WO2017158933A1 - In-wheel motor drive device - Google Patents

In-wheel motor drive device Download PDF

Info

Publication number
WO2017158933A1
WO2017158933A1 PCT/JP2016/084813 JP2016084813W WO2017158933A1 WO 2017158933 A1 WO2017158933 A1 WO 2017158933A1 JP 2016084813 W JP2016084813 W JP 2016084813W WO 2017158933 A1 WO2017158933 A1 WO 2017158933A1
Authority
WO
WIPO (PCT)
Prior art keywords
output shaft
wheel
bearing
shaft
axis
Prior art date
Application number
PCT/JP2016/084813
Other languages
French (fr)
Japanese (ja)
Inventor
四郎 田村
真也 太向
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016200230A external-priority patent/JP6792995B2/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN201680043498.7A priority Critical patent/CN107848400A/en
Priority to EP20185062.5A priority patent/EP3744549A1/en
Priority to US16/078,174 priority patent/US10792995B2/en
Priority to EP16894550.9A priority patent/EP3431316A4/en
Publication of WO2017158933A1 publication Critical patent/WO2017158933A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/063Fixing them on the shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/067Fixing them in a housing

Definitions

  • the present invention relates to an in-wheel motor drive device that is disposed inside a wheel and drives the wheel, and more particularly to a structure that rotatably supports an output shaft of a speed reduction unit.
  • an in-wheel motor that is disposed inside a wheel and drives the wheel includes a wheel hub bearing that rotatably supports the wheel hub, and the wheel hub is coupled to the wheel wheel to support the wheel load.
  • a wheel hub bearing described in Japanese Patent No. 5676142 (Patent Document 1) is installed in an annular gap between a cylindrical outer ring hub coupled to a wheel of a rear wheel and a spindle passed through a center hole of the outer ring hub. Is done.
  • a gear is provided on the outer periphery of the outer ring hub of Patent Document 1, and this gear meshes with the pinion.
  • the pinion passes the rotation of the motor to the outer ring hub.
  • the present inventor has found that there is a further improvement in the conventional wheel hub bearing. That is, since the gear coupled to the outer periphery of the outer ring hub is supported by the wheel hub bearing, the gear may be displaced by an external force applied from the wheel. Undesirable displacement of the gears constituting the drive transmission path from the motor to the wheel hub causes uneven wear and the like, and the durability of the in-wheel motor deteriorates.
  • an object of the present invention is to provide a structure that stably supports the final gear of the speed reduction portion in the speed reduction portion that reduces the rotation of the motor and transmits the reduced speed to the wheel hub.
  • the in-wheel motor drive device of the present invention includes a motor unit for driving a wheel, a wheel hub bearing unit to which the wheel is attached, a reduction unit for reducing the rotation of the motor unit and transmitting it to the wheel hub bearing unit.
  • the wheel hub bearing portion includes a rotating wheel that rotates integrally with the wheel, a fixed wheel that is disposed coaxially with the rotating wheel, and a plurality of rolling elements that are disposed in an annular gap between the rotating wheel and the fixed wheel.
  • the speed reduction unit includes an input shaft coupled to the motor rotation shaft of the motor unit, an input gear coupled to the input shaft, an output shaft coupled to the rotating wheel of the wheel hub bearing unit, and an output gear coupled to the output shaft.
  • a first output shaft bearing that rotationally supports one end side of the output shaft and a second output shaft bearing that rotationally supports the other end side of the output shaft As a result, both ends of the output shaft are rotationally supported. .
  • the speed reduction portion includes the output shaft coupled to the rotating wheel, the first output shaft bearing that rotatably supports the end portion of the output shaft, and the first output shaft. Since the second output shaft bearing that rotatably supports the remaining end portion of the output shaft positioned on the side opposite to the bearing is included, the output shaft can be stably supported at both ends. Therefore, even when an external force is applied from the wheel to the outer ring, the displacement of the output shaft can be suppressed, and uneven wear of the gear of the speed reduction unit can be prevented.
  • Rotating wheel and fixed ring of wheel hub bearing part are composed of outer ring and inner ring of rolling bearing.
  • the rotating wheel is an outer ring
  • the fixed ring is included in a fixed shaft that is passed through the center hole of the outer ring.
  • the arrangement location of the first output shaft bearing and the second output shaft bearing is not particularly limited.
  • the first output shaft bearing rotatably supports the outer diameter on one end side of the output shaft
  • the second output shaft bearing rotatably supports the inner diameter on the other end side of the output shaft.
  • the speed reduction portion includes the cylindrical output shaft coupled to the outer ring, the first output shaft bearing that rotatably supports the end portion of the output shaft, and the first Since the second output shaft bearing that rotatably supports the remaining end portion of the output shaft located on the side opposite to the output shaft bearing is included, the output shaft can be stably supported at both ends. Therefore, even when an external force is applied from the wheel to the outer ring, the displacement of the output shaft can be suppressed, and uneven wear of the gear of the speed reduction unit can be prevented.
  • the first output shaft bearing that rotatably supports the outer diameter of one end side of the output shaft and the second output shaft bearing that rotatably supports the inner diameter of the other end side of the output shaft. Since both ends are rotationally supported, the output shaft is stably supported by both the inner diameter and the outer diameter. Therefore, even when an external force is applied from the wheel to the outer ring, the displacement of the output shaft can be suppressed, and uneven wear of the gear of the speed reduction unit can be prevented.
  • the structure of the first and second output shaft bearings is not particularly limited, but is preferably a rolling bearing.
  • the first and second output shaft bearings are, for example, ball bearings, cylindrical roller bearings, rolling bearings, radial bearings, and angular bearings.
  • the first output shaft bearing that rotates and supports the outer diameter of the output shaft is, for example, an output shaft having an outer peripheral surface, and the first output shaft bearing is disposed on the outer diameter side of the outer peripheral surface so that the output shaft can rotate freely. It means to support.
  • the second output shaft bearing that rotationally supports the inner diameter of the output shaft is, for example, an end portion of the output shaft that is formed in a hollow cylindrical shape and has an inner peripheral surface, and the second output shaft bearing is on the inner diameter side of the inner peripheral surface. It is arranged to support the output shaft rotatably.
  • a first annular step is formed on the outer periphery of one end portion of the output shaft so that the diameter near the center in the axial direction is large, and the first output shaft bearing is axially formed by the first annular step. Defined position. According to this embodiment, the displacement of the first output shaft bearing can be regulated so that the first annular step is directed in one axial direction and is not displaced in the other axial direction.
  • a second annular step is formed on the inner periphery of the other end portion of the output shaft so that the diameter near the center in the axial direction is a small diameter, and the second output shaft bearing is axially formed by the second annular step. Defined position. According to this embodiment, the displacement of the second output shaft bearing can be restricted so that the second annular step is not displaced in the axial direction while being directed in the other axial direction.
  • the output gear is a helical gear.
  • the tooth contact can be improved.
  • the axial force acting on the helical gear can be received by the first and second output shaft bearings fixed so as not to be displaced in the axial direction.
  • the member that supports the first and second output shaft bearings is not particularly limited.
  • the first and second output shaft bearings are supported by, for example, a casing of the in-wheel motor drive device.
  • the second output shaft bearing is provided between the inner peripheral surface of the output shaft and the outer peripheral surface of the fixed shaft.
  • the output shaft can be supported by the fixed shaft having a higher strength than the casing of the in-wheel motor drive device.
  • a cylindrical portion may be provided in the casing, and the second output shaft bearing may be supported by the cylindrical portion.
  • the outer ring is disposed on one axial direction of the wheel hub bearing portion
  • the output shaft is disposed on the other axial direction of the wheel hub bearing portion
  • the inner peripheral surface of one end portion of the output shaft is the axial line of the outer ring.
  • the outer ring and the output shaft are coupled to each other so as to cover the outer peripheral surface of the other end portion in the direction
  • the first output shaft bearing rotatably supports the outer peripheral surface of the one end portion of the output shaft
  • the second output shaft bearing is the output shaft The inner peripheral surface of the other end is rotatably supported.
  • a 1st output-shaft bearing can be arrange
  • the first and second output shaft bearings may be arranged at locations away from the outer ring of the outer ring hub bearing portion in the axial direction.
  • the output gear is provided on the outer periphery of the other end portion in the axial direction of the output shaft, and the axial position of the output gear overlaps with the axial position of the second output shaft bearing.
  • the axial dimension of the output shaft can be shortened.
  • an output gear may be disposed between the first output shaft bearing and the second output shaft bearing.
  • a first output shaft bearing includes a radial surface including an outer raceway surface on the outer diameter side, an inner raceway surface on the inner diameter side, and a plurality of rolling elements that roll on the outer raceway surface and the inner raceway surface.
  • This is a bearing, and the maximum outer diameter of the outer raceway surface is smaller than the outer diameter of the output gear.
  • the diameter dimension of the first output shaft bearing is reduced, and as a result, the diameter dimension of the wheel hub bearing portion can be further reduced. Therefore, it is possible to secure an arrangement space for the wheel hub bearing portion in the inner space of the wheel.
  • the maximum outer diameter of the outer raceway surface means a portion having the largest outer diameter on the outer raceway surface.
  • the outer diameter at the groove bottom is the maximum outer diameter of the outer raceway surface.
  • the maximum outer diameter of the outer raceway surface may be larger than the outer diameter of the output gear.
  • the fixed ring is an outer ring
  • the rotating ring is an inner ring disposed in the center hole of the outer ring.
  • the inner ring may be an annular member or a solid cylindrical shaft.
  • the first output shaft bearing and the second output shaft bearing are supported by the casing of the speed reduction unit.
  • an inner peripheral surface is formed in the casing
  • the outer peripheral surface of the output shaft is opposed to the inner peripheral surface of the casing
  • the first output shaft bearing and / or the second output shaft bearing is output to the casing inner peripheral surface.
  • the first output shaft bearing and / or the second output shaft bearing may be installed between the casing outer peripheral surface and the output shaft inner peripheral surface.
  • the output gear which is the final gear of the speed reduction unit it is possible to stably support the output gear which is the final gear of the speed reduction unit. Therefore, even if an external force is applied from the wheel to the outer ring, the displacement of the output shaft is suppressed to prevent uneven wear or the like of the gear of the speed reduction unit, thereby improving the durability of the in-wheel motor drive device.
  • FIG. 1 is a developed cross-sectional view showing the in-wheel motor drive device according to the first embodiment of the present invention cut and developed on a predetermined plane.
  • FIG. 2 is a rear view showing the inside of the in-wheel motor drive device of the first embodiment together with the wheels, and the motor unit 21 and the rear portion 43b of the main body casing 43 are removed from the in-wheel motor drive device 10 in FIG.
  • the state which looked at the inside of the in-wheel motor drive device 10 from the paper surface right side of FIG. 1 is represented.
  • 1 includes a plane including the axis M and the axis Nf, a plane including the axis Nf and the axis Nl, and a plane including the axis Nl and the axis O shown in FIG. It is a connected development plane.
  • the in-wheel motor drive device 10 includes a wheel hub bearing portion 11 connected to the center of the wheel wheel W represented by a virtual line, a motor portion 21 that drives the wheel wheel W of the wheel, and a motor portion. Is provided in a wheel housing (not shown) of the electric vehicle.
  • the motor unit 21 and the speed reduction unit 31 are not arranged coaxially with the axis O of the wheel hub bearing unit 11 but are offset from the axis O of the wheel hub bearing unit 11 as shown in FIG.
  • the wheel wheel W is well known, and a tire T is fitted on the outer periphery of the wheel wheel W, and is disposed on the front, rear, left and right sides of the vehicle body. Such a vehicle body constitutes an electric vehicle together with the wheels.
  • the in-wheel motor drive device 10 can drive an electric vehicle at a speed of 0 to 180 km / h on a public road.
  • the wheel hub bearing portion 11 is disposed in an annular gap between the outer ring 12 as a wheel hub coupled with the wheel wheel W, the inner fixing member 13 passed through the center hole of the outer ring 12, and the outer ring 12 and the inner fixing member 13.
  • a plurality of rolling elements 14 are included to constitute an axle.
  • the inner fixing member 13 includes a non-rotating fixing shaft 15, a pair of inner races 16, and a retaining nut 17.
  • the fixed shaft 15 has a root portion 15r having a larger diameter than the tip portion 15e.
  • the inner race 16 is fitted to the outer periphery of the fixed shaft 15 between the root portion 15r and the tip portion 15e.
  • the retaining nut 17 is screwed into the tip portion 15e of the fixed shaft 15, and the inner race 16 is fixed between the retaining nut 17 and the root portion 15r.
  • the fixed shaft 15 extends along the axis O, and the tip portion 15e of the fixed shaft 15 is directed outward in the vehicle width direction.
  • the root portion 15 r of the fixed shaft 15 protrudes inward in the vehicle width O direction from the outer ring 12 and faces the back surface portion 43 b of the main body casing 43.
  • the root portion 15r is attached and fixed to the back surface portion 43b inside the main body casing 43 by a bolt 13c. Further, the root portion 15r is connected to the carrier 18 outside the main body casing 43 by a bolt 13b.
  • the rolling elements 14 are arranged in double rows with a separation in the direction of the axis O.
  • the outer peripheral surface of one inner race 16 in the axis O direction constitutes the inner raceway surface of the rolling elements 14 in the first row, and faces one inner peripheral surface of the outer ring 12 in the axis O direction.
  • the outer peripheral surface of the other inner race 16 in the direction of the axis O constitutes the inner raceway surface of the rolling elements 14 in the second row, and faces the other inner peripheral surface of the outer ring 12 in the direction of the axis O.
  • the vehicle width direction outer side (outboard side) is also referred to as one axial direction
  • the vehicle width direction inner side (inboard side) is also referred to as the other axial direction.
  • the left-right direction in FIG. 1 corresponds to the vehicle width direction.
  • the inner peripheral surface of the outer ring 12 constitutes the outer raceway surface of the rolling element 14.
  • a flange portion 12f is formed at one end of the outer ring 12 in the axis O direction.
  • the flange portion 12f constitutes a coupling seat portion for coupling coaxially with a brake rotor and a spoke portion Ws of the wheel W which are not shown.
  • the outer ring 12 is coupled to the wheel wheel W at the flange portion 12f and rotates integrally with the wheel wheel W.
  • the motor unit 21 has a motor rotating shaft 22, a rotor 23, a stator 24, a motor casing 25, and a motor casing cover 25v, and sequentially from the axis M of the motor unit 21 to the outer diameter side in this order. Be placed.
  • the motor unit 21 is a radial gap motor of an inner rotor and outer stator type, but may be of other types.
  • the motor unit 21 may be an axial gap motor.
  • the axis M that is the rotation center of the motor rotation shaft 22 and the rotor 23 extends in parallel with the axis O of the wheel hub bearing portion 11. That is, the motor unit 21 is disposed offset from the axis O of the wheel hub bearing unit 11. Most of the axial positions of the motor unit 21 excluding the tip of the motor rotating shaft 22 do not overlap with the axial positions of the inner fixing member 13 as shown in FIG.
  • the motor casing 25 has a substantially cylindrical shape.
  • the motor casing 25 is coupled to the back surface portion 43b of the main body casing 43 at one end in the axis M direction, and is sealed with a bowl-shaped motor casing cover 25v at the other end in the axis M direction. Both end portions of the motor rotating shaft 22 are rotatably supported by the motor casing 25 via rolling bearings 27 and 28.
  • the motor unit 21 drives the outer ring 12.
  • the speed reduction unit 31 includes an input shaft 32, an input gear 33, an intermediate gear 34, an intermediate shaft 35, an intermediate gear 36, an intermediate gear 37, an intermediate shaft 38, an intermediate gear 39, an output gear 40, an output shaft 41, and a main body casing 43.
  • the input shaft 32 is a cylindrical body having a larger diameter than the distal end portion 22 e of the motor rotation shaft 22, and extends along the axis M of the motor portion 21.
  • the distal end portion 22 e is received in the center hole at the other end portion in the axis M direction of the input shaft 32, and the input shaft 32 is coupled coaxially with the motor rotation shaft 22. Both ends of the input shaft 32 are supported by the main body casing 43 via rolling bearings 42a and 42b.
  • the input gear 33 is an external gear having a smaller diameter than the motor unit 21 and is coupled to the input shaft 32 coaxially. Specifically, the input gear 33 is integrally formed on the outer periphery of the central portion of the input shaft 32 in the axis M direction. In FIG. 2 and subsequent figures, each tooth of the gear is not represented, and the gear is represented by a tip circle.
  • the output shaft 41 is a cylindrical body having a diameter larger than that of the outer ring 12 and extends along the axis O of the wheel hub bearing portion 11.
  • the other end of the outer ring 12 in the direction of the axis O is received in the center hole of one end of the output shaft 41 in the direction of the axis O, and the output shaft 41 is coupled to the outer ring 12 coaxially.
  • a spline groove 41s is formed on the inner peripheral surface of the output shaft 41
  • a spline groove 12s is formed on the outer peripheral surface of the other end of the outer ring 12 in the axis O direction
  • the spline grooves 41s and 12s are spline-fitted. .
  • Such spline fitting realizes torque transmission between the output shaft 41 and the outer ring 12 and allows relative movement between the two.
  • the one end of the output shaft 41 in the direction of the axis O is supported by the main body casing 43 via a rolling bearing 44.
  • the other end of the output shaft 41 in the direction of the axis O is supported by a root portion 15r of the fixed shaft 15 via a rolling bearing 46.
  • the output gear 40 is an external gear and is coupled to the output shaft 41 coaxially.
  • the output gear 40 is integrally formed on the outer periphery of the other end of the output shaft 41 in the axis O direction.
  • the two intermediate shafts 35 and 38 extend in parallel with the input shaft 32 and the output shaft 41. That is, the speed reduction unit 31 is a four-axis parallel shaft gear reducer, and the axis O of the output shaft 41, the axis Nf of the intermediate shaft 35, the axis Nl of the intermediate shaft 38, and the axis M of the input shaft 32 are parallel to each other. In other words, it extends in the vehicle width direction.
  • the axis M of the input shaft 32 is arranged in front of the vehicle with respect to the axis O of the output shaft 41.
  • the axis Nf of the intermediate shaft 35 is disposed in front of the vehicle with respect to the axis M of the input shaft 32.
  • the axis Nl of the intermediate shaft 38 is arranged in front of the vehicle with respect to the axis O of the output shaft 41 and behind the axis M of the input shaft 32.
  • the input shaft 32, the intermediate shaft 35, the intermediate shaft 38, and the output shaft 41 may be arranged in this order in the vehicle front-rear direction. This order is also the order in which the driving force is transmitted.
  • the axis M of the input shaft 32 is arranged above the axis O of the output shaft 41.
  • the axis Nf of the intermediate shaft 35 is disposed above the axis M of the input shaft 32.
  • the axis Nl of the intermediate shaft 38 is disposed above the axis Nf of the intermediate shaft 35.
  • the plurality of intermediate shafts 35 and 38 need only be disposed above the input shaft 32 and the output shaft 41, and the intermediate shaft 35 may be disposed above the intermediate shaft 38 as a modification (not shown). Alternatively, as a modification not shown, the output shaft 41 may be disposed above the input shaft 32.
  • the intermediate gear 34 and the intermediate gear 36 are external gears, and are coupled coaxially with the central portion of the intermediate shaft 35 in the axis Nf direction as shown in FIG. Both ends of the intermediate shaft 35 are supported by the main body casing 43 via rolling bearings 45a and 45b.
  • the intermediate gear 37 and the intermediate gear 39 are external gears, and are coupled coaxially with the central portion of the intermediate shaft 38 in the direction of the axis Nl. Both ends of the intermediate shaft 38 are supported by the main body casing 43 via rolling bearings 48a and 48b.
  • the main body casing 43 forms an outer shell of the speed reduction part 31 and the wheel hub bearing part 11, is formed in a cylindrical shape, and surrounds axes O, Nf, Nl and M extending in parallel to each other as shown in FIG.
  • the main body casing 43 is accommodated in the inner space of the wheel wheel W.
  • the inner space of the wheel W is defined by the inner peripheral surface of the rim portion Wr and the spoke portion Ws that is coupled to one end of the rim portion Wr in the axis O direction.
  • One area in the axial direction of the wheel hub bearing portion 11, the speed reduction portion 31, and the motor portion 21 is accommodated in the inner space region of the wheel wheel W. Further, the other axial region of the motor unit 21 protrudes from the wheel W to the other axial direction.
  • the wheel wheel W accommodates most of the in-wheel motor drive device 10.
  • the main body casing 43 protrudes downward at a position away from the axis O of the output gear 40 in the longitudinal direction of the vehicle, specifically, directly below the axis M of the input gear 33.
  • This protruding portion forms an oil tank 47.
  • a space S is secured between a portion 43c of the main body casing 43 directly below the axis O and a lower portion of the rim portion Wr.
  • a suspension member 71 extending in the vehicle width direction is disposed in the space S, and the vehicle width direction outer end 72 of the suspension member 71 and the inner fixing member 13 are connected to each other via the ball joint 60 so as to be freely directional.
  • the main body casing 43 has a cylindrical shape, and as shown in FIG. 1, the input shaft 32, the input gear 33, the intermediate gear 34, the intermediate shaft 35, the intermediate gear 36, the intermediate gear 37, the intermediate shaft 38, the intermediate gear 39, and the output gear. 40 and the output shaft 41 are accommodated, and the other end of the wheel hub bearing portion 11 in the axis O direction is covered. Lubricating oil is enclosed in the main body casing 43.
  • the input gear 33, the intermediate gear 34, the intermediate gear 36, the intermediate gear 37, the intermediate gear 39, and the output gear 40 are helical gears.
  • the main body casing 43 has a substantially flat front portion 43 f that covers one side in the axial direction of the cylindrical portion of the speed reduction portion 31 and a substantially flat surface that covers the other side in the axial direction of the cylindrical portion of the speed reduction portion 31. It includes a back portion 43b.
  • the back surface portion 43 b is coupled to the motor casing 25. Further, the back surface portion 43 b is coupled to a suspension member (not shown) such as an arm or a strut via the carrier 18. Thereby, the in-wheel motor drive device 10 is supported by the suspension member.
  • An opening 43p through which the outer ring 12 passes is formed in the front portion 43f.
  • the opening 43p is provided with a sealing material 43s for sealing an annular gap with the outer ring 12.
  • the outer ring 12 serving as a rotating body is accommodated in the main body casing 43 except for one end portion in the axis O direction.
  • the small-diameter input gear 33 and the large-diameter intermediate gear 34 are arranged on one side in the axial direction of the speed reduction unit 31 and mesh with each other.
  • the small-diameter intermediate gear 36 and the large-diameter intermediate gear 37 are arranged on the other side in the axial direction of the speed reduction portion 31 and mesh with each other.
  • the small-diameter intermediate gear 39 and the large-diameter output gear 40 are disposed on one side in the axial direction of the speed reduction unit 31 and mesh with each other.
  • the deceleration part 31 ensures a sufficient reduction ratio.
  • the intermediate gear 34 is a first intermediate gear positioned on the input side of the drive transmission path.
  • the intermediate gear 39 is a final intermediate gear located on the output side of the drive transmission path.
  • the output shaft 41, the intermediate shaft 38, and the input shaft 32 are arranged at intervals in the vehicle front-rear direction in this order. Further, the intermediate shaft 35 and the intermediate shaft 38 are disposed above the input shaft 32 and the output shaft 41.
  • the intermediate shaft can be disposed above the outer ring 12 that serves as a wheel hub, and a space for the oil tank 47 can be secured below the outer ring 12, or the space S can be formed directly below the outer ring 12. Can be secured.
  • the turning shaft extending in the vertical direction can be provided so as to intersect the space S, and the wheel wheel W and the in-wheel motor drive device 10 can be suitably turned around the turning shaft.
  • the axis M of the motor portion 21 is arranged offset from the axis O of the wheel hub bearing portion in the vehicle front-rear direction, and the axis Nf of the intermediate shaft 35 is the wheel hub bearing.
  • the axis Nl of the intermediate shaft 38 is offset upward from the axis O of the wheel hub bearing part.
  • the input shaft 32 and the output shaft 41 extend in the vehicle width direction, and as shown in FIG. 2, the input gear 33 and the output gear 40 are set to stand up and down.
  • the lower edge 40b of the output gear 40 is disposed below the lower edge 33b of the input gear 33.
  • the plurality of intermediate shafts 35, 38 are arranged adjacent to each other above the input shaft 32 and are supplied with driving torque from the input shaft 32.
  • a final intermediate shaft 38 that is disposed adjacent to the output shaft 41 and supplies driving torque to the output shaft 41, and includes the input shaft 32, the first intermediate shaft 35, the final intermediate shaft 38, and the output shaft 41.
  • the reference lines sequentially connecting the centers of 41 (axis O) are arranged so as to draw an inverted U-shape.
  • the outer ring 12 that becomes a wheel hub is a cylindrical body, and the wheel hub bearing portion 11 is disposed in the center hole of the outer ring 12 to rotatably support the outer ring 12.
  • the fixed shaft 15 is further included.
  • the output gear 40 can be coaxially coupled to the outer diameter side of the outer ring 12.
  • the driving force can be transmitted to the outer ring 12 from the intermediate shaft 38 arranged to be offset with respect to the outer ring 12.
  • the main body casing 43 further accommodates a pump shaft 51, rolling bearings 52a and 52b, a pump gear 53, and an oil pump 54 as shown in FIG.
  • the axis P of the pump shaft 51 extends in parallel with the axis O of the output shaft 41.
  • the pump shaft 51 is disposed away from the output shaft 41 in the vehicle front-rear direction, is supported rotatably at both ends in the axis P direction via rolling bearings 52a and 52b, and is coaxial with the pump gear 53 at the center in the axis P direction.
  • the pump gear 53 meshes with the output gear 40.
  • the oil pump 54 is disposed further on the other side in the axis P direction than the rolling bearing 52 b and is provided on the other end in the axis P direction of the pump shaft 51.
  • the oil pump 54 sucks lubricating oil from the oil tank 47 and discharges the sucked lubricating oil to the motor unit 21 and the speed reducing unit 31. Thereby, the motor part 21 and the deceleration part 31 are lubricated.
  • the pump shaft 51 of the present embodiment is disposed below the input shaft 32, and the oil tank 47 is disposed below the pump shaft 51.
  • the oil pump 54 (FIG. 1) is disposed substantially coaxially with the pump shaft 51 and pumps the lubricating oil stored in the oil tank 47 directly above the oil tank 47.
  • the pump shaft 51 and the oil tank 47 are disposed in front of the output shaft 41 in the vehicle. When the wheel is driven by the in-wheel motor drive device 10 and the vehicle travels, the oil tank 47 receives traveling wind from the front of the vehicle and is cooled by air.
  • connection structure of the main body casing 43 and the inner fixing member 13 will be described.
  • the inner fixing member 13 is cantilevered so that one end in the axial direction becomes a free end and the other end in the axial direction becomes a fixed end.
  • the other end surface 15n in the axis O direction faces one wall surface 43bm in the axis O direction of the back surface portion 43b.
  • the base portion 15r of the fixed shaft 15 is provided with a protruding portion 15p that protrudes in the outer diameter direction. The protruding portion 15p is fixed to the one wall surface 43bm in the axis O direction of the back surface portion 43b.
  • the one wall surface 43 bm in the axis O direction refers to a wall surface that faces the outside in the vehicle width direction among the back surface portion 43 b that becomes the wall portion of the main body casing 43, and is an inner wall surface of the main body casing 43.
  • the protruding portion 15p is fixed to the back surface portion 43b by a bolt 13c.
  • a female screw hole 43t directed in one axial direction is formed in one wall surface 43bm in the axial O direction of the back surface portion 43b.
  • the bolt 13c extends parallel to the axis O, has a head portion 13cd on one side in the axis O direction, has a shaft portion 13ct on the other side in the axis O direction, and the shaft portion 13ct penetrates the protruding portion 15p and is screwed into the female screw hole 43t. Match.
  • FIG. 3 is a cross-sectional view showing a connection structure between the in-wheel motor drive device 10 and the suspension device 70, and shows a state seen in the vehicle front-rear direction.
  • the spoke portion Ws of the wheel wheel W and the brake rotor BD are attached and fixed to the flange portion 12 f of the outer ring 12.
  • a caliper (not shown) is attached and fixed to the vehicle rear portion of the main body casing 43.
  • the caliper brakes the brake rotor BD.
  • the brake rotor BD disposed in the inner space of the wheel W is omitted in the drawings excluding FIG.
  • the outer ring 12 is disposed on the outer side in the vehicle width direction when viewed from the wheel center of the wheel wheel W (the center from one end to the other end of the wheel wheel W on the axis O).
  • the suspension device 70 is a strut suspension device and includes two suspension members 71 and 76.
  • the suspension member 76 is a strut extending in the vertical direction, and includes a shock absorber 76s and can be expanded and contracted in the vertical direction.
  • a coil spring (not shown) is coaxially disposed on the outer periphery of the upper end region 77 of the suspension member 76 to relieve the vertical axial force acting on the suspension member 76.
  • the upper end of the suspension member 76 supports a vehicle body side member (not shown).
  • the suspension member 71 is a lower arm (suspension arm) that is disposed below the suspension member 76 and extends in the vehicle width direction.
  • the end portions of the suspension member 71 constitute a vehicle width direction outer end 72 and a vehicle width direction inner end 73.
  • the suspension member 71 is connected to the in-wheel motor drive device 10 via the ball joint 60 at the outer end 72 in the vehicle width direction.
  • the suspension member 71 is connected to a vehicle body side member (not shown) at an inner end 73 in the vehicle width direction.
  • the suspension member 71 can swing in the vertical direction with the vehicle width direction inner end 73 as a base end and the vehicle width direction outer end 72 as a free end.
  • the vehicle body side member refers to a member that is attached to the vehicle body side as viewed from a member to be described.
  • the ball joint 60 includes a ball stud 61 and a socket 62.
  • the ball stud 61 extends in the vertical direction, and has a ball portion 61b formed at the upper end and a stud portion 61s formed at the lower end.
  • the socket 62 is provided in the inner side fixing member 13, and accommodates the ball
  • the stud portion 61s penetrates the vehicle width direction outer end 72 in the vertical direction.
  • a male screw is formed on the outer periphery of the lower end of the stud portion 61s, and the stud portion 61s is attached and fixed to the suspension member 71 by screwing a nut 72n from below.
  • the carrier 18 is coupled to the fixed shaft 15 and the back surface portion 43b by bolts 13b.
  • a protruding portion 15 p is formed at the base portion 15 r of the fixed shaft 15.
  • a female screw hole 15t is formed in the protruding portion 15p.
  • the bolt 13b is inserted into the through hole of the carrier 18 and the through hole of the intermediate member 19 from the other in the axis O direction to the other, and the shaft portion of the bolt 13b is screwed into the female screw hole 15t.
  • An intermediate member 19 is interposed between the protruding portion 15p and the carrier 18.
  • the intermediate member 19 is fitted into an opening 43q formed in the back surface portion 43b.
  • a sealing material 49 is provided on the entire circumference of the intermediate member 19. The sealing material 49 seals the annular gap between the opening 43q and the intermediate member 19.
  • the fixed shaft 15 is arranged inside the main body casing 43 and the carrier 18 is arranged outside the main body casing 43 with the back surface portion 43b which is the wall portion of the main body casing 43 as a boundary.
  • the carrier 18 has an upper arm portion 18a extending upward and a lower arm portion 18b extending downward as shown in FIG.
  • the upper arm portion 18a protrudes upward beyond the wheel hub bearing portion 11, and is attached and fixed to the lower end portion 76b of the suspension member 76 (strut) by a bolt 78 at the tip portion.
  • the lower arm portion 18b protrudes downward beyond the wheel hub bearing portion 11, and has a socket 62 of the ball joint 60 at the tip portion.
  • the lower arm portion 18b changes its direction at the tip portion and extends in parallel with the axis O, and wraps directly under the wheel hub bearing portion 11. For this reason, the position of the socket 62 in the direction of the axis O overlaps the position of the fixed shaft 15 in the direction of the axis O.
  • the ball portion 61b is allowed to rotate in a free direction as a connection point between the in-wheel motor drive device 10 and the suspension device 70.
  • the straight line extending in the vertical direction through the upper end of the suspension member 76 (strut) and the ball portion 61b constitutes the wheel wheel W and the steered shaft K of the in-wheel motor drive device 10.
  • the rolling bearing 44 is disposed on the outer peripheral surface of the end portion of the output shaft 41 as a first output shaft bearing, and rotatably supports one end portion of the output shaft 41.
  • the rolling bearing 46 is disposed on the inner peripheral surface of the other end portion of the output shaft 41 positioned on the opposite side to the rolling bearing 44 as the second output shaft bearing, and the other end portion of the output shaft 41 is rotatable.
  • the speed reduction part 31 supports the output shaft 41 rotatably by the rolling bearings 44 and 46 separately from the wheel hub bearing part 11, the output shaft 41 can be stably supported. it can.
  • the output shaft 41 is stably supported by both the inner peripheral surface of the output shaft 41 and the outer peripheral surface of the output shaft 41.
  • a first annular step 41t is formed on the outer periphery of one end of the output shaft 41 in the axial direction adjacent to the side surface of the output gear 40 so that the diameter near the center in the axial direction has a large diameter.
  • the first rolling bearing 44 is in contact with the first annular step 41t, and the position in the axis O direction is defined. According to this embodiment, the first rolling bearing 44 can be fixed so as not to be displaced in the direction of the axis O.
  • a second annular step 41u is formed on the inner periphery of the other end portion of the output shaft 41 in the axis O direction so that the diameter near the center in the axis direction becomes a small diameter.
  • the second rolling bearing 46 is in contact with the second annular step 41u and has a position defined in the direction of the axis O. According to this embodiment, the second rolling bearing 46 can be fixed so as not to be displaced in the direction of the axis O.
  • the output gear 40 is a helical gear
  • the tooth contact with the intermediate gear 39 is improved, and an axial force acts on the output shaft 41.
  • the axial force acting on the helical gear can be received by the first and second rolling bearings 44 and 46 that are fixed so as not to be displaced in the direction of the axis O.
  • the second rolling bearing 46 is provided between the inner peripheral surface of the output shaft 41 and the outer peripheral surface of the fixed shaft 15, so that the output is performed by the fixed shaft 15 having a higher strength than the main body casing 43.
  • the shaft 41 can be supported.
  • the outer ring 12 is disposed on one side in the axis O direction
  • the output shaft 41 is disposed on the other side in the axis O direction.
  • the outer ring 12 and the output shaft 41 are coupled to each other so that the inner peripheral surface at one end portion in the axis O direction of the output shaft 41 covers the outer peripheral surface at the other end portion in the axis O direction of the outer ring 12.
  • a first rolling bearing 44 that rotationally supports the outer diameter of one end side of the output shaft 41
  • a second rolling bearing 46 first bearing
  • the two output shaft bearings are rotatably supported at both ends of the output shaft 41.
  • the 1st rolling bearing 44 can be arrange
  • FIG. Therefore, the position of the first rolling bearing 44 in the axis O direction can be overlapped with the position of the outer ring 12 in the axis O direction, and the total axial dimension of the outer ring 12 and the output shaft 41 can be shortened.
  • the output gear 40 is provided on the outer periphery of the other end portion of the output shaft 41 in the axis O direction, and the position of the output gear 40 in the axis O direction overlaps the position of the rolling bearing 46 in the axial direction.
  • the dimension of the axis 41 in the axis O direction can be shortened.
  • the rolling bearing 44 of the present embodiment is adjacent to the outer raceway surface 44f on the outer diameter side, the inner raceway surface 44g on the inner diameter side, and the plurality of rolling elements 44b that roll on the outer raceway surface 44f and the inner raceway surface 44g. It is a radial bearing including a retainer (not shown) that defines the circumferential interval between the rolling elements 44b that fit.
  • the outer raceway surface 44f and the inner raceway surface 44g are circumferential grooves, and the cross sections of the outer raceway surface 44f and the inner raceway surface 44g are semicircular.
  • the maximum outer diameter of the outer raceway surface 44f is smaller than the outer diameter of the tooth tip of the output gear 40. According to this embodiment, the diameter dimension of the first rolling bearing 44 is reduced, and as a result, the diameter dimension of the wheel hub bearing portion 11 can be further reduced. Therefore, the arrangement space of the wheel hub bearing portion 11 can be secured in the inner space of the wheel wheel W.
  • FIG. 4 is a developed cross-sectional view showing the in-wheel motor drive device 20 according to the second embodiment of the present invention cut and developed on a predetermined plane.
  • symbol is attached
  • an opening 43q is formed in the back surface portion 43b of the main body casing 43, and the fixed shaft 15 is inserted into the opening 43q from the outside of the main body casing 43.
  • the base portion 15r of the fixed shaft 15, the carrier 18, and the bolts 13c and 13b are arranged outside the main body casing 43 with the back surface portion 43b as a boundary, and the remaining portion of the fixed shaft 15 excluding the base portion 15r is inside the main body casing 43. Be placed.
  • a female screw hole 43u oriented in the other axial direction is formed in the other wall surface 43bn in the axial O direction of the back surface portion 43b.
  • the bolt 13c is reverse to the first embodiment described above, and is inserted into the through hole of the projecting portion 15p from the other in the axis O direction toward the other.
  • the head portion 13cd of the bolt 13c contacts the protruding portion 15p from the outside of the main body casing 43.
  • the shaft portion 13ct of the bolt 13c is screwed into the female screw hole 43u.
  • the sealing material 49 seals the annular gap between the opening 43q and the fixed shaft 15.
  • a bottomless female screw 15u is formed on the protruding portion 15p of the fixed shaft 15, and a bolt 13b penetrating the carrier 18 is screwed into the female screw 15u, whereby the carrier 18 is abutted against and fixed to the protruding portion 15p.
  • the female screw 15u may have a bottom.
  • the output shaft 41 can be supported stably.
  • the fixed shaft 15 in the assembly of the in-wheel motor drive device 20, in the assembly of the in-wheel motor drive device 20, the fixed shaft 15 is inserted into the opening 43q of the main body casing 43 from the other side in the axis O direction, and the distal end portion 15e of the fixed shaft 15 is the rear portion 43b.
  • the motor portion 21 and the root portion 15r of the fixed shaft 15 are both disposed on the other side in the axis O direction than the back surface portion 43b.
  • the fixed shaft 15 and the motor unit 21 indicated by a virtual line approach each other. For this reason, for the convenience of assembly, the fixed shaft 15 is designed to be thin so that the fixed shaft 15 and the motor unit 21 do not interfere with each other.
  • the fixed shaft 15 in the first embodiment shown in FIG. 1, in the assembly of the in-wheel motor drive device 20, the fixed shaft 15 may be inserted into the main body casing 43 from one side in the axis O direction and fixed to the back portion 43 b.
  • the root portion 15r is disposed on one side in the axis O direction with respect to the back surface portion 43b, and the motor portion 21 is disposed on the other side in the axis O direction with respect to the back surface portion 43b.
  • FIG. 5 is a developed cross-sectional view showing the in-wheel motor drive device 30 according to the third embodiment of the present invention cut and developed on a predetermined plane.
  • the same components as those in the above-described embodiment are denoted by the same reference numerals, description thereof is omitted, and different configurations are described below.
  • the cylindrical portion 43 y is formed on the back surface portion 43 b of the main body casing 43.
  • the cylindrical portion 43y extends along the axis O, protrudes from the one wall surface 43bm in the axis O direction, passes through the intermediate gear 37, travels in one direction in the axis O, and is inserted into the center hole of the output shaft 41.
  • the central hole of the cylindrical portion 43y becomes an opening 43q, and the fixed shaft 15 is inserted into the opening 43q from the outside of the main body casing 43.
  • the second rolling bearing 46 is provided in an annular gap between the outer peripheral surface of the tip end portion of the cylindrical portion 43y and the inner peripheral surface of the other end portion in the axis O direction of the output shaft 41.
  • the cylindrical portion 43y rotatably supports the other end portion of the output shaft 41 in the axis O direction.
  • the third embodiment shown in FIG. 5 also has a first rolling bearing 44 and a second rolling bearing 46 as in the first embodiment described above.
  • the output shaft 41 can be supported stably.
  • the cylindrical portion 43y becomes thick, the diameter of the output shaft 41 increases. Or if the cylindrical part 43y becomes thin, the support rigidity of the cylindrical part 43y will become small. For this reason, the first and second embodiments described above are preferable.
  • FIG. 6 is a developed cross-sectional view showing the in-wheel motor drive device 50 according to the fourth embodiment of the present invention cut and developed on a predetermined plane.
  • the same components as those in the above-described embodiment are denoted by the same reference numerals, description thereof is omitted, and different configurations are described below.
  • the wheel hub bearing portion 11 is configured to rotate the inner ring and fix the outer ring. This is different from the wheel hub bearing 11 for rotating the outer ring and fixing the inner ring employed in the first to third embodiments described above.
  • the wheel hub bearing portion 11 includes an inner ring 56 that is a rotating element, an outer ring 57 that is a fixed element, and a plurality of rolling elements 58 that are arranged in an annular gap between the inner and outer rings.
  • a flange is erected on the outer peripheral surface of the outer ring 57.
  • a through hole is formed in the outer ring flange with a gap in the circumferential direction.
  • Each through-hole extends in parallel with the axis O, and a bolt 57b is passed from one side of the axis O direction. The shaft portion of each bolt 57 b is screwed into a female screw hole formed in the front portion 43 f of the main body casing 43.
  • the outer ring 57 is connected and fixed to the front portion 43f.
  • the front portion 43f is a casing wall portion that covers one end of the speed reduction portion 31 in the axis O direction.
  • the back surface portion 43b is a casing wall portion that covers the other end of the speed reduction portion 31 in the axis O direction.
  • the inner ring 56 is a cylindrical body longer than the outer ring 57 and is passed through the center hole of the outer ring 57.
  • a coupling portion 56f is formed at one end of the inner ring 56 protruding from the outer ring 57 to the outside of the in-wheel motor drive device 50 in the axis O direction.
  • the coupling portion 56f is a flange, and constitutes a coupling portion for coupling coaxially with a brake rotor and wheels (not shown).
  • the inner ring 56 is attached with a wheel at a coupling portion 56f and rotates integrally with the wheel.
  • a plurality of rows of rolling elements 58 are arranged.
  • the rolling elements 58 are balls, for example.
  • One outer peripheral surface of the inner ring 56 in the direction of the axis O constitutes an outer race of the rolling elements 58 in the first row.
  • An inner raceway 56r is fitted to the outer circumference of the other end portion of the inner ring 56 in the axis O direction, and the outer circumference surface of the inner raceway 56r constitutes the inner raceway of the rolling elements 58 in the second row.
  • a seal material 59 is further interposed in the annular gap between the inner ring 56 and the outer ring 57.
  • the sealing material 59 seals both ends of the annular gap in the direction of the axis O to prevent entry of dust and foreign matter.
  • the output shaft 55 of the speed reducing portion 31 is inserted into the center hole at the other end in the axis O direction of the inner ring 56 and is spline-fitted.
  • One end of the input shaft 32 in the axis M direction is rotatably supported by the front portion 43f of the main body casing 43 via the rolling bearing 42a, and the other end of the input shaft 32 in the axis M direction is rolled.
  • This is the same as the first to third embodiments described above in that it is rotatably supported by the back surface portion 43b of the main body casing 43 via the bearing 42b.
  • the input gear 33 is different from the first to third embodiments in that the input gear 33 is coupled to the other side of the input shaft 32 in the axis M direction and is adjacent to the rolling bearing 42b.
  • the input gear 33 of the first to third embodiments is coupled to one side of the input shaft 32 in the axis M direction and is adjacent to the rolling bearing 42a.
  • the intermediate gear 34 is coupled to the other side of the intermediate shaft 35 in the axis Nf direction.
  • the intermediate gear 36 is coupled to one side of the intermediate shaft 35 in the axis Nf direction.
  • this embodiment is alternated with the first to third embodiments described above.
  • the intermediate gear 37 is coupled to one side of the intermediate shaft 38 in the axis Nl direction.
  • the intermediate gear 39 is coupled to the other side of the intermediate shaft 38 in the direction of the axis Nl.
  • this embodiment is alternated with the first to third embodiments described above.
  • the output shaft 55 is coupled to the output gear 40 and is rotatably supported on the front portion 43f of the main body casing 43 via the rolling bearing 55a while being in the axis O direction than the output gear 40.
  • the rolling bearing 55 a is installed between the inner peripheral surface of the circular opening formed in the front portion 43 f and the outer peripheral surface of the output shaft 55.
  • the rolling bearing 55 a is a ball bearing, for example, and the pitch circle thereof is larger than the pitch circle of the rolling elements 58.
  • the output shaft 55 further extends in the direction of the axis O beyond the rolling bearing 55a. One end of the output shaft 55 in the direction of the axis O is coupled to the inner ring 56.
  • the output shaft 55 is rotatably supported on the back surface portion 43b of the main body casing 43 via the rolling bearing 55b on the other side in the axis O direction than the output gear 40.
  • the rolling bearing 55 b is installed between the inner peripheral surface formed on the back surface portion 43 b and the outer peripheral surface of the output shaft 55.
  • the rolling bearing 55 b is a ball bearing, for example, and the pitch circle thereof is larger than the pitch circle of the rolling elements 58.
  • the output shaft 55 further extends to the other side in the axis O direction beyond the rolling bearing 55b.
  • the other end of the output shaft 55 in the direction of the axis O extends through the back surface portion 43 b and is coupled to the oil pump 54.
  • the oil pump 54 is attached to the outer wall surface of the back surface portion 43b and protrudes from the outer wall surface of the back surface portion 43b.
  • the outer diameter of the oil pump 54 is smaller than the pitch circle of the rolling bearings 55a and 55b.
  • a shaft 55 and an output gear 40 coupled to the output shaft 55 are included, and a drive transmission path for decelerating the rotation of the input gear 33 and transmitting it to the output gear 40 is configured.
  • the output shaft 55 can be stably supported at both ends. Therefore, even if an external force is applied from the wheel to the inner ring 56, the displacement of the output shaft 55 can be suppressed, and uneven wear of the output gear 40 of the speed reduction unit 31 can be prevented.
  • the rolling bearings 55 a and 55 b as the first and second output shaft bearings are supported by the main body casing 43 of the speed reduction unit 31. As a result, the output shaft 55 is stably held in the speed reduction unit 31.
  • the in-wheel motor drive device according to the present invention is advantageously used in electric vehicles and hybrid vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

A speed reduction section (31) includes: an input shaft (32) coupled to the rotating shaft (22) of a motor (21); an input gear (33) coupled to the input shaft; a circular cylindrical output shaft (41) coupled to an outer ring (12); and an output gear (40) coupled to the output shaft, and the speed reduction section (31) constitutes a drive transmission path for reducing the rotation of the input gear and outputting the reduced rotation to the output gear. The opposite ends of the output shaft are rotationally supported by: a first output shaft bearing (44) for rotationally supporting the outer diameter of the portion of the output shaft, which is located at one end thereof; and a second output shaft bearing (46) for rotationally supporting the inner diameter of the portion of the output shaft, which is located at the other end thereof.

Description

インホイールモータ駆動装置In-wheel motor drive device
 本発明は、車輪内部に配置されて該車輪を駆動するインホイールモータ駆動装置に関し、特に減速部の出力軸を回転自在に支持する構造に関する。 The present invention relates to an in-wheel motor drive device that is disposed inside a wheel and drives the wheel, and more particularly to a structure that rotatably supports an output shaft of a speed reduction unit.
 車輪の内部に配置されて該車輪を駆動するインホイールモータは、車輪ハブを回転自在に支持する車輪ハブ軸受を備え、車輪ハブが車輪ホイールと結合して輪荷重を支えることが常套である。例えば特許第5677142号公報(特許文献1)に記載される車輪ハブ軸受は、後輪のホイールと結合する円筒状の外輪ハブと、外輪ハブの中心孔に通されるスピンドルとの環状隙間に設置される。 It is customary that an in-wheel motor that is disposed inside a wheel and drives the wheel includes a wheel hub bearing that rotatably supports the wheel hub, and the wheel hub is coupled to the wheel wheel to support the wheel load. For example, a wheel hub bearing described in Japanese Patent No. 5676142 (Patent Document 1) is installed in an annular gap between a cylindrical outer ring hub coupled to a wheel of a rear wheel and a spindle passed through a center hole of the outer ring hub. Is done.
 特許文献1の外輪ハブの外周には歯車が設けられ、この歯車がピニオンと噛合する。ピニオンはモータの回転を外輪ハブに受け渡す。 A gear is provided on the outer periphery of the outer ring hub of Patent Document 1, and this gear meshes with the pinion. The pinion passes the rotation of the motor to the outer ring hub.
特許第5677142号公報Japanese Patent No. 5676142
 しかし、上記従来のような車輪ハブ軸受にあっては、さらに改善すべき点があることを本発明者は見いだした。つまり外輪ハブの外周と結合する歯車が、車輪ハブ軸受に支持されるため、車輪から付与される外力によって当該歯車が変位する場合がある。モータから車輪ハブまでの駆動伝達経路を構成する歯車の不所望な変位は、偏摩耗等の原因となり、インホイールモータの耐久性が悪化する。 However, the present inventor has found that there is a further improvement in the conventional wheel hub bearing. That is, since the gear coupled to the outer periphery of the outer ring hub is supported by the wheel hub bearing, the gear may be displaced by an external force applied from the wheel. Undesirable displacement of the gears constituting the drive transmission path from the motor to the wheel hub causes uneven wear and the like, and the durability of the in-wheel motor deteriorates.
 本発明は、上述の実情に鑑み、モータの回転を減速して車輪ハブに伝達する減速部において、減速部の最終歯車を安定して支持する構造を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a structure that stably supports the final gear of the speed reduction portion in the speed reduction portion that reduces the rotation of the motor and transmits the reduced speed to the wheel hub.
 この目的のため本発明のインホイールモータ駆動装置は、車輪を駆動するモータ部と、車輪が取り付けられる車輪ハブ軸受部と、モータ部の回転を減速して車輪ハブ軸受部に伝達する減速部とを備え、車輪ハブ軸受部は、車輪と一体回転する回転輪、この回転輪と同軸に配置される固定輪、および回転輪と固定輪との環状隙間に配置される複数の転動体を有し、減速部は、モータ部のモータ回転軸と結合する入力軸、入力軸と結合する入力歯車、車輪ハブ軸受部の回転輪と結合する出力軸、出力軸と結合する出力歯車を含み、入力歯車の回転を減速して出力歯車に伝達する駆動伝達経路を構成し、出力軸の一方端側を回転支持する第1出力軸軸受と、出力軸の他方端側を回転支持する第2出力軸軸受とにより、出力軸の両端が回転支持される。 For this purpose, the in-wheel motor drive device of the present invention includes a motor unit for driving a wheel, a wheel hub bearing unit to which the wheel is attached, a reduction unit for reducing the rotation of the motor unit and transmitting it to the wheel hub bearing unit. The wheel hub bearing portion includes a rotating wheel that rotates integrally with the wheel, a fixed wheel that is disposed coaxially with the rotating wheel, and a plurality of rolling elements that are disposed in an annular gap between the rotating wheel and the fixed wheel. The speed reduction unit includes an input shaft coupled to the motor rotation shaft of the motor unit, an input gear coupled to the input shaft, an output shaft coupled to the rotating wheel of the wheel hub bearing unit, and an output gear coupled to the output shaft. A first output shaft bearing that rotationally supports one end side of the output shaft and a second output shaft bearing that rotationally supports the other end side of the output shaft As a result, both ends of the output shaft are rotationally supported. .
 かかる本発明によれば、車輪ハブ軸受部とは別に、減速部が、回転輪と結合する出力軸と、出力軸の端部を回転自在に支持する第1出力軸軸受と、第1出力軸軸受と反対側に位置する出力軸の残りの端部を回転自在に支持する第2出力軸軸受を含むことから、出力軸を安定して両持ち支持することができる。したがって車輪ホイールから外輪に外力が付与されても、出力軸の変位を抑制して、減速部の歯車の偏摩耗等を防止できる。 According to the present invention, in addition to the wheel hub bearing portion, the speed reduction portion includes the output shaft coupled to the rotating wheel, the first output shaft bearing that rotatably supports the end portion of the output shaft, and the first output shaft. Since the second output shaft bearing that rotatably supports the remaining end portion of the output shaft positioned on the side opposite to the bearing is included, the output shaft can be stably supported at both ends. Therefore, even when an external force is applied from the wheel to the outer ring, the displacement of the output shaft can be suppressed, and uneven wear of the gear of the speed reduction unit can be prevented.
 車輪ハブ軸受部の回転輪および固定輪は、転がり軸受の外輪および内輪によって構成される。一実施形態として回転輪は外輪であり、固定輪は外輪の中心孔に通される固定軸に含まれる。 Rotating wheel and fixed ring of wheel hub bearing part are composed of outer ring and inner ring of rolling bearing. In one embodiment, the rotating wheel is an outer ring, and the fixed ring is included in a fixed shaft that is passed through the center hole of the outer ring.
 第1出力軸軸受および第2出力軸軸受の配置箇所は特に限定されない。一実施形態として第1出力軸軸受は出力軸の一方端側の外径を回転支持し、第2出力軸軸受は出力軸の他方端側の内径を回転支持する。かかる実施形態によれば、車輪ハブ軸受部とは別に、減速部が、外輪と結合する円筒形状の出力軸と、出力軸の端部を回転自在に支持する第1出力軸軸受と、第1出力軸軸受と反対側に位置する出力軸の残りの端部を回転自在に支持する第2出力軸軸受を含むことから、出力軸を安定して両持ち支持することができる。したがって車輪ホイールから外輪に外力が付与されても、出力軸の変位を抑制して、減速部の歯車の偏摩耗等を防止できる。 The arrangement location of the first output shaft bearing and the second output shaft bearing is not particularly limited. As one embodiment, the first output shaft bearing rotatably supports the outer diameter on one end side of the output shaft, and the second output shaft bearing rotatably supports the inner diameter on the other end side of the output shaft. According to this embodiment, in addition to the wheel hub bearing portion, the speed reduction portion includes the cylindrical output shaft coupled to the outer ring, the first output shaft bearing that rotatably supports the end portion of the output shaft, and the first Since the second output shaft bearing that rotatably supports the remaining end portion of the output shaft located on the side opposite to the output shaft bearing is included, the output shaft can be stably supported at both ends. Therefore, even when an external force is applied from the wheel to the outer ring, the displacement of the output shaft can be suppressed, and uneven wear of the gear of the speed reduction unit can be prevented.
 また本実施形態によれば、出力軸の一方端側の外径を回転支持する第1出力軸軸受と、出力軸の他方端側の内径を回転支持する第2出力軸軸受とにより出力軸の両端が回転支持されることから、出力軸は内径および外径の双方で安定して支持される。したがって車輪ホイールから外輪に外力が付与されても、出力軸の変位を抑制して、減速部の歯車の偏摩耗等を防止できる。第1および第2出力軸軸受の構造は特に限定されないが、転がり軸受であることが好ましい。第1および第2出力軸軸受は、例えば玉軸受、円筒ころ軸受、転がり軸受、ラジアル軸受、アンギュラ軸受である。出力軸の外径を回転支持する第1出力軸軸受とは、例えば出力軸が外周面を有し、第1出力軸軸受が外周面よりも外径側に配置されて出力軸を回転自在に支持することをいう。出力軸の内径を回転支持する第2出力軸軸受とは、例えば出力軸の端部が中空円筒状に形成されて内周面を有し、第2出力軸軸受が内周面よりも内径側に配置されて出力軸を回転自在に支持することをいう。 Further, according to the present embodiment, the first output shaft bearing that rotatably supports the outer diameter of one end side of the output shaft, and the second output shaft bearing that rotatably supports the inner diameter of the other end side of the output shaft. Since both ends are rotationally supported, the output shaft is stably supported by both the inner diameter and the outer diameter. Therefore, even when an external force is applied from the wheel to the outer ring, the displacement of the output shaft can be suppressed, and uneven wear of the gear of the speed reduction unit can be prevented. The structure of the first and second output shaft bearings is not particularly limited, but is preferably a rolling bearing. The first and second output shaft bearings are, for example, ball bearings, cylindrical roller bearings, rolling bearings, radial bearings, and angular bearings. The first output shaft bearing that rotates and supports the outer diameter of the output shaft is, for example, an output shaft having an outer peripheral surface, and the first output shaft bearing is disposed on the outer diameter side of the outer peripheral surface so that the output shaft can rotate freely. It means to support. The second output shaft bearing that rotationally supports the inner diameter of the output shaft is, for example, an end portion of the output shaft that is formed in a hollow cylindrical shape and has an inner peripheral surface, and the second output shaft bearing is on the inner diameter side of the inner peripheral surface. It is arranged to support the output shaft rotatably.
 本発明の好ましい実施形態として出力軸の一方端部の外周には、軸線方向中央寄りが大径となるように第1環状段差が形成され、第1出力軸軸受は第1環状段差によって軸線方向位置を規定される。かかる実施形態によれば第1環状段差が、軸線方向一方へ指向して、軸線方向他方に変位しないよう第1出力軸軸受の変位を規制することができる。 As a preferred embodiment of the present invention, a first annular step is formed on the outer periphery of one end portion of the output shaft so that the diameter near the center in the axial direction is large, and the first output shaft bearing is axially formed by the first annular step. Defined position. According to this embodiment, the displacement of the first output shaft bearing can be regulated so that the first annular step is directed in one axial direction and is not displaced in the other axial direction.
 本発明の好ましい実施形態として出力軸の他方端部の内周には、軸線方向中央寄りが小径となるように第2環状段差が形成され、第2出力軸軸受は第2環状段差によって軸線方向位置を規定される。かかる実施形態によれば第2環状段差が、軸線方向他方へ指向して軸線方向一方に変位しないよう第2出力軸軸受の変位を規制することができる。 As a preferred embodiment of the present invention, a second annular step is formed on the inner periphery of the other end portion of the output shaft so that the diameter near the center in the axial direction is a small diameter, and the second output shaft bearing is axially formed by the second annular step. Defined position. According to this embodiment, the displacement of the second output shaft bearing can be restricted so that the second annular step is not displaced in the axial direction while being directed in the other axial direction.
 本発明のより好ましい実施形態として出力歯車ははすば歯車である。かかる実施形態によれば歯当たりを良くすることができる。また、軸線方向に変位しないよう固定される第1および第2出力軸軸受によって、はすば歯車に作用する軸方向力を受け止めることができる。 In a more preferred embodiment of the present invention, the output gear is a helical gear. According to this embodiment, the tooth contact can be improved. Further, the axial force acting on the helical gear can be received by the first and second output shaft bearings fixed so as not to be displaced in the axial direction.
 第1および第2出力軸軸受を支持する部材は特に限定されない。第1および第2出力軸軸受は例えばインホイールモータ駆動装置のケーシングに支持される。本発明の一実施形態として第2出力軸軸受は、出力軸の内周面と固定軸の外周面の間に設けられる。かかる実施形態によれば、インホイールモータ駆動装置のケーシングよりも強度の大きな固定軸で出力軸を支持することができる。他の実施形態として、ケーシングに円筒状部分を設け、該円筒状部分で第2出力軸軸受を支持してもよい。 The member that supports the first and second output shaft bearings is not particularly limited. The first and second output shaft bearings are supported by, for example, a casing of the in-wheel motor drive device. As an embodiment of the present invention, the second output shaft bearing is provided between the inner peripheral surface of the output shaft and the outer peripheral surface of the fixed shaft. According to this embodiment, the output shaft can be supported by the fixed shaft having a higher strength than the casing of the in-wheel motor drive device. As another embodiment, a cylindrical portion may be provided in the casing, and the second output shaft bearing may be supported by the cylindrical portion.
 本発明の好ましい実施形態として外輪は車輪ハブ軸受部の軸線方向一方に配置され、出力軸は車輪ハブ軸受部の軸線方向他方に配置され、出力軸の一方端部の内周面が外輪の軸線方向他方端部の外周面に被さるよう外輪と出力軸は互いに結合し、第1出力軸軸受は出力軸の一方端部の外周面を回転自在に支持し、第2出力軸軸受は出力軸の他方端部の内周面を回転自在に支持する。かかる実施形態によれば、車輪ハブ軸受部の外輪と減速部の出力軸との結合箇所に、第1出力軸軸受を配置することができる。したがって、第1出力軸軸受の軸線方向位置を外輪の軸線方向位置に重ねることができ、外輪および出力軸の軸線方向合計寸法を短縮することができる。他の実施形態として第1および第2出力軸軸受を、外輪ハブ軸受部の外輪から軸線方向に離れた箇所に配置してもよい。 As a preferred embodiment of the present invention, the outer ring is disposed on one axial direction of the wheel hub bearing portion, the output shaft is disposed on the other axial direction of the wheel hub bearing portion, and the inner peripheral surface of one end portion of the output shaft is the axial line of the outer ring. The outer ring and the output shaft are coupled to each other so as to cover the outer peripheral surface of the other end portion in the direction, the first output shaft bearing rotatably supports the outer peripheral surface of the one end portion of the output shaft, and the second output shaft bearing is the output shaft The inner peripheral surface of the other end is rotatably supported. According to this embodiment, a 1st output-shaft bearing can be arrange | positioned in the coupling | bond location of the outer ring | wheel of a wheel hub bearing part and the output shaft of a deceleration part. Accordingly, the axial position of the first output shaft bearing can be overlapped with the axial position of the outer ring, and the total axial dimension of the outer ring and the output shaft can be shortened. As another embodiment, the first and second output shaft bearings may be arranged at locations away from the outer ring of the outer ring hub bearing portion in the axial direction.
 本発明のさらに好ましい実施形態として出力歯車は、出力軸の軸線方向他方端部の外周に設けられ、出力歯車の軸線方向位置が第2出力軸軸受の軸線方向位置と重なる。かかる実施形態によれば、出力軸の軸線方向寸法を短縮することができる。他の実施形態として、第1出力軸軸受と第2出力軸軸受の間に出力歯車を配置してもよい。 As a further preferred embodiment of the present invention, the output gear is provided on the outer periphery of the other end portion in the axial direction of the output shaft, and the axial position of the output gear overlaps with the axial position of the second output shaft bearing. According to this embodiment, the axial dimension of the output shaft can be shortened. As another embodiment, an output gear may be disposed between the first output shaft bearing and the second output shaft bearing.
 本発明の一実施形態として第1出力軸軸受は、外径側の外側軌道面と、内径側の内側軌道面と、外側軌道面および内側軌道面を転走する複数の転動体とを含むラジアル軸受であり、外側軌道面の最大外径が出力歯車の外径よりも小さい。かかる実施形態によれば、第1出力軸軸受の径寸法が小さくなり、ひいては車輪ハブ軸受部の径寸法をさらに小さくすることができる。したがって車輪ホイールの内空領域において車輪ハブ軸受部の配置スペースを確保することができる。外側軌道面の最大外径とは外側軌道面のうち最も外径が大きい箇所をいう。外輪軌道面が例えば断面半円形状の溝の場合、溝底における外径が外側軌道面の最大外径になる。他の実施形態として外側軌道面の最大外径が出力歯車の外径よりも大きくてもよい。 As one embodiment of the present invention, a first output shaft bearing includes a radial surface including an outer raceway surface on the outer diameter side, an inner raceway surface on the inner diameter side, and a plurality of rolling elements that roll on the outer raceway surface and the inner raceway surface. This is a bearing, and the maximum outer diameter of the outer raceway surface is smaller than the outer diameter of the output gear. According to this embodiment, the diameter dimension of the first output shaft bearing is reduced, and as a result, the diameter dimension of the wheel hub bearing portion can be further reduced. Therefore, it is possible to secure an arrangement space for the wheel hub bearing portion in the inner space of the wheel. The maximum outer diameter of the outer raceway surface means a portion having the largest outer diameter on the outer raceway surface. When the outer ring raceway surface is a groove having a semicircular cross section, for example, the outer diameter at the groove bottom is the maximum outer diameter of the outer raceway surface. In another embodiment, the maximum outer diameter of the outer raceway surface may be larger than the outer diameter of the output gear.
 本発明の他の実施形態として固定輪は外輪であり、回転輪は外輪の中心孔に配置される内輪である。なお内輪は環状部材であってもよいし、あるいは中実の円柱軸であってもよい。 As another embodiment of the present invention, the fixed ring is an outer ring, and the rotating ring is an inner ring disposed in the center hole of the outer ring. The inner ring may be an annular member or a solid cylindrical shaft.
 本発明の好ましい実施形態として、第1出力軸軸受および第2出力軸軸受は、減速部のケーシングに支持される。具体的には例えばケーシングに内周面を形成し、かかるケーシング内周面に、出力軸の外周面を対面させ、第1出力軸軸受および/または第2出力軸軸受をケーシング内周面と出力軸外周面との間に設置する。あるいは第1出力軸軸受および/または第2出力軸軸受をケーシング外周面と出力軸内周面との間に設置してもよい。あるいは第1出力軸軸受および/または第2出力軸軸受を他の箇所に設置してもよい。 As a preferred embodiment of the present invention, the first output shaft bearing and the second output shaft bearing are supported by the casing of the speed reduction unit. Specifically, for example, an inner peripheral surface is formed in the casing, the outer peripheral surface of the output shaft is opposed to the inner peripheral surface of the casing, and the first output shaft bearing and / or the second output shaft bearing is output to the casing inner peripheral surface. Install between the outer peripheral surface of the shaft. Alternatively, the first output shaft bearing and / or the second output shaft bearing may be installed between the casing outer peripheral surface and the output shaft inner peripheral surface. Or you may install a 1st output-shaft bearing and / or a 2nd output-shaft bearing in another location.
 このように本発明によれば、減速部の最終歯車である出力歯車を安定して支持することができる。したがって車輪ホイールから外輪に外力が付与されても、出力軸の変位を抑制して、減速部の歯車の偏摩耗等を防止して、インホイールモータ駆動装置の耐久性が向上する。 Thus, according to the present invention, it is possible to stably support the output gear which is the final gear of the speed reduction unit. Therefore, even if an external force is applied from the wheel to the outer ring, the displacement of the output shaft is suppressed to prevent uneven wear or the like of the gear of the speed reduction unit, thereby improving the durability of the in-wheel motor drive device.
本発明の第1実施形態になるインホイールモータ駆動装置を所定の平面で切断・展開して示す展開断面図である。It is an expanded sectional view showing the in-wheel motor drive which becomes a 1st embodiment of the present invention cut and developed by a predetermined plane. 同実施形態のインホイールモータ駆動装置の内部を、車輪とともに示す背面図である。It is a rear view which shows the inside of the in-wheel motor drive device of the embodiment with a wheel. 同実施形態のインホイールモータ駆動装置をサスペンション装置とともに示す断面図であるIt is sectional drawing which shows the in-wheel motor drive device of the embodiment with a suspension apparatus. 本発明の第2実施形態を所定の平面で切断・展開して示す展開断面図である。It is an expanded sectional view which cuts and unfolds a 2nd embodiment of the present invention on a predetermined plane. 本発明の第3実施形態を所定の平面で切断・展開して示す展開断面図である。It is an expanded sectional view which cuts and expands a 3rd embodiment of the present invention at a predetermined plane. 本発明の第4実施形態を所定の平面で切断・展開して示す展開断面図である。It is an expanded sectional view showing a 4th embodiment of the present invention cut and developed by a predetermined plane.
 以下、本発明の実施の形態を、図面に基づき詳細に説明する。図1は、本発明の第1実施形態になるインホイールモータ駆動装置を所定の平面で切断・展開して示す展開断面図である。図2は、第1実施形態のインホイールモータ駆動装置の内部を、車輪とともに示す背面図であり、図1中のインホイールモータ駆動装置10からモータ部21および本体ケーシング43の背面部分43bを取り外し、図1の紙面右側からインホイールモータ駆動装置10内部をみた状態を表す。なお図1で表される所定の平面は、図2に示す軸線Mおよび軸線Nfを含む平面と、軸線Nfおよび軸線Nlを含む平面と、軸線Nlおよび軸線Oを含む平面とを、この順序で接続した展開平面である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a developed cross-sectional view showing the in-wheel motor drive device according to the first embodiment of the present invention cut and developed on a predetermined plane. FIG. 2 is a rear view showing the inside of the in-wheel motor drive device of the first embodiment together with the wheels, and the motor unit 21 and the rear portion 43b of the main body casing 43 are removed from the in-wheel motor drive device 10 in FIG. The state which looked at the inside of the in-wheel motor drive device 10 from the paper surface right side of FIG. 1 is represented. The predetermined plane shown in FIG. 1 includes a plane including the axis M and the axis Nf, a plane including the axis Nf and the axis Nl, and a plane including the axis Nl and the axis O shown in FIG. It is a connected development plane.
 インホイールモータ駆動装置10は、図1に示すように仮想線で表される車輪ホイールWの中心と連結する車輪ハブ軸受部11と、車輪の車輪ホイールWを駆動するモータ部21と、モータ部の回転を減速して車輪ハブ軸受部11に伝達する減速部31を備え、電動車両のホイールハウジング(図示せず)に配置される。モータ部21および減速部31は、車輪ハブ軸受部11の軸線Oと同軸に配置されるのではなく、図2に示すように車輪ハブ軸受部11の軸線Oからオフセットして配置される。車輪ホイールWは周知のものであり、車輪ホイールWの外周にタイヤTが嵌合し、車体の前後左右に配置される。かかる車体は車輪とともに電動車両を構成する。インホイールモータ駆動装置10は、公道で電動車両を時速0~180km/hで走行させることができる。 As shown in FIG. 1, the in-wheel motor drive device 10 includes a wheel hub bearing portion 11 connected to the center of the wheel wheel W represented by a virtual line, a motor portion 21 that drives the wheel wheel W of the wheel, and a motor portion. Is provided in a wheel housing (not shown) of the electric vehicle. The motor unit 21 and the speed reduction unit 31 are not arranged coaxially with the axis O of the wheel hub bearing unit 11 but are offset from the axis O of the wheel hub bearing unit 11 as shown in FIG. The wheel wheel W is well known, and a tire T is fitted on the outer periphery of the wheel wheel W, and is disposed on the front, rear, left and right sides of the vehicle body. Such a vehicle body constitutes an electric vehicle together with the wheels. The in-wheel motor drive device 10 can drive an electric vehicle at a speed of 0 to 180 km / h on a public road.
 車輪ハブ軸受部11は、車輪ホイールWと結合する車輪ハブとしての外輪12と、外輪12の中心孔に通される内側固定部材13と、外輪12と内側固定部材13との環状隙間に配置される複数の転動体14を有し、車軸を構成する。内側固定部材13は、非回転の固定軸15と、1対のインナーレース16と、抜け止めナット17を含む。固定軸15は根元部15rが先端部15eよりも大径に形成される。インナーレース16は、根元部15rと先端部15eの間で、固定軸15の外周に嵌合する。抜け止めナット17は固定軸15の先端部15eに螺合して、抜け止めナット17と根元部15rの間にインナーレース16を固定する。 The wheel hub bearing portion 11 is disposed in an annular gap between the outer ring 12 as a wheel hub coupled with the wheel wheel W, the inner fixing member 13 passed through the center hole of the outer ring 12, and the outer ring 12 and the inner fixing member 13. A plurality of rolling elements 14 are included to constitute an axle. The inner fixing member 13 includes a non-rotating fixing shaft 15, a pair of inner races 16, and a retaining nut 17. The fixed shaft 15 has a root portion 15r having a larger diameter than the tip portion 15e. The inner race 16 is fitted to the outer periphery of the fixed shaft 15 between the root portion 15r and the tip portion 15e. The retaining nut 17 is screwed into the tip portion 15e of the fixed shaft 15, and the inner race 16 is fixed between the retaining nut 17 and the root portion 15r.
 固定軸15は軸線Oに沿って延び、固定軸15の先端部15eは、車幅方向外側を指向する。固定軸15の根元部15rは、外輪12よりも車幅O方向内側へ突出し、本体ケーシング43の背面部分43bと向き合う。根元部15rは、ボルト13cによって本体ケーシング43の内部で背面部分43bに取付固定される。さらに根元部15rは、ボルト13bによって本体ケーシング43の外方でキャリア18と連結する。 The fixed shaft 15 extends along the axis O, and the tip portion 15e of the fixed shaft 15 is directed outward in the vehicle width direction. The root portion 15 r of the fixed shaft 15 protrudes inward in the vehicle width O direction from the outer ring 12 and faces the back surface portion 43 b of the main body casing 43. The root portion 15r is attached and fixed to the back surface portion 43b inside the main body casing 43 by a bolt 13c. Further, the root portion 15r is connected to the carrier 18 outside the main body casing 43 by a bolt 13b.
 転動体14は、軸線O方向に離隔して複列に配置される。軸線O方向一方のインナーレース16の外周面は、第1列の転動体14の内側軌道面を構成し、外輪12の軸線O方向一方の内周面と対面する。軸線O方向他方のインナーレース16の外周面は、第2列の転動体14の内側軌道面を構成し、外輪12の軸線O方向他方の内周面と対面する。以下の説明において、車幅方向外側(アウトボード側)を軸線方向一方ともいい、車幅方向内側(インボード側)を軸線方向他方ともいう。図1の紙面左右方向は、車幅方向に対応する。外輪12の内周面は転動体14の外側軌道面を構成する。 The rolling elements 14 are arranged in double rows with a separation in the direction of the axis O. The outer peripheral surface of one inner race 16 in the axis O direction constitutes the inner raceway surface of the rolling elements 14 in the first row, and faces one inner peripheral surface of the outer ring 12 in the axis O direction. The outer peripheral surface of the other inner race 16 in the direction of the axis O constitutes the inner raceway surface of the rolling elements 14 in the second row, and faces the other inner peripheral surface of the outer ring 12 in the direction of the axis O. In the following description, the vehicle width direction outer side (outboard side) is also referred to as one axial direction, and the vehicle width direction inner side (inboard side) is also referred to as the other axial direction. The left-right direction in FIG. 1 corresponds to the vehicle width direction. The inner peripheral surface of the outer ring 12 constitutes the outer raceway surface of the rolling element 14.
 外輪12の軸線O方向一方端にはフランジ部12fが形成される。フランジ部12fは図示しないブレーキロータおよび車輪ホイールWのスポーク部Wsと同軸に結合するための結合座部を構成する。外輪12はフランジ部12fで車輪ホイールWと結合して、車輪ホイールWと一体回転する。 A flange portion 12f is formed at one end of the outer ring 12 in the axis O direction. The flange portion 12f constitutes a coupling seat portion for coupling coaxially with a brake rotor and a spoke portion Ws of the wheel W which are not shown. The outer ring 12 is coupled to the wheel wheel W at the flange portion 12f and rotates integrally with the wheel wheel W.
 モータ部21は図1に示すように、モータ回転軸22、ロータ23、ステータ24、モータケーシング25、およびモータケーシングカバー25vを有し、この順序でモータ部21の軸線Mから外径側へ順次配置される。モータ部21は、インナーロータ、アウターステータ形式のラジアルギャップモータであるが、他の形式であってもよい。例えば図示しなかったがモータ部21はアキシャルギャップモータであってもよい。 As shown in FIG. 1, the motor unit 21 has a motor rotating shaft 22, a rotor 23, a stator 24, a motor casing 25, and a motor casing cover 25v, and sequentially from the axis M of the motor unit 21 to the outer diameter side in this order. Be placed. The motor unit 21 is a radial gap motor of an inner rotor and outer stator type, but may be of other types. For example, although not shown, the motor unit 21 may be an axial gap motor.
 モータ回転軸22およびロータ23の回転中心になる軸線Mは、車輪ハブ軸受部11の軸線Oと平行に延びる。つまりモータ部21は、車輪ハブ軸受部11の軸線Oから離れるようオフセットして配置される。モータ回転軸22の先端部を除いたモータ部21の大部分の軸線方向位置は、図1に示すように内側固定部材13の軸線方向位置と重ならない。モータケーシング25は略円筒形状であり、軸線M方向一方端で本体ケーシング43の背面部分43bと結合し、軸線M方向他方端で椀状のモータケーシングカバー25vに封止される。モータ回転軸22の両端部は、転がり軸受27,28を介して、モータケーシング25およびに回転自在に支持される。モータ部21は外輪12を駆動する。 The axis M that is the rotation center of the motor rotation shaft 22 and the rotor 23 extends in parallel with the axis O of the wheel hub bearing portion 11. That is, the motor unit 21 is disposed offset from the axis O of the wheel hub bearing unit 11. Most of the axial positions of the motor unit 21 excluding the tip of the motor rotating shaft 22 do not overlap with the axial positions of the inner fixing member 13 as shown in FIG. The motor casing 25 has a substantially cylindrical shape. The motor casing 25 is coupled to the back surface portion 43b of the main body casing 43 at one end in the axis M direction, and is sealed with a bowl-shaped motor casing cover 25v at the other end in the axis M direction. Both end portions of the motor rotating shaft 22 are rotatably supported by the motor casing 25 via rolling bearings 27 and 28. The motor unit 21 drives the outer ring 12.
 減速部31は、入力軸32、入力歯車33、中間歯車34、中間軸35、中間歯車36、中間歯車37、中間軸38、中間歯車39、出力歯車40、出力軸41、および本体ケーシング43を有する。入力軸32は、モータ回転軸22の先端部22eよりも大径の筒状体であって、モータ部21の軸線Mに沿って延びる。先端部22eは入力軸32の軸線M方向他方端部の中心孔に受け入れられて、入力軸32はモータ回転軸22と同軸に結合する。入力軸32の両端は転がり軸受42a,42bを介して、本体ケーシング43に支持される。入力歯車33は、モータ部21よりも小径の外歯歯車であり、入力軸32と同軸に結合する。具体的には入力歯車33は、入力軸32の軸線M方向中央部の外周に一体形成される。なお図2以降では、歯車の個々の歯を表さず、歯車を歯先円で表す。 The speed reduction unit 31 includes an input shaft 32, an input gear 33, an intermediate gear 34, an intermediate shaft 35, an intermediate gear 36, an intermediate gear 37, an intermediate shaft 38, an intermediate gear 39, an output gear 40, an output shaft 41, and a main body casing 43. Have. The input shaft 32 is a cylindrical body having a larger diameter than the distal end portion 22 e of the motor rotation shaft 22, and extends along the axis M of the motor portion 21. The distal end portion 22 e is received in the center hole at the other end portion in the axis M direction of the input shaft 32, and the input shaft 32 is coupled coaxially with the motor rotation shaft 22. Both ends of the input shaft 32 are supported by the main body casing 43 via rolling bearings 42a and 42b. The input gear 33 is an external gear having a smaller diameter than the motor unit 21 and is coupled to the input shaft 32 coaxially. Specifically, the input gear 33 is integrally formed on the outer periphery of the central portion of the input shaft 32 in the axis M direction. In FIG. 2 and subsequent figures, each tooth of the gear is not represented, and the gear is represented by a tip circle.
 出力軸41は、外輪12よりも大径の筒状体であって、車輪ハブ軸受部11の軸線Oに沿って延びる。外輪12の軸線O方向他方端は、出力軸41の軸線O方向一方端の中心孔に受け入れられて、出力軸41は外輪12と同軸に結合する。具体的には、出力軸41の内周面にスプライン溝41sが形成され、外輪12の軸線O方向他方端の外周面にスプライン溝12sが形成され、これらスプライン溝41s,12sがスプライン嵌合する。かかるスプライン嵌合は、出力軸41および外輪12間のトルク伝達を実現するとともに、両者の相対移動を許容する。 The output shaft 41 is a cylindrical body having a diameter larger than that of the outer ring 12 and extends along the axis O of the wheel hub bearing portion 11. The other end of the outer ring 12 in the direction of the axis O is received in the center hole of one end of the output shaft 41 in the direction of the axis O, and the output shaft 41 is coupled to the outer ring 12 coaxially. Specifically, a spline groove 41s is formed on the inner peripheral surface of the output shaft 41, a spline groove 12s is formed on the outer peripheral surface of the other end of the outer ring 12 in the axis O direction, and the spline grooves 41s and 12s are spline-fitted. . Such spline fitting realizes torque transmission between the output shaft 41 and the outer ring 12 and allows relative movement between the two.
 出力軸41の軸線O方向一方端は転がり軸受44を介して、本体ケーシング43に支持される。出力軸41の軸線O方向他方端は転がり軸受46を介して、固定軸15の根元部15rに支持される。出力歯車40は外歯歯車であり、出力軸41と同軸に結合する。具体的には出力歯車40は出力軸41の軸線O方向他方端の外周に一体形成される。 The one end of the output shaft 41 in the direction of the axis O is supported by the main body casing 43 via a rolling bearing 44. The other end of the output shaft 41 in the direction of the axis O is supported by a root portion 15r of the fixed shaft 15 via a rolling bearing 46. The output gear 40 is an external gear and is coupled to the output shaft 41 coaxially. Specifically, the output gear 40 is integrally formed on the outer periphery of the other end of the output shaft 41 in the axis O direction.
 2本の中間軸35,38は入力軸32および出力軸41と平行に延びる。つまり減速部31は四軸の平行軸歯車減速機であり、出力軸41の軸線Oと、中間軸35の軸線Nfと、中間軸38の軸線Nlと、入力軸32の軸線Mは互いに平行に延び、換言すると車幅方向に延びる。 The two intermediate shafts 35 and 38 extend in parallel with the input shaft 32 and the output shaft 41. That is, the speed reduction unit 31 is a four-axis parallel shaft gear reducer, and the axis O of the output shaft 41, the axis Nf of the intermediate shaft 35, the axis Nl of the intermediate shaft 38, and the axis M of the input shaft 32 are parallel to each other. In other words, it extends in the vehicle width direction.
 各軸の車両前後方向位置につき説明すると、図2に示すように入力軸32の軸線Mは出力軸41の軸線Oよりも車両前方に配置される。また中間軸35の軸線Nfは入力軸32の軸線Mよりも車両前方に配置される。中間軸38の軸線Nlは出力軸41の軸線Oよりも車両前方かつ入力軸32の軸線Mよりも車両後方に配置される。図示しない変形例として入力軸32と、中間軸35と、中間軸38と、出力軸41が、この順序で車両前後方向に配置されてもよい。この順序は駆動力の伝達順序でもある。 The vehicle longitudinal direction position of each axis will be described. As shown in FIG. 2, the axis M of the input shaft 32 is arranged in front of the vehicle with respect to the axis O of the output shaft 41. The axis Nf of the intermediate shaft 35 is disposed in front of the vehicle with respect to the axis M of the input shaft 32. The axis Nl of the intermediate shaft 38 is arranged in front of the vehicle with respect to the axis O of the output shaft 41 and behind the axis M of the input shaft 32. As a modification (not shown), the input shaft 32, the intermediate shaft 35, the intermediate shaft 38, and the output shaft 41 may be arranged in this order in the vehicle front-rear direction. This order is also the order in which the driving force is transmitted.
 各軸の上下方向位置につき説明すると、入力軸32の軸線Mは出力軸41の軸線Oよりも上方に配置される。中間軸35の軸線Nfは入力軸32の軸線Mよりも上方に配置される。中間軸38の軸線Nlは中間軸35の軸線Nfよりも上方に配置される。なお複数の中間軸35,38は、入力軸32および出力軸41よりも上方に配置されれば足り、図示しない変形例として中間軸35が中間軸38よりも上方に配置されてもよい。あるいは図示しない変形例として出力軸41が入力軸32よりも上方に配置されてもよい。 Describing the vertical position of each axis, the axis M of the input shaft 32 is arranged above the axis O of the output shaft 41. The axis Nf of the intermediate shaft 35 is disposed above the axis M of the input shaft 32. The axis Nl of the intermediate shaft 38 is disposed above the axis Nf of the intermediate shaft 35. The plurality of intermediate shafts 35 and 38 need only be disposed above the input shaft 32 and the output shaft 41, and the intermediate shaft 35 may be disposed above the intermediate shaft 38 as a modification (not shown). Alternatively, as a modification not shown, the output shaft 41 may be disposed above the input shaft 32.
 中間歯車34および中間歯車36は外歯歯車であり、図1に示すように中間軸35の軸線Nf方向中央部と同軸に結合する。中間軸35の両端部は、転がり軸受45a,45bを介して、本体ケーシング43に支持される。中間歯車37および中間歯車39は外歯歯車であり、中間軸38の軸線Nl方向中央部と同軸に結合する。中間軸38の両端部は、転がり軸受48a,48bを介して、本体ケーシング43に支持される。 The intermediate gear 34 and the intermediate gear 36 are external gears, and are coupled coaxially with the central portion of the intermediate shaft 35 in the axis Nf direction as shown in FIG. Both ends of the intermediate shaft 35 are supported by the main body casing 43 via rolling bearings 45a and 45b. The intermediate gear 37 and the intermediate gear 39 are external gears, and are coupled coaxially with the central portion of the intermediate shaft 38 in the direction of the axis Nl. Both ends of the intermediate shaft 38 are supported by the main body casing 43 via rolling bearings 48a and 48b.
 本体ケーシング43は、減速部31および車輪ハブ軸受部11の外郭をなし、筒状に形成されて、図2に示すように互いに平行に延びる軸線O、Nf、Nl、Mを取り囲む。また本体ケーシング43は、車輪ホイールWの内空領域に収容される。車輪ホイールWの内空領域は、リム部Wrの内周面と、リム部Wrの軸線O方向一端と結合するスポーク部Wsとによって区画される。そして車輪ハブ軸受部11、減速部31、およびモータ部21の軸線方向一方領域が車輪ホイールWの内空領域に収容される。またモータ部21の軸線方向他方領域が車輪ホイールWから軸線方向他方へはみ出す。このように車輪ホイールWはインホイールモータ駆動装置10の大部分を収容する。 The main body casing 43 forms an outer shell of the speed reduction part 31 and the wheel hub bearing part 11, is formed in a cylindrical shape, and surrounds axes O, Nf, Nl and M extending in parallel to each other as shown in FIG. The main body casing 43 is accommodated in the inner space of the wheel wheel W. The inner space of the wheel W is defined by the inner peripheral surface of the rim portion Wr and the spoke portion Ws that is coupled to one end of the rim portion Wr in the axis O direction. One area in the axial direction of the wheel hub bearing portion 11, the speed reduction portion 31, and the motor portion 21 is accommodated in the inner space region of the wheel wheel W. Further, the other axial region of the motor unit 21 protrudes from the wheel W to the other axial direction. Thus, the wheel wheel W accommodates most of the in-wheel motor drive device 10.
 図2を参照して本体ケーシング43は、出力歯車40の軸線Oから車両前後方向に離れた位置、具体的には入力歯車33の軸線Mの真下で、下方へ突出する。この突出部分はオイルタンク47を形成する。これに対し本体ケーシング43のうち軸線Oの真下部分43cと、リム部Wrの下部との間には、空間Sを確保する。空間Sには、車幅方向に延びるサスペンション部材71が配置され、サスペンション部材71の車幅方向外側端72と内側固定部材13が、ボールジョイント60を介して方向自在に連結される。 Referring to FIG. 2, the main body casing 43 protrudes downward at a position away from the axis O of the output gear 40 in the longitudinal direction of the vehicle, specifically, directly below the axis M of the input gear 33. This protruding portion forms an oil tank 47. On the other hand, a space S is secured between a portion 43c of the main body casing 43 directly below the axis O and a lower portion of the rim portion Wr. A suspension member 71 extending in the vehicle width direction is disposed in the space S, and the vehicle width direction outer end 72 of the suspension member 71 and the inner fixing member 13 are connected to each other via the ball joint 60 so as to be freely directional.
 本体ケーシング43は、筒状であり、図1に示すように入力軸32、入力歯車33、中間歯車34、中間軸35、中間歯車36、中間歯車37、中間軸38、中間歯車39、出力歯車40、および出力軸41を収容するとともに、車輪ハブ軸受部11の軸線O方向他方端を覆う。本体ケーシング43の内部には潤滑油が封入される。入力歯車33、中間歯車34、中間歯車36、中間歯車37、中間歯車39、出力歯車40ははすば歯車である。 The main body casing 43 has a cylindrical shape, and as shown in FIG. 1, the input shaft 32, the input gear 33, the intermediate gear 34, the intermediate shaft 35, the intermediate gear 36, the intermediate gear 37, the intermediate shaft 38, the intermediate gear 39, and the output gear. 40 and the output shaft 41 are accommodated, and the other end of the wheel hub bearing portion 11 in the axis O direction is covered. Lubricating oil is enclosed in the main body casing 43. The input gear 33, the intermediate gear 34, the intermediate gear 36, the intermediate gear 37, the intermediate gear 39, and the output gear 40 are helical gears.
 本体ケーシング43は、図1に示すように減速部31の筒状部分の軸線方向一方側を覆う略平坦な正面部分43fと、減速部31の筒状部分の軸線方向他方側を覆う略平坦な背面部分43bを含む。背面部分43bは、モータケーシング25と結合する。また背面部分43bは、キャリア18を介して、アームやストラット等の図示しないサスペンション部材と結合する。これによりインホイールモータ駆動装置10は、該サスペンション部材に支持される。 As shown in FIG. 1, the main body casing 43 has a substantially flat front portion 43 f that covers one side in the axial direction of the cylindrical portion of the speed reduction portion 31 and a substantially flat surface that covers the other side in the axial direction of the cylindrical portion of the speed reduction portion 31. It includes a back portion 43b. The back surface portion 43 b is coupled to the motor casing 25. Further, the back surface portion 43 b is coupled to a suspension member (not shown) such as an arm or a strut via the carrier 18. Thereby, the in-wheel motor drive device 10 is supported by the suspension member.
 正面部分43fには外輪12が貫通するための開口43pが形成される。開口43pには、外輪12との環状隙間を封止するシール材43sが設けられる。このため回転体になる外輪12は、軸線O方向一方端部を除いて本体ケーシング43に収容される。 An opening 43p through which the outer ring 12 passes is formed in the front portion 43f. The opening 43p is provided with a sealing material 43s for sealing an annular gap with the outer ring 12. For this reason, the outer ring 12 serving as a rotating body is accommodated in the main body casing 43 except for one end portion in the axis O direction.
 小径の入力歯車33と大径の中間歯車34は、減速部31の軸線方向一方側に配置されて互いに噛合する。小径の中間歯車36と大径の中間歯車37は、減速部31の軸線方向他方側に配置されて互いに噛合する。小径の中間歯車39と大径の出力歯車40は、減速部31の軸線方向一方側に配置されて互いに噛合する。このようして入力歯車33と複数の中間歯車34、36,37,39と出力歯車40は、互いに噛合し、入力歯車33から複数の中間歯車34、36,37,39を経て出力歯車40に至る駆動伝達経路を構成する。そして上述した小径歯車および大径歯車の噛合により、入力軸32の回転は中間軸35で減速され、中間軸35の回転は中間軸38で減速され、中間軸38の回転は出力軸41で減速される。これにより減速部31は減速比を十分に確保する。複数の中間歯車のうち中間歯車34は、駆動伝達経路の入力側に位置する第1中間歯車となる。複数の中間歯車のうち中間歯車39は、駆動伝達経路の出力側に位置する最終中間歯車となる。 The small-diameter input gear 33 and the large-diameter intermediate gear 34 are arranged on one side in the axial direction of the speed reduction unit 31 and mesh with each other. The small-diameter intermediate gear 36 and the large-diameter intermediate gear 37 are arranged on the other side in the axial direction of the speed reduction portion 31 and mesh with each other. The small-diameter intermediate gear 39 and the large-diameter output gear 40 are disposed on one side in the axial direction of the speed reduction unit 31 and mesh with each other. Thus, the input gear 33, the plurality of intermediate gears 34, 36, 37, 39 and the output gear 40 mesh with each other, and the input gear 33 passes through the plurality of intermediate gears 34, 36, 37, 39 to the output gear 40. To reach the drive transmission path. The rotation of the input shaft 32 is decelerated by the intermediate shaft 35, the rotation of the intermediate shaft 35 is decelerated by the intermediate shaft 38, and the rotation of the intermediate shaft 38 is decelerated by the output shaft 41. Is done. Thereby, the deceleration part 31 ensures a sufficient reduction ratio. Among the plurality of intermediate gears, the intermediate gear 34 is a first intermediate gear positioned on the input side of the drive transmission path. Among the plurality of intermediate gears, the intermediate gear 39 is a final intermediate gear located on the output side of the drive transmission path.
 図2に示すように、出力軸41、中間軸38、および入力軸32は、この順序で車両前後方向に間隔を空けて配置される。さらに中間軸35および中間軸38は、入力軸32および出力軸41よりも上方に配置される。かかる第1実施形態によれば、車輪ハブになる外輪12の上方に中間軸を配置し得て、外輪12の下方にオイルタンク47の配置スペースを確保したり、外輪12の真下に空間Sを確保したりすることができる。したがって上下方向に延びる転舵軸を空間Sに交差して設けることができ、車輪ホイールWおよびインホイールモータ駆動装置10を転舵軸回りに好適に転舵させることができる。 As shown in FIG. 2, the output shaft 41, the intermediate shaft 38, and the input shaft 32 are arranged at intervals in the vehicle front-rear direction in this order. Further, the intermediate shaft 35 and the intermediate shaft 38 are disposed above the input shaft 32 and the output shaft 41. According to the first embodiment, the intermediate shaft can be disposed above the outer ring 12 that serves as a wheel hub, and a space for the oil tank 47 can be secured below the outer ring 12, or the space S can be formed directly below the outer ring 12. Can be secured. Accordingly, the turning shaft extending in the vertical direction can be provided so as to intersect the space S, and the wheel wheel W and the in-wheel motor drive device 10 can be suitably turned around the turning shaft.
 また本実施形態によれば、図2に示すように、モータ部21の軸線Mが車輪ハブ軸受部の軸線Oから車両前後方向にオフセットして配置され、中間軸35の軸線Nfが車輪ハブ軸受部の軸線Oから上方にオフセットして配置され、中間軸38の軸線Nlが車輪ハブ軸受部の軸線Oから上方にオフセットして配置される。これにより、インホイールモータ駆動装置10における軸線Oの真下部分43cとリム部Wrの下部との間に空間Sを確保することができる。そして車輪の転舵軸を車輪ホイールWに交差するよう配置することができ、車輪の旋回特性が向上する。 Further, according to the present embodiment, as shown in FIG. 2, the axis M of the motor portion 21 is arranged offset from the axis O of the wheel hub bearing portion in the vehicle front-rear direction, and the axis Nf of the intermediate shaft 35 is the wheel hub bearing. The axis Nl of the intermediate shaft 38 is offset upward from the axis O of the wheel hub bearing part. Thereby, the space S can be ensured between the portion 43c directly below the axis O in the in-wheel motor drive device 10 and the lower portion of the rim portion Wr. And the steering axis of a wheel can be arranged so that it may intersect with wheel wheel W, and the turning characteristic of a wheel improves.
 また本実施形態によれば、図1に示すように入力軸32および出力軸41は車幅方向に延び、図2に示すように入力歯車33および出力歯車40は上下方向に起立した姿勢にされ、出力歯車40の下縁40bが入力歯車33の下縁33bよりも下方に配置される。これにより高速回転する入力歯車33が、本体ケーシング43の内部で減速部31の下部に貯留する潤滑油に浸漬することがなく、入力歯車33の攪拌抵抗を回避できる。 Further, according to the present embodiment, as shown in FIG. 1, the input shaft 32 and the output shaft 41 extend in the vehicle width direction, and as shown in FIG. 2, the input gear 33 and the output gear 40 are set to stand up and down. The lower edge 40b of the output gear 40 is disposed below the lower edge 33b of the input gear 33. As a result, the input gear 33 that rotates at a high speed is not immersed in the lubricating oil stored in the lower portion of the speed reduction unit 31 inside the main body casing 43, and the stirring resistance of the input gear 33 can be avoided.
 また本実施形態によれば、図2に示すように複数の中間軸35,38は、入力軸32の上方に隣り合うよう配置されて入力軸32から駆動トルクを供給される最初の中間軸35、および出力軸41の上方に隣り合うよう配置されて出力軸41に駆動トルクを供給する最終の中間軸38を含み、入力軸32と最初の中間軸35と最終の中間軸38と出力軸41は、複数の中間軸35,38の軸線方向にみて、入力軸の中心(軸線M)と最初の中間軸35の中心(軸線Nf)と最終の中間軸38の中心(軸線Nl)と出力軸41の中心(軸線O)とを順次結ぶ基準線が逆U字を描くよう、配置される。これにより駆動伝達経路を構成する複数の軸および歯車の全体配置が小型化されて、複数の軸および歯車を車輪ホイールWの内部に収納することができる。 Further, according to the present embodiment, as shown in FIG. 2, the plurality of intermediate shafts 35, 38 are arranged adjacent to each other above the input shaft 32 and are supplied with driving torque from the input shaft 32. , And a final intermediate shaft 38 that is disposed adjacent to the output shaft 41 and supplies driving torque to the output shaft 41, and includes the input shaft 32, the first intermediate shaft 35, the final intermediate shaft 38, and the output shaft 41. Are the center of the input shaft (axis line M), the center of the first intermediate shaft 35 (axis line Nf), the center of the final intermediate shaft 38 (axis line Nl) and the output shaft in the axial direction of the plurality of intermediate shafts 35, 38. The reference lines sequentially connecting the centers of 41 (axis O) are arranged so as to draw an inverted U-shape. As a result, the overall arrangement of the plurality of shafts and gears constituting the drive transmission path is reduced in size, and the plurality of shafts and gears can be accommodated in the wheel wheel W.
 また本実施形態によれば、図1に示すように、車輪ハブになる外輪12は筒状体であり、車輪ハブ軸受部11は外輪12の中心孔に配置されて外輪12を回転自在に支持する固定軸15をさらに含む。これにより出力歯車40を外輪12の外径側に同軸に結合し得る。そして、外輪12を中心としてオフセットするよう配置される中間軸38から、外輪12へ駆動力を伝達することができる。 Further, according to the present embodiment, as shown in FIG. 1, the outer ring 12 that becomes a wheel hub is a cylindrical body, and the wheel hub bearing portion 11 is disposed in the center hole of the outer ring 12 to rotatably support the outer ring 12. The fixed shaft 15 is further included. Thereby, the output gear 40 can be coaxially coupled to the outer diameter side of the outer ring 12. Then, the driving force can be transmitted to the outer ring 12 from the intermediate shaft 38 arranged to be offset with respect to the outer ring 12.
 本体ケーシング43は、図1に示すようにポンプ軸51、転がり軸受52a,52b、ポンプギヤ53、およびオイルポンプ54をさらに収容する。ポンプ軸51の軸線Pは、出力軸41の軸線Oと平行に延びる。またポンプ軸51は、出力軸41から車両前後方向に離れて配置され、軸線P方向両端で、転がり軸受52a,52bを介して回転自在に支持され、軸線P方向中央部でポンプギヤ53と同軸に結合する。ポンプギヤ53は出力歯車40と噛合する。 The main body casing 43 further accommodates a pump shaft 51, rolling bearings 52a and 52b, a pump gear 53, and an oil pump 54 as shown in FIG. The axis P of the pump shaft 51 extends in parallel with the axis O of the output shaft 41. The pump shaft 51 is disposed away from the output shaft 41 in the vehicle front-rear direction, is supported rotatably at both ends in the axis P direction via rolling bearings 52a and 52b, and is coaxial with the pump gear 53 at the center in the axis P direction. Join. The pump gear 53 meshes with the output gear 40.
 オイルポンプ54は、転がり軸受52bよりもさらに軸線P方向他方に配置され、ポンプ軸51の軸線P方向他方端に設けられる。オイルポンプ54が出力歯車40に駆動されることにより、オイルポンプ54はオイルタンク47から潤滑油を吸入し、吸入した潤滑油をモータ部21および減速部31へ吐出する。これによりモータ部21および減速部31は潤滑される。 The oil pump 54 is disposed further on the other side in the axis P direction than the rolling bearing 52 b and is provided on the other end in the axis P direction of the pump shaft 51. When the oil pump 54 is driven by the output gear 40, the oil pump 54 sucks lubricating oil from the oil tank 47 and discharges the sucked lubricating oil to the motor unit 21 and the speed reducing unit 31. Thereby, the motor part 21 and the deceleration part 31 are lubricated.
 図2を参照して本実施形態のポンプ軸51は入力軸32の下方に配置され、オイルタンク47はポンプ軸51の下方に配置される。オイルポンプ54(図1)は、ポンプ軸51と略同軸に配置され、オイルタンク47に貯留した潤滑油を、オイルタンク47の直上へ汲み上げる。またポンプ軸51およびオイルタンク47は、出力軸41の車両前方に配置される。車輪ホイールWがインホイールモータ駆動装置10に駆動されて車両が走行すると、オイルタンク47は車両前方から走行風を受けて、空気冷却される。 2, the pump shaft 51 of the present embodiment is disposed below the input shaft 32, and the oil tank 47 is disposed below the pump shaft 51. The oil pump 54 (FIG. 1) is disposed substantially coaxially with the pump shaft 51 and pumps the lubricating oil stored in the oil tank 47 directly above the oil tank 47. The pump shaft 51 and the oil tank 47 are disposed in front of the output shaft 41 in the vehicle. When the wheel is driven by the in-wheel motor drive device 10 and the vehicle travels, the oil tank 47 receives traveling wind from the front of the vehicle and is cooled by air.
 次に本体ケーシング43と内側固定部材13の連結構造につき説明する。 Next, the connection structure of the main body casing 43 and the inner fixing member 13 will be described.
 内側固定部材13は、軸線方向一方端が自由端となり、軸線方向他方端が固定端となるよう、片持ち支持される。具体的には図1に示すように、内側固定部材13の固定軸15のうち、軸線O方向他方端面15nが背面部分43bの軸線O方向一方壁面43bmと対面する。固定軸15の根元部15rには、外径方向に突出する突出部15pが設けられる。突出部15pは、背面部分43bの軸線O方向一方壁面43bmに固定される。なお軸線O方向一方壁面43bmとは、本体ケーシング43の壁部分になる背面部分43bのうち、車幅方向外側を指向する壁面をいい、本体ケーシング43の内側壁面になる。 The inner fixing member 13 is cantilevered so that one end in the axial direction becomes a free end and the other end in the axial direction becomes a fixed end. Specifically, as shown in FIG. 1, among the fixed shafts 15 of the inner fixing member 13, the other end surface 15n in the axis O direction faces one wall surface 43bm in the axis O direction of the back surface portion 43b. The base portion 15r of the fixed shaft 15 is provided with a protruding portion 15p that protrudes in the outer diameter direction. The protruding portion 15p is fixed to the one wall surface 43bm in the axis O direction of the back surface portion 43b. The one wall surface 43 bm in the axis O direction refers to a wall surface that faces the outside in the vehicle width direction among the back surface portion 43 b that becomes the wall portion of the main body casing 43, and is an inner wall surface of the main body casing 43.
 突出部15pは、ボルト13cによって、背面部分43bに固定される。背面部分43bの軸線O方向一方壁面43bmには軸線方向一方に指向する雌ねじ穴43tが形成される。ボルト13cは軸線Oと平行に延び、軸線O方向一方に頭部13cdを有し、軸線O方向他方に軸部13ctを有し、軸部13ctが突出部15pを貫通して雌ねじ穴43tに螺合する。 The protruding portion 15p is fixed to the back surface portion 43b by a bolt 13c. A female screw hole 43t directed in one axial direction is formed in one wall surface 43bm in the axial O direction of the back surface portion 43b. The bolt 13c extends parallel to the axis O, has a head portion 13cd on one side in the axis O direction, has a shaft portion 13ct on the other side in the axis O direction, and the shaft portion 13ct penetrates the protruding portion 15p and is screwed into the female screw hole 43t. Match.
 次に図3を参照して、インホイールモータ駆動装置10とサスペンション部材71との連結構造につき説明する。 Next, a connection structure between the in-wheel motor drive device 10 and the suspension member 71 will be described with reference to FIG.
 図3は、インホイールモータ駆動装置10とサスペンション装置70の連結構造を示す断面図であり、車両前後方向にみた状態を表す。外輪12のフランジ部12fには、車輪ホイールWのスポーク部WsおよびブレーキロータBDが取付固定される。本体ケーシング43の車両後方部分には図示しないキャリパが取付固定される。キャリパはブレーキロータBDを制動する。本発明の理解を容易にするため図3を除く図面では、車輪ホイールWの内空領域に配置されるブレーキロータBDを図略する。外輪12は、車輪ホイールWのホイールセンタ(軸線O上で車輪ホイールWの一端から他端までの中心)からみて、車幅方向外側に配置される。 FIG. 3 is a cross-sectional view showing a connection structure between the in-wheel motor drive device 10 and the suspension device 70, and shows a state seen in the vehicle front-rear direction. The spoke portion Ws of the wheel wheel W and the brake rotor BD are attached and fixed to the flange portion 12 f of the outer ring 12. A caliper (not shown) is attached and fixed to the vehicle rear portion of the main body casing 43. The caliper brakes the brake rotor BD. In order to facilitate understanding of the present invention, the brake rotor BD disposed in the inner space of the wheel W is omitted in the drawings excluding FIG. The outer ring 12 is disposed on the outer side in the vehicle width direction when viewed from the wheel center of the wheel wheel W (the center from one end to the other end of the wheel wheel W on the axis O).
 サスペンション装置70は、ストラット式サスペンション装置であり、2本のサスペンション部材71,76を備える。サスペンション部材76は、上下方向に延びるストラットであり、ショックアブソーバ76sを内蔵して上下方向に伸縮可能である。サスペンション部材76の上端領域77の外周には図示しないコイルスプリングが同軸に配置され、サスペンション部材76に作用する上下方向の軸力を緩和する。サスペンション部材76の上端は、図示しない車体側メンバを支持する。 The suspension device 70 is a strut suspension device and includes two suspension members 71 and 76. The suspension member 76 is a strut extending in the vertical direction, and includes a shock absorber 76s and can be expanded and contracted in the vertical direction. A coil spring (not shown) is coaxially disposed on the outer periphery of the upper end region 77 of the suspension member 76 to relieve the vertical axial force acting on the suspension member 76. The upper end of the suspension member 76 supports a vehicle body side member (not shown).
 サスペンション部材71は、サスペンション部材76よりも下方に配置されて、車幅方向に延びるロアアーム(サスペンションアーム)である。サスペンション部材71の端部は車幅方向外側端72および車幅方向内側端73を構成する。サスペンション部材71は、車幅方向外側端72で、ボールジョイント60を介してインホイールモータ駆動装置10に連結される。またサスペンション部材71は車幅方向内側端73で図示しない車体側メンバに連結される。車幅方向内側端73を基端とし、車幅方向外側端72を遊端として、サスペンション部材71は上下方向に揺動可能である。なお車体側メンバとは説明される部材からみて車体側に取り付けられる部材をいう。 The suspension member 71 is a lower arm (suspension arm) that is disposed below the suspension member 76 and extends in the vehicle width direction. The end portions of the suspension member 71 constitute a vehicle width direction outer end 72 and a vehicle width direction inner end 73. The suspension member 71 is connected to the in-wheel motor drive device 10 via the ball joint 60 at the outer end 72 in the vehicle width direction. The suspension member 71 is connected to a vehicle body side member (not shown) at an inner end 73 in the vehicle width direction. The suspension member 71 can swing in the vertical direction with the vehicle width direction inner end 73 as a base end and the vehicle width direction outer end 72 as a free end. The vehicle body side member refers to a member that is attached to the vehicle body side as viewed from a member to be described.
 ボールジョイント60は、ボールスタッド61およびソケット62を含む。ボールスタッド61は上下方向に延び、上端に形成されるボール部61bおよび下端に形成されるスタッド部61sを有する。ソケット62は内側固定部材13に設けられて、ボール部61bを摺動可能に収容する。スタッド部61sは、車幅方向外側端72を上下方向に貫通する。スタッド部61sの下端外周には雄ねじが形成され、下方からナット72nが螺合することにより、スタッド部61sはサスペンション部材71に取付固定される。 The ball joint 60 includes a ball stud 61 and a socket 62. The ball stud 61 extends in the vertical direction, and has a ball portion 61b formed at the upper end and a stud portion 61s formed at the lower end. The socket 62 is provided in the inner side fixing member 13, and accommodates the ball | bowl part 61b so that sliding is possible. The stud portion 61s penetrates the vehicle width direction outer end 72 in the vertical direction. A male screw is formed on the outer periphery of the lower end of the stud portion 61s, and the stud portion 61s is attached and fixed to the suspension member 71 by screwing a nut 72n from below.
 キャリア18は図1に示すように、ボルト13bで固定軸15および背面部分43bに結合される。固定軸15の根元部15rには突出部15pが形成される。突出部15pには雌ねじ穴15tが形成される。ボルト13bは、軸線O方向他方から一方へ向かって、キャリア18の貫通孔と、中間部材19の貫通孔に差し込まれ、ボルト13bの軸部が雌ねじ穴15tに螺合する。 As shown in FIG. 1, the carrier 18 is coupled to the fixed shaft 15 and the back surface portion 43b by bolts 13b. A protruding portion 15 p is formed at the base portion 15 r of the fixed shaft 15. A female screw hole 15t is formed in the protruding portion 15p. The bolt 13b is inserted into the through hole of the carrier 18 and the through hole of the intermediate member 19 from the other in the axis O direction to the other, and the shaft portion of the bolt 13b is screwed into the female screw hole 15t.
 突出部15pとキャリア18の間には中間部材19が介在する。中間部材19は背面部分43bに形成される開口43qに嵌合する。中間部材19の全周にはシール材49が設けられる。シール材49は開口43qと中間部材19の環状隙間を封止する。 An intermediate member 19 is interposed between the protruding portion 15p and the carrier 18. The intermediate member 19 is fitted into an opening 43q formed in the back surface portion 43b. A sealing material 49 is provided on the entire circumference of the intermediate member 19. The sealing material 49 seals the annular gap between the opening 43q and the intermediate member 19.
 本体ケーシング43の壁部分である背面部分43bを境界として、固定軸15は本体ケーシング43の内部に配置され、キャリア18は本体ケーシング43の外部に配置される。 The fixed shaft 15 is arranged inside the main body casing 43 and the carrier 18 is arranged outside the main body casing 43 with the back surface portion 43b which is the wall portion of the main body casing 43 as a boundary.
 キャリア18は、図3に示すように上方に延びる上側アーム部18aと、下方に延びる下側アーム部18bとを有する。上側アーム部18aは、車輪ハブ軸受部11を超えて上方へ突出し、先端部でボルト78によってサスペンション部材76(ストラット)の下端部76bに取付固定される。下側アーム部18bは、車輪ハブ軸受部11を超えて下方へ突出し、先端部にボールジョイント60のソケット62を有する。なお下側アーム部18bは、先端部で向きを変えて軸線Oと平行に延び、車輪ハブ軸受部11の直下に回り込んでいる。このためソケット62の軸線O方向位置は、固定軸15の軸線O方向位置と重なる。 The carrier 18 has an upper arm portion 18a extending upward and a lower arm portion 18b extending downward as shown in FIG. The upper arm portion 18a protrudes upward beyond the wheel hub bearing portion 11, and is attached and fixed to the lower end portion 76b of the suspension member 76 (strut) by a bolt 78 at the tip portion. The lower arm portion 18b protrudes downward beyond the wheel hub bearing portion 11, and has a socket 62 of the ball joint 60 at the tip portion. The lower arm portion 18b changes its direction at the tip portion and extends in parallel with the axis O, and wraps directly under the wheel hub bearing portion 11. For this reason, the position of the socket 62 in the direction of the axis O overlaps the position of the fixed shaft 15 in the direction of the axis O.
 ボール部61bはインホイールモータ駆動装置10とサスペンション装置70の連結点として、自由な方向に回動することを許容する。サスペンション部材76(ストラット)の上端とボール部61bを通り上下方向に延びる直線は車輪ホイールWおよびインホイールモータ駆動装置10の転舵軸Kを構成する。 The ball portion 61b is allowed to rotate in a free direction as a connection point between the in-wheel motor drive device 10 and the suspension device 70. The straight line extending in the vertical direction through the upper end of the suspension member 76 (strut) and the ball portion 61b constitutes the wheel wheel W and the steered shaft K of the in-wheel motor drive device 10.
 次に出力軸41を回転自在に支持する転がり軸受44,46につき詳しく説明する。 Next, the rolling bearings 44 and 46 that rotatably support the output shaft 41 will be described in detail.
 再び図1を参照して、転がり軸受44は、第1出力軸軸受として出力軸41の端部の外周面に配置され、出力軸41の一方端部を回転自在に支持する。また転がり軸受46は、第2出力軸軸受として転がり軸受44と軸線O方向反対側に位置する出力軸41の他方端部の内周面に配置され、出力軸41の他方端部を回転自在に支持する。かかる本実施形態によれば、車輪ハブ軸受部11とは別に、減速部31が転がり軸受44,46で出力軸41を回転自在に支持することから、出力軸41を安定して支持することができる。したがって車輪ホイールWから外輪12に外力が付与されても、出力軸41の変位を抑制して、減速部31の出力歯車40の偏摩耗等を防止できる。特に出力軸41は、出力軸41の内周面および出力軸41の外周面の双方で安定して支持される。 Referring to FIG. 1 again, the rolling bearing 44 is disposed on the outer peripheral surface of the end portion of the output shaft 41 as a first output shaft bearing, and rotatably supports one end portion of the output shaft 41. Further, the rolling bearing 46 is disposed on the inner peripheral surface of the other end portion of the output shaft 41 positioned on the opposite side to the rolling bearing 44 as the second output shaft bearing, and the other end portion of the output shaft 41 is rotatable. To support. According to this embodiment, since the speed reduction part 31 supports the output shaft 41 rotatably by the rolling bearings 44 and 46 separately from the wheel hub bearing part 11, the output shaft 41 can be stably supported. it can. Therefore, even when an external force is applied from the wheel W to the outer ring 12, the displacement of the output shaft 41 can be suppressed, and uneven wear or the like of the output gear 40 of the speed reduction unit 31 can be prevented. In particular, the output shaft 41 is stably supported by both the inner peripheral surface of the output shaft 41 and the outer peripheral surface of the output shaft 41.
 出力歯車40の側面に隣接して、出力軸41の軸線方向一方端部の外周には、軸線方向中央寄りが大径となるように第1環状段差41tが形成される。第1の転がり軸受44は、第1環状段差41tに当接して軸線O方向位置を規定される。かかる本実施形態によれば、軸線O方向に変位しないよう第1の転がり軸受44を固定することができる。 A first annular step 41t is formed on the outer periphery of one end of the output shaft 41 in the axial direction adjacent to the side surface of the output gear 40 so that the diameter near the center in the axial direction has a large diameter. The first rolling bearing 44 is in contact with the first annular step 41t, and the position in the axis O direction is defined. According to this embodiment, the first rolling bearing 44 can be fixed so as not to be displaced in the direction of the axis O.
 出力軸41の軸線O方向他方端部の内周には、軸線方向中央寄りが小径となるように第2環状段差41uが形成される。第2の転がり軸受46は、第2環状段差41uに当接して軸線O方向位置を規定される。かかる本実施形態によれば、軸線O方向に変位しないよう第2の転がり軸受46を固定することができる。 A second annular step 41u is formed on the inner periphery of the other end portion of the output shaft 41 in the axis O direction so that the diameter near the center in the axis direction becomes a small diameter. The second rolling bearing 46 is in contact with the second annular step 41u and has a position defined in the direction of the axis O. According to this embodiment, the second rolling bearing 46 can be fixed so as not to be displaced in the direction of the axis O.
 特に出力歯車40ははすば歯車であることから、中間歯車39との歯当たりが良くなる一方で出力軸41に軸方向力が作用する。本実施形態によれば、軸線O方向に変位しないよう固定される第1および第2の転がり軸受44,46によって、はすば歯車に作用する軸方向力を受け止めることができる。 Particularly, since the output gear 40 is a helical gear, the tooth contact with the intermediate gear 39 is improved, and an axial force acts on the output shaft 41. According to this embodiment, the axial force acting on the helical gear can be received by the first and second rolling bearings 44 and 46 that are fixed so as not to be displaced in the direction of the axis O.
 また本実施形態によれば、第2の転がり軸受46が出力軸41の内周面と固定軸15の外周面の間に設けられることから、本体ケーシング43よりも強度の大きな固定軸15で出力軸41を支持することができる。 Further, according to the present embodiment, the second rolling bearing 46 is provided between the inner peripheral surface of the output shaft 41 and the outer peripheral surface of the fixed shaft 15, so that the output is performed by the fixed shaft 15 having a higher strength than the main body casing 43. The shaft 41 can be supported.
 また本実施形態によれば、外輪12は軸線O方向一方に配置され、出力軸41は軸線O方向他方に配置される。そして出力軸41の軸線O方向一方端部の内周面が外輪12の軸線O方向他方端部の外周面に被さるよう、外輪12と出力軸41は互いに結合する。出力軸41の一方端側の外径を回転支持する第1の転がり軸受44(第1出力軸軸受)と、出力軸41の他方端側の内径を回転支持する第2の転がり軸受46(第2出力軸軸受)とにより出力軸41の両端が回転支持される。これにより、車輪ハブ軸受部11の外輪12と減速部31の出力軸41との結合箇所に、第1の転がり軸受44を配置することができる。したがって、第1の転がり軸受44の軸線O方向位置を外輪12の軸線O方向位置に重ねることができ、外輪12および出力軸41の軸線方向合計寸法を短縮することができる。 Further, according to the present embodiment, the outer ring 12 is disposed on one side in the axis O direction, and the output shaft 41 is disposed on the other side in the axis O direction. The outer ring 12 and the output shaft 41 are coupled to each other so that the inner peripheral surface at one end portion in the axis O direction of the output shaft 41 covers the outer peripheral surface at the other end portion in the axis O direction of the outer ring 12. A first rolling bearing 44 (first output shaft bearing) that rotationally supports the outer diameter of one end side of the output shaft 41, and a second rolling bearing 46 (first bearing) that rotatably supports the inner diameter of the other end side of the output shaft 41. The two output shaft bearings) are rotatably supported at both ends of the output shaft 41. Thereby, the 1st rolling bearing 44 can be arrange | positioned in the coupling | bond location of the outer ring | wheel 12 of the wheel hub bearing part 11, and the output shaft 41 of the deceleration part 31. FIG. Therefore, the position of the first rolling bearing 44 in the axis O direction can be overlapped with the position of the outer ring 12 in the axis O direction, and the total axial dimension of the outer ring 12 and the output shaft 41 can be shortened.
 また本実施形態によれば、出力歯車40が出力軸41の軸線O方向他方端部の外周に設けられ、出力歯車40の軸線O方向位置が転がり軸受46の軸線方向位置と重なることから、出力軸41の軸線O方向寸法を短縮することができる。 Further, according to the present embodiment, the output gear 40 is provided on the outer periphery of the other end portion of the output shaft 41 in the axis O direction, and the position of the output gear 40 in the axis O direction overlaps the position of the rolling bearing 46 in the axial direction. The dimension of the axis 41 in the axis O direction can be shortened.
 また本実施形態の転がり軸受44は、外径側の外側軌道面44fと、内径側の内側軌道面44gと、外側軌道面44fおよび内側軌道面44gを転走する複数の転動体44bと、隣り合う転動体44b同士の周方向間隔を規定する図示しない保持器とを含むラジアル軸受である。外側軌道面44fおよび内側軌道面44gは円周溝であり、外側軌道面44fおよび内側軌道面44gの断面は、半円形状である。そして外側軌道面44fの最大外径が、出力歯車40の歯先の外径よりも小さい。かかる本実施形態によれば、第1の転がり軸受44の径寸法が小さくなり、ひいては車輪ハブ軸受部11の径寸法をさらに小さくすることができる。したがって車輪ホイールWの内空領域において車輪ハブ軸受部11の配置スペースを確保することができる。 Further, the rolling bearing 44 of the present embodiment is adjacent to the outer raceway surface 44f on the outer diameter side, the inner raceway surface 44g on the inner diameter side, and the plurality of rolling elements 44b that roll on the outer raceway surface 44f and the inner raceway surface 44g. It is a radial bearing including a retainer (not shown) that defines the circumferential interval between the rolling elements 44b that fit. The outer raceway surface 44f and the inner raceway surface 44g are circumferential grooves, and the cross sections of the outer raceway surface 44f and the inner raceway surface 44g are semicircular. The maximum outer diameter of the outer raceway surface 44f is smaller than the outer diameter of the tooth tip of the output gear 40. According to this embodiment, the diameter dimension of the first rolling bearing 44 is reduced, and as a result, the diameter dimension of the wheel hub bearing portion 11 can be further reduced. Therefore, the arrangement space of the wheel hub bearing portion 11 can be secured in the inner space of the wheel wheel W.
 次に本発明の第2実施形態を説明する。図4は本発明の第2実施形態になるインホイールモータ駆動装置20を所定の平面で切断・展開して示す展開断面図である。第2実施形態につき、前述した実施形態と共通する構成については同一の符号を付して説明を省略し、異なる構成について以下に説明する。第2実施形態では、本体ケーシング43の背面部分43bに開口43qが形成され、本体ケーシング43の外部から開口43qに固定軸15が差し込まれる。背面部分43bを境界として、固定軸15の根元部15r、キャリア18、およびボルト13c,13bは本体ケーシング43の外部に配置され、根元部15rを除く固定軸15の残部は本体ケーシング43の内部に配置される。 Next, a second embodiment of the present invention will be described. FIG. 4 is a developed cross-sectional view showing the in-wheel motor drive device 20 according to the second embodiment of the present invention cut and developed on a predetermined plane. About 2nd Embodiment, about the structure which is common in embodiment mentioned above, the same code | symbol is attached | subjected and description is abbreviate | omitted, and a different structure is demonstrated below. In the second embodiment, an opening 43q is formed in the back surface portion 43b of the main body casing 43, and the fixed shaft 15 is inserted into the opening 43q from the outside of the main body casing 43. The base portion 15r of the fixed shaft 15, the carrier 18, and the bolts 13c and 13b are arranged outside the main body casing 43 with the back surface portion 43b as a boundary, and the remaining portion of the fixed shaft 15 excluding the base portion 15r is inside the main body casing 43. Be placed.
 背面部分43bの軸線O方向他方壁面43bnには軸線方向他方に指向する雌ねじ穴43uが形成される。ボルト13cは、前述した第1実施形態と逆向きにされ、軸線O方向他方から一方へ向かって突出部15pの貫通孔に差し込まれる。ボルト13cの頭部13cdは、本体ケーシング43の外側から突出部15pに接触する。ボルト13cの軸部13ctは雌ねじ穴43uに螺合する。シール材49は開口43qと固定軸15の環状隙間を封止する。 A female screw hole 43u oriented in the other axial direction is formed in the other wall surface 43bn in the axial O direction of the back surface portion 43b. The bolt 13c is reverse to the first embodiment described above, and is inserted into the through hole of the projecting portion 15p from the other in the axis O direction toward the other. The head portion 13cd of the bolt 13c contacts the protruding portion 15p from the outside of the main body casing 43. The shaft portion 13ct of the bolt 13c is screwed into the female screw hole 43u. The sealing material 49 seals the annular gap between the opening 43q and the fixed shaft 15.
 固定軸15の突出部15pには無底の雌ねじ15uが形成され、キャリア18を貫通するボルト13bが雌ねじ15uに螺合することにより、キャリア18は突出部15pに突き当てられて固定される。なお図示はしなかったが、雌ねじ15uは有底であってもよい。 A bottomless female screw 15u is formed on the protruding portion 15p of the fixed shaft 15, and a bolt 13b penetrating the carrier 18 is screwed into the female screw 15u, whereby the carrier 18 is abutted against and fixed to the protruding portion 15p. Although not shown, the female screw 15u may have a bottom.
 図4に示す第2実施形態も、前述した第1実施形態と同様に、第1の転がり軸受44と第2の転がり軸受46を有する。これにより、出力軸41を安定して支持することができる。 4 also includes a first rolling bearing 44 and a second rolling bearing 46, as in the first embodiment described above. Thereby, the output shaft 41 can be supported stably.
 ここで付言すると第2実施形態では、インホイールモータ駆動装置20の組み立てにおいて、固定軸15を軸線O方向他方から本体ケーシング43の開口43qに挿入し、固定軸15の先端部15eが背面部分43bよりも軸線O方向一方側に配置され、モータ部21および固定軸15の根元部15rがともに背面部分43bよりも軸線O方向他方側に配置される。また図2を参照して、固定軸15と仮想線で示されるモータ部21が接近する。このため、組み立ての都合上、固定軸15とモータ部21が干渉しないよう、固定軸15は細く設計される。 In addition, in the second embodiment, in the assembly of the in-wheel motor drive device 20, in the assembly of the in-wheel motor drive device 20, the fixed shaft 15 is inserted into the opening 43q of the main body casing 43 from the other side in the axis O direction, and the distal end portion 15e of the fixed shaft 15 is the rear portion 43b. The motor portion 21 and the root portion 15r of the fixed shaft 15 are both disposed on the other side in the axis O direction than the back surface portion 43b. Further, referring to FIG. 2, the fixed shaft 15 and the motor unit 21 indicated by a virtual line approach each other. For this reason, for the convenience of assembly, the fixed shaft 15 is designed to be thin so that the fixed shaft 15 and the motor unit 21 do not interfere with each other.
 これに対し図1に示す第1実施形態では、インホイールモータ駆動装置20の組み立てにおいて、固定軸15を軸線O方向一方から本体ケーシング43の内部に差し込んで背面部分43bに取付固定すればよく、根元部15rが背面部分43bよりも軸線O方向一方側に配置され、モータ部21が背面部分43bよりも軸線O方向他方側に配置される。このため第1実施形態の固定軸15を第2実施形態よりも太く設計しても、組み立ての不都合が生じない。 On the other hand, in the first embodiment shown in FIG. 1, in the assembly of the in-wheel motor drive device 20, the fixed shaft 15 may be inserted into the main body casing 43 from one side in the axis O direction and fixed to the back portion 43 b. The root portion 15r is disposed on one side in the axis O direction with respect to the back surface portion 43b, and the motor portion 21 is disposed on the other side in the axis O direction with respect to the back surface portion 43b. For this reason, even if the fixed shaft 15 of the first embodiment is designed to be thicker than that of the second embodiment, there is no inconvenience in assembly.
 次に本発明の第3実施形態を説明する。図5は本発明の第3実施形態になるインホイールモータ駆動装置30を所定の平面で切断・展開して示す展開断面図である。第3実施形態につき、前述した実施形態と共通する構成については同一の符号を付して説明を省略し、異なる構成について以下に説明する。第3実施形態では、本体ケーシング43の背面部分43bに円筒部43yを形成する。 Next, a third embodiment of the present invention will be described. FIG. 5 is a developed cross-sectional view showing the in-wheel motor drive device 30 according to the third embodiment of the present invention cut and developed on a predetermined plane. In the third embodiment, the same components as those in the above-described embodiment are denoted by the same reference numerals, description thereof is omitted, and different configurations are described below. In the third embodiment, the cylindrical portion 43 y is formed on the back surface portion 43 b of the main body casing 43.
 円筒部43yは、軸線Oに沿って延び、軸線O方向一方壁面43bmから突出し、中間歯車37を超えて軸線O方向一方へ向かい、出力軸41の中心孔に差し込まれる。円筒部43yの中心孔は開口43qになり、本体ケーシング43の外部から開口43qに固定軸15が差し込まれる。 The cylindrical portion 43y extends along the axis O, protrudes from the one wall surface 43bm in the axis O direction, passes through the intermediate gear 37, travels in one direction in the axis O, and is inserted into the center hole of the output shaft 41. The central hole of the cylindrical portion 43y becomes an opening 43q, and the fixed shaft 15 is inserted into the opening 43q from the outside of the main body casing 43.
 第2の転がり軸受46は、円筒部43yの先端部外周面と、出力軸41の軸線O方向他方端部の内周面との環状隙間に設けられる。これにより円筒部43yは、出力軸41の軸線O方向他方端部を回転自在に支持する。 The second rolling bearing 46 is provided in an annular gap between the outer peripheral surface of the tip end portion of the cylindrical portion 43y and the inner peripheral surface of the other end portion in the axis O direction of the output shaft 41. As a result, the cylindrical portion 43y rotatably supports the other end portion of the output shaft 41 in the axis O direction.
 図5に示す第3実施形態も、前述した第1実施形態と同様に、第1の転がり軸受44と第2の転がり軸受46を有する。これにより、出力軸41を安定して支持することができる。ただし、円筒部43yが肉厚になってしまうと出力軸41の径寸法が大きくなる。あるいは円筒部43yが肉薄になってしまうと円筒部43yの支持剛性が小さくなる。このため、前述した第1および第2実施形態が好ましい。 The third embodiment shown in FIG. 5 also has a first rolling bearing 44 and a second rolling bearing 46 as in the first embodiment described above. Thereby, the output shaft 41 can be supported stably. However, when the cylindrical portion 43y becomes thick, the diameter of the output shaft 41 increases. Or if the cylindrical part 43y becomes thin, the support rigidity of the cylindrical part 43y will become small. For this reason, the first and second embodiments described above are preferable.
 次に本発明の第4実施形態を説明する。図6は本発明の第4実施形態になるインホイールモータ駆動装置50を所定の平面で切断・展開して示す展開断面図である。第4実施形態につき、前述した実施形態と共通する構成については同一の符号を付して説明を省略し、異なる構成について以下に説明する。第4実施形態では、車輪ハブ軸受部11が内輪回転・外輪固定とされる。この点において前述した第1~第3実施形態に採用される外輪回転・内輪固定の車輪ハブ軸受部11と異なる。 Next, a fourth embodiment of the present invention will be described. FIG. 6 is a developed cross-sectional view showing the in-wheel motor drive device 50 according to the fourth embodiment of the present invention cut and developed on a predetermined plane. In the fourth embodiment, the same components as those in the above-described embodiment are denoted by the same reference numerals, description thereof is omitted, and different configurations are described below. In the fourth embodiment, the wheel hub bearing portion 11 is configured to rotate the inner ring and fix the outer ring. This is different from the wheel hub bearing 11 for rotating the outer ring and fixing the inner ring employed in the first to third embodiments described above.
 図6に示すように車輪ハブ軸受部11は、回転要素である内輪56と、固定要素である外輪57と、これら内外輪間の環状隙間に配置される複数の転動体58を有する。外輪57の外周面にはフランジが立設される。外輪フランジには周方向に間隔を空けて貫通孔が穿設される。各貫通孔は軸線Oと平行に延び、軸線O方向一方側からボルト57bが通される。各ボルト57bの軸部は、本体ケーシング43の正面部分43fに穿設される雌ねじ孔と螺合する。これにより外輪57は正面部分43fに連結固定される。なお正面部分43fは減速部31の軸線O方向一方端を覆うケーシング壁部である。また背面部分43bは減速部31の軸線O方向他方端を覆うケーシング壁部である。 6, the wheel hub bearing portion 11 includes an inner ring 56 that is a rotating element, an outer ring 57 that is a fixed element, and a plurality of rolling elements 58 that are arranged in an annular gap between the inner and outer rings. A flange is erected on the outer peripheral surface of the outer ring 57. A through hole is formed in the outer ring flange with a gap in the circumferential direction. Each through-hole extends in parallel with the axis O, and a bolt 57b is passed from one side of the axis O direction. The shaft portion of each bolt 57 b is screwed into a female screw hole formed in the front portion 43 f of the main body casing 43. As a result, the outer ring 57 is connected and fixed to the front portion 43f. The front portion 43f is a casing wall portion that covers one end of the speed reduction portion 31 in the axis O direction. The back surface portion 43b is a casing wall portion that covers the other end of the speed reduction portion 31 in the axis O direction.
 内輪56は、外輪57よりも長い筒状体であり、外輪57の中心孔に通される。外輪57からインホイールモータ駆動装置50の外部へ突出する内輪56の軸線O方向一方端部には、結合部56fが形成される。結合部56fはフランジであり、図示しないブレーキロータおよび車輪と同軸に結合するための結合部を構成する。内輪56は結合部56fで車輪を取り付けられて、車輪と一体回転する。 The inner ring 56 is a cylindrical body longer than the outer ring 57 and is passed through the center hole of the outer ring 57. A coupling portion 56f is formed at one end of the inner ring 56 protruding from the outer ring 57 to the outside of the in-wheel motor drive device 50 in the axis O direction. The coupling portion 56f is a flange, and constitutes a coupling portion for coupling coaxially with a brake rotor and wheels (not shown). The inner ring 56 is attached with a wheel at a coupling portion 56f and rotates integrally with the wheel.
 内輪56および外輪57間の環状隙間には、複数列の転動体58が配置される。転動体58は例えば玉である。内輪56の軸線O方向一方の外周面は、第1列の転動体58の外側軌道輪を構成する。内輪56の軸線O方向他方端部外周には内側軌道輪56rが嵌合し、内側軌道輪56rの外周面は、第2列の転動体58の内側軌道輪を構成する。内輪56および外輪57間の環状隙間には、シール材59がさらに介在する。シール材59は環状隙間の軸線O方向両端を封止して、塵埃および異物の侵入を阻止する。内輪56の軸線O方向他方端の中心孔には減速部31の出力軸55が差し込まれてスプライン嵌合する。 In the annular gap between the inner ring 56 and the outer ring 57, a plurality of rows of rolling elements 58 are arranged. The rolling elements 58 are balls, for example. One outer peripheral surface of the inner ring 56 in the direction of the axis O constitutes an outer race of the rolling elements 58 in the first row. An inner raceway 56r is fitted to the outer circumference of the other end portion of the inner ring 56 in the axis O direction, and the outer circumference surface of the inner raceway 56r constitutes the inner raceway of the rolling elements 58 in the second row. A seal material 59 is further interposed in the annular gap between the inner ring 56 and the outer ring 57. The sealing material 59 seals both ends of the annular gap in the direction of the axis O to prevent entry of dust and foreign matter. The output shaft 55 of the speed reducing portion 31 is inserted into the center hole at the other end in the axis O direction of the inner ring 56 and is spline-fitted.
 減速部31につき補足説明すると、入力軸32の軸線M方向一方端は転がり軸受42aを介して本体ケーシング43の正面部分43fに回動自在に支持され、入力軸32の軸線M方向他方端は転がり軸受42bを介して本体ケーシング43の背面部分43bに回動自在に支持される点で、前述した第1~第3実施形態と共通する。ただし入力歯車33は、入力軸32の軸線M方向他方側と結合し、転がり軸受42bと隣り合う点で、第1~第3実施形態と異なる。なお第1~第3実施形態の入力歯車33は、入力軸32の軸線M方向一方側と結合し、転がり軸受42aと隣り合う。 A supplementary explanation of the speed reduction portion 31 will be described. One end of the input shaft 32 in the axis M direction is rotatably supported by the front portion 43f of the main body casing 43 via the rolling bearing 42a, and the other end of the input shaft 32 in the axis M direction is rolled. This is the same as the first to third embodiments described above in that it is rotatably supported by the back surface portion 43b of the main body casing 43 via the bearing 42b. However, the input gear 33 is different from the first to third embodiments in that the input gear 33 is coupled to the other side of the input shaft 32 in the axis M direction and is adjacent to the rolling bearing 42b. The input gear 33 of the first to third embodiments is coupled to one side of the input shaft 32 in the axis M direction and is adjacent to the rolling bearing 42a.
 図6に示すように、中間歯車34は中間軸35の軸線Nf方向他方側と結合する。中間歯車36は中間軸35の軸線Nf方向一方側と結合する。この点で、前述した第1~第3実施形態と互い違いにされる。 As shown in FIG. 6, the intermediate gear 34 is coupled to the other side of the intermediate shaft 35 in the axis Nf direction. The intermediate gear 36 is coupled to one side of the intermediate shaft 35 in the axis Nf direction. In this respect, this embodiment is alternated with the first to third embodiments described above.
 中間歯車37は中間軸38の軸線Nl方向一方側と結合する。中間歯車39は中間軸38の軸線Nl方向他方側と結合する。この点で、前述した第1~第3実施形態と互い違いにされる。 The intermediate gear 37 is coupled to one side of the intermediate shaft 38 in the axis Nl direction. The intermediate gear 39 is coupled to the other side of the intermediate shaft 38 in the direction of the axis Nl. In this respect, this embodiment is alternated with the first to third embodiments described above.
 出力軸55は、出力歯車40と結合し、出力歯車40よりも軸線O方向一方で、転がり軸受55aを介して本体ケーシング43の正面部分43fに回転自在に支持される。転がり軸受55aは、正面部分43fに形成される円形開口の内周面と、出力軸55の外周面間に設置される。転がり軸受55aは例えば玉軸受であり、そのピッチ円は、転動体58のピッチ円よりも大きい。出力軸55は、転がり軸受55aを超えて軸線O方向一方へさらに延びる。かかる出力軸55の軸線O方向一方端部は内輪56と結合する。 The output shaft 55 is coupled to the output gear 40 and is rotatably supported on the front portion 43f of the main body casing 43 via the rolling bearing 55a while being in the axis O direction than the output gear 40. The rolling bearing 55 a is installed between the inner peripheral surface of the circular opening formed in the front portion 43 f and the outer peripheral surface of the output shaft 55. The rolling bearing 55 a is a ball bearing, for example, and the pitch circle thereof is larger than the pitch circle of the rolling elements 58. The output shaft 55 further extends in the direction of the axis O beyond the rolling bearing 55a. One end of the output shaft 55 in the direction of the axis O is coupled to the inner ring 56.
 また出力軸55は、出力歯車40よりも軸線O方向他方で、転がり軸受55bを介して本体ケーシング43の背面部分43bに回転自在に支持される。転がり軸受55bは、背面部分43bに形成される内周面と、出力軸55の外周面間に設置される。転がり軸受55bは例えば玉軸受であり、そのピッチ円は、転動体58のピッチ円よりも大きい。 The output shaft 55 is rotatably supported on the back surface portion 43b of the main body casing 43 via the rolling bearing 55b on the other side in the axis O direction than the output gear 40. The rolling bearing 55 b is installed between the inner peripheral surface formed on the back surface portion 43 b and the outer peripheral surface of the output shaft 55. The rolling bearing 55 b is a ball bearing, for example, and the pitch circle thereof is larger than the pitch circle of the rolling elements 58.
 出力軸55は、転がり軸受55bを超えて軸線O方向他方へさらに延びる。かかる出力軸55の軸線O方向他方端部は、背面部分43bを貫通して延び、オイルポンプ54と結合する。オイルポンプ54は、背面部分43bの外側壁面に取り付けられ、背面部分43bの外側壁面から突出する。オイルポンプ54の外径は、転がり軸受55a,55bのピッチ円よりも小さい。 The output shaft 55 further extends to the other side in the axis O direction beyond the rolling bearing 55b. The other end of the output shaft 55 in the direction of the axis O extends through the back surface portion 43 b and is coupled to the oil pump 54. The oil pump 54 is attached to the outer wall surface of the back surface portion 43b and protrudes from the outer wall surface of the back surface portion 43b. The outer diameter of the oil pump 54 is smaller than the pitch circle of the rolling bearings 55a and 55b.
 第4実施形態のインホイールモータ駆動装置50によれば、モータ部21のモータ回転軸22と結合する入力軸32、入力軸32と結合する入力歯車33、回転輪である内輪56と結合する出力軸55、出力軸55と結合する出力歯車40を含み、入力歯車33の回転を減速して出力歯車40に伝達する駆動伝達経路を構成する。そして出力軸55の軸線O方向一方端側を回転支持する第1出力軸軸受(転がり軸受55a)と、出力軸55の軸線O方向他方端側を回転支持する第2出力軸軸受(転がり軸受55b)とにより、出力軸55の両端が両持ちで回転支持される。これにより出力軸55を安定して両持ち支持することができる。したがって車輪ホイールから内輪56に外力が付与されても、出力軸55の変位を抑制して、減速部31の出力歯車40の偏摩耗等を防止できる。 According to the in-wheel motor drive device 50 of the fourth embodiment, the input shaft 32 coupled to the motor rotating shaft 22 of the motor unit 21, the input gear 33 coupled to the input shaft 32, and the output coupled to the inner ring 56 that is a rotating wheel. A shaft 55 and an output gear 40 coupled to the output shaft 55 are included, and a drive transmission path for decelerating the rotation of the input gear 33 and transmitting it to the output gear 40 is configured. A first output shaft bearing (rolling bearing 55a) that rotatably supports one end of the output shaft 55 in the axis O direction and a second output shaft bearing (rolling bearing 55b) that rotatably supports the other end of the output shaft 55 in the axis O direction. ), The both ends of the output shaft 55 are rotatably supported. As a result, the output shaft 55 can be stably supported at both ends. Therefore, even if an external force is applied from the wheel to the inner ring 56, the displacement of the output shaft 55 can be suppressed, and uneven wear of the output gear 40 of the speed reduction unit 31 can be prevented.
 また第1および第2出力軸軸受としての転がり軸受55a,55bは、減速部31の本体ケーシング43に支持される。これにより出力軸55は、減速部31内で安定して保持される。 Further, the rolling bearings 55 a and 55 b as the first and second output shaft bearings are supported by the main body casing 43 of the speed reduction unit 31. As a result, the output shaft 55 is stably held in the speed reduction unit 31.
 以上、図面を参照してこの発明の実施の形態を説明したが、この発明は、図示した実施の形態のものに限定されない。図示した実施の形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。上述した転がり軸受44,46は玉軸受であるが、図示しない変形例として円筒ころ軸受や、アンギュラ軸受であってもよい。 The embodiment of the present invention has been described above with reference to the drawings, but the present invention is not limited to the illustrated embodiment. Various modifications and variations can be made to the illustrated embodiment within the same range or equivalent range as the present invention. Although the rolling bearings 44 and 46 described above are ball bearings, a cylindrical roller bearing or an angular bearing may be used as a modification (not shown).
 この発明になるインホイールモータ駆動装置は、電気自動車およびハイブリッド車両において有利に利用される。 The in-wheel motor drive device according to the present invention is advantageously used in electric vehicles and hybrid vehicles.
 10 インホイールモータ駆動装置、11 車輪ハブ軸受部、12 外輪、12f フランジ部、13 内側固定部材、13b,13c ボルト、14 転動体、15 固定軸、15e 先端部、15n 軸線方向他方端面、15p 突出部、15r 根元部、16 インナーレース、17 抜け止めナット、18 キャリア、19 中間部材、21 モータ部、22 モータ回転軸、25 モータケーシング、25v モータケーシングカバー、31 減速部、32 入力軸、33 入力歯車、34,36,37,39 中間歯車、35,38 中間軸、40 出力歯車、41 出力軸、41t 第1環状段差、41u 第2環状段差、43 本体ケーシング、43b 背面部分、43p,43q 開口、43y 円筒部、44 転がり軸受(第1出力軸軸受)、44f 外側軌道面、44b 転動体、44g 内側軌道面、46 転がり軸受(第2出力軸軸受)、47 オイルタンク、49 シール材、51 ポンプ軸、53 ポンプギヤ、54 オイルポンプ、55 出力軸、56 内輪、57 外輪、58 転動体、60 ボールジョイント、61 ボールスタッド、61b ボール部、61s スタッド部、62 ソケット、70 サスペンション装置、71 サスペンション部材、72 車幅方向外側端、72n ナット、73 車幅方向内側端、76 サスペンション部材、76b 下端部、76s ショックアブソーバ、77 上端領域、K 転舵軸、M,Nf,Nl,O,P 軸線、S 空間、T タイヤ、W 車輪ホイール、Wr リム部、Ws スポーク部。 10 in-wheel motor drive device, 11 wheel hub bearing, 12 outer ring, 12f flange, 13 inner fixing member, 13b, 13c bolt, 14 rolling element, 15 fixed shaft, 15e tip, 15n other end surface in axial direction, 15p protruding Part, 15r root part, 16 inner race, 17 retaining nut, 18 carrier, 19 intermediate member, 21 motor part, 22 motor rotating shaft, 25 motor casing, 25v motor casing cover, 31 deceleration part, 32 input shaft, 33 input Gear, 34, 36, 37, 39 intermediate gear, 35, 38 intermediate shaft, 40 output gear, 41 output shaft, 41t first annular step, 41u second annular step, 43 main body casing, 43b back portion, 43p, 43q opening , 43y cylindrical part, 44 rolling Bearing (first output shaft bearing), 44f outer raceway surface, 44b rolling element, 44g inner raceway surface, 46 rolling bearing (second output shaft bearing), 47 oil tank, 49 seal material, 51 pump shaft, 53 pump gear, 54 Oil pump, 55 output shaft, 56 inner ring, 57 outer ring, 58 rolling element, 60 ball joint, 61 ball stud, 61b ball part, 61s stud part, 62 socket, 70 suspension device, 71 suspension member, 72 outer end in the vehicle width direction 72n nut, 73 vehicle width direction inner side end, 76 suspension member, 76b lower end, 76s shock absorber, 77 upper end region, K steered axle, M, Nf, Nl, O, P axis, S space, T tire, W Wheel wheel, Wr rim, Ws spoke .

Claims (12)

  1.  車輪を駆動するモータ部と、車輪が取り付けられる車輪ハブ軸受部と、前記モータ部の回転を減速して前記車輪ハブ軸受部に伝達する減速部とを備え、
     前記車輪ハブ軸受部は、車輪と一体回転する回転輪、前記回転輪と同軸に配置される固定輪、および前記回転輪と前記固定輪との環状隙間に配置される複数の転動体を有し、
     前記減速部は、前記モータ部のモータ回転軸と結合する入力軸、前記入力軸と結合する入力歯車、前記回転輪と結合する出力軸、前記出力軸と結合する出力歯車を含み、前記入力歯車の回転を減速して前記出力歯車に伝達する駆動伝達経路を構成し、
     前記出力軸の一方端側を回転支持する第1出力軸軸受と、前記出力軸の他方端側を回転支持する第2出力軸軸受とにより、前記出力軸の両端が回転支持される、インホイールモータ駆動装置。
    A motor unit that drives the wheel, a wheel hub bearing unit to which the wheel is attached, and a speed reduction unit that decelerates the rotation of the motor unit and transmits it to the wheel hub bearing unit,
    The wheel hub bearing portion includes a rotating wheel that rotates integrally with a wheel, a fixed wheel that is disposed coaxially with the rotating wheel, and a plurality of rolling elements that are disposed in an annular gap between the rotating wheel and the fixed wheel. ,
    The speed reduction unit includes an input shaft coupled to a motor rotation shaft of the motor unit, an input gear coupled to the input shaft, an output shaft coupled to the rotating wheel, and an output gear coupled to the output shaft. A drive transmission path that decelerates the rotation of the motor and transmits it to the output gear,
    An in-wheel in which both ends of the output shaft are rotationally supported by a first output shaft bearing that rotationally supports one end side of the output shaft and a second output shaft bearing that rotationally supports the other end side of the output shaft. Motor drive device.
  2.  前記回転輪は外輪であり、前記固定輪は前記外輪の中心孔に通される固定軸に含まれる、請求項1に記載のインホイールモータ駆動装置。 The in-wheel motor drive device according to claim 1, wherein the rotating wheel is an outer ring, and the fixed wheel is included in a fixed shaft that is passed through a center hole of the outer ring.
  3.  前記第1出力軸軸受は前記出力軸の一方端側の外径を回転支持し、
     前記第2出力軸軸受は前記出力軸の他方端側の内径を回転支持する、請求項1に記載のインホイールモータ駆動装置。
    The first output shaft bearing rotatably supports the outer diameter of one end side of the output shaft;
    The in-wheel motor drive device according to claim 1, wherein the second output shaft bearing rotatably supports an inner diameter on the other end side of the output shaft.
  4.  前記出力軸の一方端部の外周には、軸線方向中央寄りが大径となるように第1環状段差が形成され、
     前記第1出力軸軸受は、前記第1環状段差によって軸線方向位置を規定される、請求項3に記載のインホイールモータ駆動装置。
    A first annular step is formed on the outer periphery of the one end portion of the output shaft so that the axial center side has a large diameter,
    The in-wheel motor drive device according to claim 3, wherein the first output shaft bearing has an axial position defined by the first annular step.
  5.  前記出力軸の他方端部の内周には、軸線方向中央寄りが小径となるように第2環状段差が形成され、
     前記第2出力軸軸受は、前記第2環状段差によって軸線方向位置を規定される、請求項3または4に記載のインホイールモータ駆動装置。
    A second annular step is formed on the inner periphery of the other end portion of the output shaft so that the center in the axial direction has a small diameter,
    5. The in-wheel motor drive device according to claim 3, wherein the second output shaft bearing has an axial position defined by the second annular step. 6.
  6.  前記出力歯車ははすば歯車である、請求項4または5に記載のインホイールモータ駆動装置。 The in-wheel motor drive device according to claim 4 or 5, wherein the output gear is a helical gear.
  7.  前記第2出力軸軸受は、前記出力軸の内周面と前記固定軸の外周面の間に設けられる、請求項3に記載のインホイールモータ駆動装置。 The in-wheel motor drive device according to claim 3, wherein the second output shaft bearing is provided between an inner peripheral surface of the output shaft and an outer peripheral surface of the fixed shaft.
  8.  前記外輪は前記車輪ハブ軸受部の軸線方向一方に配置され、前記出力軸は前記車輪ハブ軸受部の軸線方向他方に配置され、前記出力軸の一方端部の内周面が前記外輪の軸線方向他方端部の外周面に被さるよう前記外輪と前記出力軸は互いに結合し、
     前記第1出力軸軸受は、前記出力軸の一方端部の外周面を回転自在に支持し、
     前記第2出力軸軸受は、前記出力軸の他方端部の内周面を回転自在に支持する、請求項7に記載のインホイールモータ駆動装置。
    The outer ring is disposed on one side in the axial direction of the wheel hub bearing portion, the output shaft is disposed on the other side in the axial direction of the wheel hub bearing portion, and an inner peripheral surface of one end portion of the output shaft is in the axial direction of the outer ring. The outer ring and the output shaft are coupled to each other so as to cover the outer peripheral surface of the other end,
    The first output shaft bearing rotatably supports an outer peripheral surface of one end portion of the output shaft,
    The in-wheel motor drive device according to claim 7, wherein the second output shaft bearing rotatably supports an inner peripheral surface of the other end portion of the output shaft.
  9.  前記出力歯車は、前記出力軸の他方端部の外周に設けられ、
     前記出力歯車の軸線方向位置が前記第2出力軸軸受の軸線方向位置と重なる、請求項8に記載のインホイールモータ駆動装置。
    The output gear is provided on the outer periphery of the other end of the output shaft,
    The in-wheel motor drive device according to claim 8, wherein an axial position of the output gear overlaps with an axial position of the second output shaft bearing.
  10.  前記第1出力軸軸受は、外径側の外側軌道面と、内径側の内側軌道面と、前記外側軌道面および前記内側軌道面を転走する複数の転動体とを含むラジアル軸受であり、
     前記外側軌道面の最大外径が前記出力歯車の外径よりも小さい、請求項8または9に記載のインホイールモータ駆動装置。
    The first output shaft bearing is a radial bearing including an outer raceway surface on the outer diameter side, an inner raceway surface on the inner diameter side, and a plurality of rolling elements rolling on the outer raceway surface and the inner raceway surface,
    The in-wheel motor drive device according to claim 8 or 9, wherein a maximum outer diameter of the outer raceway surface is smaller than an outer diameter of the output gear.
  11.  前記固定輪は外輪であり、前記回転輪は前記外輪の中心孔に配置される内輪である、請求項1に記載のインホイールモータ駆動装置。 2. The in-wheel motor drive device according to claim 1, wherein the fixed wheel is an outer ring, and the rotating wheel is an inner ring disposed in a center hole of the outer ring.
  12.  第1出力軸軸受および第2出力軸軸受は、前記減速部のケーシングに支持される、請求項11に記載のインホイールモータ駆動装置。 The in-wheel motor drive device according to claim 11, wherein the first output shaft bearing and the second output shaft bearing are supported by a casing of the speed reduction unit.
PCT/JP2016/084813 2016-03-14 2016-11-24 In-wheel motor drive device WO2017158933A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680043498.7A CN107848400A (en) 2016-03-14 2016-11-24 In-wheel motor drive unit
EP20185062.5A EP3744549A1 (en) 2016-03-14 2016-11-24 In-wheel motor drive device
US16/078,174 US10792995B2 (en) 2016-03-14 2016-11-24 In-wheel motor drive device
EP16894550.9A EP3431316A4 (en) 2016-03-14 2016-11-24 In-wheel motor drive device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-049719 2016-03-14
JP2016049719 2016-03-14
JP2016200230A JP6792995B2 (en) 2016-03-14 2016-10-11 In-wheel motor drive
JP2016-200230 2016-10-11

Publications (1)

Publication Number Publication Date
WO2017158933A1 true WO2017158933A1 (en) 2017-09-21

Family

ID=59851792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084813 WO2017158933A1 (en) 2016-03-14 2016-11-24 In-wheel motor drive device

Country Status (1)

Country Link
WO (1) WO2017158933A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111801237A (en) * 2018-02-23 2020-10-20 Ntn株式会社 In-wheel motor driving device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090921A (en) * 2007-10-11 2009-04-30 Honda Motor Co Ltd In-wheel motor
JP2013514222A (en) * 2009-12-16 2013-04-25 コンパニー ゼネラール デ エタブリッスマン ミシュラン Electric hub with coupling and decoupling means
JP2014073730A (en) * 2012-10-03 2014-04-24 Ntn Corp In-wheel motor driving device
JP5677142B2 (en) 2011-03-08 2015-02-25 本田技研工業株式会社 In-wheel type wheel drive device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090921A (en) * 2007-10-11 2009-04-30 Honda Motor Co Ltd In-wheel motor
JP2013514222A (en) * 2009-12-16 2013-04-25 コンパニー ゼネラール デ エタブリッスマン ミシュラン Electric hub with coupling and decoupling means
JP5677142B2 (en) 2011-03-08 2015-02-25 本田技研工業株式会社 In-wheel type wheel drive device
JP2014073730A (en) * 2012-10-03 2014-04-24 Ntn Corp In-wheel motor driving device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3431316A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111801237A (en) * 2018-02-23 2020-10-20 Ntn株式会社 In-wheel motor driving device
CN111801237B (en) * 2018-02-23 2023-01-13 Ntn株式会社 In-wheel motor driving device

Similar Documents

Publication Publication Date Title
JP6792995B2 (en) In-wheel motor drive
JP6706517B2 (en) Connection structure of in-wheel motor drive device and suspension device
CN107848397B (en) In-wheel motor driving device
US10792994B2 (en) In-wheel motor drive device and connection structure between in-wheel motor drive device and wheel
JP2017065666A (en) In-wheel motor drive device, and coupling structure of in-wheel motor drive device and suspension device
WO2018061967A1 (en) In-wheel motor drive device
WO2017145653A1 (en) In-wheel motor drive device
JP2018052424A (en) In-wheel motor driving device
JP6826378B2 (en) In-wheel motor drive
EP3428479B1 (en) In-wheel motor driving device
JP4967789B2 (en) Wheel drive device
WO2017149816A1 (en) In-wheel motor drive device
JP2018043574A (en) In-wheel motor drive device
WO2017158933A1 (en) In-wheel motor drive device
JP5130780B2 (en) Wheel drive device
WO2021192813A1 (en) In-wheel motor drive device
JP6757630B2 (en) In-wheel motor drive
WO2017163480A1 (en) In-wheel motor drive device
WO2017057067A1 (en) In-wheel motor drive device, and coupling structure for in-wheel motor drive device and suspension device
WO2021176951A1 (en) In-wheel motor driving device
JP2021154763A (en) In-wheel motor drive device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016894550

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016894550

Country of ref document: EP

Effective date: 20181015

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894550

Country of ref document: EP

Kind code of ref document: A1