WO2017158765A1 - Power supply system and automobile - Google Patents

Power supply system and automobile Download PDF

Info

Publication number
WO2017158765A1
WO2017158765A1 PCT/JP2016/058347 JP2016058347W WO2017158765A1 WO 2017158765 A1 WO2017158765 A1 WO 2017158765A1 JP 2016058347 W JP2016058347 W JP 2016058347W WO 2017158765 A1 WO2017158765 A1 WO 2017158765A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
soc
supply system
power supply
nizn
Prior art date
Application number
PCT/JP2016/058347
Other languages
French (fr)
Japanese (ja)
Inventor
悠 宇田川
山田 惠造
遠藤 俊博
哲也 松本
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2016/058347 priority Critical patent/WO2017158765A1/en
Publication of WO2017158765A1 publication Critical patent/WO2017158765A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle

Definitions

  • the present invention relates to a power supply system and an automobile, and more particularly, to a power supply system including an electricity storage device that can receive supplied power and discharge to a discharge load, and an automobile including the power supply system.
  • the engine In ISS vehicles, the engine is stopped when the vehicle stops. Accordingly, charging from the alternator to the power storage device is also stopped. In the meantime, all power supply to auxiliary equipment such as lamps and electrical equipment is covered by the electricity storage device. Furthermore, at the start after idling stop, the starter (cell motor) is driven by the electric power stored in the power storage device to start the engine. Therefore, in the ISS vehicle, the engine is stopped when the vehicle is stopped, so that the fuel consumption is improved as compared with the ordinary gasoline vehicle.
  • alternator regenerative vehicle that charges an electricity storage device with regenerative power supplied from an alternator.
  • alternator regenerative vehicles include vehicles having the above-described ISS function.
  • Such vehicles are sometimes called ⁇ HEVs or microhybrids.
  • the electricity storage device is charged with regenerative power supplied from the alternator, which was consumed by heat in a regular gasoline vehicle.
  • the operation of the alternator is basically stopped during traveling except during braking, that is, charging of the power storage device is stopped. Thereby, the gasoline consumption by the engine for operating the alternator is reduced, and the fuel consumption is improved. All power supply to the discharge load while the alternator is stopped is covered by the electricity storage device.
  • SOC state of charge
  • the alternator is operated during or before traveling to store power in order to prevent overdischarge of the power storage device. Charge your device.
  • Non-Patent Document 1 discloses a technique for improving charge / discharge characteristics and extending the life of a lead storage battery.
  • Patent Document 1 discloses a power supply system including a composite power storage device that includes a water-based lead storage battery (Pb battery) and a non-aqueous lithium ion battery.
  • a power supply system including a composite power storage device composed of a water-based Pb battery and a nickel hydride storage battery (NiMH battery) is mounted on the vehicle.
  • NiZn battery nickel zinc storage battery
  • the NiZn battery is conventionally known as a battery having excellent charge acceptance and high energy density and low self-discharge. Further, the NiZn battery is superior in cost to the lithium ion battery in the same manner as the NiMN battery, and is excellent in safety because an aqueous electrolyte is used.
  • NiZn batteries have been lagging in popularity as storage batteries because they are inferior in terms of cycle life due to dendrites. Recently, research and development of NiZn batteries that suppress dendrite and have a long cycle life have been rapidly advanced. For this reason, if the power supply system provided with the composite electrical storage device of a Pb battery and a NiZn battery can be provided, the various subject mentioned above besides the fuel consumption improvement can also be solved.
  • an object of the present invention is to provide a power supply system that is low in cost, excellent in energy density and safety, and highly efficient in use with respect to supplied power, and an automobile equipped with the power supply system.
  • a first aspect of the present invention is a power supply system, which has a lead storage battery (Pb battery) and a nickel zinc storage battery (NiZn battery), and can accept supply power and discharge load.
  • a storage device that can be discharged at a time, a switching device that switches charging / discharging currents of the Pb battery and the NiZn battery, a state of charge (SOC) of the NiZn battery, and a control of the switching device based on the estimated SOC
  • the controller charges the NiZn battery up to a use upper limit SOC prior to the Pb battery and / or with the Pb battery.
  • the NiZn battery is After discharged to the SOC, discharged from the Pb battery, characterized in that said controlling the switching device to.
  • the first aspect includes a vehicle power supply system. That is, the supplied power is regenerative power supplied from an alternator, and the power supply system may be a vehicle power supply system.
  • the controller when the power storage device accepts regenerative power, the controller either charges (a) the NiZn battery to the upper limit SOC and then charges the Pb battery, or (b) determines the NiZn battery in advance. And then charging both the NiZn battery and the Pb battery and charging the NiZn battery to the upper limit SOC and charging the Pb battery, or (c) charging both the NiZn battery and the Pb battery. You may make it control a switching device so that a Pb battery may be charged after charging a NiZn battery to use upper limit SOC.
  • the difference between the second SOC and the first SOC is set to 60% or more in order to increase the utilization efficiency of the regenerative power by the power storage device.
  • the first SOC may be set to be less than the second SOC and 10% or more
  • the second SOC may be set to a range of 70% to 90%.
  • the controller acquires regeneration start information indicating that the supply of regenerative power by the alternator starts from the vehicle side and regeneration end information indicating that supply of regenerative power by the alternator ends, and acquires the regeneration start information.
  • the switching device may be controlled.
  • the switching device includes a first switch for turning on / off the connection between the alternator and the discharge load and the Pb battery, and a second switch for turning on / off the connection between the alternator and the conversion device, You may have the 3rd switch for turning ON / OFF the connection of a discharge load and a NiZn battery.
  • the NiZn battery is configured by connecting a plurality of single cells in series, and the controller is configured to configure a plurality of NiZn batteries when the electricity storage device is discharged to a discharge load.
  • the switching device may be controlled to discharge from the Pb battery after any of the single cells is discharged until reaching the first SOC. At this time, it is desirable that the first SOC is set to be less than the use upper limit SOC and 10% or more.
  • the Pb battery is a storage battery for starting the engine, and the controller estimates the SOC of the Pb battery and switches the Pb battery to charge the Pb battery when the Pb battery is discharged to a predetermined third SOC. May be controlled. At this time, it is desirable that the third SOC is set to be less than the upper limit SOC and 70% or more.
  • the conversion device may have a DC step-down circuit or a DC step-up circuit.
  • the NiZn battery may be, for example, an assembled battery in which single cells are connected in 7 series or 8 series.
  • a second aspect of the present invention is an automobile provided with the power supply system of the first aspect.
  • the controller since the electricity storage device is composed of the Pb battery and the NiZn battery, the controller is excellent in energy density and safety at low cost.
  • the controller uses the NiZn battery as the upper limit SOC. Until the Pb battery is charged prior to and / or with the Pb battery, the Pb battery is charged, and the NiZn battery is discharged to a predetermined first SOC when the electricity storage device is discharged to a discharge load.
  • the switching device Since the switching device is controlled so that it discharges from the battery, the power stored in the NiZn battery can be discharged to the discharge load without waiting for the charging / discharging pause, thus improving the utilization efficiency of the supplied power with respect to the supplied power The effect of being able to be obtained can be obtained.
  • FIG. 1 is a block circuit diagram of a power supply system according to a first embodiment to which the present invention is applicable. It is explanatory drawing which shows typically the mounting position of the power supply system of 1st Embodiment in an alternator regeneration vehicle. It is explanatory drawing which shows the detail of the charging / discharging switching part of the power supply system of 1st Embodiment. It is a flowchart of the charging / discharging control routine which CPU of the microcontroller of the control part of the power supply system of 1st Embodiment performs. 6 is a flowchart of a main battery charging process subroutine showing details of step 216 in FIG. 4.
  • FIG. 6 (A) shows the charge state of a sub battery
  • FIG.6 (B) shows the charge state of a main battery.
  • ⁇ HEV alternator regenerative vehicle
  • the alternator regenerative vehicle 20 includes a vehicle control unit (ECU) 16 that controls the operation of the alternator regenerative vehicle 20 as a whole.
  • the vehicle control unit 16 grasps whether an ignition switch (not shown) (hereinafter abbreviated as IGN) is located in an OFF position, an ON / ACC position, or a START position.
  • the vehicle control part 16 grasps
  • the vehicle control unit 16 communicates with the control unit of the power supply system via the communication line 18 to receive notification of the state information of the power storage device that constitutes the power supply system, and the vehicle state information ( IGN position information and alternator operation information).
  • the operation information of the alternator includes regeneration start information, regeneration end information, and alternator start information, as will be described later.
  • the alternator regenerative vehicle 20 includes an alternator 12 that converts the rotational force of the engine (not shown) into (regenerative) electric power when braking or when the accelerator is off.
  • the output voltage of the alternator 12 is set to 14V.
  • the alternator 12 may generate power other than when regenerative power is received.
  • the alternator 12 includes a power generation unit composed of a stator and a rotor, a rectification unit that converts AC power generated by the power generation unit into DC power, and a voltage for making the voltage of the DC power converted by the rectification unit constant. And a regulator. Note that one end of the alternator 12 is connected to a ground (the same potential as the vehicle chassis; hereinafter abbreviated as GND). The other end is connected to one end of a discharge load 14 to be described later and one end of the charge / discharge switching unit 5.
  • GND the same potential as the vehicle chassis
  • the alternator regenerative vehicle 20 has a discharge load 14 composed of a starter (cell motor) and an auxiliary machine (not shown).
  • the auxiliary machine include a lamp (light), an engine pump (spark plug), an air conditioner, a fan, a radio, a television, a CD player, and a car navigation system.
  • the other end of the discharge load 14 is connected to GND.
  • the auxiliary machine may be supplied with a minimum voltage (for example, 8V) for operation from the main battery or the sub battery.
  • the power supply system 10 of this embodiment is demonstrated.
  • the power supply system 10 is mounted in the engine room of the alternator regenerative vehicle 20, but the present invention is not limited to this.
  • the power supply system 10 of the present embodiment includes a power storage device that can accept regenerative power supplied from an alternator 12 and can discharge to a discharge load 14.
  • the power storage device is configured as a composite power storage device of a main battery 1 (Pb battery) and a sub battery 2 (NiZn battery), and constitutes a 14V system power supply system.
  • main battery refers to a battery for starting the engine
  • sub battery refers to other batteries.
  • a monoblock battery case is used in which six cell chambers are defined by partition walls that partition the inside.
  • a sensor insertion hole is formed in the central partition of the monoblock battery case from the upper side to the substantially central part.
  • a temperature sensor such as a thermistor for detecting the temperature of the central portion of the main battery 1 is inserted into the sensor insertion hole. The temperature sensor is fixed in the sensor insertion hole with an adhesive.
  • Each cell chamber of the main battery 1 accommodates one set of electrode plates in which a plurality of positive and negative electrode plates are stacked via a separator, and is poured with dilute sulfuric acid as an aqueous electrolyte.
  • Lead dioxide can be used for the positive electrode active material of the main battery 1
  • spongy lead can be used for the negative electrode active material.
  • the negative electrode active material mixture includes a negative electrode containing lignin and carbon in addition to the negative electrode active material described above. The agent is mixed.
  • Each cell chamber is sealed with a lid that integrally covers the opening of the monoblock battery case.
  • the cell chambers are connected in series by a conductive connecting member.
  • a positive terminal and a negative terminal that are external output terminals are provided upright.
  • the nominal voltage of each cell is 2V, for example, and the nominal voltage of the main battery 1 is 12V, for example. Note that the negative terminal of the main battery 1 is connected to GND.
  • the sub-battery 2 is composed of an assembled battery in which seven nickel zinc single batteries (for example, a nominal voltage of 1.65 V and a full charge voltage of 1.9 V) are connected in series.
  • the sub battery 2 has a positive electrode terminal on the highest potential side and a negative electrode terminal on the lowest potential side, and the negative electrode terminal is connected to GND.
  • the nominal voltage of the sub-battery 2 of this embodiment is 11.55V ((1.65V / cell) ⁇ 7), and the full charge voltage is 13.3V ((1.9V / cell) ⁇ 7).
  • an assembled battery in which eight unit cells are connected in series may be used.
  • the full charge voltage of the sub battery 2 is in a range of about ⁇ 10% with respect to the full charge voltage of the main battery 1. Within this range, even if the selector 5 switches between the sub battery 2 and the main battery 1, it is possible to prevent a sense of incongruity due to, for example, a change in radio volume or a change in light brightness.
  • a temperature sensor such as a thermistor is fixed to the surface of the single battery cell arranged at the center by an adhesive.
  • Each cell has an electrode group in which a negative electrode mainly composed of zinc and a positive electrode mainly composed of nickel hydroxide are laminated or wound via a microporous separator.
  • the electrode group is infiltrated with an aqueous electrolyte such as potassium hydroxide and is accommodated in a rectangular, cylindrical, or flat cylindrical battery can. Details of such a single cell are disclosed in, for example, Japanese Patent Application Laid-Open No. 7-6758, Japanese Patent Application Publication No. 2008-539559, Japanese Patent Application Publication No. 2013-507752, and the like.
  • the power supply system 10 includes a charge / discharge switching unit 5 (switch means) as a switching device that switches charge / discharge currents of the main battery 1 and the sub battery 2.
  • the other first end of the charge / discharge switching unit 5 is connected to the main battery 1, the other second end is connected to the input side of the voltage converter 9, and the other third end is connected to the positive terminal of the sub battery 2.
  • the charge / discharge switching unit 5 includes a plurality of switching elements (for example, power MOSFETs) that can be energized with a large current.
  • the charge / discharge switching unit 5 includes a first switch SW ⁇ b> 1 for turning on / off the connection between the alternator 12 and the discharge load 14 and the positive terminal of the main battery 1, the alternator 12, and the voltage conversion unit.
  • 9 has a second switch SW2 for turning on / off the connection with the battery 9, and a third switch SW3 for turning on / off the connection between the discharge load 14 and the positive terminal of the sub battery 2.
  • switches SW1 to SW3 are collectively referred to as switches SW1 to SW3.
  • the function of the charge / discharge switching unit 5 will be described.
  • the charge / discharge switching unit 5 receives the regenerative power supplied from the alternator 12 by the power storage device, either the main battery 1 or the sub-battery 2 from the alternator 12 (this embodiment) or both (second, which will be described later). It plays the role of a switch connected to the third embodiment). Further, when discharging from the electricity storage device to the discharge load 14, it plays a role of a switch connected to the discharge load 14 from either the main battery 1 or the sub battery 2.
  • the charge / discharge switching unit 5 takes five states. That is, all of the switches SW1 to SW3 are turned off, and the alternator 12 / discharge load 14 is not connected to any of the main battery 1, the voltage converter 9 and the sub battery 2, and the first switch SW1 is On state, second switch SW2 and third switch SW3 are turned off and alternator 12 is connected to main battery 1, state "1", second switch SW2 is on, first switch SW1 and first switch SW1 3 in which the switch SW3 is turned off and the alternator 12 is connected to the sub-battery 2 via the voltage converter 9, the third switch SW3 is turned on, the first switch SW1 and the second switch The state “4” in which SW2 is turned off and the sub battery 2 is connected to the discharge load 14, the first switch SW1 is turned on, and the second switch is turned on. Chi SW2 and the third switch SW3 is take one of the states "5" main battery 1 is turned off is connected to the discharge load 14.
  • the voltage of the main battery 1 and the sub battery 2 is set to be equal to or higher than the minimum voltage for operating the auxiliary machine.
  • the capacitance of the capacitor to be used is preferably larger than, for example, a value calculated as follows.
  • a DC-DC converter with high conversion efficiency can be used for the voltage conversion unit 9 as the conversion device.
  • the DC-DC converter includes a switching element, a choke coil, a diode, an electrolytic capacitor, and the like.
  • a conversion device including a DC-DC converter has a smaller power loss due to conversion as the voltage difference before and after the conversion is smaller. In other words, the utilization efficiency of regenerative power can be increased as the voltage difference before and after conversion is smaller.
  • the output voltage of the alternator 12 is 14V and the fully charged voltage of the sub battery 2 is 13.3V
  • a DC step-down circuit whose input voltage is higher than the output voltage
  • the full charge voltage is 15.2 V (1.9 V / unit cell ⁇ 8 units).
  • the voltage conversion unit 9 is determined by the number of single cells constituting the sub battery 2 and the output voltage of the alternator 12. The output side of the voltage conversion unit 9 is connected to the positive terminal of the sub battery 2.
  • the power supply system 10 includes a main battery controller 3 and a sub battery controller 4 that detect battery states of the main battery 1 and the sub battery 2, respectively (hereinafter, the controllers 3, 4 Is provided.)
  • the controllers 3 and 4 detect battery states such as temperature, voltage, and current of the main battery 1 and the sub battery 2 during charging and discharging (during vehicle traveling and before vehicle traveling), respectively.
  • the temperature sensor of the main battery 1 described above is connected to the main battery controller 3.
  • the main battery controller 3 samples the voltage of the temperature sensor every predetermined time (for example, at intervals of 10 ms), and stores the sampling result in the RAM. Further, the positive terminal and the negative terminal of the main battery 1 are connected to the main battery controller 3 in order to detect the total voltage of the main battery 1.
  • a current sensor 7 such as a Hall element or a shunt resistor is disposed between the main battery 1 and the charge / discharge switching unit 5 in order to detect a charge / discharge current flowing through the main battery 1.
  • the current sensor 7 is connected to the main battery controller 3.
  • the main battery controller 3 samples the voltage of the main battery 1 and the current flowing through the main battery 1 every predetermined time (for example, at intervals of 2 ms), and stores the sampling result in the RAM.
  • the main battery controller 3 detects the open circuit voltage (hereinafter abbreviated as OCV) of the main battery 1 and the temperature at that time when charging / discharging is stopped (when the vehicle is parked).
  • OCV open circuit voltage
  • the sub battery controller 4 also has the same configuration as the main battery controller 3 described above.
  • the sub battery controller 4 detects the charge / discharge current flowing through the sub battery 2 with a current sensor 8 disposed between the voltage converter 9 and the charge / discharge switching unit 5 and the positive terminal of the sub battery 2. Further, in addition to the detection of the total voltage of the sub-battery 2, voltage detection other than that detected by the main battery controller 3 is also performed in that the voltage of each single cell is also detected in order to monitor overdischarge / overcharge.
  • the sub battery controller 4 may have a capacity adjustment circuit that adjusts the capacity of each single battery constituting the sub battery 2.
  • the controllers 3 and 4 are connected to the control unit 6 (state grasping unit 6A), and at the time of charging / discharging, the temperature, voltage, current of the main battery 1 and the sub battery 2 stored in the RAM, and each of the sub batteries 2 are configured.
  • the voltage of the unit cell is output to the control unit 6, and the detected OCV and the temperature at that time are output to the control unit 6 when charging / discharging is stopped.
  • the power supply system 10 includes a control unit 6 as a controller that calculates battery states of the main battery 1 and the sub battery 2 and controls a current switching operation by the charge / discharge switching unit 5.
  • the control unit 6 is configured as a microprocessor having a microcontroller (hereinafter abbreviated as MC), a communication IC, an I / O, an input port, and an output port.
  • MC microcontroller
  • FIG. 1 details are shown by function in order to clarify the role of the control unit 6.
  • the MC serves as a work area for the CPU, a CPU for grasping (calculating) the battery status of the main battery 1 and the sub battery 2, a ROM for storing program data such as a basic control program and a table to be described later, and temporarily stores various data.
  • RAM and an internal bus connecting them.
  • the internal bus is connected to the external bus.
  • the external bus is connected to the controllers 3 and 4 described above via an input port.
  • an output port for outputting a signal to the charge / discharge switching unit 5 and a communication IC for communicating with the vehicle control unit 16 via the I / O and communication line 18 are connected to the external bus. .
  • the MC and the input port of the control unit 6 correspond to the state grasping unit 6A in FIG. 1, the MC and the output port correspond to the switching control unit 6B, and the communication IC and I / O correspond to the communication unit 6C, respectively.
  • the control part 6 also has other functions (for example, the function for shifting to the energy saving mode mentioned later), it is discarded in FIG.
  • the charge / discharge switching unit 5 and the output port are connected by a control line.
  • a resistor is inserted in the control line.
  • a high level signal (H) or a low level signal (L) is output to the control line via the output port.
  • the state grasping unit 6A temporarily stores the detection data output from the controllers 3 and 4 in the RAM, and calculates (estimates) the current battery state and the like of the main battery 1 and the sub battery 2.
  • the communication unit 6C notifies the vehicle control unit 16 of the current battery state of the main battery 1 and the sub battery 2 calculated by the state grasping unit 6A every predetermined time (for example, 2 ms). Further, the communication unit 6C receives notification of vehicle state information (IGN position information, alternator operation information) from the vehicle control unit 16.
  • the vehicle control unit 16 notifies the communication unit 6C of the operation information of the alternator 12 at substantially the same timing as when the electromagnetic clutch described above is operated.
  • the switching control unit 6B controls the charging / discharging switching unit 5 according to the operation information of the alternator 12 notified from the vehicle control unit 16 and the battery status of the main battery 1 and the sub battery 2 calculated by the state grasping unit 6A.
  • the controllers 3 and 4 the charge / discharge switching unit 5, the control unit 6, the vehicle control unit 16, and the like are operated with electric power supplied from the main battery 1.
  • the CPU that has received notification from the vehicle control unit 16 that the IGN has been positioned at the OFF position performs control to place the controllers 3 and 4 and the control unit 6 in the sleep state (energy saving mode). That is, the charge / discharge switching unit 5 is set to the above-described state “0”, and the controllers 3 and 4 are stopped from detecting and outputting the temperature, voltage, current, and the like of the main battery 1 and the sub battery 2.
  • the CPU itself stops the calculation of the battery state of the main battery 1 and the sub battery 2 and the notification to the vehicle control unit 16 and receives a notification from the vehicle control unit 16 that the IGN is positioned at the OFF position. Only the time counting process for determining whether or not a predetermined time has elapsed since the first time is performed.
  • This predetermined time can be set to, for example, 6 hours when the polarization state of the negative electrode of the main battery 1 is considered to be eliminated.
  • the CPU determines that a predetermined time has elapsed since the notification that the IGN is positioned at the OFF position from the vehicle control unit 16, the CPU awakes (shifts to the operating state) the controllers 3 and 4, and as described above. In addition, after the OCV of the main battery 1 and the sub battery 2 and the temperature at that time are detected and output, the controllers 3 and 4 are put into the sleeve state again.
  • the CPU calculates the state of charge (hereinafter abbreviated as SOC) of the main battery 1 and the sub battery 2 from the OCV of the main battery 1 and the sub battery 2.
  • SOC state of charge
  • the calculated SOC is temperature-corrected to an SOC at a reference temperature (for example, 25 ° C.), and the main battery 1 and the sub battery 2 Is calculated (calculated).
  • the health state (hereinafter abbreviated as SOH) of the main battery 1 and the sub battery 2 may also be calculated and the SOC may be corrected according to the SOH. If the predetermined time does not elapse, the polarization state of the main battery 1 is not canceled and the reference SOC becomes inaccurate. Therefore, the OCV is detected by the controllers 3 and 4 in such a state, and the reference by the CPU. The SOC is not calculated, and the most recently acquired reference SOC is handled as the reference SOC.
  • the CPU notifies the vehicle control unit 16 of the reference SOC and the voltage value, and then makes the control unit 6 sleep again.
  • the control unit 6 is activated only when the controllers 3 and 4 detect and output the OCV and temperature, when calculating the reference SOC, and when notifying the vehicle control unit 16.
  • the vehicle control unit 16 also performs a predetermined process (data storage, etc.) and then enters a sleep state, and is activated only when the control unit 6 notifies the OCV and temperature. It becomes.
  • the CPU 3 and 4 detect voltage values of the main battery 1 and the sub battery 2 detected by the controllers 3 and 4 (for each cell constituting the sub battery 2). Voltage value is included). Further, based on the reference SOC and the battery capacities (known) of the main battery 1 and the sub battery 2, the current values detected at predetermined time intervals by the controllers 3 and 4 are integrated to determine the main battery 1 and the sub battery 2. The current SOC is estimated (calculated). Note that the voltage value and current value are temperature-corrected to the reference temperature described above. Then, the vehicle control unit 16 is notified of the current SOC and voltage values of the main battery 1 and the sub battery 2 at predetermined time intervals.
  • the vehicle control unit 16 that has received this notification refers to the current SOC and voltage values of the main battery 1 and the sub-battery 2 to operate the electromagnetic clutch described above and transmit the rotational force of the engine (not shown) to the alternator 12. It is determined whether or not (alternator 12 is operated to charge the electricity storage device).
  • the vehicle control unit 16 may be in an electromagnetic clutch so that the alternator 12 is not operated.
  • SOC and / or lower limit voltage value
  • the vehicle is traveling or traveling without waiting for regenerative charging by the driver's brake operation or accelerator operation.
  • the electromagnetic clutch is controlled so as to charge the main battery 1 by operating the alternator 12 before. This specific control content will be described later.
  • the above (I) has various modes. Typical examples include the following three.
  • the control unit 6 (A) Charging the main battery 1 after charging the sub battery 2 to the upper limit SOC, (B) After charging the sub battery 2 to a second SOC, which will be described later, the sub battery 2 and the main battery 1 are both charged and the sub battery 2 is charged to the use upper limit SOC and then the main battery 1 is charged, or (C) Charging the main battery 1 after charging both the sub battery 2 and the main battery 1 and charging the sub battery 2 to the upper limit SOC.
  • the charge / discharge switching unit 5 is controlled.
  • the power supply system 10 of the present embodiment performs the charge / discharge control of the above (I), (a), and (II), and details are as follows.
  • the regenerative power is not supplied.
  • the charging of the sub-battery 2 is stopped, and the charge / discharge switching unit 5 is controlled so that the sub-battery 2 is immediately discharged from the sub-battery 2 to the discharge load 14 (the charge / discharge switching unit 5 selects state “4”).
  • the vehicle control unit 16 controls the alternator 12 to output regenerative power when the brake is depressed or the accelerator is released (accelerator is off). Further, the controller 6 (CPU) is notified of the regeneration start information via the communication line 18. On the other hand, when the brake is released or when the acceleration of the vehicle becomes 0 as a result of the accelerator off, the operation of the alternator 12 is stopped. Further, the controller 6 (CPU) is notified of the regeneration end information via the communication line 18.
  • the charge / discharge switching unit 5 is controlled to charge the main battery 1 to the use upper limit SOC (the state “1” is set in the charge / discharge switching unit 5). Let them choose.) As a result, the main battery 1 is charged at a constant voltage up to the upper limit SOC using regenerative power.
  • the regenerative power is not supplied.
  • the charge / discharge switching unit 5 is controlled to discharge from the battery 2 to the discharge load 14 (the state “4” is selected by the charge / discharge switching unit 5).
  • the charging / discharging switching unit 5 is controlled so as to stop charging the main battery 1 (charging / discharging switching unit 5). To select the state “0”).
  • the sub-cell 2 is, in principle, a first SOC in which the sub-battery 2 is predetermined (FIG. 6A).
  • the charge / discharge switching unit 5 is controlled so as to discharge until (see) (the state “4” is selected by the charge / discharge switching unit 5).
  • the charge / discharge switching unit 5 is controlled so as to charge the sub battery 2 with regenerative power immediately after the discharge is stopped (the charge / discharge switching unit 5 selects the state “2”).
  • the first SOC described above is set within a range in which the use efficiency of regenerative power can be increased and the deterioration of the sub battery 2 can be suppressed (for example, 10% to 80%).
  • the first SOC is set to 10% less than the second SOC, which will be described later, and discharging is performed until any one of the single cells constituting the sub battery 2 becomes the first SOC. Therefore, in the present embodiment, the first SOC is the practical lower limit SOC of the sub battery 2.
  • the upper limit SOC of the sub-battery 2 varies greatly depending on the capacity of the sub-battery 2 and the like, but generally any value in the range of 90% to 98% can be selected.
  • the first SOC can theoretically be set to 0% or more.
  • the reason why the first SOC is set to 10% in the present embodiment is that even if there is a cumulative error in the SOC estimation (for example, when the above-mentioned reference SOC cannot be acquired during the latest vehicle parking), the sub SOC due to overdischarge This is to suppress the deterioration of the battery 2.
  • main battery 1 is discharged to a predetermined third SOC (see FIG. 6B).
  • the charge / discharge switching unit 5 is controlled as described above (the state “5” is selected by the charge / discharge switching unit 5).
  • the regeneration start information is received from the vehicle control unit 16 before the main battery 1 becomes the third SOC, charging to the main battery 1 is stopped at that time, and the sub battery 2 is immediately regenerated with regenerative power.
  • the charge / discharge switching unit 5 is controlled so as to be charged (the state “2” is selected by the charge / discharge switching unit 5).
  • the third SOC can be set to an SOC for preventing deterioration of the main battery 1 (Pb battery).
  • Pb battery main battery 1
  • the third SOC for example, an arbitrary value in the range of SOC 70 to 90% can be selected.
  • the third SOC is set to 70%.
  • the third SOC is the practical lower limit SOC of the main battery 1.
  • the CPU controls the main battery 1 to the fourth SOC by cooperative control with the vehicle control unit 16 as described above in order to prevent deterioration of the main battery 1.
  • the charging / discharging switching unit 5 is controlled so as to be charged (the state “1” is selected for the charging / discharging switching unit 5).
  • the process waits until the regeneration start information (step 102) or the regeneration end information (step 202) is received from the vehicle control unit 16.
  • step 102 When an affirmative determination is made at step 102 (when regeneration start information is received), the charge / discharge switching unit 5 is made to select the state “2” at step 104. Thereby, the sub battery 2 is charged at a constant voltage with regenerative power.
  • step 112 it is determined whether or not regeneration end information has been received. If the determination is affirmative, the process proceeds to step 204 (charging to the sub-battery 2 is discontinued). If the determination is negative, it is determined in the next step 114 whether the sub-battery 2 has reached the upper limit SOC. If the determination in step 114 is negative, the process returns to step 112.
  • the charge / discharge switching unit 5 is made to select the state “1” so that the main battery 1 is charged with regenerative power in the next step 116. Thereby, the main battery 1 is charged at a constant voltage with regenerative power.
  • step 118 it is determined whether or not regeneration completion information has been received. If the determination is affirmative, the process proceeds to step 204 (charging to the main battery 1 is discontinued). If the determination is negative, it is determined in the next step 120 whether the main battery 1 has reached the upper limit SOC. If the determination in step 120 is negative, the process returns to step 118. If the determination is affirmative, the charge / discharge switching unit 5 is selected to be in state “0” in the next step 122, and the process returns to step 102. As a result, the charging of the main battery 1 with regenerative power is discontinued.
  • step 204 when an affirmative determination is made in step 202 (when regeneration completion information is received), in step 204, the charge / discharge switching unit 5 is made to select the state “4”. Thereby, the electric power of the sub battery 2 is supplied to the discharge load 14.
  • step 206 it is determined whether regeneration start information has been received. If the determination is affirmative, the process returns to step 104 (the discharge from the sub battery 2 to the discharge load 14 is terminated). If the determination is negative, it is determined in the next step 208 whether the sub battery 2 has reached the first SOC. To do. If the determination in step 208 is negative, the process returns to step 206. If the determination is affirmative, the charge / discharge switching unit 5 is made to select the state “5” in the next step 210. Thereby, the power of the main battery 1 is supplied to the discharge load 14.
  • step 212 it is determined whether or not regeneration end information has been received. If the determination is affirmative, the process returns to step 104 (the discharge from the main battery 1 to the discharge load 14 is terminated). If the determination is negative, it is determined in the next step 214 whether the main battery 1 has reached the third SOC. To do. If the determination in step 214 is negative, the process returns to step 212. If the determination is affirmative, main battery charging processing for charging the main battery 1 is executed in the next step 216. The charge / discharge control routine is terminated when the control unit 6 enters a sleep state upon receiving a notification from the vehicle control unit 16 that the IGN is positioned at the OFF position. Returned to "0".
  • step 232 the vehicle control unit 16 is notified that the main battery 1 has reached the third SOC.
  • the vehicle control unit 16 starts the alternator 12 by operating the electromagnetic clutch described above and transmitting the rotational force of the engine (not shown) to the alternator 12.
  • alternator start information indicating that the alternator 12 is started is notified to the control unit 6 (CPU).
  • the CPU waits until the alternator start information is received from the vehicle control unit 16 (step 234). During this time, since the main battery 1 is still discharged to the discharge load 14, the SOC of the main battery 1 is smaller than the above-described third SOC.
  • the vehicle controller 16 informs the vehicle control unit 16 that the main battery 1 reaches the third SOC before the main battery 1 reaches the third SOC. What is necessary is just to alert
  • step 234 If the CPU makes an affirmative determination in step 234 (receives alternator start information from the vehicle control unit 16), it causes the charge / discharge switching unit 5 to select the state "1" in the next step 236. As a result, the main battery 1 is charged at a constant voltage, but as described above, this charging is not based on regenerative electric power, and is a charging method similar to that of a conventional gasoline vehicle or the like.
  • next step 2308 the process waits until the main battery 1 is charged to the fourth SOC.
  • the vehicle control unit 16 is notified that the main battery 1 has been charged up to the fourth SOC, and the main battery charging process subroutine is terminated.
  • the vehicle control part 16 stops the transmission to the alternator 12 of the rotational force of the engine which is not shown in figure by the electromagnetic clutch mentioned above.
  • the control unit 6 notifies the vehicle control unit 16 of the SOCs of the main battery 1 and the sub battery 2 every predetermined time, and thus it is not always necessary to perform such notification.
  • the vehicle control unit 16 monitors the SOC of the main battery 1 notified every predetermined time, and controls the control unit so that the alternator 12 starts when the main battery 1 reaches the third SOC or immediately before that.
  • the alternator start information may be notified to 6.
  • step 214 it is determined in step 214 whether the main battery 1 has reached the third SOC, whereas before the vehicle travels, since the CPU has just awakened, the main battery 1 is subject to the third due to self-discharge or the like. The difference is that it is determined whether or not the SOC is equal to or lower than the SOC.
  • the SOC has been mainly described in order to briefly explain the charge / discharge control.
  • the use upper limit voltage V U the use lower limit voltage V L of the sub battery 2
  • the use upper limit voltage of each cell constituting the sub battery 2 and the use lower limit voltage Is also preset.
  • the sub-battery 2 has reached the upper limit operating voltage V U charges the discontinuation main battery 1 to charge the sub battery 2 due to regenerative power.
  • the sub battery 2 reaches the use lower limit voltage V L , the use lower limit voltage of each single battery, and a voltage that is predetermined in correspondence with the first SOC, the sub battery 2 transfers to the discharge load 14.
  • Control is also performed so that the main battery 1 is discharged and discharged to the discharge load 14.
  • the main battery 1 has a use upper limit voltage and a use lower limit voltage set.
  • the main battery 1 further has a third SOC according to the use upper limit voltage and the use lower limit voltage.
  • the charging / discharging control of the main battery 1 is also performed according to a voltage determined in advance.
  • the CPU also monitors whether the voltage and temperature of the main battery 1 are within a predetermined range, whether the voltage of each single cell constituting the sub battery 2 is within a predetermined range, and the temperature of the sub battery 2. When the voltage or temperature is out of a predetermined range set in advance, this is also notified to the vehicle control unit 16. Such an abnormality is preferably processed in different stages, and the vehicle control unit 16 displays the fact on the installation panel as necessary.
  • the CPU may cause the charge / discharge switching unit 5 to select a state so that only one of the main battery 1 and the sub battery 2 is used instead of the other depending on the abnormal state.
  • the charge / discharge switching unit 5 adds the first switch SW1 and the states “0” to “2”, “4”, “5” shown in Table 1
  • the alternator 12 is in the state “3” connected in parallel to the sub battery 2 via the main battery 1 and the voltage converter 9.
  • the main battery 1 has a battery voltage higher than that of the sub battery 2 and is connected in parallel when discharging to the discharge load 14
  • the sub battery 2 may be charged by the main battery 1. 2 is not connected to the discharge load 14 together. This also applies to a third embodiment described later.
  • charge / discharge control of the power supply system 10 of the second embodiment will be described with reference to FIG. FIG. 7 differs in that steps 106 to 110 are inserted between step 104 and step 112 in FIG. 4, and only this difference will be described below.
  • step 106 it is determined whether or not regeneration end information has been received. If the determination is affirmative, the process proceeds to step 204 (charging to the sub-battery 2 is discontinued). If the determination is negative, it is determined in the next step 108 whether the sub-battery 2 has reached the second SOC.
  • the second SOC for example, an arbitrary value in the range of 70% to 90% can be selected (see also FIG. 6A).
  • the second SOC is set to 80%. Therefore, in this embodiment, in order to increase the utilization efficiency of the regenerative power by the sub battery 2, the difference between the second SOC (80%) and the first SOC (10%) is set to 70%. This difference is preferably as large as possible for the power supply system, and is desirably at least 60% or more. That is, there is a tradeoff between the certainty of preventing the deterioration of the sub battery 2 (both on the overcharge side and the over discharge side) and improving the utilization efficiency of the regenerative power by the sub battery 2.
  • step 108 If the determination in step 108 is negative, the process returns to step 106. If the determination is affirmative, the charge / discharge switching unit 5 is selected in state “3” in the next step 110, and the process proceeds to step 112. Thereby, the sub battery 2 and the main battery 1 are connected in parallel (parallel charging), and both are charged at a constant voltage by regenerative power.
  • the charge / discharge switching unit 5 turns on the first switch SW1 and the second switch SW2 instead of the state “2” shown in Table 1,
  • the alternator 12 is connected in parallel to the sub battery 2 via the main battery 1 and the voltage converter 9.
  • step 105 is executed instead of step 104 in FIG. That is, when the determination in step 102 is affirmative, the charge / discharge switching unit 5 is selected in the state “3” in step 105, and the process proceeds to step 112. Thereby, the sub battery 2 and the main battery 1 are connected in parallel (parallel charging), and both are charged at a constant voltage by regenerative power.
  • the Pb battery main battery 1 and the NiZn battery sub-battery 2 constitute a composite power storage device. Therefore, the Pb battery and the lithium ion battery composite power storage device or Pb battery mentioned as the prior art As compared with the case of using a NiMH battery composite power storage device, it is possible to provide a power supply system that is low in cost and excellent in energy density and safety.
  • the charge / discharge switching unit 5 when the regenerative power of (I) is received, the charge / discharge switching is performed so that the sub battery 2 or the main battery 1 is charged by any of the above (a) to (c).
  • the charge / discharge switching unit 5 When controlling the unit 5 to discharge to the discharge load 14 of the above (II), the charge / discharge switching unit 5 is controlled so that the sub battery 2 is discharged to the first SOC and then discharged from the main battery 1. .
  • the use efficiency of the entire power storage device is increased. The fuel consumption improvement rate can be improved.
  • the control part 6 discharged from the electrical storage device to the discharge load 14, it discharged until one of each single battery which comprises the subcell 2 became 1st SOC. Later, the charge / discharge switching unit 5 is controlled to discharge from the main battery 1. In order to suppress the discharge of the sub battery 2 with the first SOC, the deterioration of the sub battery 2 can be prevented, and the power stored in the sub battery 2 within the range from the upper limit SOC to the first SOC is discharged to the discharge load 14. Therefore, high utilization efficiency can be ensured for the regenerative power generated by the alternator 12.
  • the sub battery 2 and the main battery 1 are charged in parallel with regenerative power, so that the main battery 1 is substantially third SOC while improving the utilization efficiency of the sub battery 2.
  • the above SOC can be maintained. For this reason, it is possible to prevent a decrease in fuel efficiency due to gasoline consumption.
  • the utilization efficiency of the sub battery 2 is higher than that of the third embodiment. Can be increased.
  • the main battery 1 is an electric storage device for starting the engine, and the control unit 6 also estimates the SOC of the main battery 1. Since the CPU controls the charge / discharge switching unit 5 to charge the main battery 1 when the main battery 1 is discharged to the third SOC (70%), the deterioration of the main battery 1 can also be prevented. . At this time, since the CPU controls the charge / discharge switching unit 5 so as to charge the main battery 1 to the fourth SOC less than the upper limit SOC, the fuel consumption can be improved as described above.
  • the present invention is not limited to the illustrated vehicle power supply system. That is, the present invention can be applied to a moving body other than a vehicle, and can also be applied to a stationary power supply system.
  • the electrical storage device which has one main battery 1 and one sub battery 2 comprised by the cell 7 series or 8 series was illustrated, this invention is restrict
  • a plurality of Pb batteries and one or a plurality of NiZn batteries may be combined (for example, connected in series and parallel) to form a high voltage / large capacity power storage device.
  • several Pb batteries and several NiZn batteries are respectively or simultaneously contained in one casing to constitute one battery group unit, and a plurality of battery group units constitute an electricity storage device. May be.
  • the power supply system may further include a DC-AC converter in order to supply power from the power storage device to the discharge load.
  • the main battery controller 3, the sub battery controller 4, and the control unit 6 are described separately so that the configuration of the power supply system 10 can be easily grasped. However, these may be configured integrally. Furthermore, in the said embodiment, although the control part 6 calculated the battery state of the main battery 1 and the sub battery 2 according to the detection data of the main battery 1 and the sub battery 2 output from the controllers 3 and 4 was shown. Such calculation may be performed by the vehicle control unit 16. In such an aspect, the main functions of the control unit 6 are the switching control unit 6B and the communication unit 6C.
  • the example which performs engine starting with the main battery 1 was shown.
  • the present invention is not limited to this, and the engine may be started by the sub battery 2.
  • the example in which the operating electric power of the controllers 3 and 4, the control part 6, and the vehicle control part 16 was supplied from the main battery 1 was shown. However, it may be supplied from the sub-battery 2, and the main battery 1 and the sub-battery 2 cooperate or share the operating power to the controllers 3, 4, the control unit 6, and the vehicle control unit 16. You may make it do. Therefore, in the present invention, the battery capacity of the main battery 1 may be larger, smaller, or the same as the battery capacity of the sub battery 2.
  • control part 6 showed the example which acquires the operation information of an alternator via the vehicle control part 16
  • this invention is not limited to this.
  • brake operation information and alternator operation information may be obtained directly from a brake control unit that controls the brake and an alternator control unit that controls the alternator.
  • group power supply system 10 was illustrated.
  • the present invention is not limited to this, and can be applied to a power supply system other than a 14V power supply system such as a 42V power supply system.
  • the present invention provides a power supply system that is low in cost, excellent in energy density and safety, and highly efficient in use with respect to supplied power, and a vehicle equipped with the power supply system. For this reason, since this invention contributes to manufacture and sale of a power supply system or a motor vehicle, it has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

Provided is a power supply system which is low-cost and has high utilization efficiency with respect to supplied power. The power supply system 10 is provided with: a combined electricity storage device 10 (Pb battery and NiZn battery); a switching unit 5 for switching the charge/discharge current of the device 10; and a control unit 6 for controlling the switching unit 5 on the basis of the SOC of the NiZn battery. The control unit 6 controls the switching unit 5 so as to, when receiving regenerative power from an alternator 12, charge the Pb battery after charging the NiZn battery up to a use limit SOC prior to and/or together with charging the Pb battery, and, when discharging to a discharge load 14, discharge the Pb battery after discharging the NiZn battery down to a first SOC.

Description

電源システムおよび自動車Power supply system and automobile
 本発明は電源システムおよび自動車に係り、特に、供給電力を受入可能かつ放電負荷に放電可能な蓄電デバイスを備えた電源システムおよび該電源システムを備えた自動車に関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply system and an automobile, and more particularly, to a power supply system including an electricity storage device that can receive supplied power and discharge to a discharge load, and an automobile including the power supply system.
 従来、供給電力を受入可能かつ放電負荷に放電可能な蓄電デバイスを備えた電源システムは広範囲で実用に供されている。この種の電源システムは据え置きタイプと移動(モバイル)タイプに大別される。近年では風力発電や太陽光発電における据え置きタイプの電源システムが技術的な着目を集めている。一方、移動タイプの電源システムは長い開発の歴史があり、現在のところ据え置きタイプの電源システムより広く敷衍している。典型的には、自動車等の移動体(車両)に搭載される鉛蓄電池による電源システムが挙げられる。以下では、技術競争の著しい車両用電源システムを例にとり近時の背景技術について説明する。 Conventionally, a power supply system equipped with an electricity storage device that can accept supplied power and can be discharged to a discharge load has been put to practical use in a wide range. This type of power supply system is roughly divided into a stationary type and a mobile type. In recent years, stationary power supply systems in wind power generation and solar power generation have attracted technical attention. On the other hand, mobile type power systems have a long history of development, and are currently more widely spread than stationary type power systems. Typically, a power supply system using a lead storage battery mounted on a moving body (vehicle) such as an automobile can be given. In the following, the recent background art will be described by taking a vehicular power supply system with significant technological competition as an example.
 普通ガソリン車は、制動時を除く走行中にオルタネータから供給される電力を鉛蓄電池等の蓄電デバイスに充電し、蓄電デバイスをほぼ満充電状態に保っている。近年、二酸化炭素排出抑制の観点から、このようなガソリン車において、アイドリングストップ・システム(ISS)機能を有する車両(ISS車)が徐々に増加している。 Regular gasoline vehicles charge power storage devices such as lead-acid batteries while power is being supplied from the alternator during traveling except during braking, and keep the power storage devices almost fully charged. In recent years, vehicles (ISS vehicles) having an idling stop system (ISS) function are gradually increasing in such gasoline vehicles from the viewpoint of suppressing carbon dioxide emissions.
 ISS車では、車両停止時にエンジンを停止する。従って、オルタネータから蓄電デバイスへの充電も停止する。その間のランプや電装機器等の補機への電力供給はすべて蓄電デバイスで賄われる。さらに、アイドリングストップ後のスタート時には蓄電デバイスに蓄電された電力でスタータ(セルモータ)を駆動させてエンジンを始動する。従って、ISS車では、車両停止時にエンジンを停止するため、普通ガソリン車と比べて燃費も向上する。 In ISS vehicles, the engine is stopped when the vehicle stops. Accordingly, charging from the alternator to the power storage device is also stopped. In the meantime, all power supply to auxiliary equipment such as lamps and electrical equipment is covered by the electricity storage device. Furthermore, at the start after idling stop, the starter (cell motor) is driven by the electric power stored in the power storage device to start the engine. Therefore, in the ISS vehicle, the engine is stopped when the vehicle is stopped, so that the fuel consumption is improved as compared with the ordinary gasoline vehicle.
 近時、ガソリンの小売価格の上昇も手伝って燃費改善のニーズはとりわけ高い。また、燃費効率の高い車両が大幅に販売台数を伸ばしている。このような実情に則して、自動車(製造)会社では、オルタネータから供給される回生電力で蓄電デバイスを充電するオルタネータ回生車両の開発が進められている。このようなオルタネータ回生車両の中には、上述したISS機能を有する車両も含まれる。そのような車両はμHEVまたはマイクロハイブリッドと呼ばれることがある。 Recently, the need for fuel efficiency improvement is particularly high due to the increase in the retail price of gasoline. In addition, the number of vehicles with high fuel efficiency is increasing significantly. In accordance with such a situation, an automobile (manufacturing) company has been developing an alternator regenerative vehicle that charges an electricity storage device with regenerative power supplied from an alternator. Such alternator regenerative vehicles include vehicles having the above-described ISS function. Such vehicles are sometimes called μHEVs or microhybrids.
 オルタネータ回生車両では、普通ガソリン車で熱消費されていた、オルタネータから供給される回生電力で蓄電デバイスを充電する。また、制動時等を除く走行中は原則的にオルタネータの動作を停止させ、すなわち、蓄電デバイスへの充電を停止させる。これにより、オルタネータを作動させるためのエンジンによるガソリン消費を低減させ燃費が改善される。オルタネータ停止中の放電負荷への電力供給はすべて蓄電デバイスで賄われる。なお、μHEVでは、蓄電デバイスの充電状態(SOC)が予め定めた設定値以下となったときは、蓄電デバイスの過放電等を防止するために、走行中または走行前にオルタネータを作動させて蓄電デバイスを充電する。 In the alternator regenerative vehicle, the electricity storage device is charged with regenerative power supplied from the alternator, which was consumed by heat in a regular gasoline vehicle. In addition, the operation of the alternator is basically stopped during traveling except during braking, that is, charging of the power storage device is stopped. Thereby, the gasoline consumption by the engine for operating the alternator is reduced, and the fuel consumption is improved. All power supply to the discharge load while the alternator is stopped is covered by the electricity storage device. In μHEV, when the state of charge (SOC) of the power storage device is equal to or lower than a preset value, the alternator is operated during or before traveling to store power in order to prevent overdischarge of the power storage device. Charge your device.
 このようなオルタネータ回生車両に搭載される電源システムでは、オルタネータから供給される回生電力を受け入れるために、蓄電デバイス自体や制御技術を始めとする種々の研究・開発がなされている。例えば、非特許文献1には、鉛蓄電池において、充放電特性の改善や長寿命化を図る技術が開示されている。また、特許文献1には、水系の鉛蓄電池(Pb電池)と非水系のリチウムイオン電池とで構成される複合蓄電デバイスを備えた電源システムが開示されている。さらに、本願出願時において、ともに水系のPb電池とニッケル水素蓄電池(NiMH電池)とで構成される複合蓄電デバイスを備えた電源システムが車載されている。 In such a power supply system mounted on an alternator regenerative vehicle, various researches and developments including the storage device itself and control technology have been made in order to receive regenerative power supplied from the alternator. For example, Non-Patent Document 1 discloses a technique for improving charge / discharge characteristics and extending the life of a lead storage battery. Patent Document 1 discloses a power supply system including a composite power storage device that includes a water-based lead storage battery (Pb battery) and a non-aqueous lithium ion battery. Furthermore, at the time of filing of the present application, a power supply system including a composite power storage device composed of a water-based Pb battery and a nickel hydride storage battery (NiMH battery) is mounted on the vehicle.
特開2003-134689号公報Japanese Patent Laid-Open No. 2003-13489
 ところで、Pb電池単独では充電可能な電流(120A程度)が小さく(充電受け入れ性が低く)制動時の回生電力をすべて回収することは難しい。このため、特許文献1の技術では、Pb電池と充電受け入れ性に優れるリチウムイオン電池を組み合わせた複合蓄電デバイスが用いられている。しかしながら、複合蓄電デバイスを構成するリチウムイオン電池はコスト面や、非水電解液を用いることから安全面での課題がある。これに対し、Pb電池とNiMN電池を組み合わせた複合蓄電デバイスはこの点で優れる。しかしながら、NiMN電池はエネルギ密度が低く自己放電が大きいという別の課題がある。 By the way, with a Pb battery alone, the chargeable current (about 120 A) is small (low charge acceptance), and it is difficult to recover all the regenerative power during braking. For this reason, in the technique of Patent Document 1, a composite power storage device in which a Pb battery and a lithium ion battery excellent in charge acceptability are combined is used. However, the lithium ion battery constituting the composite power storage device has problems in terms of cost and safety because it uses a non-aqueous electrolyte. In contrast, a composite power storage device combining a Pb battery and a NiMN battery is excellent in this respect. However, NiMN batteries have another problem of low energy density and large self-discharge.
 一方、従来、充電受け入れ性に優れエネルギ密度が高く自己放電の小さい電池としてニッケル亜鉛蓄電池(NiZn電池)が知られている。また、NiZn電池はNiMN電池と同様にリチウムイオン電池よりコスト面で優位にあり、水系電解液が用いられるため安全面でも優れている。NiZn電池はデンドライトによりサイクル寿命の点で遜色するという理由で蓄電池としての普及が遅れていた。近時、デンドライトを抑え高サイクル寿命のNiZn電池の研究・開発が急速に進められている。このため、Pb電池とNiZn電池との複合蓄電デバイスを備えた電源システムを提供できれば、燃費向上の他に上述した種々の課題も解決することができる。 On the other hand, a nickel zinc storage battery (NiZn battery) is conventionally known as a battery having excellent charge acceptance and high energy density and low self-discharge. Further, the NiZn battery is superior in cost to the lithium ion battery in the same manner as the NiMN battery, and is excellent in safety because an aqueous electrolyte is used. NiZn batteries have been lagging in popularity as storage batteries because they are inferior in terms of cycle life due to dendrites. Recently, research and development of NiZn batteries that suppress dendrite and have a long cycle life have been rapidly advanced. For this reason, if the power supply system provided with the composite electrical storage device of a Pb battery and a NiZn battery can be provided, the various subject mentioned above besides the fuel consumption improvement can also be solved.
 本発明は上記事案に鑑み、低コストでエネルギ密度や安全性に優れ、供給電力に対する利用効率の高い電源システムおよび該電源システムを備えた自動車を提供することを課題とする。 In view of the above cases, an object of the present invention is to provide a power supply system that is low in cost, excellent in energy density and safety, and highly efficient in use with respect to supplied power, and an automobile equipped with the power supply system.
 上記課題を解決するために、本発明の第1の態様は、電源システムであって、鉛蓄電池(Pb電池)とニッケル亜鉛蓄電池(NiZn電池)とを有し、供給電力を受入可能かつ放電負荷に放電可能な蓄電デバイスと、前記Pb電池および前記NiZn電池の充放電電流を切り替える切替デバイスと、前記NiZn電池の充電状態(SOC)を推定し、該推定したSOCに基づいて前記切替デバイスを制御するコントローラと、を備え、前記コントローラは、前記蓄電デバイスが前記供給電力を受け入れる際に、前記NiZn電池を使用上限SOCまで前記Pb電池に先立っておよび/または前記Pb電池とともに充電した後、前記Pb電池を充電し、前記蓄電デバイスが前記放電負荷に放電する際に、前記NiZn電池を予め定められた第1のSOCまで放電した後、前記Pb電池から放電する、ように前記切替デバイスを制御することを特徴とする。 In order to solve the above-mentioned problems, a first aspect of the present invention is a power supply system, which has a lead storage battery (Pb battery) and a nickel zinc storage battery (NiZn battery), and can accept supply power and discharge load. A storage device that can be discharged at a time, a switching device that switches charging / discharging currents of the Pb battery and the NiZn battery, a state of charge (SOC) of the NiZn battery, and a control of the switching device based on the estimated SOC And when the power storage device accepts the supplied power, the controller charges the NiZn battery up to a use upper limit SOC prior to the Pb battery and / or with the Pb battery. When the battery is charged and the electricity storage device is discharged to the discharge load, the NiZn battery is After discharged to the SOC, discharged from the Pb battery, characterized in that said controlling the switching device to.
 第1の態様には車両用電源システムも含まれる。すなわち、供給電力はオルタネータから供給される回生電力であり、電源システムは車両用電源システムであってもよい。 The first aspect includes a vehicle power supply system. That is, the supplied power is regenerative power supplied from an alternator, and the power supply system may be a vehicle power supply system.
 このような車両用電源システムにおいて、コントローラは、蓄電デバイスが回生電力を受け入れる際に、(a)NiZn電池を使用上限SOCまで充電した後Pb電池を充電するか、(b)NiZn電池を予め定められた第2のSOCまで充電した後NiZn電池およびPb電池をともに充電しNiZn電池を使用上限SOCまで充電した後Pb電池を充電するか、または、(c)NiZn電池およびPb電池をともに充電しNiZn電池を使用上限SOCまで充電した後Pb電池を充電する、ように切替デバイスを制御するようにしてもよい。 In such a vehicle power supply system, when the power storage device accepts regenerative power, the controller either charges (a) the NiZn battery to the upper limit SOC and then charges the Pb battery, or (b) determines the NiZn battery in advance. And then charging both the NiZn battery and the Pb battery and charging the NiZn battery to the upper limit SOC and charging the Pb battery, or (c) charging both the NiZn battery and the Pb battery. You may make it control a switching device so that a Pb battery may be charged after charging a NiZn battery to use upper limit SOC.
 このとき、蓄電デバイスによる回生電力の利用効率を高めるために、第2のSOCと第1のSOCとの差が60%以上に設定されていることが好ましい。例えば、第1のSOCが第2のSOC未満かつ10%以上に設定され、第2のSOCが70%~90%の範囲に設定されていてもよい。 At this time, it is preferable that the difference between the second SOC and the first SOC is set to 60% or more in order to increase the utilization efficiency of the regenerative power by the power storage device. For example, the first SOC may be set to be less than the second SOC and 10% or more, and the second SOC may be set to a range of 70% to 90%.
 また、コントローラは、車両側からオルタネータによる回生電力の供給が開始することを表す回生開始情報およびオルタネータによる回生電力の供給が終了することを表す回生終了情報を取得し、回生開始情報を取得したときに、回生電力によるNiZn電池ないしPb電池への充電を開始し、回生終了情報を取得したときに、回生電力によるNiZn電池ないしPb電池への充電を打ち切るとともにNiZn電池から放電負荷に放電する、ように切替デバイスを制御するようにしてもよい。 Further, the controller acquires regeneration start information indicating that the supply of regenerative power by the alternator starts from the vehicle side and regeneration end information indicating that supply of regenerative power by the alternator ends, and acquires the regeneration start information. In addition, when charging the NiZn battery or Pb battery with regenerative power is started and the regeneration end information is acquired, the charging of the NiZn battery or Pb battery with regenerative power is stopped and the NiZn battery is discharged to the discharge load. Alternatively, the switching device may be controlled.
 さらに、切替デバイスとNiZn電池との間に挿入され、回生電力の電圧を変換する変換デバイスを備えるようにしてもよい。このとき、切替デバイスは、オルタネータおよび放電負荷とPb電池との接続をオン・オフするための第1のスイッチと、オルタネータと変換デバイスとの接続をオン・オフするための第2のスイッチと、放電負荷とNiZn電池との接続をオン・オフするための第3のスイッチとを有していてもよい。 Furthermore, a conversion device that is inserted between the switching device and the NiZn battery and converts the voltage of the regenerative power may be provided. At this time, the switching device includes a first switch for turning on / off the connection between the alternator and the discharge load and the Pb battery, and a second switch for turning on / off the connection between the alternator and the conversion device, You may have the 3rd switch for turning ON / OFF the connection of a discharge load and a NiZn battery.
 また、蓄電デバイスの劣化を抑えるために、NiZn電池は複数の単電池を直列に接続することで構成されており、コントローラは、蓄電デバイスが放電負荷に放電する際に、NiZn電池を構成する複数の単電池のいずれかが第1のSOCとなるまで放電した後、Pb電池から放電するように切替デバイスを制御するようにしてもよい。このとき、第1のSOCは使用上限SOC未満かつ10%以上に設定されていていることが望ましい。 Further, in order to suppress the deterioration of the electricity storage device, the NiZn battery is configured by connecting a plurality of single cells in series, and the controller is configured to configure a plurality of NiZn batteries when the electricity storage device is discharged to a discharge load. The switching device may be controlled to discharge from the Pb battery after any of the single cells is discharged until reaching the first SOC. At this time, it is desirable that the first SOC is set to be less than the use upper limit SOC and 10% or more.
 さらに、Pb電池はエンジン始動用の蓄電池であり、コントローラは、Pb電池のSOCを推定し、Pb電池を予め定められた第3のSOCまで放電したときに、Pb電池を充電するように切替デバイスを制御するようにしてもよい。このとき、第3のSOCは使用上限SOC未満かつ70%以上に設定されていることが望ましい。 Further, the Pb battery is a storage battery for starting the engine, and the controller estimates the SOC of the Pb battery and switches the Pb battery to charge the Pb battery when the Pb battery is discharged to a predetermined third SOC. May be controlled. At this time, it is desirable that the third SOC is set to be less than the upper limit SOC and 70% or more.
 また、車両用電源システムにおいて、変換デバイスは、直流降圧回路または直流昇圧回路を有していてもよい。そして、NiZn電池は、例えば、単電池が7直列または8直列に接続された組電池であってもよい。 Further, in the vehicle power supply system, the conversion device may have a DC step-down circuit or a DC step-up circuit. The NiZn battery may be, for example, an assembled battery in which single cells are connected in 7 series or 8 series.
 また、上記課題を解決するために、本発明の第2の態様は、第1の態様の電源システムを備えた自動車である。 In order to solve the above-mentioned problem, a second aspect of the present invention is an automobile provided with the power supply system of the first aspect.
 本発明によれば、Pb電池とNiZn電池とで蓄電デバイスを構成したので、低コストでエネルギ密度や安全性に優れ、コントローラは、蓄電デバイスが供給電力を受け入れる際に、NiZn電池を使用上限SOCまでPb電池に先立っておよび/またはPb電池とともに充電した後、Pb電池を充電し、蓄電デバイスが放電負荷に放電する際に、NiZn電池を予め定められた第1のSOCまで放電した後、Pb電池から放電する、ように切替デバイスを制御するので、充放電休止時を待つことなくNiZn電池に蓄えられた電力を放電負荷に放電可能なため、供給電力に対する供給電力の利用効率を向上させることができる、という効果を得ることができる。 According to the present invention, since the electricity storage device is composed of the Pb battery and the NiZn battery, the controller is excellent in energy density and safety at low cost. When the electricity storage device accepts the supplied power, the controller uses the NiZn battery as the upper limit SOC. Until the Pb battery is charged prior to and / or with the Pb battery, the Pb battery is charged, and the NiZn battery is discharged to a predetermined first SOC when the electricity storage device is discharged to a discharge load. Since the switching device is controlled so that it discharges from the battery, the power stored in the NiZn battery can be discharged to the discharge load without waiting for the charging / discharging pause, thus improving the utilization efficiency of the supplied power with respect to the supplied power The effect of being able to be obtained can be obtained.
本発明が適用可能な第1実施形態の電源システムのブロック回路図である。1 is a block circuit diagram of a power supply system according to a first embodiment to which the present invention is applicable. オルタネータ回生車両における第1実施形態の電源システムの搭載位置を模式的に示す説明図である。It is explanatory drawing which shows typically the mounting position of the power supply system of 1st Embodiment in an alternator regeneration vehicle. 第1実施形態の電源システムの充放電切替部の詳細を示す説明図である。It is explanatory drawing which shows the detail of the charging / discharging switching part of the power supply system of 1st Embodiment. 第1実施形態の電源システムの制御部のマイクロコントローラのCPUが実行する充放電制御ルーチンのフローチャートである。It is a flowchart of the charging / discharging control routine which CPU of the microcontroller of the control part of the power supply system of 1st Embodiment performs. 図4のステップ216の詳細を示すメイン電池充電処理サブルーチンのフローチャートである。6 is a flowchart of a main battery charging process subroutine showing details of step 216 in FIG. 4. 第1実施形態の電源システムを構成する蓄電デバイスの充電状態を模式的に示す説明図であり、図6(A)はサブ電池の充電状態、図6(B)はメイン電池の充電状態を示す。It is explanatory drawing which shows typically the charge condition of the electrical storage device which comprises the power supply system of 1st Embodiment, FIG. 6 (A) shows the charge state of a sub battery, FIG.6 (B) shows the charge state of a main battery. . 第2実施形態の電源システムの制御部のマイクロコントローラのCPUが実行する充放電制御ルーチンのフローチャートである。It is a flowchart of the charging / discharging control routine which CPU of the microcontroller of the control part of the power supply system of 2nd Embodiment performs. 第3実施形態の電源システムの制御部のマイクロコントローラのCPUが実行する充放電制御ルーチンのフローチャートである。It is a flowchart of the charging / discharging control routine which CPU of the microcontroller of the control part of the power supply system of 3rd Embodiment performs.
[第1実施形態]
 以下、図面を参照して、本発明を、オルタネータ回生車両に搭載可能な電源システムに適用した第1の実施の形態について説明する。
[First Embodiment]
Hereinafter, a first embodiment in which the present invention is applied to a power supply system that can be mounted on an alternator regenerative vehicle will be described with reference to the drawings.
(車両側の構成)
 まず、本実施形態の電源システムに言及する前に、電源システムに関連するオルタネータ回生車両(μHEV)の主要構成について簡単に説明する。なお、μHEVとは、ISS機能を有し、オルタネータから供給される回生電力を受け入れ可能かつ放電負荷に放電可能な蓄電デバイスを備えたガソリン車またはディーゼル車をいう。
(Vehicle side configuration)
First, before referring to the power supply system of the present embodiment, the main configuration of an alternator regenerative vehicle (μHEV) related to the power supply system will be briefly described. Note that μHEV refers to a gasoline vehicle or a diesel vehicle that has an ISS function, can receive regenerative power supplied from an alternator, and includes an electricity storage device that can discharge to a discharge load.
<車両制御部16>
 図1に示すように、オルタネータ回生車両20は、オルタネータ回生車両20全体の動作を制御する車両制御部(ECU)16を備えている。車両制御部16は、図示しないイグニッションスイッチ(以下、IGNと略称する。)が、OFF位置、ON/ACC位置、START位置のいずれに位置しているかを把握する。また、車両制御部16は、アクセル、ブレーキ、エンジン等の作動状態、速度、加速度その他の車両状態を把握し、把握した状態に応じた走行制御を行う。
<Vehicle control unit 16>
As shown in FIG. 1, the alternator regenerative vehicle 20 includes a vehicle control unit (ECU) 16 that controls the operation of the alternator regenerative vehicle 20 as a whole. The vehicle control unit 16 grasps whether an ignition switch (not shown) (hereinafter abbreviated as IGN) is located in an OFF position, an ON / ACC position, or a START position. Moreover, the vehicle control part 16 grasps | ascertains operating states, such as an accelerator, a brake, an engine, speed, acceleration, and other vehicle states, and performs traveling control according to the grasped state.
 さらに、車両制御部16は、電源システムの制御部と通信線18を介して通信し、電源システムを構成する蓄電デバイスの状態情報の報知を受けるとともに、電源システムの制御部に車両の状態情報(IGNの位置情報、オルタネータの作動情報)を報知する。なお、オルタネータの作動情報には、後述するように、回生開始情報、回生終了情報およびオルタネータ始動情報が含まれる。 Further, the vehicle control unit 16 communicates with the control unit of the power supply system via the communication line 18 to receive notification of the state information of the power storage device that constitutes the power supply system, and the vehicle state information ( IGN position information and alternator operation information). The operation information of the alternator includes regeneration start information, regeneration end information, and alternator start information, as will be described later.
<オルタネータ12>
 また、オルタネータ回生車両20は、制動時やアクセルオフ時に図示を省略したエンジンの回転力を(回生)電力に変換するオルタネータ12を備えている。本実施形態では、オルタネータ12の出力電圧が14Vに設定されている。なお、後述するように、蓄電デバイス(後述するメイン電池1)の状態に応じて、回生電力受け入れ時以外にもオルタネータ12による発電がなされる場合がある。
<Alternator 12>
The alternator regenerative vehicle 20 includes an alternator 12 that converts the rotational force of the engine (not shown) into (regenerative) electric power when braking or when the accelerator is off. In the present embodiment, the output voltage of the alternator 12 is set to 14V. As will be described later, depending on the state of the power storage device (main battery 1 described later), the alternator 12 may generate power other than when regenerative power is received.
 オルタネータ12は、ステータおよびロータで構成される発電部と、発電部で発電された交流電力を直流電力に変換する整流部と、整流部で変換された直流電力の電圧を一定とするためのボルテージレギュレータとを有して構成されている。なお、オルタネータ12の一端はグランド(車両のシャーシと同電位。以下、GNDと略称する。)に接続されている。また、他端は後述する放電負荷14の一端および充放電切替部5の一側端に接続されている。 The alternator 12 includes a power generation unit composed of a stator and a rotor, a rectification unit that converts AC power generated by the power generation unit into DC power, and a voltage for making the voltage of the DC power converted by the rectification unit constant. And a regulator. Note that one end of the alternator 12 is connected to a ground (the same potential as the vehicle chassis; hereinafter abbreviated as GND). The other end is connected to one end of a discharge load 14 to be described later and one end of the charge / discharge switching unit 5.
<放電負荷14>
 さらに、オルタネータ回生車両20は、図示を省略したスタータ(セルモータ)および補機で構成される放電負荷14を有している。補機には、例えば、ランプ(ライト)、エンジンポンプ(スパークプラグ)、エアコン、ファン、ラジオ、テレビ、CDプレーヤー、カーナビゲーション等を挙げることができる。放電負荷14の他端はGNDに接続されている。上記補機は、作動するための最低電圧(例えば8V)をメイン電池またはサブ電池から供給されればよい。
<Discharge load 14>
Further, the alternator regenerative vehicle 20 has a discharge load 14 composed of a starter (cell motor) and an auxiliary machine (not shown). Examples of the auxiliary machine include a lamp (light), an engine pump (spark plug), an air conditioner, a fan, a radio, a television, a CD player, and a car navigation system. The other end of the discharge load 14 is connected to GND. The auxiliary machine may be supplied with a minimum voltage (for example, 8V) for operation from the main battery or the sub battery.
 なお、オルタネータ回生車両20のエンジン始動時には、IGNがSTART位置に位置付けられると、蓄電デバイス(後述するメイン電池1)からスタータへ電力が供給されスタータが回転する。エンジンの回転軸には図示しないクラッチ機構を介してスタータの回転駆動力が伝達されエンジンが始動する。 In addition, when the engine of the alternator regenerative vehicle 20 is started, if the IGN is positioned at the START position, electric power is supplied from the power storage device (main battery 1 described later) to the starter, and the starter rotates. The rotation driving force of the starter is transmitted to the rotation shaft of the engine via a clutch mechanism (not shown) to start the engine.
(電源システムの構成)
 次に、本実施形態の電源システム10について説明する。電源システム10は、例えば、図2に示すように、オルタネータ回生車両20のエンジンルームに搭載されるが、本発明はこれに限定されるものではない。
(Power system configuration)
Next, the power supply system 10 of this embodiment is demonstrated. For example, as shown in FIG. 2, the power supply system 10 is mounted in the engine room of the alternator regenerative vehicle 20, but the present invention is not limited to this.
 図1に示すように、本実施形態の電源システム10は、オルタネータ12から供給される回生電力を受け入れ可能かつ放電負荷14に放電可能な蓄電デバイスを備えている。蓄電デバイスは、メイン電池1(Pb電池)と、サブ電池2(NiZn電池)との複合蓄電デバイスとして構成されており、14V系電源システムを構成している。なお、本実施形態で「メイン電池」とはエンジンを始動させるための電池をいい、「サブ電池」とはそれ以外の電池をいう。 As shown in FIG. 1, the power supply system 10 of the present embodiment includes a power storage device that can accept regenerative power supplied from an alternator 12 and can discharge to a discharge load 14. The power storage device is configured as a composite power storage device of a main battery 1 (Pb battery) and a sub battery 2 (NiZn battery), and constitutes a 14V system power supply system. In the present embodiment, “main battery” refers to a battery for starting the engine, and “sub battery” refers to other batteries.
<メイン電池1>
 メイン電池1の電槽には、内部を仕切る隔壁によって6個のセル室を画定するモノブロック電槽が用いられている。モノブロック電槽の中央部の隔壁には上部側から略中央部までセンサ挿入孔が形成されている。センサ挿入孔にはメイン電池1の中央部の温度を検出するサーミスタ等の温度センサが挿入されている。温度センサは接着剤でセンサ挿入孔内に固定されている。
<Main battery 1>
As the battery case of the main battery 1, a monoblock battery case is used in which six cell chambers are defined by partition walls that partition the inside. A sensor insertion hole is formed in the central partition of the monoblock battery case from the upper side to the substantially central part. A temperature sensor such as a thermistor for detecting the temperature of the central portion of the main battery 1 is inserted into the sensor insertion hole. The temperature sensor is fixed in the sensor insertion hole with an adhesive.
 メイン電池1の各セル室には、複数の正極板と負極板とをセパレータを介して積層した極板群が1組ずつ収容されており、水系電解液である希硫酸が注液されている。メイン電池1の正極活物質には二酸化鉛、負極活物質には海綿状鉛を用いることができる。また、回生電力を受け入れやすい構造とするために、非特許文献1にも開示されているように、負極活物質合剤には、上述した負極活物質の他にリグニンおよびカーボン等を含む負極添加剤が混入されている。 Each cell chamber of the main battery 1 accommodates one set of electrode plates in which a plurality of positive and negative electrode plates are stacked via a separator, and is poured with dilute sulfuric acid as an aqueous electrolyte. . Lead dioxide can be used for the positive electrode active material of the main battery 1, and spongy lead can be used for the negative electrode active material. Further, in order to make the structure easy to accept regenerative power, as disclosed in Non-Patent Document 1, the negative electrode active material mixture includes a negative electrode containing lignin and carbon in addition to the negative electrode active material described above. The agent is mixed.
 各セル室はモノブロック電槽の開口を一体に覆う蓋で密閉化されている。各セル室間は導電性の接続部材により直列に接続されている。メイン電池1の上部対角位置には、外部出力端子となる正極端子および負極端子が立設されている。各セルの公称電圧は例えば2Vであり、メイン電池1の公称電圧は例えば12Vである。なお、メイン電池1の負極端子はGNDに接続されている。 Each cell chamber is sealed with a lid that integrally covers the opening of the monoblock battery case. The cell chambers are connected in series by a conductive connecting member. At the upper diagonal position of the main battery 1, a positive terminal and a negative terminal that are external output terminals are provided upright. The nominal voltage of each cell is 2V, for example, and the nominal voltage of the main battery 1 is 12V, for example. Note that the negative terminal of the main battery 1 is connected to GND.
<サブ電池2>
 一方、サブ電池2は、ニッケル亜鉛単電池(例えば、公称電圧1.65V、満充電電圧1.9V)を7個直列に接続した組電池で構成されている。サブ電池2は、最上位電位側に正極端子、最下位電位側に負極端子を有しており、負極端子はGNDに接続されている。本実施形態のサブ電池2の公称電圧は11.55V((1.65V/単電池)×7個)、満充電電圧は13.3V((1.9V/単電池)×7個)である。なお、これに代えて、単電池を8個直列に接続した組電池で構成するようにしてもよい。
<Sub battery 2>
On the other hand, the sub-battery 2 is composed of an assembled battery in which seven nickel zinc single batteries (for example, a nominal voltage of 1.65 V and a full charge voltage of 1.9 V) are connected in series. The sub battery 2 has a positive electrode terminal on the highest potential side and a negative electrode terminal on the lowest potential side, and the negative electrode terminal is connected to GND. The nominal voltage of the sub-battery 2 of this embodiment is 11.55V ((1.65V / cell) × 7), and the full charge voltage is 13.3V ((1.9V / cell) × 7). . Instead of this, an assembled battery in which eight unit cells are connected in series may be used.
 サブ電池2の満充電電圧がメイン電池1の満充電電圧に対して±10%程度の範囲内であることが好ましい。この範囲であれば、セレクタ5によるサブ電池2・メイン電池1間の切り替えがあっても、例えば、ラジオの音量変化やライトの明るさ変化による違和感を防止できる。これらの単電池のうち中央部に配された1本の単電池の電池缶表面には、接着剤によりサーミスタ等の温度センサが固着されている。 It is preferable that the full charge voltage of the sub battery 2 is in a range of about ± 10% with respect to the full charge voltage of the main battery 1. Within this range, even if the selector 5 switches between the sub battery 2 and the main battery 1, it is possible to prevent a sense of incongruity due to, for example, a change in radio volume or a change in light brightness. Among these single cells, a temperature sensor such as a thermistor is fixed to the surface of the single battery cell arranged at the center by an adhesive.
 各単電池は、亜鉛を主成分とした負極と水酸化ニッケルを主成分とした正極とを微多孔性セパレータを介して積層または捲回した電極群を有している。電極群は、水酸化カリウム等の水系電解液に浸潤されて角型または円筒型、扁平円筒型の電池缶内に収容されている。このような単電池の詳細は、例えば、特開平7-6758号公報、特表2008-539559号公報、特表2013-507752号公報等に開示されている。 Each cell has an electrode group in which a negative electrode mainly composed of zinc and a positive electrode mainly composed of nickel hydroxide are laminated or wound via a microporous separator. The electrode group is infiltrated with an aqueous electrolyte such as potassium hydroxide and is accommodated in a rectangular, cylindrical, or flat cylindrical battery can. Details of such a single cell are disclosed in, for example, Japanese Patent Application Laid-Open No. 7-6758, Japanese Patent Application Publication No. 2008-539559, Japanese Patent Application Publication No. 2013-507752, and the like.
 サイクル寿命を延ばすためには、負極の形態変化、凝集、デンドライトの抑制、負極の導電性の向上等が必要である。例えば、形態変化、凝集、デンドライトの抑制に対しては、負極活物質にカルシウム、水酸化物、フッ化物、リン酸を添加したり、電解液にリン酸、フッ化物、炭酸塩を添加したり、セパレータにポリオレフィン微多孔膜を使用したりすることで対処できる。負極の導電性の向上に対しては、負極活物質にビスマス、鉛、カーボン等を添加することで対処できる。 In order to extend the cycle life, it is necessary to change the shape of the negative electrode, agglomerate, suppress dendrite, improve the conductivity of the negative electrode, and the like. For example, to suppress morphological change, aggregation, and dendrite, calcium, hydroxide, fluoride, phosphoric acid is added to the negative electrode active material, or phosphoric acid, fluoride, carbonate is added to the electrolyte. This can be dealt with by using a polyolefin microporous membrane for the separator. The improvement of the conductivity of the negative electrode can be dealt with by adding bismuth, lead, carbon or the like to the negative electrode active material.
<充放電切替部5>
 図1に示すように、電源システム10は、メイン電池1およびサブ電池2の充放電電流を切り替える切替デバイスとしての充放電切替部5(スイッチ手段)を備えている。充放電切替部5の他側第1端はメイン電池1に、他側第2端は電圧変換部9の入力側に、他側第3端はサブ電池2の正極端子にそれぞれ接続されている。充放電切替部5は、大電流が通電可能な複数のスイッチング素子(例えば、パワーMOSFET)で構成されている。
<Charge / discharge switching unit 5>
As shown in FIG. 1, the power supply system 10 includes a charge / discharge switching unit 5 (switch means) as a switching device that switches charge / discharge currents of the main battery 1 and the sub battery 2. The other first end of the charge / discharge switching unit 5 is connected to the main battery 1, the other second end is connected to the input side of the voltage converter 9, and the other third end is connected to the positive terminal of the sub battery 2. . The charge / discharge switching unit 5 includes a plurality of switching elements (for example, power MOSFETs) that can be energized with a large current.
 図3に示すように、充放電切替部5は、オルタネータ12および放電負荷14とメイン電池1の正極端子との接続をオン・オフするための第1のスイッチSW1と、オルタネータ12と電圧変換部9との接続をオン・オフするための第2のスイッチSW2と、放電負荷14とサブ電池2の正極端子との接続をオン・オフするための第3のスイッチSW3とを有している。以下、これらのスイッチを総称する場合はスイッチSW1~SW3という。 As shown in FIG. 3, the charge / discharge switching unit 5 includes a first switch SW <b> 1 for turning on / off the connection between the alternator 12 and the discharge load 14 and the positive terminal of the main battery 1, the alternator 12, and the voltage conversion unit. 9 has a second switch SW2 for turning on / off the connection with the battery 9, and a third switch SW3 for turning on / off the connection between the discharge load 14 and the positive terminal of the sub battery 2. Hereinafter, these switches are collectively referred to as switches SW1 to SW3.
 ここで、充放電切替部5の機能について説明する。充放電切替部5は、オルタネータ12から供給される回生電力を蓄電デバイスで受け入れる際に、オルタネータ12からメイン電池1およびサブ電池2のいずれか一方(本実施形態)または双方(後述する第2、第3実施形態)に接続するスイッチの役割を果たす。また、蓄電デバイスから放電負荷14に放電する際に、メイン電池1およびサブ電池2のいずれか一方から放電負荷14に接続するスイッチの役割を果たす。 Here, the function of the charge / discharge switching unit 5 will be described. When the charge / discharge switching unit 5 receives the regenerative power supplied from the alternator 12 by the power storage device, either the main battery 1 or the sub-battery 2 from the alternator 12 (this embodiment) or both (second, which will be described later). It plays the role of a switch connected to the third embodiment). Further, when discharging from the electricity storage device to the discharge load 14, it plays a role of a switch connected to the discharge load 14 from either the main battery 1 or the sub battery 2.
 本実施形態では、下表1に示すように、充放電切替部5は5つの状態を採る。すなわち、スイッチSW1~SW3のいずれもがオフ状態とされオルタネータ12/放電負荷14がメイン電池1、電圧変換部9およびサブ電池2のいずれにも接続されない状態「0」、第1のスイッチSW1がオン状態、第2のスイッチSW2および第3のスイッチSW3がオフ状態とされオルタネータ12がメイン電池1に接続される状態「1」、第2のスイッチSW2がオン状態、第1のスイッチSW1および第3のスイッチSW3がオフ状態とされオルタネータ12が電圧変換部9を介してサブ電池2に接続される状態「2」、第3のスイッチSW3がオン状態、第1のスイッチSW1および第2のスイッチSW2がオフ状態とされサブ電池2が放電負荷14に接続される状態「4」、第1のスイッチSW1がオン状態、第2のスイッチSW2および第3のスイッチSW3がオフ状態とされメイン電池1が放電負荷14に接続される状態「5」のいずれかを採る。 In the present embodiment, as shown in Table 1 below, the charge / discharge switching unit 5 takes five states. That is, all of the switches SW1 to SW3 are turned off, and the alternator 12 / discharge load 14 is not connected to any of the main battery 1, the voltage converter 9 and the sub battery 2, and the first switch SW1 is On state, second switch SW2 and third switch SW3 are turned off and alternator 12 is connected to main battery 1, state "1", second switch SW2 is on, first switch SW1 and first switch SW1 3 in which the switch SW3 is turned off and the alternator 12 is connected to the sub-battery 2 via the voltage converter 9, the third switch SW3 is turned on, the first switch SW1 and the second switch The state “4” in which SW2 is turned off and the sub battery 2 is connected to the discharge load 14, the first switch SW1 is turned on, and the second switch is turned on. Chi SW2 and the third switch SW3 is take one of the states "5" main battery 1 is turned off is connected to the discharge load 14.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、状態「1」と状態「5」は充電と放電との違いはあるが、スイッチSW1~SW3のオン、オフ状態は同じである。また、本実施形態では、表1からも明らかなように、充放電時にスイッチSW1~SW3のうちいずれか1つがオン状態となり、いずれか2つがオフ状態となるように制御される。 Note that the state “1” and the state “5” are different between charging and discharging, but the on / off states of the switches SW1 to SW3 are the same. In this embodiment, as is clear from Table 1, control is performed so that any one of the switches SW1 to SW3 is turned on and any two are turned off during charging and discharging.
 充放電切替部5を構成するスイッチの切り替え時には、放電負荷14へ電力供給されない状態が一瞬生じる。そのような場合であっても放電負荷14に電力供給できる方法としては、例えば以下の(1)~(3)が挙げられる。(1)メイン電池1と並列にキャパシタを配置する(図1参照)。(2)メイン電池1およびサブ電池2を一瞬同時接続する状態を設ける(放電時に第1のスイッチSW1と第3のスイッチSW3とを一瞬同時にオン状態とする。)。(3)メイン電池1およびサブ電池2以外の一次電池または二次電池を配置する。 When switching the switches constituting the charge / discharge switching unit 5, a state where power is not supplied to the discharge load 14 occurs momentarily. Even in such a case, the following methods (1) to (3) can be cited as methods for supplying power to the discharge load 14. (1) A capacitor is arranged in parallel with the main battery 1 (see FIG. 1). (2) A state in which the main battery 1 and the sub battery 2 are simultaneously connected for a moment is provided (the first switch SW1 and the third switch SW3 are turned on for a moment at the time of discharging). (3) A primary battery or a secondary battery other than the main battery 1 and the sub battery 2 is disposed.
 上記(1)の方法を採用する場合、メイン電池1およびサブ電池2の電圧は、補機が作動するための最低電圧以上とする。ここで、使用するキャパシタの静電容量は、例えば以下のようにして算出される値よりも大きいものを用いることが好ましい。 When adopting the above method (1), the voltage of the main battery 1 and the sub battery 2 is set to be equal to or higher than the minimum voltage for operating the auxiliary machine. Here, the capacitance of the capacitor to be used is preferably larger than, for example, a value calculated as follows.
 例えば、メイン電池1およびサブ電池2が切り替わる時間(マイクロコントローラによる制御時間+充放電切替部5の切り替え時間)=X[μs]とし、負荷電流=Y[A]とすると、
 I×t=Y×X×10-6[C]
 Q=CVより、
 Y×X×10-6=C(メイン電池1またはサブ電池2(切り替え前に接続されていた電池)の電圧-補機が作動するため最低電圧)
 従って、C=Y×X×10-6/(メイン電池1またはサブ電池2(切り替え前に接続されていた電池)の電圧-補機が作動するため最低電圧)[F]以上のキャパシタを使用することが好ましい。
For example, when the time when the main battery 1 and the sub battery 2 are switched (control time by the microcontroller + switching time of the charge / discharge switching unit 5) = X [μs] and load current = Y [A]
I × t = Y × X × 10 −6 [C]
From Q = CV,
Y × X × 10 −6 = C (Voltage of main battery 1 or sub battery 2 (battery connected before switching) −minimum voltage because the auxiliary machine operates)
Therefore, C = Y × X × 10 −6 / (Voltage of main battery 1 or sub battery 2 (battery connected before switching) −minimum voltage because the auxiliary machine operates) Use a capacitor of [F] or more It is preferable to do.
<電圧変換部9>
 変換デバイスとしての電圧変換部9には、例えば、変換効率の高いDC-DCコンバータを用いることができる。DC-DCコンバータは、広く知られているように、スイッチング素子、チョークコイル、ダイオード、電解キャパシタ等で構成される。DC-DCコンバータを含む変換デバイスは、一般に、変換前後の電圧差が小さいほど変換による電力損失が小さい。換言すれば、変換前後の電圧差が小さいほど回生電力の利用効率を高めることができる。
<Voltage conversion unit 9>
For example, a DC-DC converter with high conversion efficiency can be used for the voltage conversion unit 9 as the conversion device. As is well known, the DC-DC converter includes a switching element, a choke coil, a diode, an electrolytic capacitor, and the like. In general, a conversion device including a DC-DC converter has a smaller power loss due to conversion as the voltage difference before and after the conversion is smaller. In other words, the utilization efficiency of regenerative power can be increased as the voltage difference before and after conversion is smaller.
 本実施形態では、オルタネータ12の出力電圧が14Vであり、サブ電池2の満充電電圧が13.3Vであることから、入力電圧が出力電圧より高い直流降圧回路(バックコンバータ)が用いられている。一方、単電池を8個直列に接続した組電池でサブ電池2を構成した場合には満充電電圧は15.2V(1.9V/単電池×8個)となる。オルタネータ12の出力電圧が14Vのときは、入力電圧が出力電圧より低い直流昇圧回路(ブーストコンバータ)が用いられる。従って、電圧変換部9は、サブ電池2を構成する単電池の個数とオルタネータ12の出力電圧とで定められる。なお、電圧変換部9の出力側はサブ電池2の正極端子に接続されている。 In this embodiment, since the output voltage of the alternator 12 is 14V and the fully charged voltage of the sub battery 2 is 13.3V, a DC step-down circuit (buck converter) whose input voltage is higher than the output voltage is used. . On the other hand, when the sub battery 2 is composed of an assembled battery in which eight unit cells are connected in series, the full charge voltage is 15.2 V (1.9 V / unit cell × 8 units). When the output voltage of the alternator 12 is 14V, a DC booster circuit (boost converter) whose input voltage is lower than the output voltage is used. Therefore, the voltage conversion unit 9 is determined by the number of single cells constituting the sub battery 2 and the output voltage of the alternator 12. The output side of the voltage conversion unit 9 is connected to the positive terminal of the sub battery 2.
<コントローラ3、4>
 また、図1に示すように、電源システム10は、メイン電池1、サブ電池2の電池状態をそれぞれ検出するメイン電池コントローラ3、サブ電池コントローラ4(以下、両者を総称する場合はコントローラ3、4という。)を備えている。コントローラ3、4は、充放電中(車両走行中および車両走行前)にそれぞれメイン電池1、サブ電池2の温度、電圧、電流等の電池状態を検出する。
< Controllers 3 and 4>
As shown in FIG. 1, the power supply system 10 includes a main battery controller 3 and a sub battery controller 4 that detect battery states of the main battery 1 and the sub battery 2, respectively (hereinafter, the controllers 3, 4 Is provided.) The controllers 3 and 4 detect battery states such as temperature, voltage, and current of the main battery 1 and the sub battery 2 during charging and discharging (during vehicle traveling and before vehicle traveling), respectively.
 すなわち、本実施形態では、上述したメイン電池1の温度センサはメイン電池コントローラ3に接続されている。メイン電池コントローラ3は所定時間毎に(例えば、10ms間隔で)温度センサの電圧をサンプリングし、サンプリング結果をRAMに格納する。また、メイン電池1の総電圧を検知するために、メイン電池1の正極端子および負極端子はメイン電池コントローラ3に接続されている。 That is, in the present embodiment, the temperature sensor of the main battery 1 described above is connected to the main battery controller 3. The main battery controller 3 samples the voltage of the temperature sensor every predetermined time (for example, at intervals of 10 ms), and stores the sampling result in the RAM. Further, the positive terminal and the negative terminal of the main battery 1 are connected to the main battery controller 3 in order to detect the total voltage of the main battery 1.
 さらに、メイン電池1に流れる充放電電流を検出するために、メイン電池1および充放電切替部5間にはホール素子またはシャント抵抗等の電流センサ7が配されている。電流センサ7はメイン電池コントローラ3に接続されている。メイン電池コントローラ3は、メイン電池1の電圧およびメイン電池1に流れる電流を所定時間毎に(例えば、2ms間隔で)サンプリングし、サンプリング結果をRAMに格納する。また、メイン電池コントローラ3は、充放電休止時(車両駐車時)に、メイン電池1の開回路電圧(以下、OCVと略称する。)およびそのときの温度を検出する。 Further, a current sensor 7 such as a Hall element or a shunt resistor is disposed between the main battery 1 and the charge / discharge switching unit 5 in order to detect a charge / discharge current flowing through the main battery 1. The current sensor 7 is connected to the main battery controller 3. The main battery controller 3 samples the voltage of the main battery 1 and the current flowing through the main battery 1 every predetermined time (for example, at intervals of 2 ms), and stores the sampling result in the RAM. The main battery controller 3 detects the open circuit voltage (hereinafter abbreviated as OCV) of the main battery 1 and the temperature at that time when charging / discharging is stopped (when the vehicle is parked).
 一方、サブ電池コントローラ4も上述したメイン電池コントローラ3と同様の構成を有している。サブ電池コントローラ4は、サブ電池2に流れる充放電電流を電圧変換部9および充放電切替部5とサブ電池2の正極端子との間に配された電流センサ8で検出する。また、サブ電池2の総電圧の検出に加え、過放電・過充電を監視するために各単電池の電圧も検出する点で、メイン電池コントローラ3が検出する以外の電圧検出も行う。サブ電池コントローラ4は、サブ電池2を構成する各単電池の容量を調整する容量調整回路を有していてもよい。 On the other hand, the sub battery controller 4 also has the same configuration as the main battery controller 3 described above. The sub battery controller 4 detects the charge / discharge current flowing through the sub battery 2 with a current sensor 8 disposed between the voltage converter 9 and the charge / discharge switching unit 5 and the positive terminal of the sub battery 2. Further, in addition to the detection of the total voltage of the sub-battery 2, voltage detection other than that detected by the main battery controller 3 is also performed in that the voltage of each single cell is also detected in order to monitor overdischarge / overcharge. The sub battery controller 4 may have a capacity adjustment circuit that adjusts the capacity of each single battery constituting the sub battery 2.
 コントローラ3、4は、制御部6(状態把握部6A)に接続されており、充放電時に、RAMに格納したメイン電池1およびサブ電池2の温度、電圧、電流、サブ電池2を構成する各単電池の電圧を制御部6に出力し、充放電休止時に、検出したOCVおよびそのときの温度を制御部6に出力する。 The controllers 3 and 4 are connected to the control unit 6 (state grasping unit 6A), and at the time of charging / discharging, the temperature, voltage, current of the main battery 1 and the sub battery 2 stored in the RAM, and each of the sub batteries 2 are configured. The voltage of the unit cell is output to the control unit 6, and the detected OCV and the temperature at that time are output to the control unit 6 when charging / discharging is stopped.
<制御部6>
 図1に示すように、電源システム10は、メイン電池1およびサブ電池2の電池状態を演算するとともに、充放電切替部5による電流切り替え動作を制御するコントローラとしての制御部6を備えている。制御部6は、マイクロコントローラ(以下、MCと略称する。)、通信IC、I/O、入力ポート、出力ポートを有するマイクロプロセッサとして構成されている。なお、図1では、制御部6の役割を明確にするために機能別に細部を表している。
<Control unit 6>
As shown in FIG. 1, the power supply system 10 includes a control unit 6 as a controller that calculates battery states of the main battery 1 and the sub battery 2 and controls a current switching operation by the charge / discharge switching unit 5. The control unit 6 is configured as a microprocessor having a microcontroller (hereinafter abbreviated as MC), a communication IC, an I / O, an input port, and an output port. In FIG. 1, details are shown by function in order to clarify the role of the control unit 6.
 MCは、メイン電池1およびサブ電池2の電池状態を把握(演算)するCPU、基本制御プログラムおよび後述するテーブル等のプログラムデータを記憶したROM、CPUのワークエリアとして働くとともに種々のデータを一時的に記憶するRAMおよびこれらを接続する内部バスで構成されている。内部バスは外部バスに接続されている。外部バスは入力ポートを介して上述したコントローラ3、4に接続されている。また、外部バスには、充放電切替部5に信号を出力するための出力ポート、および、I/O、通信線18を介して車両制御部16と通信するための通信ICが接続されている。 The MC serves as a work area for the CPU, a CPU for grasping (calculating) the battery status of the main battery 1 and the sub battery 2, a ROM for storing program data such as a basic control program and a table to be described later, and temporarily stores various data. RAM and an internal bus connecting them. The internal bus is connected to the external bus. The external bus is connected to the controllers 3 and 4 described above via an input port. In addition, an output port for outputting a signal to the charge / discharge switching unit 5 and a communication IC for communicating with the vehicle control unit 16 via the I / O and communication line 18 are connected to the external bus. .
 従って、制御部6のMCおよび入力ポートは図1の状態把握部6Aに、MCおよび出力ポートは切替制御部6Bに、通信ICおよびI/Oは通信部6Cにそれぞれ対応する。制御部6はその他の機能(例えば、後述する省エネモードへ移行させるための機能)も有しているが、図1では捨象している。充放電切替部5と出力ポートとは制御線で接続されている。制御部6を構成するMCの破損を防止するために、制御線には抵抗が挿入されている。なお、制御線には出力ポートを介してハイレベル信号(H)またはローレベル信号(L)が出力される。 Therefore, the MC and the input port of the control unit 6 correspond to the state grasping unit 6A in FIG. 1, the MC and the output port correspond to the switching control unit 6B, and the communication IC and I / O correspond to the communication unit 6C, respectively. Although the control part 6 also has other functions (for example, the function for shifting to the energy saving mode mentioned later), it is discarded in FIG. The charge / discharge switching unit 5 and the output port are connected by a control line. In order to prevent the MC constituting the control unit 6 from being damaged, a resistor is inserted in the control line. A high level signal (H) or a low level signal (L) is output to the control line via the output port.
 図1に沿って制御部6の各部の機能を説明する。状態把握部6Aは、コントローラ3、4から出力された検出データをRAMに一旦格納し、メイン電池1およびサブ電池2の現在の電池状態等を演算(推定)する。通信部6Cは、状態把握部6Aが演算したメイン電池1およびサブ電池2の現在の電池状態を所定時間(例えば、2ms)毎に車両制御部16に報知する。また、通信部6Cは、車両制御部16から車両の状態情報(IGNの位置情報、オルタネータの作動情報)の報知を受ける。車両制御部16は、上述した電磁クラッチを作動させるときとほぼ同じタイミングでオルタネータ12の作動情報を通信部6Cに報知する。切替制御部6Bは、車両制御部16から報知されたオルタネータ12の作動情報および状態把握部6Aで演算したメイン電池1およびサブ電池2の電池状態に従って充放電切替部5を制御する。 The function of each part of the control unit 6 will be described with reference to FIG. The state grasping unit 6A temporarily stores the detection data output from the controllers 3 and 4 in the RAM, and calculates (estimates) the current battery state and the like of the main battery 1 and the sub battery 2. The communication unit 6C notifies the vehicle control unit 16 of the current battery state of the main battery 1 and the sub battery 2 calculated by the state grasping unit 6A every predetermined time (for example, 2 ms). Further, the communication unit 6C receives notification of vehicle state information (IGN position information, alternator operation information) from the vehicle control unit 16. The vehicle control unit 16 notifies the communication unit 6C of the operation information of the alternator 12 at substantially the same timing as when the electromagnetic clutch described above is operated. The switching control unit 6B controls the charging / discharging switching unit 5 according to the operation information of the alternator 12 notified from the vehicle control unit 16 and the battery status of the main battery 1 and the sub battery 2 calculated by the state grasping unit 6A.
 なお、本実施形態では、コントローラ3、4、充放電切替部5、制御部6および車両制御部16等はメイン電池1から供給される電力で作動する。 In the present embodiment, the controllers 3 and 4, the charge / discharge switching unit 5, the control unit 6, the vehicle control unit 16, and the like are operated with electric power supplied from the main battery 1.
(動作)
 次に、本実施形態の電源システム10の動作について、制御部6のMCのCPU(以下、CPUと略称する。)を主体として説明する。
(Operation)
Next, the operation of the power supply system 10 according to the present embodiment will be described with the MC CPU (hereinafter abbreviated as CPU) of the control unit 6 as a main component.
<充放電休止時(車両駐車時)>
 車両走行後の車両駐車開始時には、ドライバによりIGNがON/ACC位置からOFF位置に位置付けられ、イグニッションキーがIGNから引き抜かれる。車両制御部16はIGNを監視しており、IGNがOFF位置に位置付けられると、制御部6にその旨を報知する。
<When charging / discharging is suspended (when the vehicle is parked)>
At the start of vehicle parking after the vehicle travels, the driver positions the IGN from the ON / ACC position to the OFF position, and the ignition key is withdrawn from the IGN. The vehicle control unit 16 monitors the IGN, and notifies the control unit 6 when the IGN is positioned at the OFF position.
 車両制御部16からIGNがOFF位置に位置付けられた旨の報知を受けたCPUは、コントローラ3、4および制御部6をスリープ状態(省エネモード)とする制御を行う。すなわち、充放電切替部5を上述した状態「0」とし、コントローラ3、4にメイン電池1、サブ電池2の温度、電圧、電流等の検出・出力を停止させる。 The CPU that has received notification from the vehicle control unit 16 that the IGN has been positioned at the OFF position performs control to place the controllers 3 and 4 and the control unit 6 in the sleep state (energy saving mode). That is, the charge / discharge switching unit 5 is set to the above-described state “0”, and the controllers 3 and 4 are stopped from detecting and outputting the temperature, voltage, current, and the like of the main battery 1 and the sub battery 2.
 また、CPU自体もメイン電池1、サブ電池2の電池状態の演算および車両制御部16への報知を停止して、車両制御部16からIGNがOFF位置に位置付けられた旨の報知を受けたときから所定時間が経過したか否かを判断する計時処理のみ行う。この所定時間は、例えば、メイン電池1の負極の分極状態が解消したとみなされる6時間に設定することができる。 Further, when the CPU itself stops the calculation of the battery state of the main battery 1 and the sub battery 2 and the notification to the vehicle control unit 16 and receives a notification from the vehicle control unit 16 that the IGN is positioned at the OFF position. Only the time counting process for determining whether or not a predetermined time has elapsed since the first time is performed. This predetermined time can be set to, for example, 6 hours when the polarization state of the negative electrode of the main battery 1 is considered to be eliminated.
 CPUは、車両制御部16からIGNがOFF位置に位置付けられた旨の報知を受けたときから所定時間が経過したと判断すると、コントローラ3、4をアウェーク(作動状態に移行)させ、上述したように、メイン電池1およびサブ電池2のOCVおよびそのときの温度を検出・出力させた後、コントローラ3、4を再度スリーブ状態とする。 When the CPU determines that a predetermined time has elapsed since the notification that the IGN is positioned at the OFF position from the vehicle control unit 16, the CPU awakes (shifts to the operating state) the controllers 3 and 4, and as described above. In addition, after the OCV of the main battery 1 and the sub battery 2 and the temperature at that time are detected and output, the controllers 3 and 4 are put into the sleeve state again.
 次いで、CPUは、メイン電池1およびサブ電池2のOCVからメイン電池1およびサブ電池2の充電状態(以下、SOCと略称する。)を演算する。次いで、プログラムデータとして予めROMに格納されRAMに展開されたテーブルまたは数式を参照して、演算したSOCを基準温度(例えば、25°C)におけるSOCに温度補正してメイン電池1およびサブ電池2の基準SOCを演算(算出)する。 Next, the CPU calculates the state of charge (hereinafter abbreviated as SOC) of the main battery 1 and the sub battery 2 from the OCV of the main battery 1 and the sub battery 2. Next, with reference to a table or mathematical expression stored in advance in the ROM as program data and expanded in the RAM, the calculated SOC is temperature-corrected to an SOC at a reference temperature (for example, 25 ° C.), and the main battery 1 and the sub battery 2 Is calculated (calculated).
 この場合に、メイン電池1およびサブ電池2の健康状態(以下、SOHと略称する。)も併せて演算し、SOHに応じてSOCを補正するようにしてもよい。なお、上述した所定時間が経過しない場合には、メイン電池1の分極状態が解消されず基準SOCが不正確となるため、このような状態でのコントローラ3、4によるOCVの検出やCPUによる基準SOCの演算は行わず、直近に取得していた基準SOCを基準SOCとして取り扱う。 In this case, the health state (hereinafter abbreviated as SOH) of the main battery 1 and the sub battery 2 may also be calculated and the SOC may be corrected according to the SOH. If the predetermined time does not elapse, the polarization state of the main battery 1 is not canceled and the reference SOC becomes inaccurate. Therefore, the OCV is detected by the controllers 3 and 4 in such a state, and the reference by the CPU. The SOC is not calculated, and the most recently acquired reference SOC is handled as the reference SOC.
 次に、CPUは、基準SOCおよび電圧値を車両制御部16に報知し、その後、制御部6を再度スリープ状態とする。換言すると、制御部6は、コントローラ3、4によるOCVおよび温度の検出・出力時、基準SOCの演算時および車両制御部16への報知時のみ作動状態となる。なお、車両走行後にIGNがOFF位置に位置付けられたときは車両制御部16も所定の処理(データ保存等)を行った後スリープ状態となり、制御部6からのOCVおよび温度の報知時のみ作動状態となる。 Next, the CPU notifies the vehicle control unit 16 of the reference SOC and the voltage value, and then makes the control unit 6 sleep again. In other words, the control unit 6 is activated only when the controllers 3 and 4 detect and output the OCV and temperature, when calculating the reference SOC, and when notifying the vehicle control unit 16. When the IGN is positioned at the OFF position after the vehicle travels, the vehicle control unit 16 also performs a predetermined process (data storage, etc.) and then enters a sleep state, and is activated only when the control unit 6 notifies the OCV and temperature. It becomes.
<充放電時(車両走行中および車両走行前)>
1.充放電時の一般制御
 車両駐車後の車両走行前には、ドライバによりIGNにイグニッションキーが挿入される。IGNはOFF位置からON/ACC位置に位置付けられ、さらにON/ACC位置からSTART位置に位置付けられた後、再度ON/ACC位置に位置付けられる。車両制御部16はIGNが最初にON/ACC位置に位置付けられると、制御部6にその旨を報知する。報知を受けたCPUは、コントローラ3、4および制御部6を作動状態に移行させる。
<During charging and discharging (during vehicle travel and before vehicle travel)>
1. General control at the time of charge / discharge Before the vehicle travels after parking the vehicle, an ignition key is inserted into the IGN by the driver. The IGN is positioned from the OFF position to the ON / ACC position, is further positioned from the ON / ACC position to the START position, and is then positioned again at the ON / ACC position. When the IGN is first positioned at the ON / ACC position, the vehicle control unit 16 notifies the control unit 6 to that effect. Upon receiving the notification, the CPU shifts the controllers 3 and 4 and the control unit 6 to the operating state.
 CPUは、充放電中(車両走行中および車両走行前)は、コントローラ3、4で所定時間毎に検出されたメイン電池1およびサブ電池2の電圧値(サブ電池2を構成する各単電池の電圧値を含む。)を取得する。また、上述した基準SOCおよびメイン電池1、サブ電池2の電池容量(既知)に基づいて、コントローラ3、4で所定時間毎に検出された電流値を積算してメイン電池1およびサブ電池2の現在のSOCを推定(演算)する。なお、電圧値、電流値は上述した基準温度に温度補正される。そして、所定時間毎に、メイン電池1およびサブ電池2の現在のSOCおよび電圧値を車両制御部16に報知する。 During charge / discharge (during vehicle travel and before vehicle travel), the CPU 3 and 4 detect voltage values of the main battery 1 and the sub battery 2 detected by the controllers 3 and 4 (for each cell constituting the sub battery 2). Voltage value is included). Further, based on the reference SOC and the battery capacities (known) of the main battery 1 and the sub battery 2, the current values detected at predetermined time intervals by the controllers 3 and 4 are integrated to determine the main battery 1 and the sub battery 2. The current SOC is estimated (calculated). Note that the voltage value and current value are temperature-corrected to the reference temperature described above. Then, the vehicle control unit 16 is notified of the current SOC and voltage values of the main battery 1 and the sub battery 2 at predetermined time intervals.
 一方、この報知を受けた車両制御部16は、メイン電池1およびサブ電池2の現在のSOCおよび電圧値を参照して、上述した電磁クラッチを作動させ図示しないエンジンの回転力をオルタネータ12に伝達させるか(オルタネータ12を作動させ蓄電デバイスを充電するか)否かを判断する。 On the other hand, the vehicle control unit 16 that has received this notification refers to the current SOC and voltage values of the main battery 1 and the sub-battery 2 to operate the electromagnetic clutch described above and transmit the rotational force of the engine (not shown) to the alternator 12. It is determined whether or not (alternator 12 is operated to charge the electricity storage device).
 すなわち、例えば、メイン電池1が使用上限SOC(および/または使用上限電圧値)に近い場合には過充電状態に陥るおそれがあるため、車両制御部16は、オルタネータ12を作動させないように電磁クラッチを制御する。逆に、メイン電池1の劣化が促進されるようなSOC(および/または使用下限電圧値)の場合には、ドライバのブレーキ操作やアクセル操作による回生充電を待たずに、車両走行中または車両走行前にオルタネータ12を作動させてメイン電池1を充電するように電磁クラッチを制御する。なお、この具体的な制御内容については後述する。 That is, for example, when the main battery 1 is close to the use upper limit SOC (and / or the use upper limit voltage value), the vehicle control unit 16 may be in an electromagnetic clutch so that the alternator 12 is not operated. To control. Conversely, in the case of SOC (and / or lower limit voltage value) in which deterioration of the main battery 1 is promoted, the vehicle is traveling or traveling without waiting for regenerative charging by the driver's brake operation or accelerator operation. The electromagnetic clutch is controlled so as to charge the main battery 1 by operating the alternator 12 before. This specific control content will be described later.
2.回生充放電制御
 ここで、本発明の充放電制御について一言すれば、(I)蓄電デバイスがオルタネータ12からの回生電力を受け入れる際に、サブ電池2を使用上限SOCまでメイン電池1に先立っておよび/またはメイン電池1とともに充電した後、メイン電池1を単独で充電し、(II)蓄電デバイスから放電負荷14に放電する際に、サブ電池2を後述する第1のSOCまで放電した後、メイン電池1から放電するものである。
2. Regenerative Charging / Discharging Control Here, the charging / discharging control of the present invention is briefly described. (I) When the power storage device accepts the regenerative power from the alternator 12, the sub battery 2 is used up to the upper limit SOC before the main battery 1 is reached. And / or after charging together with the main battery 1, after charging the main battery 1 alone, and (II) discharging the sub battery 2 to the first SOC described later when discharging from the power storage device to the discharge load 14, The main battery 1 is discharged.
 上記(I)には種々の態様がある。典型的には以下の3つが挙げられる。制御部6は、
(a)サブ電池2を使用上限SOCまで充電した後メイン電池1を充電するか、
(b)サブ電池2を後述する第2のSOCまで充電した後サブ電池2およびメイン電池1をともに充電しサブ電池2を使用上限SOCまで充電した後メイン電池1を充電するか、または、
(c)サブ電池2およびメイン電池1をともに充電しサブ電池2を使用上限SOCまで充電した後メイン電池1を充電する、
ように充放電切替部5を制御する。このうち、本実施形態の電源システム10は上記(I)(a)および(II)の充放電制御を行うものであるが、詳しくは以下のとおりである。
The above (I) has various modes. Typical examples include the following three. The control unit 6
(A) Charging the main battery 1 after charging the sub battery 2 to the upper limit SOC,
(B) After charging the sub battery 2 to a second SOC, which will be described later, the sub battery 2 and the main battery 1 are both charged and the sub battery 2 is charged to the use upper limit SOC and then the main battery 1 is charged, or
(C) Charging the main battery 1 after charging both the sub battery 2 and the main battery 1 and charging the sub battery 2 to the upper limit SOC.
Thus, the charge / discharge switching unit 5 is controlled. Among these, the power supply system 10 of the present embodiment performs the charge / discharge control of the above (I), (a), and (II), and details are as follows.
2-1.回生充電時の制御
 CPUは、車両制御部16からオルタネータ12による回生電力の供給が開始することを表す回生開始情報の報知を受けると、原則として、サブ電池2を使用上限SOCまで充電するように充放電切替部5を制御する(充放電切替部5に状態「2」を選択させる。)。これにより、サブ電池2は回生電力で使用上限SOCまで定電圧充電される。
2-1. Control at the time of regenerative charge When the CPU receives the regenerative start information indicating that the supply of regenerative power by the alternator 12 starts from the vehicle control unit 16, as a general rule, the CPU charges the sub battery 2 to the upper limit SOC. The charge / discharge switching unit 5 is controlled (the state “2” is selected by the charge / discharge switching unit 5). Thereby, the sub-battery 2 is charged at a constant voltage up to the use upper limit SOC with regenerative power.
 ただし、サブ電池2が使用上限SOCとなる前に、車両制御部16からオルタネータ12による回生電力の供給が終了することを表す回生終了情報を受信した場合には、回生電力が供給されないため、その時点でサブ電池2への充電は打ち切られ直ちにサブ電池2から放電負荷14に放電するように充放電切替部5を制御する(充放電切替部5に状態「4」を選択させる。)。 However, when the regeneration end information indicating that the supply of regenerative power by the alternator 12 is terminated from the vehicle control unit 16 before the sub battery 2 reaches the use upper limit SOC, the regenerative power is not supplied. At that time, the charging of the sub-battery 2 is stopped, and the charge / discharge switching unit 5 is controlled so that the sub-battery 2 is immediately discharged from the sub-battery 2 to the discharge load 14 (the charge / discharge switching unit 5 selects state “4”).
 なお、車両制御部16は、ブレーキが踏まれたとき、または、アクセルが開放されたとき(アクセルオフとなったとき)に、回生電力を出力するようにオルタネータ12を制御する。また、制御部6(CPU)に通信線18を介して回生開始情報を報知する。一方、ブレーキが開放されたとき、または、アクセルオフの結果車両の加速度が0となったときに、オルタネータ12の作動を停止させる。また、制御部6(CPU)に通信線18を介して回生終了情報を報知する。 Note that the vehicle control unit 16 controls the alternator 12 to output regenerative power when the brake is depressed or the accelerator is released (accelerator is off). Further, the controller 6 (CPU) is notified of the regeneration start information via the communication line 18. On the other hand, when the brake is released or when the acceleration of the vehicle becomes 0 as a result of the accelerator off, the operation of the alternator 12 is stopped. Further, the controller 6 (CPU) is notified of the regeneration end information via the communication line 18.
 また、サブ電池2が使用上限SOCまで充電されると、原則として、メイン電池1を使用上限SOCまで充電するように充放電切替部5を制御する(充放電切替部5に状態「1」を選択させる。)。これにより、メイン電池1は回生電力で使用上限SOCまで定電圧充電される。 Further, when the sub battery 2 is charged up to the use upper limit SOC, in principle, the charge / discharge switching unit 5 is controlled to charge the main battery 1 to the use upper limit SOC (the state “1” is set in the charge / discharge switching unit 5). Let them choose.) As a result, the main battery 1 is charged at a constant voltage up to the upper limit SOC using regenerative power.
 ただし、メイン電池1が使用上限SOCとなる前に、車両制御部16から回生終了情報を受信した場合には、回生電力が供給されないため、その時点でメイン電池1への充電は打ち切られ直ちにサブ電池2から放電負荷14に放電するように充放電切替部5を制御する(充放電切替部5に状態「4」を選択させる。)。 However, if the regeneration end information is received from the vehicle control unit 16 before the main battery 1 reaches the use upper limit SOC, the regenerative power is not supplied. The charge / discharge switching unit 5 is controlled to discharge from the battery 2 to the discharge load 14 (the state “4” is selected by the charge / discharge switching unit 5).
 さらに、メイン電池1が使用上限SOCまで充電されると、メイン電池1の過充電を避けるために、メイン電池1への充電を打ち切るように充放電切替部5を制御する(充放電切替部5に状態「0」を選択させる。)。 Further, when the main battery 1 is charged up to the upper limit SOC, in order to avoid overcharging of the main battery 1, the charging / discharging switching unit 5 is controlled so as to stop charging the main battery 1 (charging / discharging switching unit 5). To select the state “0”).
2-2.回生放電時の制御
 CPUは、車両制御部16から回生終了情報を受信すると、サブ電池2から放電負荷14に、原則として、サブ電池2が予め定められた第1のSOC(図6(A)参照)となるまで放電するように充放電切替部5を制御する(充放電切替部5に状態「4」を選択させる。)。
2-2. Control at the time of regenerative discharge When the CPU receives regenerative end information from the vehicle control unit 16, the sub-cell 2 is, in principle, a first SOC in which the sub-battery 2 is predetermined (FIG. 6A). The charge / discharge switching unit 5 is controlled so as to discharge until (see) (the state “4” is selected by the charge / discharge switching unit 5).
 ただし、サブ電池2が第1のSOCとなる前に、車両制御部16から回生開始情報を受信した場合には、回生電力が供給されるため、その時点でサブ電池2から放電負荷14への放電は打ち切られ直ちに回生電力でサブ電池2を充電するように充放電切替部5を制御する(充放電切替部5に状態「2」を選択させる。)。 However, when the regeneration start information is received from the vehicle control unit 16 before the sub battery 2 becomes the first SOC, regenerative power is supplied, and at that time, the sub battery 2 is connected to the discharge load 14. The charge / discharge switching unit 5 is controlled so as to charge the sub battery 2 with regenerative power immediately after the discharge is stopped (the charge / discharge switching unit 5 selects the state “2”).
 上述した第1のSOCは、回生電力の利用効率を高め、かつ、サブ電池2の劣化を抑えることができる範囲に設定することが好ましい(例えば、10%~80%)。本実施形態では、第1のSOCは後述する第2のSOC未満の10%に設定されており、サブ電池2を構成する単電池のいずれかが第1のSOCとなるまで放電する。従って、本実施形態では、第1のSOCがサブ電池2の実質的な使用下限SOCとなる。一方、サブ電池2の使用上限SOCは、サブ電池2の容量等により大きく変動するが、一般に、90%~98%の範囲の任意の値を選択することができる。 It is preferable to set the first SOC described above within a range in which the use efficiency of regenerative power can be increased and the deterioration of the sub battery 2 can be suppressed (for example, 10% to 80%). In the present embodiment, the first SOC is set to 10% less than the second SOC, which will be described later, and discharging is performed until any one of the single cells constituting the sub battery 2 becomes the first SOC. Therefore, in the present embodiment, the first SOC is the practical lower limit SOC of the sub battery 2. On the other hand, the upper limit SOC of the sub-battery 2 varies greatly depending on the capacity of the sub-battery 2 and the like, but generally any value in the range of 90% to 98% can be selected.
 第1のSOCは理論的には0%以上に設定できる。本実施形態で第1のSOCが10%に設定されている理由は、SOC推定での累積誤差(例えば、直近の車両駐車時に上述した基準SOCが取得できない場合)があっても過放電によるサブ電池2の劣化を抑えるためである。 The first SOC can theoretically be set to 0% or more. The reason why the first SOC is set to 10% in the present embodiment is that even if there is a cumulative error in the SOC estimation (for example, when the above-mentioned reference SOC cannot be acquired during the latest vehicle parking), the sub SOC due to overdischarge This is to suppress the deterioration of the battery 2.
 また、サブ電池2を構成する単電池のいずれかが第1のSOCまで放電されると、原則として、メイン電池1を予め定められた第3のSOC(図6(B)参照)まで放電するように充放電切替部5を制御する(充放電切替部5に状態「5」を選択させる。)。 In addition, when any of the cells constituting sub battery 2 is discharged to the first SOC, in principle, main battery 1 is discharged to a predetermined third SOC (see FIG. 6B). The charge / discharge switching unit 5 is controlled as described above (the state “5” is selected by the charge / discharge switching unit 5).
 ただし、メイン電池1が第3のSOCとなる前に、車両制御部16から回生開始情報を受信した場合には、その時点でメイン電池1への充電は打ち切られ直ちにサブ電池2を回生電力で充電するように充放電切替部5を制御する(充放電切替部5に状態「2」を選択させる。)。 However, if the regeneration start information is received from the vehicle control unit 16 before the main battery 1 becomes the third SOC, charging to the main battery 1 is stopped at that time, and the sub battery 2 is immediately regenerated with regenerative power. The charge / discharge switching unit 5 is controlled so as to be charged (the state “2” is selected by the charge / discharge switching unit 5).
 この第3のSOCは、メイン電池1(Pb電池)の劣化を防止するためのSOCに設定することができる。Pb電池では一般にSOCが70%を下回ると劣化が加速すると考えられるために、第3のSOCは、例えば、SOC70~90%の範囲の任意の値を選択することができる。以下では、第3のSOCが70%に設定されているものとして説明する。なお、本実施形態では、第3のSOCがメイン電池1の実質的な使用下限SOCとなる。 The third SOC can be set to an SOC for preventing deterioration of the main battery 1 (Pb battery). In the Pb battery, it is generally considered that the deterioration is accelerated when the SOC is lower than 70%. Therefore, for the third SOC, for example, an arbitrary value in the range of SOC 70 to 90% can be selected. In the following description, it is assumed that the third SOC is set to 70%. In the present embodiment, the third SOC is the practical lower limit SOC of the main battery 1.
2-3.ISSとの関係(メイン電池1の充電制御)
 回生電力でメイン電池1を充電する際には、メイン電池1に回生電力をできるだけ多く蓄電するため、メイン電池1を使用上限SOC(例えば、90%~98%)まで充電することが好ましい。一方、メイン電池1を第3のSOC(70%)まで放電した際、劣化を防止するためにメイン電池1を充電するときは、オルタネータ12を作動させる必要がある。このオルタネータ12の作動には図示しないエンジンの動力をオルタネータ12に接続するためガソリン消費を伴う。このため、第3のSOCから使用上限SOCまで充電してもよいが、予め定められた第4のSOC(図6(B)参照、(第3のSOC)<(第4のSOC)<(使用上限SOC))まで充電すれば、その後回生電力によりメイン電池1がさらに充電されることもあるため、燃費向上を図ることができる。
2-3. Relationship with ISS (charge control of main battery 1)
When charging the main battery 1 with regenerative power, it is preferable to charge the main battery 1 to the upper limit SOC (for example, 90% to 98%) in order to store the regenerative power as much as possible in the main battery 1. On the other hand, when the main battery 1 is discharged to the third SOC (70%), the alternator 12 needs to be operated when the main battery 1 is charged in order to prevent deterioration. The operation of the alternator 12 is accompanied by gasoline consumption because the power of an engine (not shown) is connected to the alternator 12. Therefore, charging may be performed from the third SOC to the upper limit SOC, but a predetermined fourth SOC (see FIG. 6B, (third SOC) <(fourth SOC) <( If the battery is charged up to the upper limit of use (SOC)), the main battery 1 may be further charged by regenerative power thereafter, so that fuel efficiency can be improved.
 アイドリングストップ後のエンジン再始動の際はメイン電池1からスタータへ大電流が供給される。その際にもメイン電池1の劣化を防止するためには、第3のSOCより大きな値に保たれている必要がある。このため、上述した第4のSOCは、例えば、(第4のSOC)=(第3のSOC)+{(アイドリングストップ時の放電負荷14への電力供給分のSOC+アイドリングストップ後のエンジン再始動分のSOC)}に設定される。 When the engine is restarted after idling is stopped, a large current is supplied from the main battery 1 to the starter. Even in this case, in order to prevent the deterioration of the main battery 1, it is necessary to maintain a value larger than the third SOC. For this reason, the above-described fourth SOC is, for example, (fourth SOC) = (third SOC) + {(SOC corresponding to the power supply to the discharge load 14 when idling is stopped + engine restart after idling is stopped) Min SOC)}.
 CPUは、メイン電池1が第3のSOCまで放電されると、メイン電池1の劣化を防止するために、上述したように車両制御部16との協調制御により、メイン電池1を第4のSOCまで充電するように充放電切替部5を制御する(充放電切替部5を状態「1」を選択させる。)。 When the main battery 1 is discharged to the third SOC, the CPU controls the main battery 1 to the fourth SOC by cooperative control with the vehicle control unit 16 as described above in order to prevent deterioration of the main battery 1. The charging / discharging switching unit 5 is controlled so as to be charged (the state “1” is selected for the charging / discharging switching unit 5).
 次に、上述した充放電制御について、CPUを主体に、フローチャートを参照してさらに説明する。なお、既に述べた充放電制御の内容と重複する内容(処理)についてはできるだけ簡潔に説明する。 Next, the above-described charge / discharge control will be further described with reference to a flowchart with the CPU as the main component. Note that the content (processing) that overlaps the content of the charge / discharge control already described will be described as briefly as possible.
 図4に示すように、充放電制御ルーチンでは、車両制御部16から回生開始情報(ステップ102)または回生終了情報(ステップ202)を受信するまで待機する。 As shown in FIG. 4, in the charge / discharge control routine, the process waits until the regeneration start information (step 102) or the regeneration end information (step 202) is received from the vehicle control unit 16.
 ステップ102で肯定判断のときは(回生開始情報を受信すると)、ステップ104において充放電切替部5に状態「2」を選択させる。これにより、サブ電池2は回生電力で定電圧充電される。次にステップ112では、回生終了情報を受信したか否かを判断する。肯定判断のときは、ステップ204に進み(サブ電池2への充電は打ち切られ)、否定判断のときは、次のステップ114においてサブ電池2が使用上限SOCとなったかを判断する。ステップ114での判断が否定のときはステップ112に戻り、肯定のときは、次のステップ116においてメイン電池1を回生電力で充電するように充放電切替部5に状態「1」を選択させる。これにより、メイン電池1は回生電力で定電圧充電される。 When an affirmative determination is made at step 102 (when regeneration start information is received), the charge / discharge switching unit 5 is made to select the state “2” at step 104. Thereby, the sub battery 2 is charged at a constant voltage with regenerative power. Next, in step 112, it is determined whether or not regeneration end information has been received. If the determination is affirmative, the process proceeds to step 204 (charging to the sub-battery 2 is discontinued). If the determination is negative, it is determined in the next step 114 whether the sub-battery 2 has reached the upper limit SOC. If the determination in step 114 is negative, the process returns to step 112. If the determination is affirmative, the charge / discharge switching unit 5 is made to select the state “1” so that the main battery 1 is charged with regenerative power in the next step 116. Thereby, the main battery 1 is charged at a constant voltage with regenerative power.
 次にステップ118では、回生終了情報を受信したか否かを判断する。肯定判断のときは、ステップ204に進み(メイン電池1への充電は打ち切られ)、否定判断のときは、次のステップ120においてメイン電池1が使用上限SOCとなったかを判断する。ステップ120での判断が否定のときはステップ118に戻り、肯定のときは次のステップ122において充放電切替部5に状態「0」を選択させ、ステップ102に戻る。これにより、メイン電池1は回生電力による充電が打ち切られる。 Next, in step 118, it is determined whether or not regeneration completion information has been received. If the determination is affirmative, the process proceeds to step 204 (charging to the main battery 1 is discontinued). If the determination is negative, it is determined in the next step 120 whether the main battery 1 has reached the upper limit SOC. If the determination in step 120 is negative, the process returns to step 118. If the determination is affirmative, the charge / discharge switching unit 5 is selected to be in state “0” in the next step 122, and the process returns to step 102. As a result, the charging of the main battery 1 with regenerative power is discontinued.
 一方、ステップ202で肯定判断のときは(回生終了情報を受信すると)、ステップ204において充放電切替部5に状態「4」を選択させる。これにより、サブ電池2の電力が放電負荷14に供給される。次にステップ206では、回生開始情報を受信したか否かを判断する。肯定判断のときは、ステップ104に戻り(サブ電池2から放電負荷14への放電は打ち切られ)、否定判断のときは、次のステップ208においてサブ電池2が第1のSOCとなったかを判断する。ステップ208での判断が否定のときはステップ206に戻り、肯定のときは次のステップ210において充放電切替部5に状態「5」を選択させる。これにより、メイン電池1の電力が放電負荷14に供給される。 On the other hand, when an affirmative determination is made in step 202 (when regeneration completion information is received), in step 204, the charge / discharge switching unit 5 is made to select the state “4”. Thereby, the electric power of the sub battery 2 is supplied to the discharge load 14. Next, in step 206, it is determined whether regeneration start information has been received. If the determination is affirmative, the process returns to step 104 (the discharge from the sub battery 2 to the discharge load 14 is terminated). If the determination is negative, it is determined in the next step 208 whether the sub battery 2 has reached the first SOC. To do. If the determination in step 208 is negative, the process returns to step 206. If the determination is affirmative, the charge / discharge switching unit 5 is made to select the state “5” in the next step 210. Thereby, the power of the main battery 1 is supplied to the discharge load 14.
 次にステップ212では、回生終了情報を受信したか否かを判断する。肯定判断のときは、ステップ104に戻り(メイン電池1から放電負荷14への放電は打ち切られ)、否定判断のときは、次のステップ214においてメイン電池1が第3のSOCとなったかを判断する。ステップ214での判断が否定のときはステップ212に戻り、肯定のときは次のステップ216においてメイン電池1を充電するためのメイン電池充電処理を実行する。なお、充放電制御ルーチンは車両制御部16からIGNがOFF位置に位置付けられた旨の報知を受け制御部6がスリープ状態となったときに終了するが、その際、充放電切替部5は状態「0」に戻される。 Next, in step 212, it is determined whether or not regeneration end information has been received. If the determination is affirmative, the process returns to step 104 (the discharge from the main battery 1 to the discharge load 14 is terminated). If the determination is negative, it is determined in the next step 214 whether the main battery 1 has reached the third SOC. To do. If the determination in step 214 is negative, the process returns to step 212. If the determination is affirmative, main battery charging processing for charging the main battery 1 is executed in the next step 216. The charge / discharge control routine is terminated when the control unit 6 enters a sleep state upon receiving a notification from the vehicle control unit 16 that the IGN is positioned at the OFF position. Returned to "0".
 図5に示すように、メイン電池充電処理サブルーチンでは、ステップ232において、車両制御部16にメイン電池1が第3のSOCに至った旨を報知する。この報知を受けた車両制御部16は、上述した電磁クラッチを作動させ図示しないエンジンの回転力をオルタネータ12に伝達させることでオルタネータ12を始動させる。そして、オルタネータ12が始動することを表すオルタネータ始動情報を制御部6(CPU)に報知する。一方、CPUは、車両制御部16からオルタネータ始動情報を受信するまで待機する(ステップ234)。この間、メイン電池1はなおも放電負荷14に放電されるため、メイン電池1のSOCは上述した第3のSOCより小さくなる。メイン電池1のSOCが第3のSOCより小さくなることを避けるためには、メイン電池1が第3のSOCに到達する前に車両制御部16にメイン電池1が第3のSOCに至る旨を報知すればよい。 As shown in FIG. 5, in the main battery charging processing subroutine, in step 232, the vehicle control unit 16 is notified that the main battery 1 has reached the third SOC. Receiving this notification, the vehicle control unit 16 starts the alternator 12 by operating the electromagnetic clutch described above and transmitting the rotational force of the engine (not shown) to the alternator 12. Then, alternator start information indicating that the alternator 12 is started is notified to the control unit 6 (CPU). On the other hand, the CPU waits until the alternator start information is received from the vehicle control unit 16 (step 234). During this time, since the main battery 1 is still discharged to the discharge load 14, the SOC of the main battery 1 is smaller than the above-described third SOC. In order to prevent the SOC of the main battery 1 from becoming smaller than the third SOC, the vehicle controller 16 informs the vehicle control unit 16 that the main battery 1 reaches the third SOC before the main battery 1 reaches the third SOC. What is necessary is just to alert | report.
 CPUは、ステップ234で肯定判断のときは(車両制御部16からオルタネータ始動情報を受信すると)、次のステップ236において充放電切替部5に状態「1」を選択させる。これにより、メイン電池1は定電圧充電されるが、上述したようにこの充電は回生電力によるものではなく、従来のガソリン車等と同様の充電方式である。 If the CPU makes an affirmative determination in step 234 (receives alternator start information from the vehicle control unit 16), it causes the charge / discharge switching unit 5 to select the state "1" in the next step 236. As a result, the main battery 1 is charged at a constant voltage, but as described above, this charging is not based on regenerative electric power, and is a charging method similar to that of a conventional gasoline vehicle or the like.
 次のステップ238では、メイン電池1が第4のSOCに充電されるまで待機する。メイン電池1が第4のSOCまで充電されると、次のステップ240において、車両制御部16にメイン電池1が第4のSOCまで充電された旨を報知してメイン電池充電処理サブルーチンを終了し、図4のステップ102へ戻る。これにより、車両制御部16は、上述した電磁クラッチよる図示しないエンジンの回転力のオルタネータ12への伝達を停止させる。 In the next step 238, the process waits until the main battery 1 is charged to the fourth SOC. When the main battery 1 is charged up to the fourth SOC, in the next step 240, the vehicle control unit 16 is notified that the main battery 1 has been charged up to the fourth SOC, and the main battery charging process subroutine is terminated. Return to step 102 in FIG. Thereby, the vehicle control part 16 stops the transmission to the alternator 12 of the rotational force of the engine which is not shown in figure by the electromagnetic clutch mentioned above.
 なお、上記では、制御内容を分かりやすく説明するために、ステップ232、240においてメイン電池1が第3、第4のSOCに至った旨を報知する例を示した(図5参照)。しかし、上述したように制御部6は車両制御部16に所定時間毎にメイン電池1およびサブ電池2のSOCを報知しているため、必ずしもこのような報知を行う必要はない。例えば、車両制御部16は所定時間毎に報知されるメイン電池1のSOCを監視し、メイン電池1が第3のSOCに至ったときまたはその直前にオルタネータ12が始動するように制御し制御部6にオルタネータ始動情報を報知するようにしてもよい。 In addition, in the above, in order to explain the contents of control in an easy-to-understand manner, an example in which the main battery 1 has reached the third and fourth SOCs in steps 232 and 240 has been shown (see FIG. 5). However, as described above, the control unit 6 notifies the vehicle control unit 16 of the SOCs of the main battery 1 and the sub battery 2 every predetermined time, and thus it is not always necessary to perform such notification. For example, the vehicle control unit 16 monitors the SOC of the main battery 1 notified every predetermined time, and controls the control unit so that the alternator 12 starts when the main battery 1 reaches the third SOC or immediately before that. Alternatively, the alternator start information may be notified to 6.
 また、メイン電池1の充電については、車両走行前にも図4のステップ214、216と同様の処理が行われる。ただし、車両走行中はステップ214においてメイン電池1が第3のSOCに至ったかを判断するのに対し、車両走行前は、CPUがアウェークした直後のため、メイン電池1が自己放電等により第3のSOC以下となったか否かを判断する点で異なる。 Further, for the charging of the main battery 1, the same processing as in steps 214 and 216 in FIG. 4 is performed before the vehicle travels. However, while the vehicle travels, it is determined in step 214 whether the main battery 1 has reached the third SOC, whereas before the vehicle travels, since the CPU has just awakened, the main battery 1 is subject to the third due to self-discharge or the like. The difference is that it is determined whether or not the SOC is equal to or lower than the SOC.
 さらに、上記では、充放電制御を簡潔に説明するために、SOCを中心に説明した。本実施形態では、サブ電池2の使用上限SOC等の他に、サブ電池2の使用上限電圧V、使用下限電圧V、サブ電池2を構成する各単電池の使用上限電圧、使用下限電圧も予め設定されている。サブ電池2が使用上限電圧Vに達した場合には、回生電力によるサブ電池2への充電を打ち切りメイン電池1を充電する。一方、サブ電池2が使用下限電圧V、各単電池の使用下限電圧、さらに、第1のSOCに対応して予め定められた電圧に達した場合には、サブ電池2から放電負荷14への放電を打ち切りメイン電池1から放電負荷14に放電する制御も行っている。また、メイン電池1もサブ電池2と同様に、使用上限電圧、使用下限電圧が設定されており、サブ電池2と同様に、使用上限電圧、使用下限電圧に応じて、さらには第3のSOCに対応して予め定められた電圧に応じてメイン電池1の充放電制御も行っている。 Furthermore, in the above description, the SOC has been mainly described in order to briefly explain the charge / discharge control. In the present embodiment, in addition to the use upper limit SOC of the sub battery 2, the use upper limit voltage V U , the use lower limit voltage V L of the sub battery 2, the use upper limit voltage of each cell constituting the sub battery 2, and the use lower limit voltage Is also preset. When the sub-battery 2 has reached the upper limit operating voltage V U charges the discontinuation main battery 1 to charge the sub battery 2 due to regenerative power. On the other hand, when the sub battery 2 reaches the use lower limit voltage V L , the use lower limit voltage of each single battery, and a voltage that is predetermined in correspondence with the first SOC, the sub battery 2 transfers to the discharge load 14. Control is also performed so that the main battery 1 is discharged and discharged to the discharge load 14. Similarly to the sub battery 2, the main battery 1 has a use upper limit voltage and a use lower limit voltage set. Similar to the sub battery 2, the main battery 1 further has a third SOC according to the use upper limit voltage and the use lower limit voltage. The charging / discharging control of the main battery 1 is also performed according to a voltage determined in advance.
3.異常処理
 CPUは、メイン電池1の電圧や温度が所定範囲にあるか、サブ電池2を構成する各単電池の電圧が所定範囲にあるか否やサブ電池2の温度も監視する。電圧や温度が予め設定された所定範囲から外れた場合にはその旨も車両制御部16に報知する。このような異常は段階別に処理を異ならせることが好ましく、車両制御部16は必要に応じてインストールメントパネルにその旨を表示する。CPUは、異常状態に応じて、メイン電池1およびサブ電池2のいずれか一方を使用せず、いずれか他方のみを使用するように充放電切替部5に状態を選択させるようにしてもよい。
3. Abnormal Processing The CPU also monitors whether the voltage and temperature of the main battery 1 are within a predetermined range, whether the voltage of each single cell constituting the sub battery 2 is within a predetermined range, and the temperature of the sub battery 2. When the voltage or temperature is out of a predetermined range set in advance, this is also notified to the vehicle control unit 16. Such an abnormality is preferably processed in different stages, and the vehicle control unit 16 displays the fact on the installation panel as necessary. The CPU may cause the charge / discharge switching unit 5 to select a state so that only one of the main battery 1 and the sub battery 2 is used instead of the other depending on the abnormal state.
[第2実施形態]
 次に、本発明を、オルタネータ回生車両に搭載可能な電源システムに適用した第2の実施の形態について説明する。本実施形態は、上記(I)の蓄電デバイスがオルタネータ12から回生電力を受け入れる際に、(b)サブ電池2を第2のSOCまで充電した後サブ電池2およびメイン電池1をともに充電しサブ電池2を使用上限SOCまで充電した後メイン電池1を充電するように充放電切替部5を制御するものである。なお、本実施形態以下の実施形態において、上述した第1実施形態と同一の構成および動作には同一の符号を付してその説明を省略する。
[Second Embodiment]
Next, a second embodiment in which the present invention is applied to a power supply system that can be mounted on an alternator regenerative vehicle will be described. In this embodiment, when the electricity storage device (I) receives regenerative power from the alternator 12, (b) the sub battery 2 and the main battery 1 are charged together after the sub battery 2 is charged to the second SOC. The charge / discharge switching unit 5 is controlled to charge the main battery 1 after charging the battery 2 to the upper limit SOC. In the following embodiments, the same configurations and operations as those of the first embodiment described above are denoted by the same reference numerals, and the description thereof is omitted.
 第2実施形態では、下表2に示すように、充放電切替部5は表1に示した状態「0」~「2」、「4」、「5」に加え、第1のスイッチSW1および第2のスイッチSW2をオン状態、第3のスイッチSW3をオフ状態とすることでオルタネータ12がメイン電池1および電圧変換部9を介してサブ電池2に並列接続される状態「3」を採る。ただし、放電負荷14に放電する際、メイン電池1がサブ電池2より電池電圧が高く両者を並列接続するとサブ電池2がメイン電池1で充電されてしまう事態が生じるため、メイン電池1とサブ電池2とをともに放電負荷14に接続する状態は採らない。この点は、後述する第3の実施形態についても同じである。 In the second embodiment, as shown in Table 2 below, the charge / discharge switching unit 5 adds the first switch SW1 and the states “0” to “2”, “4”, “5” shown in Table 1 By setting the second switch SW2 to the on state and the third switch SW3 to the off state, the alternator 12 is in the state “3” connected in parallel to the sub battery 2 via the main battery 1 and the voltage converter 9. However, when the main battery 1 has a battery voltage higher than that of the sub battery 2 and is connected in parallel when discharging to the discharge load 14, the sub battery 2 may be charged by the main battery 1. 2 is not connected to the discharge load 14 together. This also applies to a third embodiment described later.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 次に、第2実施形態の電源システム10の充放電制御について、図7を参照して説明する。図7は、図4のステップ104とステップ112との間にステップ106~ステップ110が挿入されている点で異なるため、以下ではこの相違点についてのみ説明する。 Next, charge / discharge control of the power supply system 10 of the second embodiment will be described with reference to FIG. FIG. 7 differs in that steps 106 to 110 are inserted between step 104 and step 112 in FIG. 4, and only this difference will be described below.
 ステップ104に続くステップ106では回生終了情報を受信した否かを判断する。肯定判断のときは、ステップ204に進み(サブ電池2への充電は打ち切られ)、否定判断のときは、次のステップ108においてサブ電池2が第2のSOCとなったかを判断する。 In step 106 following step 104, it is determined whether or not regeneration end information has been received. If the determination is affirmative, the process proceeds to step 204 (charging to the sub-battery 2 is discontinued). If the determination is negative, it is determined in the next step 108 whether the sub-battery 2 has reached the second SOC.
 この第2のSOCは、例えば、70%~90%の範囲の任意の値を選択することができる(図6(A)も参照)。本実施形態では、第2のSOCが80%に設定されている。従って、本実施形態では、サブ電池2による回生電力の利用効率を高めるために、第2のSOC(80%)と第1のSOC(10%)との差が70%に設定されている。この差は、電源システムとしては大きいほど好ましく、少なくとも60%以上であることが望ましい。すなわち、サブ電池2に対する劣化防止(過充電側、過放電側の双方)の確実性と、サブ電池2による回生電力の利用効率向上との鬩ぎ合いとなる。 For the second SOC, for example, an arbitrary value in the range of 70% to 90% can be selected (see also FIG. 6A). In the present embodiment, the second SOC is set to 80%. Therefore, in this embodiment, in order to increase the utilization efficiency of the regenerative power by the sub battery 2, the difference between the second SOC (80%) and the first SOC (10%) is set to 70%. This difference is preferably as large as possible for the power supply system, and is desirably at least 60% or more. That is, there is a tradeoff between the certainty of preventing the deterioration of the sub battery 2 (both on the overcharge side and the over discharge side) and improving the utilization efficiency of the regenerative power by the sub battery 2.
 ステップ108での判断が否定のときはステップ106に戻り、肯定のときは次のステップ110において充放電切替部5に状態「3」を選択させ、ステップ112に進む。これにより、サブ電池2およびメイン電池1は並列接続(並列充電)され、ともに回生電力により定電圧充電される。 If the determination in step 108 is negative, the process returns to step 106. If the determination is affirmative, the charge / discharge switching unit 5 is selected in state “3” in the next step 110, and the process proceeds to step 112. Thereby, the sub battery 2 and the main battery 1 are connected in parallel (parallel charging), and both are charged at a constant voltage by regenerative power.
[第3実施形態]
 次に、本発明を、オルタネータ回生車両に搭載可能な電源システムに適用した第3の実施の形態について説明する。本実施形態は、上記(I)の蓄電デバイスがオルタネータ12から回生電力を受け入れる際に、(c)サブ電池2およびメイン電池1をともに充電しサブ電池2を使用上限SOCまで充電した後メイン電池1を充電するように充放電切替部5を制御するものである。
[Third Embodiment]
Next, a third embodiment in which the present invention is applied to a power supply system that can be mounted on an alternator regenerative vehicle will be described. In the present embodiment, when the electricity storage device of (I) receives regenerative power from the alternator 12, (c) the sub battery 2 and the main battery 1 are both charged and the sub battery 2 is charged to the upper limit SOC and then the main battery The charge / discharge switching unit 5 is controlled to charge 1.
 第3実施形態では、下表3に示すように、充放電切替部5は表1に示した状態「2」に代えて、第1のスイッチSW1および第2のスイッチSW2をオン状態、第3のスイッチSW3をオフ状態とすることでオルタネータ12がメイン電池1および電圧変換部9を介してサブ電池2に並列接続される状態「3」を採る。 In the third embodiment, as shown in Table 3 below, the charge / discharge switching unit 5 turns on the first switch SW1 and the second switch SW2 instead of the state “2” shown in Table 1, When the switch SW3 is turned off, the alternator 12 is connected in parallel to the sub battery 2 via the main battery 1 and the voltage converter 9.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 第3実施形態の電源システム10の充放電制御について、図8を参照して説明する。図8は、図4のステップ104に代えてステップ105を実行する点で異なっている。すなわち、ステップ102で肯定判断のときは、ステップ105において充放電切替部5に状態「3」を選択させ、ステップ112に進む。これにより、サブ電池2およびメイン電池1は並列接続(並列充電)され、ともに回生電力により定電圧充電される。 The charge / discharge control of the power supply system 10 of the third embodiment will be described with reference to FIG. FIG. 8 differs in that step 105 is executed instead of step 104 in FIG. That is, when the determination in step 102 is affirmative, the charge / discharge switching unit 5 is selected in the state “3” in step 105, and the process proceeds to step 112. Thereby, the sub battery 2 and the main battery 1 are connected in parallel (parallel charging), and both are charged at a constant voltage by regenerative power.
(作用効果等)
 次に、上記第1~第3実施形態の電源システム10の作用効果等について説明する。
(Effects etc.)
Next, functions and effects of the power supply system 10 according to the first to third embodiments will be described.
 上記実施形態の電源システム10では、Pb電池のメイン電池1とNiZn電池のサブ電池2とで複合蓄電デバイスを構成したので、従来技術として挙げたPb電池とリチウムイオン電池の複合蓄電デバイスやPb電池とNiMH電池の複合蓄電デバイスを用いる場合と比べ、低コストでエネルギ密度や安全性に優れた電源システムを提供することができる。 In the power supply system 10 of the above embodiment, the Pb battery main battery 1 and the NiZn battery sub-battery 2 constitute a composite power storage device. Therefore, the Pb battery and the lithium ion battery composite power storage device or Pb battery mentioned as the prior art As compared with the case of using a NiMH battery composite power storage device, it is possible to provide a power supply system that is low in cost and excellent in energy density and safety.
 また、上記実施形態の電源システム10では、上記(I)の回生電力を受け入れる際に、上記(a)~(c)のいずれかでサブ電池2ないしメイン電池1を充電するように充放電切替部5を制御し、上記(II)の放電負荷14に放電する際に、サブ電池2を第1のSOCとなるまで放電した後メイン電池1から放電するように充放電切替部5を制御する。このため、例えば特許文献1の電源システムのように充放電休止時を待つことなくサブ電池2に蓄えられた回生電力を直ちに放電負荷14に放電可能なため、蓄電デバイス全体の利用効率を高め車両の燃費改善率を向上させることができる。 In the power supply system 10 of the above embodiment, when the regenerative power of (I) is received, the charge / discharge switching is performed so that the sub battery 2 or the main battery 1 is charged by any of the above (a) to (c). When controlling the unit 5 to discharge to the discharge load 14 of the above (II), the charge / discharge switching unit 5 is controlled so that the sub battery 2 is discharged to the first SOC and then discharged from the main battery 1. . For this reason, since the regenerative electric power stored in the sub-battery 2 can be immediately discharged to the discharge load 14 without waiting for the charging / discharging pause as in the power supply system of Patent Document 1, for example, the use efficiency of the entire power storage device is increased. The fuel consumption improvement rate can be improved.
 また、上記実施形態の電源システム10では、制御部6が、蓄電デバイスから放電負荷14に放電する際に、サブ電池2を構成する各単電池のいずれかが第1のSOCとなるまで放電した後に、メイン電池1から放電するように充放電切替部5を制御する。第1のSOCでサブ電池2の放電を抑えるため、サブ電池2の劣化を防止できるとともに、サブ電池2に蓄えられた、使用上限SOCから第1のSOCの範囲の電力を放電負荷14に放電できるため、オルタネータ12で発電された回生電力に対し高い利用効率を確保することができる。 Moreover, in the power supply system 10 of the said embodiment, when the control part 6 discharged from the electrical storage device to the discharge load 14, it discharged until one of each single battery which comprises the subcell 2 became 1st SOC. Later, the charge / discharge switching unit 5 is controlled to discharge from the main battery 1. In order to suppress the discharge of the sub battery 2 with the first SOC, the deterioration of the sub battery 2 can be prevented, and the power stored in the sub battery 2 within the range from the upper limit SOC to the first SOC is discharged to the discharge load 14. Therefore, high utilization efficiency can be ensured for the regenerative power generated by the alternator 12.
 また、第2、第3実施形態の電源システム10では、サブ電池2およびメイン電池1を回生電力で並列充電するので、サブ電池2の利用効率を高めつつ、メイン電池1をほぼ第3のSOC以上のSOCに保つことができる。このため、ガソリン消費による燃費効率の低下を防止することができる。なお、第2実施形態では先にサブ電池2を第2のSOC(80%)まで充電した後サブ電池2およびメイン電池1を並列充電するため、サブ電池2の利用効率を第3実施形態より高めることができる。 Further, in the power supply system 10 of the second and third embodiments, the sub battery 2 and the main battery 1 are charged in parallel with regenerative power, so that the main battery 1 is substantially third SOC while improving the utilization efficiency of the sub battery 2. The above SOC can be maintained. For this reason, it is possible to prevent a decrease in fuel efficiency due to gasoline consumption. In the second embodiment, since the sub battery 2 and the main battery 1 are charged in parallel after the sub battery 2 is charged to the second SOC (80%) first, the utilization efficiency of the sub battery 2 is higher than that of the third embodiment. Can be increased.
 さらに、上記実施形態の電源システム10では、メイン電池1はエンジン始動用の蓄電デバイスであり、制御部6はメイン電池1のSOCも推定する。CPUは、メイン電池1が第3のSOC(70%)まで放電したときに、メイン電池1を充電するように充放電切替部5を制御するので、メイン電池1の劣化も防止することができる。このとき、CPUは、メイン電池1を使用上限SOC未満の第4のSOCまで充電するように充放電切替部5を制御するので、上述したように燃費向上を図ることができる。 Furthermore, in the power supply system 10 of the above embodiment, the main battery 1 is an electric storage device for starting the engine, and the control unit 6 also estimates the SOC of the main battery 1. Since the CPU controls the charge / discharge switching unit 5 to charge the main battery 1 when the main battery 1 is discharged to the third SOC (70%), the deterioration of the main battery 1 can also be prevented. . At this time, since the CPU controls the charge / discharge switching unit 5 so as to charge the main battery 1 to the fourth SOC less than the upper limit SOC, the fuel consumption can be improved as described above.
 なお、上記実施形態では本発明を車両用電源システムに適用した例を示した。しかしながら、本発明は例示した車両用電源システムに限られるものではない。すなわち、車両以外の移動体にも適用可能であり、さらには、据え置きタイプの電源システムにも適用可能である。 In the above embodiment, an example in which the present invention is applied to a vehicle power supply system is shown. However, the present invention is not limited to the illustrated vehicle power supply system. That is, the present invention can be applied to a moving body other than a vehicle, and can also be applied to a stationary power supply system.
 また、上記実施形態では、1個のメイン電池1と、単電池7直列または8直列で構成された1個のサブ電池2とを有する蓄電デバイスを例示したが、本発明はこれに制約されるものではない。例えば、複数個のPb電池と、1個または複数個のNiZn電池とを組み合わせて(例えば、直並列に接続して)、高電圧・大容量の蓄電デバイスとしてもよい。その際、数個のPb電池、数個のNiZn電池を、それぞれまたは同時に、1つのケーシング内に収めて1つの電池群ユニットを構成し、複数個の電池群ユニットで蓄電デバイスを構成するようにしてもよい。このような構成により、例えば、電気自動車や船舶、風力・太陽光発電における家庭用・業務用の電源システムとして適用可能である。その際、電源システムは、蓄電デバイスから放電負荷に電力を供給するために、DC-ACコンバータをさらに備えていてもよい。 Moreover, in the said embodiment, although the electrical storage device which has one main battery 1 and one sub battery 2 comprised by the cell 7 series or 8 series was illustrated, this invention is restrict | limited to this. It is not a thing. For example, a plurality of Pb batteries and one or a plurality of NiZn batteries may be combined (for example, connected in series and parallel) to form a high voltage / large capacity power storage device. At that time, several Pb batteries and several NiZn batteries are respectively or simultaneously contained in one casing to constitute one battery group unit, and a plurality of battery group units constitute an electricity storage device. May be. With such a configuration, for example, it can be applied as a home / business power supply system in an electric vehicle, a ship, wind power / solar power generation. At this time, the power supply system may further include a DC-AC converter in order to supply power from the power storage device to the discharge load.
 さらに、上記実施形態では、OCVから基準SOCを算出しこの基準SOCに対し充放電電流を積算することでメイン電池1およびサブ電池2の現在のSOCを推定する例を示した。しかしながら、本発明はこれに限定されるものではなく、公知のSOC推定手段を用いることができる。 Furthermore, in the said embodiment, the example which estimated current SOC of the main battery 1 and the sub battery 2 by calculating reference | standard SOC from OCV, and integrating | accumulating charging / discharging electric current with respect to this reference | standard SOC was shown. However, the present invention is not limited to this, and a known SOC estimation means can be used.
 また、上記実施形態では、切替デバイスとしての充放電切替部5に3つのスイッチング素子を用いた例を示し、変換デバイスとしての電圧変換部9にDC-DCコンバータを例示した。しかしながら、本発明はこれに限定されるものではなく、充放電切替部5、電圧変換部9と同様の機能を有する種々のデバイスを適宜用いるようにしてもよい。 In the above embodiment, an example in which three switching elements are used for the charge / discharge switching unit 5 as a switching device is shown, and a DC-DC converter is illustrated as the voltage conversion unit 9 as a conversion device. However, the present invention is not limited to this, and various devices having functions similar to those of the charge / discharge switching unit 5 and the voltage conversion unit 9 may be used as appropriate.
 また、上記実施形態では、電源システム10の構成を把握しやすいように、メイン電池コントローラ3、サブ電池コントローラ4、制御部6に分けて説明した。しかしながら、これらを一体に構成するようにしてもよい。さらに、上記実施形態では、コントローラ3、4から出力されたメイン電池1、サブ電池2の検出データに応じて制御部6でメイン電池1、サブ電池2の電池状態を演算する例を示したが、このような演算は車両制御部16で行うようにしてもよい。このような態様では、制御部6の主機能は切替制御部6Bと通信部6Cとになる。 In the above embodiment, the main battery controller 3, the sub battery controller 4, and the control unit 6 are described separately so that the configuration of the power supply system 10 can be easily grasped. However, these may be configured integrally. Furthermore, in the said embodiment, although the control part 6 calculated the battery state of the main battery 1 and the sub battery 2 according to the detection data of the main battery 1 and the sub battery 2 output from the controllers 3 and 4 was shown. Such calculation may be performed by the vehicle control unit 16. In such an aspect, the main functions of the control unit 6 are the switching control unit 6B and the communication unit 6C.
 さらに、上記実施形態では、エンジン始動をメイン電池1で行う例を示した。しかしながら、本発明はこれに制限されず、エンジン始動をサブ電池2で行うようにしてもよい。また、上記実施形態では、コントローラ3、4、制御部6、車両制御部16の作動電力がメイン電池1から供給される例を示した。しかしながら、サブ電池2から供給されるようにしてもよく、また、コントローラ3、4、制御部6、車両制御部16への作動電力をメイン電池1、サブ電池2が協働ないし分担して供給するようにしてもよい。従って、本発明では、メイン電池1の電池容量がサブ電池2の電池容量より大きくても、小さくても、または同じであってもよい。 Furthermore, in the said embodiment, the example which performs engine starting with the main battery 1 was shown. However, the present invention is not limited to this, and the engine may be started by the sub battery 2. Moreover, in the said embodiment, the example in which the operating electric power of the controllers 3 and 4, the control part 6, and the vehicle control part 16 was supplied from the main battery 1 was shown. However, it may be supplied from the sub-battery 2, and the main battery 1 and the sub-battery 2 cooperate or share the operating power to the controllers 3, 4, the control unit 6, and the vehicle control unit 16. You may make it do. Therefore, in the present invention, the battery capacity of the main battery 1 may be larger, smaller, or the same as the battery capacity of the sub battery 2.
 また、上記実施形態では、メイン電池1を構成するPb電池に合わせて車両駐車の6時間後にメイン電池1やサブ電池2のOCVの測定を行う例を示したが、本発明はこれに制限されるものではない。また、上記実施形態では、制御部6のCPUが6時間を計時する例を示したが、車両制御部16が計時し、制御部6、コントローラ3、4をスリープ状態からアウェークさせるようにしてもよい。 Moreover, in the said embodiment, although the example which performs OCV measurement of the main battery 1 and the sub battery 2 after 6 hours of vehicle parking according to the Pb battery which comprises the main battery 1 was shown, this invention is restrict | limited to this. It is not something. In the above embodiment, the CPU of the control unit 6 counts six hours. However, the vehicle control unit 16 counts the time and causes the control unit 6 and the controllers 3 and 4 to wake from the sleep state. Good.
 さらに、上記実施形態では、制御部6は、車両制御部16を介してオルタネータの作動情報を取得する例を示したが、本発明はこれに限らない。例えば、ブレーキを制御するブレーキ制御部やオルタネータを制御するオルタネータ制御部から直接ブレーキの作動情報やオルタネータの作動情報を取得するようにしてもよい。 Furthermore, in the said embodiment, although the control part 6 showed the example which acquires the operation information of an alternator via the vehicle control part 16, this invention is not limited to this. For example, brake operation information and alternator operation information may be obtained directly from a brake control unit that controls the brake and an alternator control unit that controls the alternator.
 そして、本実施形態では14V系電源システム10を例示した。しかしながら、本発明はこれに制限されることなく、例えば、42V系電源システム等の14V系電源システム以外の電源システムにも適用可能である。 And in this embodiment, the 14V type | system | group power supply system 10 was illustrated. However, the present invention is not limited to this, and can be applied to a power supply system other than a 14V power supply system such as a 42V power supply system.
 本発明は低コストでエネルギ密度や安全性に優れ、供給電力に対する利用効率の高い電源システムおよび該電源システムを備えた自動車を提供する。このため、本発明は、電源システムや自動車の製造、販売に寄与するので、産業上の利用可能性を有する。 The present invention provides a power supply system that is low in cost, excellent in energy density and safety, and highly efficient in use with respect to supplied power, and a vehicle equipped with the power supply system. For this reason, since this invention contributes to manufacture and sale of a power supply system or a motor vehicle, it has industrial applicability.

Claims (15)

  1.  鉛蓄電池(Pb電池)とニッケル亜鉛蓄電池(NiZn電池)とを有し、供給電力を受入可能かつ放電負荷に放電可能な蓄電デバイスと、
     前記Pb電池および前記NiZn電池の充放電電流を切り替える切替デバイスと、
     前記NiZn電池の充電状態(SOC)を推定し、該推定したSOCに基づいて前記切替デバイスを制御するコントローラと、
    を備え、
     前記コントローラは、
     前記蓄電デバイスが前記供給電力を受け入れる際に、前記NiZn電池を使用上限SOCまで前記Pb電池に先立っておよび/または前記Pb電池とともに充電した後、前記Pb電池を充電し、
     前記蓄電デバイスが前記放電負荷に放電する際に、前記NiZn電池を予め定められた第1のSOCまで放電した後、前記Pb電池から放電する、
    ように前記切替デバイスを制御することを特徴とする電源システム。
    An electricity storage device having a lead storage battery (Pb battery) and a nickel zinc storage battery (NiZn battery), capable of receiving supplied power and discharging to a discharge load;
    A switching device for switching charge / discharge currents of the Pb battery and the NiZn battery;
    A controller that estimates a state of charge (SOC) of the NiZn battery and controls the switching device based on the estimated SOC;
    With
    The controller is
    When the power storage device accepts the supplied power, the NiZn battery is charged to the upper limit SOC before the Pb battery and / or together with the Pb battery, and then the Pb battery is charged,
    When the electricity storage device is discharged to the discharge load, after discharging the NiZn battery to a predetermined first SOC, discharging from the Pb battery,
    A power supply system that controls the switching device as described above.
  2.  前記供給電力はオルタネータから供給される回生電力であり、前記電源システムは車両用電源システムであることを特徴とする請求項1に記載の電源システム。 The power supply system according to claim 1, wherein the supplied power is regenerative power supplied from an alternator, and the power supply system is a vehicle power supply system.
  3.  前記コントローラは、前記蓄電デバイスが前記回生電力を受け入れる際に、
     (a)前記NiZn電池を使用上限SOCまで充電した後前記Pb電池を充電するか、
     (b)前記NiZn電池を予め定められた第2のSOCまで充電した後前記NiZn電池および前記Pb電池をともに充電し前記NiZn電池を使用上限SOCまで充電した後前記Pb電池を充電するか、または、
     (c)前記NiZn電池および前記Pb電池をともに充電し前記NiZn電池を使用上限SOCまで充電した後前記Pb電池を充電する、
    ように前記切替デバイスを制御することを特徴とする請求項2に記載の電源システム。
    The controller, when the storage device accepts the regenerative power,
    (A) charging the Pb battery after charging the NiZn battery to the upper limit SOC;
    (B) charging the NiZn battery to a predetermined second SOC and then charging both the NiZn battery and the Pb battery and charging the NiZn battery to the upper limit SOC, or charging the Pb battery, or ,
    (C) Charging the NiZn battery and the Pb battery together, charging the NiZn battery to the upper limit SOC, and then charging the Pb battery.
    The power supply system according to claim 2, wherein the switching device is controlled as described above.
  4.  前記第2のSOCと前記第1のSOCとの差が60%以上に設定されたことを特徴とする請求項3に記載の電源システム。 The power supply system according to claim 3, wherein a difference between the second SOC and the first SOC is set to 60% or more.
  5.  前記第1のSOCが前記第2のSOC未満かつ10%以上に設定され、前記第2のSOCが70%~90%の範囲に設定されたことを特徴とする請求項4に記載の電源システム。 5. The power supply system according to claim 4, wherein the first SOC is set to be less than the second SOC and 10% or more, and the second SOC is set to a range of 70% to 90%. .
  6.  前記コントローラは、
     車両側から前記オルタネータによる回生電力の供給が開始することを表す回生開始情報および前記オルタネータによる回生電力の供給が終了することを表す回生終了情報を取得し、
     前記回生開始情報を取得したときに、前記回生電力による前記NiZn電池ないし前記Pb電池への充電を開始し、
     前記回生終了情報を取得したときに、前記回生電力による前記NiZn電池ないし前記Pb電池への充電を打ち切るとともに前記NiZn電池から前記放電負荷に放電する、
    ように前記切替デバイスを制御することを特徴とする請求項2に記載の電源システム。
    The controller is
    Regenerative start information indicating that supply of regenerative power by the alternator starts from the vehicle side and regeneration end information indicating that supply of regenerative power by the alternator ends,
    When acquiring the regeneration start information, start charging the NiZn battery or the Pb battery with the regenerative power,
    When the regeneration end information is acquired, the charging of the NiZn battery or the Pb battery with the regenerative power is stopped and discharged from the NiZn battery to the discharge load.
    The power supply system according to claim 2, wherein the switching device is controlled as described above.
  7.  前記切替デバイスと前記NiZn電池との間に挿入され、前記回生電力の電圧を変換する変換デバイスをさらに備えたことを特徴とする請求項2に記載の電源システム。 The power supply system according to claim 2, further comprising a conversion device that is inserted between the switching device and the NiZn battery and converts the voltage of the regenerative power.
  8.  前記切替デバイスは、前記オルタネータおよび前記放電負荷と前記Pb電池との接続をオン・オフするための第1のスイッチと、前記オルタネータと前記変換デバイスとの接続をオン・オフするための第2のスイッチと、前記放電負荷と前記NiZn電池との接続をオン・オフするための第3のスイッチとを有することを特徴とする請求項6に記載の電源システム。 The switching device includes a first switch for turning on / off the connection between the alternator and the discharge load and the Pb battery, and a second switch for turning on / off the connection between the alternator and the conversion device. The power supply system according to claim 6, further comprising: a switch; and a third switch for turning on / off the connection between the discharge load and the NiZn battery.
  9.  前記NiZn電池は複数の単電池を直列に接続することで構成されており、
     前記コントローラは、前記蓄電デバイスが前記放電負荷に放電する際に、前記NiZn電池を構成する複数の単電池のいずれかが前記第1のSOCとなるまで放電した後、前記Pb電池から放電するように前記切替デバイスを制御する、
    ことを特徴とする請求項7に記載の電源システム。
    The NiZn battery is configured by connecting a plurality of single cells in series,
    When the electric storage device is discharged to the discharge load, the controller discharges from the Pb battery after discharging any of the plurality of single cells constituting the NiZn battery to the first SOC. To control the switching device,
    The power supply system according to claim 7.
  10.  前記第1のSOCが使用上限SOC未満かつ10%以上に設定されたことを特徴とする請求項9に記載の電源システム。 The power supply system according to claim 9, wherein the first SOC is set to be less than the upper limit SOC and 10% or more.
  11.  前記Pb電池はエンジン始動用の蓄電池であり、
     前記コントローラは、さらに前記Pb電池のSOCを推定し、前記Pb電池を予め定められた第3のSOCまで放電したときに、前記Pb電池を充電するように前記切替デバイスを制御する、
    ことを特徴とする請求項7に記載の電源システム。
    The Pb battery is a storage battery for starting an engine,
    The controller further estimates the SOC of the Pb battery, and controls the switching device to charge the Pb battery when the Pb battery is discharged to a predetermined third SOC.
    The power supply system according to claim 7.
  12.  前記第3のSOCが使用上限SOC未満かつ70%以上に設定されたことを特徴とする請求項11に記載の電源システム。 The power supply system according to claim 11, wherein the third SOC is set to be less than the upper limit SOC and 70% or more.
  13.  前記変換デバイスは、直流降圧回路または直流昇圧回路を有することを特徴とする請求項7に記載の電源システム。 The power supply system according to claim 7, wherein the conversion device includes a DC step-down circuit or a DC step-up circuit.
  14.  前記NiZn電池は、単電池が7直列または8直列に接続された組電池であることを特徴とする請求項7に記載の電源システム。 8. The power supply system according to claim 7, wherein the NiZn battery is an assembled battery in which single cells are connected in 7 series or 8 series.
  15.  請求項1に記載の電源システムを備えた自動車。 An automobile equipped with the power supply system according to claim 1.
PCT/JP2016/058347 2016-03-16 2016-03-16 Power supply system and automobile WO2017158765A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/058347 WO2017158765A1 (en) 2016-03-16 2016-03-16 Power supply system and automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/058347 WO2017158765A1 (en) 2016-03-16 2016-03-16 Power supply system and automobile

Publications (1)

Publication Number Publication Date
WO2017158765A1 true WO2017158765A1 (en) 2017-09-21

Family

ID=59850854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058347 WO2017158765A1 (en) 2016-03-16 2016-03-16 Power supply system and automobile

Country Status (1)

Country Link
WO (1) WO2017158765A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016034186A (en) * 2014-07-31 2016-03-10 日立化成株式会社 Power supply system and automobile

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016034186A (en) * 2014-07-31 2016-03-10 日立化成株式会社 Power supply system and automobile

Similar Documents

Publication Publication Date Title
US10029572B2 (en) Power source system for a vehicle
CN109552109B (en) Dual function battery system and method
JP6428086B2 (en) Power supply system and automobile
CN107078535B (en) Multi-accumulator system for an on-board electrical system of a motor vehicle
JP2004025979A (en) Power supply system for travelling vehicle
JP2006230132A (en) Current supply method, starting method of internal combustion engine, power supply and vehicle
US20100305793A1 (en) Method for starting a hybrid electric vehicle
JP2004032871A (en) Power supply system for traveling vehicle
US20120098501A1 (en) Efficient lead acid battery charging
CN107431374B (en) Charging voltage controller for electric storage element, electric storage device, charging device for electric storage element, and charging method for electric storage element
US10498154B2 (en) Electric power system
JP2003134689A (en) Power supply system
JP2015067042A (en) Vehicular power supply device
JP6782414B2 (en) Vehicle power supply system and automobile
JP6658314B2 (en) Vehicle power supply system and automobile
JP6750316B2 (en) Vehicle power supply system and automobile
JP6327046B2 (en) Power supply system and automobile
JP6337596B2 (en) Power supply system and automobile
JP2016067142A (en) Power supply system and automobile
JP2016088178A (en) Power supply system and automobile
JP6394233B2 (en) Power supply system and automobile
JP6435824B2 (en) Power supply system and automobile
WO2017158765A1 (en) Power supply system and automobile
JP4930420B2 (en) In-vehicle power supply
CN115208011A (en) Lithium battery charging and discharging control device, method and system

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894383

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16894383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP