WO2017159084A1 - Electrophoresis chip, electrophoresis device and electrophoresis system - Google Patents

Electrophoresis chip, electrophoresis device and electrophoresis system Download PDF

Info

Publication number
WO2017159084A1
WO2017159084A1 PCT/JP2017/003454 JP2017003454W WO2017159084A1 WO 2017159084 A1 WO2017159084 A1 WO 2017159084A1 JP 2017003454 W JP2017003454 W JP 2017003454W WO 2017159084 A1 WO2017159084 A1 WO 2017159084A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrophoresis
electrode
tube
tool
well
Prior art date
Application number
PCT/JP2017/003454
Other languages
French (fr)
Japanese (ja)
Inventor
田島 秀二
Original Assignee
ユニバーサル・バイオ・リサーチ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニバーサル・バイオ・リサーチ株式会社 filed Critical ユニバーサル・バイオ・リサーチ株式会社
Priority to JP2018505320A priority Critical patent/JP7016313B2/en
Publication of WO2017159084A1 publication Critical patent/WO2017159084A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/24Extraction; Separation; Purification by electrochemical means
    • C07K1/26Electrophoresis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis

Definitions

  • the present invention relates to an electrophoresis chip, an electrophoresis apparatus, and an electrophoresis system for separating or analyzing organic substances such as biological substances by electrophoresis.
  • next-generation sequencers have been put into practical use by Illumina and Roche. Furthermore, the amount of base sequence determination for DNA and the like is dramatically increased by using single molecule real-time sequencing or the like. As described above, although the next-generation sequencer technology has progressed dramatically, the preparation (preparation process) of samples such as DNA used for sequence analysis requires a complicated and manual process.
  • the pretreatment step of a sample such as DNA includes (a) DNA extraction from the sample, (b) DNA fragmentation, (c) DNA size selection (sizing), (D) Smoothing of DNA ends, (e) Addition of adapter sequence to DNA ends, (f) Purification of DNA, (g) Amplification of DNA are required.
  • DNA size selection a technique using electrophoresis is known. DNA size selection for next-generation sequencers requires DNA fragments that are aligned in a predetermined range of size, for example, DNA fragments that are sized to 10 kbp to 25 kbp.
  • agarose gel electrophoresis As the electrophoresis in the above (C) sizing, for example, agarose gel electrophoresis is used.
  • agarose gel electrophoresis a negatively charged DNA sample moves to the positive electrode side in an agarose gel by applying a voltage to an agarose gel arranged in a flat plate shape. During this movement, long DNA fragments move slowly through the network gel, while short DNA fragments move quickly through the network gel. DNA fragments are separated as a band for each size by utilizing such a difference in moving speed. And the part of the band of a required size is cut out manually from an agarose gel, and the process after said (d) is performed.
  • a separation / sorting apparatus using capillary gel electrophoresis as shown in Patent Document 1 has been proposed by Kanbara et al.
  • an object of the present invention is to provide a novel electrophoresis tool, electrophoresis device, and electrophoresis system that enable efficient sample sizing.
  • the present invention is configured as follows.
  • (Aspect 1) An electrophoresis tube containing an electrophoresis gel and a buffer, a first electrode for applying a positive or negative potential to the lower side of the electrophoresis tube, and a positive electrode on the upper side of the electrophoresis tube Or an electrophoretic device comprising a second electrode for applying a negative other potential, the electrophoretic device comprising the electrophoretic tube and a holder for integrally holding the first electrode.
  • (Aspect 2) The electrophoresis tool according to Aspect 1, wherein the holder integrally holds the electrophoresis tube, the first electrode, and the second electrode.
  • the electrophoretic device In the electrophoretic device according to any one of Aspects 1 to 3, the holder includes a first electrode accommodating portion that accommodates the first electrode, and a first electrode that accommodates the second electrode. An electrophoretic device comprising two electrode housing portions.
  • Aspect 5 The electrophoretic device according to Aspect 4, comprising an hinge portion connecting the first electrode housing portion and the second electrode housing portion.
  • Aspect 6 The electrophoresis tool according to Aspect 4, wherein the first electrode housing part and the second electrode housing part are separable.
  • Aspect 7) The electrophoretic device according to Aspect 6, wherein the first electrode housing portion has an opening into which the second electrode housing portion can be inserted.
  • the second electrode In the electrophoresis tool according to any one of aspects 1 to 7, the second electrode extends along the electrophoresis tube from the upper side to the lower side of the electrophoresis tube. Electrophoresis tool.
  • Aspect 11 The electrophoretic device according to any one of aspects 1 to 10, wherein the holder includes an accommodation groove for accommodating the second electrode.
  • Aspect 12 The electrophoresis tool according to any one of aspects 1 to 11, wherein a lower end of the first electrode is inserted into the electrophoresis tube.
  • Aspect 13 The electrophoresis tool according to Aspect 1, wherein the holder includes a first fitting body integrally formed with the electrophoresis tube so as to be fitted with the first electrode. Ingredients.
  • Aspect 14 The electrophoresis device according to Aspect 15, wherein the holder includes a second fitting body integrally formed with the electrophoresis tube so as to be fitted with the second electrode. Ingredients.
  • Aspect 15 The electrophoresis device according to Aspect 13 or 14, wherein the holder is provided on an upper part of the electrophoresis tube.
  • Electrophoresis tool (Aspect 16) The electrophoresis intelligent tool according to any one of aspects 1 to 14, wherein the electrophoresis tube includes a buffer storage tube that stores a buffer and a gel storage tube that stores the gel. Electrophoresis tool. (Aspect 17) The electrophoresis tool according to Aspect 16, wherein a lower end of the first electrode is disposed in the buffer housing tube.
  • An electrophoretic device the controller for controlling electrophoresis, the electrophoretic device according to any one of aspects 1 to 17, and the first electrode of the electrophoretic device
  • An electrophoresis apparatus comprising: a well to be inserted; and a moving unit capable of moving the electrophoresis tool and / or the dispenser three-dimensionally.
  • Aspect 19 In the electrophoresis apparatus according to Aspect 18, in order to perform pulse field gel electrophoresis, a power supply unit that periodically changes an electric field applied between the first electrode and the second electrode is provided. Electrophoresis device. (Aspect 20) The electrophoresis apparatus according to Aspect 19, wherein the power supply section periodically reverses the direction of the electric field.
  • Aspect 21 The electrophoresis apparatus according to Aspect 18 or 19, wherein the power supply section periodically changes the intensity of the electric field.
  • the moving unit moves the electrophoresis tool and / or the dispenser substantially linearly in the vertical direction.
  • a lateral movement unit that moves the electrophoresis device and / or the dispenser substantially linearly in the lateral direction.
  • Aspect 23 The electrophoresis apparatus according to Aspect 22, wherein the horizontal movement unit is mounted with the vertical movement unit and moves the vertical movement unit in a horizontal direction.
  • the well is a plurality of wells
  • the moving unit moves the electrophoretic tool, thereby dividing the plurality of bands into the plurality of wells. Take the electrophoresis device.
  • the control unit moves the electrophoretic tool above the well by the moving unit. Electrophoresis device.
  • Aspect 26 In the electrophoretic device according to aspect 24 or 25, when the moving unit moves the electrophoretic tool, the control unit moves the first power supply unit and the second power supply unit from the first power supply unit. An electrophoretic device that stops feeding power to one electrode and the second electrode.
  • Aspect 27 The electrophoresis apparatus according to any one of aspects 18 to 26, wherein the well includes a plurality of containers arranged in an annular shape.
  • Aspect 28 The electrophoresis apparatus according to Aspect 27, wherein the well includes a buffer container surrounded by the plurality of containers.
  • Aspect 29 The electrophoresis apparatus according to Aspect 27 or 28, comprising a well rotation mechanism for rotating the well.
  • Aspect 30 The electrophoretic apparatus according to Aspect 29, wherein the well rotation mechanism switches the plurality of sorting units by rotating the well.
  • Aspect 31 The electrophoresis apparatus according to Aspect 30, wherein when the well rotation mechanism rotates the well, the electrophoresis tool moves upward away from the well by the moving unit.
  • Aspect 32 In the electrophoretic device according to any one of aspects 29 to 31, when the well rotation mechanism rotates the well, the control unit controls the first power supply unit and the second power supply unit. An electrophoretic device that stops power supply from the unit to the first electrode and the second electrode.
  • Aspect 33 The electrophoresis apparatus according to Aspect 22 or 23, wherein the dispenser is connected to the longitudinal movement unit.
  • the longitudinal movement unit moves the first power feeding unit and the second power feeding unit integrally.
  • Electrophoresis device (Aspect 35) The electrophoresis apparatus according to any one of aspects 18 to 34, further comprising a detection device that detects a band or a ladder generated when a sample flows through the gel of the electrophoresis tube.
  • Aspect 36 The electrophoresis device according to Aspect 35, wherein the detection device includes a detection end facing the electrophoresis tube of the electrophoresis tool, and a detection end that moves the detection end in a three-dimensional manner.
  • An electrophoresis apparatus comprising a moving unit.
  • Aspect 37 The electrophoresis apparatus according to Aspect 36, wherein the detection end moving unit moves the detection end along the longitudinal direction of the electrophoresis tube.
  • Aspect 38 The electrophoresis apparatus according to Aspect 36 or 37, wherein the detection end moving unit moves the detection end so as to face a side surface of the electrophoresis tube or the well.
  • the detection end moving unit is configured to perform the electrophoresis with the detection end facing the electrophoresis tube or the well.
  • An electrophoresis apparatus that moves the detection end in a direction toward or away from a side surface of a tube or the well.
  • Aspect 41 The electrophoresis apparatus according to any one of aspects 36 to 40, wherein the detection end portion includes a curved surface along a contour of a side surface of the well.
  • Aspect 42 The electrophoresis apparatus according to any one of aspects 36 to 41, wherein the detection apparatus detects positions of a plurality of bands separated from a sample being electrophoresed.
  • Aspect 43 The electrophoresis apparatus according to any one of aspects 18 to 42, further comprising a nucleic acid extraction mechanism using magnetic particles.
  • Aspect 44 The electrophoresis apparatus according to any one of Aspects 18 to 43, comprising an amplification mechanism for amplifying a nucleic acid.
  • Aspect 45 An electrophoresis system comprising a plurality of the electrophoresis apparatuses according to any one of aspects 18 to 44.
  • the control unit detects the position of each band separated from the sample by using the detection device for each of the plurality of electrophoresis tools. And controlling the power supply to the second electrode and the first electrode of each of the plurality of electrophoretic devices based on the detection position of the band, thereby moving the bands in each electrophoretic device. Controlled electrophoresis system.
  • the control unit includes the first electrode and the second electrode so as to align the positions of the bands in each of the plurality of electrophoresis tools.
  • Electrophoresis system that controls power supply to the electrodes.
  • Aspect 48 An electrophoresis method for performing electrophoresis of a sample using the electrophoresis apparatus according to any one of aspects 18 to 44.
  • Aspect 49 An electrophoresis method, wherein the electrophoresis system according to any one of aspects 44 to 47 is used to execute parallel processing of electrophoresis of a plurality of samples.
  • Aspect 51 The electrophoresis method according to any one of aspects 48 to 50, wherein the biological substance is DNA, RNA, or protein.
  • the electrophoresis tool According to the electrophoresis tool, the electrophoresis apparatus, and the electrophoresis system of the present invention, it becomes possible to efficiently size, sort, or milk and analyze a sample.
  • FIG. 1 is a perspective view of an electrophoresis chip according to a first embodiment of the present invention. It is a side view of the electrophoresis chip of FIG. It is a perspective view of the electrophoresis tube of FIG. It is sectional drawing in the longitudinal direction of the electrophoresis tube of FIG.
  • FIG. 2 is a developed perspective view of a holder for the electrophoresis tube of FIG. 1. It is a top view of the holder of FIG.
  • FIG. 6 is a developed side view of the holder of FIG. 5. It is an enlarged side view in the middle of mounting
  • FIG. 7 is an enlarged perspective view showing that the holder is closed after the electrophoresis tube is attached to the holder of FIG. 6.
  • FIG. 3 is a top view of the electrophoresis chip in FIG. 2.
  • 1 is a side view of an electrophoresis apparatus according to a first embodiment of the present invention. It is a side view which shows the dispensing state which used the dispenser to the electrophoresis chip of FIG. It is a sectional side view which shows the electrophoresis using the electrophoresis apparatus of FIG. 1 is a top view of an electrophoresis system according to a first embodiment of the present invention. It is sectional drawing which shows the electrophoresis by the electrophoresis system of FIG.
  • FIG. 24A is a plan view of a four-lane arrangement and FIG. 24B is a plan view of an eight-lane arrangement regarding the stage of the electrophoresis system of FIG.
  • FIG. 24 is a perspective view of a rotating sorting well used in the electrophoresis system of FIG. 23. It is a side view of the use condition of the rotation sorting well of FIG. It is a perspective view of the rotation mechanism of the rotation fractionation well of FIG. It is a principal part perspective view of the electrophoresis state of the electrophoresis system of FIG. It is a principal part perspective view of the detection end part moving unit of FIG.
  • FIG. 37 is a cross-sectional view of the upper part of the electrophoresis chip of FIG. 36.
  • FIG. 37 is a side view showing a first assembly process of the electrophoresis chip in FIG. 36.
  • FIG. 37 is a side view showing a second assembly step of the electrophoresis chip in FIG. 36.
  • FIG. 37 is a side view showing a third assembly step of the electrophoresis chip in FIG. 36.
  • Embodiments of an electrophoresis chip (electrophoresis tool), an electrophoresis apparatus, and an electrophoresis system according to the present invention will be described.
  • the electrophoresis chip of this embodiment is preferably an integrated electrophoresis tube, plus electrode, and minus electrode.
  • the electrophoresis device of the present embodiment enables the electrophoresis chip to be moved three-dimensionally by attaching the electrophoresis chip to the moving unit.
  • the electrophoresis system of the present embodiment includes a plurality of processing lanes (processing lines) of the electrophoresis apparatus, and processes a plurality of samples simultaneously in parallel.
  • the same parts are denoted by the same reference numerals. The description of the same part is omitted as appropriate.
  • the electrophoresis chip 1 includes an electrophoresis tube 100 that accommodates an electrophoresis gel, a holder 200 that holds the upper part of the electrophoresis tube 100, and a positive potential (first potential) applied to the gel from below the electrophoresis tube 100. And a negative electrode (second electrode) 400 for applying a negative potential (second potential) to the gel from above the electrophoresis tube 100.
  • the holder 200 fixes and integrates the electrophoresis tube 100, the plus electrode 300, and the minus electrode 400.
  • the positive electrode 400 may not be integrated by the holder 400, and the positive electrode 400 may be movably provided on the sorting wells 511 to 513 (cartridge) side in FIG.
  • the electrophoresis tube 100 is filled in the upper end 108 held by the holder 200, a buffer storage tube 110 for storing a buffer, a gel storage tube 112 formed narrower than the buffer storage tube 110, and the gel storage tube 112. Gel 140.
  • the electrophoresis tube 1 has a straw shape, and the inner diameter of the gel containing tube 112 can be preferably 3 mm to 4 mm.
  • the electrophoresis tube 100 preferably includes a flexible upper cap 120 that closes the upper end opening of the electrophoresis tube 100 and a flexible lower cap 130 that closes the lower end opening.
  • an upper cap 121 for closing the upper portion of the gel 140 inside the electrophoresis tube 100 may be provided.
  • the upper cap 121 is rod-shaped and includes a knob 123 that extends to the outside of the upper end opening of the electrophoresis tube 100.
  • the upper cap 121 can be easily removed by pulling the knob 123 during use. Further, a ring may be attached to the end of the knob 123 so that the cap 123 can be easily pulled out.
  • the electrophoresis tube 1 is made of a transparent material that can transmit ultraviolet light and visible light.
  • the buffer Prior to electrophoresis, the buffer is dispensed using a dispenser 610 as shown in FIG.
  • the gel 140 is preferably, but not limited to, an agarose gel or a polyacrylamide gel.
  • the holder 200 includes a positive electrode housing portion (first electrode housing portion) 210 that houses the positive electrode 300 and a negative electrode housing portion (first electrode housing portion that houses the negative electrode 400. 2 electrode housing part) 220 and a hinge part 230 connecting both electrode housing parts 210 and 220.
  • Each of the electrode housing portions 210 and 220 has a curved shape (a shape obtained by cutting the tube in the longitudinal direction) so as to surround and accommodate the upper portion of the electrophoresis tube 100.
  • the holder 200 preferably includes a locking structure that fixes the electrode housing portions 210 and 220 to each other in a state where the cylindrical holder 200 is formed.
  • the locking structure includes, for example, an elastically deformable claw provided in one electrode housing portion and a recess provided in the other electrode housing portion and hooked by the claw.
  • the plus electrode housing part 210 includes an electrode housing groove 211 for housing the plus electrode 300 and an extension part 213 extending to the vicinity of the lower end of the plus electrode 300.
  • the electrode housing groove 211 extends from the upper end of the plus electrode housing portion 210 to the lower end of the extension portion 213.
  • the extension 213 is preferably provided with a plurality of protrusions protruding on the electrode housing groove 211, so that the electrode can be prevented from falling off. Further, as shown in FIG. 1, the extension portion 213 holds one or more holding portions 215 that hold the gel storage tube 112 of the electrophoresis tube 100 and / or the lower end 320 side of the plus electrode 300. It is also possible to provide an electrode holding portion 217 to be used.
  • the negative electrode housing part 220 includes a C-shaped protrusion 221 that detachably holds the negative electrode 400.
  • the positive electrode 300 includes an upper end 310 connected to the positive power supply unit (first power supply unit) 621 in FIG. 12, a lower end 320 immersed in a buffer filled in the sorting wells 511 to 513 in FIG. 310 and an electric wire part 330 connecting the lower end 320.
  • the electric wire part 330 is accommodated in the electrode accommodation groove 211.
  • the negative electrode 400 connects the upper end 410 connected to the negative power supply unit (second power supply unit) 623 in FIG. 12, the lower end 420 immersed in the buffer filled in the electrophoresis tube 100, and the upper end 410 and the lower end 420.
  • the electric wire part 430 is configured.
  • the minus electrode 400 is detachably held by a C-shaped protrusion 221 provided in the minus electrode housing part 220.
  • FIG. 7 The procedure for mounting the electrophoresis tube 100 on the holder 200 in the state of FIG. 7 will be described.
  • the caps 120 and 130 are removed from the electrophoresis tube 100 in the state shown in FIG.
  • the electrophoresis tube 100 is moved from the lower side to the upper side of the negative electrode housing part 220, and the lower end 420 of the negative electrode 400 is introduced into the electrophoresis tube 100.
  • the electrophoresis tube 100 is moved until the lower end 420 extends into the buffer storage tube 110.
  • the electrode housing portions 210 and 220 are closed, so that the holder 200 surrounds and fixes the upper part of the electrophoresis tube 100.
  • FIGS. 11 is a view of the electrophoresis chip 1 in the state of FIGS. 1 and 2 as viewed from above.
  • the electrophoresis device 2 includes an electrophoresis chip 1.
  • the electrophoresis apparatus 2 includes a vertical movement unit 600 that can move linearly in the vertical direction (substantially vertical direction) and a plurality of wells arranged in a substantially linear shape (line shape). And a line (cartridge) 500.
  • illustration of the electrophoresis chip 1 is omitted.
  • the electrophoretic apparatus 2 includes a lateral movement unit (for example, the lateral movement unit 900 in FIG. 23) that allows the vertical movement unit 600 to move substantially linearly in the horizontal direction (substantially horizontal direction), the horizontal movement unit 600, and the vertical movement unit 600.
  • a control unit (not shown) for controlling the moving unit 900.
  • the electrophoresis apparatus 2 includes the vertical movement unit 600 and the horizontal movement unit 900, the electrophoresis chip 1 can be moved three-dimensionally on the processing line 600.
  • the electrophoresis chip 1 is housed in an electrophoresis chip housing rack 520 shown in FIG.
  • the dispenser 610 can dispense a buffer or a sample from the upper end opening of the electrophoresis chip 1 into the inside thereof. Further, the dispenser 610 can dispense (discharge) a solution, a sample, and a reagent into each well, or can suck and move these from each well.
  • FIG. 14 shows a state in which electrophoresis is performed using the electrophoresis apparatus 2 of the first embodiment.
  • the electrophoresis device 2 includes a detection device (fluorescence scanner) 700 that detects a band generated in the gel 140 by electrophoresis of a sample such as DNA.
  • the detection device 700 includes an excitation light source 705, an excitation light optical fiber 710, a fluorescence light receiving optical fiber 720, a detection end 730 that holds an irradiation end of the excitation light optical fiber 710 and a light reception end of the fluorescence receiving optical fiber 720.
  • a photodetection element 740 such as a photomultiplier tube (PMT) that detects light from the fluorescence receiving optical fiber 720, and a detection end moving unit that moves the detection end 730 three-dimensionally (for example, FIG. 32 detection end moving units 750).
  • the detection end 730 is configured so that the irradiation end of the excitation light optical fiber 710 and the light reception end of the fluorescence light receiving optical fiber 720 are moved to the side surface of the gel containing tube 112 and / or the side surface of the well 510 by the detection end moving mechanism. Can be moved in the longitudinal direction (substantially vertical direction) along the longitudinal direction of the gel containing tube 112 and / or the well 510.
  • the detection end portion 730 can be moved in a lateral direction (substantially horizontal direction) approaching or leaving the side surface of the gel containing tube 112 and / or the side surface of the well 510 by the detection end portion moving unit.
  • the sorting wells 511 to 513 are made of a transparent material that can transmit ultraviolet light and visible light.
  • the parallel processing type electrophoresis system 3 includes a plurality of electrophoresis apparatuses 2 to 2G having the same configuration as shown in FIG.
  • each electrophoresis apparatus 2 to 2G includes an electrophoresis chip 1 to 1A, a processing line (processing lane) 500 to 500G, a vertical movement unit 600 to 600G, and a detection unit.
  • a device 700 to 700G (not shown) and a lateral movement unit 900 are included.
  • Each of the vertical movement units 600 to 600G can move along their longitudinal direction above the corresponding processing line 500 to 500G. Further, a detection end 730 of the detection device is provided for each of the processing lines 500 to 500G.
  • Each detection end 730 is preferably arranged in the lateral movement direction of each electrophoresis chip 1 mounted on the vertical movement unit 600.
  • the sorting wells 511, 512, and 513 can be moved when sorting other wells so as not to interfere with the horizontal and vertical movement of the detection end 730.
  • a vertical movement unit (vertical movement unit 600 in FIG. 23) and / or a horizontal movement unit (lateral movement unit 900 in FIG. 23) may be provided.
  • DNA is extracted from the sample using a known technique and fragmented.
  • a plurality of labeled DNAs are added to the obtained fragmented DNA.
  • Each of the plurality of labeled DNAs has a known molecular weight (size) and can be detected using the detection device 700 by fluorescence. For example, two types of labeled DNA having a molecular weight of 10 kbp and labeled DNA having a molecular weight of 25 kbp can be added.
  • the specific processing procedure of sorting (milking) by the electrophoresis apparatus 2 is as follows.
  • the electrophoresis chip 1 assembled in the state of FIGS. 1 and 2 is set in the chip storage rack 520 (FIG. 15) of the electrophoresis apparatus 2.
  • the electrophoresis chip 1 is not attached to the longitudinal movement unit 600 while being accommodated in the chip accommodation rack 520.
  • the controller uses a dispenser 610 to perform electrophoresis of a buffer, a fragmented DNA sample, and a plurality of labeled DNAs of known molecular weight from the upper end opening of the electrophoresis chip 1. Dispense into the tip 1.
  • the upper part of the electrophoresis chip 1 is mounted on the electrophoresis chip mounting part 620 of the vertical movement unit 600. Simultaneously with this mounting, the upper end 310 of the positive electrode 300 is inserted into the positive power feeding unit 621 of the vertical movement unit 600 and the upper end 410 of the negative electrode 400 is inserted into the negative power feeding unit 623 of the vertical movement unit 600 and electrically connected. To do. As a result, a voltage can be applied to the gel 140 (FIG. 4).
  • the electrophoresis chip mounting portion 620 may be provided with a pressing mechanism that holds and holds the upper part of the electrophoresis chip 1 in order to securely fix the electrophoresis chip 1 when the electrophoresis chip 1 is moved.
  • band A is a 25 kbp labeled DNA
  • band B is a fragmented DNA that needs to be sorted
  • band C is a 10 kbp labeled DNA.
  • the gel storage tube 112 is irradiated with excitation light while moving in the longitudinal direction of the gel storage tube 112, and the fluorescence from the gel storage tube 112. Can be measured. Thereby, the separation state of the fragmented DNA in the longitudinal direction of the gel containing tube 112 can be confirmed in real time.
  • the detection end portion 730 is movable in the vertical direction and the horizontal direction between the upper end and the lower end of the gel containing tube 112.
  • the detection device 700 indicates that the band C (labeled DNA) has fallen into the sorting well 511 with the detection end 730 facing the side surface of the lower end of the electrophoresis tube 100 and the side wall of the sorting well 511. Can be confirmed.
  • the control unit After the control unit confirms that the sorting of the band C is completed by a signal from the detection device 700, the control unit stops applying the voltage from the power feeding units 621 and 623 to the electrodes 300 and 400, and the other band A And B (fragmented DNA) stop moving through the gel. With the voltage application stopped, the lower end of the electrophoresis chip 1 is moved into the well 512 using the longitudinal movement unit 600.
  • the control unit resumes voltage application from the power supply units 621 and 623 to the electrodes 300 and 400. With the resumption of voltage application, band B starts moving downward.
  • the lower ends of the electrophoresis chip 1 and the electrode 300 can be washed before moving to a different well.
  • control unit of the electrophoresis apparatus 2 or the electrophoresis system 3 confirms that the fragmented DNA of the band B has been dropped into the well 512 and can be sorted by a signal from the detection apparatus 700,
  • the control unit again stops voltage application from the power supply units 621 and 623 to the electrodes 300 and 400 to stop the band A from moving in the gel. In this way, fragmented DNA and labeled DNA contained in a plurality of bands can be separated (milked) while moving the electrophoresis chip 1.
  • the position of each band is measured by the detection end portion 730 provided in each of the electrophoresis chips 1 to 1B, and the control unit adjusts the voltage supply, thereby controlling the lowering of each band.
  • the position (height) can be aligned.
  • the band which needs to be sorted can be sorted into each sorting well 511 at the same timing.
  • the control unit stops supplying voltage to the electrophoresis chip 1 having the necessary band position below, while the control unit supplies voltage to the electrophoresis chip 1 having the necessary band position above.
  • the position of each band can be adjusted to the same height.
  • a fluorescent scanner suitable for the detection apparatus 700 of the electrophoresis system 3 has been filed as a patent application No. 2015-94426 by the applicant of the present application (invention name “Multiple reaction parallel measurement apparatus and method”). The case where the fluorescent scanner described in the patent application is applied to the present invention will be described.
  • Each light irradiation detection unit 730 provided in each electrophoresis chip is attached to a common vertical movement frame extending in the horizontal direction.
  • the light emission ends of the fluorescence from each fluorescence receiving optical fiber 720 of each light irradiation detection unit 730 are arranged concentrically, and a rotating rotary fiber rotating unit 750 (FIGS. 23 and 25) is provided for this arrangement.
  • the fluorescence is sequentially incident on one optical fiber provided on the rotating body.
  • the fluorescence of the plurality of electrophoresis chips can be guided to one optical fiber, and the fluorescence of the plurality of electrophoresis chips can be detected and processed in a time-sharing manner by the light detection element connected to the one optical fiber.
  • the electrophoresis chip 1 ′ (FIG. 17) is different from the electrophoresis chip 1 in the structure of the holder 1200.
  • the holder 1200 includes a plus electrode housing portion 1210 (FIG. 18) that houses the plus electrode 300 and a minus electrode housing portion 1220 (FIG. 20) that houses the minus electrode 400.
  • the plus electrode housing portion 1210 and the minus electrode housing portion 1220 are separable members.
  • the plus electrode housing portion 1210 has a curved shape (a shape obtained by cutting the tube in the longitudinal direction) so as to surround and accommodate the upper portion of the electrophoresis tube 100.
  • the positive electrode housing portion 1210 includes an extension portion 213 similar to that of the first embodiment.
  • the negative electrode housing portion 1220 is substantially cylindrical and includes a flange portion 1223 provided at the lower end and a positioning rib 1225 protruding downward from the flange portion 1223.
  • the electrophoresis chip 1 ' By providing a slit into which the positioning rib 1225 can be inserted in the accommodation opening of the stage 800 or the electrophoresis chip mounting part 620 of the longitudinal movement unit 600, the electrophoresis chip 1 'can be held in an appropriate orientation.
  • the upper part of the plus electrode accommodating part 1210 equipped with the electrophoresis tube 100 is moved in the direction of the arrow in FIGS. 20 and 21 and inserted into the opening of the minus electrode accommodating part 1220.
  • the electrophoresis tube 100, the plus electrode housing portion 1210, and the minus electrode housing portion 1220 are integrated to complete the assembly of the electrophoresis chip 1 '.
  • the assembled electrophoresis chip 1 ′ can be dispensed into the electrophoresis tube 100 through its upper end opening.
  • the electrophoresis chip 1 ′ may include a drop-off prevention mechanism that prevents the positive electrode storage portion 1210 from dropping off from the negative electrode storage portion 1220.
  • the drop-off prevention mechanism includes a rib or projection provided inside the cylindrical portion of the negative electrode housing portion 1220 and a recess provided on the outer surface of the negative electrode housing portion 1220 with which the rib or projection meshes.
  • the ribs or protrusions engage with the recesses to prevent falling off.
  • the electrophoresis system 3 embodies the electrophoresis system 3 according to the first embodiment.
  • the electrophoresis system 3 includes a detection mechanism (fluorescence scanner) 700, a stage 800 including a plurality of wells including wells 530 and the like, and a vertical direction (substantially approximately) provided on the stage 800.
  • a vertical movement unit 600 that can move in a substantially straight direction (vertical direction), and a horizontal movement unit 900 that can move in a substantially straight direction in the horizontal direction (substantially horizontal direction) with the vertical movement unit 600 mounted.
  • the vertical movement unit 600 is detachably mounted with the electrophoresis chip 1 or 1 ′.
  • the detection mechanism 700 includes a rotary fiber rotation mechanism 750.
  • the horizontal movement unit 900 includes a motor 901 that moves the vertical movement unit 600 in the vertical direction and a motor 903 that drives a pump that performs suction / discharge of the dispenser 601 of the vertical movement unit 600. Since the vertical movement unit 600 and the motors 901 and 903 are mounted on the horizontal movement unit 900, the vertical movement unit 600 and the motors 901 and 903 can move in the horizontal direction integrally with the horizontal movement unit 900.
  • the lateral movement unit 900 includes a lateral movement mechanism (motor and gear) (not shown) under the stage 800.
  • FIG. 26A shows a four-lane arrangement in a state in which the electrophoresis sorting well 530 is mounted on the stage 800
  • FIG. 26B shows that the sorting well 530 is removed from the stage 800 and non-electrophoresis non-electrophoresis.
  • This is an 8-lane arrangement with the sorting well 535 attached.
  • the stage 800 includes a plurality of processing lines (processing lanes) in which a plurality of wells and the like are arranged in a line.
  • FIG. 26 (b) shows an arrangement using eight processing lines.
  • FIG. 26 (a) uses a rotary sorting well 530 having a diameter larger than the line width, so four processing lines are skipped for one lane. Is an arrangement that uses The arrangement shown in FIG. 26B is used when it is not necessary to take a sample and information on the positional relationship (ladder shape) of the band is necessary (inspecting the parent-child relationship).
  • Each line of the stage 800 includes a sample tube 580, a chip storage cartridge 550, a sample extraction cartridge 560, a PCR cartridge 570, a sorting well 530 (FIG. 26 (a)), or a non-sorting well 535 (FIG. 26 ( b)).
  • the sample tube 580 contains a sample of the biological material.
  • a plurality of dispensing chips 611 FIG. 12
  • a piercing chip for perforating the seal of the reagent container
  • the electrophoresis chip 1 or 1 ' are stored.
  • the sample extraction cartridge 560 includes a plurality of wells, and extracts biological materials such as DNA from the sample using magnetic particles. Further, as shown in FIG.
  • the horizontal movement unit 900 moves integrally with the vertical movement unit 600 along the longitudinal direction of the processing line above the stage 800.
  • the dispenser 610 or the electrophoresis chip 1 (1 ′) attached to the vertical movement unit 600 is moved above the necessary wells on the processing line by the horizontal movement unit 900, It descends by the vertical movement unit 600 and executes a predetermined process.
  • the predetermined processing can be piercing by the dispenser 610, suction, or ejection, or sorting by electrophoresis using the electrophoresis chips 1 and 1 '.
  • the sorting well 530 and the sorting well rotating mechanism 540 used in the second embodiment of the present invention will be described with reference to FIGS.
  • the sorting well 530 is formed in a substantially bottomed cylindrical shape using a transparent material that can transmit ultraviolet light and visible light.
  • the sorting well 530 includes a buffer container 531 for accommodating a buffer for electrophoresis and the like, a plurality of sorting containers 533 provided in an annular shape so as to surround the buffer container 531, and a cross shape from the bottom of the buffer container 531. And a protruding portion 535 that protrudes from the center.
  • the plurality of sorting containers 533 can include a sorting container 533 for sample sorting and a sorting container 533 for drainage sorting.
  • the sorting well rotation mechanism 540 rotates the plurality of electrophoresis sorting wells 530 using a rack and pinion. As shown in FIG. 29, the sorting well rotating mechanism 540 includes a sorting well rotating motor 541, a first pinion gear 543 that is rotated by the motor 541, and a rack gear 545 that is linearly moved by the first pinion gear 543. The plurality of second pinion gears 547 rotated by the rack gear 545 and the plurality of internal gears 549 rotated by the plurality of second pinion gears 547 are provided.
  • the rack gear 545 includes a first tooth surface 543a that meshes with the first pinion gear 543, and a second tooth surface 543b that meshes with the plurality of second pinion gears 547.
  • the internal gear 549 is fixed to the protruding portion 535 of the sorting well 530.
  • the control unit changes the rotation direction of the motor 541
  • the plurality of electrophoresis sorting wells 530 can be rotated clockwise or counterclockwise.
  • the sorting well 530 and the sorting well rotating mechanism 540 By the sorting well 530 and the sorting well rotating mechanism 540, a plurality of bands in the sample can be sorted into a plurality of sorting containers 533 without moving the position of the lateral movement unit 900.
  • FIG. 30 shows a state where electrophoresis is performed with the electrophoresis chip 1 ′ attached to the electrophoresis apparatus 3.
  • the lower end of the electrophoresis tube 100 and the lower end 320 of the positive electrode 300 of the electrophoresis chip 1 ′ are immersed in the buffer of the sorting container 533 of the sorting well 530.
  • the detection end 730 of the detection device 700 is disposed behind each sorting well 530.
  • the detection end part (fluorescence scanning part) 730 can be moved substantially linearly in the vertical direction (substantially vertical direction) and the horizontal direction (substantially horizontal direction) indicated by arrows in FIG. 31 by the detection end part moving unit 750.
  • the detection end 730 includes a curved surface 731 that is curved so as to have the contour of the side surface of the sorting well 530, and a slit 731 a provided on the curved surface 731. Inside the slit 731 a, the irradiation end of the excitation light optical fiber 710 and the light receiving end of the fluorescence light receiving optical fiber 720 are disposed so as to face the side surfaces of the sorting well 530 or the gel storage tube 112 of the electrophoresis tube 100.
  • the detection end moving unit 750 includes a plurality of detection end portions 730, a vertical movement mechanism (not shown) that moves the plurality of detection end portions 730 integrally or individually in a substantially vertical direction, and a plurality of detection end portions.
  • a lateral movement mechanism (not shown) that moves 730 integrally or individually in a substantially lateral direction.
  • the detection end 730 is movable as shown in FIG. 32 along the longitudinal direction (substantially vertical direction) of the electrophoresis chip 1 ′.
  • the detection end 730 can move in a direction approaching or moving away from the side surface of the electrophoresis chip 1 ′. Accordingly, the measurement accuracy is improved because the band can be measured in a state where the detection end portion 730 is opposed in the vicinity of the side surface of the electrophoresis chip 1 ′.
  • the positions of a plurality of bands separated from the sample during electrophoresis can be scanned.
  • the detection end 730 can measure the lowermost end of the electrophoresis chip 1 ′.
  • the control unit of the electrophoresis system 3 stops applying voltage to the plus and minus electrodes 300 and 400, and then the lower end of the electrophoresis chip 1 ′. Is moved above the sorting well, the sorting well 530 is rotated by a predetermined angle, and the electrophoresis chip 1 ′ is moved above the other sorting section 533.
  • control unit lowers the electrophoresis chip 1 ′, immerses the lower end of the electrophoresis chip 1 ′ in a buffer in another sorting unit 533, and applies a voltage between the plus and minus electrodes 300 and 400. Resume electrophoresis.
  • a plurality of bands can be automatically sorted into a plurality of sorting units.
  • the first electrodes 300 and 300A on the lower side of the first to fourth embodiments are set as negative electrodes, and the second electrodes on the upper side of the first to fourth embodiments are used.
  • the electrodes 400 and 400A were positive electrodes.
  • the first power feeding unit 621 in FIG. 12 is a negative electrode
  • the second power feeding unit 623 is a positive power feeding unit.
  • the electrophoresis chip 1A of the fourth embodiment is different from the first electrode (plus electrode) 300A and the second electrode.
  • a holder for holding an electrode (minus electrode) 400 ⁇ / b> A is integrally formed with the electrophoresis tube 100.
  • An electrophoresis chip 1A according to a fourth embodiment will be described with reference to FIGS.
  • the electrophoresis tube 100 of the electrophoresis chip 1 ⁇ / b> A includes a buffer housing tube 110 and a gel housing tube 112 (capillary tube) that is press-fitted into the lower end of the buffer housing tube 110.
  • the gel containing tube 112 is filled with a gel 140, and the lower end opening of the gel containing tube 112 is sealed with a lower cap (rubber plug) 130.
  • the buffer housing tube 110 protrudes upward from the flange portion 130, a plurality of ribs 131 formed between the flange portion 130 and the side surface of the buffer housing tube 110, and a flange portion 130 formed around the upper end opening.
  • a first electrode fitting pin (first fitting body) 133 and a second electrode fitting pin (second fitting body) 134 protruding upward from the flange portion 130 are provided.
  • the holder according to the fourth embodiment includes a first electrode fitting pin 133 and a second electrode fitting pin 134.
  • a notch 133a is provided at the upper end of the first electrode fitting pin 133, and the curved portion of the first electrode 300A is accommodated or fitted in the notch 133a.
  • a pair of through holes are provided in the flange portion 130 around the lower end of the first electrode fitting pin 133.
  • the upper end 310A and the lower end 320A of the first electrode 300A are respectively inserted into the pair of through holes.
  • the O-ring 136 has a first electrode fitting. It is attached around the first electrode 300A on the side of the coupling pin 133.
  • a cutout portion 143a is provided at the upper end of the second electrode fitting pin 143, and the curved portion of the second electrode 400A is accommodated or fitted in the cutout portion 143a.
  • a pair of through holes are provided in the flange portion 130 around the lower end of the second electrode fitting pin 134.
  • the upper end 410A and the lower end 420A of the second electrode 400A are respectively inserted into the pair of through holes.
  • the O-ring 136 has a second electrode fitting. It is attached around the second electrode 400A on the side of the coupling pin 134.
  • FIG. 38 A method for assembling the electrophoresis chip 1A according to the fourth embodiment will be described with reference to FIGS.
  • the lower cap 130 is attached to the lower end opening of the gel containing tube 112 while the gel is contained, and the upper cap (gel) is attached to the upper end opening of the gel containing tube 112.
  • a sealing plug 121 is attached, and the gel container 112 is sealed as shown in FIG.
  • the upper cap 121 is rod-shaped and includes an annular knob 123 at the upper end thereof.
  • the knob 123 and the upper cap 121 are moved from the lower end opening of the buffer storage tube 110 into the buffer storage tube 110 with respect to the gel storage tube 112 in the state of FIG. insert.
  • the gel storage tube 112 is moved in the direction of the buffer storage tube 110, and the upper end of the gel storage tube 112 is press-fitted into the lower end opening of the buffer storage tube 110 and integrated as shown in FIG. 39D, the entire knob 123 of the upper cap 121 is exposed from the upper end opening of the buffer housing tube 110.
  • the electrophoresis chip 1A of the fourth embodiment is completed.
  • the electrophoresis chip 1A can include a support 160 that supports the lower portion of the first electrode 300A with respect to the lower portion of the gel housing tube 112.
  • the electrophoresis tool (electrophoresis chip), electrophoresis apparatus, and electrophoresis system of the first to fourth embodiments are not limited to electrophoresis of nucleic acids such as DNA, but are organic substances containing biologically related substances such as proteins. It can also be applied to electrophoresis.
  • the vertical and horizontal movements of the electrophoresis chips 1, 1 ′, and 1 A of the electrophoresis chips 1, 1 ′, and 1 A according to the first to fourth embodiments can be automatically executed by the control unit according to a predetermined procedure.
  • the detection apparatus 700 of each embodiment detects fluorescence, it is not limited to this, The apparatus which detects chemiluminescence and can also detect light absorbency can also be used.
  • the excitation light source 705 and the excitation light optical fiber 710 can be omitted.
  • an absorbance photometer can be used in place of the photodetection element 740 such as PMT, and a colored labeled DNA can be used.
  • an extraction / amplification apparatus that combines the electrophoresis apparatus or electrophoresis system of each embodiment with a DNA extraction mechanism using magnetic particles and / or an amplification mechanism that amplifies fragmented DNA by PCR or the like. .
  • the electrophoresis apparatus, the extraction mechanism, and the amplification mechanism can automatically perform processing according to a predetermined procedure.
  • the electrophoresis chips 1, 1 'and 1A according to the first to fourth embodiments can be automatically attached to and detached from the longitudinal movement unit 600 by an attaching / detaching mechanism.
  • the light detection element 740 of each embodiment is not limited to the PMT, and an image pickup element such as a CCD or a CMOS can also be used.
  • the error correction of the band position of each of the electrophoresis chips 1 to 1G arranged in parallel can be controlled to equalize the position of the electrophoresis band.
  • the control unit of each embodiment observes the fluorescence-labeled DNA or the like mixed in the solution of the electrophoresis chip with the detection device 700 (fluorescence scanner) at all times, and arranges each electrophoresis so that it is aligned in a line at a certain substantially horizontal position. By individually turning on and off the chip voltage, the position can be controlled and DNA or the like can be accurately sorted or analyzed.
  • the minus electrode 400 is provided on the upper side of the electrophoresis tube 100 and the plus electrode 300 is provided on the lower side to apply a potential to the gel.
  • the negative electrode 400 is provided on the lower side of the electrophoresis tube 100 and the positive electrode 300 is provided on the upper side to apply a potential to the gel.
  • the present invention is not limited to this, and the negative electrode and the positive electrode are alternately arranged. Switching pulsed field gel electrophoresis (PFGE) can be used.
  • the electrophoresis apparatus 2 includes a power supply unit 630 that is electrically connected to the power supply units 621 and 623.
  • the power supply unit 630 can periodically change the electric field applied between the electrodes 300 and 400. More specifically, the power supply unit 630 can periodically reverse the direction in which the electric field between the electrodes 300 and 400 is applied. Furthermore, the power source unit 630 can periodically change the intensity of the electric field while periodically reversing the direction of the electric field between the electrodes 300 and 400.
  • PFGE PFGE
  • the electrophoresis system 3 of the first embodiment can also be used for gene marker analysis.
  • a genetic marker single nucleotide polymorphism (SNP), restriction fragment length polymorphism (RFLP), or microsatellite can be used. Microsatellite exists in the genome.
  • the electrophoresis system 3 of the first embodiment was used for gene marker analysis such as microsatellite analysis, and the like, and composed of repeating unit sequences of several bases (for example, 2 to 4 bases). The case will be described below.
  • the electrophoresis system 3 of the first embodiment includes a plurality of electrophoresis chips 1 to 1B, and each of the electrophoresis chips 1 to 1B is used to perform electrophoresis of a plurality of different samples.
  • the control unit performs measurement with the detection end 730 of the detection device 700 so that the positions of the reference bands (for example, molecular weight marker bands) of the samples are aligned, and the control unit controls the first electrode and the second electrode. Electrophoresis is performed by adjusting the voltage between the electrodes. As a result, a ladder (electrophoretic pattern) in which the positions of the reference bands are aligned can be obtained for different samples respectively loaded into the electrophoresis chips 1 to 1B.
  • Ladder information (arrangement or shape) can be obtained by scanning the detection end 730 while moving along the longitudinal direction of the electrophoresis tube.
  • By analyzing the genetic markers contained in this ladder it is possible to execute human individual identification, parent-child analysis, relative analysis, precision medicine (precision medicine), and the like.
  • the electrophoresis system 3 of the first embodiment can align the positions of the reference bands, the analysis (comparison) of the ladder of each sample becomes easy.
  • the samples to be compared are electrophoresed in independent electrophoresis chips 1 to 1B using independent dispensers and wells, the possibility of contamination between different samples can be reduced. it can.
  • the electrophoresis system 3 of this embodiment includes a sample container (well) 580 for storing a sample, a loading container 581 for storing a loading buffer, an electrophoresis container 582 for storing an electrophoresis buffer, and a cleaning liquid. And a cleaning container 583 for storing the container.
  • containers 580, 581, 582, 583 can be provided.
  • Containers 580, 581, 582, 583 are preferably placed on stage 800 (FIGS. 23-26).
  • the sample is preferably DNA obtained from PCR.
  • the loading buffer is a mixture of an electrophoresis buffer, a molecular weight marker, and a labeling die.
  • the loading die is a fluorescent dye for detecting double-stranded DNA, and for example, SYBER GREEN I can be used.
  • the loading die can also contain Bromophenol Blue (BPB), Xylene Cyanole FF (XC), etc. so that the migration state can be visually confirmed.
  • a molecular weight marker is a DNA fragment of a known size for estimating the size of DNA to be analyzed.
  • the molecular weight marker is electrophoresed simultaneously with a sample such as DNA.
  • the molecular weight marker preferably comprises two sizes, and the DNA size to be analyzed must be between the sizes of the two molecular weight markers.
  • the type and concentration of the electrophoresis buffer that is optimal for the gel composition and the size of the DNA to be separated can be selected.
  • the electrophoresis buffer for example, a TAE buffer or a TBE buffer can be used.
  • the electrophoresis buffer can also be used as a cleaning solution for the tip of the electrophoresis tube 100 (capillary column).
  • step 1) sample adjustment is performed. Specifically, in a state where the sample (for example, 5 ⁇ l) in the sample container 580 is sucked into the dispensing tip 611 attached to the dispensing device 610, the dispensing device 610 is moved and discharged to the loading container 581. Using the dispenser 610, the liquid in the loading container 581 is repeatedly sucked and discharged, and the sample in the loading container 581 and the loading buffer are stirred and mixed thoroughly.
  • sample for example, 5 ⁇ l
  • step 2) the sample is loaded using the electrophoresis chip 1 (1 '). Specifically, the lower ends of the electrophoresis tube 100 and the negative electrode (first electrode) 300 are immersed in a mixed solution of the sample and the loading buffer in the loading container 581. In this state, a predetermined voltage is applied for a predetermined time, and the sample is infiltrated (loaded) into the lower end of the gel.
  • the predetermined time can be preferably 1 to 5 seconds, more preferably 2 to 3 seconds.
  • the predetermined voltage is preferably 50 to 150V, more preferably 80 to 120V, and still more preferably about 100V.
  • the amount of sample to be electrophoresed is determined by the predetermined time applied at this time. Increasing the loading amount of the sample can increase the fluorescence intensity, but the resolution of the DNA size of the sample decreases.
  • step 3 electrophoresis and analysis of the sample are performed using the electrophoresis chip 1 (1 ').
  • the electrophoresis chip 1 (1 ′) loaded with the sample in the loading container 581 is moved to the cleaning container 583 according to the arrow A 1.
  • the lower end of the electrophoresis tube 100 and the negative electrode 300 can be washed into and removed from the cleaning liquid in the cleaning container 583 by washing. By washing the lower end portion, DNA that has not penetrated into the gel can be washed away and the influence thereof can be eliminated.
  • the electrophoresis chip 1 (1 ') is moved to the electrophoresis container 582 according to the arrow A2.
  • the lower ends of the electrophoresis tube 100 and the negative electrode 300 of the electrophoresis chip 1 (1 ′) are immersed in the electrophoresis buffer in the electrophoresis container 582. Then, the predetermined voltage is applied between the minus electrode 300 and the plus electrode 400 of the electrophoresis tube 100, and electrophoresis is performed in the electrophoresis tube 100. Since samples such as DNA are negatively charged, they move upward from the bottom of the electrophoresis tube 100 by electrophoresis. Note that when the applied voltage is increased, the electrophoresis time can be shortened, but the electrophoresis pattern is likely to be disturbed due to heat generation or the like.
  • FIG. 35 shows a state in which the sample S or the like is electrophoresed in the electrophoresis tube 100.
  • the two kinds of markers and a low molecular weight marker M L, higher than the molecular weight of the sample DNA to be detected (large) and a high molecular weight marker M H having a molecular weight selected with a lower molecular weight (small) molecular weight of the sample DNA to be detected Is done.
  • a detection end 730 of a detection device (fluorescence scanner) 700 is disposed on the side surface of the electrophoresis tube 100.
  • a relational expression of speed can be obtained.
  • the size of the sample DNA can be estimated.
  • the size of the analysis to DNA contained in the sample (molecular weight), 2 types of markers M L, must be located between the M H.
  • the two types of markers M L the larger the difference in size of the M H (molecular weight), because the estimation accuracy is lowered, preferably, with respect to the molecular weight of the low molecular weight marker M L, the high molecular weight marker M H
  • the molecular weight can be set to about 2 to 3 times.
  • the small molecule marker should be as large as easily distinguishable from the primer-dimer contained in sample S.
  • the size of the sample DNA can also be estimated by measuring the movement time without measuring the movement distance.
  • the position of the detection end 730 shown on the left side of FIG. 35 is fixed to a known detection position P D.
  • Low molecular weight markers M L, sample S, molecular weight marker M H is, by measuring the passing time through the detection position P D respectively, each passing time, the molecular weight of the low molecular weight marker M L, high molecular weight marker M H
  • the size of the sample DNA can be estimated from the relational expression of the molecular weight.
  • electrophoresis chip 1 electrophoresis apparatus 2 electrophoresis apparatus 3 electrophoresis system 100 electrophoresis tube 110 buffer housing tube 112 gel housing tube 200 holder 210 plus electrode housing portion 220 minus electrode housing portion 300 plus electrode 400 minus electrode 500 cartridge 600 longitudinal movement Unit 700 Detection device 730 Detection end 800 Stage 900 Horizontal movement unit 1200 Holder 1210 Positive electrode accommodating portion 1220 Negative electrode accommodating portion

Abstract

The electrophoresis chip 1 according to the present invention comprises an electrophoresis tube 100 housing a gel for electrophoresis therein, a positive electrode 300 applying a positive potential to the lower end side of the electrophoresis tube, a negative electrode 400 applying a negative potential to the upper end side of the electrophoresis tube 100, and a holder 200 integrally holding the electrophoresis tube 100 and the both electrodes 300 and 400.

Description

電気泳動チップ、電気泳動装置、及び電気泳動システムElectrophoresis chip, electrophoresis apparatus, and electrophoresis system
 本発明は、生体関連物質等の有機物質を電気泳動により分取または解析する電気泳動チップ、電気泳動装置、及び電気泳動システムに関する。 The present invention relates to an electrophoresis chip, an electrophoresis apparatus, and an electrophoresis system for separating or analyzing organic substances such as biological substances by electrophoresis.
 近年、次世代シーケンサーがイルミナ社やロシュ社により実用化されている。さらに、1分子リアルタイム・シーケンシング等を用いて、DNA等の塩基配列決定量が飛躍的に高まっている。このように次世代シーケンサー技術は飛躍的に進歩したものの、シーケンス解析に用いるDNA等のサンプルの調整(前処理工程)は、手作業で複雑な工程が必要となっていた。 In recent years, next-generation sequencers have been put into practical use by Illumina and Roche. Furthermore, the amount of base sequence determination for DNA and the like is dramatically increased by using single molecule real-time sequencing or the like. As described above, although the next-generation sequencer technology has progressed dramatically, the preparation (preparation process) of samples such as DNA used for sequence analysis requires a complicated and manual process.
 DNA等のサンプルの前処理工程は、非特許文献1に記載されるように、(a)サンプルからのDNAの抽出、(b)DNAの断片化、(c)DNAのサイズセレクション(サイジング)、(d)DNA末端の平滑化処理、(e)DNA末端へのアダプター配列の付加、(f)DNAの精製、(g)DNAの増幅、を必要とする。DNAサイズセレクションには、電気泳動を用いた手法が知られている。次世代シーケンサーのためのDNAサイズセレクションは、所定範囲のサイズに揃えられたDNA断片、例えば10kbp~25kbpにサイジングされたDNA断片が必要とされている。 As described in Non-Patent Document 1, the pretreatment step of a sample such as DNA includes (a) DNA extraction from the sample, (b) DNA fragmentation, (c) DNA size selection (sizing), (D) Smoothing of DNA ends, (e) Addition of adapter sequence to DNA ends, (f) Purification of DNA, (g) Amplification of DNA are required. For DNA size selection, a technique using electrophoresis is known. DNA size selection for next-generation sequencers requires DNA fragments that are aligned in a predetermined range of size, for example, DNA fragments that are sized to 10 kbp to 25 kbp.
 上記(C)サイジングにおける電気泳動としては、例えばアガロースゲル電気泳動が用いられている。アガロースゲル電気泳動は、平板状に配置したアガロースゲルに電圧をかけることにより、マイナスに荷電したDNAサンプルがアガロースゲル中をプラス極側に移動する。この移動中に、長いDNA断片は網目構造のゲル中をゆっくり移動するのに対し、短いDNA断片は網目構造のゲル中を早く移動する。このような移動速度の差異を利用して、DNA断片がサイズ毎のバンドとして分離される。そして、必要なサイズのバンドの部分をアガロースゲルから手作業で切り取って上記(d)以降の処理が行われる。なお、DNA断片の電気泳動に関して、特許文献1に示すようなキャピラリーゲル電気泳動を用いた分離分取装置が神原らにより提案されている。 As the electrophoresis in the above (C) sizing, for example, agarose gel electrophoresis is used. In agarose gel electrophoresis, a negatively charged DNA sample moves to the positive electrode side in an agarose gel by applying a voltage to an agarose gel arranged in a flat plate shape. During this movement, long DNA fragments move slowly through the network gel, while short DNA fragments move quickly through the network gel. DNA fragments are separated as a band for each size by utilizing such a difference in moving speed. And the part of the band of a required size is cut out manually from an agarose gel, and the process after said (d) is performed. Regarding electrophoresis of DNA fragments, a separation / sorting apparatus using capillary gel electrophoresis as shown in Patent Document 1 has been proposed by Kanbara et al.
特開2002-48766号公報JP 2002-48766 A
 従来の電気泳動は、一度に比較的大量のDNA等のサンプルを処理することが困難であった。特許文献1に記載の装置は、比較的大量のサンプルを同時に処理することが困難であった。そこで本発明は、効率よくサンプルのサイジングを可能とする新規な電気泳動具、電気泳動装置、及び電気泳動システムの提供を目的とする。 Conventional electrophoresis has been difficult to process a relatively large amount of samples such as DNA at a time. The apparatus described in Patent Document 1 has difficulty in processing a relatively large amount of samples at the same time. Accordingly, an object of the present invention is to provide a novel electrophoresis tool, electrophoresis device, and electrophoresis system that enable efficient sample sizing.
 本発明は、次の通り構成される。

(態様1)電気泳動用のゲル及びバッファーを収容する電気泳動管と、前記電気泳動管の下側にプラスまたはマイナスの一方の電位を加える第1の電極と、前記電気泳動管の上側にプラスまたはマイナスの他方の電位を加える第2の電極と、を備える、電気泳動具であって、前記電気泳動管、及び前記第1の電極を一体的に保持するホルダを備える、電気泳動具。(態様2)態様1に記載の電気泳動具において、前記ホルダは、前記電気泳動管、前記第1の電極、及び前記第2の電極を一体的に保持する、電気泳動具。(態様3)態様1または2に記載の電気泳動具において、前記ホルダは、前記電気泳動管の上部を保持する、電気泳動具。(態様4)態様1~3のいずれか一項に記載の電気泳動具において、前記ホルダは、前記第1の電極を収容する第1の電極収容部と、前記第2の電極を収容する第2の電極収容部とを備える、電気泳動具。
The present invention is configured as follows.

(Aspect 1) An electrophoresis tube containing an electrophoresis gel and a buffer, a first electrode for applying a positive or negative potential to the lower side of the electrophoresis tube, and a positive electrode on the upper side of the electrophoresis tube Or an electrophoretic device comprising a second electrode for applying a negative other potential, the electrophoretic device comprising the electrophoretic tube and a holder for integrally holding the first electrode. (Aspect 2) The electrophoresis tool according to Aspect 1, wherein the holder integrally holds the electrophoresis tube, the first electrode, and the second electrode. (Aspect 3) The electrophoresis tool according to Aspect 1 or 2, wherein the holder holds an upper part of the electrophoresis tube. (Aspect 4) In the electrophoretic device according to any one of Aspects 1 to 3, the holder includes a first electrode accommodating portion that accommodates the first electrode, and a first electrode that accommodates the second electrode. An electrophoretic device comprising two electrode housing portions.
(態様5)態様4に記載の電気泳動具において、前記第1の電極収容部及び前記第2の電極収容部を接続するヒンジ部を備える、電気泳動具。(態様6)態様4に記載の電気泳動具において、前記第1の電極収容部及び前記第2の電極収容部は、分離可能である、電気泳動具。(態様7)態様6に記載の電気泳動具において、前記第1の電極収容部は、前記第2の電極収容部を挿入可能な開口を有する、電気泳動具。(態様8)態様1~7のいずれか一項に記載の電気泳動具において、前記第2の電極は、前記電気泳動管の前記上側から前記下側まで、前記電気泳動管にそって延びる、電気泳動具。(態様9)態様8に記載の電気泳動具において、前記ホルダは、前記第2の電極にそって前記電気泳動管の前記下側まで延びる延長部を備える、電気泳動具。(態様10)態様9に記載の電気泳動具において、前記延長部は、前記電気泳動管を挟持する挟持部を備える、電気泳動具。 (Aspect 5) The electrophoretic device according to Aspect 4, comprising an hinge portion connecting the first electrode housing portion and the second electrode housing portion. (Aspect 6) The electrophoresis tool according to Aspect 4, wherein the first electrode housing part and the second electrode housing part are separable. (Aspect 7) The electrophoretic device according to Aspect 6, wherein the first electrode housing portion has an opening into which the second electrode housing portion can be inserted. (Aspect 8) In the electrophoresis tool according to any one of aspects 1 to 7, the second electrode extends along the electrophoresis tube from the upper side to the lower side of the electrophoresis tube. Electrophoresis tool. (Aspect 9) The electrophoretic device according to Aspect 8, wherein the holder includes an extension extending to the lower side of the electrophoretic tube along the second electrode. (Aspect 10) The electrophoretic device according to aspect 9, wherein the extension portion includes a holding portion for holding the electrophoretic tube.
(態様11)態様1~10のいずれか一項に記載の電気泳動具において、前記ホルダは、前記第2の電極を収容する収容溝を備える、電気泳動具。(態様12)態様1~11のいずれか一項に記載の電気泳動具において、前記第1の電極の下端は、前記電気泳動管の内部に挿入される、電気泳動具。(態様13)態様1に記載の電気泳動具において、前記ホルダは、前記第1の電極と嵌合するように、前記電気泳動管と一体成形された、第1の嵌合体を含む、電気泳動具。(態様14)態様15に記載の電気泳動具において、前記ホルダは、前記第2の電極と嵌合するように、前記電気泳動管と一体成形された、第2の嵌合体を含む、電気泳動具。(態様15)態様13または14に記載の電気泳動具において、前記ホルダは、前記電気泳動管の上部に設けられる、電気泳動具。 (Aspect 11) The electrophoretic device according to any one of aspects 1 to 10, wherein the holder includes an accommodation groove for accommodating the second electrode. (Aspect 12) The electrophoresis tool according to any one of aspects 1 to 11, wherein a lower end of the first electrode is inserted into the electrophoresis tube. (Aspect 13) The electrophoresis tool according to Aspect 1, wherein the holder includes a first fitting body integrally formed with the electrophoresis tube so as to be fitted with the first electrode. Ingredients. (Aspect 14) The electrophoresis device according to Aspect 15, wherein the holder includes a second fitting body integrally formed with the electrophoresis tube so as to be fitted with the second electrode. Ingredients. (Aspect 15) The electrophoresis device according to Aspect 13 or 14, wherein the holder is provided on an upper part of the electrophoresis tube.
(態様16)態様1~14のいずれか一項に記載の電気泳動知具において、前記電気泳動管は、バッファーを収容するバッファー収容管と、前記ゲルを収容するゲル収容管とを備える、電気泳動具。(態様17)態様16に記載の電気泳動具において、前記第1の電極の下端は、前記バッファー収容管内に配置される、電気泳動具。(態様18)電気泳動装置であって、電気泳動を制御する制御部と、態様1~17のいずれか一項に記載の電気泳動具と、前記電気泳動具の前記第1の電極に給電する第1の給電部と、前記電気泳動具の前記第2の電極に給電する第2の給電部と、分注器と、前記電気泳動具の前記第2の電極及び前記電気泳動管の下端が挿入されるウェルと、前記電気泳動具及び/または前記分注器を3次元的に移動可能な移動ユニットとを備える、電気泳動装置。(態様19)態様18に記載の電気泳動装置において、パルスフィールドゲル電気泳動を行うために、前記第1の電極及び前記第2の電極の間に加わる電場を周期的に変化させる電源部を備える、電気泳動装置。(態様20)態様19に記載の電気泳動装置において、前記電源部は、前記電場の向きを周期的に反転させる、電気泳動装置。 (Aspect 16) The electrophoresis intelligent tool according to any one of aspects 1 to 14, wherein the electrophoresis tube includes a buffer storage tube that stores a buffer and a gel storage tube that stores the gel. Electrophoresis tool. (Aspect 17) The electrophoresis tool according to Aspect 16, wherein a lower end of the first electrode is disposed in the buffer housing tube. (Aspect 18) An electrophoretic device, the controller for controlling electrophoresis, the electrophoretic device according to any one of aspects 1 to 17, and the first electrode of the electrophoretic device A first power feeding unit, a second power feeding unit that feeds power to the second electrode of the electrophoresis tool, a dispenser, the second electrode of the electrophoresis tool, and a lower end of the electrophoresis tube. An electrophoresis apparatus comprising: a well to be inserted; and a moving unit capable of moving the electrophoresis tool and / or the dispenser three-dimensionally. (Aspect 19) In the electrophoresis apparatus according to Aspect 18, in order to perform pulse field gel electrophoresis, a power supply unit that periodically changes an electric field applied between the first electrode and the second electrode is provided. Electrophoresis device. (Aspect 20) The electrophoresis apparatus according to Aspect 19, wherein the power supply section periodically reverses the direction of the electric field.
(態様21)態様18または19に記載の電気泳動装置において、前記電源部は、前記電場の強さを周期的に変化させる、電気泳動装置。(態様22)態様18~21のいずれか一項に記載の電気泳動装置において、前記移動ユニットは、前記電気泳動具及び/または前記分注器を縦方向へ略直線的に移動する縦移動ユニットと、前記電気泳動具及び/または前記分注器を横方向へ略直線的に移動する横移動ユニットとから構成される、電気泳動装置。(態様23)態様22に記載の電気泳動装置において、前記横移動ユニットは、前記縦移動ユニットを搭載し、前記縦移動ユニットを横方向に移動する、電気泳動装置。(態様24)態様18~23に記載の電気泳動装置において、前記ウェルが複数のウェルであり、前記移動ユニットが前記電気泳動具を移動することにより、前記複数のバンドを前記複数のウェルに分取する、電気泳動装置。(態様25)態様24に記載の電気泳動装置において、前記移動ユニットが前記電気泳動具を移動する際、前記制御部は、前記電気泳動具を前記移動ユニットにより前記ウェルの上方に移動する、電気泳動装置。 (Aspect 21) The electrophoresis apparatus according to Aspect 18 or 19, wherein the power supply section periodically changes the intensity of the electric field. (Aspect 22) In the electrophoresis apparatus according to any one of Aspects 18 to 21, the moving unit moves the electrophoresis tool and / or the dispenser substantially linearly in the vertical direction. And a lateral movement unit that moves the electrophoresis device and / or the dispenser substantially linearly in the lateral direction. (Aspect 23) The electrophoresis apparatus according to Aspect 22, wherein the horizontal movement unit is mounted with the vertical movement unit and moves the vertical movement unit in a horizontal direction. (Aspect 24) In the electrophoresis apparatus according to any one of aspects 18 to 23, the well is a plurality of wells, and the moving unit moves the electrophoretic tool, thereby dividing the plurality of bands into the plurality of wells. Take the electrophoresis device. (Aspect 25) In the electrophoresis apparatus according to aspect 24, when the moving unit moves the electrophoretic tool, the control unit moves the electrophoretic tool above the well by the moving unit. Electrophoresis device.
(態様26)態様24または25に記載の電気泳動装置において、前記移動ユニットが前記電気泳動具を移動する際、前記制御部は、前記第1の給電部及び前記第2の給電部から前記第1の電極及び前記第2の電極への給電を停止する、電気泳動装置。(態様27)態様18~26のいずれか一項に記載の電気泳動装置において、前記ウェルは、環状に配置された複数の容器を備える、電気泳動装置。(態様28)態様27に記載の電気泳動装置において、前記ウェルは、前記複数の容器に取り囲まれるバッファー容器を備える、電気泳動装置。(態様29)態様27または28に記載の電気泳動装置において、前記ウェルを回転するウェル回転機構を備える、電気泳動装置。(態様30)態様29に記載の電気泳動装置において、前記ウェル回転機構が前記ウェルを回転することにより前記複数の分取部を切り替える、電気泳動装置。 (Aspect 26) In the electrophoretic device according to aspect 24 or 25, when the moving unit moves the electrophoretic tool, the control unit moves the first power supply unit and the second power supply unit from the first power supply unit. An electrophoretic device that stops feeding power to one electrode and the second electrode. (Aspect 27) The electrophoresis apparatus according to any one of aspects 18 to 26, wherein the well includes a plurality of containers arranged in an annular shape. (Aspect 28) The electrophoresis apparatus according to Aspect 27, wherein the well includes a buffer container surrounded by the plurality of containers. (Aspect 29) The electrophoresis apparatus according to Aspect 27 or 28, comprising a well rotation mechanism for rotating the well. (Aspect 30) The electrophoretic apparatus according to Aspect 29, wherein the well rotation mechanism switches the plurality of sorting units by rotating the well.
(態様31)態様30に記載の電気泳動装置において、前記ウェル回転機構が前記ウェルを回転する際、前記電気泳動具は前記移動ユニットにより前記ウェルから離れて上方に移動する、電気泳動装置。(態様32)態様29~31のいずれか一項に記載の電気泳動装置において、前記ウェル回転機構が前記ウェルを回転する際、前記制御部は、前記第1の給電部及び前記第2の給電部から前記第1の電極及び前記第2の電極への給電を停止する、電気泳動装置。(態様33)態様22または23に記載の電気泳動装置において、前記分注器は、前記縦移動ユニットに接続される、電気泳動装置。(態様34)態様22、23、33のいずれか一項に記載の電気泳動装置において、前記縦移動ユニットは、前記第1の給電部及び前記第2の給電部を一体的に移動する、電気泳動装置。(態様35)態様18~34のいずれか一項に記載の電気泳動装置において、前記電気泳動管の前記ゲルをサンプルが流れる際に生じるバンドまたはラダーを検出する検出装置を備える、電気泳動装置。 (Aspect 31) The electrophoresis apparatus according to Aspect 30, wherein when the well rotation mechanism rotates the well, the electrophoresis tool moves upward away from the well by the moving unit. (Aspect 32) In the electrophoretic device according to any one of aspects 29 to 31, when the well rotation mechanism rotates the well, the control unit controls the first power supply unit and the second power supply unit. An electrophoretic device that stops power supply from the unit to the first electrode and the second electrode. (Aspect 33) The electrophoresis apparatus according to Aspect 22 or 23, wherein the dispenser is connected to the longitudinal movement unit. (Aspect 34) In the electrophoretic device according to any one of aspects 22, 23, and 33, the longitudinal movement unit moves the first power feeding unit and the second power feeding unit integrally. Electrophoresis device. (Aspect 35) The electrophoresis apparatus according to any one of aspects 18 to 34, further comprising a detection device that detects a band or a ladder generated when a sample flows through the gel of the electrophoresis tube.
(態様36)態様35に記載の電気泳動装置において、前記検出装置は、前記電気泳動具の前記電気泳動管に対向する検出端部と、前記検出端部を3次元的に移動する検出端部移動ユニットとを備える、電気泳動装置。(態様37)態様36に記載の電気泳動装置において、前記検出端部移動ユニットは、前記電気泳動管の長手方向にそって前記検出端部を移動する、電気泳動装置。(態様38)態様36または37に記載の電気泳動装置において、前記検出端部移動ユニットは、前記電気泳動管または前記ウェルの側面に対向した状態に前記検出端部を移動する、電気泳動装置。(態様39)態様36~38のいずれか一項に記載の電気泳動装置において、前記検出端部移動ユニットは、前記検出端部が前記電気泳動管又は前記ウェルに対向した状態で、前記電気泳動管又は前記ウェルの側面に対して近付く方向又は遠ざかる方向に前記検出端部を移動する、電気泳動装置。(態様40)態様36~37のいずれか一項に記載の電気泳動装置において、前記検出端部は、励起光用光ファイバーの照射端及び蛍光受光用光ファイバーの受光端を保持する、電気泳動装置。 (Aspect 36) The electrophoresis device according to Aspect 35, wherein the detection device includes a detection end facing the electrophoresis tube of the electrophoresis tool, and a detection end that moves the detection end in a three-dimensional manner. An electrophoresis apparatus comprising a moving unit. (Aspect 37) The electrophoresis apparatus according to Aspect 36, wherein the detection end moving unit moves the detection end along the longitudinal direction of the electrophoresis tube. (Aspect 38) The electrophoresis apparatus according to Aspect 36 or 37, wherein the detection end moving unit moves the detection end so as to face a side surface of the electrophoresis tube or the well. (Aspect 39) In the electrophoresis device according to any one of aspects 36 to 38, the detection end moving unit is configured to perform the electrophoresis with the detection end facing the electrophoresis tube or the well. An electrophoresis apparatus that moves the detection end in a direction toward or away from a side surface of a tube or the well. (Aspect 40) The electrophoresis apparatus according to any one of aspects 36 to 37, wherein the detection end portion holds an irradiation end of an excitation light optical fiber and a light reception end of a fluorescence light receiving optical fiber.
(態様41)態様36~40のいずれか一項に記載の電気泳動装置において、前記検出端部は、前記ウェルの側面の輪郭にそった湾曲面を備える、電気泳動装置。(態様42)態様36~41のいずれか一項に記載の電気泳動装置において、前記検出装置が電気泳動中のサンプルから分離した複数のバンドの位置を検出する、電気泳動装置。(態様43)態様18~42のいずれか一項に記載の電気泳動装置において、磁性粒子を用いた核酸の抽出機構を備える、電気泳動装置。(態様44)態様18~43のいずれか一項に記載の電気泳動装置において、核酸を増幅する増幅機構を備える、電気泳動装置。 (Aspect 41) The electrophoresis apparatus according to any one of aspects 36 to 40, wherein the detection end portion includes a curved surface along a contour of a side surface of the well. (Aspect 42) The electrophoresis apparatus according to any one of aspects 36 to 41, wherein the detection apparatus detects positions of a plurality of bands separated from a sample being electrophoresed. (Aspect 43) The electrophoresis apparatus according to any one of aspects 18 to 42, further comprising a nucleic acid extraction mechanism using magnetic particles. (Aspect 44) The electrophoresis apparatus according to any one of Aspects 18 to 43, comprising an amplification mechanism for amplifying a nucleic acid.
(態様45)態様18~44のいずれか一項に記載の電気泳動装置を複数備える、電気泳動システム。(態様46)態様45に記載の電気泳動システムにおいて、前記制御部は、前記複数の電気泳動具のぞれぞれに対して、前記検出装置を用いてサンプルから分離したバンドの位置をそれぞれ検出するとともに、前記バンドの検出位置に基づき、前記複数の電気泳動具のそれぞれの前記第2の電極及び前記第1の電極への給電を制御することにより、各電気泳動具における前記バンドの移動を制御する、電気泳動システム。(態様47)態様46に記載の電気泳動システムにおいて、前記制御部は、前記複数の電気泳動具のぞれぞれにおける、前記バンドの位置を揃えるように、前記第1の電極及び前記第2の電極への給電を制御する、電気泳動システム。(態様48)態様18~44のいずれか一項に記載の電気泳動装置を用いて、サンプルの電気泳動を実行する、電気泳動方法。(態様49)態様44~47のいずれか一項に記載の電気泳動システムを用いて、複数のサンプルの電気泳動の並列処理を実行する、電気泳動方法。(態様50)態様48または49に記載の電気泳動方法において、前記サンプルは生体関連物質である、方法。(態様51)態様48~50のいずれか一項に記載の電気泳動方法において、前記生体関連物質は、DNA、RNA、またはタンパク質である、方法。 (Aspect 45) An electrophoresis system comprising a plurality of the electrophoresis apparatuses according to any one of aspects 18 to 44. (Aspect 46) In the electrophoresis system according to Aspect 45, the control unit detects the position of each band separated from the sample by using the detection device for each of the plurality of electrophoresis tools. And controlling the power supply to the second electrode and the first electrode of each of the plurality of electrophoretic devices based on the detection position of the band, thereby moving the bands in each electrophoretic device. Controlled electrophoresis system. (Aspect 47) In the electrophoresis system according to aspect 46, the control unit includes the first electrode and the second electrode so as to align the positions of the bands in each of the plurality of electrophoresis tools. Electrophoresis system that controls power supply to the electrodes. (Aspect 48) An electrophoresis method for performing electrophoresis of a sample using the electrophoresis apparatus according to any one of aspects 18 to 44. (Aspect 49) An electrophoresis method, wherein the electrophoresis system according to any one of aspects 44 to 47 is used to execute parallel processing of electrophoresis of a plurality of samples. (Aspect 50) The electrophoresis method according to Aspect 48 or 49, wherein the sample is a biological substance. (Aspect 51) The electrophoresis method according to any one of aspects 48 to 50, wherein the biological substance is DNA, RNA, or protein.
 本発明の電気泳動具、電気泳動装置、及び電気泳動システムによれば、効率よくサンプルをサイジングし、分取又はミルキング、分析することが可能となる。 According to the electrophoresis tool, the electrophoresis apparatus, and the electrophoresis system of the present invention, it becomes possible to efficiently size, sort, or milk and analyze a sample.
本発明の第1の実施形態に係る電気泳動チップの斜視図である。1 is a perspective view of an electrophoresis chip according to a first embodiment of the present invention. 図1の電気泳動チップの側面図である。It is a side view of the electrophoresis chip of FIG. 図1の電気泳動管の斜視図である。It is a perspective view of the electrophoresis tube of FIG. 図3の電気泳動管の長手方向における断面図である。It is sectional drawing in the longitudinal direction of the electrophoresis tube of FIG. 図1の電気泳動管用のホルダの展開斜視図である。FIG. 2 is a developed perspective view of a holder for the electrophoresis tube of FIG. 1. 図5のホルダの上面図である。It is a top view of the holder of FIG. 図5のホルダの展開側面図である。FIG. 6 is a developed side view of the holder of FIG. 5. 図5のホルダに電気泳動管を装着する途中の拡大側面図である。It is an enlarged side view in the middle of mounting | wearing with an electrophoresis tube in the holder of FIG. 図8のホルダに電気泳動管を装着した状態の側面図である。It is a side view of the state which attached the electrophoresis tube to the holder of FIG. 図6のホルダに電気泳動管の装着後、ホルダ閉鎖中の拡大斜視図である。FIG. 7 is an enlarged perspective view showing that the holder is closed after the electrophoresis tube is attached to the holder of FIG. 6. 図2の電気泳動チップの上面図である。FIG. 3 is a top view of the electrophoresis chip in FIG. 2. 本発明の第1の実施形態に係る電気泳動装置の側面図である。1 is a side view of an electrophoresis apparatus according to a first embodiment of the present invention. 図1の電気泳動チップへ分注器を用いた分注状態を示す側面図である。It is a side view which shows the dispensing state which used the dispenser to the electrophoresis chip of FIG. 図12の電気泳動装置を用いた電気泳動を示す側断面図である。It is a sectional side view which shows the electrophoresis using the electrophoresis apparatus of FIG. 本発明の第1の実施形態に係る電気泳動システムの上面図である。1 is a top view of an electrophoresis system according to a first embodiment of the present invention. 図15の電気泳動システムによる電気泳動を示す断面図である。It is sectional drawing which shows the electrophoresis by the electrophoresis system of FIG. 本発明の第2の実施形態に係る電気泳動チップの(a)側面図及び(b)正面図である。It is the (a) side view and (b) front view of the electrophoresis chip which concern on the 2nd Embodiment of this invention. 図17のプラス電極収容部の(a)側面図及び(b)正面図である。It is the (a) side view and (b) front view of the positive electrode accommodating part of FIG. 図18のプラス電極収容部に電気泳動チップを装着した状態の(a)側面図及び(b)正面図である。It is the (a) side view and (b) front view of the state which mounted | worn with the electrophoresis chip in the plus electrode accommodating part of FIG. 図19(a)のプラス電極収容部をマイナス電極収容部に装着する直前の側面図である。It is a side view just before mounting | wearing the plus electrode accommodating part of Fig.19 (a) to a minus electrode accommodating part. 図19の状態の斜視図である。It is a perspective view of the state of FIG. 図17の電気泳動チップの上面図である。FIG. 18 is a top view of the electrophoresis chip in FIG. 17. 本発明の第2の実施形態に係る電気泳動システムの斜視図である。It is a perspective view of the electrophoresis system which concerns on the 2nd Embodiment of this invention. 図23の電気泳動システムの正面図である。It is a front view of the electrophoresis system of FIG. 図23の電気泳動システムの側面図である。It is a side view of the electrophoresis system of FIG. 図23の電気泳動システムのステージに関する(a)4レーン配置の平面図、(b)8レーン配置の平面図である。FIG. 24A is a plan view of a four-lane arrangement and FIG. 24B is a plan view of an eight-lane arrangement regarding the stage of the electrophoresis system of FIG. 図23の電気泳動システムに用いる回転分取ウェルの斜視図である。FIG. 24 is a perspective view of a rotating sorting well used in the electrophoresis system of FIG. 23. 図27の回転分取ウェルの使用状態の側面図である。It is a side view of the use condition of the rotation sorting well of FIG. 図27の回転分取ウェルの回転機構の斜視図である。It is a perspective view of the rotation mechanism of the rotation fractionation well of FIG. 図23の電気泳動システムの電気泳動状態の要部斜視図である。It is a principal part perspective view of the electrophoresis state of the electrophoresis system of FIG. 図30の検出端部移動ユニットの要部斜視図である。It is a principal part perspective view of the detection end part moving unit of FIG. 図31の検出端部移動ユニットの移動状態の要部斜視図である。It is a principal part perspective view of the movement state of the detection end part moving unit of FIG. 本発明の実施例に用いる各種容器の側面図である。It is a side view of the various containers used for the Example of this invention. 本発明の実施例おける電気泳動方法を示す図である。It is a figure which shows the electrophoresis method in the Example of this invention. 本発明の実施例おける電気泳動パターンを示す図である。It is a figure which shows the electrophoresis pattern in the Example of this invention. 本発明の第3の実施形態に係る電気泳動チップの、(a)正面図、(b)側面図である。It is the (a) front view and the (b) side view of the electrophoresis chip concerning a 3rd embodiment of the present invention. 図36の電気泳動チップの上部の断面図である。FIG. 37 is a cross-sectional view of the upper part of the electrophoresis chip of FIG. 36. 図36の電気泳動チップの第1の組立工程を示す側面図である。FIG. 37 is a side view showing a first assembly process of the electrophoresis chip in FIG. 36. 図36の電気泳動チップの第2の組立工程を示す側面図である。FIG. 37 is a side view showing a second assembly step of the electrophoresis chip in FIG. 36. 図36の電気泳動チップの第3の組立工程を示す側面図である。FIG. 37 is a side view showing a third assembly step of the electrophoresis chip in FIG. 36.
 本発明の電気泳動チップ(電気泳動具)、電気泳動装置、及び電気泳動システムの各実施形態を説明する。本実施形態の電気泳動チップは、好ましくは電気泳動管、プラス電極、マイナス電極を一体化したものである。本実施形態の電気泳動装置は、電気泳動チップを移動ユニットに取り付けることにより、電気泳動チップを3次元的に移動可能とする。本実施形態の電気泳動システムは、電気泳動装置の処理レーン(処理ライン)を複数含み、複数のサンプルを平行して同時に処理するものである、各実施形態において、同一部分には同一の符号を付し、同一部分の説明は適宜省略する。 Embodiments of an electrophoresis chip (electrophoresis tool), an electrophoresis apparatus, and an electrophoresis system according to the present invention will be described. The electrophoresis chip of this embodiment is preferably an integrated electrophoresis tube, plus electrode, and minus electrode. The electrophoresis device of the present embodiment enables the electrophoresis chip to be moved three-dimensionally by attaching the electrophoresis chip to the moving unit. The electrophoresis system of the present embodiment includes a plurality of processing lanes (processing lines) of the electrophoresis apparatus, and processes a plurality of samples simultaneously in parallel. In each embodiment, the same parts are denoted by the same reference numerals. The description of the same part is omitted as appropriate.
〔第1の実施形態〕
(電気泳動チップ)
 本発明の第1の実施形態に係る電気泳動チップ(Tip)1を、図1及び図2を用いて説明する。電気泳動チップ1は、電気泳動用のゲルを収容する電気泳動管100と、電気泳動管100の上部を保持するホルダ200と、電気泳動管100の下方からゲルにプラス電位(第1の電位)を加えるプラス電極(第1の電極)300と、電気泳動管100の上方からゲルにマイナス電位(第2の電位)を加えるマイナス電極(第2の電極)400とから構成される。ホルダ200は、電気泳動管100、プラス電極300、及びマイナス電極400をそれぞれ固定して一体化する。なお、ホルダ400によりプラス電極400を一体化せず、プラス電極400を図14の分取ウェル511~513(カートリッジ)側に移動可能に設けることもできる。
[First Embodiment]
(Electrophoresis chip)
An electrophoresis chip (Tip) 1 according to a first embodiment of the present invention will be described with reference to FIGS. The electrophoresis chip 1 includes an electrophoresis tube 100 that accommodates an electrophoresis gel, a holder 200 that holds the upper part of the electrophoresis tube 100, and a positive potential (first potential) applied to the gel from below the electrophoresis tube 100. And a negative electrode (second electrode) 400 for applying a negative potential (second potential) to the gel from above the electrophoresis tube 100. The holder 200 fixes and integrates the electrophoresis tube 100, the plus electrode 300, and the minus electrode 400. Note that the positive electrode 400 may not be integrated by the holder 400, and the positive electrode 400 may be movably provided on the sorting wells 511 to 513 (cartridge) side in FIG.
 図3及び図4には、使用開始前(ホルダ200に固定前)の電気泳動管100の状態を示している。電気泳動管100は、ホルダ200により保持される上端108と、バッファーを収容するバッファー収容管110と、バッファー収容管110よりも細く形成されたゲル収容管112と、ゲル収容管112に充填されるゲル140とを備える。電気泳動管1は、ストロー状であり、ゲル収容管112の内径は、好ましくは3mm~4mmとすることができる。電気泳動管100は、好ましくは電気泳動管100の上端開口を閉鎖する可撓性の上部キャップ120と、下端開口を閉鎖する可撓性の下部キャップ130とを備える。電気泳動管100が両キャップ120及び130を備えることにより、電気泳動管100をホルダ200に取り付ける前に、ゲルの乾燥及びゲルへのコンタミネーションを防止することができる。上部キャップ120及び下部キャップ130は、電気泳動を行う前に取り外される。 3 and 4 show the state of the electrophoresis tube 100 before the start of use (before fixing to the holder 200). The electrophoresis tube 100 is filled in the upper end 108 held by the holder 200, a buffer storage tube 110 for storing a buffer, a gel storage tube 112 formed narrower than the buffer storage tube 110, and the gel storage tube 112. Gel 140. The electrophoresis tube 1 has a straw shape, and the inner diameter of the gel containing tube 112 can be preferably 3 mm to 4 mm. The electrophoresis tube 100 preferably includes a flexible upper cap 120 that closes the upper end opening of the electrophoresis tube 100 and a flexible lower cap 130 that closes the lower end opening. By providing both the caps 120 and 130 in the electrophoresis tube 100, before the electrophoresis tube 100 is attached to the holder 200, drying of the gel and contamination to the gel can be prevented. The upper cap 120 and the lower cap 130 are removed before performing electrophoresis.
 上部キャップ120に替えて、電気泳動管100の内部でゲル140の上部を閉鎖する上部キャップ121を設けてもよい。上部キャップ121は棒状であり、電気泳動管100の上端開口の外側まで延びるつまみ123を備える。使用時につまみ123を引っ張ることにより上部キャップ121を容易に取り外すことができる。さらに、つまみ123の末端にリングを取り付けて、キャップ123の引き出しを容易にしてよい。電気泳動管1は、紫外線及び可視光が透過可能な透明材料から形成される。バッファーは、電気泳動を行う前に、図13に示すように分注器610を用いて分注される。ゲル140は、好ましくはアガロースゲルまたはポリアクリルアミドゲルを用いることができるがこれらに限定されない。 Instead of the upper cap 120, an upper cap 121 for closing the upper portion of the gel 140 inside the electrophoresis tube 100 may be provided. The upper cap 121 is rod-shaped and includes a knob 123 that extends to the outside of the upper end opening of the electrophoresis tube 100. The upper cap 121 can be easily removed by pulling the knob 123 during use. Further, a ring may be attached to the end of the knob 123 so that the cap 123 can be easily pulled out. The electrophoresis tube 1 is made of a transparent material that can transmit ultraviolet light and visible light. Prior to electrophoresis, the buffer is dispensed using a dispenser 610 as shown in FIG. The gel 140 is preferably, but not limited to, an agarose gel or a polyacrylamide gel.
 図5及び図6の展開図に示すように、ホルダ200は、プラス電極300を収容するプラス電極収容部(第1の電極収容部)210と、マイナス電極400を収容するマイナス電極収容部(第2の電極収容部)220と、両電極収容部210及び220を接続するヒンジ部230とから構成される。各電極収容部210、220は、さらに電気泳動管100の上部を取り囲み収容するように湾曲した形状(筒を長手方向に切断した形状)を有する。ヒンジ部230を中心としてマイナス電極収容部220をプラス電極収容部210に対して回転させると、両電極収容部210及び220が筒状のホルダ200を形成する。図示していないが、ホルダ200は、好ましくは、筒状のホルダ200を形成した状態で、両電極収容部210及び220を互いに固定する係止構造を備える。係止構造は、例えば、一方の電極収容部に設けられた弾性変形可能な爪と、他方の電極収容部に設けられ前記爪が引っ掛かる窪みとから構成される。 As shown in the developed views of FIGS. 5 and 6, the holder 200 includes a positive electrode housing portion (first electrode housing portion) 210 that houses the positive electrode 300 and a negative electrode housing portion (first electrode housing portion that houses the negative electrode 400. 2 electrode housing part) 220 and a hinge part 230 connecting both electrode housing parts 210 and 220. Each of the electrode housing portions 210 and 220 has a curved shape (a shape obtained by cutting the tube in the longitudinal direction) so as to surround and accommodate the upper portion of the electrophoresis tube 100. When the negative electrode housing part 220 is rotated with respect to the positive electrode housing part 210 around the hinge part 230, the two electrode housing parts 210 and 220 form a cylindrical holder 200. Although not shown, the holder 200 preferably includes a locking structure that fixes the electrode housing portions 210 and 220 to each other in a state where the cylindrical holder 200 is formed. The locking structure includes, for example, an elastically deformable claw provided in one electrode housing portion and a recess provided in the other electrode housing portion and hooked by the claw.
 プラス電極収容部210には、プラス電極300を収容する電極収容溝211と、プラス電極300の下端近傍まで延びる延長部213とを備える。電極収容溝211は、プラス電極収容部210の上端から延長部213の下端まで延びる。延長部213には、好ましくは電極収容溝211上に突出する複数の突出部を設けることにより、電極の脱落を防止することができる。さらに、延長部213には、図1に示したように、電気泳動管100のゲル収容管112を挟持する1つまたは複数の挟持部215、及び/または、プラス電極300の下端320側を保持する電極保持部217を設けることもできる。マイナス電極収容部220は、マイナス電極400を着脱自在に保持するC字状突起部221を備える。 The plus electrode housing part 210 includes an electrode housing groove 211 for housing the plus electrode 300 and an extension part 213 extending to the vicinity of the lower end of the plus electrode 300. The electrode housing groove 211 extends from the upper end of the plus electrode housing portion 210 to the lower end of the extension portion 213. The extension 213 is preferably provided with a plurality of protrusions protruding on the electrode housing groove 211, so that the electrode can be prevented from falling off. Further, as shown in FIG. 1, the extension portion 213 holds one or more holding portions 215 that hold the gel storage tube 112 of the electrophoresis tube 100 and / or the lower end 320 side of the plus electrode 300. It is also possible to provide an electrode holding portion 217 to be used. The negative electrode housing part 220 includes a C-shaped protrusion 221 that detachably holds the negative electrode 400.
 図5及び図6のホルダ200にプラス電極300及びマイナス電極400を取り付けた状態を、図7を用いて説明する。プラス電極300は、図12のプラス給電部(第1の給電部)621に接続される上端310と、図14の分取ウェル511~513等に満たされたバッファーに浸けられる下端320と、上端310及び下端320を接続する電線部330とから構成される。電線部330が電極収容溝211に収容される。 A state in which the plus electrode 300 and the minus electrode 400 are attached to the holder 200 of FIGS. 5 and 6 will be described with reference to FIG. The positive electrode 300 includes an upper end 310 connected to the positive power supply unit (first power supply unit) 621 in FIG. 12, a lower end 320 immersed in a buffer filled in the sorting wells 511 to 513 in FIG. 310 and an electric wire part 330 connecting the lower end 320. The electric wire part 330 is accommodated in the electrode accommodation groove 211.
 マイナス電極400は、図12のマイナス給電部(第2の給電部)623に接続される上端410と、電気泳動管100に満たされたバッファーに浸けられる下端420と、上端410及び下端420を接続する電線部430とから構成される。マイナス電極400は、マイナス電極収容部220に設けられたC字状突起部221に着脱自在に保持される。 The negative electrode 400 connects the upper end 410 connected to the negative power supply unit (second power supply unit) 623 in FIG. 12, the lower end 420 immersed in the buffer filled in the electrophoresis tube 100, and the upper end 410 and the lower end 420. The electric wire part 430 is configured. The minus electrode 400 is detachably held by a C-shaped protrusion 221 provided in the minus electrode housing part 220.
 図7の状態のホルダ200に電気泳動管100を装着する手順を説明する。初めに、図3の状態の電気泳動管100からキャップ120及び130を取り外す。次に、図8に示すように、マイナス電極収容部220の下方から上方に向けて電気泳動管100を移動して、電気泳動管100内にマイナス電極400の下端420を導き入れる。さらに、図9に示すように、下端420がバッファー収容管110内に延びるまで、電気泳動管100を移動する。図9から図10を経て、電極収容部210及び220を閉じることにより、ホルダ200が電気泳動管100の上部を取り囲んで固定した状態となる。この状態を図1及び図2に示す。図11は、図1及び図2の状態の電気泳動チップ1を上側から見た図である。 The procedure for mounting the electrophoresis tube 100 on the holder 200 in the state of FIG. 7 will be described. First, the caps 120 and 130 are removed from the electrophoresis tube 100 in the state shown in FIG. Next, as shown in FIG. 8, the electrophoresis tube 100 is moved from the lower side to the upper side of the negative electrode housing part 220, and the lower end 420 of the negative electrode 400 is introduced into the electrophoresis tube 100. Further, as shown in FIG. 9, the electrophoresis tube 100 is moved until the lower end 420 extends into the buffer storage tube 110. 9 to 10, the electrode housing portions 210 and 220 are closed, so that the holder 200 surrounds and fixes the upper part of the electrophoresis tube 100. This state is shown in FIGS. FIG. 11 is a view of the electrophoresis chip 1 in the state of FIGS. 1 and 2 as viewed from above.
(電気泳動装置)
 本発明の第1の実施形態に係る電気泳動装置2を説明する。電気泳動装置2は、電気泳動チップ1を備える。図12に示すように、電気泳動装置2は、縦方向(略鉛直方向)に直線的に移動可能な縦移動ユニット600と、略直線状(ライン状)に配置された複数のウェルを備える処理ライン(カートリッジ)500とをさらに備える。図12は、電気泳動チップ1の図示を省略している。縦移動ユニット600には、分注チップ611を着脱自在に装着する分注器610と、分注器610を着脱自在に装着する分注器装着部(吸引ノズル)613と、電気泳動チップ1を着脱自在に装着する電気泳動チップ装着部620とを備える。電気泳動装置2は、縦移動ユニット600を横方向(略水平方向)に略直線的に移動可能とする横移動ユニット(例えば、図23の横移動ユニット900)と、前記横移動ユニット600及び縦移動ユニット900を制御する制御部(不図示)とを備える。電気泳動装置2が縦移動ユニット600及び横移動ユニット900を備えることにより、電気泳動チップ1を処理ライン600上で3次元的に移動することができる。電気泳動チップ1は、図15に示す電気泳動チップ収容ラック520に収容されている。分注器610は、図13に示すように、バッファーやサンプルを電気泳動チップ1の上端開口からその内部に分注することができる。さらに、分注器610は、各ウェルに溶液、サンプル、及び試薬を分注(吐出)したり、各ウェルからこれらを吸引して移動することもできる。
(Electrophoresis device)
An electrophoresis device 2 according to a first embodiment of the present invention will be described. The electrophoresis device 2 includes an electrophoresis chip 1. As shown in FIG. 12, the electrophoresis apparatus 2 includes a vertical movement unit 600 that can move linearly in the vertical direction (substantially vertical direction) and a plurality of wells arranged in a substantially linear shape (line shape). And a line (cartridge) 500. In FIG. 12, illustration of the electrophoresis chip 1 is omitted. In the vertical movement unit 600, a dispenser 610 to which the dispensing tip 611 is detachably attached, a dispenser attachment portion (aspiration nozzle) 613 to which the dispenser 610 is detachably attached, and the electrophoresis chip 1 are provided. And an electrophoresis chip mounting portion 620 that is detachably mounted. The electrophoretic apparatus 2 includes a lateral movement unit (for example, the lateral movement unit 900 in FIG. 23) that allows the vertical movement unit 600 to move substantially linearly in the horizontal direction (substantially horizontal direction), the horizontal movement unit 600, and the vertical movement unit 600. A control unit (not shown) for controlling the moving unit 900. Since the electrophoresis apparatus 2 includes the vertical movement unit 600 and the horizontal movement unit 900, the electrophoresis chip 1 can be moved three-dimensionally on the processing line 600. The electrophoresis chip 1 is housed in an electrophoresis chip housing rack 520 shown in FIG. As shown in FIG. 13, the dispenser 610 can dispense a buffer or a sample from the upper end opening of the electrophoresis chip 1 into the inside thereof. Further, the dispenser 610 can dispense (discharge) a solution, a sample, and a reagent into each well, or can suck and move these from each well.
 第1の実施形態の電気泳動装置2を用いて電気泳動を行う状態を図14に示す。電気泳動装置2は、DNA等のサンプルの電気泳動によりゲル140中に生じるバンドを検出する検出装置(蛍光スキャナー)700を備える。検出装置700は、励起光の光源705と、励起光用光ファイバー710と、蛍光受光用光ファイバー720と、励起光用光ファイバー710の照射端及び蛍光受光用光ファイバー720の受光端を保持する検出端部730と、蛍光受光用光ファイバー720からの光を検出する光電子増倍管(PMT)等の光検出素子740と、検出端部730を3次元的に移動する検出端部移動ユニット(例えば、図31及び32の検出端部移動ユニット750)とを備える。検出端部730は、検出端部移動機構によって、励起光用光ファイバー710の照射端及び蛍光受光用光ファイバー720の受光端を、電気泳動管100のゲル収容管112の側面及び/またはウェル510の側面と対向させた状態で、ゲル収容管112及び/またはウェル510の長手方向にそって縦方向(略垂直方向)に移動可能である。さらに、検出端部730は、検出端部移動ユニットによって、ゲル収容管112の側面及び/またはウェル510の側面に対して近付いたり離れたりする横方向(略水平方向)に移動可能である。なお、分取ウェル511~513は、紫外線及び可視光が透過可能な透明材料から形成される。 FIG. 14 shows a state in which electrophoresis is performed using the electrophoresis apparatus 2 of the first embodiment. The electrophoresis device 2 includes a detection device (fluorescence scanner) 700 that detects a band generated in the gel 140 by electrophoresis of a sample such as DNA. The detection device 700 includes an excitation light source 705, an excitation light optical fiber 710, a fluorescence light receiving optical fiber 720, a detection end 730 that holds an irradiation end of the excitation light optical fiber 710 and a light reception end of the fluorescence receiving optical fiber 720. A photodetection element 740 such as a photomultiplier tube (PMT) that detects light from the fluorescence receiving optical fiber 720, and a detection end moving unit that moves the detection end 730 three-dimensionally (for example, FIG. 32 detection end moving units 750). The detection end 730 is configured so that the irradiation end of the excitation light optical fiber 710 and the light reception end of the fluorescence light receiving optical fiber 720 are moved to the side surface of the gel containing tube 112 and / or the side surface of the well 510 by the detection end moving mechanism. Can be moved in the longitudinal direction (substantially vertical direction) along the longitudinal direction of the gel containing tube 112 and / or the well 510. Further, the detection end portion 730 can be moved in a lateral direction (substantially horizontal direction) approaching or leaving the side surface of the gel containing tube 112 and / or the side surface of the well 510 by the detection end portion moving unit. The sorting wells 511 to 513 are made of a transparent material that can transmit ultraviolet light and visible light.
 第1の実施形態の並列処理式の電気泳動システム3は、図15に示すように、同一構成を有する複数の電気泳動装置2~2Gを備える。図15のステージ800の上面図に示すように、各電気泳動装置2~2Gは、電気泳動チップ1~1Aと、処理ライン(処理レーン)500~500Gと、縦移動ユニット600~600Gと、検出装置700~700G(図示省略)と、横移動ユニット900とから構成される。各縦移動ユニット600~600Gは、対応する各処理ライン500~500G上方でこれらの長手方向にそって移動可能である。さらに、各処理ライン500~500Gに対して検出装置の検出端部730が設けられる。各検出端部730は、縦移動ユニット600に装着された各電気泳動チップ1の横移動方向に配置することが好ましい。これによって、図15に示すように、複数の電気泳動装置を備えた場合にも、一の検出端部730の水平移動が他の検出端部730の移動に干渉せず、全体としてコンパクトに配置することができる。検出端部730の水平及び垂直移動の邪魔にならないように、分取ウェル511、512、513は、他のウェルの分取時に移動することができる。図15において、各縦移動ユニットに個別の横移動ユニット600~600Gを設けることにより、各処理レーン500~500G上で独立して3次元的に移動可能としたが、各縦移動ユニットを一体的に移動する縦移動ユニット(図23の縦移動ユニット600)、及び/または横移動ユニット(図23の横移動ユニット900)を設けてもよい。 The parallel processing type electrophoresis system 3 according to the first embodiment includes a plurality of electrophoresis apparatuses 2 to 2G having the same configuration as shown in FIG. As shown in the top view of the stage 800 in FIG. 15, each electrophoresis apparatus 2 to 2G includes an electrophoresis chip 1 to 1A, a processing line (processing lane) 500 to 500G, a vertical movement unit 600 to 600G, and a detection unit. A device 700 to 700G (not shown) and a lateral movement unit 900 are included. Each of the vertical movement units 600 to 600G can move along their longitudinal direction above the corresponding processing line 500 to 500G. Further, a detection end 730 of the detection device is provided for each of the processing lines 500 to 500G. Each detection end 730 is preferably arranged in the lateral movement direction of each electrophoresis chip 1 mounted on the vertical movement unit 600. As a result, as shown in FIG. 15, even when a plurality of electrophoresis apparatuses are provided, the horizontal movement of one detection end 730 does not interfere with the movement of the other detection end 730, and the entire arrangement is compact. can do. The sorting wells 511, 512, and 513 can be moved when sorting other wells so as not to interfere with the horizontal and vertical movement of the detection end 730. In FIG. 15, by providing individual horizontal movement units 600 to 600G for each vertical movement unit, it is possible to move three-dimensionally independently on each processing lane 500 to 500G, but each vertical movement unit is integrated. A vertical movement unit (vertical movement unit 600 in FIG. 23) and / or a horizontal movement unit (lateral movement unit 900 in FIG. 23) may be provided.
(電気泳動による分取)
 電気泳動装置2を用いた電気泳動による断片化DNA(サンプル)の分取工程を、図14を参照して説明する。公知の手法を用いてサンプルからDNAを抽出し、これを断片化する。得られた断片化DNAに、複数の標識化DNA(分子量マーカー)を加える。複数の標識化DNAは、既知の分子量(サイズ)をそれぞれ有し、蛍光により検出装置700を用いて検出可能である。例えば、10kbpの分子量を有する標識化DNAと、25kbpの分子量を有する標識化DNAとの2種類を加えることができる。このように複数の標識化DNAを加えて電気泳動を行うと、複数の標識化DNAのバンド、各標識化DNAのバンドの間に位置する断片化DNAのバンドに分離する。そして、標識化DNAのバンドの位置を検出装置700により検出することにより、必要な分子量の断片化DNAを分取(ミルキング)することができる。
(Preparation by electrophoresis)
The process of fractionating DNA (sample) by electrophoresis using the electrophoresis apparatus 2 will be described with reference to FIG. DNA is extracted from the sample using a known technique and fragmented. A plurality of labeled DNAs (molecular weight markers) are added to the obtained fragmented DNA. Each of the plurality of labeled DNAs has a known molecular weight (size) and can be detected using the detection device 700 by fluorescence. For example, two types of labeled DNA having a molecular weight of 10 kbp and labeled DNA having a molecular weight of 25 kbp can be added. When electrophoresis is carried out with a plurality of labeled DNAs added in this way, a plurality of labeled DNA bands and a fragmented DNA band located between each labeled DNA band are separated. Then, by detecting the position of the band of the labeled DNA with the detection device 700, the fragmented DNA having a required molecular weight can be sorted (milked).
 電気泳動装置2による分取(ミルキング)の具体的な処理手順は、次の通りである。図1及び図2の状態に組み立てた電気泳動チップ1を、電気泳動装置2のチップ収容ラック520(図15)にセットする。チップ収容ラック520に収容した状態で、電気泳動チップ1は縦移動ユニット600には装着されていない。この状態で、図13に示すように、制御部が、分注器610を用いて、電気泳動チップ1の上端開口からバッファー、断片化DNAのサンプル、既知分子量の複数の標識化DNAを電気泳動チップ1内に分注する。次に縦移動ユニット600の電気泳動チップ装着部620に、電気泳動チップ1の上部を装着する。この装着と同時に、プラス電極300の上端310を縦移動ユニット600のプラス給電部621に、且つマイナス電極400の上端410を縦移動ユニット600のマイナス給電部623に、それぞれ挿入して電気的に接続する。これによってゲル140(図4)に電圧が印加可能となる。なお、電気泳動チップ装着部620には、電気泳動チップ1の移動の際、確実に固定するために、電気泳動チップ1の上部を挟んで押える押え機構を設けることもできる。 The specific processing procedure of sorting (milking) by the electrophoresis apparatus 2 is as follows. The electrophoresis chip 1 assembled in the state of FIGS. 1 and 2 is set in the chip storage rack 520 (FIG. 15) of the electrophoresis apparatus 2. The electrophoresis chip 1 is not attached to the longitudinal movement unit 600 while being accommodated in the chip accommodation rack 520. In this state, as shown in FIG. 13, the controller uses a dispenser 610 to perform electrophoresis of a buffer, a fragmented DNA sample, and a plurality of labeled DNAs of known molecular weight from the upper end opening of the electrophoresis chip 1. Dispense into the tip 1. Next, the upper part of the electrophoresis chip 1 is mounted on the electrophoresis chip mounting part 620 of the vertical movement unit 600. Simultaneously with this mounting, the upper end 310 of the positive electrode 300 is inserted into the positive power feeding unit 621 of the vertical movement unit 600 and the upper end 410 of the negative electrode 400 is inserted into the negative power feeding unit 623 of the vertical movement unit 600 and electrically connected. To do. As a result, a voltage can be applied to the gel 140 (FIG. 4). Note that the electrophoresis chip mounting portion 620 may be provided with a pressing mechanism that holds and holds the upper part of the electrophoresis chip 1 in order to securely fix the electrophoresis chip 1 when the electrophoresis chip 1 is moved.
 そしてゲル140に電圧を印加すると、DNAはマイナスに帯電しているため、プラス電極の下端320側に向かって移動する。この移動の際に、DNAはそのサイズ(分子量)が大きいほどゲル中の移動速度が遅くなるため、図14に示すようにバンドA、B、Cに分離する。本実施形態では、バンドAは25kbpの標識化DNA、バンドBは分取が必要な断片化DNA、バンドCは10kbpの標識化DNAである。 When a voltage is applied to the gel 140, the DNA is negatively charged and moves toward the lower end 320 of the positive electrode. During this movement, the larger the size (molecular weight) of the DNA, the slower the movement speed in the gel, so that the DNA is separated into bands A, B, and C as shown in FIG. In this embodiment, band A is a 25 kbp labeled DNA, band B is a fragmented DNA that needs to be sorted, and band C is a 10 kbp labeled DNA.
 検出装置700の検出端部730を、ゲル収容管112に対向させた状態で、ゲル収容管112の長手方向に移動しつつ、ゲル収容管112に励起光を照射しゲル収容管112からの蛍光を測定することができる。これによって、ゲル収容管112の長手方向における断片化DNAの分離状態をリアルタイムで確認することができる。検出端部730は、ゲル収容管112の上端と下端との間で、縦方向及び横方向に移動可能である。 While the detection end portion 730 of the detection device 700 is opposed to the gel storage tube 112, the gel storage tube 112 is irradiated with excitation light while moving in the longitudinal direction of the gel storage tube 112, and the fluorescence from the gel storage tube 112. Can be measured. Thereby, the separation state of the fragmented DNA in the longitudinal direction of the gel containing tube 112 can be confirmed in real time. The detection end portion 730 is movable in the vertical direction and the horizontal direction between the upper end and the lower end of the gel containing tube 112.
 検出端部730が電気泳動管100の下端の側面及び分取ウェル511の側壁に対向した状態で、バンドC(標識化DNA)が分取ウェル511内に落下していることを、検出装置700で確認することができる。バンドCの分取が完了したことを検出装置700からの信号で制御部が確認した後、制御部は、給電部621及び623から電極300及び400への電圧付与を停止して他のバンドA及びB(断片化DNA)がゲル中を移動することを停止する。電圧付与を停止した状態で、縦移動ユニット600を用いて、電気泳動チップ1の下端をウェル512内に移動する。電気泳動チップ1及びプラス電極300の下端がウェル512のバッファーに浸けられると、制御部は、給電部621及び623から電極300及び400への電圧付与を再開する。電圧付与の再開により、バンドBが下方に移動を開始する。なお、好ましくは、異なるウェルへの移動前に、電気泳動チップ1及び電極300の下端を洗浄することができる。 The detection device 700 indicates that the band C (labeled DNA) has fallen into the sorting well 511 with the detection end 730 facing the side surface of the lower end of the electrophoresis tube 100 and the side wall of the sorting well 511. Can be confirmed. After the control unit confirms that the sorting of the band C is completed by a signal from the detection device 700, the control unit stops applying the voltage from the power feeding units 621 and 623 to the electrodes 300 and 400, and the other band A And B (fragmented DNA) stop moving through the gel. With the voltage application stopped, the lower end of the electrophoresis chip 1 is moved into the well 512 using the longitudinal movement unit 600. When the lower ends of the electrophoresis chip 1 and the plus electrode 300 are immersed in the buffer of the well 512, the control unit resumes voltage application from the power supply units 621 and 623 to the electrodes 300 and 400. With the resumption of voltage application, band B starts moving downward. Preferably, the lower ends of the electrophoresis chip 1 and the electrode 300 can be washed before moving to a different well.
 第1の実施形態の電気泳動装置2または電気泳動システム3の制御部が、バンドBの断片化DNAがウェル512に落下して分取できたことを検出装置700からの信号により確認した後、制御部は、給電部621及び623から電極300及び400への電圧付与を再び停止してバンドAがゲル中を移動することを停止する。このようにして複数のバンドに含まれる断片化DNA、標識化DNAを、電気泳動チップ1を移動しつつ分取(ミルキング)することができる。 After the control unit of the electrophoresis apparatus 2 or the electrophoresis system 3 according to the first embodiment confirms that the fragmented DNA of the band B has been dropped into the well 512 and can be sorted by a signal from the detection apparatus 700, The control unit again stops voltage application from the power supply units 621 and 623 to the electrodes 300 and 400 to stop the band A from moving in the gel. In this way, fragmented DNA and labeled DNA contained in a plurality of bands can be separated (milked) while moving the electrophoresis chip 1.
 図15の並列処理式の電気泳動システム3のように、複数の電気泳動チップ1~1Gを備えて、同時に同じサンプルの電気泳動を行う場合を説明する。各電気泳動チップ1~1Gに収容されたゲルに対して、同じサンプルを供給し同時に電気泳動を行ったとしても、各サンプルを完全に同じバンドの位置で分離することはできない。例えば、図16に示すようにバンドA~Cの位置が、電気泳動チップ1~1Bで異なっている。これは、ゲルの状態を完全に均一にすることはできないことによる。通常の電気泳動ではこのようなずれを調整することは困難である。 A case will be described in which a plurality of electrophoresis chips 1 to 1G are provided and electrophoresis of the same sample is performed simultaneously as in the parallel processing type electrophoresis system 3 of FIG. Even if the same sample is supplied to the gels accommodated in the electrophoresis chips 1 to 1G and the electrophoresis is performed simultaneously, the samples cannot be completely separated at the same band position. For example, as shown in FIG. 16, the positions of bands A to C are different in the electrophoresis chips 1 to 1B. This is because the gel state cannot be made completely uniform. It is difficult to adjust such a deviation in normal electrophoresis.
 電気泳動システム3においては、各電気泳動チップ1~1Bが備える検出端部730によって、各バンドの位置を測定し制御部が電圧供給を調整することにより、各バンドの下降を制御して各バンドの位置(高さ)を揃えることができる。これにより、分取が必要なバンドを各分取ウェル511に同じタイミングで分取することができる。例えば、必要なバンド位置が下方にある電気泳動チップ1に対しては制御部は電圧供給を停止する一方、必要なバンド位置が上方にある電気泳動チップ1に対しては制御部は電圧供給を続けることにより、各バンドの位置を同じ高さに調整することができる。 In the electrophoresis system 3, the position of each band is measured by the detection end portion 730 provided in each of the electrophoresis chips 1 to 1B, and the control unit adjusts the voltage supply, thereby controlling the lowering of each band. The position (height) can be aligned. Thereby, the band which needs to be sorted can be sorted into each sorting well 511 at the same timing. For example, the control unit stops supplying voltage to the electrophoresis chip 1 having the necessary band position below, while the control unit supplies voltage to the electrophoresis chip 1 having the necessary band position above. By continuing, the position of each band can be adjusted to the same height.
 電気泳動システム3の検出装置700に好適な蛍光スキャナーは、本願出願人により特願2015-94426号として特許出願(発明の名称「多重反応平行測定装置及びその方法」)されている。当該特許出願に記載の蛍光スキャナーを本発明に適用した場合を説明する。各電気泳動チップに設けられた各光照射検出部730は水平方向に延びる共通の上下方向移動枠に取り付けられる。各光照射検出部730の各蛍光受光用光ファイバー720からの蛍光の出光端は、同心円状に配置され、この配置に対して、回転するロータリファイバー回転ユニット750(図23及び図25)を設ける。この回転体に設けた一本の光ファイバーに順次、蛍光が入射するようにする。これによって、複数の電気泳動チップの蛍光を一つの光ファイバーに導き、一つの光ファイバーに接続された光検出素子によって、時分割で複数の電気泳動チップの蛍光を検出処理することができる。 A fluorescent scanner suitable for the detection apparatus 700 of the electrophoresis system 3 has been filed as a patent application No. 2015-94426 by the applicant of the present application (invention name “Multiple reaction parallel measurement apparatus and method”). The case where the fluorescent scanner described in the patent application is applied to the present invention will be described. Each light irradiation detection unit 730 provided in each electrophoresis chip is attached to a common vertical movement frame extending in the horizontal direction. The light emission ends of the fluorescence from each fluorescence receiving optical fiber 720 of each light irradiation detection unit 730 are arranged concentrically, and a rotating rotary fiber rotating unit 750 (FIGS. 23 and 25) is provided for this arrangement. The fluorescence is sequentially incident on one optical fiber provided on the rotating body. Thus, the fluorescence of the plurality of electrophoresis chips can be guided to one optical fiber, and the fluorescence of the plurality of electrophoresis chips can be detected and processed in a time-sharing manner by the light detection element connected to the one optical fiber.
〔第2の実施形態〕
(電気泳動チップ)
 本発明の第2の実施形態に係る電気泳動チップ1’を説明する。電気泳動チップ1’(図17)は、ホルダ1200の構造が電気泳動チップ1とは相違する。ホルダ1200は、プラス電極300を収容するプラス電極収容部1210(図18)と、マイナス電極400を収容するマイナス電極収容部1220(図20)とから構成される。プラス電極収容部1210とマイナス電極収容部1220とは分離可能な部材である。
[Second Embodiment]
(Electrophoresis chip)
An electrophoresis chip 1 ′ according to a second embodiment of the present invention will be described. The electrophoresis chip 1 ′ (FIG. 17) is different from the electrophoresis chip 1 in the structure of the holder 1200. The holder 1200 includes a plus electrode housing portion 1210 (FIG. 18) that houses the plus electrode 300 and a minus electrode housing portion 1220 (FIG. 20) that houses the minus electrode 400. The plus electrode housing portion 1210 and the minus electrode housing portion 1220 are separable members.
 図18に示すように、プラス電極収容部1210は、電気泳動管100の上部を取り囲み収容するように湾曲した形状(筒を長手方向に切断した形状)を有する。プラス電極収容部1210には、第1の実施形態と同様の延長部213を備える。プラス電極収容部1210に電気泳動管100を装着すると、図19の状態となる。マイナス電極収容部1220は、図18及び図19に示すように概略筒状であり、下端に設けられたフランジ部1223と、フランジ部1223から下方に突出する位置決めリブ1225とを備える。位置決めリブ1225が挿入可能なスリットを、ステージ800の収容開口部または縦移動ユニット600の電気泳動チップ装着部620に設けることにより、電気泳動チップ1’を適切な向きで保持することができる。 As shown in FIG. 18, the plus electrode housing portion 1210 has a curved shape (a shape obtained by cutting the tube in the longitudinal direction) so as to surround and accommodate the upper portion of the electrophoresis tube 100. The positive electrode housing portion 1210 includes an extension portion 213 similar to that of the first embodiment. When the electrophoresis tube 100 is attached to the positive electrode housing portion 1210, the state shown in FIG. As shown in FIGS. 18 and 19, the negative electrode housing portion 1220 is substantially cylindrical and includes a flange portion 1223 provided at the lower end and a positioning rib 1225 protruding downward from the flange portion 1223. By providing a slit into which the positioning rib 1225 can be inserted in the accommodation opening of the stage 800 or the electrophoresis chip mounting part 620 of the longitudinal movement unit 600, the electrophoresis chip 1 'can be held in an appropriate orientation.
 電気泳動管100を装着したプラス電極収容部1210の上部を、図20及び図21の矢印方向に向けて移動して、マイナス電極収容部1220の開口に挿入する。これによって、電気泳動管100、プラス電極収容部1210、及びマイナス電極収容部1220が一体化されて、電気泳動チップ1’の組立てが完成する。図22に示すように、組立完了状態の電気泳動チップ1’はその上端開口を介して、電気泳動管100の内部に分注可能となる。電気泳動チップ1’は、マイナス電極収容部1220からプラス電極収容部1210の脱落を防止する脱落防止機構を備えることができる。脱落防止機構は、マイナス電極収容部1220の筒状部分内側に設けたリブまたは突起と、当該リブまたは突起が噛み合うマイナス電極収容部1220の外側面に設けた窪みとから構成される。リブまたは突起が窪みに係合して脱落が防止される。 The upper part of the plus electrode accommodating part 1210 equipped with the electrophoresis tube 100 is moved in the direction of the arrow in FIGS. 20 and 21 and inserted into the opening of the minus electrode accommodating part 1220. As a result, the electrophoresis tube 100, the plus electrode housing portion 1210, and the minus electrode housing portion 1220 are integrated to complete the assembly of the electrophoresis chip 1 '. As shown in FIG. 22, the assembled electrophoresis chip 1 ′ can be dispensed into the electrophoresis tube 100 through its upper end opening. The electrophoresis chip 1 ′ may include a drop-off prevention mechanism that prevents the positive electrode storage portion 1210 from dropping off from the negative electrode storage portion 1220. The drop-off prevention mechanism includes a rib or projection provided inside the cylindrical portion of the negative electrode housing portion 1220 and a recess provided on the outer surface of the negative electrode housing portion 1220 with which the rib or projection meshes. The ribs or protrusions engage with the recesses to prevent falling off.
(電気泳動システム)
 本発明の第2の実施形態に係る電気泳動システム3を説明する。電気泳動システム3は、第1の実施形態に係る電気泳動システム3を具体化したものである。図23~図25に示すように、電気泳動システム3は、検出機構(蛍光スキャナー)700と、ウェル530を含む複数のウェル等を備えるステージ800と、ステージ800上に設けられた縦方向(略垂直方向)へ略直転的に移動可能な縦移動ユニット600と、縦移動ユニット600を装着した状態で横方向(略水平方向)へ略直転的に移動可能な横移動ユニット900とを備える。縦移動ユニット600には、電気泳動チップ1または1’が着脱自在に装着される。検出機構700は、ロータリーファイバー回転機構750を備える。
(Electrophoresis system)
An electrophoresis system 3 according to a second embodiment of the present invention will be described. The electrophoresis system 3 embodies the electrophoresis system 3 according to the first embodiment. As shown in FIGS. 23 to 25, the electrophoresis system 3 includes a detection mechanism (fluorescence scanner) 700, a stage 800 including a plurality of wells including wells 530 and the like, and a vertical direction (substantially approximately) provided on the stage 800. A vertical movement unit 600 that can move in a substantially straight direction (vertical direction), and a horizontal movement unit 900 that can move in a substantially straight direction in the horizontal direction (substantially horizontal direction) with the vertical movement unit 600 mounted. . The vertical movement unit 600 is detachably mounted with the electrophoresis chip 1 or 1 ′. The detection mechanism 700 includes a rotary fiber rotation mechanism 750.
 横移動ユニット900は、縦移動ユニット600を縦方向に移動するモータ901と、縦移動ユニット600の分注器601の吸引/吐出を行うポンプを駆動するモータ903とを備える。縦移動ユニット600、モータ901、903は、横移動ユニット900に搭載されているため、横移動ユニット900と一体となって横方向に移動可能である。横移動ユニット900は、ステージ800の下に不図示の横移動用機構(モータ及びギア)を備える。 The horizontal movement unit 900 includes a motor 901 that moves the vertical movement unit 600 in the vertical direction and a motor 903 that drives a pump that performs suction / discharge of the dispenser 601 of the vertical movement unit 600. Since the vertical movement unit 600 and the motors 901 and 903 are mounted on the horizontal movement unit 900, the vertical movement unit 600 and the motors 901 and 903 can move in the horizontal direction integrally with the horizontal movement unit 900. The lateral movement unit 900 includes a lateral movement mechanism (motor and gear) (not shown) under the stage 800.
 ステージ800の構造を図26を用いて説明する。図26(a)は、電気泳動用の分取ウェル530をステージ800に装着した状態の4レーン配置であり、図26(b)は、分取ウェル530をステージ800から取り外し電気泳動用の非分取ウェル535を装着した状態の8レーン配置である。ステージ800には、複数のウェル等が一列に並んだ複数の処理ライン(処理レーン)を備える。図26(b)は8つの処理ラインを使用する配置であり、図26(a)は、ライン幅より直径が大きい回転式の分取ウェル530を使用するため、1レーン飛ばしに4つの処理ラインを使用する配置である。なお、図26(b)の配置は、サンプルを分取する必要がなくバンドの位置関係(ラダーの形状)の情報が必要な場合(親子関係の検査等)に用いる。 The structure of the stage 800 will be described with reference to FIG. FIG. 26A shows a four-lane arrangement in a state in which the electrophoresis sorting well 530 is mounted on the stage 800, and FIG. 26B shows that the sorting well 530 is removed from the stage 800 and non-electrophoresis non-electrophoresis. This is an 8-lane arrangement with the sorting well 535 attached. The stage 800 includes a plurality of processing lines (processing lanes) in which a plurality of wells and the like are arranged in a line. FIG. 26 (b) shows an arrangement using eight processing lines. FIG. 26 (a) uses a rotary sorting well 530 having a diameter larger than the line width, so four processing lines are skipped for one lane. Is an arrangement that uses The arrangement shown in FIG. 26B is used when it is not necessary to take a sample and information on the positional relationship (ladder shape) of the band is necessary (inspecting the parent-child relationship).
 ステージ800の各ラインは、サンプルチューブ580と、チップ収容カートリッジ550と、サンプル抽出カートリッジ560と、PCRカートリッジ570と、分取ウェル530(図26(a))または非分取ウェル535(図26(b))とを備える。サンプルチューブ580には、生体関連物質のサンプルが収容される。チップ収容カートリッジ550には、複数の分注チップ611(図12)、試薬容器のシールを穿孔するピアシング用チップ、電気泳動チップ1または1’が収容される。サンプル抽出カートリッジ560は、複数のウェルを備え、磁性粒子を用いてサンプルからDNA等の生体関連物質を抽出する。また、図26に示すように、ステージ800上方で処理ラインの長手方向にそって横移動ユニット900が縦移動ユニット600と一体となって移動する。縦移動ユニット600には、縦移動ユニット600に装着された分注器610または電気泳動チップ1(1’)は、横移動ユニット900によって、処理ライン上で必要なウェル等の上方に移動し、縦移動ユニット600によって下降して、所定の処理を実行する。所定の処理とは、分注器610によるピアシング、吸引、または吐出、電気泳動チップ1,1’による電気泳動による分取とすることができる。 Each line of the stage 800 includes a sample tube 580, a chip storage cartridge 550, a sample extraction cartridge 560, a PCR cartridge 570, a sorting well 530 (FIG. 26 (a)), or a non-sorting well 535 (FIG. 26 ( b)). The sample tube 580 contains a sample of the biological material. In the chip storage cartridge 550, a plurality of dispensing chips 611 (FIG. 12), a piercing chip for perforating the seal of the reagent container, and the electrophoresis chip 1 or 1 'are stored. The sample extraction cartridge 560 includes a plurality of wells, and extracts biological materials such as DNA from the sample using magnetic particles. Further, as shown in FIG. 26, the horizontal movement unit 900 moves integrally with the vertical movement unit 600 along the longitudinal direction of the processing line above the stage 800. In the vertical movement unit 600, the dispenser 610 or the electrophoresis chip 1 (1 ′) attached to the vertical movement unit 600 is moved above the necessary wells on the processing line by the horizontal movement unit 900, It descends by the vertical movement unit 600 and executes a predetermined process. The predetermined processing can be piercing by the dispenser 610, suction, or ejection, or sorting by electrophoresis using the electrophoresis chips 1 and 1 '.
(分取ウェル)
 本発明の第2の実施形態に用いる分取ウェル530及び分取ウェル回転機構540について、図27~図29を用いて説明する。分取ウェル530は、紫外線及び可視光が透過可能な透明材料を用いて、概略有底筒形状に形成される。さらに、分取ウェル530は、電気泳動用のバッファー等を収容するバッファー容器531と、バッファー容器531を取り囲むように環状に設けられた複数の分取容器533と、バッファー容器531の底部から十字状に突出する突出部535とを備える。電気泳動時には、図28に示すように、分注器610を用いて予めバッファー容器531に貯留されたバッファーを分取容器533に分注する。複数の分取容器533は、サンプル分取用の分取容器533と、排液分取用の分取容器533とから構成することができる。
(Preparation well)
The sorting well 530 and the sorting well rotating mechanism 540 used in the second embodiment of the present invention will be described with reference to FIGS. The sorting well 530 is formed in a substantially bottomed cylindrical shape using a transparent material that can transmit ultraviolet light and visible light. Further, the sorting well 530 includes a buffer container 531 for accommodating a buffer for electrophoresis and the like, a plurality of sorting containers 533 provided in an annular shape so as to surround the buffer container 531, and a cross shape from the bottom of the buffer container 531. And a protruding portion 535 that protrudes from the center. At the time of electrophoresis, as shown in FIG. 28, a buffer previously stored in the buffer container 531 is dispensed into the sorting container 533 using a dispenser 610. The plurality of sorting containers 533 can include a sorting container 533 for sample sorting and a sorting container 533 for drainage sorting.
 分取ウェル回転機構540は、ラックアンドピニオンを用いて複数の電気泳動分取ウェル530を回転する。分取ウェル回転機構540は、図29に示すように、分取ウェル回転用モータ541と、モータ541により回転する第1ピニオンギヤ543と、第1ピニオンギヤ543により直転的に移動されるラックギヤ545と、ラックギヤ545により回転される複数の第2ピニオンギヤ547と、複数の第2ピニオンギヤ547により回転される複数のインターナルギヤ549とを備える。ラックギヤ545は、第1ピニオンギヤ543と噛み合う第1歯面543aと、複数の第2ピニオンギヤ547と噛み合う第2歯面543bとを備える。インターナルギヤ549は、分取ウェル530の突出部535に固定される。制御部がモータ541の回転方向を変えることにより、複数の電気泳動分取ウェル530を時計方向または反時計方向に回転させることができる。分取ウェル530及び分取ウェル回転機構540により、横移動ユニット900の位置を移動することなく、サンプル中の複数のバンドを複数の分取容器533に分取することができる。 The sorting well rotation mechanism 540 rotates the plurality of electrophoresis sorting wells 530 using a rack and pinion. As shown in FIG. 29, the sorting well rotating mechanism 540 includes a sorting well rotating motor 541, a first pinion gear 543 that is rotated by the motor 541, and a rack gear 545 that is linearly moved by the first pinion gear 543. The plurality of second pinion gears 547 rotated by the rack gear 545 and the plurality of internal gears 549 rotated by the plurality of second pinion gears 547 are provided. The rack gear 545 includes a first tooth surface 543a that meshes with the first pinion gear 543, and a second tooth surface 543b that meshes with the plurality of second pinion gears 547. The internal gear 549 is fixed to the protruding portion 535 of the sorting well 530. When the control unit changes the rotation direction of the motor 541, the plurality of electrophoresis sorting wells 530 can be rotated clockwise or counterclockwise. By the sorting well 530 and the sorting well rotating mechanism 540, a plurality of bands in the sample can be sorted into a plurality of sorting containers 533 without moving the position of the lateral movement unit 900.
 第2の実施形態の電気泳動装置3によるDNA等の分取動作を図30~図32を用いて説する。図30には、電気泳動装置3に電気泳動チップ1’を装着して電気泳動を行っている状態を示している。電気泳動チップ1’の電気泳動管100の下端及びプラス電極300の下端320は、分取ウェル530の分取容器533のバッファー中に浸けられている。検出装置700の検出端部730は、各分取ウェル530の背後に配置される。検出端部(蛍光スキャン部)730は、検出端部移動ユニット750により図31に矢印で示す、縦方向(略垂直方向)及び横方向(略水平方向)へ略直転的に移動可能である。検出端部730は、分取ウェル530の側面の輪郭にそうように湾曲した湾曲面731と、湾曲面731に設けられたスリット731aとを備える。スリット731aの内部には、励起光用光ファイバー710の照射端及び蛍光受光用光ファイバー720の受光端が、分取ウェル530または電気泳動管100のゲル収容管112の側面に対向するように配置されている。検出端部移動ユニット750は、複数の検出端部730を搭載し、複数の検出端部730を一体的または個別に略縦方向に移動する縦移動機構(不図示)と、複数の検出端部730を略横方向に一体的または個別に移動する横移動機構(不図示)とを備える。 The operation of sorting DNA or the like by the electrophoresis apparatus 3 according to the second embodiment will be described with reference to FIGS. FIG. 30 shows a state where electrophoresis is performed with the electrophoresis chip 1 ′ attached to the electrophoresis apparatus 3. The lower end of the electrophoresis tube 100 and the lower end 320 of the positive electrode 300 of the electrophoresis chip 1 ′ are immersed in the buffer of the sorting container 533 of the sorting well 530. The detection end 730 of the detection device 700 is disposed behind each sorting well 530. The detection end part (fluorescence scanning part) 730 can be moved substantially linearly in the vertical direction (substantially vertical direction) and the horizontal direction (substantially horizontal direction) indicated by arrows in FIG. 31 by the detection end part moving unit 750. . The detection end 730 includes a curved surface 731 that is curved so as to have the contour of the side surface of the sorting well 530, and a slit 731 a provided on the curved surface 731. Inside the slit 731 a, the irradiation end of the excitation light optical fiber 710 and the light receiving end of the fluorescence light receiving optical fiber 720 are disposed so as to face the side surfaces of the sorting well 530 or the gel storage tube 112 of the electrophoresis tube 100. Yes. The detection end moving unit 750 includes a plurality of detection end portions 730, a vertical movement mechanism (not shown) that moves the plurality of detection end portions 730 integrally or individually in a substantially vertical direction, and a plurality of detection end portions. A lateral movement mechanism (not shown) that moves 730 integrally or individually in a substantially lateral direction.
 そして、電気泳動時に、検出端部730は、電気泳動チップ1’の長手方向(略垂直方向)にそって、図32に示すように移動可能である。検出端部730が長手方向にそって移動した際、検出端部730は電気泳動チップ1’の側面に近づく方向または遠ざかる方向に移動することができる。これによって、検出端部730が電気泳動チップ1’の側面の近傍で対向した状態でバンドを測定できるため測定精度が向上する。図14で説明した場合と同様に、検出端部730を略垂直方向に移動しながら測定を行うことにより、電気泳動中にサンプルから分離した複数のバンドの位置をスキャンすることができる。 In the electrophoresis, the detection end 730 is movable as shown in FIG. 32 along the longitudinal direction (substantially vertical direction) of the electrophoresis chip 1 ′. When the detection end 730 moves along the longitudinal direction, the detection end 730 can move in a direction approaching or moving away from the side surface of the electrophoresis chip 1 ′. Accordingly, the measurement accuracy is improved because the band can be measured in a state where the detection end portion 730 is opposed in the vicinity of the side surface of the electrophoresis chip 1 ′. As in the case described with reference to FIG. 14, by performing measurement while moving the detection end 730 in a substantially vertical direction, the positions of a plurality of bands separated from the sample during electrophoresis can be scanned.
 検出端部730が図30の位置にある状態で、検出端部730は電気泳動チップ1’の最下端を測定することができる。1つのバンドが1つの分取部533に落下したことを検出すると、電気泳動システム3の制御部はプラス及びマイナス電極300、400にへの電圧付与を停止した後、電気泳動チップ1’の下端を分取ウェルの上方に移動し、分取ウェル530を所定角度回転して、電気泳動チップ1’を他の分取部533の上方に移動する。そして、制御部は、電気泳動チップ1’を降下し、電気泳動チップ1’の下端を他の分取部533内のバッファーに浸け、プラス及びマイナス電極300、400の間に電圧を印加して電気泳動を再開する。このような動作を繰り返すことにより複数のバンドを複数の分取部に自動的に分取することができる。 In the state where the detection end 730 is at the position shown in FIG. 30, the detection end 730 can measure the lowermost end of the electrophoresis chip 1 ′. When it is detected that one band has fallen on one sorting unit 533, the control unit of the electrophoresis system 3 stops applying voltage to the plus and minus electrodes 300 and 400, and then the lower end of the electrophoresis chip 1 ′. Is moved above the sorting well, the sorting well 530 is rotated by a predetermined angle, and the electrophoresis chip 1 ′ is moved above the other sorting section 533. Then, the control unit lowers the electrophoresis chip 1 ′, immerses the lower end of the electrophoresis chip 1 ′ in a buffer in another sorting unit 533, and applies a voltage between the plus and minus electrodes 300 and 400. Resume electrophoresis. By repeating such an operation, a plurality of bands can be automatically sorted into a plurality of sorting units.
〔第3の実施形態〕
 第1の実施形態の電気泳動チップ1(図1、図14、図16)、第2の実施形態の電気泳動チップ1’(図17)、第4の実施形態の電気泳動チップ1A(図36)では、第1の電極(プラス電極)300により電気泳動管100の下方からゲルにプラス電位を加え、第2の電極(マイナス電極)400により電気泳動管100の上方からゲルにマイナス電位を加えている。これによって、電気泳動チップ1、1’、1Aを用いて電気泳動を行う際、DNA等のサンプルは上から下に移動しつつ分子量に応じて分離されて検出または分取可能となる。
[Third Embodiment]
The electrophoresis chip 1 of the first embodiment (FIGS. 1, 14, and 16), the electrophoresis chip 1 ′ of the second embodiment (FIG. 17), and the electrophoresis chip 1A of the fourth embodiment (FIG. 36). ), A positive potential is applied to the gel from the lower side of the electrophoresis tube 100 by the first electrode (plus electrode) 300, and a negative potential is applied to the gel from the upper side of the electrophoresis tube 100 by the second electrode (negative electrode) 400. ing. As a result, when electrophoresis is performed using the electrophoresis chips 1, 1 ′, 1 A, samples such as DNA are separated according to the molecular weight while being moved from top to bottom and can be detected or sorted.
 これに対して、第3の実施形態では、第1~第4の実施形態の下側の第1の電極300、300Aをマイナス電極とし、第1~第4の実施形態の上側の第2の電極400、400Aをプラス電極とした。さらに、第3の実施形態では、図12の第1給電部621をマイナス電極とし、第2給電部623をプラス給電部とする。第3の実施形態の電気泳動チップ1、1’を用いて電気泳動する際、DNA等のサンプルは、電気泳動チップ1、1’の電気泳動管100の下端側から提供され、電気泳動管100を下から上に移動しつつ分子量に応じて分離されて分取可能となる。なお、第3の実施形態の電気泳動管100の上下に印加される電圧の大きさを調整することにより、重力に関わらず下から上に向かってサンプルを電気泳動することができる。 On the other hand, in the third embodiment, the first electrodes 300 and 300A on the lower side of the first to fourth embodiments are set as negative electrodes, and the second electrodes on the upper side of the first to fourth embodiments are used. The electrodes 400 and 400A were positive electrodes. Furthermore, in the third embodiment, the first power feeding unit 621 in FIG. 12 is a negative electrode, and the second power feeding unit 623 is a positive power feeding unit. When electrophoresis is performed using the electrophoresis chip 1, 1 ′ of the third embodiment, a sample such as DNA is provided from the lower end side of the electrophoresis tube 100 of the electrophoresis chip 1, 1 ′. The sample is separated according to the molecular weight while moving from bottom to top, and can be fractionated. It should be noted that by adjusting the magnitude of the voltage applied to the top and bottom of the electrophoresis tube 100 of the third embodiment, the sample can be electrophoresed from bottom to top regardless of gravity.
〔第4の実施形態〕
 第4の実施形態の電気泳動チップ1Aは、第1の実施形態の電気泳動チップ1や第2の実施形態の電気泳動チップ1’とは異なり、第1電極(プラス電極)300A及び第2の電極(マイナス電極)400Aを保持するホルダを、電気泳動管100と一体成形したものである。第4の実施形態の電気泳動チップ1Aを図36~37を用いて説明する。電気泳動チップ1Aの電気泳動管100は、バッファー収容管110と、バッファー収容管110の下端に圧入されるゲル収容管112(キャピラリーチューブ)とを備える。ゲル収容管112には、ゲル140が充填され、ゲル収容管112の下端開口は下部キャップ(ゴム栓)130で密封されている。バッファー収容管110は、その上端開口の周囲に形成されたフランジ部130と、フランジ部130及びバッファー収容管110の側面の間に形成された複数のリブ131と、フランジ部130から上方に突出する第1の電極嵌合ピン(第1の嵌合体)133と、フランジ部130から上方に突出する第2の電極嵌合ピン(第2の嵌合体)134とを備えている。第4の実施形態のホルダは、第1の電極嵌合ピン133、及び第2の電極嵌合ピン134から構成される。
[Fourth Embodiment]
Unlike the electrophoresis chip 1 of the first embodiment and the electrophoresis chip 1 ′ of the second embodiment, the electrophoresis chip 1A of the fourth embodiment is different from the first electrode (plus electrode) 300A and the second electrode. A holder for holding an electrode (minus electrode) 400 </ b> A is integrally formed with the electrophoresis tube 100. An electrophoresis chip 1A according to a fourth embodiment will be described with reference to FIGS. The electrophoresis tube 100 of the electrophoresis chip 1 </ b> A includes a buffer housing tube 110 and a gel housing tube 112 (capillary tube) that is press-fitted into the lower end of the buffer housing tube 110. The gel containing tube 112 is filled with a gel 140, and the lower end opening of the gel containing tube 112 is sealed with a lower cap (rubber plug) 130. The buffer housing tube 110 protrudes upward from the flange portion 130, a plurality of ribs 131 formed between the flange portion 130 and the side surface of the buffer housing tube 110, and a flange portion 130 formed around the upper end opening. A first electrode fitting pin (first fitting body) 133 and a second electrode fitting pin (second fitting body) 134 protruding upward from the flange portion 130 are provided. The holder according to the fourth embodiment includes a first electrode fitting pin 133 and a second electrode fitting pin 134.
 第1の電極嵌合ピン133の上端には、切り欠き部133aが設けられ、切り欠き部133aに第1の電極300Aの湾曲部が収容または嵌合される。第1の電極嵌合ピン133の下端の周囲のフランジ部130には、一対の貫通孔が設けられる。第1の電極300Aの上端310A及び下端320Aがそれぞれ一対の貫通孔に挿入される。第1の電極嵌合ピン133に第1の電極300Aが取り付けられた状態で、第1の電極嵌合ピン133に第1の電極300Aを保持するために、Oリング136が第1の電極嵌合ピン133側の第1の電極300Aの周囲に取り付けられる。第2の電極嵌合ピン143の上端には、切り欠き部143aが設けられ、切り欠き部143aに第2の電極400Aの湾曲部が収容または嵌合される。第2の電極嵌合ピン134の下端の周囲のフランジ部130には、一対の貫通孔が設けられる。第2の電極400Aの上端410A及び下端420Aがそれぞれ一対の貫通孔に挿入される。第2の電極嵌合ピン134に第2の電極400Aが取り付けられた状態で、第2の電極嵌合ピン134に第2の電極400Aを保持するために、Oリング136が第2の電極嵌合ピン134側の第2の電極400Aの周囲に取り付けられる。 A notch 133a is provided at the upper end of the first electrode fitting pin 133, and the curved portion of the first electrode 300A is accommodated or fitted in the notch 133a. A pair of through holes are provided in the flange portion 130 around the lower end of the first electrode fitting pin 133. The upper end 310A and the lower end 320A of the first electrode 300A are respectively inserted into the pair of through holes. In order to hold the first electrode 300A on the first electrode fitting pin 133 in a state where the first electrode 300A is attached to the first electrode fitting pin 133, the O-ring 136 has a first electrode fitting. It is attached around the first electrode 300A on the side of the coupling pin 133. A cutout portion 143a is provided at the upper end of the second electrode fitting pin 143, and the curved portion of the second electrode 400A is accommodated or fitted in the cutout portion 143a. A pair of through holes are provided in the flange portion 130 around the lower end of the second electrode fitting pin 134. The upper end 410A and the lower end 420A of the second electrode 400A are respectively inserted into the pair of through holes. In order to hold the second electrode 400A on the second electrode fitting pin 134 in a state where the second electrode 400A is attached to the second electrode fitting pin 134, the O-ring 136 has a second electrode fitting. It is attached around the second electrode 400A on the side of the coupling pin 134.
 第4の実施形態の電気泳動チップ1Aの組立方法を図38~図40を用いて説明する。図38(A)に示すように、第1の組立工程では、ゲルを収容した状態で、ゲル収容管112の下端開口に下部キャップ130を取り付け、ゲル収容管112の上端開口に上部キャップ(ゲル密封栓)121を取り付け、図38(B)に示すように、ゲル収容管112を密封する。上部キャップ121は、棒状であり、その上端に環状のつまみ123を備えている。 A method for assembling the electrophoresis chip 1A according to the fourth embodiment will be described with reference to FIGS. As shown in FIG. 38 (A), in the first assembly step, the lower cap 130 is attached to the lower end opening of the gel containing tube 112 while the gel is contained, and the upper cap (gel) is attached to the upper end opening of the gel containing tube 112. A sealing plug 121 is attached, and the gel container 112 is sealed as shown in FIG. The upper cap 121 is rod-shaped and includes an annular knob 123 at the upper end thereof.
 図38(B)の状態のゲル収容管112に対して、図39(C)に示すように、つまみ123及び上部キャップ121を、バッファー収容管110の下端開口から、バッファー収容管110の内部に挿入する。ゲル収容管112をバッファー収容管110の方向に移動して、図39(D)に示すように、ゲル収容管112の上端をバッファー収容管110の下端開口内に圧入して一体化する。なお、図39(D)の状態で、上部キャップ121のつまみ123の全体が、バッファー収容管110の上端開口から露出している。 As shown in FIG. 39C, the knob 123 and the upper cap 121 are moved from the lower end opening of the buffer storage tube 110 into the buffer storage tube 110 with respect to the gel storage tube 112 in the state of FIG. insert. The gel storage tube 112 is moved in the direction of the buffer storage tube 110, and the upper end of the gel storage tube 112 is press-fitted into the lower end opening of the buffer storage tube 110 and integrated as shown in FIG. 39D, the entire knob 123 of the upper cap 121 is exposed from the upper end opening of the buffer housing tube 110.
 さらに、図40(E)に示すように、第1の電極嵌合ピン133に第1の電極300Aの湾曲された上端310Aが取り付けられた後、Oリング136で第1の電極300Aの湾曲された上端310Aが第1の電極嵌合ピン133に固定される。同様に、第2の電極嵌合ピン134に第2の電極400Aの湾曲された上端410Aが取り付けられた後、Oリング136で第2の電極400Aの湾曲された上端410Aが第2の電極嵌合ピン134に固定されて、図40(F)に示すように、第4の実施形態の電気泳動チップ1Aの組立が完了する。なお、電気泳動チップ1Aは、図40(G)に示すように、第1の電極300Aの下部をゲル収容管112の下部に対して支持する支持体160を備えることができる。 Further, as shown in FIG. 40E, after the curved upper end 310A of the first electrode 300A is attached to the first electrode fitting pin 133, the first electrode 300A is bent by the O-ring 136. The upper end 310 </ b> A is fixed to the first electrode fitting pin 133. Similarly, after the curved upper end 410A of the second electrode 400A is attached to the second electrode fitting pin 134, the curved upper end 410A of the second electrode 400A is attached to the second electrode fitting by the O-ring 136. As shown in FIG. 40F, the assembly of the electrophoresis chip 1A of the fourth embodiment is completed. As shown in FIG. 40G, the electrophoresis chip 1A can include a support 160 that supports the lower portion of the first electrode 300A with respect to the lower portion of the gel housing tube 112.
 第1~第4の実施形態の電気泳動具(電気泳動チップ)、電気泳動装置、及び電気泳動システムは、DNA等の核酸の電気泳動に限定されず、タンパク質等の生体関連物質を含む有機物の電気泳動にも適用可能である。第1~第4の実施形態の電気泳動チップ1、1’、1Aの縦移動ユニット600による縦方向及び横方向の移動は、予め定めた手順にしたがって制御部が自動的に実行することができる。各実施形態の検出装置700は、蛍光を検出するがこれに限定されず、化学発光を検出したり、吸光度を検出する装置を用いることもできる。化学発光を検出する場合には、励起光の光源705及び励起光用光ファイバー710を省略することができる。吸光度を検出する場合は、PMT等の光検出素子740に換えて吸光度光計を用い、さらに着色した標識化DNAを用いることができる。各実施形態の電気泳動装置または電気泳動システムに、磁性粒子を用いたDNAの抽出機構、及び/または断片化DNAをPCR等により増幅する増幅機構を組み合わせた抽出/増幅装置を提供することもできる。電気泳動装置、抽出機構、増幅機構は、予め定めた手順にしたがって自動的に処理を行うことができる。第1~第4の実施形態の電気泳動チップ1、1’、1Aの縦移動ユニット600への着脱は、着脱機構をにより自動的に行うことができる。各実施形態の光検出素子740は、PMTに限定されず、CCDやCMOS等の撮像素子を用いることもできる。 The electrophoresis tool (electrophoresis chip), electrophoresis apparatus, and electrophoresis system of the first to fourth embodiments are not limited to electrophoresis of nucleic acids such as DNA, but are organic substances containing biologically related substances such as proteins. It can also be applied to electrophoresis. The vertical and horizontal movements of the electrophoresis chips 1, 1 ′, and 1 A of the electrophoresis chips 1, 1 ′, and 1 A according to the first to fourth embodiments can be automatically executed by the control unit according to a predetermined procedure. . Although the detection apparatus 700 of each embodiment detects fluorescence, it is not limited to this, The apparatus which detects chemiluminescence and can also detect light absorbency can also be used. In the case of detecting chemiluminescence, the excitation light source 705 and the excitation light optical fiber 710 can be omitted. In the case of detecting the absorbance, an absorbance photometer can be used in place of the photodetection element 740 such as PMT, and a colored labeled DNA can be used. It is also possible to provide an extraction / amplification apparatus that combines the electrophoresis apparatus or electrophoresis system of each embodiment with a DNA extraction mechanism using magnetic particles and / or an amplification mechanism that amplifies fragmented DNA by PCR or the like. . The electrophoresis apparatus, the extraction mechanism, and the amplification mechanism can automatically perform processing according to a predetermined procedure. The electrophoresis chips 1, 1 'and 1A according to the first to fourth embodiments can be automatically attached to and detached from the longitudinal movement unit 600 by an attaching / detaching mechanism. The light detection element 740 of each embodiment is not limited to the PMT, and an image pickup element such as a CCD or a CMOS can also be used.
 各実施形態の電気泳動システム3において、並列に配置された各電気泳動チップ1~1Gのバンド位置の誤差補正を電圧を制御することにより、電気泳動のバンドの位置の均等化が可能となる。各実施形態の制御部は、電気泳動チップの溶液に混入させた蛍光標識化DNA等を常時検出装置700(蛍光スキャナー)で観察し、一定の略水平位置で一列に揃えるように、各電気泳動チップの電圧を個別にオンオフすることにより、位置制御しDNA等の分取または解析を正確に行うことができる。 In the electrophoresis system 3 of each embodiment, the error correction of the band position of each of the electrophoresis chips 1 to 1G arranged in parallel can be controlled to equalize the position of the electrophoresis band. The control unit of each embodiment observes the fluorescence-labeled DNA or the like mixed in the solution of the electrophoresis chip with the detection device 700 (fluorescence scanner) at all times, and arranges each electrophoresis so that it is aligned in a line at a certain substantially horizontal position. By individually turning on and off the chip voltage, the position can be controlled and DNA or the like can be accurately sorted or analyzed.
 第1の実施形態、第2の実施形態、及び第4の実施形態では、電気泳動管100の上側にマイナス電極400、下側にプラス電極300を設けてゲルに電位を加えるものとし、第3の実施形態では、電気泳動管100の下側にマイナス電極400、上側にプラス電極300を設けてゲルに電位を加えるものとしたが、これに限定されず、マイナス電極とプラス電極とを交互に切換えるパルスフィールドゲル電気泳動(PFGE)を用いることができる。図12及び図14に示すように、電気泳動装置2は、給電部621及び623と電気的に接続される電源部630を備える。電源部630は、電極300及び400の間に加わる電場を周期的に変化させることができる。より具体的には、電源部630は、電極300及び400の間の電場が加わる向きを周期的に反転させることができる。さらに、電源部630は、電極300及び400の間の電場の向きを周期的に反転させつつ、前記電場の強さを周期的に変化させることもできる。PFGEを行うことにより、大分子量(数十kbp~数Mbp)のDNAを効率よく分離することができる。 In the first embodiment, the second embodiment, and the fourth embodiment, the minus electrode 400 is provided on the upper side of the electrophoresis tube 100 and the plus electrode 300 is provided on the lower side to apply a potential to the gel. In this embodiment, the negative electrode 400 is provided on the lower side of the electrophoresis tube 100 and the positive electrode 300 is provided on the upper side to apply a potential to the gel. However, the present invention is not limited to this, and the negative electrode and the positive electrode are alternately arranged. Switching pulsed field gel electrophoresis (PFGE) can be used. As illustrated in FIGS. 12 and 14, the electrophoresis apparatus 2 includes a power supply unit 630 that is electrically connected to the power supply units 621 and 623. The power supply unit 630 can periodically change the electric field applied between the electrodes 300 and 400. More specifically, the power supply unit 630 can periodically reverse the direction in which the electric field between the electrodes 300 and 400 is applied. Furthermore, the power source unit 630 can periodically change the intensity of the electric field while periodically reversing the direction of the electric field between the electrodes 300 and 400. By performing PFGE, DNA having a large molecular weight (several tens of kbp to several Mbp) can be efficiently separated.
(遺伝子マーカー解析)
 第1の実施形態の電気泳動システム3を、遺伝子マーカー解析に用いることもできる。遺伝子マーカーとしては、一塩基多型(SNP:single nucleotide polymorphism)、制限酵素断片長多型(RFLP(Restriction Fragment Length Polymorphism)、またはマイクロサテライトを用いることができる。マイクロサテライトとは、ゲノム上に存在する反復配列であり、数塩基(例えば、2~4塩基)の単位配列の繰り返しから構成される。第1の実施形態の電気泳動システム3を、マイクロサテライト解析等の遺伝子マーカーの解析に用いた場合を以下説明する。
(Genetic marker analysis)
The electrophoresis system 3 of the first embodiment can also be used for gene marker analysis. As a genetic marker, single nucleotide polymorphism (SNP), restriction fragment length polymorphism (RFLP), or microsatellite can be used. Microsatellite exists in the genome. The electrophoresis system 3 of the first embodiment was used for gene marker analysis such as microsatellite analysis, and the like, and composed of repeating unit sequences of several bases (for example, 2 to 4 bases). The case will be described below.
 第1の実施形態の電気泳動システム3は、図16に示すように複数の電気泳動チップ1~1Bを備えており、各電気泳動チップ1~1Bを用いて、異なる複数のサンプルの電気泳動を行う。電気泳動の際には、各サンプルの基準バンド(例えば分子量マーカーのバンド)の位置が揃うように、検出装置700の検出端部730で測定しつつ、制御部が第1の電極および第2の電極の間の電圧を調整し電気泳動を実行する。これによって、電気泳動チップ1~1Bにそれぞれ投入された異なるサンプルについて、基準バンドの位置が揃ったラダー(電気泳動パターン)を得ることができる。 As shown in FIG. 16, the electrophoresis system 3 of the first embodiment includes a plurality of electrophoresis chips 1 to 1B, and each of the electrophoresis chips 1 to 1B is used to perform electrophoresis of a plurality of different samples. Do. At the time of electrophoresis, the control unit performs measurement with the detection end 730 of the detection device 700 so that the positions of the reference bands (for example, molecular weight marker bands) of the samples are aligned, and the control unit controls the first electrode and the second electrode. Electrophoresis is performed by adjusting the voltage between the electrodes. As a result, a ladder (electrophoretic pattern) in which the positions of the reference bands are aligned can be obtained for different samples respectively loaded into the electrophoresis chips 1 to 1B.
 ラダーの情報(配置または形状)は、検出端部730を電気泳動管の長手方向にそって移動しつつスキャンすることにより得ることができる。このラダーに含まれる遺伝子マーカーを解析することにより、ヒトの個人識別、親子解析、親族解析、またはプレシジョンメディシン(精密医療)等を実行することができる。また、第1の実施形態の電気泳動システム3は、基準バンドの位置を揃えることができるため、各サンプルのラダーの解析(比較)が容易となる。さらに、比較するサンプルは、それぞれ独立した電気泳動チップ1~1B内で、独立した分注器及びウェルを用いて電気泳動を実行するため、異なるサンプル間のコンタミネーションの可能性を低減することができる。 Ladder information (arrangement or shape) can be obtained by scanning the detection end 730 while moving along the longitudinal direction of the electrophoresis tube. By analyzing the genetic markers contained in this ladder, it is possible to execute human individual identification, parent-child analysis, relative analysis, precision medicine (precision medicine), and the like. Moreover, since the electrophoresis system 3 of the first embodiment can align the positions of the reference bands, the analysis (comparison) of the ladder of each sample becomes easy. Furthermore, since the samples to be compared are electrophoresed in independent electrophoresis chips 1 to 1B using independent dispensers and wells, the possibility of contamination between different samples can be reduced. it can.
 本発明の電気泳動システムの実施例を説明する。本実施例において、第1、第2、及び第3の実施形態と同一部分は、同一符号を付し、説明は適宜省略する。本実施例は、第3の実施形態に対応する構成を備える。図32に示すように、本実施例の電気泳動システム3は、サンプルを収容するサンプル容器(ウェル)580、ローディングバッファーを収容するローディング容器581、電気泳動バッファーを収容する電気泳動容器582と、洗浄液を収容する洗浄容器583とを備える。これらの容器に、電気泳動に必要なサンプル、試薬、及び各種バッファーが予め分注器等を用いてそれぞれ分注される。容器580、581、582、583は、それぞれ1つまたは複数設けることができる。容器580、581、582、583は、好ましくはステージ800(図23~図26)上に配置される。サンプルは、好ましくはPCRから得られたDNA等である。ローディングバッファーは、電気泳動バッファーと、分子量マーカーと、ラべリングダイとを混合したものである。 An embodiment of the electrophoresis system of the present invention will be described. In this example, the same parts as those in the first, second, and third embodiments are denoted by the same reference numerals, and description thereof will be omitted as appropriate. The present example has a configuration corresponding to the third embodiment. As shown in FIG. 32, the electrophoresis system 3 of this embodiment includes a sample container (well) 580 for storing a sample, a loading container 581 for storing a loading buffer, an electrophoresis container 582 for storing an electrophoresis buffer, and a cleaning liquid. And a cleaning container 583 for storing the container. In these containers, samples, reagents, and various buffers necessary for electrophoresis are dispensed in advance using a dispenser or the like. One or a plurality of containers 580, 581, 582, 583 can be provided. Containers 580, 581, 582, 583 are preferably placed on stage 800 (FIGS. 23-26). The sample is preferably DNA obtained from PCR. The loading buffer is a mixture of an electrophoresis buffer, a molecular weight marker, and a labeling die.
 ローディングダイは、2本鎖DNA検出のための蛍光色素であり、例えばSYBER GREEN Iを用いることができる。ローディングダイには、視覚的に泳動状態を確認できるようにBromophenol Blue(BPB)や、Xylene Cyanole FF(XC)等を含めることもできる。分子量マーカーとは、解析するDNAのサイズを推定するための、既知サイズのDNA断片である。分子量マーカーは、DNA等のサンプルと同時に泳動される。分子量マーカーは好ましくは2種類のサイズを含み、解析するDNAサイズは、2種類の分子量マーカーのサイズの間でなければならない。電気泳動バッファーは、ゲルの組成、分離するDNAサイズに最適な電気泳動バッファの種類や濃度を選択することができる。電気泳動バッファーとしては、例えばTAEバッファー、またはTBEバッファーを用いることができる。電気泳動バッファーは、電気泳動管100(キャピラリーカラム)の先端部の洗浄液としても使用することもできる。 The loading die is a fluorescent dye for detecting double-stranded DNA, and for example, SYBER GREEN I can be used. The loading die can also contain Bromophenol Blue (BPB), Xylene Cyanole FF (XC), etc. so that the migration state can be visually confirmed. A molecular weight marker is a DNA fragment of a known size for estimating the size of DNA to be analyzed. The molecular weight marker is electrophoresed simultaneously with a sample such as DNA. The molecular weight marker preferably comprises two sizes, and the DNA size to be analyzed must be between the sizes of the two molecular weight markers. As the electrophoresis buffer, the type and concentration of the electrophoresis buffer that is optimal for the gel composition and the size of the DNA to be separated can be selected. As the electrophoresis buffer, for example, a TAE buffer or a TBE buffer can be used. The electrophoresis buffer can also be used as a cleaning solution for the tip of the electrophoresis tube 100 (capillary column).
 本実施例の電気泳動方法で実行される工程1)~3)を、図34を用いて説明する。最初に工程1)において、サンプル調整を行う。具体的には、サンプル容器580中のサンプル(例えば5μl)を分注器610に取り付けた分注チップ611に吸引した状態で、分注器610を移動して、ローディング容器581に吐出する。分注器610を用いて、ローディング容器581中の液体の吸引吐出を繰り返し、ローディング容器581中のサンプルとローディングバッファーとを撹拌し十分に混合する。 The steps 1) to 3) executed by the electrophoresis method of this embodiment will be described with reference to FIG. First, in step 1), sample adjustment is performed. Specifically, in a state where the sample (for example, 5 μl) in the sample container 580 is sucked into the dispensing tip 611 attached to the dispensing device 610, the dispensing device 610 is moved and discharged to the loading container 581. Using the dispenser 610, the liquid in the loading container 581 is repeatedly sucked and discharged, and the sample in the loading container 581 and the loading buffer are stirred and mixed thoroughly.
 工程2)において、電気泳動チップ1(1’)を用いてサンプルのローディングを行う。具体的には、電気泳動管100及びマイナス電極(第1の電極)300の下端部を、ローディング容器581中のサンプル及びローディングバッファーの混合液に浸す。この状態で、所定時間、所定電圧を印加し、サンプルをゲルの下端に浸透(ローディング)させる。所定時間は、好ましくは1~5秒、より好ましくは2~3秒とすることができる。所定電圧は、好ましくは、50~150V、より好ましくは80~120V、さらに好ましくは約100Vとすることができる。この時の印加する所定時間により、電気泳動するサンプル量が決まる。なお、サンプルのローディング量を多くすると、蛍光強度を強くすることができるが、サンプルのDNAサイズの分解能は低下する。 In step 2), the sample is loaded using the electrophoresis chip 1 (1 '). Specifically, the lower ends of the electrophoresis tube 100 and the negative electrode (first electrode) 300 are immersed in a mixed solution of the sample and the loading buffer in the loading container 581. In this state, a predetermined voltage is applied for a predetermined time, and the sample is infiltrated (loaded) into the lower end of the gel. The predetermined time can be preferably 1 to 5 seconds, more preferably 2 to 3 seconds. The predetermined voltage is preferably 50 to 150V, more preferably 80 to 120V, and still more preferably about 100V. The amount of sample to be electrophoresed is determined by the predetermined time applied at this time. Increasing the loading amount of the sample can increase the fluorescence intensity, but the resolution of the DNA size of the sample decreases.
 工程3)において、電気泳動チップ1(1’)を用いてサンプルの電気泳動及び分析を行う。具体的には、矢印A1にしたがって、ローディング容器581でサンプルをローディングした電気泳動チップ1(1’)を、洗浄容器583に移動する。洗浄容器583中の洗浄液に対して、電気泳動管100及びマイナス電極300の下端部を浸けたり出したりすることにより、下端部を洗浄することができる。この下端部の洗浄により、ゲルに浸透していないDNAを洗い流し、その影響を無くすことができる。この洗浄後に、矢印A2にしたがって、電気泳動チップ1(1’)を電気泳動容器582に移動する。電気泳動チップ1(1’)の電気泳動管100及びマイナス電極300の下端部を電気泳動容器582中の電気泳動バッファーに浸す。そして、電気泳動管100のマイナス電極300とプラス電極400との間に上記所定電圧を印加し、電気泳動管100で電気泳動を実行する。DNA等のサンプルはマイナスに帯電しているため、電気泳動により電気泳動管100の下から上に移動する。なお、印加する電圧を高くすると、電気泳動時間を短縮できるが、発熱等による電気泳動パターンの乱れが発生しやすくなる。 In step 3), electrophoresis and analysis of the sample are performed using the electrophoresis chip 1 (1 '). Specifically, the electrophoresis chip 1 (1 ′) loaded with the sample in the loading container 581 is moved to the cleaning container 583 according to the arrow A 1. The lower end of the electrophoresis tube 100 and the negative electrode 300 can be washed into and removed from the cleaning liquid in the cleaning container 583 by washing. By washing the lower end portion, DNA that has not penetrated into the gel can be washed away and the influence thereof can be eliminated. After this washing, the electrophoresis chip 1 (1 ') is moved to the electrophoresis container 582 according to the arrow A2. The lower ends of the electrophoresis tube 100 and the negative electrode 300 of the electrophoresis chip 1 (1 ′) are immersed in the electrophoresis buffer in the electrophoresis container 582. Then, the predetermined voltage is applied between the minus electrode 300 and the plus electrode 400 of the electrophoresis tube 100, and electrophoresis is performed in the electrophoresis tube 100. Since samples such as DNA are negatively charged, they move upward from the bottom of the electrophoresis tube 100 by electrophoresis. Note that when the applied voltage is increased, the electrophoresis time can be shortened, but the electrophoresis pattern is likely to be disturbed due to heat generation or the like.
 工程3)によって電気泳動ラダーが得られる。この電気泳動ラダーの解析を図35を用いて説明する。図35は、電気泳動管100をサンプルS等が電気泳動する状態を示している。サンプルSには、サンプル調整の際、既知のサイズ(分子量)を持つ2種類のマーカーが予め混合される。2種類のマーカーとしては、検出するサンプルDNAの分子量より低い(小さい)分子量を有する低分子量マーカーMLと、検出するサンプルDNAの分子量より高い(大きい)分子量を有する高分子量マーカMHとが選択される。図35に示すように、電気泳動管100の側面には、検出装置(蛍光スキャナー)700の検出端部730が配置されている。 An electrophoretic ladder is obtained by step 3). The analysis of the electrophoresis ladder will be described with reference to FIG. FIG. 35 shows a state in which the sample S or the like is electrophoresed in the electrophoresis tube 100. In the sample S, two kinds of markers having a known size (molecular weight) are mixed in advance at the time of sample preparation. The two types of markers, and a low molecular weight marker M L, higher than the molecular weight of the sample DNA to be detected (large) and a high molecular weight marker M H having a molecular weight selected with a lower molecular weight (small) molecular weight of the sample DNA to be detected Is done. As shown in FIG. 35, a detection end 730 of a detection device (fluorescence scanner) 700 is disposed on the side surface of the electrophoresis tube 100.
 そして、2種類のマーカーML、MHをサンプルSと同時に電気泳動する。図35に示すように、電気泳動開始から時間Tが経過した時、低分子量マーカーMLの移動距離DL、サンプルSの移動距離DS、高分子量マーカーMHの移動距離DH、を測定する。移動距離の測定方式としては、図35の右側に示す検出端部730を下側から上側に向かって電気泳動管100の長手方向に移動しつつ、各マーカー及びサンプルの蛍光を測定することにより、各移動距離Dを測定することができる。低分子量マーカーMLの移動距離DL、高分子量マーカーMHの移動距離DH、低分子量マーカーMLの分子量、高分子量マーカーMHの分子量、移動時間Tを用いて、DNAサイズと電気泳動速度の関係式を求めることができる。2つのマーカーの間にあるサンプルSの位置を先に求めた関係式に当てはめることにより、サンプルDNAのサイズを見積もることができる。 Then, two types of markers M L and M H are electrophoresed simultaneously with the sample S. As shown in FIG. 35, when the time T from the electrophoresis start has elapsed, the movement distance D L of the low molecular weight marker M L, the travel distance D S of the sample S, the movement distance D H of the high molecular weight marker M H, a measurement To do. As a measurement method of the movement distance, by measuring the fluorescence of each marker and sample while moving the detection end 730 shown on the right side of FIG. 35 from the lower side to the upper side in the longitudinal direction of the electrophoresis tube 100, Each moving distance D can be measured. Moving distance D L of the low molecular weight marker M L, the molecular weight of the moving distance D H, low molecular weight marker M L high molecular weight marker M H, molecular weight of the high molecular weight marker M H, with a travel time T, DNA size and electrophoresis A relational expression of speed can be obtained. By applying the position of the sample S between the two markers to the previously obtained relational expression, the size of the sample DNA can be estimated.
 サンプルに含まれる解析するDNAのサイズ(分子量)は、2種類のマーカーML、MHの間に位置しなければならない。また、2種類のマーカーML、MHのサイズ(分子量)の差を大きくすると、推定精度が落ちるため、好ましくは、低分子量マーカーMLとの分子量に対して、高分子量マーカMHとの分子量を、2~3倍程度に設定することができる。
低分子マーカーは、サンプルSに含まれるプライマー・ダイマーと容易に識別できるだけ大きくなければならない。
The size of the analysis to DNA contained in the sample (molecular weight), 2 types of markers M L, must be located between the M H. The two types of markers M L, the larger the difference in size of the M H (molecular weight), because the estimation accuracy is lowered, preferably, with respect to the molecular weight of the low molecular weight marker M L, the high molecular weight marker M H The molecular weight can be set to about 2 to 3 times.
The small molecule marker should be as large as easily distinguishable from the primer-dimer contained in sample S.
 移動距離を測定せずに、移動時間を測定することによりサンプルDNAのサイズを見積もることもできる。図35の左側に示す検出端部730の位置を既知の検出位置PDに固定する。低分子量マーカーML、サンプルS、高分子量マーカーMHが、検出位置PDを通過する通過時間をそれぞれ測定することにより、それぞれの通過時間、低分子量マーカーMLの分子量、高分子量マーカーMHの分子量の関係式から、サンプルDNAのサイズを見積もることができる。なお、本実施例は、第3の実施形態に基づき電気泳動管100を下から上に移動する電気泳動として説明したが、これに限定されず、第1及び第2の実施形態のように、電気泳動管100を上から下に移動する電気泳動に適用することも可能である。 The size of the sample DNA can also be estimated by measuring the movement time without measuring the movement distance. The position of the detection end 730 shown on the left side of FIG. 35 is fixed to a known detection position P D. Low molecular weight markers M L, sample S, molecular weight marker M H is, by measuring the passing time through the detection position P D respectively, each passing time, the molecular weight of the low molecular weight marker M L, high molecular weight marker M H The size of the sample DNA can be estimated from the relational expression of the molecular weight. In addition, although the present Example was demonstrated as electrophoresis which moves the electrophoresis tube 100 from the bottom to the top based on 3rd Embodiment, it is not limited to this, Like 1st and 2nd Embodiment, It is also possible to apply to electrophoresis in which the electrophoresis tube 100 moves from top to bottom.
  1,1’ 電気泳動チップ
  2 電気泳動装置
  3 電気泳動システム
100 電気泳動管
110 バッファー収容管
112 ゲル収容管
200 ホルダ
210 プラス電極収容部
220 マイナス電極収容部
300 プラス電極
400 マイナス電極
500 カートリッジ
600 縦移動ユニット
700 検出装置
730 検出端部
800 ステージ
900 横移動ユニット
1200 ホルダ
1210 プラス電極収容部
1220 マイナス電極収容部
1,1 ′ electrophoresis chip 2 electrophoresis apparatus 3 electrophoresis system 100 electrophoresis tube 110 buffer housing tube 112 gel housing tube 200 holder 210 plus electrode housing portion 220 minus electrode housing portion 300 plus electrode 400 minus electrode 500 cartridge 600 longitudinal movement Unit 700 Detection device 730 Detection end 800 Stage 900 Horizontal movement unit 1200 Holder 1210 Positive electrode accommodating portion 1220 Negative electrode accommodating portion

Claims (51)

  1.  電気泳動用のゲル及びバッファーを収容する電気泳動管と、前記電気泳動管の下側にプラスまたはマイナスの一方の電位を加える第1の電極と、前記電気泳動管の上側にプラスまたはマイナスの他方の電位を加える第2の電極と、を備える、電気泳動具であって、
     前記電気泳動管、及び前記第1の電極を一体的に保持するホルダを備える、電気泳動具。
    An electrophoresis tube containing an electrophoresis gel and a buffer, a first electrode for applying a positive or negative potential to the lower side of the electrophoresis tube, and the other positive or negative side on the upper side of the electrophoresis tube An electrophoretic tool comprising: a second electrode for applying a potential of
    An electrophoresis device comprising a holder that integrally holds the electrophoresis tube and the first electrode.
  2.  請求項1に記載の電気泳動具において、前記ホルダは、前記電気泳動管、前記第1の電極、及び前記第2の電極を一体的に保持する、電気泳動具。 2. The electrophoresis tool according to claim 1, wherein the holder integrally holds the electrophoresis tube, the first electrode, and the second electrode.
  3.  請求項1または2に記載の電気泳動具において、
     前記ホルダは、前記電気泳動管の上部を保持する、電気泳動具。
    The electrophoretic device according to claim 1 or 2,
    The holder is an electrophoresis tool that holds an upper part of the electrophoresis tube.
  4.  請求項1~3のいずれか一項に記載の電気泳動具において、
     前記ホルダは、前記第1の電極を収容する第1の電極収容部と、前記第2の電極を収容する第2の電極収容部とを備える、電気泳動具。
    The electrophoresis device according to any one of claims 1 to 3,
    The holder includes an electrophoretic device including a first electrode housing portion that houses the first electrode and a second electrode housing portion that houses the second electrode.
  5.  請求項4に記載の電気泳動具において、
     前記第1の電極収容部及び前記第2の電極収容部を接続するヒンジ部を備える、電気泳動具。
    The electrophoretic device according to claim 4,
    An electrophoretic device comprising a hinge portion connecting the first electrode housing portion and the second electrode housing portion.
  6.  請求項4に記載の電気泳動具において、
     前記第1の電極収容部及び前記第2の電極収容部は、分離可能である、電気泳動具。
    The electrophoretic device according to claim 4,
    The electrophoretic tool, wherein the first electrode housing portion and the second electrode housing portion are separable.
  7.  請求項6に記載の電気泳動具において、
     前記第1の電極収容部は、前記第2の電極収容部を挿入可能な開口を有する、電気泳動具。
    The electrophoretic device according to claim 6,
    The first electrode housing part has an opening into which the second electrode housing part can be inserted.
  8.  請求項1~7のいずれか一項に記載の電気泳動具において、
     前記第2の電極は、前記電気泳動管の前記上側から前記下側まで、前記電気泳動管にそって延びる、電気泳動具。
    The electrophoretic device according to any one of claims 1 to 7,
    The second electrode extends along the electrophoresis tube from the upper side to the lower side of the electrophoresis tube.
  9.  請求項8に記載の電気泳動具において、
     前記ホルダは、前記第2の電極にそって前記電気泳動管の前記下側まで延びる延長部を備える、電気泳動具。
    The electrophoretic device according to claim 8,
    The holder includes an extension that extends to the lower side of the electrophoresis tube along the second electrode.
  10.  請求項9に記載の電気泳動具において、
     前記延長部は、前記電気泳動管を挟持する挟持部を備える、電気泳動具。
    The electrophoresis tool according to claim 9,
    The extension part is an electrophoresis tool including a holding part that holds the electrophoresis tube.
  11.  請求項1~10のいずれか一項に記載の電気泳動具において、
     前記ホルダは、前記第2の電極を収容する収容溝を備える、電気泳動具。
    The electrophoretic device according to any one of claims 1 to 10,
    The holder includes an accommodation groove that accommodates the second electrode.
  12.  請求項1~11のいずれか一項に記載の電気泳動具において、
     前記第1の電極の下端は、前記電気泳動管の内部に挿入される、電気泳動具。
    The electrophoretic device according to any one of claims 1 to 11,
    The electrophoresis tool, wherein a lower end of the first electrode is inserted into the electrophoresis tube.
  13.  請求項1に記載の電気泳動具において、
     前記ホルダは、前記第1の電極と嵌合するように、前記電気泳動管と一体成形された、第1の嵌合体を含む、電気泳動具。
    The electrophoresis device according to claim 1,
    The electrophoretic device, wherein the holder includes a first fitting body integrally formed with the electrophoresis tube so as to be fitted with the first electrode.
  14.  請求項15に記載の電気泳動具において、
     前記ホルダは、前記第2の電極と嵌合するように、前記電気泳動管と一体成形された、第2の嵌合体を含む、電気泳動具。
    The electrophoretic device according to claim 15,
    The holder includes a second fitting body integrally formed with the electrophoresis tube so as to fit with the second electrode.
  15.  請求項13または14に記載の電気泳動具において、
     前記ホルダは、前記電気泳動管の上部に設けられる、電気泳動具。
    The electrophoresis device according to claim 13 or 14,
    The holder is an electrophoresis tool provided on an upper part of the electrophoresis tube.
  16.  請求項1~14のいずれか一項に記載の電気泳動知具において、
     前記電気泳動管は、バッファーを収容するバッファー収容管と、前記ゲルを収容するゲル収容管とを備える、電気泳動具。
    The electrophoresis intelligent tool according to any one of claims 1 to 14,
    The electrophoresis tube is an electrophoresis tool including a buffer storage tube that stores a buffer and a gel storage tube that stores the gel.
  17.  請求項16に記載の電気泳動具において、
     前記第1の電極の下端は、前記バッファー収容管内に配置される、電気泳動具。
    The electrophoretic device according to claim 16,
    The electrophoresis tool, wherein a lower end of the first electrode is disposed in the buffer housing tube.
  18.  電気泳動装置であって、
     電気泳動を制御する制御部と、
     請求項1~17のいずれか一項に記載の電気泳動具と、
     前記電気泳動具の前記第1の電極に給電する第1の給電部と、
     前記電気泳動具の前記第2の電極に給電する第2の給電部と、
     分注器と、
     前記電気泳動具の前記第2の電極及び前記電気泳動管の下端が挿入されるウェルと、
     前記電気泳動具及び/または前記分注器を3次元的に移動可能な移動ユニットとを備える、電気泳動装置。
    An electrophoresis apparatus comprising:
    A control unit for controlling electrophoresis;
    An electrophoretic device according to any one of claims 1 to 17,
    A first power feeding unit that feeds power to the first electrode of the electrophoresis tool;
    A second power feeding section for feeding power to the second electrode of the electrophoresis tool;
    A dispenser;
    A well into which the second electrode of the electrophoresis tool and the lower end of the electrophoresis tube are inserted;
    An electrophoresis apparatus comprising: the electrophoresis device and / or a moving unit capable of moving the dispenser three-dimensionally.
  19.  請求項18に記載の電気泳動装置において、
     パルスフィールドゲル電気泳動を行うために、前記第1の電極及び前記第2の電極の間に加わる電場を周期的に変化させる電源部を備える、電気泳動装置。
    The electrophoresis apparatus according to claim 18, wherein
    An electrophoretic apparatus comprising a power supply unit that periodically changes an electric field applied between the first electrode and the second electrode in order to perform pulse field gel electrophoresis.
  20.  請求項19に記載の電気泳動装置において、
     前記電源部は、前記電場の向きを周期的に反転させる、電気泳動装置。
    The electrophoresis apparatus according to claim 19,
    The power supply unit is an electrophoresis apparatus that periodically inverts the direction of the electric field.
  21.  請求項18または19に記載の電気泳動装置において、
     前記電源部は、前記電場の強さを周期的に変化させる、電気泳動装置。
    The electrophoresis apparatus according to claim 18 or 19,
    The electrophoretic device, wherein the power supply unit periodically changes the intensity of the electric field.
  22.  請求項18~21のいずれか一項に記載の電気泳動装置において、
     前記移動ユニットは、前記電気泳動具及び/または前記分注器を縦方向へ略直線的に移動する縦移動ユニットと、前記電気泳動具及び/または前記分注器を横方向へ略直線的に移動する横移動ユニットとから構成される、電気泳動装置。
    The electrophoresis apparatus according to any one of claims 18 to 21,
    The moving unit includes a vertical moving unit that moves the electrophoretic instrument and / or the dispenser substantially linearly in a vertical direction, and a linear movement unit that moves the electrophoretic instrument and / or the dispenser substantially linearly in a horizontal direction. An electrophoretic device comprising a laterally moving unit that moves.
  23.  請求項22に記載の電気泳動装置において、
     前記横移動ユニットは、前記縦移動ユニットを搭載し、前記縦移動ユニットを横方向に移動する、電気泳動装置。
    The electrophoresis apparatus according to claim 22,
    The lateral movement unit includes the vertical movement unit, and moves the vertical movement unit in a horizontal direction.
  24.  請求項18~23に記載の電気泳動装置において、
     前記ウェルが複数のウェルであり、
     前記移動ユニットが前記電気泳動具を移動することにより、前記複数のバンドを前記複数のウェルに分取する、電気泳動装置。
    The electrophoresis apparatus according to any one of claims 18 to 23,
    The well is a plurality of wells;
    An electrophoresis apparatus, wherein the moving unit moves the electrophoretic tool to separate the plurality of bands into the plurality of wells.
  25.  請求項24に記載の電気泳動装置において、
     前記移動ユニットが前記電気泳動具を移動する際、前記制御部は、前記電気泳動具を前記移動ユニットにより前記ウェルの上方に移動する、電気泳動装置。
    The electrophoresis apparatus according to claim 24, wherein
    When the moving unit moves the electrophoresis tool, the control unit moves the electrophoresis tool above the well by the moving unit.
  26.  請求項24または25に記載の電気泳動装置において、
     前記移動ユニットが前記電気泳動具を移動する際、
     前記制御部は、前記第1の給電部及び前記第2の給電部から前記第1の電極及び前記第2の電極への給電を停止する、電気泳動装置。
    The electrophoresis apparatus according to claim 24 or 25,
    When the moving unit moves the electrophoresis tool,
    The controller is an electrophoretic device that stops power supply from the first power supply unit and the second power supply unit to the first electrode and the second electrode.
  27.  請求項18~26のいずれか一項に記載の電気泳動装置において、
     前記ウェルは、環状に配置された複数の容器を備える、電気泳動装置。
    The electrophoresis apparatus according to any one of claims 18 to 26,
    The well includes an electrophoresis apparatus including a plurality of containers arranged in an annular shape.
  28.  請求項27に記載の電気泳動装置において、
     前記ウェルは、前記複数の容器に取り囲まれるバッファー容器を備える、電気泳動装置。
    The electrophoresis apparatus according to claim 27,
    The well includes an electrophoresis apparatus including a buffer container surrounded by the plurality of containers.
  29.  請求項27または28に記載の電気泳動装置において、
     前記ウェルを回転するウェル回転機構を備える、電気泳動装置。
    The electrophoresis apparatus according to claim 27 or 28,
    An electrophoresis apparatus comprising a well rotation mechanism for rotating the well.
  30.  請求項29に記載の電気泳動装置において、
     前記ウェル回転機構が前記ウェルを回転することにより前記複数の分取部を切り替える、電気泳動装置。
    The electrophoresis apparatus according to claim 29,
    The electrophoresis apparatus, wherein the well rotation mechanism switches the plurality of sorting units by rotating the well.
  31.  請求項30に記載の電気泳動装置において、
     前記ウェル回転機構が前記ウェルを回転する際、前記電気泳動具は前記移動ユニットにより前記ウェルから離れて上方に移動する、電気泳動装置。
    The electrophoresis apparatus according to claim 30, wherein
    When the well rotation mechanism rotates the well, the electrophoresis tool moves upward away from the well by the moving unit.
  32.  請求項29~31のいずれか一項に記載の電気泳動装置において、
     前記ウェル回転機構が前記ウェルを回転する際、
     前記制御部は、前記第1の給電部及び前記第2の給電部から前記第1の電極及び前記第2の電極への給電を停止する、電気泳動装置。
    The electrophoresis apparatus according to any one of claims 29 to 31,
    When the well rotation mechanism rotates the well,
    The controller is an electrophoretic device that stops power supply from the first power supply unit and the second power supply unit to the first electrode and the second electrode.
  33.  請求項22または23に記載の電気泳動装置において、
     前記分注器は、前記縦移動ユニットに接続される、電気泳動装置。
    The electrophoresis apparatus according to claim 22 or 23,
    The dispenser is an electrophoresis apparatus connected to the longitudinal movement unit.
  34.  請求項22、23、33のいずれか一項に記載の電気泳動装置において、
     前記縦移動ユニットは、前記第1の給電部及び前記第2の給電部を一体的に移動する、電気泳動装置。
    The electrophoresis apparatus according to any one of claims 22, 23, and 33,
    The longitudinal movement unit is an electrophoretic device that integrally moves the first power feeding unit and the second power feeding unit.
  35.  請求項18~34のいずれか一項に記載の電気泳動装置において、
     前記電気泳動管の前記ゲルをサンプルが流れる際に生じるバンドまたはラダーを検出する検出装置を備える、電気泳動装置。
    The electrophoresis apparatus according to any one of claims 18 to 34,
    An electrophoresis apparatus comprising a detection device for detecting a band or a ladder generated when a sample flows through the gel of the electrophoresis tube.
  36.  請求項35に記載の電気泳動装置において、
     前記検出装置は、前記電気泳動具の前記電気泳動管に対向する検出端部と、前記検出端部を3次元的に移動する検出端部移動ユニットとを備える、電気泳動装置。
    36. The electrophoresis apparatus according to claim 35,
    The detection apparatus includes an detection end facing the electrophoresis tube of the electrophoresis tool, and a detection end moving unit that moves the detection end in a three-dimensional manner.
  37.  請求項36に記載の電気泳動装置において、
     前記検出端部移動ユニットは、前記電気泳動管の長手方向にそって前記検出端部を移動する、電気泳動装置。
    The electrophoresis apparatus according to claim 36,
    The detection end moving unit moves the detection end along the longitudinal direction of the electrophoresis tube.
  38.  請求項36または37に記載の電気泳動装置において、
     前記検出端部移動ユニットは、前記電気泳動管または前記ウェルの側面に対向した状態に前記検出端部を移動する、電気泳動装置。
    The electrophoresis apparatus according to claim 36 or 37,
    The detection end moving unit moves the detection end in a state of facing the side surface of the electrophoresis tube or the well.
  39.  請求項36~38のいずれか一項に記載の電気泳動装置において、
     前記検出端部移動ユニットは、前記検出端部が前記電気泳動管又は前記ウェルに対向した状態で、前記電気泳動管又は前記ウェルの側面に対して近付く方向又は遠ざかる方向に前記検出端部を移動する、電気泳動装置。
    The electrophoresis apparatus according to any one of claims 36 to 38,
    The detection end moving unit moves the detection end in a direction approaching or moving away from a side surface of the electrophoresis tube or the well with the detection end facing the electrophoresis tube or the well. An electrophoresis device.
  40.  請求項36~37のいずれか一項に記載の電気泳動装置において、
     前記検出端部は、励起光用光ファイバーの照射端及び蛍光受光用光ファイバーの受光端を保持する、電気泳動装置。
    The electrophoresis apparatus according to any one of claims 36 to 37,
    The detection end is an electrophoresis apparatus that holds an irradiation end of an optical fiber for excitation light and a light reception end of an optical fiber for fluorescence reception.
  41.  請求項36~40のいずれか一項に記載の電気泳動装置において、
     前記検出端部は、前記ウェルの側面の輪郭にそった湾曲面を備える、電気泳動装置。
    The electrophoresis apparatus according to any one of claims 36 to 40,
    The electrophoretic device, wherein the detection end portion includes a curved surface along a contour of a side surface of the well.
  42.  請求項36~41のいずれか一項に記載の電気泳動装置において、
     前記検出装置が電気泳動中のサンプルから分離した複数のバンドの位置を検出する、電気泳動装置。
    The electrophoresis apparatus according to any one of claims 36 to 41,
    An electrophoresis apparatus, wherein the detection apparatus detects positions of a plurality of bands separated from a sample being electrophoresed.
  43.  請求項18~42のいずれか一項に記載の電気泳動装置において、
     磁性粒子を用いた核酸の抽出機構を備える、電気泳動装置。
    The electrophoresis apparatus according to any one of claims 18 to 42,
    An electrophoresis apparatus comprising a nucleic acid extraction mechanism using magnetic particles.
  44.  請求項18~43のいずれか一項に記載の電気泳動装置において、
     核酸を増幅する増幅機構を備える、電気泳動装置。
    The electrophoresis apparatus according to any one of claims 18 to 43,
    An electrophoresis apparatus comprising an amplification mechanism for amplifying a nucleic acid.
  45.  請求項18~44のいずれか一項に記載の電気泳動装置を複数備える、電気泳動システム。 An electrophoresis system comprising a plurality of the electrophoresis apparatuses according to any one of claims 18 to 44.
  46.  請求項45に記載の電気泳動システムにおいて、
     前記制御部は、前記複数の電気泳動具のぞれぞれに対して、前記検出装置を用いてサンプルから分離したバンドの位置をそれぞれ検出するとともに、前記バンドの検出位置に基づき、前記複数の電気泳動具のそれぞれの前記第2の電極及び前記第1の電極への給電を制御することにより、各電気泳動具における前記バンドの移動を制御する、電気泳動システム。
    The electrophoresis system according to claim 45,
    The control unit detects a position of a band separated from a sample using the detection device for each of the plurality of electrophoresis tools, and based on the detection position of the band, An electrophoresis system that controls movement of the band in each electrophoresis tool by controlling power feeding to each of the second electrode and the first electrode of each electrophoresis tool.
  47.  請求項46に記載の電気泳動システムにおいて、
     前記制御部は、前記複数の電気泳動具のぞれぞれにおける、前記バンドの位置を揃えるように、前記第1の電極及び前記第2の電極への給電を制御する、電気泳動システム。
    The electrophoresis system according to claim 46,
    The electrophoretic system, wherein the control unit controls power supply to the first electrode and the second electrode so as to align the positions of the bands in each of the plurality of electrophoretic tools.
  48.  請求項18~44のいずれか一項に記載の電気泳動装置を用いて、サンプルの電気泳動を実行する、電気泳動方法。 An electrophoresis method for performing electrophoresis of a sample using the electrophoresis apparatus according to any one of claims 18 to 44.
  49.  請求項44~47のいずれか一項に記載の電気泳動システムを用いて、複数のサンプルの電気泳動の並列処理を実行する、電気泳動方法。 An electrophoresis method for performing parallel processing of electrophoresis of a plurality of samples using the electrophoresis system according to any one of claims 44 to 47.
  50.  請求項48または49に記載の電気泳動方法において、
     前記サンプルは生体関連物質である、方法。
    The electrophoresis method according to claim 48 or 49,
    The method wherein the sample is a biological material.
  51.  請求項48~50のいずれか一項に記載の電気泳動方法において、
     前記生体関連物質は、DNA、RNA、またはタンパク質である、方法。
    The electrophoresis method according to any one of claims 48 to 50,
    The method, wherein the biological substance is DNA, RNA, or protein.
PCT/JP2017/003454 2016-03-18 2017-01-31 Electrophoresis chip, electrophoresis device and electrophoresis system WO2017159084A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018505320A JP7016313B2 (en) 2016-03-18 2017-01-31 Electrophoretic chips, electrophoretic devices, and electrophoretic systems

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-054896 2016-03-18
JP2016054896 2016-03-18

Publications (1)

Publication Number Publication Date
WO2017159084A1 true WO2017159084A1 (en) 2017-09-21

Family

ID=59852207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003454 WO2017159084A1 (en) 2016-03-18 2017-01-31 Electrophoresis chip, electrophoresis device and electrophoresis system

Country Status (2)

Country Link
JP (1) JP7016313B2 (en)
WO (1) WO2017159084A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124240A1 (en) * 2017-12-22 2019-06-27 ユニバーサル・バイオ・リサーチ株式会社 Fully automatic treatment apparatus for electrophoresis, and method for same
JP2021170990A (en) * 2020-04-24 2021-11-01 ピコテクバイオ株式会社 Reaction separation analysis system
WO2022064587A1 (en) * 2020-09-24 2022-03-31 株式会社日立ハイテク Electrophoretic collection device and nucleic acid pretreatment device
CN114317220A (en) * 2020-09-30 2022-04-12 富佳生技股份有限公司 Nucleic acid detecting cassette and nucleic acid detecting apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265523A (en) * 1993-03-15 1994-09-22 Hitachi Software Eng Co Ltd Apparatus and method for reading pattern of electrophoresis of gel
JP2000346828A (en) * 1999-06-02 2000-12-15 Hitachi Ltd Electrophoresis device
JP2002350400A (en) * 2001-05-29 2002-12-04 Aloka Co Ltd Electrophoresis apparatus
JP2003502649A (en) * 1999-06-11 2003-01-21 リソリューション サイエンシーズ コーポレーション Material staining by electrophoresis
JP2003121413A (en) * 2001-10-12 2003-04-23 Hitachi High-Technologies Corp Sampling structure of capillary array
JP2003279538A (en) * 2002-03-26 2003-10-02 Aloka Co Ltd Electrophoresis unit
WO2014189085A1 (en) * 2013-05-21 2014-11-27 ユニバーサル・バイオ・リサーチ株式会社 Device and method for pretreating sequencer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265523A (en) * 1993-03-15 1994-09-22 Hitachi Software Eng Co Ltd Apparatus and method for reading pattern of electrophoresis of gel
JP2000346828A (en) * 1999-06-02 2000-12-15 Hitachi Ltd Electrophoresis device
JP2003502649A (en) * 1999-06-11 2003-01-21 リソリューション サイエンシーズ コーポレーション Material staining by electrophoresis
JP2002350400A (en) * 2001-05-29 2002-12-04 Aloka Co Ltd Electrophoresis apparatus
JP2003121413A (en) * 2001-10-12 2003-04-23 Hitachi High-Technologies Corp Sampling structure of capillary array
JP2003279538A (en) * 2002-03-26 2003-10-02 Aloka Co Ltd Electrophoresis unit
WO2014189085A1 (en) * 2013-05-21 2014-11-27 ユニバーサル・バイオ・リサーチ株式会社 Device and method for pretreating sequencer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124240A1 (en) * 2017-12-22 2019-06-27 ユニバーサル・バイオ・リサーチ株式会社 Fully automatic treatment apparatus for electrophoresis, and method for same
JP2019113416A (en) * 2017-12-22 2019-07-11 ユニバーサル・バイオ・リサーチ株式会社 Electrophoresis full automatic processing device and method therefor
JP2021170990A (en) * 2020-04-24 2021-11-01 ピコテクバイオ株式会社 Reaction separation analysis system
JP7210502B2 (en) 2020-04-24 2023-01-23 ピコテクバイオ株式会社 Reaction Separation Analysis System
WO2022064587A1 (en) * 2020-09-24 2022-03-31 株式会社日立ハイテク Electrophoretic collection device and nucleic acid pretreatment device
JP7471436B2 (en) 2020-09-24 2024-04-19 株式会社日立ハイテク Electrophoresis recovery device and nucleic acid pretreatment device
CN114317220A (en) * 2020-09-30 2022-04-12 富佳生技股份有限公司 Nucleic acid detecting cassette and nucleic acid detecting apparatus

Also Published As

Publication number Publication date
JPWO2017159084A1 (en) 2019-01-24
JP7016313B2 (en) 2022-02-04

Similar Documents

Publication Publication Date Title
EP1560021B1 (en) Method and apparatus for processing microchips
WO2017159084A1 (en) Electrophoresis chip, electrophoresis device and electrophoresis system
AU2006212089B2 (en) Analysis instrument for processing a microfluidic device
TWI628283B (en) Optical measuring device for reaction vessel and method therefor
KR101917402B1 (en) Automatic response/light measurement device and method therefor
JP2008536128A (en) Automated microvolume assay system
KR20030086257A (en) Equipment and method for measuring storage reaction
US10626440B2 (en) Sequencer pretreatment device and method thereof
KR101900120B1 (en) Reaction container and method for producing same
WO2012157685A1 (en) Optical measurement device for reaction vessel and method therefor
WO2017175871A1 (en) General purpose optical measuring device and method
JP7201241B2 (en) Photometric dispensing nozzle unit, photometric dispensing device, and photometric dispensing processing method
JP6959644B2 (en) Electrophoresis fully automatic processing device and its method
US8097470B2 (en) Microchip analysis method and apparatus
WO2014203306A1 (en) Electrophoresis device and analysis method
JP2003227813A (en) Capillary cataphoresis apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018505320

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766092

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766092

Country of ref document: EP

Kind code of ref document: A1