In the case of a liquid electrolyte, it can be sealed with a conductive film or the like disposed immediately above the electrolyte. In the case of a gel / solid electrolyte, it can be placed on the electrochromic material 14 without sealing.
  • the material system of the electrolyte 16 may be an electrolyte of any component as long as it can conduct ions necessary for an electrochemical reaction such as oxidation / reduction of the electrochromic material 14. It suffices if the electrochromic material layer and the electrolyte layer are sandwiched between electrodes and a voltage is applied to cause a color change mainly by utilizing an electrochemical reaction such as oxidation / reduction.
  • the conductive film 18 disposed on the electrolyte 16 may or may not be present.
  • the conductive film 18 only needs to have conductivity in the thickness direction of the film.
  • the liquid can be sealed by the conductive film 18.
  • the conductive film 18 may or may not be present.
  • this conductive film 18 is present, compared to the case without the conductive film 18, the shape, hardness, elasticity, adhesiveness of the surface of the electrolyte 16, mechanical contact with the upper transparent conductive film 24, Electrical contact with the upper transparent conductive film 24 and the electrolyte 16 can be improved.
  • the shape and hardness can be imparted by providing the conductive film 18, and the elasticity and adhesiveness of the electrolyte 16 can be adjusted.
  • the electrolyte 16 is mechanically soft
  • the shape and hardness can be imparted by providing the conductive film 18, and the elasticity and adhesiveness of the electrolyte 16 can be adjusted.
  • the electrical contact from the electrolyte 16 to the upper transparent conductive film 24 for color change.
  • the physical property value such as the work function of the conductive film 18, it is possible to adjust the voltage and the speed necessary for oxidation / reduction from the electrolyte 16 to the upper transparent conductive film 24.
  • Adjustment and improvement of the voltage value and current value necessary for the color change of the electrochromic material 14 can also be performed. This makes it possible to improve the durability, lower power consumption, higher speed operation, and improved operability of the electrolyte 16, the conductive film 18, and the upper transparent conductive film 24.
  • the conductive film 18 on the electrolyte 16 may be made of any material as long as it has translucency and conductivity.
  • this electrochromic device since it is necessary to apply an electric field to the conductive film 18 in the film thickness direction (perpendicular direction), the resistance decreases in the film thickness direction (perpendicular direction). Then, the locality of color change, operating voltage / current, durability, high speed, and operability of the electrochromic device can be improved. Therefore, in the case of a conductive film having no electrical resistance anisotropy, the thinner the conductive film 18 is, the locality of color change of the electrochromic device, operating voltage / current, durability, high speed, Operability is improved.
  • the in-plane direction of the conductive film is more than the resistance of the electrolyte.
  • the electric resistance tends to be relatively low, and the entire potential in the in-plane direction of the film in the conductive film approaches the equipotential. Therefore, the locality of the color change of the electrochromic device tends to be lost. In an extreme case, the local color change cannot be performed, and only the color change of the entire electrochromic film can be obtained.
  • the resistance in the film thickness direction is low, and the locality of the color change is improved by reducing the thickness of the conductive film. If a conductive film having anisotropy in electric resistance is used, the characteristics of the electrochromic device are improved by reducing the electric resistance in the film thickness direction. In addition, when the film thickness cannot be sufficiently reduced, the locality of the color change can be maintained by using a sheet having a slightly higher sheet resistance in the in-plane direction of the conductive film.
  • the material of the conductive film 18 on the electrolyte may be any material as long as it is translucent and conductive in the film thickness direction.
  • any material system that is mainly used as a transparent conductive film may be used.
  • carbon-based materials such as graphite, carbon nanofibers, carbon nanotubes, graphene, etc. used as transparent conductive films and composite materials containing them, ultrathin metal films, metal thin films such as silver nanofibers, nanowires, fine particles, Any material may be used as long as it is light-transmitting and conductive, such as a conductive film using the composite material, an organic conductive film such as PEDOT, an oxide-based or semiconductor-based conductive film such as ITO or ZnO.
  • the electroconductive film of the electrochromic device of the present invention since it operates by energization by an electric field in the film thickness direction, a low sheet resistance in the in-plane direction required for a normal transparent conductive film or the like is unnecessary. Even a conductive film having a high inward sheet resistance can be used.
  • a conductive film having a high inward sheet resistance can be used.
  • the sheet resistance in the in-plane direction may become high, but even in such a high sheet resistance conductive film, the conductivity in the film thickness (perpendicular) direction is ensured because the film thickness is thin. In this case, an electric field is applied in the film thickness direction, so that it can be used as the conductive film of the present invention.
  • an insulator 20 to the panel frame and a spacer 22 to the inside of the panel are formed in order to provide electrical insulation by providing a gap between the upper transparent conductive film 24 and the upper transparent conductive film 24.
  • any material system may be used. If the spacer placed inside the panel should be inconspicuous when used as a display device or a light control device, it is better to use a material that is transparent or close to white, but a very small spacer is recommended so that it is difficult to see. If used, there is no problem with any color.
  • the shape, width, height, and interval of the spacer 22 are energized by pressing the film with a finger, a pen, or the like to bend while electrically insulating the electrolyte 16 or the conductive film 18 and the upper transparent conductive film 24.
  • a gap it may be in the form of dots, lines, lattices, etc., and the width, height, spacing, etc. may be any size.
  • Durability improvement, low power consumption, high speed operation, and operability improvement can be performed.
  • the lower portion of the spacer can be provided with conductivity.
  • the transparent film 26 coated with the upper transparent conductive film 24 disposed on the spacer 22 only needs to have translucency and flexibility to bend by pressing.
  • the upper transparent conductive film 24 may be any material as long as it is transparent and conductive. Any transparent conductive material such as an oxide system such as ITO / ZnO, a semiconductor system, an organic system, a metal system, or a carbon system may be used. The material system may be used. In particular, when the conductivity in the in-plane direction is higher, low voltage driving or higher speed operation is possible. In addition, since the color change is obtained by bringing the electrolyte 16 and the conductive film 18 into electrical and physical contact with each other by pressing, the performance changes depending on the characteristics of the material such as the work function. Therefore, the material of the electrolyte 16 and the conductive film 18 It is also possible to improve the performance by selecting the material of the upper transparent conductive film 24 according to the above. Moreover, since bending distortion is applied not only to the transparent film 26 but also to the upper transparent conductive film 24 by pressing, it is preferable that durability against bending is high.
  • any transparent conductive material such as an oxide system such as ITO / ZnO,
  • the material of the transparent film 26 is flexible so that it can be bent by pressing, and may be any material as long as it is transparent, and may be a solid material such as thin glass, or a plastic / vinyl material such as PET or PVC. .
  • the thickness of the transparent film 26 may be anything, but the flexibility and the pressing feeling change depending on the thickness, so that the locality of color change and the operational feeling of the device can be adjusted.
  • the upper transparent conductive film 24, the conductive film 18, and the lower conductive film 12 are not only one type of conductive film, but also a thin coating of two or more types of electrode materials as different materials, or a patterned electrode. It may be used.
  • a transparent conductive film such as ITO
  • other kinds of conductive dissimilar materials 12B and 18D are formed on the conductive films 12 and 18 as in the second embodiment shown in FIG.
  • a thin coating in the form of dots in the example of FIG.
  • D material is formed on the lower conductive film 12B made of B material on the lower conductive film 12A made of A material and the conductive film 18C made of C material (lower in the figure))
  • the conductive film 18D) can be arranged in a pattern such as a dot shape, a line shape, or a lattice shape.
  • a conductive film composed of two or more materials as described above is used as an electrode of an electrochromic device, the potential (potential) and contact resistance required for oxidation / reduction differ depending on the material, so color change (coloring / Decolorization and discoloration) can be reduced in voltage and speed, and the durability and operability of electrochromic devices can be improved.
  • the work function of the electrode material is constant on the electrode, and the ease of oxidation and reduction is different.
  • the speed of change varies greatly, for example, coloring may be at a low voltage and high speed, but decoloring may be at a high voltage and low speed.
  • coloring may be at a low voltage and high speed, but decoloring may be at a high voltage and low speed.
  • the lower conductive film 12 is formed of an electrode using two types of materials, A material 12A and B material 12B, the A material 12A and the B material 12B are necessary for oxidation and reduction. Since the voltage and speed are different, the material advantageous for oxidation and reduction acts spontaneously, so that both lowering the voltage and increasing the speed of both coloring and decoloring are possible.
  • the contact resistance of the electrode for example, the conductive film 18
  • the contact resistance can be reduced, and the voltage can be lowered, the speed can be improved, and the characteristics can be improved.
  • the use of two or more similar electrode materials can also be applied to the upper transparent conductive film 24.
  • the electrochromic material 14 is the lower part and the electrolyte 16 is the upper part.
  • the electrochromic material 14 is the lower part and the electrolyte 16 is the upper part.
  • the electrochromic material 14 can reversibly change its color by oxidation / reduction associated with voltage application, it is possible to select coloring / decoloring / discoloration according to the magnitude and polarity of the applied voltage. Therefore, by changing the voltage magnitude or polarity between the upper transparent conductive film 24 and the lower conductive film 12, it is possible to select coloration / decoloration / discoloration. For this reason, for example, in the above-described embodiment, when the electrochromic material can be colored with minus 2V and erased with plus 3V, the upper transparent film 26 is pressed with a finger or a pen when the minus 2V is applied.
  • FIG. 8 shows an example of partial erasure in a touch type electrochromic device.
  • the upper transparent film 26 was partially pressed to erase the color, and then the voltage was switched to color. It is also possible to erase the drawing by pressing the upper transparent film 26 partially and coloring.
  • some electrochromic materials change color depending on the magnitude of the voltage. In that case, various colors can be drawn by drawing after switching the applied voltage according to the color to be drawn. is there.
  • Such partial coloring / decoloring / discoloration enables display devices such as electronic memo pads (notebooks) and electronic whiteboards using electrochromics, and local color changes (coloring / decoloring / discoloration). It can be used for light-shielding devices such as light control glass, electronic curtains, sunglasses, and anti-glare mirrors.
  • the electrochromic material 14 near the voltage terminal attached to the conductive film 18 is preferentially changed. Therefore, it becomes difficult to obtain a color change of the electrochromic material far from the voltage terminal. Therefore, as in the sixth embodiment shown in FIG. 11, if a higher voltage is applied as the distance increases according to the distance from the erasing electrode 36 attached to the conductive film 18, the electrochromic material portion becomes a position. A sufficient voltage can be applied to the color change without shifting. As the distance from the erasing electrode 36 to the conductive film 18 increases, any circuit may be used as long as the voltage applied to the lower conductive film 12 is higher.
  • the lower conductive film is formed as a pattern electrode 12 'such as a line-and-space, and the line of each pattern electrode is connected by an appropriate resistor 38.
  • a high voltage is applied to the portion farthest from the erasing electrode 36 (the center portion of the screen), and the resistance is reduced by using a voltage drop due to the resistor 38 as the erasing electrode 36 at the edge of the screen is approached.
  • a higher voltage can be applied to each pattern electrode 12 ′ as it approaches the center, so that uniform color erasure can be performed on the entire screen.
  • Such a pattern electrode 12 ′ and a resistor 38 can be attached with a normal resistance element when the number of lines of the pattern electrode is small, and when the number of lines is increased, a seal, sheet, or paste If a resistor such as a thin film or a thin film is attached to a large number of line patterns, a pseudo distributed resistance circuit can be easily obtained. In that case, the distribution of resistance, which is a pseudo-distribution constant, can be made by simply changing the shape of the resistor in the form of a seal, sheet, paste, or thin film. is there.
  • the entire screen may be erased by attaching a fine erasing electrode 42 on the electrolyte 16 or the conductive film 18 as in the seventh embodiment shown in FIG. Is possible.
  • reference numeral 44 denotes an insulating layer for the erasing electrode 42.
  • a thin line-and-space (stripe) erasing electrode 42 is formed on the conductive film 18.
  • the entire screen can be colored, decolored and discolored.
  • the distance between the erasing electrodes 42 may be any distance as long as the color change of the entire screen can be obtained, but when drawing, the electrolyte 16 is pressed by pressing the upper transparent conductive film 24 and the transparent film 26 thereabove. Or, since it is necessary to draw in contact with the conductive film 18, the upper transparent conductive film 24 enters between the erasing electrodes 42 by the pressing of the transparent film 26 on the upper side, and the electrolyte 16 and the conductive film 18. It is necessary to prepare enough space for contact.
  • the width of the stripe-like erasing electrode 42 may be any width as long as it is designed so as to obtain the color change of the entire screen.
  • the upper transparent conductive film 24 is used for erasing. Since it is necessary to secure a space to enter between the electrodes 42, it is easier to secure the interval between the erasing electrodes 42 if the width of the erasing electrodes 42 is narrowed. In order to ensure the translucency of the device, the width of the erasing electrode 42 is preferably narrow.
  • an insulating film 44 that ensures insulation is required between the erasing electrode 42 and the transparent conductive film 24 thereabove.
  • the insulating film 44 prevents electrical conduction between the upper transparent conductive film 24 and the erasing electrode 42 when the transparent film 26 is pressed. Therefore, when the transparent film 26 is pressed during drawing, No voltage is applied to the erasing electrode 42, and it is possible to avoid erroneous drawing of the electrochromic material in the stripe-like portion immediately below the erasing electrode 42. In addition, since the width of the erasing electrode 42 is sufficiently narrow, only the lower part of the erasing electrode 42 is drawn because only the lower part of the erasing electrode 42 pressed against the transparent film 26 is partially changed in color. The problem of not being able to be avoided.
  • the erasing electrode 42 and its insulating film 44 are preferably made of a translucent material in order to ensure translucency. However, if the width of the erasing electrode 42 can be made so thin that it cannot be seen, the transparency is improved. It is not necessary.
  • the spacer 22 is separately used in addition to the erasing electrode 42 and the erasing electrode insulator 44 thereabove, but the erasing electrode 42 and the erasing electrode insulation can be obtained without preparing a separate spacer.
  • the body 44 itself can be used as a spacer.
  • FIG. 13 shows an experimental example of printing erasure in a device having a comb-shaped electrode for erasing. It is shown that characters printed by coloring can be erased by a comb-shaped erasing electrode.
  • FIG. 14 shows an eighth embodiment as an example.
  • a drawing tool 50 such as a pen whose tip is a conductor is used with a hand 48.
  • the electric field B is locally applied and the electrochromic material 14 under the contact point A is locally color-changed (colored / decolored / discolored) C when held in contact with the electrolyte 16 or the conductive film 18.
  • Can do can do.
  • the color can be changed by applying a voltage by wiring (52) between the conductor part 50A at the tip of the drawing tool and the lower conductive film 12, and any one of coloring, decoloring, and discoloration can be applied.
  • the voltage can be selected based on the polarity and magnitude of the voltage to be applied.
  • Such a switch to be selected based on the polarity and magnitude of the voltage can be provided by installing a switch on the electrochromic device side, and a remote voltage switch mechanism using a remote controller or the like can also be introduced.
  • the conductive film 18 on the electrolyte 16 may or may not be present, but if present, the shape, hardness, elasticity, adhesiveness of the surface of the electrolyte 16 and the electrolyte 16 The electrical contact with can be improved.
  • the characteristics of the materials required for the conductive film 18, the electrolyte 16, the electrochromic material 14, the lower conductive film 12, and the substrate 10 used in the present embodiment are the same as those in the previous embodiment.
  • the material used as the drawing tool 50 may be any material and material as long as the tip has conductivity, such as conductive metal, conductive polymer, carbon material, conductive rubber, and composite materials thereof. There is no need for light transparency.
  • FIG. 15 shows a ninth embodiment in which the direct electric wiring 52 provided between the lower conductive film 12 and the drawing tool 50 is cut off and a potential by grounding is applied in the eighth embodiment.
  • a voltage is applied between the drawing tool 50 and the lower conductive film 12 via a grounded potential. This eliminates the need to connect the wiring from the drawing tool 50 directly to the lower conductive film 12 and enables drawing even if the drawing tool 50 and the electrochromic device are not physically connected. The handling of tools becomes easy and drawing becomes easy. Any method may be used for grounding, such as the ground, device housing, drawing person's body, ground wire, etc., without using physical wiring by using indirect grounding such as corona discharge. It may be grounded.
  • the electrochromic device using this drawing tool it is possible to erase the drawn printing by the applied voltage, and the drawing tool can be used like an eraser.
  • the entire screen erasing technique shown in the above fourth to eighth embodiments can be used as it is, and the partial erasing shown in FIG. 8 and the conductive film 18 similar to the fourth embodiment shown in FIG. The same as in the fifth embodiment shown in FIG. 10, the erasing by the conductive film 18 using the assist by the drawing tool 50 instead of the finger 30, the same as the sixth embodiment shown in FIG. 11.
  • the erasing by patterning of the lower conductive film 12 'and the erasing by patterning the erasing electrode 42 / insulating layer 44 on the electrolyte 16 / conductive film 18 similar to those of the seventh embodiment shown in FIG. 12 and FIG. 13 can be applied.
  • a short-circuit between the drawing tool 50 and the human body (such as a hand 48 holding the drawing tool 50) is used to pass the human body.
  • it is necessary to perform electrical wiring to the drawing tool 50 by connecting the human body to the ground or the power supply 28 via the ground, the device housing, the human body of the drawing person, the ground wire, the corona discharge, or the like. There is no.
  • the short-circuiting method from the human body to the ground or the power source 28 may be a short circuit via a user's shoes or clothing, a short circuit due to contact of the human body with a device housing or wiring, a short circuit via a conductive band, etc. Any method is acceptable. With this method, the drawing tool 50 is independent like a normal pen, so that physical handling is easy, drawing operability is improved, and electric wiring is not required, so that the drawing tool 50 is a simple material. And can be made inexpensively with a structure.
  • the wiring through the human body can be connected to the ground, or can be connected to a power source wired from the lower conductive film.
  • the power source 28 is disposed on the lower conductive film 12 side.
  • An electrochromic device that can be drawn is also possible. In this case, if you prepare a switch that switches the polarity and magnitude of the voltage in the drawing tool itself, you can select coloring, decoloring, and discoloration at hand with the drawing tool, making drawing and erasing operability easier. improves.
  • the wiring in this case is selectively used depending on the object as well as the electrical wiring to the body portion of the drawing tool 50 as in the eleventh embodiment, as well as the wiring due to a short circuit through the human body as in the twelfth embodiment shown in FIG. Is possible.
  • FIG. 19 shows an example of drawing with a conductive rod drawing tool. An arbitrary shape can be drawn with a drawing tool.
  • an electronic memo pad (notebook) that does not use paper can be realized by using the touch-type or pen-type electrochromic device according to the present invention.
  • the touch electrochromic device having the transparent film 26 and the upper transparent conductive film 24 as in the first to seventh embodiments it is possible to draw with any shape of material, such as a finger or a stick, regardless of conductivity or non-conductivity. It can be used as a notepad.
  • the pen-type electrochromic device as in the eighth to twelfth embodiments can be used as a memo pad by using a conductor pen.
  • the electrochromic device of the present invention can be colored, bright, and partial erasing. There is a feature that is possible.
  • the entire screen can be erased by the techniques of the fourth to seventh embodiments. If an electrochromic material that changes color depending on the voltage is used, multicoloring is possible.
  • the touch-type / pen-type device can be erased with a shape like an eraser in addition to a rod-shaped drawing tool.
  • a clean electronic whiteboard can be realized without using a chalk or whiteboard marker by using the touch-type or pen-type electrochromic device according to the present invention.
  • the touch electrochromic device having the transparent film 26 and the upper transparent conductive film 24 as in the first to seventh embodiments it is possible to draw with any shape of material, such as a finger or a stick, regardless of conductivity or non-conductivity. It can be used as a whiteboard.
  • the pen type as in the eighth to eleventh embodiments can be used as a whiteboard by using a conductive pen.
  • the electrochromic device of the present invention is characterized in that it can be colored, bright, and partially erased. Further, the entire screen can be erased by the techniques of the fourth to seventh embodiments.
  • the touch-type / pen-type device has a shape like a whiteboard eraser in addition to a rod-like drawing tool, and can be erased. Further, a complicated and expensive system such as a combination of a whiteboard, a projector, hardware, and software is not required as in a conventional electronic whiteboard, and it can be manufactured at a low cost with a simple structure.
  • conventional electrochromic anti-glare mirrors only adjust the brightness of the entire mirror or only a limited part.
  • the color can be changed by directly touching only the reflective part of the mirror part irradiated with bright incident light from sunlight or light. It is possible to obtain a clear reflected image while providing a part of the antiglare function.
  • the conventional electrochromic sunglasses only dimmed the entire sunglasses, but when the electrochromic device of the present invention is used, the color of the touched part can be changed, and a part of the sunglasses. It is possible to block light.
  • a touch position reading device such as a touch screen (touch panel) is disposed on the front surface (touch surface) of the electrochromic device of the present invention. You can also. In this case, it is also possible to input information using position information by the display device and the touch screen according to the present invention. In this case, when a display device such as a display is further arranged on the back surface, an information terminal device combining the touch screen and the display device or light control device of the present invention can be realized.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

The present invention is provided with: a substrate 10; a lower conductive film 12 disposed on the substrate; an electrochromic material 14 and an electrolyte 16 disposed on the lower conductive film; an upper transparent conductive film 24, disposed on the electrochromic material and the electrolyte, with an insulating spacer 22 interposed therebetween; a transparent film 26 disposed on the upper transparent conductive film; and a means (28) for applying a voltage between the lower transparent conductive film and the upper transparent conductive film, wherein when the transparent film is pressed from the upper surface thereof, the transparent film is bent, a gap formed by the spacer disappears, the upper transparent conductive film is brought into electrical contact with the electrochromic material or the electrolyte thereunder so as to locally pass an electrical current, an electric field is applied only to a portion, of the electrochromic material, directly under the contact point, and thereby, a local color of the electrochromic material is changed. Accordingly, the electrochromic rendering/displaying device which allows a local color change (coloring, decoloring, discoloring) by means of a simple structure is provided.

Description

エレクトロクロミック描画・表示装置Electrochromic drawing / display device
 本発明は、エレクトロクロミック描画・表示装置に係り、特に、局所的な電圧・電流のための特別な駆動用電子回路が必要なく、単純な構造で局所的に色変化(着色・消色・変色)させることが可能なエレクトロクロミック描画・表示装置に関する。 The present invention relates to an electrochromic drawing / display device, and in particular, no special driving electronic circuit for local voltage / current is required, and local color change (coloring / decoloring / discoloration) with a simple structure. The present invention relates to an electrochromic drawing / display device that can be used.
 電圧・電流を印可することによって、電気化学的な酸化・還元によって色変化が可逆的に得られるエレクトロクロミック材料が知られている。 An electrochromic material is known in which a color change can be obtained reversibly by electrochemical oxidation / reduction by applying voltage / current.
 このようなエレクトロクロミック材料としては、無機材料系や有機材料系がある。無機材料系として、酸化物系(酸化タングステン、酸化バナジウム、酸化モリブデン、酸化イリジウム、酸化ロジウム、酸化ニッケル、酸化クロムなどの酸化物)、金属錯体系(プルシアンブルー、ルテニウムパープルなどの錯体)、窒化物系(窒化インジウムなど)など、様々な材料系がある。有機材料系としては、ビオロゲン系、ロイコ染料系化合物、テレフタル酸化合物、ポリオキソタングステート、ポリマー系(導電性高分子化合物、メタロ超分子ポリマーなど)など、様々な材料系がある。 Such electrochromic materials include inorganic materials and organic materials. Inorganic materials include oxides (oxides such as tungsten oxide, vanadium oxide, molybdenum oxide, iridium oxide, rhodium oxide, nickel oxide, and chromium oxide), metal complex systems (complexes such as Prussian blue and ruthenium purple), and nitriding There are various material systems such as physical systems (such as indium nitride). As organic material systems, there are various material systems such as viologen-based compounds, leuco dye-based compounds, terephthalic acid compounds, polyoxotungstates, and polymer systems (such as conductive polymer compounds and metallo supramolecular polymers).
 エレクトロクロミックデバイスでは、エレクトロクロミック材料層と電解質層を電極で挟み、電圧を印可することにより、主に酸化・還元といった電気化学的な反応を利用することで色変化を引き起す。このようなエレクトロクロミックデバイスでは、エレクトロクロミック層には液体型および固体型があり、電解質層には液体型・ゲル型・固体型がある。 In an electrochromic device, an electrochromic material layer and an electrolyte layer are sandwiched between electrodes and a voltage is applied to cause a color change mainly by utilizing an electrochemical reaction such as oxidation / reduction. In such an electrochromic device, the electrochromic layer includes a liquid type and a solid type, and the electrolyte layer includes a liquid type, a gel type, and a solid type.
 このようなエレクトロクロミックデバイスの応用としては、電子ペーパー・ディスプレイ・ファインダーなどの表示デバイスや、調光ガラス・電子カーテン・サングラス・防眩ミラーなどの遮光デバイスが知られている。 As applications of such electrochromic devices, display devices such as electronic paper, display and viewfinder, and light shielding devices such as light control glass, electronic curtain, sunglasses and anti-glare mirror are known.
 電子ペーパー・ディスプレイとしては、ビオロゲン化合物系を用いたフルカラー電子ペーパー(非特許文献1)や、メタロ超分子ポリマーを用いたカラー電子ペーパー(特許文献1)や、プルシアンブルーを用いたもの(非特許文献2)などがある。ファインダーとしては、酸化物系エレクトロクロミック材料を用いたものがある。調光ガラス・電子カーテン・サングラス・防眩ミラーも実用化されている。 As an electronic paper display, full-color electronic paper using a viologen compound system (Non-patent Document 1), color electronic paper using a metallo supramolecular polymer (Patent Document 1), and one using Prussian blue (non-patent) Reference 2). There is a viewfinder using an oxide electrochromic material. Light control glass, electronic curtains, sunglasses, and anti-glare mirrors are also in practical use.
 また、エレクトロクロミックフィルムに対して、液体もしくは固体の電解質部を先端に取り付けた描具(ペン)を用意して、先端の電解質から発色イオンを注入出して、描画・消去するエレクトロクロミック印字装置がある(特許文献2)。また、適用方法に関して、エレクトロクロミック以外の手法による関連する応用としては、電子ホワイトボードや電子メモ帳(ノート)などがある。 Also, an electrochromic printing device that prepares a drawing tool (pen) with a liquid or solid electrolyte attached to the tip of the electrochromic film, injects colored ions from the electrolyte at the tip, and draws and erases. Yes (Patent Document 2). Moreover, regarding application methods, there are electronic whiteboards, electronic memo pads (notebooks), and the like as related applications using techniques other than electrochromic.
WO2013/115277号公報WO2013 / 115277 publication 特開2007-163758号公報JP 2007-163758 A
 前記電子ペーパーやディスプレイデバイスでは、主にマトリックス形式などの微細で多数の透明電極などの配線構造を組み合わせることにより、エレクトロクロミック材料に対して局所的にスクリーンの厚み方向に電圧・電流を印加することで局所的に色を変えるようにしてディスプレイを実現している。しかし、微細で多数の電極をパターニングする必要があることや、特定の位置に電圧・電流を印可するための駆動用電子回路が必要となる問題がある。 In the electronic paper and display device, voltage and current are applied locally to the electrochromic material in the thickness direction of the screen mainly by combining wiring structures such as many transparent electrodes such as matrix type. The display is realized by changing the color locally. However, there are problems that it is necessary to pattern a large number of fine electrodes and a driving electronic circuit for applying a voltage / current to a specific position.
 また、指やタッチペンで接触した部分の色を変える場合は、電子ペーパーやディスプレイデバイスに対して、別途、タッチスクリーンやタッチパネル(マトリクス・スイッチ、抵抗膜方式、表面弾性波方式、赤外線方式、電磁誘導方式、静電容量方式など)を用意して、電子ペーパーやディスプレイデバイスに取り付けることにより、タッチ部分の位置情報を電気的に読み取り、その位置情報を基に電子ペーパーやディスプレイで表示するといった複雑な機構が必要であるため、複雑な構造とともに別途駆動用電子回路も必要となり、コストが高くなる。 In addition, when changing the color of the part touched with a finger or a touch pen, a separate touch screen or touch panel (matrix switch, resistive film method, surface acoustic wave method, infrared method, electromagnetic induction) is used for electronic paper and display devices. System, capacitance method, etc.) and attaching to electronic paper or display device, the position information of the touch part is electrically read and displayed on the electronic paper or display based on the position information Since a mechanism is required, a separate driving electronic circuit is required in addition to a complicated structure, which increases costs.
 また、調光ガラス・電子カーテン・サングラス・防眩ミラーなどのデバイスでは、透明導電薄膜などの導電性の薄膜シート状電極でエレクトロクロミック材料を挟んだ構造により、スクリーン全体の色を電圧・電流印加により変えることができる。しかし、2次元のシート状の電極を用いているために局所的な電圧・電流印加ができないため、スクリーン全体の色を変えるのみであり、局所的な色の変化はできない。もし、部分的に色を変えたい場合には、上述の電子ペーパーやディスプレイと同様となり、局所電圧・電流印加用の電極のパターニングとそれを駆動する専用の電子回路が必要となる。 In devices such as dimming glass, electronic curtains, sunglasses, and anti-glare mirrors, voltage and current can be applied to the color of the entire screen using a structure in which an electrochromic material is sandwiched between conductive thin-film sheet electrodes such as transparent conductive thin films. Can be changed. However, since a two-dimensional sheet-like electrode is used, local voltage / current application cannot be performed, so only the color of the entire screen is changed, and the local color cannot be changed. If it is desired to change the color partially, it is the same as the above-described electronic paper and display, and patterning of electrodes for applying a local voltage / current and a dedicated electronic circuit for driving it are required.
 さらに、指やタッチペンで接触した部分の色を変える場合は、電子ペーパーやディスプレイデバイスと同様に、別途、タッチスクリーン・タッチパネル(マトリクス・スイッチ、抵抗膜方式、表面弾性波方式、赤外線方式、電磁誘導方式、静電容量方式など)を用意して、調光ガラス・電子カーテン・サングラス・防眩ミラーなどのデバイスに取り付ける必要があるため、複雑な構造とともに別途駆動用電子回路も必要となる。 Furthermore, when changing the color of the part touched with a finger or a touch pen, the touch screen / touch panel (matrix switch, resistive film method, surface acoustic wave method, infrared method, electromagnetic induction, etc. is used separately as with electronic paper and display devices. System, capacitance system, etc.), and it is necessary to attach to devices such as light control glass, electronic curtain, sunglasses, anti-glare mirror, etc. Therefore, a separate electronic circuit for driving is required as well as a complicated structure.
 そのため、エレクトロクロミックを用いたタッチ式の電子メモ帳(ノート)、電子ホワイトボードなどの表示デバイスや、局所的な色変化を可能とした調光ガラス・電子カーテン・サングラス・防眩ミラーを作成するには、高コストとなる。 For this reason, touch-type electronic memo pads (notebooks) and electronic whiteboards that use electrochromic, and dimming glass, electronic curtains, sunglasses, and anti-glare mirrors that enable local color change are created. It will be expensive.
 また、特許文献2では、エレクトロクロミックフィルムに対して、液体もしくは固体の電解質部を先端に取り付けた描具(ペン)を用意して、先端の電解質から発色イオンを注入出して、描画・消去するエレクトロクロミック印字装置が提案されているが、先端に液体もしくは固体の電解質を取り付けて、その先端から発色イオンを注入する特殊な描具が必要であることが問題である。 Further, in Patent Document 2, a drawing tool (pen) having a liquid or solid electrolyte portion attached to the tip is prepared for an electrochromic film, and colored ions are injected from the tip electrolyte to draw and erase. Although an electrochromic printing apparatus has been proposed, there is a problem that a special drawing tool is required to attach a liquid or solid electrolyte to the tip and inject colored ions from the tip.
 又、エレクトロクロミックを用いない電子メモ帳としては、現在、感圧式の液晶を利用したものがあるが、(1)白黒のみでカラー化ができない、(2)暗い、(3)部分的な消去ができないため筆記ミスの部分修正が不可能等の問題点を有していた。 In addition, some electronic notepads that do not use electrochromic currently use pressure-sensitive liquid crystal, but (1) cannot be colored only in black and white, (2) dark, (3) partial erasure However, it was impossible to correct a part of writing mistakes.
 又、エレクトロクロミックを用いない電子ホワイトボードとしては、ホワイトボード・プロジェクタおよびハード・ソフトウェアを組み合わせた電子ホワイトボードがあるが、複雑で高価なソフトウェアとハードウェアの組み合わせからなり、仕組みが複雑で高額となる。 Electronic whiteboards that do not use electrochromics include electronic whiteboards that combine whiteboard projectors and hardware software, but they consist of a combination of complex and expensive software and hardware. Become.
 本発明は、前記従来の問題点を解消するべくなされたもので、局所的な電圧・電流のための特別な駆動用電子回路が必要なく、単純な構造で局所的に色変化(着色・消色・変色)させることが可能なエレクトロクロミック描画・表示装置を提供することを課題とする。 The present invention has been made to solve the above-described conventional problems, and does not require a special driving electronic circuit for local voltage / current, and locally changes color (coloring / discharging) with a simple structure. It is an object of the present invention to provide an electrochromic drawing / display device that can be (color / discolored).
 本発明は、基板と、該基板上に配設される下部導電膜と、該下部導電膜上に配設されるエレクトロクロミック材料及び電解質と、該エレクトロクロミック材料及び電解質上に絶縁性を有するスペーサーを介して配設される上部透明導電膜と、該上部透明導電膜上に配設される透明フィルムと、前記下部導電膜と上部透明導電膜間に電圧を印加する手段とを備え、前記透明フィルムを上面から押した時に、該透明フィルムが湾曲して前記スペーサーにより形成された隙間が無くなり、前記上部透明導電膜とその下のエレクトロクロミック材料又は電解質が電気的に接触して局所的に通電され、接触点直下のエレクトロクロミック材料にのみ電界が印加され、該エレクトロクロミック材料の色が局所的に変化するようにしたことを特徴とするエレクトロクロミック描画・表示装置により、前記課題を解決したものである。 The present invention relates to a substrate, a lower conductive film disposed on the substrate, an electrochromic material and an electrolyte disposed on the lower conductive film, and a spacer having an insulating property on the electrochromic material and the electrolyte. A transparent film disposed on the upper transparent conductive film, and means for applying a voltage between the lower conductive film and the upper transparent conductive film, the transparent When the film is pushed from the upper surface, the transparent film is curved and the gap formed by the spacer is eliminated, and the upper transparent conductive film and the electrochromic material or electrolyte thereunder are in electrical contact and are locally energized. An electric field is applied only to the electrochromic material immediately below the contact point, so that the color of the electrochromic material changes locally. The transfected runner Mick drawing and display device is obtained by solving the above problems.
 本発明は、又、基板と、該基板上に配設される下部導電膜と、該下部導電膜上に配設されるエレクトロクロミック材料及び電解質と、導体の描具と、該描具とエレクトロクロミック材料及び電解質間に電圧を印加する手段とを備え、前記描具をエレクトロクロミック材料及び電解質に接触させた時に、接触点に局所的に通電され、接触点直下のエレクトロクロミック材料にのみ電界が印加され、該エレクトロクロミック材料の色が局所的に変化するようにしたことを特徴とするエレクトロクロミック描画・表示装置により、同様に前記課題を解決したものである。 The present invention also provides a substrate, a lower conductive film disposed on the substrate, an electrochromic material and an electrolyte disposed on the lower conductive film, a conductor drawing tool, the drawing tool and the electro Means for applying a voltage between the chromic material and the electrolyte, and when the drawing tool is brought into contact with the electrochromic material and the electrolyte, the contact point is locally energized, and an electric field is applied only to the electrochromic material immediately below the contact point. The above-mentioned problem is similarly solved by an electrochromic drawing / display device characterized in that, when applied, the color of the electrochromic material changes locally.
 ここで、前記エレクトロクロミック材料を、前記電解質の下又は上に配設することができる。 Here, the electrochromic material can be disposed under or on the electrolyte.
  又、前記エレクトロクロミック材料及び電解質の上に導電性膜を配設することができる。 Also, a conductive film can be disposed on the electrochromic material and the electrolyte.
 又、前記エレクトロクロミック材料を、メタロ超分子ポリマー又は導電性高分子化合物とすることができる。 Moreover, the electrochromic material can be a metallo supramolecular polymer or a conductive polymer compound.
  又、前記エレクトロクロミック材料にカーボンナノチューブを混合することができる。 In addition, carbon nanotubes can be mixed in the electrochromic material.
 又、前記描具に電源を内蔵することができる。 Moreover, a power source can be built in the drawing tool.
 又、前記電圧の大きさや極性を変えることにより、局所的な消去や変色を可能とすることができる。 Also, local erasure and discoloration can be achieved by changing the magnitude and polarity of the voltage.
 又、前記エレクトロクロミック材料及び電解質上の導電性膜と下部導電膜の間に電圧を印加する手段を備え、全体の消去を可能とすることができる。 Further, it is possible to provide a means for applying a voltage between the electrochromic material and the conductive film on the electrolyte and the lower conductive film, thereby enabling the entire erasure.
 又、前記エレクトロクロミック材料及び電解質又は導電性膜に消去用の電極を配設することができる。 In addition, an erasing electrode can be disposed on the electrochromic material and the electrolyte or conductive film.
 又、前記導電性膜に配設した消去用電極からの距離に応じて、距離が離れる程、高い電圧を印加することができる。 Also, a higher voltage can be applied as the distance increases according to the distance from the erasing electrode disposed on the conductive film.
 本発明によれば、特別な電極パターン、駆動用電子回路、特殊な描具を用いなくても描画が可能なペン式・タッチ式のエレクトロクロミックデバイスを実現し、エレクトロクロミック材料を用いた装置において指やタッチペン等で触れた部分のみの色を変えるデバイスを提供することができる。本発明では、マトリックス形式による電圧・電流印加を必要としないため、微細で多数の複雑な配線構造を用いなくても、任意の位置の局所的な色を変えることが可能となる。また、本発明の原理に基づくペン式・タッチ式のエレクトロクロミックデバイスでは、局所的な電圧・電流のための特別な駆動用電子回路は必要なく、単純な構造で局所的な色変化(着色・消色・変色)が可能である。また、タッチ部分の位置情報を読み取るタッチパネルやタッチスクリーンなどの電子デバイスは必要なく、タッチ部分の色を直接変えることができ、タッチパネルやタッチスクリーンで必要な位置検知や駆動用の電子回路が一切不要である。更に、特許文献2のような電解質部を先端に取り付けるなどの特殊な描具を用いることなく、任意の位置の局所的な色を変えることが可能となる。これにより、エレクトロクロミック材料を用いたタッチ式又はペン式の電子メモ帳(ノート)、電子ホワイトボードなどの表示デバイスや、局所的な色変化を可能とした調光ガラス・電子カーテン・サングラス・防眩ミラーなどの遮光デバイスなどの新しいデバイスを簡単な構造で低コストに作製することができる。 According to the present invention, a pen-type and touch-type electrochromic device capable of drawing without using a special electrode pattern, a driving electronic circuit, and a special drawing tool is realized, and in an apparatus using an electrochromic material A device that changes the color of only the part touched with a finger or a touch pen can be provided. In the present invention, since voltage / current application in a matrix format is not required, the local color at an arbitrary position can be changed without using a fine and complicated wiring structure. In addition, the pen-type and touch-type electrochromic device based on the principle of the present invention does not require a special driving electronic circuit for local voltage / current, and has a simple structure for local color change (coloring and coloring). Erasing / discoloring). Also, there is no need for electronic devices such as touch panels and touch screens that read the position information of the touch part, and the color of the touch part can be changed directly, eliminating the need for position detection and driving electronic circuits required for the touch panel and touch screen. It is. Furthermore, the local color at an arbitrary position can be changed without using a special drawing tool such as attaching an electrolyte part to the tip as in Patent Document 2. This enables display devices such as touch-type or pen-type electronic memo pads (notebooks) and electronic whiteboards that use electrochromic materials, and light-control glass, electronic curtains, sunglasses, and anti-reflection that enable local color changes. New devices such as light-shielding devices such as glare mirrors can be manufactured at a low cost with a simple structure.
本発明の第1実施形態に係るタッチ式のエレクトロクロミックデバイスの(A)構成及び(B)動作原理を示す断面図Sectional drawing which shows (A) structure and (B) operation principle of the touch-type electrochromic device which concerns on 1st Embodiment of this invention. 同じく描画例を示す図Figure showing the drawing example ポリマーのみとポリマー/CNT混合物におけるエレクトロクロミックデバイスのスイッチング特性を比較して示す図Diagram comparing the switching characteristics of electrochromic devices in polymer only and polymer / CNT blends (A)ポリマーのみと(B)ポリマーCNT混合物の電子顕微鏡像を比較して示す図The figure which compares and shows the electron microscope image of (A) polymer only and (B) polymer CNT mixture 導電性膜の(A)有(B)無による性能の違いを比較して示す図The figure which compares the difference of the performance by (A) existence (B) existence of the conductive film in comparison 本発明の第2実施形態に係るタッチ式のエレクトロクロミックデバイスの構成を示す断面図Sectional drawing which shows the structure of the touch-type electrochromic device which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係るタッチ式のエレクトロクロミックデバイスの構成を示す断面図Sectional drawing which shows the structure of the touch-type electrochromic device which concerns on 3rd Embodiment of this invention. 本発明の第2実施形態における部分消去例を示す図The figure which shows the example of partial deletion in 2nd Embodiment of this invention スクリーン全体を消去するための構成を加えた本発明の第4実施形態に係るタッチ式のエレクトロクロミックデバイスの構成を示す断面図Sectional drawing which shows the structure of the touch-type electrochromic device which concerns on 4th Embodiment of this invention which added the structure for erasing the whole screen. 同じく本発明の第5実施形態に係るタッチ式のエレクトロクロミックデバイスの構成を示す断面図Sectional drawing which similarly shows the structure of the touch-type electrochromic device which concerns on 5th Embodiment of this invention 同じく本発明の第6実施形態に係るタッチ式のエレクトロクロミックデバイスの構成を示す断面図Sectional drawing which similarly shows the structure of the touch-type electrochromic device which concerns on 6th Embodiment of this invention. 同じく本発明の第7実施形態に係るタッチ式のエレクトロクロミックデバイスの構成を示す断面図Sectional drawing which similarly shows the structure of the touch-type electrochromic device which concerns on 7th Embodiment of this invention 第7実施形態による印字の消去の実験例を示す図The figure which shows the experimental example of the erasure | elimination of printing by 7th Embodiment 本発明の第8実施形態に係る描具を用いたペン式のエレクトロクロミックデバイスの構成を示す断面図Sectional drawing which shows the structure of the pen-type electrochromic device using the drawing tool which concerns on 8th Embodiment of this invention. 本発明の第9実施形態に係る描具を用いたペン式のエレクトロクロミックデバイスの構成を示す断面図Sectional drawing which shows the structure of the pen-type electrochromic device using the drawing tool which concerns on 9th Embodiment of this invention. 本発明の第10実施形態に係る描具を用いたペン式のエレクトロクロミックデバイスの構成を示す断面図Sectional drawing which shows the structure of the pen-type electrochromic device using the drawing tool which concerns on 10th Embodiment of this invention. 本発明の第11実施形態に係る描具を用いたペン式のエレクトロクロミックデバイスの構成を示す断面図Sectional drawing which shows the structure of the pen-type electrochromic device using the drawing tool which concerns on 11th Embodiment of this invention. 本発明の第12実施形態に係る描具を用いたペン式のエレクトロクロミックデバイスの構成を示す断面図Sectional drawing which shows the structure of the pen-type electrochromic device using the drawing tool which concerns on 12th Embodiment of this invention. 導電性棒の描画による描画の実験例を示す図Diagram showing an example of drawing by drawing a conductive bar
 以下、本発明を好適に実施するための形態(以下、実施形態という)につき、詳細に説明する。なお、本発明は以下の実施形態及び実施例に記載した内容により限定されるものではない。また、以下に記載した実施形態及び実施例における構成要素には、当業者が容易に想到できるもの、実質的に同一のもの、所謂均等の範囲のものが含まれる。更に、以下に記載した実施形態及び実施例で開示した構成要素は適宜組み合わせてもよいし、適宜選択して用いてもよい。 Hereinafter, modes for suitably carrying out the present invention (hereinafter referred to as embodiments) will be described in detail. In addition, this invention is not limited by the content described in the following embodiment and an Example. In addition, constituent elements in the embodiments and examples described below include those that can be easily conceived by those skilled in the art, those that are substantially the same, and those in a so-called equivalent range. Furthermore, the constituent elements disclosed in the embodiments and examples described below may be appropriately combined or may be appropriately selected and used.
 本発明の第1実施形態に係るタッチ式のエレクトロクロミックデバイスの構成を図1(A)に示す。この第1実施形態では、透明導電膜などの導電膜(下部導電膜)12を有するガラスやプラスチック基板10上にエレクトロクロミック材料14を配置し、その上に液体状・ゲル状・固体状の電解質16を配置する。電解質16上には、導電性膜18を配置することができる。その上には、絶縁体20やスペーサー22を挟み込んだ上部透明導電膜24付きの透明フィルム26を配置する。 FIG. 1A shows the configuration of a touch-type electrochromic device according to the first embodiment of the present invention. In the first embodiment, an electrochromic material 14 is disposed on a glass or plastic substrate 10 having a conductive film (lower conductive film) 12 such as a transparent conductive film, and a liquid, gel, or solid electrolyte is formed thereon. 16 is arranged. A conductive film 18 can be disposed on the electrolyte 16. A transparent film 26 with an upper transparent conductive film 24 sandwiching an insulator 20 and a spacer 22 is disposed thereon.
 図1(B)に示すように、上部透明導電膜24付きの透明フィルム26の上面を導電・非導電の指30やタッチペン等の物体で押し付けた場合、透明フィルム26が湾曲して絶縁体20やスペーサー22により作られている空隙が無くなり、上部透明導電膜24とその下の導電性膜18または電解質16が電気的に接触して、局所的に通電される。ここで、もし、上部透明導電膜24と下部導電膜12の間に電源28から電圧を印加した場合、湾曲により得られた局所的な接点Aから下部導電膜12に向けて電界Bが印可されるため、接点Aの直下のエレクトロクロミック材料14にのみ電界Bが印加されるため、接点A直下のエレクトロクロミック材料14を局所的に色変化(着色、消色、変色)Cさせることができる。 As shown in FIG. 1B, when the upper surface of the transparent film 26 with the upper transparent conductive film 24 is pressed with an object such as a conductive / non-conductive finger 30 or a touch pen, the transparent film 26 is bent and the insulator 20 The gap formed by the spacer 22 is eliminated, and the upper transparent conductive film 24 and the conductive film 18 or the electrolyte 16 thereunder are in electrical contact with each other and are locally energized. Here, if a voltage is applied from the power source 28 between the upper transparent conductive film 24 and the lower conductive film 12, an electric field B is applied from the local contact A obtained by bending toward the lower conductive film 12. Therefore, since the electric field B is applied only to the electrochromic material 14 immediately below the contact A, the electrochromic material 14 immediately below the contact A can be locally changed (colored, decolored, discolored) C.
 本実施形態によれば、タッチ式のエレクトロクロミックデバイスを実現し、エレクトロクロミック材料を用いた装置において、指やタッチペンなどの導電・非導電を問わずあらゆる形状の物体で触れた部分の色を局所的に変えるデバイスを提供することができる。 According to the present embodiment, a touch-type electrochromic device is realized, and in an apparatus using an electrochromic material, the color of a part touched by an object of any shape, such as a finger or a touch pen, regardless of conductivity or non-conductivity is locally applied. Device can be provided.
 本実施形態によれば、マトリックス形式による電圧・電流印加を必要としないため、微細で多数の複雑な配線構造を用いなくても、任意の位置の局所的な色を変えることが可能となる。 According to this embodiment, since voltage / current application in a matrix format is not required, it is possible to change a local color at an arbitrary position without using a fine and complicated wiring structure.
 本実施形態に基づくタッチ式のエレクトロクロミックデバイスでは、タッチ部分を検知するタッチパネルやタッチスクリーンが不要であり、タッチ部分の色を直接変えることができる。従って、タッチパネルやタッチスクリーンで必要な、位置検知や駆動用の電子回路が一切不要であり、局所的な電圧・電流のための特別な駆動用電子回路は必要なく、単純な構造で局所的な色変化が可能である。 The touch-type electrochromic device based on this embodiment does not require a touch panel or touch screen for detecting the touch part, and can directly change the color of the touch part. Therefore, there is no need for position detection and driving electronic circuits required for touch panels and touch screens, and there is no need for special driving electronic circuits for local voltages and currents. Color change is possible.
 また、色変化のために押し付ける物体は、導電性の有無や形状を問わず、あらゆる物体で良い。押し付けに必要な物体には、静電的な導電性が必要ないため、何も装着していない素手や指の他、手袋をしていても良く、導電・非導電を問わずタッチペンや棒状の物体、消しゴムや黒板消しのような接触面積の大きな形状のものなど、導電・非導電を問わず押し付けられればどんな材質や形状でも良い。 In addition, the object to be pressed for color change may be any object regardless of the presence or absence of conductivity or the shape. Since objects that are necessary for pressing do not need electrostatic conductivity, they may be worn with bare hands and fingers, or with gloves, and can be touch pens or sticks, both conductive and non-conductive. Any material or shape can be used as long as it can be pressed regardless of whether it is conductive or non-conductive, such as an object, a shape with a large contact area such as an eraser or a blackboard eraser.
 これにより、エレクトロクロミックを用いたタッチ式の電子メモ帳(ノート)、電子ホワイトボードなどの表示デバイスや、局所的な色変化を可能とした調光ガラス・電子カーテン・サングラス・防眩ミラーなどの新しいデバイスを簡単な構造で低コストに作製することができる。 This enables display devices such as touch-type electronic memo pads (notebooks) and electronic whiteboards that use electrochromic, and dimming glass, electronic curtains, sunglasses, and anti-glare mirrors that enable local color changes. New devices can be fabricated at a low cost with a simple structure.
 図2に、タッチ式エレクトロクロミックデバイスの動作時の実際の写真を示す。タッチ式エレクトロクロミックデバイスで消色されている状態において、上部透明導電膜付きの透明フィルムを非導電性のタッチペンで押し付けることにより、任意の形状の線や絵を描くことができる。 Fig. 2 shows an actual photograph during operation of the touch-type electrochromic device. In a state where the color is erased by the touch electrochromic device, a line or a picture having an arbitrary shape can be drawn by pressing the transparent film with the upper transparent conductive film with a non-conductive touch pen.
 前記基板10は、どのような材料でも良い。ガラス・セラミックス・半導体をはじめとするあらゆる固体材料、PETなどのプラスチック材料など、どのような材料系でも良い。基板10の厚みもどのような厚みでよい。薄い場合は、フレキシブルな装置となり、湾曲が可能なフレキシブルな表示装置や調光装置が可能となる。基板10の色は、透明でもあっても良いし、色があっても、不透明でも良い。特に調光装置のように、透過光を利用する場合は、透明の方が良い。また、透明の場合は、その背後に背景パネルを置いたり、他のディスプレイを配置したりすることも可能であり、背景に置いたものと組み合わせて利用することもできる。色がある場合は、例えば白色の基板を使えば、白色の背景を持つ電子メモ帳(ノート)や電子ホワイトボードのような表示装置の背景として使うこともできる。また、電子メモ帳(ノート)や電子ホワイトボードの場合は、透明の基板を用いて、その背後に着色された背景のフィルムや基板を別途張り付けても良い。 The substrate 10 may be any material. Any material system may be used, such as all solid materials such as glass, ceramics, and semiconductors, and plastic materials such as PET. The thickness of the substrate 10 may be any thickness. When it is thin, it becomes a flexible device, and a flexible display device and a light control device capable of bending can be realized. The color of the substrate 10 may be transparent, may have color, or may be opaque. In particular, when using transmitted light as in a light control device, it is better to be transparent. In the case of transparency, it is also possible to place a background panel behind it or arrange another display, and it can be used in combination with what is placed on the background. If there is a color, for example, if a white substrate is used, it can also be used as the background of a display device such as an electronic notepad (notebook) or electronic whiteboard having a white background. In the case of an electronic memo pad (notebook) or an electronic whiteboard, a transparent substrate may be used and a colored background film or substrate may be attached separately behind the transparent substrate.
 基板10上の下部導電膜12は、透明でも良いし、透明でなくても良い。表示装置や調光装置などにおいて光の透過性が必要な場合や背景色を利用する応用では、ITO・酸化物半導体・有機導電膜などの透明導電膜を用いたほうが良い。光の透過性が必要で無い場合は、金属等の不透明の電極でも良い。 The lower conductive film 12 on the substrate 10 may be transparent or not transparent. In a display device, a light control device, or the like where light transmission is required or an application using a background color, it is better to use a transparent conductive film such as ITO, an oxide semiconductor, or an organic conductive film. When light transmittance is not required, an opaque electrode such as metal may be used.
 エレクトロクロミック材料14としては、電圧・電流によって色が変化すれば、どのような材料系のエレクトロクロミック材料でも良い。例えばこのような材料系としては、無機材料系や有機材料系がある。無機材料系としては、例えば、酸化物系(酸化タングステン、酸化バナジウム、酸化モリブデン、酸化イリジウム、酸化ロジウム、酸化ニッケル、酸化クロムなどの酸化物)、金属錯体系(プルシアンブルー、ルテニウムパープルなどの錯体)、窒化物系(窒化インジウムなど)など、様々な材料系がある。有機材料系としては、例えば、ビオロゲン系、ロイコ染料系化合物、テレフタル酸化合物、ポリオキソタングステート、ポリマー系(導電性高分子化合物、メタロ超分子ポリマーなど)など、様々な材料系がある。導電性高分子化合物とは、化学的あるいは電気化学的ドーピングにより電気伝導性を示す有機ポリマーを指す。メタロ超分子ポリマーとは、鉄、ルテニウム、銅、コバルトなどの遷移金属イオンやユウロピウムなどの遷移金属イオンとそれらに配位可能な部位を2つ以上有する有機配位子が錯形成することで得られるポリマー状超分子を指す。また、エレクトロクロミック層には液体型および固体型があり、いずれの材料系でも良い。 The electrochromic material 14 may be any material type electrochromic material as long as the color changes with voltage and current. For example, such a material system includes an inorganic material system and an organic material system. Examples of inorganic materials include oxides (tungsten oxide, vanadium oxide, molybdenum oxide, iridium oxide, rhodium oxide, nickel oxide, chromium oxide, etc.), metal complexes (prussian blue, ruthenium purple, and other complexes). ) And nitride materials (such as indium nitride). Examples of organic material systems include various material systems such as viologen-based compounds, leuco dye-based compounds, terephthalic acid compounds, polyoxotungstates, and polymer systems (such as conductive polymer compounds and metallo supramolecular polymers). The conductive polymer compound refers to an organic polymer that exhibits electrical conductivity by chemical or electrochemical doping. Metallo supramolecular polymers are obtained by complex formation of transition metal ions such as iron, ruthenium, copper and cobalt, transition metal ions such as europium and organic ligands having two or more sites that can coordinate with them. Refers to a polymeric supramolecule. The electrochromic layer includes a liquid type and a solid type, and any material system may be used.
 エレクトロクロミック材料は、材料に依存して、色変化(着色・消色・変色)に要する電圧や速度が異なる。エレクトロクロミックデバイスでは、色変化の応答性が早い方がより好ましく、高速で色変化が可能なエレクトロクロミック材料を用いた場合、エレクトロクロミックデバイスにおける描画時の速度が向上して操作性向上が可能である。例えば、メタロ超分子ポリマーや導電性高分子化合物では、応答性が約1秒以内の応答性を有しており、描画に適したエレクトロクロミックデバイスとなる。 Electrochromic materials differ in voltage and speed required for color change (coloring / decoloring / discoloration) depending on the material. In an electrochromic device, it is more preferable that the response of the color change is faster, and when an electrochromic material that can change the color at high speed is used, the drawing speed in the electrochromic device is improved and the operability can be improved. is there. For example, a metallo supramolecular polymer or a conductive polymer compound has a response of about 1 second or less, and is an electrochromic device suitable for drawing.
  発明者の実験によると、メタロ超分子ポリマーなどのエレクトロクロミック材料とカーボンナノチューブCNTを混ぜることにより、図3に示す如く、色変化の速度(エレクトロクロミック特性の書き換え速度)の向上、色の保持、色変化のコントラストの向上が確認できた。これは、図4に示すように、カーボンナノチューブCNTを混ぜたことにより、ポリマーに細孔が形成されたためと考えられる。 According to the inventor's experiment, by mixing an electrochromic material such as a metallo supramolecular polymer and the carbon nanotube CNT, as shown in FIG. The improvement of the contrast of the color change was confirmed. This is presumably because pores were formed in the polymer by mixing the carbon nanotubes CNT as shown in FIG.
 エレクトロクロミック材料14の上に配置する電解質16としては、液体状・ゲル状・固体状のいずれの電解質でも良い。液体状の電解質の場合は、電解質直上に配置する導電性膜等によって封止することができる。ゲル状・固体状の電解質の場合には、封止することなくエレクトロクロミック材料14上に配置することができる。電解質16の材料系は、エレクトロクロミック材料14の酸化・還元といった電気化学的な反応に必要なイオンの伝導が可能であれば、どのような成分の電解質でも良い。エレクトロクロミック材料層と電解質層を電極で挟み、電圧を印可することにより、主に酸化・還元といった電気化学的な反応を利用することで色変化を引き起すことができればよい。 The electrolyte 16 disposed on the electrochromic material 14 may be any of liquid, gel, and solid electrolytes. In the case of a liquid electrolyte, it can be sealed with a conductive film or the like disposed immediately above the electrolyte. In the case of a gel / solid electrolyte, it can be placed on the electrochromic material 14 without sealing. The material system of the electrolyte 16 may be an electrolyte of any component as long as it can conduct ions necessary for an electrochemical reaction such as oxidation / reduction of the electrochromic material 14. It suffices if the electrochromic material layer and the electrolyte layer are sandwiched between electrodes and a voltage is applied to cause a color change mainly by utilizing an electrochemical reaction such as oxidation / reduction.
 電解質16の上部に配置する導電性膜18は、有っても良いし無くても良い。この導電性膜18としては、膜の厚み方向に導電性を有していればよい。電解質16として液体を用いている場合は、この導電性膜18によって液体を封止することができる。ゲル状や固体状の電解質を用いている場合は、この導電性膜18は有っても良いし無くても良い。この導電性膜18があった場合は、導電性膜18が無い場合と比べて、電解質16表面の形状、硬さ、弾力性、粘着性、上部透明導電膜24との機械的な接触具合、上部透明導電膜24や電解質16との電気的な接触を改善することができる。例えば、電解質16が機械的に柔らかい場合に、この導電性膜18を付与することによって形状や硬さを付与したり、電解質16の弾力性や粘着性を調整したりすることができる。これにより、電解質16や上部透明導電膜24の機械的な消耗や上部透明導電膜24の貼り付きを抑制したり、タッチパネルの操作感を向上したりすることが可能となる。また、色変化のための電解質16から上部透明導電膜24までの電気的な接触の調整や向上も可能である。また、導電性膜18の仕事関数などの物性値を調整することにより、電解質16から上部透明導電膜24までの酸化・還元に必要な電圧やその速度を調整することが可能であることから、エレクトロクロミック材料14の色変化に必要な電圧値や電流値の調整や改善することもできる。これにより、電解質16・導電性膜18・上部透明導電膜24の耐久性向上・低消費電力化・高速動作化・操作性向上などが可能となる。 The conductive film 18 disposed on the electrolyte 16 may or may not be present. The conductive film 18 only needs to have conductivity in the thickness direction of the film. When a liquid is used as the electrolyte 16, the liquid can be sealed by the conductive film 18. When a gel or solid electrolyte is used, the conductive film 18 may or may not be present. When this conductive film 18 is present, compared to the case without the conductive film 18, the shape, hardness, elasticity, adhesiveness of the surface of the electrolyte 16, mechanical contact with the upper transparent conductive film 24, Electrical contact with the upper transparent conductive film 24 and the electrolyte 16 can be improved. For example, when the electrolyte 16 is mechanically soft, the shape and hardness can be imparted by providing the conductive film 18, and the elasticity and adhesiveness of the electrolyte 16 can be adjusted. Thereby, it is possible to suppress mechanical consumption of the electrolyte 16 and the upper transparent conductive film 24 and sticking of the upper transparent conductive film 24, and to improve the operational feeling of the touch panel. In addition, it is possible to adjust and improve the electrical contact from the electrolyte 16 to the upper transparent conductive film 24 for color change. Further, by adjusting the physical property value such as the work function of the conductive film 18, it is possible to adjust the voltage and the speed necessary for oxidation / reduction from the electrolyte 16 to the upper transparent conductive film 24. Adjustment and improvement of the voltage value and current value necessary for the color change of the electrochromic material 14 can also be performed. This makes it possible to improve the durability, lower power consumption, higher speed operation, and improved operability of the electrolyte 16, the conductive film 18, and the upper transparent conductive film 24.
 この電解質16上の導電性膜18は、透光性があり導電性があれば、どのような材質でも良い。特に、このエレクトロクロミックデバイスでは、導電性膜18に対して膜厚方向(面直方向)に電界が印加されて通電する必要があるため、膜厚方向(面直方向)に抵抗が低くなるようにすると、エレクトロクロミックデバイスの色変化の局所性、動作電圧・電流、耐久性、高速性、操作性を改善することができる。そのため、電気抵抗の異方性が無い導電性膜の場合は、導電性膜18の膜厚を薄くする方がエレクトロクロミックデバイスの色変化の局所性、動作電圧・電流、耐久性、高速性、操作性が良くなる。特に、導電性膜の抵抗率が低い材料を用いた場合、導電性膜の膜厚がある程度厚くなって膜厚方向の抵抗が増してくると、電解質の抵抗よりも導電性膜の面内方向の電気抵抗の方が相対的に低くなる傾向となり、導電性膜内の膜の面内方向全体の電位が等電位に近づく。そのため、エレクトロクロミックデバイスの色変化の局所性が失われる傾向にあり、極端な場合は局所的な色変化ができなくなりエレクトロクロミック膜全体の色変化しか得られなくなる。そのため、膜厚方向の抵抗が低い方が好ましく、導電性膜の膜厚を薄くしたほうが色変化の局所性が向上する。もし、電気抵抗に異方性がある導電性膜を用いる場合は、膜厚方向の電気抵抗が低くなるようにするとエレクトロクロミックデバイスの特性が改善する。また、膜厚を十分薄くすることができない場合は、導電性膜の面内方向のシート抵抗がやや高めのものを用いれば、色変化の局所性を維持することができる。 The conductive film 18 on the electrolyte 16 may be made of any material as long as it has translucency and conductivity. In particular, in this electrochromic device, since it is necessary to apply an electric field to the conductive film 18 in the film thickness direction (perpendicular direction), the resistance decreases in the film thickness direction (perpendicular direction). Then, the locality of color change, operating voltage / current, durability, high speed, and operability of the electrochromic device can be improved. Therefore, in the case of a conductive film having no electrical resistance anisotropy, the thinner the conductive film 18 is, the locality of color change of the electrochromic device, operating voltage / current, durability, high speed, Operability is improved. In particular, when a material having a low resistivity of the conductive film is used, when the film thickness of the conductive film is increased to some extent and the resistance in the film thickness direction is increased, the in-plane direction of the conductive film is more than the resistance of the electrolyte. The electric resistance tends to be relatively low, and the entire potential in the in-plane direction of the film in the conductive film approaches the equipotential. Therefore, the locality of the color change of the electrochromic device tends to be lost. In an extreme case, the local color change cannot be performed, and only the color change of the entire electrochromic film can be obtained. Therefore, it is preferable that the resistance in the film thickness direction is low, and the locality of the color change is improved by reducing the thickness of the conductive film. If a conductive film having anisotropy in electric resistance is used, the characteristics of the electrochromic device are improved by reducing the electric resistance in the film thickness direction. In addition, when the film thickness cannot be sufficiently reduced, the locality of the color change can be maintained by using a sheet having a slightly higher sheet resistance in the in-plane direction of the conductive film.
 この電解質上の導電性膜18の材料としては、透光性があり膜厚方向に導電性があれば、どのような材料でも良い。例えば、主に透明導電膜として使われる材料系であればよい。例えば、透明導電膜として使われるグラファイト・カーボンナノファイバー・カーボンナノチューブ・グラフェンなどのカーボン系材料とそれを含む複合材料、極薄の金属膜や銀ナノファイバーなどの金属系薄膜・ナノワイヤー・微粒子やその複合材料による導電膜、PEDOTなどの有機系導電膜、ITOやZnOなどの酸化物系や半導体系導電膜など、透光性があり導電性があれば、どのような材料でも良い。特に、本発明のエレクトロクロミックデバイスの導電性膜としては、膜厚方向の電界による通電で動作するため、通常の透明導電膜等で要求される面内方向の低いシート抵抗は不要であり、面内方向のシート抵抗の高い導電性膜であっても使用することができる。特に、極薄の薄膜・微粒子・ファイバー・ポリマー形状の導電性膜の場合は、光の透明性を向上させようとするとグレイン・微粒子・ファイバー・ポリマー間の物理的接触が抑制されることによって、面内方向のシート抵抗が高くなる場合があるが、そのような高いシート抵抗の導電性膜であっても、膜厚が薄いなどの理由で膜厚(面直)方向の導電性が確保されていれば、膜厚方向に電界が印加されるため、本発明の導電膜として利用することができる。 The material of the conductive film 18 on the electrolyte may be any material as long as it is translucent and conductive in the film thickness direction. For example, any material system that is mainly used as a transparent conductive film may be used. For example, carbon-based materials such as graphite, carbon nanofibers, carbon nanotubes, graphene, etc. used as transparent conductive films and composite materials containing them, ultrathin metal films, metal thin films such as silver nanofibers, nanowires, fine particles, Any material may be used as long as it is light-transmitting and conductive, such as a conductive film using the composite material, an organic conductive film such as PEDOT, an oxide-based or semiconductor-based conductive film such as ITO or ZnO. In particular, as the electroconductive film of the electrochromic device of the present invention, since it operates by energization by an electric field in the film thickness direction, a low sheet resistance in the in-plane direction required for a normal transparent conductive film or the like is unnecessary. Even a conductive film having a high inward sheet resistance can be used. In particular, in the case of ultra-thin thin films, fine particles, fibers, and polymer-shaped conductive films, physical contact between grains, fine particles, fibers, and polymers is suppressed when trying to improve light transparency. The sheet resistance in the in-plane direction may become high, but even in such a high sheet resistance conductive film, the conductivity in the film thickness (perpendicular) direction is ensured because the film thickness is thin. In this case, an electric field is applied in the film thickness direction, so that it can be used as the conductive film of the present invention.
  発明者の実験によると、導電性膜18としてITOを電解質(ゲル)16上に転写することで、図5(B)に示す如く、導電性膜が無い場合に比べて、図5(A)に示す如く、電解質16と上部透明導電膜24の貼り付きを防止して、タッチ式上部電極(24)の操作性や耐久性を向上することができた。 According to the inventor's experiment, by transferring ITO onto the electrolyte (gel) 16 as the conductive film 18, as shown in FIG. 5B, as compared with the case without the conductive film, FIG. As shown in FIG. 4, the adhesion between the electrolyte 16 and the upper transparent conductive film 24 was prevented, and the operability and durability of the touch-type upper electrode (24) could be improved.
 電解質16上または導電性膜18上には、上部透明導電膜24との間に空隙を設けて電気的な絶縁をするために、パネル枠への絶縁体20やパネル内部へのスペーサー22を形成する。絶縁体20やスペーサー22は、上部透明導電膜24と絶縁されていれば、どのような材料系でも良い。表示装置や調光装置として用いる際に、パネル内部に配置するスペーサーは目立たないほうが良い場合には、スペーサーは透明や白色に近い材料の方が良いが、視認しにくいように非常に小さいスペーサーを用いる場合はどのような色でも問題が無い。また、スペーサー22の形状・幅・高さ・間隔は、電解質16または導電性膜18と上部透明導電膜24の電気的な絶縁を取りつつ、指やペン等によってフィルムを押して湾曲させて通電する空隙があれば、ドット状、線状、格子状などの形状でも良く、幅・高さ・間隔などもどのような寸法でも良い。エレクトロクロミックデバイスで用いる電解質16・導電性膜18・上部透明導電膜24の機械的・電気的な性質を鑑みて、スペーサー22の形状・幅・高さ・間隔を決めることにより、エレクトロクロミックデバイスの耐久性向上・低消費電力化・高速動作化・操作性向上を行うことができる。また、後述するパネル全体の色変化(色消去)機能を持たせる場合は、スペーサー下部に導電性を持たせることもできる。 On the electrolyte 16 or the conductive film 18, an insulator 20 to the panel frame and a spacer 22 to the inside of the panel are formed in order to provide electrical insulation by providing a gap between the upper transparent conductive film 24 and the upper transparent conductive film 24. To do. As long as the insulator 20 and the spacer 22 are insulated from the upper transparent conductive film 24, any material system may be used. If the spacer placed inside the panel should be inconspicuous when used as a display device or a light control device, it is better to use a material that is transparent or close to white, but a very small spacer is recommended so that it is difficult to see. If used, there is no problem with any color. Further, the shape, width, height, and interval of the spacer 22 are energized by pressing the film with a finger, a pen, or the like to bend while electrically insulating the electrolyte 16 or the conductive film 18 and the upper transparent conductive film 24. As long as there is a gap, it may be in the form of dots, lines, lattices, etc., and the width, height, spacing, etc. may be any size. In consideration of the mechanical and electrical properties of the electrolyte 16, the conductive film 18, and the upper transparent conductive film 24 used in the electrochromic device, by determining the shape, width, height, and interval of the spacer 22, Durability improvement, low power consumption, high speed operation, and operability improvement can be performed. In addition, when a color change (color erasure) function for the entire panel, which will be described later, is provided, the lower portion of the spacer can be provided with conductivity.
 スペーサー22上に配置する上部透明導電膜24がコートされた透明フィルム26は、透光性があり、押し付けによって湾曲するフレキシビリティーがあれば良い。 The transparent film 26 coated with the upper transparent conductive film 24 disposed on the spacer 22 only needs to have translucency and flexibility to bend by pressing.
 上部透明導電膜24は、透明性があり導電性があればどのような材料でも良く、ITO・ZnOなどの酸化物系や半導体系、有機系、金属系、カーボン系などどのような透明導電性の材料系でも良い。特に、面内方向の導電性が高い方が低電圧駆動や高速動作化などが可能である。また、押し付けによって電解質16や導電性膜18に電気的・物理的に接触させて色変化を得ることから、仕事関数などの材料の特性よって性能が変わるため、電解質16や導電性膜18の材料に応じた上部透明導電膜24の材料の選択によって性能を上げることも可能である。また、押し付けによって透明フィルム26だけではなく上部透明導電膜24にも曲げの歪が印加されることから、曲げに対する耐久性が高い方が好ましい。 The upper transparent conductive film 24 may be any material as long as it is transparent and conductive. Any transparent conductive material such as an oxide system such as ITO / ZnO, a semiconductor system, an organic system, a metal system, or a carbon system may be used. The material system may be used. In particular, when the conductivity in the in-plane direction is higher, low voltage driving or higher speed operation is possible. In addition, since the color change is obtained by bringing the electrolyte 16 and the conductive film 18 into electrical and physical contact with each other by pressing, the performance changes depending on the characteristics of the material such as the work function. Therefore, the material of the electrolyte 16 and the conductive film 18 It is also possible to improve the performance by selecting the material of the upper transparent conductive film 24 according to the above. Moreover, since bending distortion is applied not only to the transparent film 26 but also to the upper transparent conductive film 24 by pressing, it is preferable that durability against bending is high.
 透明フィルム26の材料は、押し付けによる湾曲が可能なフレキシビリティーがあり、透明性があればどのような材料でも良く、薄いガラスなどの固体材料、PETやPVCなどのプラスチック・ビニール素材など何でも良い。透明フィルム26の厚みも何でもよいが、厚みによってフレキシビリティーや押し付けの感触が変わるため、色変化の局所性やデバイスの操作感が調整可能である。 The material of the transparent film 26 is flexible so that it can be bent by pressing, and may be any material as long as it is transparent, and may be a solid material such as thin glass, or a plastic / vinyl material such as PET or PVC. . The thickness of the transparent film 26 may be anything, but the flexibility and the pressing feeling change depending on the thickness, so that the locality of color change and the operational feeling of the device can be adjusted.
 前記上部透明導電膜24・導電性膜18・下部導電膜12としては、一種類の導電膜だけではなく、2種類以上の複数の電極材料を異種材料として薄くコーティングしたものや、パターニングした電極を用いても良い。一例として、導電膜としてITOなどの透明導電膜を用いた場合、図6に示す第2実施形態のように、その導電膜12、18上に他の種類の導電性の異種材料12B、18Dをドット状に薄くコーティングしたり(図6の例では、A材料製の下部導電膜12A上にB材料製の下部導電膜12B、C材料製の導電性膜18C上(図では下)にD材料製の導電性膜18D)、ドット状・ライン状・格子状などにパターニングしたりして配置することができる。このように2種類以上の材料により構成された導電膜をエレクトロクロミックデバイスの電極として用いた場合、酸化・還元に必要となる電位(ポテンシャル)や接触抵抗が材料によって異なるため、色変化(着色・消色・変色)の低電圧化・高速化やエレクトロクロミックデバイスの耐久性向上・操作性向上が可能である。例えば、エレクトロクロミック材料では、一種類の電極を用いた場合、電極材料の仕事関数が電極上で一定であり、酸化と還元のしやすさが異なることから、着色と消色で印可電圧や色変化の速度が大きく異なり、例えば着色は低電圧・高速であるが消色は高電圧・低速となるといった場合がある。一方、例えば、図6のように、下部導電膜12をA材料12AとB材料12Bの2種類の材料を用いて電極を形成した場合、A材料12AとB材料12Bで酸化と還元に必要な電圧や速度が異なることから、酸化と還元に有利な材料が自発的に優位に作用するため、着色と消色の両方の低電圧化・高速化が両立して可能となる。異種材料として細いライン・格子パターンや薄くて小さいドットなどを用いた場合は、透光性のある透明導電材料を用いるのが好ましい一方で、例えば透光性の低い金属材料などを用いても、それらのドットやパターンの間隙を用意することでその間隙から透光性を確保できるため、異種材料としては透光性の有無にかかわらず用いることができる。また、電解質16と接触する電極(例えば導電性膜18など)では、接触抵抗が材料により異なるため、例えば、2種の電極材料(図6の場合、C材料18CとD材料18D)で電極(導電性膜18)を作ると、接触抵抗の低減が可能であり、低電圧化や速度向上や特性改善が可能となる。同様の2種以上の電極材料の利用は、上部透明導電膜24にも適用することが可能である。 The upper transparent conductive film 24, the conductive film 18, and the lower conductive film 12 are not only one type of conductive film, but also a thin coating of two or more types of electrode materials as different materials, or a patterned electrode. It may be used. As an example, when a transparent conductive film such as ITO is used as the conductive film, other kinds of conductive dissimilar materials 12B and 18D are formed on the conductive films 12 and 18 as in the second embodiment shown in FIG. A thin coating in the form of dots (in the example of FIG. 6, D material is formed on the lower conductive film 12B made of B material on the lower conductive film 12A made of A material and the conductive film 18C made of C material (lower in the figure)) The conductive film 18D) can be arranged in a pattern such as a dot shape, a line shape, or a lattice shape. When a conductive film composed of two or more materials as described above is used as an electrode of an electrochromic device, the potential (potential) and contact resistance required for oxidation / reduction differ depending on the material, so color change (coloring / Decolorization and discoloration) can be reduced in voltage and speed, and the durability and operability of electrochromic devices can be improved. For example, in the case of an electrochromic material, when one type of electrode is used, the work function of the electrode material is constant on the electrode, and the ease of oxidation and reduction is different. The speed of change varies greatly, for example, coloring may be at a low voltage and high speed, but decoloring may be at a high voltage and low speed. On the other hand, for example, as shown in FIG. 6, when the lower conductive film 12 is formed of an electrode using two types of materials, A material 12A and B material 12B, the A material 12A and the B material 12B are necessary for oxidation and reduction. Since the voltage and speed are different, the material advantageous for oxidation and reduction acts spontaneously, so that both lowering the voltage and increasing the speed of both coloring and decoloring are possible. When using thin lines / lattice patterns or thin and small dots as a different material, it is preferable to use a transparent conductive material with translucency, while using a metal material with low translucency, for example, By preparing gaps between these dots and patterns, it is possible to ensure translucency from the gaps, so that different materials can be used regardless of whether or not translucency exists. In addition, since the contact resistance of the electrode (for example, the conductive film 18) that contacts the electrolyte 16 differs depending on the material, for example, the electrode (C material 18C and D material 18D in the case of FIG. 6) When the conductive film 18) is made, the contact resistance can be reduced, and the voltage can be lowered, the speed can be improved, and the characteristics can be improved. The use of two or more similar electrode materials can also be applied to the upper transparent conductive film 24.
 また、図1では、エレクトロクロミック材料14が下部、電解質16が上部となっているが、図7に示す第3実施形態のように、上下が入れ替わって電解質16が下部、エレクトロクロミック材料14が上部でも良い。 In FIG. 1, the electrochromic material 14 is the lower part and the electrolyte 16 is the upper part. However, as in the third embodiment shown in FIG. But it ’s okay.
 エレクトロクロミック材料14は、電圧印加に伴う酸化・還元によって色変化が可逆的に得られるため、印可する電圧の大きさや極性によって色の着色・消色・変色を選択することが可能である。そのため、上部透明導電膜24と下部導電膜12の間の電圧の大きさや極性を変えることによって、色の着色・消色・変色を選択することができる。このため、例えば一例として、前記実施形態において、マイナス2Vで着色、プラス3Vで消色できるエレクトロクロミック材料である場合は、マイナス2Vを印可時に、指やペン等で上部透明フィルム26を押し付けて描画して着色による印字を行ったあと、プラス3Vに切り替えて上部透明フィルム26を押し付けて部分的にこすった部分を消しゴムのように部分的に消色することができる。図8にタッチ式のエレクトロクロミックデバイスにおける部分消去例を示す。また、その逆で、全体が着色されている状態で、消色するための電圧を印可した後に部分的に上部透明フィルム26を押し付けて消色をして描画した後に、着色する電圧に切り替えたのちに上部透明フィルム26を部分的に押し付けて着色することで描画を消去することも可能である。また、エレクトロクロミック材料では、電圧の大きさによって色が変色するものもあり、その場合は、描画したい色に応じて印加電圧を切り替えたのちに描画することにより、様々な色の描画が可能である。このような部分的な着色・消色・変色は、エレクトロクロミックを用いた電子メモ帳(ノート)、電子ホワイトボードなどの表示デバイスや、局所的な色変化(着色・消色・変色)を可能とした調光ガラス・電子カーテン・サングラス・防眩ミラーなどの遮光デバイスに利用可能である。 Since the electrochromic material 14 can reversibly change its color by oxidation / reduction associated with voltage application, it is possible to select coloring / decoloring / discoloration according to the magnitude and polarity of the applied voltage. Therefore, by changing the voltage magnitude or polarity between the upper transparent conductive film 24 and the lower conductive film 12, it is possible to select coloration / decoloration / discoloration. For this reason, for example, in the above-described embodiment, when the electrochromic material can be colored with minus 2V and erased with plus 3V, the upper transparent film 26 is pressed with a finger or a pen when the minus 2V is applied. Then, after printing by coloring, it is possible to switch to plus 3V and press the upper transparent film 26 to partially erase the part that is partially rubbed like an eraser. FIG. 8 shows an example of partial erasure in a touch type electrochromic device. On the contrary, after the voltage for erasing was applied, the upper transparent film 26 was partially pressed to erase the color, and then the voltage was switched to color. It is also possible to erase the drawing by pressing the upper transparent film 26 partially and coloring. In addition, some electrochromic materials change color depending on the magnitude of the voltage. In that case, various colors can be drawn by drawing after switching the applied voltage according to the color to be drawn. is there. Such partial coloring / decoloring / discoloration enables display devices such as electronic memo pads (notebooks) and electronic whiteboards using electrochromics, and local color changes (coloring / decoloring / discoloration). It can be used for light-shielding devices such as light control glass, electronic curtains, sunglasses, and anti-glare mirrors.
 また、上述した上部透明フィルム26の部分的な押し付けによる部分的消去だけではなく、図9に示す第4実施形態のように、電解質16上の導電性膜18と下部導電膜12の間に消去用電源32により電圧を印可することにより、スクリーン全体の描画を消去することも可能である。 Further, not only partial erasure by partial pressing of the upper transparent film 26 described above, but also erasure between the conductive film 18 on the electrolyte 16 and the lower conductive film 12 as in the fourth embodiment shown in FIG. It is also possible to erase the drawing on the entire screen by applying a voltage from the power supply 32.
 また、図10に示す第5実施形態のように、共用電源34により、導電性膜18への電圧印加と同時に上部透明導電膜24への電圧印加も可能であり、この場合、上部透明フィルム26の部分的な押し付けにより、スクリーン全体の描画消去のアシストを行うことができる。 Further, as in the fifth embodiment shown in FIG. 10, it is possible to apply a voltage to the upper transparent conductive film 24 simultaneously with the voltage application to the conductive film 18 by the common power source 34. The partial pressing of can assist in erasing the drawing on the entire screen.
 また、スクリーン全体の消去を行う際、図9において導電性膜18の面内のシート抵抗が高い場合、導電性膜18に取り付けた電圧端子の近辺のエレクトロクロミック材料14が優先して色変化してしまい、電圧端子から遠いエレクトロクロミック材料の色変化が得られにくくなる。そこで、図11に示す第6実施形態のように、導電性膜18へ取り付けた消去用電極36からの距離に応じて、距離が離れるほど高い電圧を印可すれば、エレクトロクロミック材料部分において位置に寄らずに色変化に十分な電圧を印可することができる。導電性膜18への消去用電極36からの距離が遠くなるほど、下部導電膜12に印加される電圧が高ければ、どのような回路を用いても良い。例えば一例として、図11のように、下部導電膜をラインアンドスペースのようなパターン電極12’にしておき、それぞれのパターン電極のライン間を適切な抵抗38でつないだ構造を考える。この場合、消去用電極36から最も遠い部分(スクリーン中心部分)に高い電圧を印加するとともに、スクリーンの端の消去用電極36に近づくにつれて抵抗38による電圧降下を利用して電圧が下がるように抵抗を設計して配置すれば、各パターン電極12’に対して中心に近づくほど高い電圧が印加できるようになるため、スクリーン全体に対して均一な色消去が可能となる。このようなパターン電極12’と抵抗38は、パターン電極のライン数が少ない場合は、通常の抵抗素子を取り付けることが可能であるとともに、ライン数が増えた場合は、シール状・シート状・ペースト状・薄膜状などの抵抗を多数のラインパターンに取り付ければ、疑似的に分布定数的な抵抗回路が容易に得られる。その場合、疑似的な分布定数となる抵抗の分布は、シール状・シート状・ペースト状・薄膜状の抵抗の形状を変えるだけで良いため、省スペースで多数の抵抗をラインパターンに形成可能である。 Further, when the entire screen is erased, if the sheet resistance in the surface of the conductive film 18 is high in FIG. 9, the color of the electrochromic material 14 near the voltage terminal attached to the conductive film 18 is preferentially changed. Therefore, it becomes difficult to obtain a color change of the electrochromic material far from the voltage terminal. Therefore, as in the sixth embodiment shown in FIG. 11, if a higher voltage is applied as the distance increases according to the distance from the erasing electrode 36 attached to the conductive film 18, the electrochromic material portion becomes a position. A sufficient voltage can be applied to the color change without shifting. As the distance from the erasing electrode 36 to the conductive film 18 increases, any circuit may be used as long as the voltage applied to the lower conductive film 12 is higher. For example, as shown in FIG. 11, consider a structure in which the lower conductive film is formed as a pattern electrode 12 'such as a line-and-space, and the line of each pattern electrode is connected by an appropriate resistor 38. In this case, a high voltage is applied to the portion farthest from the erasing electrode 36 (the center portion of the screen), and the resistance is reduced by using a voltage drop due to the resistor 38 as the erasing electrode 36 at the edge of the screen is approached. Is designed and arranged, a higher voltage can be applied to each pattern electrode 12 ′ as it approaches the center, so that uniform color erasure can be performed on the entire screen. Such a pattern electrode 12 ′ and a resistor 38 can be attached with a normal resistance element when the number of lines of the pattern electrode is small, and when the number of lines is increased, a seal, sheet, or paste If a resistor such as a thin film or a thin film is attached to a large number of line patterns, a pseudo distributed resistance circuit can be easily obtained. In that case, the distribution of resistance, which is a pseudo-distribution constant, can be made by simply changing the shape of the resistor in the form of a seal, sheet, paste, or thin film. is there.
 また、スクリーン全体の消去を行う際、図12に示す第7実施形態のように、電解質16または導電性膜18上に微細な消去用の電極42をとりつけることでスクリーン全体の消去を行うことも可能である。図において、44は消去用電極42用の絶縁層である。ここでは、例えば、図12の場合、導電性膜18の上に、細いラインアンドスペース(ストライプ)状の消去用電極42を形成している。この消去用電極42に描画パターンを消去するための電圧を印可した場合、消去用電極42から下部導電膜12に向かってわずかに広がりを持った電界が印加されるため、電界の広がりと同程度の間隔でラインアンドスペースの消去用電極42を配置しておけば、スクリーン全体を着色・消色・変色させることができる。消去用電極42の間隔は、スクリーン全体の色変化が得られればどのような間隔でも良いが、描画の際には、その上部にある上部透明導電膜24と透明フィルム26を押し付けることによって電解質16または導電性膜18と電気的に接触させて描画する必要があるため、上部にある透明フィルム26の押しつけによって上部透明導電膜24が消去用電極42間に入り込んで電解質16や導電性膜18と接触できるだけの間隔を用意しておく必要がある。また、ストライプ状の消去用電極42の幅は、スクリーン全体の色変化が得られるように設計すればどのような幅でも良いが、上述のように描画の際に上部透明導電膜24が消去用電極42間に入り込むスペースを確保する必要があることから、消去用電極42の幅を細くしたほうが消去用電極42の間隔を確保しやすい。また、デバイスの透光性を確保するためには、消去用電極42の幅は細い方が良い。また、消去用電極42とその上部の透明導電膜24の間には絶縁性を確保する絶縁膜44が必要となる。この絶縁膜44によって、透明フィルム26を押し付けた際に上部透明導電膜24と消去用電極42の間の電気的な導通が避けられることから、描画の際に透明フィルム26を押し付けた際にも消去用電極42に電圧は印可されず、消去用電極42の直下のストライプ状の部分のエレクトロクロミック材料が誤って描画されることが避けられる。また、消去用電極42の幅は十分細いため、描画の際には透明フィルム26を押し付けた消去用電極42の下部だけは部分的に色変化が得られるため、消去用電極42下部だけが描画できないという問題は避けることができる。消去用電極42とその絶縁膜44は、透光性を確保するため透光性のある材料の方が望ましいが、消去用電極42の幅を視認できないほどに細くできるのであれば、透明性が無くても良い。また、図12では、消去用電極42とその上部の消去電極用絶縁体44の他にスペーサー22が別途用いられているが、別途スペーサーを用意しなくても消去用電極42と消去電極用絶縁体44自体をスペーサーとして利用することも可能である。 When the entire screen is erased, the entire screen may be erased by attaching a fine erasing electrode 42 on the electrolyte 16 or the conductive film 18 as in the seventh embodiment shown in FIG. Is possible. In the figure, reference numeral 44 denotes an insulating layer for the erasing electrode 42. Here, for example, in the case of FIG. 12, a thin line-and-space (stripe) erasing electrode 42 is formed on the conductive film 18. When a voltage for erasing the drawing pattern is applied to the erasing electrode 42, an electric field having a slight spread is applied from the erasing electrode 42 toward the lower conductive film 12. If the line-and-space erasing electrodes 42 are arranged at intervals, the entire screen can be colored, decolored and discolored. The distance between the erasing electrodes 42 may be any distance as long as the color change of the entire screen can be obtained, but when drawing, the electrolyte 16 is pressed by pressing the upper transparent conductive film 24 and the transparent film 26 thereabove. Or, since it is necessary to draw in contact with the conductive film 18, the upper transparent conductive film 24 enters between the erasing electrodes 42 by the pressing of the transparent film 26 on the upper side, and the electrolyte 16 and the conductive film 18. It is necessary to prepare enough space for contact. Further, the width of the stripe-like erasing electrode 42 may be any width as long as it is designed so as to obtain the color change of the entire screen. However, as described above, the upper transparent conductive film 24 is used for erasing. Since it is necessary to secure a space to enter between the electrodes 42, it is easier to secure the interval between the erasing electrodes 42 if the width of the erasing electrodes 42 is narrowed. In order to ensure the translucency of the device, the width of the erasing electrode 42 is preferably narrow. In addition, an insulating film 44 that ensures insulation is required between the erasing electrode 42 and the transparent conductive film 24 thereabove. The insulating film 44 prevents electrical conduction between the upper transparent conductive film 24 and the erasing electrode 42 when the transparent film 26 is pressed. Therefore, when the transparent film 26 is pressed during drawing, No voltage is applied to the erasing electrode 42, and it is possible to avoid erroneous drawing of the electrochromic material in the stripe-like portion immediately below the erasing electrode 42. In addition, since the width of the erasing electrode 42 is sufficiently narrow, only the lower part of the erasing electrode 42 is drawn because only the lower part of the erasing electrode 42 pressed against the transparent film 26 is partially changed in color. The problem of not being able to be avoided. The erasing electrode 42 and its insulating film 44 are preferably made of a translucent material in order to ensure translucency. However, if the width of the erasing electrode 42 can be made so thin that it cannot be seen, the transparency is improved. It is not necessary. In FIG. 12, the spacer 22 is separately used in addition to the erasing electrode 42 and the erasing electrode insulator 44 thereabove, but the erasing electrode 42 and the erasing electrode insulation can be obtained without preparing a separate spacer. The body 44 itself can be used as a spacer.
 図13に、消去用の櫛形の電極を形成したデバイスにおける印字の消去の実験例を示す。着色により印字した文字を櫛形の消去用電極によって消去可能であることが示されている。 FIG. 13 shows an experimental example of printing erasure in a device having a comb-shaped electrode for erasing. It is shown that characters printed by coloring can be erased by a comb-shaped erasing electrode.
 本発明においては、前記実施形態における上部の透明フィルム26と上部透明導電膜24に代わって、導体の描具を用いることで、電解質16または導電性膜18に描具を使って直接描画できるペン式のエレクトロクロミックデバイスが実現できる。図14にその一例である第8実施形態を示すが、前記実施形態での透明フィルム26と上部透明導電膜24に代わって、先端が導体となっているペンなどの描具50を手48で持ち、電解質16または導電性膜18に接触させた場合、電界Bが局所的に印可されて接触点A下部のエレクトロクロミック材料14を局所的に色変化(着色・消色・変色)Cさせることができる。ここでは、描具先端の導体部分50Aと下部導電膜12の間を配線(52)して電圧を印可することによって、色変化が可能であり、着色・消色・変色のいずれかは、印加する電圧の極性や大きさで選択することができる。このような電圧の極性や大きさで選択するスイッチは、エレクトロクロミックデバイス側にスイッチを設置することで可能となるほか、リモコンなどによる遠隔での電圧スイッチ機構を導入することも可能である。前記実施形態と同様に、電解質16上の導電性膜18は、有っても良いし無くても良いが、有る場合は、電解質16表面の形状、硬さ、弾力性、粘着性や電解質16との電気的な接触を改善することができる。本実施形態で用いられる導電性膜18・電解質16・エレクトロクロミック材料14・下部導電膜12・基板10に要求される材料の特性は、前記実施形態と同様である。描具50として用いる材質は、先端が導電性を有していればどのような材質・材料でも良く、導電性の金属・導電性ポリマー・カーボン材料・導電性ゴムやそれらの複合材料など、どのような物でも良く、光の透明性なども必要ない。 In the present invention, a pen that can be directly drawn on the electrolyte 16 or the conductive film 18 by using a drawing tool instead of the upper transparent film 26 and the upper transparent conductive film 24 in the above embodiment. An electrochromic device of the formula can be realized. FIG. 14 shows an eighth embodiment as an example. Instead of the transparent film 26 and the upper transparent conductive film 24 in the embodiment, a drawing tool 50 such as a pen whose tip is a conductor is used with a hand 48. The electric field B is locally applied and the electrochromic material 14 under the contact point A is locally color-changed (colored / decolored / discolored) C when held in contact with the electrolyte 16 or the conductive film 18. Can do. Here, the color can be changed by applying a voltage by wiring (52) between the conductor part 50A at the tip of the drawing tool and the lower conductive film 12, and any one of coloring, decoloring, and discoloration can be applied. The voltage can be selected based on the polarity and magnitude of the voltage to be applied. Such a switch to be selected based on the polarity and magnitude of the voltage can be provided by installing a switch on the electrochromic device side, and a remote voltage switch mechanism using a remote controller or the like can also be introduced. Similar to the above-described embodiment, the conductive film 18 on the electrolyte 16 may or may not be present, but if present, the shape, hardness, elasticity, adhesiveness of the surface of the electrolyte 16 and the electrolyte 16 The electrical contact with can be improved. The characteristics of the materials required for the conductive film 18, the electrolyte 16, the electrochromic material 14, the lower conductive film 12, and the substrate 10 used in the present embodiment are the same as those in the previous embodiment. The material used as the drawing tool 50 may be any material and material as long as the tip has conductivity, such as conductive metal, conductive polymer, carbon material, conductive rubber, and composite materials thereof. There is no need for light transparency.
 また、図15は、第8実施形態において、下部導電膜12と描具50の間に設けられた直接の電気配線52を切り離して、接地による電位を介した第9実施形態を示す。接地した電位を介して描具50と下部導電膜12間に電圧を印加している。これにより、描具50からの配線を下部導電膜12と直接配線で接続する必要がなくなり、描具50とエレクトロクロミックデバイスが物理的に接続されていなくても描画が可能となることから、描具の取り回しが容易になり描画しやすくなる。接地の取り方は、どのような方法でも良く、地面、デバイスの筐体、描画者の人体、アース線などでも良く、コロナ放電などの間接的な接地を用いることで物理的な配線することなく接地しても良い。 FIG. 15 shows a ninth embodiment in which the direct electric wiring 52 provided between the lower conductive film 12 and the drawing tool 50 is cut off and a potential by grounding is applied in the eighth embodiment. A voltage is applied between the drawing tool 50 and the lower conductive film 12 via a grounded potential. This eliminates the need to connect the wiring from the drawing tool 50 directly to the lower conductive film 12 and enables drawing even if the drawing tool 50 and the electrochromic device are not physically connected. The handling of tools becomes easy and drawing becomes easy. Any method may be used for grounding, such as the ground, device housing, drawing person's body, ground wire, etc., without using physical wiring by using indirect grounding such as corona discharge. It may be grounded.
 また、この描具によるエレクトロクロミックデバイスでは、印加する電圧による描画した印字の消去を行うことも可能であり、描具を消しゴムのようにして用いることも可能である。さらに、上述の第4~8実施形態に示したスクリーン全体の消去技術をそのまま利用することができ、図8に示した部分消去、図9に示した第4実施形態と同様の導電性膜18を通した消去、図10に示した第5実施形態と同様の、指30の代わりに描具50によるアシストを用いた導電性膜18による消去、図11に示した第6実施形態と同様の下部導電膜12’のパターニングによる消去、図12に示した第7実施形態及び図13と同様の電解質16・導電性膜18上への消去用電極42/絶縁層44パターニングによる消去が適用できる。 In addition, in the electrochromic device using this drawing tool, it is possible to erase the drawn printing by the applied voltage, and the drawing tool can be used like an eraser. Furthermore, the entire screen erasing technique shown in the above fourth to eighth embodiments can be used as it is, and the partial erasing shown in FIG. 8 and the conductive film 18 similar to the fourth embodiment shown in FIG. The same as in the fifth embodiment shown in FIG. 10, the erasing by the conductive film 18 using the assist by the drawing tool 50 instead of the finger 30, the same as the sixth embodiment shown in FIG. 11. The erasing by patterning of the lower conductive film 12 'and the erasing by patterning the erasing electrode 42 / insulating layer 44 on the electrolyte 16 / conductive film 18 similar to those of the seventh embodiment shown in FIG. 12 and FIG. 13 can be applied.
 また、描具によるペン式のエレクトロクロミックデバイスでは、図16に示す第10実施形態のように、描具50と人体(描具50を握る手48など)の短絡を利用して、人体を通した接地や電源28との接続が可能である。この場合、人体を、地面、デバイスの筐体、描画者の人体、アース線、コロナ放電などを介して接地または電源28との接続を行うことによって、描具50に対して電気配線を行う必要が無い。人体から接地や電源28への短絡方法は、使用者の靴や着衣等を介した短絡、デバイス筐体や配線等への人体の接触による短絡、導電バンドを介した短絡など、短絡さえすればどのような手法でも良い。本手法により、描具50は、通常のペンのように独立することから物理的な取り回しが容易となり、描画の操作性が向上するとともに、電気配線が不要なことから描具を簡易的な材料や構造で安価に作ることができる。人体を通した配線は、接地に接続することも可能であるし、下部導電膜から配線された電源に接続することも可能である。 Further, in a pen-type electrochromic device using a drawing tool, as in the tenth embodiment shown in FIG. 16, a short-circuit between the drawing tool 50 and the human body (such as a hand 48 holding the drawing tool 50) is used to pass the human body. Can be connected to the ground or the power source 28. In this case, it is necessary to perform electrical wiring to the drawing tool 50 by connecting the human body to the ground or the power supply 28 via the ground, the device housing, the human body of the drawing person, the ground wire, the corona discharge, or the like. There is no. The short-circuiting method from the human body to the ground or the power source 28 may be a short circuit via a user's shoes or clothing, a short circuit due to contact of the human body with a device housing or wiring, a short circuit via a conductive band, etc. Any method is acceptable. With this method, the drawing tool 50 is independent like a normal pen, so that physical handling is easy, drawing operability is improved, and electric wiring is not required, so that the drawing tool 50 is a simple material. And can be made inexpensively with a structure. The wiring through the human body can be connected to the ground, or can be connected to a power source wired from the lower conductive film.
 また、第8~10実施形態では、下部導電膜12側に電源28を配置していたが、図17に示す第11実施形態に示す如く、描具50内部に電池等による電源54を配置して描画できるエレクトロクロミックデバイスも作製可能である。この場合、描具自身に電圧の極性や大きさを切り替えるスイッチなどを用意しておけば、描具を持つ手元で着色・消色・変色を選択できるようになり、描画や消去の操作性が向上する。この場合の配線は、第11実施形態のような、描具50の胴体部分への電気配線の他、図18に示す第12実施形態のような、人体を通した短絡による配線も対象によって使い分け可能である。 In the eighth to tenth embodiments, the power source 28 is disposed on the lower conductive film 12 side. However, as shown in the eleventh embodiment shown in FIG. An electrochromic device that can be drawn is also possible. In this case, if you prepare a switch that switches the polarity and magnitude of the voltage in the drawing tool itself, you can select coloring, decoloring, and discoloration at hand with the drawing tool, making drawing and erasing operability easier. improves. The wiring in this case is selectively used depending on the object as well as the electrical wiring to the body portion of the drawing tool 50 as in the eleventh embodiment, as well as the wiring due to a short circuit through the human body as in the twelfth embodiment shown in FIG. Is possible.
 図19に導電性棒の描具による描画の実験例を示す。描具によって任意の形状を描画することができる。 FIG. 19 shows an example of drawing with a conductive rod drawing tool. An arbitrary shape can be drawn with a drawing tool.
 (1)電子メモ帳(ノート)に関して、本発明に係るタッチ式またはペン式のエレクトロクロミックデバイスを用いることで、紙を用いない電子メモ帳(ノート)が実現できる。第1~7実施形態のような透明フィルム26と上部透明導電膜24を有するタッチ式のエレクトロクロミックデバイスでは、指や棒などの導電・非導電を問わずあらゆる形状の物質で描画することが可能であり、メモ帳として利用できる。第8~12実施形態のようなペン式のエレクトロクロミックデバイスでは、導体のペンを用いることでメモ帳として利用できる。 (1) Regarding the electronic memo pad (notebook), an electronic memo pad (notebook) that does not use paper can be realized by using the touch-type or pen-type electrochromic device according to the present invention. In the touch electrochromic device having the transparent film 26 and the upper transparent conductive film 24 as in the first to seventh embodiments, it is possible to draw with any shape of material, such as a finger or a stick, regardless of conductivity or non-conductivity. It can be used as a notepad. The pen-type electrochromic device as in the eighth to twelfth embodiments can be used as a memo pad by using a conductor pen.
 白黒のみでカラー化ができない、描画が暗い、部分的な消去ができないといった問題を有する従来の電子メモ帳に対して、本発明のエレクトロクロミックデバイスでは、カラー化が可能、明るい、部分的な消去が可能といった特徴がある。また、第4~7実施形態の技術により、スクリーン全体の消去も可能である。エレクトロクロミック材料として、電圧によって変色するものを用いれば、マルチカラー化も可能である。また、タッチ式・ペン式デバイスでは、棒状の描具の他に、消しゴムのような形状のもので消去も可能である。 In contrast to conventional electronic notepads that have problems such as black and white that cannot be colored, dark drawing, and partial erasing, the electrochromic device of the present invention can be colored, bright, and partial erasing. There is a feature that is possible. The entire screen can be erased by the techniques of the fourth to seventh embodiments. If an electrochromic material that changes color depending on the voltage is used, multicoloring is possible. In addition, the touch-type / pen-type device can be erased with a shape like an eraser in addition to a rod-shaped drawing tool.
 (2)電子ホワイトボードに関して、本発明に係るタッチ式またはペン式のエレクトロクロミックデバイスを用いることで、チョークやホワイトボードマーカーを用いず、クリーンな電子ホワイトボードが実現できる。第1~7実施形態のような透明フィルム26と上部透明導電膜24を有するタッチ式のエレクトロクロミックデバイスでは、指や棒などの導電・非導電を問わずあらゆる形状の物質で描画することが可能であり、ホワイトボードとして利用できる。第8~11実施形態のようなペン式では、導体のペンを用いることでホワイトボードとして利用できる。本発明のエレクトロクロミックデバイスでは、カラー化が可能、明るい、部分的な消去が可能といった特徴がある。また、前述の第4~7実施形態の技術により、スクリーン全体の消去も可能である。エレクトロクロミック材料として、電圧によって変色するものを用いれば、マルチカラー化も可能である。また、タッチ式・ペン式デバイスでは、棒状の描具の他に、ホワイトボード消しのような形状のもので、消去も可能である。また、従来の電子ホワイトボードのように、ホワイトボード・プロジェクタ・ハードウェア・ソフトウェアを組み合わせたような複雑で高価なシステムは必要とせず、単純な構造で安価に作製できる。 (2) Regarding the electronic whiteboard, a clean electronic whiteboard can be realized without using a chalk or whiteboard marker by using the touch-type or pen-type electrochromic device according to the present invention. In the touch electrochromic device having the transparent film 26 and the upper transparent conductive film 24 as in the first to seventh embodiments, it is possible to draw with any shape of material, such as a finger or a stick, regardless of conductivity or non-conductivity. It can be used as a whiteboard. The pen type as in the eighth to eleventh embodiments can be used as a whiteboard by using a conductive pen. The electrochromic device of the present invention is characterized in that it can be colored, bright, and partially erased. Further, the entire screen can be erased by the techniques of the fourth to seventh embodiments. If an electrochromic material that changes color depending on the voltage is used, multicoloring is possible. In addition, the touch-type / pen-type device has a shape like a whiteboard eraser in addition to a rod-like drawing tool, and can be erased. Further, a complicated and expensive system such as a combination of a whiteboard, a projector, hardware, and software is not required as in a conventional electronic whiteboard, and it can be manufactured at a low cost with a simple structure.
 (3)調光ガラスや電子カーテンに関して、エレクトロクロミック材料は、従来技術より、自動車・航空機・部屋の窓ガラスなどに用いることで、調光ガラスや電子カーテンとして利用されている。しかし、従来のエレクトロクロミックによる調光ガラスや電子カーテンでは、ガラス全体の色変化(着色・調光・消色・変色)のみであり、一部の場所の色変化は得られない。本発明では、ガラスの一部分の着色を指や物体等で触れて変化させることができるため、窓ガラスの一部のみの調光やカーテンが可能である。そのため、例えば、自動車・航空機・部屋の窓ガラスのうち、直射日光部分のみ暗くして直射日光を遮蔽するとともに、風景を楽しみたい部分のガラスのみを一部消色することにより、風景を他にしみながらも直射日光を遮蔽できる。 (3) Regarding dimming glass and electronic curtains, electrochromic materials have been used as dimming glass and electronic curtains by using them for window glass of automobiles, aircrafts, rooms, etc., from the prior art. However, the conventional electrochromic light control glass and electronic curtain only change the color of the entire glass (coloring, light control, decoloring, and discoloration), and color change in some places cannot be obtained. In the present invention, since the coloring of a part of the glass can be changed by touching with a finger or an object, light control or a curtain of only a part of the window glass is possible. Therefore, for example, in the window glass of automobiles, aircraft, and rooms, only the direct sunlight part is darkened to shield it from direct sunlight, and only the part of the glass where you want to enjoy the scenery is partially erased to make the scenery different. You can shield direct sunlight while watching.
 (4)防眩ミラーに関して、従来のエレクトロクロミックによる防眩ミラーでは、ミラー全体または限定された一部分のみの明暗を調整するのみである。一方、本発明によるエレクトロクロミックデバイスを用いた場合、ミラー部分のうち、日光やライトからのまぶしい入射光が照射されるミラーの一部分の反射部分のみ直接触れることによって色変化が可能であり、ミラーの一部に防眩機能を持たせつつ、明瞭な反射像を得ることが可能となる。 (4) Regarding anti-glare mirrors, conventional electrochromic anti-glare mirrors only adjust the brightness of the entire mirror or only a limited part. On the other hand, when the electrochromic device according to the present invention is used, the color can be changed by directly touching only the reflective part of the mirror part irradiated with bright incident light from sunlight or light. It is possible to obtain a clear reflected image while providing a part of the antiglare function.
 (5)サングラスに関して、従来のエレクトロクロミックによるサングラスは、サングラス全体の調光のみであったが、本発明のエレクトロクロミックデバイスを用いた場合、触れた部分の色変化が可能であり、サングラスの一部分の遮光等が可能となる。 (5) Regarding the sunglasses, the conventional electrochromic sunglasses only dimmed the entire sunglasses, but when the electrochromic device of the present invention is used, the color of the touched part can be changed, and a part of the sunglasses. It is possible to block light.
 (6)ディスプレイとの融合に関して、本発明のエレクトロクロミックデバイスの背面に液晶ディスプレイなどの表示装置を配置した場合、ディスプレイに対して、自由に絵や文字を描画したり消去したりすることができる。これにより、ディスプレイに対して注意書き・メモなどを表示するデバイスが実現できる。 (6) Regarding the fusion with the display, when a display device such as a liquid crystal display is arranged on the back of the electrochromic device of the present invention, it is possible to freely draw and erase pictures and characters on the display. . As a result, a device for displaying notes and memos on the display can be realized.
 (7)タッチスクリーン(タッチパネル)デバイスとの融合による情報入力端末装置に関して、本発明のエレクトロクロミックデバイスの最前面(タッチ面)の前面にタッチスクリーン(タッチパネル)等のタッチ位置読み取り装置を配置することもできる。この場合、本発明による表示装置とタッチスクリーンによる位置情報を利用して、情報入力をすることも可能である。この場合、さらに背面にディスプレイなどの表示装置を配置した場合は、タッチスクリーンと本発明の表示装置や調光装置を組み合わせた情報端末装置も実現できる。 (7) Regarding an information input terminal device by fusion with a touch screen (touch panel) device, a touch position reading device such as a touch screen (touch panel) is disposed on the front surface (touch surface) of the electrochromic device of the present invention. You can also. In this case, it is also possible to input information using position information by the display device and the touch screen according to the present invention. In this case, when a display device such as a display is further arranged on the back surface, an information terminal device combining the touch screen and the display device or light control device of the present invention can be realized.
 10…基板
 12、12A、12B…下部導電膜
 14…エレクトロクロミック材料
 16…電解質
 18、18C、18D…導電性膜
 20…絶縁体
 22…スペーサー
 24…上部透明導電膜
 26…透明フィルム
 28、54…電源
 30…指
 32…消去用電源
 34…共用電源
 36、42…消去用電極
 44…絶縁層
 48…手
 50…描具(ペン)
 50A…描具の導体部分
 52…配線
DESCRIPTION OF SYMBOLS 10 ... Board | substrate 12, 12A, 12B ... Lower conductive film 14 ... Electrochromic material 16 ... Electrolyte 18, 18C, 18D ... Conductive film 20 ... Insulator 22 ... Spacer 24 ... Upper transparent conductive film 26 ... Transparent film 28, 54 ... Power source 30 ... Finger 32 ... Erasing power source 34 ... Common power source 36, 42 ... Erasing electrode 44 ... Insulating layer 48 ... Hand 50 ... Drawer (pen)
50A: Conductor part of the paint 52 ... Wiring

Claims (11)

  1.  基板と、
     該基板上に配設される下部導電膜と、
     該下部導電膜上に配設されるエレクトロクロミック材料及び電解質と、
     該エレクトロクロミック材料及び電解質上に絶縁性を有するスペーサーを介して配設される上部透明導電膜と、
     該上部透明導電膜上に配設される透明フィルムと、
     前記下部導電膜と上部透明導電膜間に電圧を印加する手段とを備え、
     前記透明フィルムを上面から押した時に、該透明フィルムが湾曲して前記スペーサーにより形成された隙間が無くなり、前記上部透明導電膜とその下のエレクトロクロミック材料又は電解質が電気的に接触して局所的に通電され、接触点直下のエレクトロクロミック材料にのみ電界が印加され、該エレクトロクロミック材料の色が局所的に変化するようにしたことを特徴とするエレクトロクロミック描画・表示装置。
    A substrate,
    A lower conductive film disposed on the substrate;
    An electrochromic material and an electrolyte disposed on the lower conductive film;
    An upper transparent conductive film disposed on the electrochromic material and the electrolyte via an insulating spacer;
    A transparent film disposed on the upper transparent conductive film;
    Means for applying a voltage between the lower conductive film and the upper transparent conductive film,
    When the transparent film is pushed from the upper surface, the transparent film is curved and there is no gap formed by the spacer, and the upper transparent conductive film and the electrochromic material or electrolyte therebelow are in electrical contact with each other. An electrochromic drawing / display apparatus characterized in that an electric field is applied to only the electrochromic material immediately below the contact point and the color of the electrochromic material is locally changed.
  2.  基板と、
     該基板上に配設される下部導電膜と、
     該下部導電膜上に配設されるエレクトロクロミック材料及び電解質と、
     導体の描具と、
     該描具とエレクトロクロミック材料及び電解質間に電圧を印加する手段とを備え、
     前記描具をエレクトロクロミック材料及び電解質に接触させた時に、接触点に局所的に通電され、接触点直下のエレクトロクロミック材料にのみ電界が印加され、該エレクトロクロミック材料の色が局所的に変化するようにしたことを特徴とするエレクトロクロミック描画・表示装置。
    A substrate,
    A lower conductive film disposed on the substrate;
    An electrochromic material and an electrolyte disposed on the lower conductive film;
    With conductor paint,
    Means for applying a voltage between the drawing tool and the electrochromic material and the electrolyte;
    When the drawing tool is brought into contact with the electrochromic material and the electrolyte, the contact point is locally energized, and an electric field is applied only to the electrochromic material immediately below the contact point, and the color of the electrochromic material changes locally. An electrochromic drawing / display device characterized by the above.
  3.   前記エレクトロクロミック材料が、前記電解質の下又は上に配設されていることを特徴とする請求項1又は2に記載のエレクトロクロミック描画・表示装置。 The electrochromic drawing / display device according to claim 1, wherein the electrochromic material is disposed under or on the electrolyte.
  4.  前記エレクトロクロミック材料及び電解質の上に導電性膜が配設されていることを特徴とする請求項1乃至3のいずれかに記載のエレクトロクロミック描画・表示装置。 4. The electrochromic drawing / display device according to claim 1, wherein a conductive film is disposed on the electrochromic material and the electrolyte.
  5.  前記エレクトロクロミック材料が、メタロ超分子ポリマー又は導電性高分子化合物であることを特徴とする請求項1乃至4のいずれかに記載のエレクトロクロミック描画・表示装置。 The electrochromic drawing / display device according to any one of claims 1 to 4, wherein the electrochromic material is a metallo supramolecular polymer or a conductive polymer compound.
  6.   前記エレクトロクロミック材料にカーボンナノチューブが混合されていることを特徴とする請求項5に記載のエレクトロクロミック描画・表示装置。 6. The electrochromic drawing / display device according to claim 5, wherein carbon nanotubes are mixed in the electrochromic material.
  7.  前記描具に電源が内蔵されていることを特徴とする請求項2乃至6のいずれかに記載のエレクトロクロミック描画・表示装置。 7. The electrochromic drawing / display apparatus according to claim 2, wherein a power source is built in the drawing tool.
  8.  前記電圧の大きさや極性を変えることにより、局所的な消去や変色が可能とされていることを特徴とする請求項1乃至7のいずれかに記載のエレクトロクロミック描画・表示装置。 8. The electrochromic drawing / display device according to claim 1, wherein local erasure and discoloration are possible by changing the magnitude and polarity of the voltage.
  9.  前記エレクトロクロミック材料及び電解質上の導電性膜と下部導電膜の間に電圧を印加する手段を備え、全体の消去が可能とされていることを特徴とする請求項4に記載のエレクトロクロミック描画・表示装置。 5. The electrochromic drawing / writing according to claim 4, further comprising means for applying a voltage between the electrochromic material and the conductive film on the electrolyte and the lower conductive film so that the entire erasing is possible. Display device.
  10.  前記エレクトロクロミック材料及び電解質又は導電性膜に消去用の電極が配設されていることを特徴とする請求項9に記載のエレクトロクロミック描画・表示装置。 10. The electrochromic drawing / display device according to claim 9, wherein an erasing electrode is disposed on the electrochromic material and the electrolyte or conductive film.
  11.  前記導電性膜に配設した消去用電極からの距離に応じて、距離が離れる程、高い電圧を印加するようにされていることを特徴とする請求項10に記載のエレクトロクロミック描画・表示装置。 11. The electrochromic drawing / display device according to claim 10, wherein a higher voltage is applied as the distance increases, according to a distance from an erasing electrode disposed on the conductive film. .
PCT/JP2017/006119 2016-03-14 2017-02-20 Electrochromic rendering/displaying device WO2017159221A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018505376A JP6775204B2 (en) 2016-03-14 2017-02-20 Electrochromic drawing / display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016050278 2016-03-14
JP2016-050278 2016-03-14

Publications (1)

Publication Number Publication Date
WO2017159221A1 true WO2017159221A1 (en) 2017-09-21

Family

ID=59851527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006119 WO2017159221A1 (en) 2016-03-14 2017-02-20 Electrochromic rendering/displaying device

Country Status (2)

Country Link
JP (1) JP6775204B2 (en)
WO (1) WO2017159221A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108227329A (en) * 2018-02-27 2018-06-29 五邑大学 A kind of stress chromogenic device and its application
CN111356953A (en) * 2017-12-29 2020-06-30 深圳市柔宇科技有限公司 Self-powered touchable electrochromic film
JP2021089324A (en) * 2019-12-02 2021-06-10 株式会社カネカ Lighting control film
CN116339031A (en) * 2023-02-10 2023-06-27 伯恩高新科技(惠州)有限公司 Preparation method of electrochromic diaphragm, electrochromic diaphragm and electronic equipment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140791A (en) * 1982-02-15 1983-08-20 株式会社ニコン Recorder/display for image information
JPS60150033A (en) * 1984-01-17 1985-08-07 Fuji Xerox Co Ltd Image display element and method of image display and erasure using image display element
JPS60235122A (en) * 1984-05-09 1985-11-21 Hitachi Ltd Display element
JPS62255920A (en) * 1986-04-30 1987-11-07 Tokuyama Soda Co Ltd Electrochromic display element
JP2002014379A (en) * 2000-06-30 2002-01-18 Tdk Corp Electrophoresis display device
CN101893801A (en) * 2010-07-05 2010-11-24 友达光电股份有限公司 Display device capable of inputting by touching and pressing and method thereof
JP2011515718A (en) * 2008-03-24 2011-05-19 ユニバーシティ オブ フロリダ リサーチ ファンデーション インコーポレーティッド Dual active film electrochromic display
JP2011184550A (en) * 2010-03-08 2011-09-22 Kuraray Co Ltd pi-ELECTRON CONJUGATED POLYMER COMPOSITION AND ELECTROCHROMIC DISPLAY DEVICE USING THE SAME

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140791A (en) * 1982-02-15 1983-08-20 株式会社ニコン Recorder/display for image information
JPS60150033A (en) * 1984-01-17 1985-08-07 Fuji Xerox Co Ltd Image display element and method of image display and erasure using image display element
JPS60235122A (en) * 1984-05-09 1985-11-21 Hitachi Ltd Display element
JPS62255920A (en) * 1986-04-30 1987-11-07 Tokuyama Soda Co Ltd Electrochromic display element
JP2002014379A (en) * 2000-06-30 2002-01-18 Tdk Corp Electrophoresis display device
JP2011515718A (en) * 2008-03-24 2011-05-19 ユニバーシティ オブ フロリダ リサーチ ファンデーション インコーポレーティッド Dual active film electrochromic display
JP2011184550A (en) * 2010-03-08 2011-09-22 Kuraray Co Ltd pi-ELECTRON CONJUGATED POLYMER COMPOSITION AND ELECTROCHROMIC DISPLAY DEVICE USING THE SAME
CN101893801A (en) * 2010-07-05 2010-11-24 友达光电股份有限公司 Display device capable of inputting by touching and pressing and method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111356953A (en) * 2017-12-29 2020-06-30 深圳市柔宇科技有限公司 Self-powered touchable electrochromic film
CN108227329A (en) * 2018-02-27 2018-06-29 五邑大学 A kind of stress chromogenic device and its application
CN108227329B (en) * 2018-02-27 2023-10-03 五邑大学 Stress color developing device and application thereof
JP2021089324A (en) * 2019-12-02 2021-06-10 株式会社カネカ Lighting control film
CN116339031A (en) * 2023-02-10 2023-06-27 伯恩高新科技(惠州)有限公司 Preparation method of electrochromic diaphragm, electrochromic diaphragm and electronic equipment

Also Published As

Publication number Publication date
JP6775204B2 (en) 2020-10-28
JPWO2017159221A1 (en) 2019-02-28

Similar Documents

Publication Publication Date Title
JP6775204B2 (en) Electrochromic drawing / display device
CN106646977B (en) Local erasing liquid crystal display device
US9229259B2 (en) Cholesteric writing board display device
CN106919293B (en) Handwriting screen assembly and display device
JP2011227858A (en) Thin type touch device
US20110181532A1 (en) Electronic paper device
US9152002B2 (en) Electrical writing board
CN1851549A (en) Superhigh resolution trace-type cholester liquid crystal writing input display screen
US20110181533A1 (en) Electronic paper device
US20110181576A1 (en) Electronic paper device
CN104108265A (en) Electronic writing board
CN104108266A (en) Electronic writing board
CN101893801B (en) Display device capable of inputting by touching and pressing, and method thereof
US20110181531A1 (en) Electronic paper device
JP4655948B2 (en) Pressure-sensitive conductive sheet, method for producing the same, and touch panel using the same
CN102566116A (en) Capacitance type touch display panel
CN108710228B (en) Writing film layer structure and projection writing device made of same
CN209570770U (en) With via design can selective erase liquid crystal diaphragm and liquid crystal writing device
CN110764325A (en) Structure for improving brightness of cholesteric liquid crystal handwriting board
CN109581719A (en) With via design can selective erase liquid crystal diaphragm and liquid crystal writing device
CN210270840U (en) Partition erasing handwriting board
KR101652997B1 (en) Touch Screen Display
JP5509633B2 (en) Electrophoresis equipment, electronic equipment
KR101713278B1 (en) E-memo system
CN109683372A (en) A kind of liquid crystal diaphragm and liquid crystal writing device with selective erase function

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018505376

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766228

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766228

Country of ref document: EP

Kind code of ref document: A1