WO2017158871A1 - Semiconductor laser device - Google Patents

Semiconductor laser device Download PDF

Info

Publication number
WO2017158871A1
WO2017158871A1 PCT/JP2016/075677 JP2016075677W WO2017158871A1 WO 2017158871 A1 WO2017158871 A1 WO 2017158871A1 JP 2016075677 W JP2016075677 W JP 2016075677W WO 2017158871 A1 WO2017158871 A1 WO 2017158871A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide film
semiconductor laser
laser device
metal oxide
active layer
Prior art date
Application number
PCT/JP2016/075677
Other languages
French (fr)
Japanese (ja)
Inventor
理究 碇山
裕之 福水
真司 斎藤
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2017158871A1 publication Critical patent/WO2017158871A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers

Definitions

  • Embodiments described herein relate generally to a semiconductor laser device.
  • an intersubband optical transition can be generated to obtain an infrared laser beam.
  • the thickness of the active layer increases and the side area of the active layer increases. If the ratio of the current that flows along the side surface of the active layer without passing through the active layer increases, the effective current that contributes to light emission decreases. For this reason, the luminous efficiency is lowered, the temperature in the vicinity of the side surface is raised, and the element may be deteriorated.
  • the semiconductor laser device has an active layer capable of emitting laser light by intersubband optical transition, and can emit the laser light, and includes a stacked body made of a compound semiconductor, and a side surface of the stacked body And a metal oxide film covering the active layer exposed to at least one of the above.
  • the energy barrier against carriers becomes higher from the active layer toward the metal oxide film.
  • FIG. 1A is a schematic perspective view of the semiconductor laser device of the first embodiment
  • FIG. 1B is a schematic cross-sectional view taken along the line AA
  • FIG. 1C is a stack, a metal oxide film, and the like.
  • It is a band figure of the interface vicinity of. 2A is a band diagram in which a natural oxide film is formed on the semiconductor surface
  • FIG. 2B is a band diagram of the semiconductor surface provided with the interface state reducing film
  • FIG. 2C is a semiconductor according to a comparative example.
  • It is a model perspective view of a laser apparatus.
  • FIG. 3A is a schematic top view of the semiconductor laser device of the first embodiment
  • FIG. 3B is a schematic top view of the first modification.
  • FIG. 5A is a partial schematic plan view of a semiconductor laser device according to the third embodiment
  • FIG. 5B is a partial schematic cross-sectional view along the line BB
  • FIG. 6A is a partial schematic plan view of a semiconductor laser device according to a modification of the third embodiment
  • FIG. 6B is a partial schematic cross-sectional view along the line BB.
  • FIG. 1A is a schematic perspective view of the semiconductor laser device of the first embodiment
  • FIG. 1B is a schematic cross-sectional view taken along the line AA
  • FIG. 1C is a stack, a metal oxide film, and the like. It is a band figure of the thermal equilibrium state of the interface vicinity of.
  • the semiconductor laser device 10 includes a stacked body 20 and a metal oxide film 40.
  • the laminate 20 has an active layer 22 capable of emitting laser light 80 by optical transition between subbands. Further, the stacked body 20 can emit the laser light 80 along the extending direction of the ridge waveguide 70. The extending direction of the ridge waveguide 70 is parallel to the optical axis 81 of the laser light 80.
  • the metal oxide film 40 covers the active layer 22 exposed on at least one of the four side surfaces of the stacked body 20 parallel to the extending direction of the ridge waveguide 70.
  • the four side surfaces include two surfaces 20a of the stacked body 20 parallel to the extending direction and an end surface 20b of the stacked body 20 perpendicular to the extending direction.
  • the metal oxide film 40 is provided on two surfaces 20a and two end surfaces 20b.
  • the semiconductor laser device 10 can further include a substrate 30 made of InP or the like and a first electrode 50.
  • the first electrode 50 is provided on the stacked body 20.
  • the substrate 30 is conductive, for example, the second electrode 60 can be provided on the back surface of the substrate 30.
  • the stacked body 20 can be provided on a substrate 30 made of a single crystal semiconductor, for example.
  • the stacked body 20 includes an active layer 22, a first layer 25, and a second layer 23 from the substrate 30 side.
  • the first layer 25 includes, for example, a first light guide layer 25a, a first cladding layer 25b, and a first contact layer 25c from the active layer 22 side.
  • the second layer 23 includes, for example, a second light guide layer 23a, a second cladding layer 23b, and a buffer layer 23c from the active layer 22 side.
  • the stacked body 20 can include, for example, an n-type layer.
  • an intersubband transition region capable of emitting the laser beam 80 and an injection / relaxation region capable of relaxing the energy of carriers (for example, electrons) injected from the intersubband transition region are alternately arranged. It has a stacked cascade structure. The number of stacked layers can be 20 to 100, for example. If the injection / relaxation region, the first cladding layer 25b, the second cladding layer 23b, and the like are n-type layers, electrons cause an intersubband optical transition and laser light is emitted.
  • the semiconductor laser device of this embodiment operates as a quantum cascade laser (QCL: Quantum Cascade Laser).
  • QCL Quantum Cascade Laser
  • Increasing the number of stages increases the output because the number of carrier transitions increases.
  • the wavelength of the laser beam 80 can be determined without depending on the band gap energy of the semiconductor. For example, by setting the MQW structure appropriately, it is possible to obtain laser light having a wavelength between infrared and terahertz waves.
  • the laser beam 80 emitted from the active layer 22 is confined in the vertical direction by the first and second cladding layers 25b and 23b.
  • the laser beam 80 is guided and emitted in the direction of the optical axis 81 by the metal oxide film 40 provided on the two surfaces 20 a of the stacked body 20.
  • the first electrode 50 is connected to the contact layer 25 c of the first layer 25 through the opening 40 a provided on the metal oxide film 40.
  • the relative dielectric constant of the metal oxide film 40 is selected to be higher than the relative dielectric constant of silicon nitride (Si 3 N 4 ).
  • the metal oxide film 40 is, for example, an oxide film containing any one metal selected from the group consisting of hafnium (Hf), aluminum (Al), zirconium (Zr), titanium (Ti), and tantalum (Ta), or an oxide thereof.
  • the film is a laminated film.
  • the metal oxide film is not limited to these. That is, the relative dielectric constant of the metal oxide film 40 is selected to be 8 or more, which is the lower limit value of the relative dielectric constant of aluminum oxide.
  • the dielectric constant of the metal oxide film 40 is exemplified in (Table 1).
  • the relative dielectric constant is represented by a measured value at 1 MHz.
  • the numerical values in (Table 1) are an example.
  • the relative dielectric constant of the metal oxide film 40 of hafnium, aluminum, zirconium, titanium, tantalum or the like is as high as 8 or more.
  • the energy level of the conduction band of a compound semiconductor such as InGaAs, InAlAs, GaAs, or AlGaAs is raised toward the metal oxide film 40 by the fixed charge in the metal oxide film 40 (FIG. 1C). That is, the energy barrier against carriers (electrons in this figure) becomes higher as it goes from the active layer 22 to the metal oxide film 40.
  • the active layer 22 may have a structure in which MQW made of InGaAs (well layer) / InAlAs (barrier layer) or MQW made of GaAs (well layer) / AlGaAs (barrier layer) is cascade-connected.
  • the conduction band lift acts as a barrier for electrons. For this reason, electrons do not flow through the interface between the metal oxide film 40 and the active layer 22, pass through the inside of the active layer 22 in a direction substantially perpendicular to the active layer 22, and can contribute to the intersubband optical transition.
  • a thin natural oxide film may be locally formed between the stacked body 20 and the metal oxide film 40.
  • FIG. 2A is a band diagram in a thermal equilibrium state where a natural oxide film is formed on the semiconductor surface
  • FIG. 2B is a band diagram in a thermal equilibrium state of the semiconductor surface provided with the interface state reducing film
  • FIG. FIG. 3 is a schematic perspective view of a semiconductor laser device according to a comparative example.
  • the end surface and side surface of the laminate 120 have high-density interface states due to cleavage or scribing. Even if the thin natural oxide film 122 exists on the surface of the active layer, for example, carriers such as electrons are likely to flow along the side surface of the stacked body 120, and the current J1 is generated.
  • the energy level of the conduction band is flat even if the interface state reducing film 124 such as silicon oxide or silicon nitride is provided on the end face or the side face. For this reason, current easily flows along the interface between the stacked body 120 and the interface state reducing film 124.
  • the surface current J1 becomes a reactive current that does not contribute to the intersubband optical transition, and lowers the light emission efficiency.
  • QCL unlike a pn junction semiconductor laser, there is little COD (catastrophic optical damage) degradation due to non-radiative recombination of holes and electrons at the end face of the active layer.
  • the active layer width is 5 to 20 ⁇ m, and the thickness of the active layer 22 is several ⁇ m. Therefore, the area of the active layer exposed on the side surface is wide.
  • the pn junction laser diode has, for example, an active layer width of several ⁇ m and an active layer thickness of 0.1 ⁇ m. That is, even with the same planar size, the area exposed on the side surface of the active layer of the QCL is as wide as 50 to 200 times that of the pn junction laser diode.
  • the side surface (including the end surface) of the stacked body 120 is covered with an interface state reducing film 124 such as a covalent bond insulating film. Therefore, a current J1 that does not contribute to light emission flows from the well layer exposed on the wide side surface (including the end surface) along the interface. Since this current J1 does not flow through an internal multi-quantum well structure (MQW), it becomes a reactive current without contributing to the intersubband optical transition. Further, when an excessive current flows in a narrow region near the interface, a temperature rise occurs. In the vicinity of the interface where many crystal defects and interface states exist due to the temperature rise, dislocations are proliferated and the device is likely to deteriorate. Furthermore, if there is an interface state near the center of the band gap, the lifetime of electrons is short and the light emission transition is reduced. For this reason, luminous efficiency may further decrease.
  • an interface state reducing film 124 such as a covalent bond insulating film. Therefore, a current J1 that does not contribute to light emission flows from the well layer
  • the current flowing through the interface between the stacked body 20 including the active layer 22 and the metal oxide film 40 is reduced by the rise of the conduction band. For this reason, as shown in FIG. 1A, the current Is flowing through the side surface (including the end surface) is sufficiently reduced with respect to the current Io flowing through the intersubband transition region, and the output of the semiconductor laser device 10 is increased. In addition, high reliability can be achieved.
  • FIG. 3A is a schematic top view of the semiconductor laser device of the first embodiment
  • FIG. 3B is a schematic top view of the first modification.
  • the metal oxide film 40 covers two (side) surfaces and two end surfaces 20 b among the four side surfaces of the stacked body 20.
  • the surface current can be reduced over the entire side surface of the laminated body 20.
  • the metal oxide film 40 covers the two surfaces 20 a of the stacked body 20 parallel to the ridge waveguide 70. Note that the two surfaces of the active layer 22 parallel to the ridge waveguide 70 may be covered.
  • the process of forming the metal oxide film 40 on the side surface of the mesa-shaped ridge waveguide 70 can be performed in a wafer state. After the cleavage process, a low reflection film or a high reflection film can be formed on the end face 20b. However, in the structure of FIG. 3A, a process of further forming the metal oxide film 40 on the end face 20b exposed by the cleavage. Becomes more necessary and the number of processes increases.
  • FIG. 4 is a band diagram of a thermal equilibrium state in the vicinity of the interface of the semiconductor laser device according to the second embodiment.
  • a covalent bond insulating film 42 is provided on the surface of the stacked body 20 including a compound semiconductor, and a metal oxide film 40 is further provided on the surface of the covalent bond insulating film 42.
  • the covalent bond insulating film 42 is, for example, silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), silicon carbide (SiC), boron nitride (BN), aluminum nitride (AlN), or the like.
  • the thicknesses of the metal oxide film 40 and the covalent bond insulating film 42 can be set to 2 nm or more, for example.
  • the metal oxide film 40 is made of the same material as that in the first embodiment.
  • the metal oxide film 40 functions as an ion bond insulator. Table 2 is an example of the relative dielectric constant of the covalent bond insulator.
  • the direction of the polarity of the dipole generated at the interface varies depending on the oxygen surface density of the metal oxide 40.
  • Al 2 in oxygen surface dense Al 2 O 3 / SiO 2 / semiconductor or HfO 2 / SiO 2 / semiconductor structure at the interface between the covalent insulating film 42 and the metal oxide film 40, a high dielectric constant Negative fixed charges are generated on the O 3 and HfO 2 sides.
  • positive fixed charges are generated on the Y 2 O 3 or La 2 O 3 side.
  • Y 2 O 3 has a relative dielectric constant of about 11.
  • the metal oxide film 40 of the second embodiment acts as a negative fixed charge film, and the energy level of the conduction band of the stacked body 20 is a covalent bond. It lifts toward the interface with the insulating film 42. For this reason, it can suppress that the unnecessary electric current which does not contribute to the optical transition between subbands flows into the orthogonal
  • FIG. 5A is a partial schematic plan view of a semiconductor laser device according to the third embodiment
  • FIG. 5B is a partial schematic cross-sectional view along the line BB.
  • the semiconductor laser device 11 includes a stacked body 20, a first electrode 80, and a metal oxide film 46.
  • the stacked body 20 includes a first active layer 22 capable of emitting laser light by intersubband optical transition, and a plurality of pits 29 provided on the active layer 22 so as to form a two-dimensional lattice.
  • the first layer 25 having the surface 25 c, the active layer 22, and the substrate 30 are included.
  • the pit 29 is a region in which a triangular prism region is cut out from the first surface 25 c in the depth direction of the first layer 25.
  • the first electrode 80 is provided on the flat surface 25 a of the first surface 25 c of the first layer 25, and has a frame portion 81 and a stripe portion 82. A region surrounded by the frame portion 81 and the stripe portion 82 becomes a periodic opening, and the pit portion 25b constituting the first surface 25c is exposed.
  • the metal oxide film 46 covers at least the active layer 22 exposed on the side surface of the stacked body 20.
  • Each pit 29 is asymmetric with respect to a line parallel to the grid. Laser light is emitted in a direction perpendicular to the active layer 22 from the pits 29 exposed at the openings. That is, the semiconductor laser device 11 of the third embodiment is a surface emitting type.
  • metal oxide films 46 are provided on the four side surfaces of the stacked body 20.
  • the energy level of the conduction band of the exposed active layer 22 is raised toward the interface with the metal oxide film 46. For this reason, it is suppressed that an unnecessary electric current flows along an interface, and luminous efficiency and reliability are improved.
  • FIG. 6A is a partial schematic plan view of a semiconductor laser device according to a modification of the third embodiment
  • FIG. 6B is a partial schematic cross-sectional view along the line BB.
  • the inner walls of the plurality of pits 29 can be further covered with the metal oxide film 47. In this way, the current flowing along the inner wall of the pit 29 can be suppressed. For this reason, it is possible to suppress unnecessary current from flowing in the two-dimensional lattice and to make the current uniform over the entire surface of the two-dimensional lattice.
  • a semiconductor laser device with improved luminous efficiency and reliability and easy output can be provided.
  • These semiconductor laser devices can be widely applied to laser processing, environmental measurement, exhalation measurement, and the like.

Abstract

A semiconductor laser device of the embodiments has a laminate, which has an active layer capable of emitting a laser light due to intersubband optical transitions, is capable of emitting said laser light, and comprises a compound semiconductor, and a metal oxide film, which covers the active layer which is exposed on at least one side surface of the laminate. The energy barrier for a carrier increases the further from the active layer toward the metal oxide film.

Description

半導体レーザ装置Semiconductor laser device
 本発明の実施形態は、半導体レーザ装置に関する。 Embodiments described herein relate generally to a semiconductor laser device.
 量子井戸構造がカスケード接続されたユニポーラ型レーザの活性層において、サブバンド間光学遷移を生じさせ、赤外線レーザ光を得ることができる。 In the active layer of a unipolar laser in which quantum well structures are cascade-connected, an intersubband optical transition can be generated to obtain an infrared laser beam.
 カスケード接続数が多くなると活性層の厚さが増加し、活性層の側面積が増加する。もし、活性層内部を通過せずに活性層の側面に沿って流れる電流の割合が増加すると、発光に寄与する有効電流が低下する。このため、発光効率が低下し、かつ側面近傍の温度が上昇し素子が劣化することがある。 As the number of cascade connections increases, the thickness of the active layer increases and the side area of the active layer increases. If the ratio of the current that flows along the side surface of the active layer without passing through the active layer increases, the effective current that contributes to light emission decreases. For this reason, the luminous efficiency is lowered, the temperature in the vicinity of the side surface is raised, and the element may be deteriorated.
特開2014-3314号公報JP 2014-3314 A
 発光効率および信頼性が高められ、高出力化が容易な半導体レーザ装置を提供する。 Provide a semiconductor laser device with improved luminous efficiency and reliability and easy output.
 実施形態の半導体レーザ装置は、サブバンド間光学遷移によりレーザ光を放出可能な活性層を有し、前記レーザ光を放出可能であり、化合物半導体からなる積層体と、前記積層体の側面のうちの少なくとも1つに露出した前記活性層を覆う金属酸化膜と、を有する。前記活性層から前記金属酸化膜へ向かうに従って、キャリアに対するエネルギー障壁は高くなる。 The semiconductor laser device according to the embodiment has an active layer capable of emitting laser light by intersubband optical transition, and can emit the laser light, and includes a stacked body made of a compound semiconductor, and a side surface of the stacked body And a metal oxide film covering the active layer exposed to at least one of the above. The energy barrier against carriers becomes higher from the active layer toward the metal oxide film.
図1(a)は第1の実施形態の半導体レーザ装置の模式斜視図、図1(b)はA-A線に沿った模式断面図、図1(c)は積層体と金属酸化膜との界面近傍のバンド図、である。FIG. 1A is a schematic perspective view of the semiconductor laser device of the first embodiment, FIG. 1B is a schematic cross-sectional view taken along the line AA, and FIG. 1C is a stack, a metal oxide film, and the like. It is a band figure of the interface vicinity of. 図2(a)は半導体表面に自然酸化膜が生じたバンド図、図2(b)は界面準位低減膜が設けられた半導体表面のバンド図、図2(c)は比較例にかかる半導体レーザ装置の模式斜視図、である。2A is a band diagram in which a natural oxide film is formed on the semiconductor surface, FIG. 2B is a band diagram of the semiconductor surface provided with the interface state reducing film, and FIG. 2C is a semiconductor according to a comparative example. It is a model perspective view of a laser apparatus. 図3(a)は第1の実施形態の半導体レーザ装置の模式上面図、図3(b)は第1変形例の模式上面図、である。FIG. 3A is a schematic top view of the semiconductor laser device of the first embodiment, and FIG. 3B is a schematic top view of the first modification. 第2の実施形態にかかる半導体レーザ装置の界面近傍のバンド図である。It is a band figure of the interface vicinity of the semiconductor laser apparatus concerning 2nd Embodiment. 図5(a)は第3の実施形態にかかる半導体レーザ装置の部分模式平面図、図5(b)はB-B線に沿った部分模式断面図、である。FIG. 5A is a partial schematic plan view of a semiconductor laser device according to the third embodiment, and FIG. 5B is a partial schematic cross-sectional view along the line BB. 図6(a)は第3の実施形態の変形例にかかる半導体レーザ装置の部分模式平面図、図6(b)はB-B線に沿った部分模式断面図、である。FIG. 6A is a partial schematic plan view of a semiconductor laser device according to a modification of the third embodiment, and FIG. 6B is a partial schematic cross-sectional view along the line BB.
 以下、図面を参照しつつ、本発明の実施形態について説明する。
 図1(a)は第1の実施形態の半導体レーザ装置の模式斜視図、図1(b)はA-A線に沿った模式断面図、図1(c)は積層体と金属酸化膜との界面近傍の熱平衡状態のバンド図、である。
 半導体レーザ装置10は、積層体20と、金属酸化膜40と、を有する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1A is a schematic perspective view of the semiconductor laser device of the first embodiment, FIG. 1B is a schematic cross-sectional view taken along the line AA, and FIG. 1C is a stack, a metal oxide film, and the like. It is a band figure of the thermal equilibrium state of the interface vicinity of.
The semiconductor laser device 10 includes a stacked body 20 and a metal oxide film 40.
 積層体20は、サブバンド間光学遷移によりレーザ光80を放出可能な活性層22を有する。また、積層体20は、レーザ光80をリッジ導波路70の延在方向に沿って放出可能である。リッジ導波路70の延在方向は、レーザ光80の光軸81に平行である。金属酸化膜40は、リッジ導波路70の延在方向に平行な積層体20の4つの側面のうちの少なくとも1つに露出した活性層22を覆う。4つの側面は、延在方向に平行な積層体20の2つの面20a、および延在方向に垂直な積層体20の端面20bを含む。図1(a)では、金属酸化膜40は、2つの面20aと2つの端面20bに設けられている。 The laminate 20 has an active layer 22 capable of emitting laser light 80 by optical transition between subbands. Further, the stacked body 20 can emit the laser light 80 along the extending direction of the ridge waveguide 70. The extending direction of the ridge waveguide 70 is parallel to the optical axis 81 of the laser light 80. The metal oxide film 40 covers the active layer 22 exposed on at least one of the four side surfaces of the stacked body 20 parallel to the extending direction of the ridge waveguide 70. The four side surfaces include two surfaces 20a of the stacked body 20 parallel to the extending direction and an end surface 20b of the stacked body 20 perpendicular to the extending direction. In FIG. 1A, the metal oxide film 40 is provided on two surfaces 20a and two end surfaces 20b.
 半導体レーザ装置10は、さらにInPなどからなる基板30と第1の電極50とをさらに有することができる。第1の電極50は、積層体20の上に設けられる。また、基板30を導電性とすると、たとえば、基板30の裏面に第2の電極60を設けることができる。 The semiconductor laser device 10 can further include a substrate 30 made of InP or the like and a first electrode 50. The first electrode 50 is provided on the stacked body 20. Further, if the substrate 30 is conductive, for example, the second electrode 60 can be provided on the back surface of the substrate 30.
 図1(b)に表すように、積層体20は、たとえば、単結晶半導体からなる基板30の上に設けることができる。本図において、積層体20は、基板30の側から、活性層22と、第1の層25と、第2の層23と、を有する。第1の層25は、活性層22の側から、たとえば、第1光ガイド層25a、第1クラッド層25b、第1コンタクト層25c、を有する。また、第2の層23は、活性層22の側から、たとえば、第2光ガイド層23a、第2クラッド層23b、バッファ層23c、を有する。積層体20は、たとえば、n形層を含むことができる。 As shown in FIG. 1B, the stacked body 20 can be provided on a substrate 30 made of a single crystal semiconductor, for example. In this figure, the stacked body 20 includes an active layer 22, a first layer 25, and a second layer 23 from the substrate 30 side. The first layer 25 includes, for example, a first light guide layer 25a, a first cladding layer 25b, and a first contact layer 25c from the active layer 22 side. The second layer 23 includes, for example, a second light guide layer 23a, a second cladding layer 23b, and a buffer layer 23c from the active layer 22 side. The stacked body 20 can include, for example, an n-type layer.
 活性層22は、たとえば、レーザ光80を放出可能なサブバンド間遷移領域と、サブバンド間遷移領域から注入されたキャリア(たとえば電子)のエネルギーを緩和可能な注入/緩和領域と、が交互に積層されたカスケード構造を有する。積層される段数は、たとえば、20~100などとすることができる。注入/緩和領域、第1クラッド層25b、第2クラッド層23bなどをn形層とすると、電子がサブバンド間光学遷移を生じレーザ光が放出される。 In the active layer 22, for example, an intersubband transition region capable of emitting the laser beam 80 and an injection / relaxation region capable of relaxing the energy of carriers (for example, electrons) injected from the intersubband transition region are alternately arranged. It has a stacked cascade structure. The number of stacked layers can be 20 to 100, for example. If the injection / relaxation region, the first cladding layer 25b, the second cladding layer 23b, and the like are n-type layers, electrons cause an intersubband optical transition and laser light is emitted.
 すなわち、本実施形態の半導体レーザ装置は、量子カスケードレーザ(QCL:Quantum Cascade Laser)として動作する。段数を増加すると、キャリアが遷移する回数が増えるので出力が増大する。レーザ光80の波長は、半導体のバンドギャップエネルギーに依存せずに決定できる。たとえば、MQW構造を適正に設定することにより、赤外線からテラヘルツ波の間の波長のレーザ光を得ることができる。 That is, the semiconductor laser device of this embodiment operates as a quantum cascade laser (QCL: Quantum Cascade Laser). Increasing the number of stages increases the output because the number of carrier transitions increases. The wavelength of the laser beam 80 can be determined without depending on the band gap energy of the semiconductor. For example, by setting the MQW structure appropriately, it is possible to obtain laser light having a wavelength between infrared and terahertz waves.
 活性層22から放出されたレーザ光80は、第1および第2のクラッド層25b、23bにより垂直方向に閉じ込められる。また、レーザ光80は、積層体20の2つの面20aに設けられた金属酸化膜40により光軸81の方向に導波され放出される。 The laser beam 80 emitted from the active layer 22 is confined in the vertical direction by the first and second cladding layers 25b and 23b. The laser beam 80 is guided and emitted in the direction of the optical axis 81 by the metal oxide film 40 provided on the two surfaces 20 a of the stacked body 20.
 第1の電極50は、金属酸化膜40の上部に設けられた開口部40aを介して第1の層25のコンタクト層25cに接続される。 The first electrode 50 is connected to the contact layer 25 c of the first layer 25 through the opening 40 a provided on the metal oxide film 40.
 金属酸化膜40の比誘電率は、窒化シリコン(Si)の比誘電率よりも高くなるように選択される。金属酸化膜40は、たとえば、ハフニウム(Hf)、アルミニウム(Al)、ジルコニウム(Zr)、チタニウム(Ti)、タンタル(Ta)からなるグループのいずれか1つの金属を含む酸化膜、またはそれらの酸化膜の積層膜とされる。なお、金属酸化膜はこれらに限定されない。すなわち、金属酸化膜40の比誘電率は、酸化アルミニウムの比誘電率の下限値である8以上となるように選択される。 The relative dielectric constant of the metal oxide film 40 is selected to be higher than the relative dielectric constant of silicon nitride (Si 3 N 4 ). The metal oxide film 40 is, for example, an oxide film containing any one metal selected from the group consisting of hafnium (Hf), aluminum (Al), zirconium (Zr), titanium (Ti), and tantalum (Ta), or an oxide thereof. The film is a laminated film. The metal oxide film is not limited to these. That is, the relative dielectric constant of the metal oxide film 40 is selected to be 8 or more, which is the lower limit value of the relative dielectric constant of aluminum oxide.
 次に、金属酸化膜40の比誘電率を(表1)に例示する。なお、本明細書において、比誘電率は、1MHzにおける測定値で表すものとする。また、比誘電率は、内部の粒子構造や製造プロセスなどにより変化することがあるので、(表1)の数値は、その一例である。 Next, the dielectric constant of the metal oxide film 40 is exemplified in (Table 1). In the present specification, the relative dielectric constant is represented by a measured value at 1 MHz. In addition, since the relative dielectric constant may change depending on the internal particle structure, manufacturing process, and the like, the numerical values in (Table 1) are an example.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ハフニウム、アルミニウム、ジルコニウム、チタニウム、タンタルなどの金属酸化膜40の比誘電率は、8以上と高い。このため、InGaAs、InAlAs、GaAs、AlGaAsなどの化合物半導体の伝導帯のエネルギー準位は、金属酸化膜40中の固定電荷によって、金属酸化膜40に向かうに従って持ち上がる(図1(c))。すなわち、活性層22から金属酸化膜40に向かうに従って、キャリア(本図では電子)に対するエネルギー障壁は高くなる。 The relative dielectric constant of the metal oxide film 40 of hafnium, aluminum, zirconium, titanium, tantalum or the like is as high as 8 or more. For this reason, the energy level of the conduction band of a compound semiconductor such as InGaAs, InAlAs, GaAs, or AlGaAs is raised toward the metal oxide film 40 by the fixed charge in the metal oxide film 40 (FIG. 1C). That is, the energy barrier against carriers (electrons in this figure) becomes higher as it goes from the active layer 22 to the metal oxide film 40.
 活性層22は、InGaAs(井戸層)/InAlAs(障壁層)からなるMQWまたはGaAs(井戸層)/AlGaAs(障壁層)からなるMQWなどがカスケード接続された構造とすることができる。伝導帯の持ち上がりは電子にとって障壁として作用する。このため、電子は金属酸化膜40と活性層22との界面を流れず、活性層22の内部を活性層22に対して略垂直方向に通過しサブバンド間光学遷移に寄与できる。なお、積層体20と、金属酸化膜40との間に薄い自然酸化膜が局所的に形成されていてもよい。 The active layer 22 may have a structure in which MQW made of InGaAs (well layer) / InAlAs (barrier layer) or MQW made of GaAs (well layer) / AlGaAs (barrier layer) is cascade-connected. The conduction band lift acts as a barrier for electrons. For this reason, electrons do not flow through the interface between the metal oxide film 40 and the active layer 22, pass through the inside of the active layer 22 in a direction substantially perpendicular to the active layer 22, and can contribute to the intersubband optical transition. A thin natural oxide film may be locally formed between the stacked body 20 and the metal oxide film 40.
 図2(a)は半導体表面に自然酸化膜が生じた熱平衡状態のバンド図、図2(b)は界面準位低減膜が設けられた半導体表面の熱平衡状態のバンド図、図2(c)は比較例にかかる半導体レーザ装置の模式斜視図、である。
 図2(a)に表すように、積層体120の端面および側面の表面は、劈開やスクライブによる高密度の界面準位を有する。活性層の表面に薄い自然酸化膜122が存在していても、たとえば、電子などのキャリアが積層体120の側面に沿って流れやすくなり、電流J1を生じる。
2A is a band diagram in a thermal equilibrium state where a natural oxide film is formed on the semiconductor surface, FIG. 2B is a band diagram in a thermal equilibrium state of the semiconductor surface provided with the interface state reducing film, and FIG. FIG. 3 is a schematic perspective view of a semiconductor laser device according to a comparative example.
As shown in FIG. 2A, the end surface and side surface of the laminate 120 have high-density interface states due to cleavage or scribing. Even if the thin natural oxide film 122 exists on the surface of the active layer, for example, carriers such as electrons are likely to flow along the side surface of the stacked body 120, and the current J1 is generated.
 また、図2(b)に表すように、酸化シリコンや窒化シリコンなどの界面準位低減膜124を端面や側面に設けても、伝導帯のエネルギー準位は平坦である。このため、積層体120と界面準位低減膜124との界面に沿って電流が流れやすい。この表面電流J1はサブバンド間光学遷移に寄与しない無効電流となり、発光効率を低下させる。但し、QCLにおいては、pn接合半導体レーザとは異なり、活性層端面におけるホールと電子の非発光再結合によるCOD(Catastrophic Optical Damage)劣化は少ない。 Further, as shown in FIG. 2B, the energy level of the conduction band is flat even if the interface state reducing film 124 such as silicon oxide or silicon nitride is provided on the end face or the side face. For this reason, current easily flows along the interface between the stacked body 120 and the interface state reducing film 124. The surface current J1 becomes a reactive current that does not contribute to the intersubband optical transition, and lowers the light emission efficiency. However, in QCL, unlike a pn junction semiconductor laser, there is little COD (catastrophic optical damage) degradation due to non-radiative recombination of holes and electrons at the end face of the active layer.
 QCLは、たとえば、活性層幅が5~20μm、活性層22の厚さが数μmなどであるので、側面に露出する活性層の面積が広い。他方、pn接合レーザダイオードは、たとえば、活性層幅が数μm、活性層の厚さが0.1μmなどである。すなわち、同じ平面サイズであっても、QCLの活性層の側面に露出する面積は、pn接合レーザダイオードの50~200倍などと広くなる。 In QCL, for example, the active layer width is 5 to 20 μm, and the thickness of the active layer 22 is several μm. Therefore, the area of the active layer exposed on the side surface is wide. On the other hand, the pn junction laser diode has, for example, an active layer width of several μm and an active layer thickness of 0.1 μm. That is, even with the same planar size, the area exposed on the side surface of the active layer of the QCL is as wide as 50 to 200 times that of the pn junction laser diode.
 図2(c)の比較例にかかる半導体レーザ装置は、積層体120の側面(端面を含む)が共有結合絶縁膜などの界面準位低減膜124で覆われている。このため、広い側面(端面も含む)に露出した井戸層から界面に沿って発光に寄与しない電流J1が流れる。この電流J1は、内部の多重量子井戸構造(MQW:Multi-Quantum Well)を流れないので、サブバンド間光学遷移に寄与することなく無効電流となる。また、界面近傍の狭い領域に過大な電流が流れると温度上昇を生じる。温度上昇により、結晶欠陥や界面準位が多く存在する界面近傍では、転位などが増殖し素子が劣化しやすい。さらに、バンドギャップの中央近傍に界面準位があると、電子の寿命が短く発光遷移が減少する。このため、発光効率がさらに低下することがある。 In the semiconductor laser device according to the comparative example of FIG. 2C, the side surface (including the end surface) of the stacked body 120 is covered with an interface state reducing film 124 such as a covalent bond insulating film. Therefore, a current J1 that does not contribute to light emission flows from the well layer exposed on the wide side surface (including the end surface) along the interface. Since this current J1 does not flow through an internal multi-quantum well structure (MQW), it becomes a reactive current without contributing to the intersubband optical transition. Further, when an excessive current flows in a narrow region near the interface, a temperature rise occurs. In the vicinity of the interface where many crystal defects and interface states exist due to the temperature rise, dislocations are proliferated and the device is likely to deteriorate. Furthermore, if there is an interface state near the center of the band gap, the lifetime of electrons is short and the light emission transition is reduced. For this reason, luminous efficiency may further decrease.
 これに対して、第1の実施形態では、活性層22を含む積層体20と金属酸化膜40との界面を流れる電流が伝導帯の持ち上がりにより低減される。このため、図1(a)に表すように、サブバンド間遷移領域を流れる電流Ioに対して、側面(端面を含む)を流れる電流Isが十分に低減され、半導体レーザ装置10の高出力化および高信頼性化が可能となる。 On the other hand, in the first embodiment, the current flowing through the interface between the stacked body 20 including the active layer 22 and the metal oxide film 40 is reduced by the rise of the conduction band. For this reason, as shown in FIG. 1A, the current Is flowing through the side surface (including the end surface) is sufficiently reduced with respect to the current Io flowing through the intersubband transition region, and the output of the semiconductor laser device 10 is increased. In addition, high reliability can be achieved.
 図3(a)は第1の実施形態の半導体レーザ装置の模式上面図、図3(b)は第1変形例の模式上面図、である。
 図3(a)では、金属酸化膜40は、積層体20の4つの側面のうち、2つの(側)面および2つの端面20bを覆う。このように積層体20の2つの面20aおよび2つの端面20bをすべて覆うと、積層体20の側面全体で表面電流が低減できる。なお、活性層22の2つの面および2つの端面をさらに覆ってもよい。図3(b)に表す第1変形例では、金属酸化膜40は、リッジ導波路70に平行な積層体20の2つの面20aを覆う。なお、リッジ導波路70に平行な活性層22の2つ面を覆ってもよい。
FIG. 3A is a schematic top view of the semiconductor laser device of the first embodiment, and FIG. 3B is a schematic top view of the first modification.
In FIG. 3A, the metal oxide film 40 covers two (side) surfaces and two end surfaces 20 b among the four side surfaces of the stacked body 20. Thus, if all the two surfaces 20a and two end surfaces 20b of the laminated body 20 are covered, the surface current can be reduced over the entire side surface of the laminated body 20. Note that the two surfaces and two end surfaces of the active layer 22 may be further covered. In the first modification shown in FIG. 3B, the metal oxide film 40 covers the two surfaces 20 a of the stacked body 20 parallel to the ridge waveguide 70. Note that the two surfaces of the active layer 22 parallel to the ridge waveguide 70 may be covered.
 端面発光型レーザの場合、メサ状のリッジ導波路70の側面に金属酸化膜40を形成するプロセスは、ウェーハ状態で行うことができる。劈開プロセスののち、端面20bには、低反射膜や高反射膜を形成することができるが、図3(a)の構造では、劈開で露出した端面20bに金属酸化膜40をさらに形成するプロセスがさらに必要になり工程数が増加する。 In the case of an edge-emitting laser, the process of forming the metal oxide film 40 on the side surface of the mesa-shaped ridge waveguide 70 can be performed in a wafer state. After the cleavage process, a low reflection film or a high reflection film can be formed on the end face 20b. However, in the structure of FIG. 3A, a process of further forming the metal oxide film 40 on the end face 20b exposed by the cleavage. Becomes more necessary and the number of processes increases.
 図4は、第2の実施形態にかかる半導体レーザ装置の界面近傍の熱平衡状態のバンド図である。
 第2の実施形態では、化合物半導体を含む積層体20の表面に共有結合絶縁膜42が設けられ、共有結合絶縁膜42の表面にさらに金属酸化膜40が設けられる。共有結合絶縁膜42は、たとえば、酸化シリコン(SiO)、窒化シリコン(Si)、炭化シリコン(SiC)、窒化ホウ素(BN)、窒化アルミニウム(AlN)などとする。金属酸化膜40および共有結合絶縁膜42の厚さは、たとえば、2nm以上とすることができる。また、金属酸化膜40は、第1の実施形態と同一の材料とする。金属酸化膜40は、イオン結合絶縁体として作用する。なお、(表2)は、共有結合絶縁物の比誘電率の一例である。
FIG. 4 is a band diagram of a thermal equilibrium state in the vicinity of the interface of the semiconductor laser device according to the second embodiment.
In the second embodiment, a covalent bond insulating film 42 is provided on the surface of the stacked body 20 including a compound semiconductor, and a metal oxide film 40 is further provided on the surface of the covalent bond insulating film 42. The covalent bond insulating film 42 is, for example, silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), silicon carbide (SiC), boron nitride (BN), aluminum nitride (AlN), or the like. The thicknesses of the metal oxide film 40 and the covalent bond insulating film 42 can be set to 2 nm or more, for example. The metal oxide film 40 is made of the same material as that in the first embodiment. The metal oxide film 40 functions as an ion bond insulator. Table 2 is an example of the relative dielectric constant of the covalent bond insulator.

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 共有結合絶縁膜42が酸化シリコンのとき、界面に生じるダイポールの極性の向きは、金属酸化物40の酸素面密度によって異なる。たとえば、酸素面密度が高いAl/SiO/半導体やHfO/SiO/半導体の構成では、共有結合絶縁膜42と金属酸化膜40との界面において、高誘電率であるAlおよびHfOの側に負の固定電荷が生じる。また、酸素面密度が低いY/SiO/半導体やLa/SiO/半導体の構成では、YやLaの側に正の固定電荷が生じる。なお、Yの比誘電率は、約11である。 When the covalent bond insulating film 42 is silicon oxide, the direction of the polarity of the dipole generated at the interface varies depending on the oxygen surface density of the metal oxide 40. For example, Al 2 in oxygen surface dense Al 2 O 3 / SiO 2 / semiconductor or HfO 2 / SiO 2 / semiconductor structure, at the interface between the covalent insulating film 42 and the metal oxide film 40, a high dielectric constant Negative fixed charges are generated on the O 3 and HfO 2 sides. Further, in the configuration of Y 2 O 3 / SiO 2 / semiconductor or La 2 O 3 / SiO 2 / semiconductor having a low oxygen surface density, positive fixed charges are generated on the Y 2 O 3 or La 2 O 3 side. Y 2 O 3 has a relative dielectric constant of about 11.
 積層体20がInGaAs、InAlAs、GaAs、AlGaAsを含む場合、第2の実施形態の金属酸化膜40は、負の固定電荷膜として作用し、積層体20の伝導帯のエネルギー準位は、共有結合絶縁膜42との界面に向かうに従って持ち上がる。このため、サブバンド間光学遷移に寄与しない不要な電流が界面近傍に沿って垂直方向に流れることを抑制できる。 When the stacked body 20 includes InGaAs, InAlAs, GaAs, and AlGaAs, the metal oxide film 40 of the second embodiment acts as a negative fixed charge film, and the energy level of the conduction band of the stacked body 20 is a covalent bond. It lifts toward the interface with the insulating film 42. For this reason, it can suppress that the unnecessary electric current which does not contribute to the optical transition between subbands flows into the orthogonal | vertical direction along the interface vicinity.
 図5(a)は第3の実施形態にかかる半導体レーザ装置の部分模式平面図、図5(b)はB-B線に沿った部分模式断面図、である。
 半導体レーザ装置11は、積層体20と、第1の電極80と、金属酸化膜46と、を有する。積層体20は、サブバンド間光学遷移によりレーザ光を放出可能な活性層22と、活性層22の上に設けられ複数のピット29が二次元の格子を構成するように設けられた第1の面25cを有する第1の層25と、活性層22と、基板30と、を有する。ピット29は、第1の面25cから第1の層25の深さ方向に三角柱領域が切り出された領域とする。
FIG. 5A is a partial schematic plan view of a semiconductor laser device according to the third embodiment, and FIG. 5B is a partial schematic cross-sectional view along the line BB.
The semiconductor laser device 11 includes a stacked body 20, a first electrode 80, and a metal oxide film 46. The stacked body 20 includes a first active layer 22 capable of emitting laser light by intersubband optical transition, and a plurality of pits 29 provided on the active layer 22 so as to form a two-dimensional lattice. The first layer 25 having the surface 25 c, the active layer 22, and the substrate 30 are included. The pit 29 is a region in which a triangular prism region is cut out from the first surface 25 c in the depth direction of the first layer 25.
 第1の電極80は、第1の層25の第1の面25cのうちの平坦面25aに設けられ、枠部81とストライプ部82とを有する。枠部81とストライプ部82とで囲まれた領域は周期的な開口部となり、第1の面25cを構成するピット部25bが露出する。金属酸化膜46は、積層体20の側面に露出した活性層22を少なくとも覆う。 The first electrode 80 is provided on the flat surface 25 a of the first surface 25 c of the first layer 25, and has a frame portion 81 and a stripe portion 82. A region surrounded by the frame portion 81 and the stripe portion 82 becomes a periodic opening, and the pit portion 25b constituting the first surface 25c is exposed. The metal oxide film 46 covers at least the active layer 22 exposed on the side surface of the stacked body 20.
 それぞれのピット29は、格子に平行な線に関して非対称である。レーザ光は、開口部に露出したピット29から活性層22に対して垂直方向に出射される。すなわち、第3の実施形態の半導体レーザ装置11は面発光型である。 Each pit 29 is asymmetric with respect to a line parallel to the grid. Laser light is emitted in a direction perpendicular to the active layer 22 from the pits 29 exposed at the openings. That is, the semiconductor laser device 11 of the third embodiment is a surface emitting type.
 本実施形態では、積層体20の4つの側面に金属酸化膜46が設けられる。露出した活性層22の伝導帯のエネルギー準位は、金属酸化膜46との界面に向かうに従い持ち上がる。このため、界面に沿って不要な電流が流れることが抑制され、発光効率および信頼性が高められる。 In this embodiment, metal oxide films 46 are provided on the four side surfaces of the stacked body 20. The energy level of the conduction band of the exposed active layer 22 is raised toward the interface with the metal oxide film 46. For this reason, it is suppressed that an unnecessary electric current flows along an interface, and luminous efficiency and reliability are improved.
 図6(a)は第3の実施形態の変形例にかかる半導体レーザ装置の部分模式平面図、図6(b)はB-B線に沿った部分模式断面図、である。
 複数のピット29の内壁を金属酸化膜47でさらに覆うことができる。このようにすると、ピット29の内壁に沿って流れる電流を抑制できる。このため、2次元状格子において、不要な電流が流れることが抑制され、2次元格子の全面において電流を均一にできる。
FIG. 6A is a partial schematic plan view of a semiconductor laser device according to a modification of the third embodiment, and FIG. 6B is a partial schematic cross-sectional view along the line BB.
The inner walls of the plurality of pits 29 can be further covered with the metal oxide film 47. In this way, the current flowing along the inner wall of the pit 29 can be suppressed. For this reason, it is possible to suppress unnecessary current from flowing in the two-dimensional lattice and to make the current uniform over the entire surface of the two-dimensional lattice.
 第1~第3の実施形態、およびそれらに付随する変形例によれば、発光効率および信頼性が高められ、高出力化が容易な半導体レーザ装置が提供される。これらの半導体レーザ装置は、レーザ加工、環境測定、呼気測定などに広く応用できる。 According to the first to third embodiments and the modifications associated therewith, a semiconductor laser device with improved luminous efficiency and reliability and easy output can be provided. These semiconductor laser devices can be widely applied to laser processing, environmental measurement, exhalation measurement, and the like.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

Claims (11)

  1.  サブバンド間光学遷移によりレーザ光を放出可能な活性層を有し、前記レーザ光を放出可能であり、化合物半導体からなる積層体と、
     前記積層体の側面のうちの少なくとも1つに露出した前記活性層を覆う金属酸化膜と、
     を備え、
     前記活性層から前記金属酸化膜へ向かうに従って、キャリアに対するエネルギー障壁は高くなる、半導体レーザ装置。
    An active layer capable of emitting laser light by optical transition between subbands, capable of emitting the laser light, and a laminate made of a compound semiconductor;
    A metal oxide film covering the active layer exposed on at least one of the side surfaces of the laminate;
    With
    The semiconductor laser device, wherein an energy barrier against carriers increases as going from the active layer to the metal oxide film.
  2.  前記積層体は、n型層を含む請求項1記載の半導体レーザ装置。 The semiconductor laser device according to claim 1, wherein the stacked body includes an n-type layer.
  3.  前記金属酸化膜の比誘電率は、8以上である請求項1記載の半導体レーザ装置。 2. The semiconductor laser device according to claim 1, wherein the metal oxide film has a relative dielectric constant of 8 or more.
  4.  前記金属酸化膜の比誘電率は、8以上である請求項2記載の半導体レーザ装置。 3. The semiconductor laser device according to claim 2, wherein the metal oxide film has a relative dielectric constant of 8 or more.
  5.  前記金属酸化膜は、ハフニウム、アルミニウム、ジルコニウム、チタニウム、タンタルからなるグループのうちのいずれかを含む酸化膜、または前記酸化膜の積層である請求項3記載の半導体レーザ装置。 4. The semiconductor laser device according to claim 3, wherein the metal oxide film is an oxide film including any one of a group consisting of hafnium, aluminum, zirconium, titanium, and tantalum, or a stack of the oxide films.
  6.  前記金属酸化膜は、ハフニウム、アルミニウム、ジルコニウム、チタニウム、タンタルからなるグループのうちのいずれかを含む酸化膜、または前記酸化膜の積層である請求項4記載の半導体レーザ装置 The semiconductor laser device according to claim 4, wherein the metal oxide film is an oxide film including any one of the group consisting of hafnium, aluminum, zirconium, titanium, and tantalum, or a stack of the oxide films.
  7.  前記積層体と前記金属酸化膜との間に設けられた共有結合絶縁膜をさらに備えた請求項1~6のいずれか1つに記載の半導体レーザ装置。 7. The semiconductor laser device according to claim 1, further comprising a covalent bond insulating film provided between the stacked body and the metal oxide film.
  8.  前記共有結合絶縁膜は、SiO、Si、SiC、BN、AlNからなるグループのうちのいずれかである請求項7記載の半導体レーザ装置。 The semiconductor laser device according to claim 7, wherein the covalent bond insulating film is one of a group consisting of SiO 2 , Si 3 N 4 , SiC, BN, and AlN.
  9.  前記積層体はリッジ導波路を含み、
     前記レーザ光を前記リッジ導波路の延在方向に沿って放出され、
     前記積層体の側面は、前記延在方向に平行な面および前記延在方向に垂直な端面を含む、
     請求項1記載の半導体レーザ装置。
    The laminate includes a ridge waveguide;
    The laser light is emitted along the extending direction of the ridge waveguide;
    The side surface of the laminate includes a surface parallel to the extending direction and an end surface perpendicular to the extending direction.
    The semiconductor laser device according to claim 1.
  10.  前記積層体の上に設けられ、周期的な開口部を有する第1の電極をさらに備え、
     前記積層体は、前記活性層の上に設けられた第1の層を有し、
     前記第1の層の第1の面は、前記第1の電極が設けられた平坦領域と、複数のピットが二次元の格子を構成するように設けられたピット領域と、を含み、
     それぞれのピットは、前記格子の辺に平行な線に関して非対称であり、
     前記レーザ光は前記開口部に露出したピットから前記活性層に対して垂直方向に出射される、請求項1記載の半導体レーザ装置。
    A first electrode provided on the laminate and having a periodic opening;
    The laminate includes a first layer provided on the active layer,
    The first surface of the first layer includes a flat region provided with the first electrode, and a pit region provided such that a plurality of pits form a two-dimensional lattice,
    Each pit is asymmetric with respect to a line parallel to the sides of the grid,
    The semiconductor laser device according to claim 1, wherein the laser light is emitted in a direction perpendicular to the active layer from a pit exposed in the opening.
  11.  前記金属酸化膜は、前記複数のピットの内壁をさらに覆う請求項10記載の半導体レーザ装置。 11. The semiconductor laser device according to claim 10, wherein the metal oxide film further covers inner walls of the plurality of pits.
PCT/JP2016/075677 2016-03-15 2016-09-01 Semiconductor laser device WO2017158871A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016051667A JP2017168591A (en) 2016-03-15 2016-03-15 Semiconductor laser device
JP2016-051667 2016-03-15

Publications (1)

Publication Number Publication Date
WO2017158871A1 true WO2017158871A1 (en) 2017-09-21

Family

ID=59851778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075677 WO2017158871A1 (en) 2016-03-15 2016-09-01 Semiconductor laser device

Country Status (2)

Country Link
JP (1) JP2017168591A (en)
WO (1) WO2017158871A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3432428B1 (en) * 2016-03-15 2021-10-20 Kabushiki Kaisha Toshiba Semiconductor laser device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI667854B (en) * 2017-12-28 2019-08-01 日商東芝股份有限公司 Quantum cascade laser
JP7028049B2 (en) * 2018-04-26 2022-03-02 住友電気工業株式会社 Quantum cascade laser
JP2020092145A (en) 2018-12-04 2020-06-11 株式会社東芝 Quantum cascade laser and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254765A (en) * 2012-06-05 2013-12-19 Hamamatsu Photonics Kk Quantum cascade laser
WO2014136653A1 (en) * 2013-03-04 2014-09-12 国立大学法人京都大学 Semiconductor laser element
JP2014236076A (en) * 2013-05-31 2014-12-15 住友電気工業株式会社 Quantum cascade laser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254765A (en) * 2012-06-05 2013-12-19 Hamamatsu Photonics Kk Quantum cascade laser
WO2014136653A1 (en) * 2013-03-04 2014-09-12 国立大学法人京都大学 Semiconductor laser element
JP2014236076A (en) * 2013-05-31 2014-12-15 住友電気工業株式会社 Quantum cascade laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3432428B1 (en) * 2016-03-15 2021-10-20 Kabushiki Kaisha Toshiba Semiconductor laser device

Also Published As

Publication number Publication date
JP2017168591A (en) 2017-09-21

Similar Documents

Publication Publication Date Title
KR100523484B1 (en) Method for fabricating semiconductor optical devices having current-confined structure
US10038308B2 (en) Quantum cascade semiconductor laser
US7606278B2 (en) Semiconductor laser, method of manufacturing semiconductor device, optical pickup, and optical disk apparatus
WO2017158871A1 (en) Semiconductor laser device
US20070002914A1 (en) Semiconductor laser diode having an asymmetric optical waveguide layer
US8731016B2 (en) Nitride semiconductor light emitting device
JP2010080757A (en) Semiconductor light emitting element
US7424043B2 (en) Surface-emitting type semiconductor laser
WO2008010374A1 (en) Semiconductor laser device
US20060093003A1 (en) Semiconductor laser device and process for preparing the same
JP4696749B2 (en) Semiconductor light emitting device
JP2015226045A (en) Semiconductor device and method of manufacturing the same
US20080298411A1 (en) Nitride-based semiconductor laser device and method of manufacturing the same
US10454249B2 (en) Semiconductor laser device
JP4440571B2 (en) Quantum cascade laser
JP6833704B2 (en) Vertical cavity surface emitting laser
US20230006426A1 (en) Group iii-n light emitter electrically injected by hot carriers from auger recombination
US7561609B2 (en) Semiconductor laser device and method of fabricating the same
US11205887B2 (en) Quantum cascade laser and method for manufacturing same
JP2012234862A (en) Semiconductor laser device
JP2009105184A (en) Nitride semiconductor laser device and method of producing the same
JP2015159193A (en) Semiconductor light-emitting element, method of manufacturing the same, and wafer for semiconductor light-emitting element
TWM480192U (en) Ridge waveguide laser diode passivated by multi-layer film
KR20190137521A (en) Laser diode structure and manufacturing method
WO2023153330A1 (en) Nitride-based semiconductor light-emitting element

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894488

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16894488

Country of ref document: EP

Kind code of ref document: A1