WO2017158762A1 - Hydrogen management system and integrated hydrogen management device - Google Patents

Hydrogen management system and integrated hydrogen management device Download PDF

Info

Publication number
WO2017158762A1
WO2017158762A1 PCT/JP2016/058337 JP2016058337W WO2017158762A1 WO 2017158762 A1 WO2017158762 A1 WO 2017158762A1 JP 2016058337 W JP2016058337 W JP 2016058337W WO 2017158762 A1 WO2017158762 A1 WO 2017158762A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
filling
integrated
time
management system
Prior art date
Application number
PCT/JP2016/058337
Other languages
French (fr)
Japanese (ja)
Inventor
秋葉 剛史
史之 山根
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2016/058337 priority Critical patent/WO2017158762A1/en
Priority to JP2018505137A priority patent/JP6462951B2/en
Publication of WO2017158762A1 publication Critical patent/WO2017158762A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/06Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • Embodiments of the present invention relate to a hydrogen management system and an integrated hydrogen management apparatus.
  • FC fuel cell
  • JP 2006-1797 A Japanese Patent No. 5679920 Japanese Patent No. 5432292
  • Hydrogen stations that supply hydrogen to fuel cell vehicles such as FC forklifts are very expensive to manufacture, so it is conceivable that hydrogen stations are shared by multiple offices.
  • the problem to be solved by the present invention is to provide a hydrogen management system and an integrated hydrogen management apparatus capable of suppressing the occurrence of waiting for hydrogen filling in a form in which a plurality of business offices share a hydrogen station.
  • the hydrogen management system of the embodiment is a hydrogen management system that is applied to a hydrogen supply system in which a plurality of business sites share a hydrogen station for filling a fuel cell vehicle with hydrogen, and the fuel cell vehicle of each business site.
  • a plurality of hydrogen management means for generating a hydrogen demand forecast, and a hydrogen demand forecast for the fuel cell vehicles at each business site generated by the plurality of hydrogen management means and a filling capable of filling hydrogen in the fuel cell vehicles at each business site Based on the information on the available time zone, the chargeable time zone is divided into a plurality of unit times, and the filling time for performing the hydrogen filling from the plurality of unit times is prevented from overlapping between establishments.
  • an integrated hydrogen management means for generating a hydrogen demand prediction including information on the filling time of the fuel cell vehicle at each office determined by the calculation.
  • FIG. The figure which shows the detailed operation
  • FIG. 1 is a diagram illustrating an overall configuration of the hydrogen supply system according to the first embodiment.
  • This hydrogen supply system includes a power generation facility 10, a hydrogen production apparatus 11, a hydrogen tank 12, a mobile hydrogen station 20, a mobile hydrogen station operation management system (hereinafter referred to as an “operation management system”) 30, and offices A and B.
  • the power generation facility 10 performs power generation using natural energy such as solar power generation and wind power generation.
  • the hydrogen production apparatus 11 produces hydrogen by water electrolysis from electricity and water generated by the power generation facility 10.
  • the hydrogen tank 12 stores the hydrogen produced by the hydrogen production apparatus 11.
  • the mobile hydrogen station 20 has a hydrogen storage facility that takes in hydrogen from the hydrogen production apparatus 11 or the hydrogen tank 12 and stores it, and a filling facility (dispenser or the like) for filling the stored hydrogen into a fuel cell vehicle such as an FC forklift. I have.
  • the mobile hydrogen station 20 is shared by a plurality of offices A and B. In this embodiment, the case where the hydrogen station 20 is a mobile hydrogen station (moving vehicle) is illustrated, but the hydrogen station 20 may be replaced with a stationary hydrogen station (stationary facility) that cannot move. In that case, the installation of the operation management system 30 for the mobile hydrogen station becomes unnecessary.
  • the operation of the mobile hydrogen station 20 is managed by the mobile hydrogen station operation management system 30.
  • the mobile hydrogen station 20 circulates the filling area for the business office A and the filling area for the business office B.
  • the FC forklift groups 41A and 41B used in A and the FC forklift groups 42A and 42B used in the office B are filled with hydrogen.
  • the operation management system 30 for the mobile hydrogen station uses the hydrogen demand prediction provided from the integrated hydrogen MMS 60 (for example, information indicating the instantaneous value of the hydrogen demand for each time zone) to plan the operation of the mobile hydrogen station 20. To manage the daily operation of the mobile hydrogen station 20.
  • FC forklift groups 41A, 41B, 42A, and 42B are fuel cell vehicles that are mainly used for operating a logistics business at each business office.
  • the establishment A uses FC forklift groups 41A and 41B in a plurality of areas
  • the establishment B uses FC forklift groups 42A and 42B in a plurality of areas.
  • Hydrogen MMS 50A, 50B is a hydrogen management device provided for each office.
  • the hydrogen MMS 50A is provided corresponding to the business office A
  • the hydrogen MMS 50B is provided corresponding to the business office B.
  • the hydrogen MMS 50A includes a hydrogen demand prediction (for example, information indicating an integrated value of the predicted hydrogen demand for each time zone of the FC forklift groups 41A and 41B) and supplementary information (for example, the remaining fuel amount of the FC forklift groups 41A and 41B on the previous day). Is generated).
  • the hydrogen demand forecast (for example, information indicating the integrated value of the hydrogen demand forecast amount for each time zone of the FC forklift groups 42A, 42B) and supplementary information (for example, the remaining fuel amount of the FC forklift groups 42A, 42B on the previous day) Information).
  • the hydrogen demand prediction is obtained by using, for example, information obtained from WMS (Warehouse Management System), ASN (Advanced Shipping Shipping), weather prediction, or a dispenser.
  • the integrated hydrogen MMS 60 integrates the hydrogen demand predictions provided from the hydrogen MMSs 50A and 50B (for example, information indicating the integrated value of the predicted hydrogen demand for each time zone), and creates a new hydrogen demand forecast (eg, the time zone). Information indicating an instantaneous value of each hydrogen demand amount) is generated and transmitted to the mobile hydrogen station operation management system 30 and the hydrogen EMS 70.
  • the hydrogen EMS 70 predicts the amount of power that can be generated by solar power generation and wind power generation, and also predicts the hydrogen demand of consumers who are supplied with hydrogen from a hydrogen storage facility in addition to the dispenser of the FC forklift.
  • the integrated hydrogen MMS 60 (or hydrogen MMS 50A, 50B) A hydrogen production plan is made together with the hydrogen demand forecast obtained from
  • the hydrogen MMSs 50A and 50B have a common functional configuration shown in FIG.
  • FIG. 2 is a block diagram illustrating a functional configuration example of one hydrogen MMS (for example, hydrogen MMS 50A).
  • the hydrogen MMS 50A includes UI (User Interface) 50a, 50c, 50e, a classification / dispenser setting unit 50b, databases 50d, 50f, a predicted performance display unit 50g, a prediction result correction unit 50h, and a prediction for 24 hours.
  • the UIs 50a, 50c, and 50e may be a single UI.
  • the databases 50d and 50f may be composed of one storage device.
  • the hydrogen MMS 50A (1) past data input from the WMS 31 or UI 50c operated by the operator and accumulated in the DB 50d, and (2) input from the ASN 32, calendar data 33, weather forecast data 34, and UI 50e operated by the operator.
  • the 24-hour prediction unit 50i Based on the prediction target date data accumulated in the DB 50f, the 24-hour prediction unit 50i performs a 24-hour hydrogen demand prediction, and based on the prediction result, the hydrogen storage requirement calculation unit 50k calculates the hydrogen storage requirement amount. Is calculated and notified to the integrated hydrogen MMS 60 from the communication unit 50m.
  • the hydrogen demand forecast reflecting the hydrogen storage requirement amount is transmitted from the integrated hydrogen MMS 60 to the hydrogen EMS 70, and the hydrogen EMS 70 formulates a hydrogen production plan.
  • the hydrogen MMS 50A makes a re-prediction execution decision. If the actual value of hydrogen filling with respect to the result of hydrogen demand prediction described above is large, the re-predicting unit 50j Re-predict. In this case, the hydrogen storage requirement calculation unit 50k calculates the hydrogen storage requirement amount based on the re-prediction result, and notifies the integrated hydrogen MMS 60 from the communication unit 50m.
  • the hydrogen demand prediction reflecting the hydrogen storage requirement amount is transmitted from the integrated hydrogen MMS 60 to the hydrogen EMS 70, and the hydrogen EMS 70 makes a hydrogen production plan again.
  • the hydrogen demand prediction by the 24-hour prediction unit 50i is performed for each section.
  • Each category is divided by the work that the FC forklift is in charge of, and is defined as a unit for hydrogen demand prediction.
  • Each division corresponds to each area where work is performed in a warehouse, for example, and each FC forklift performs dedicated work in each area.
  • the category / dispenser setting unit 50b obtains category setting information input by the operator operating the UI 50a and setting information indicating the location of the dispenser. Based on these information, the FC forklift in charge of each section associates the section with the dispenser for setting which dispenser is to be filled with hydrogen.
  • the predicted performance display unit 50g displays the predicted charged hydrogen amount (integrated), the required hydrogen storage amount, and the “filled hydrogen amount (integrated) of past performance data” on a screen.
  • the prediction result correction unit 50h corrects the predicted charged hydrogen amount (integration) and the hydrogen storage request amount displayed on the prediction result display unit 50g by an operation for arbitrary correction on the UI 50e by the operator, and creates a new It outputs to the hydrogen storage requirement calculation part 50k as a demand prediction result.
  • FIG. 3 is a diagram showing a connection relationship between the integrated hydrogen MMS 60 and its periphery.
  • FIG. 4 is a block diagram showing a functional configuration of the integrated hydrogen MMS 60. 3 and 4 show an example in which a mobile hydrogen station is used. However, in the case of using a fixed hydrogen station, installation of the mobile hydrogen station operation management system 30 and transmission / reception of transportation information are shown. Is no longer necessary.
  • the FC forklift at each logistics business establishment cannot be filled in free time. Therefore, in this embodiment, after having the operator of each business site specify the chargeable time zone in which the hydrogen of the FC forklift group used at each business site can be charged, Set to fill hydrogen into FC forklift. At that time, if the filling time overlaps between establishments, adjustments are also made to reduce the overlap as much as possible.
  • the integrated hydrogen MMS 60 receives establishment information from the establishment system 80A of the establishment A or the operator terminal 81A (for example, basic information related to the establishment A and information indicating a rechargeable time zone specified by the operator). ). Similarly, the integrated hydrogen MMS 60 receives the establishment information (for example, basic information about the establishment B or information indicating the rechargeable time zone specified by the operator) from the establishment system 80B of the establishment B or the operator terminal 81B. . Further, the integrated hydrogen MMS 60 receives establishment setting information (for example, information indicating the priority of hydrogen filling for each establishment) from the operator terminal 81Z of the maintenance management company of the integrated hydrogen MMS 60.
  • establishment information for example, basic information about the establishment B or information indicating the rechargeable time zone specified by the operator
  • the integrated hydrogen MMS 60 receives the above-described hydrogen demand prediction and supplementary information from the hydrogen MMS 50A of the business office A and the hydrogen MMS 50B of the business office B, respectively.
  • the integrated hydrogen MMS 60 generates a new hydrogen demand forecast (for example, information indicating an instantaneous value of the hydrogen demand amount for each time zone) using the received various information, and this new hydrogen demand forecast (hereinafter referred to as “hydrogen demand forecast”). May be simply referred to as “hydrogen demand”) to the mobile hydrogen station operation management system 30 or the hydrogen EMS 70.
  • a new hydrogen demand forecast for example, information indicating an instantaneous value of the hydrogen demand amount for each time zone
  • the integrated hydrogen MMS 60 divides the chargeable time zone into a plurality of unit times based on the received hydrogen demand prediction and information indicating the chargeable time zone, and performs hydrogen filling from the plurality of unit times. Performs a calculation to determine the filling time so that duplication between sites is suppressed, and generates a new hydrogen demand forecast including information on the filling time of the FC forklift group of each site determined by the calculation .
  • the integrated hydrogen MMS 60 is transported from the mobile hydrogen station operation management system 30 (for example, information indicating the travel time between filling areas for each office, information indicating the amount of hydrogen that can be mounted on each FC forklift, etc.). And the received information is applied to the above-described calculation as necessary.
  • the integrated hydrogen MMS 60 includes an establishment information receiving unit 61, a hydrogen demand forecast receiving unit 62, an integrated hydrogen demand forecasting unit 63, an integrated hydrogen demand sending unit 64, a hydrogen transport information receiving unit 65, a UI 66, and the like. It has various functions.
  • the establishment information receiving unit 61 has a function of receiving the above-described hydrogen demand prediction and supplementary information from the hydrogen MMS 50A of the establishment A and the hydrogen MMS 50B of the establishment B, respectively.
  • the hydrogen demand prediction receiving unit 62 has a function of receiving the above-mentioned office information and office setting information from the office systems 80A and 80B and the operator terminals 81A, 81B, and 81Z of the respective offices.
  • the integrated hydrogen demand prediction unit 63 has a function of generating the above-described new hydrogen demand prediction from the received various information.
  • the integrated hydrogen demand transmission unit 64 is a function of transmitting the generated new hydrogen demand prediction to the mobile hydrogen station operation management system 30 and the hydrogen EMS 70.
  • the hydrogen transport information receiving unit 65 has a function of receiving the transport information described above from the mobile hydrogen station operation management system 30.
  • the UI 66 is a user interface function that provides a screen that allows the operator to specify the above-described filling possible time zone, the priority of hydrogen filling for each office, and the like.
  • the integrated hydrogen demand prediction unit 63 includes functions such as an information setting unit 91, a calculation processing unit 92, and an information providing unit 93.
  • the information setting unit 91 has a function of tentatively determining a filling execution time candidate in a filling available time zone of the FC forklift group of each office according to a predetermined algorithm and setting it in a predetermined storage area.
  • the filling execution time candidate to be set is expressed by, for example, a binary variable indicating whether or not hydrogen filling is performed for each unit time.
  • the arithmetic processing unit 92 repeats a process of causing the information setting unit 91 to set another candidate when the filling time candidate for each establishment set by the information setting unit 91 does not satisfy a predetermined evaluation criterion, When the evaluation criteria are satisfied, the candidate is determined as a filling execution time.
  • the information providing unit 93 generates a hydrogen demand prediction including information on the filling time of the fuel cell vehicle at each business site determined by the arithmetic processing unit 92 through the integrated hydrogen demand transmitting unit 64, and the operation management system 30 for the mobile hydrogen station. And a function provided to the hydrogen EMS 70.
  • the calculation processing unit 92 determines whether or not the filling time candidate for each establishment set by the information setting unit 91 satisfies the evaluation criteria, (1) filling possibility, (2) Calculate the first evaluation value, the second evaluation value, and the third evaluation value that indicate the temporal consistency between establishments, and (3) the filling interval, respectively, and apply these evaluation values to the evaluation criteria. To make a decision.
  • the first evaluation value, the second evaluation value, and the third evaluation value are multiplied by predetermined weights, and values obtained by adding the respective weights are set as the total evaluation value. If this comprehensive evaluation value falls below (or exceeds) a predetermined reference value, it is determined that the filling time candidate for each establishment set by the information setting unit 91 satisfies the evaluation criteria, and the candidate Is determined as the filling time.
  • the first evaluation value is, for example, an evaluation value indicating the degree of shortage of hydrogen in the FC forklift group without being filled with the predicted amount of hydrogen by the time when the hydrogen in the FC forklift group is exhausted only with the remaining fuel of the previous day. . By using this evaluation value, it is possible to prevent the FC forklift group from running out of fuel.
  • the second evaluation value is, for example, an evaluation value indicating the degree of occurrence of an event in which filling is simultaneously performed between establishments.
  • the third evaluation value is, for example, an evaluation value indicating the degree to which the time interval for filling in one office is prolonged. Although this evaluation value is not essential, the use of this evaluation value can reduce the occurrence of wasted time during which no filling is performed.
  • the first evaluation value, the second evaluation value, and the third evaluation value are respectively referred to as “fillability evaluation value”, “temporal inconsistency evaluation value between establishments”, Sometimes referred to as “evaluation value of filling interval”.
  • the integrated hydrogen demand prediction unit 63 performs a process of temporarily determining a filling execution time candidate in the filling time zone of the FC forklift group according to a predetermined algorithm for each business site.
  • the integrated hydrogen demand forecasting unit 63 sets the remaining fuel amount of the previous day of the FC forklift group at the target establishment n as R (n) (step S12), and sets a plurality of rechargeable time zones at the target establishment n.
  • F (n, i) (i 1, 2,..., I (n)) (step S12).
  • i 1, 2,..., I (n) represents a filling time zone number for identifying each filling time zone.
  • the integrated hydrogen demand prediction unit 63 divides the rechargeable time zone F (n, i) into unit times of, for example, 1 minute, and a binary variable G indicating whether or not hydrogen is charged during each unit time.
  • j 1, 2,..., J (n, j) represents a unit time number for identifying each unit time.
  • step S21 if the calculated evaluation value is not less than or equal to the threshold value (N in step S21), the processing from step S11 is repeated. If the calculated evaluation value is equal to or smaller than the threshold value (Y in step S21), each temporarily determined candidate is determined as the filling execution time, and the process is terminated.
  • the integrated hydrogen demand prediction unit 63 calculates an evaluation value of “fillability”. Further, the integrated hydrogen demand prediction unit 63 calculates an evaluation value of “temporal consistency between establishments”. Further, the integrated hydrogen demand prediction unit 63 calculates an evaluation value of “filling interval”. Finally, the integrated hydrogen demand prediction unit 63 assigns weights W0, W1, and W2 to the calculated evaluation values of the “filling possibility”, “temporal consistency between establishments”, and “filling interval”, respectively. Multiply them and add them. A value obtained by this addition processing is set as a final evaluation value (total evaluation value).
  • the integrated hydrogen demand forecasting unit 63 examines whether or not the hydrogen of the FC forklift group will be filled by the time when the hydrogen of the FC forklift group is insufficient, and the total amount of the shortage of the FC forklift group when not filled. Is an evaluation value.
  • the integrated hydrogen demand prediction unit 63 sets the hydrogen demand prediction (integrated value) at the time t of the target office n as P (n, t) (step S45).
  • the integrated hydrogen demand prediction unit 63 determines whether or not P (n, t) ⁇ R (n) is satisfied, that is, the hydrogen demand prediction (integrated value) at the time t of the target office n is the previous day. It is determined whether or not the fuel amount is equal to or greater than the remaining fuel amount (step S46). If not applicable (N in step S46), it is considered that hydrogen shortage does not occur, and the process proceeds to step S52 without calculating the shortage. On the other hand, if applicable (Y in step S46), calculation of the deficiency is started.
  • the integrated hydrogen demand prediction unit 63 sets T_loss as the time when the FC forklift group starts shortage only with the remaining fuel amount of the previous day (step S47), and calculates the difference in hydrogen demand prediction (integrated value) from time T_loss to time t.
  • ⁇ P is set (step S48), and D is the amount of hydrogen charged by the target office n from time 1 to t.
  • step S56 If the processes for all the establishments are not completed (N in step S56), the process for the establishment of the next establishment number is started (step S57), and the processes from step S43 are repeated. . If the processing for all offices has been completed (Y in step S56), the evaluation value calculation of the filling possibility ends.
  • the integrated hydrogen demand prediction unit 63 examines whether or not all the establishments are not filled at the same time for each time period, and sets the number of duplicate establishments as an evaluation value.
  • step S65 the integrated hydrogen demand prediction unit 63 determines whether or not the FC forklift group at the office n is filled at time t (step S65). If not applicable (N in step S65), the process proceeds to step S69.
  • Step S65 when the FC forklift group of the office n is filled at time t (Y in Step S65), it is determined whether or not the flag F_flag is “true” (filling is performed) (Step S65). S66). When not applicable (N of step S66), it progresses to step S68 and sets flag F_flag to "true” (filling is implemented). On the other hand, if the flag F_flag is “true” (filling is performed), it is assumed that other establishments FC forklifts are also filled at time t, and 1 is added to the current evaluation value Et. (Step S67). In this case, the flag F_flag remains “true” (step S68).
  • step S69 the process for the establishment of the next establishment number is started (step S70), and the processes from step S65 are repeated. . If processing for all offices has been completed (Y in step S69), the process proceeds to step S71.
  • the integrated hydrogen demand prediction unit 63 checks whether or not the time interval from the previous filling to the next filling is not too long in one establishment, and evaluates the total time interval as an evaluation value.
  • step S86 the integrated hydrogen demand prediction unit 63 determines whether or not the FC forklift group at the office n is filled at time t (step S86). If not applicable (N in step S86), the process proceeds to step S89.
  • the integrated hydrogen demand prediction unit 63 sets the previous filling time tp as the time t (step S88).
  • step S91 the weight Wed (n) of the target office n is set (step S91), A value obtained by multiplying the evaluation value Ed (n) of the target office n by the weight Wed (n) is added to the evaluation value Ed (step S92).
  • step S93 If the processes for all the establishments are not completed (N in step S93), the process for the establishment of the next establishment number is started (step S94), and the processes from step S83 are repeated. . If the processing for all offices has been completed (Y in step S94), the evaluation value calculation of the filling interval is terminated.
  • simulated annealing, tabu search, a genetic algorithm, or the like may be used in order to obtain an optimum evaluation value.
  • the binary value set for G (n, i, j) is not random, but a value obtained when a good solution is obtained in the optimization process is held, and the value may be used. Good.
  • the determination of the end of evaluation is either when the evaluation value is equal to or less than the threshold, or when the evaluation value becomes the minimum during the specified number of repetitions, or the rate of change of the evaluation value is equal to or less than the threshold, or a combination thereof. You may make it perform.
  • the first embodiment when a hydrogen station is shared by a plurality of business establishments, it is possible to suppress the occurrence of an event that a fuel cell vehicle is waiting to be charged with hydrogen, to suppress the occurrence of fuel shortage and work stagnation. Can be prevented.
  • each evaluation of filling possibility, temporal consistency between establishments, and filling interval is performed. Since each value is calculated, weighted to each, and the value obtained by addition is applied to the evaluation criteria as the final evaluation value, determination is made, so an appropriate filling amount and an appropriate filling timing are set. It can be realized, and this makes it possible to present an appropriate amount of hydrogen demand at the establishment.
  • the plurality of business establishments may be a plurality of business establishments with different business establishments, or a plurality of business establishments of the same business establishment. It may be a business office.
  • the overall configuration of the hydrogen supply system and the configurations of the MMS 50A and 50B and the integrated hydrogen MMS 60 are as described above.
  • the second embodiment differs from the first embodiment in the evaluation value calculation procedure performed by the integrated hydrogen demand prediction unit 63 of the integrated hydrogen MMS 60.
  • evaluation value calculation of filling possibility “evaluation value calculation of temporal consistency between establishments”, and “evaluation value calculation of filling interval” are performed in a series of arithmetic processing.
  • the “fillability check” and the “time consistency check” are performed before the evaluation value is calculated, and after these checks are performed, the “fill interval evaluation” is performed. Perform value calculation.
  • the integrated hydrogen demand prediction unit 63 determines (1) hydrogen of the FC forklift group when determining whether or not the candidate for the filling time in the filling time zone satisfies a predetermined evaluation criterion. It is determined whether or not there is an event that the demand for hydrogen is not filled by the time when there is no more hydrogen and there is a shortage of hydrogen, and when it is determined that this event does not occur, (2) When it is determined whether or not the event to be performed occurs and it is determined that the event does not occur, (3) “Evaluation value calculation of filling interval” is performed, and the calculated evaluation value is applied to the evaluation criterion to determine Do.
  • the integrated hydrogen demand prediction unit 63 performs processing similar to the processing in steps S11 to S15 described in FIG. 5 (steps S101 to S105).
  • step S106 the integrated hydrogen demand prediction unit 63 carries out “checking of filling possibility” described in detail later.
  • the integrated hydrogen demand prediction unit 63 repeats the processing of step S105 when the result of the “checking of filling possibility” does not indicate that filling is possible (N in step S107).
  • the integrated hydrogen demand prediction unit 63 performs the same process as the process of steps S16 to S19 described in FIG. Steps S108 to S111).
  • step S110 If the processing for all offices has been completed (Y in step S110), “time consistency check between offices” to be described in detail later is performed (step S20).
  • step S113 if there is a temporal inconsistency (Y in step S113), the processing from step S102 is repeated.
  • step S112 If there is no temporal inconsistency (N in step S113), an evaluation value described in detail later is calculated (step S112).
  • step S115 if the calculated evaluation value is not less than or equal to the threshold value (N in step S115), the processing from step S101 is repeated. If the calculated evaluation value is equal to or less than the threshold value (Y in step S115), each candidate that has been provisionally determined is determined as the filling execution time, and the process ends.
  • the integrated hydrogen demand prediction unit 63 performs the same processing as the processing of steps S45 to S49 described in FIG. 6 (steps S122 to S129).
  • step S130 determines whether (DELTA) P is larger than D (step S130). When not applicable (N of step S130), it progresses to step S124.
  • step S130 If it is determined in step S130 that ⁇ P is larger than D (Y in step S130), it is determined that filling is impossible (step S131), and the filling possibility check process is terminated.
  • the integrated hydrogen demand prediction unit 63 calculates an evaluation value of “filling interval”. Finally, the integrated hydrogen demand prediction unit 63 sets the calculated evaluation value of “filling interval” as the final evaluation value.
  • the evaluation when the evaluation value is expected to be low, the evaluation is not performed, so that the calculation time can be shortened.
  • the third embodiment shows a modification of the integrated hydrogen MMS 60 in the first embodiment.
  • the filling execution time in the filling available time zone for each business site is expressed by a binary variable indicating whether or not to perform hydrogen filling for each unit time.
  • the filling time is expressed by variables indicating the filling start time and filling end time of hydrogen.
  • FIG. 12 shows the difference in the filling method candidate expression method between the first embodiment and the third embodiment.
  • n represents an establishment number for identifying each establishment
  • i represents a refillable time zone number for identifying each refillable time zone
  • j represents a unit for identifying each unit time. Represents a time number.
  • the integrated hydrogen demand prediction unit 63 divides the rechargeable time zone for each establishment into unit times of, for example, 1 minute, Whether or not to fill with hydrogen is expressed by a binary variable, and a hydrogen demand prediction based on this information (for example, information indicating an instantaneous value of a hydrogen demand amount for each time zone) is generated.
  • the integrated hydrogen demand prediction unit 63 sets the filling available time zone for each establishment as a variable Gstart (n, i for filling start time). ) And an end time variable Gend (n, i), and a hydrogen demand prediction based on this information (for example, information indicating an instantaneous value of the hydrogen demand for each time zone) is generated.
  • simulated annealing In order to obtain an optimum evaluation value, simulated annealing, tabu search, a genetic algorithm, or the like may be used. In this case, the values set for the start time and end time of filling are not random, and values obtained when a good solution is obtained in the optimization process may be held and used.
  • the third embodiment compared to the first embodiment, it is possible to reduce the change of filling / non-filling, to improve resistance to delay during operation, and to establish an office of the mobile hydrogen station 20 You can suppress frequent traffic between them.
  • 3rd Embodiment showed the modification of the integrated hydrogen MMS60 in 1st Embodiment.
  • the fourth embodiment shows a modification of the integrated hydrogen MMS 60 in the second embodiment.
  • the integrated hydrogen demand prediction unit 63 is a binary indicating whether or not to perform hydrogen filling for each unit time as the filling time in the filling available time zone for each office.
  • the filling execution time is expressed by variables indicating the hydrogen filling start time and the filling end time.
  • the fourth embodiment compared to the third embodiment, it is possible to reduce the change of filling / non-filling, to improve resistance to delay during operation, and to establish an office of the mobile hydrogen station 20 You can suppress frequent traffic between them.
  • the time when the filling overlaps between the establishments is checked (see, for example, FIG. 7).
  • the fifth embodiment when confirming the temporal consistency between the establishments, not only the time when the filling overlaps between the establishments but also the movement time of the mobile hydrogen station 20 is considered.
  • the integrated hydrogen demand prediction unit 63 performs an operation for determining a filling execution time for performing hydrogen filling from a plurality of unit times so that duplication between offices is suppressed. In performing the calculation, a calculation is performed in consideration of the moving time of the mobile hydrogen station 20.
  • the integrated hydrogen demand forecasting unit 63 sets LastT (m) as the last filling time of the FC forklift group of the establishment m, and the mobile hydrogen station 20 is set as the initial value of the LastT (m).
  • the time required to move from the office to the office m is set (step S174).
  • step S175 the process for the establishment of the next establishment number is started (step S176), and the process of step S174 is repeated. If processing for all offices has been completed (Y in step S176), the process proceeds to step S177 in FIG. 13B.
  • step S179 the integrated hydrogen demand prediction unit 63 determines whether or not the FC forklift group at the office n is filled at time t (step S179). When not applicable (N of step S179), it progresses to step S185.
  • step S179 when the FC forklift group at the office n is filled at time t (Y in step S179), the process proceeds to step S180.
  • the integrated hydrogen demand forecasting unit 63 sets x for the establishment m other than the establishment n that has the smallest “t-LastT (m)” (the establishment filled last except for the establishment n). (Step S180), the movement time from the office x to the office n is Move_T (step S181).
  • Pena_T is larger than “t-LastT (m)”
  • the mobile hydrogen station 20 cannot reach the location of the office n by the time t, so that the evaluation value Et is deteriorated (increased).
  • the integrated hydrogen demand prediction unit 63 sets LastT (n) to t (step S184).
  • step S185 If the processes for all the establishments are not completed (N in step S185), the process for the establishment of the next establishment number is started (step S186), and the processes from step S179 are repeated. . If processing for all offices has been completed (Y in step S185), the process proceeds to step S187.
  • step S189 it is determined whether or not there is consistency according to the evaluation value Et (step S189).
  • Et exceeds the threshold, it is determined that there is no consistency, and if Et does not exceed, it is determined that there is consistency.
  • the fifth embodiment compared with the first to fourth embodiments, it is possible to evaluate the temporal consistency with higher accuracy in consideration of the moving time of the mobile hydrogen station 20.
  • the sixth embodiment proposes a concrete example of condition resetting and re-prediction when filling is impossible.
  • FIG. 14 is a diagram showing a connection relationship between the integrated hydrogen MMS 60 and its periphery in the sixth embodiment.
  • the integrated hydrogen MMS 60 makes an increase request R1 of the number of hydrogen stations to the mobile hydrogen station operation management system 30 when the filling in the available time zone is impossible. It has a function of making a change request R2A, R2B of a filling time zone to the operator terminals 81A, 81B.
  • the integrated hydrogen MMS 60 receives a notification of the update of the number of hydrogen stations from the operation management system 30 for the mobile hydrogen station or a notification of the update of the charging possibility time zone from the operator terminals 81A and 81B.
  • a function is provided for performing re-execution of hydrogen demand prediction using the notified information.
  • the seventh embodiment proposes a specific example of re-prediction when a re-prediction request is received.
  • FIG. 15 is a diagram showing a connection relationship between the integrated hydrogen MMS 60 and its periphery in the seventh embodiment.
  • the integrated hydrogen MMS 60 when the integrated hydrogen MMS 60 receives a re-prediction request R11 (for example, a re-planning request or condition setting) from the hydrogen EMS 70 or the mobile hydrogen station operation management system 30, the hydrogen MMS 50A, 50B On the other hand, a request for re-execution of hydrogen demand prediction calculation R12A, R12B is performed to obtain the result, and a function for re-execution of hydrogen demand prediction calculation in the integrated hydrogen MMS 60 is provided.
  • a re-prediction request R11 for example, a re-planning request or condition setting
  • the eighth embodiment proposes a specific example of an operator input screen that the integrated hydrogen MMS 60 provides to the operator terminals 81A and 81 through the UI 66.
  • the integrated hydrogen MMS 60 provides a display screen for the operators of the offices A and B to input the office information (such as filling time zone) through the operator terminals 81A and 81B.
  • FIG. 16 shows an example of a display screen that allows an operator to specify a filling time zone.
  • FIG. 16A illustrates a display screen 101 of a method for designating the start time and end time of each filling time zone.
  • FIG. 16B illustrates a display screen 102 of a method for designating a range from the start time to the end time of each filling time zone.
  • the integrated hydrogen MMS 60 provides a display screen for the operator of the maintenance management company of the integrated hydrogen MMS 60 to input the office setting information (such as the office priority) using the operator terminal 81Z.
  • FIG. 17 shows an example of a display screen that allows the operator to specify the establishment priority (priority of hydrogen filling for each establishment).
  • FIG. 17 (a) illustrates a display screen 103 of a method in which the respective offices are arranged in descending order of priority.
  • FIG. 17B illustrates a display screen 104 in which a priority is designated for each office.
  • the eighth embodiment it is possible to reduce time and effort required for an operator to input information and to prevent erroneous input.
  • the ninth embodiment shows a specific example of data such as hydrogen demand prediction transmitted and received by the integrated hydrogen MMS 60.
  • FIG. 18 shows an example of data (hydrogen demand prediction and supplementary information) received by the integrated hydrogen MMS 60 from the hydrogen MMSs 50A and 50B.
  • information 105 indicating an integrated value of the predicted hydrogen demand for each time zone is shown as the hydrogen demand prediction.
  • information 106 indicating the amount of remaining fuel on the previous day is shown as supplementary information.
  • the communication method may be a method in which the integrated hydrogen MMS 60 directly receives data from the hydrogen MMSs 50A and 50B, but may be a method in which each device accesses a database or a shared file in the integrated hydrogen MMS.
  • FIG. 19 shows data (hydrogen demand prediction) transmitted by the integrated hydrogen MMS 60 to the hydrogen EMS 70 and the mobile hydrogen station operation management system 30, and the integrated hydrogen MMS 60 receives from the mobile hydrogen station operation management system 30.
  • An example of data is shown.
  • information 107 indicating an instantaneous value of the hydrogen demand amount for each time zone is shown as the hydrogen demand prediction.
  • information 108 including the source office, the destination office, the travel time between offices, and the information 109 including the vehicle ID and the mountable hydrogen amount are shown.
  • the communication method may be a method in which the integrated hydrogen MMS 60 directly transmits / receives to / from the hydrogen EMS 70 or the mobile hydrogen station operation management system 30, but each device accesses a database or a shared file in the integrated hydrogen MMS. May be adopted.
  • FIG. 19 illustrates the case where the hydrogen station is a mobile hydrogen station. However, when a fixed hydrogen station is employed, the mobile hydrogen station operation management system 30 and the process of sending and receiving transport information are not necessary. Become.
  • data can be simplified and data communication can be performed more effectively.
  • the tenth embodiment shows a modification of the integrated hydrogen MMS 60 in the first embodiment.
  • the individual hydrogen MMSs 50A and 50B are devices independent of the integrated hydrogen MMS 60, but in the tenth embodiment, the integrated hydrogen MMS 60 has the functions of the hydrogen MMSs 50A and 50B. To do.
  • FIG. 20 is a diagram illustrating a configuration of the integrated hydrogen MMS 60 in the tenth embodiment.
  • the integrated hydrogen MMS 60 is provided with a hydrogen MMS function 50.
  • the hydrogen MMS function 50 includes a hydrogen demand prediction unit 51 corresponding to the functions of the hydrogen MMS 50A and 50B described above.
  • the hydrogen demand prediction unit 51 receives information indicating the hydrogen consumption from the establishments A and B, generates a hydrogen demand prediction similar to the hydrogen demand prediction generated by the hydrogen MMS 50A and 50B, and integrates the hydrogen demand. Send to prediction unit 63.
  • the introduction cost can be reduced.
  • the method described in each embodiment is, for example, a magnetic disk (floppy (registered trademark) disk, hard disk, etc.), optical disk (CD-ROM, DVD, etc.) as a program (software means) that can be executed by a computer (computer).
  • MO, etc. a semiconductor memory (ROM, RAM, flash memory, etc.), etc.
  • the program stored on the medium side includes a setting program that configures software means (including not only the execution program but also a table and data structure) in the computer.
  • a computer that implements this apparatus reads a program recorded on a recording medium, constructs software means by a setting program as the case may be, and executes the above-described processing by controlling the operation by this software means.
  • the recording medium referred to in this specification is not limited to distribution, but includes a storage medium such as a magnetic disk or a semiconductor memory provided in a computer or a device connected via a network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Tourism & Hospitality (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Health Care (AREA)
  • Electrochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • General Engineering & Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)

Abstract

A hydrogen management system according to an embodiment is applied to a hydrogen supply system in which a hydrogen station for filling up fuel cell vehicles with hydrogen is shared among a plurality of business sites, said hydrogen management system comprising: a plurality of hydrogen management means which generate hydrogen demand forecasts of fuel cell vehicles at each of the business sites; and an integrated hydrogen management means which, on the basis of the hydrogen demand forecasts of the fuel cell vehicles at each of the business sites which are generated by the plurality of hydrogen management means and information of a filling-possible time period in which it is possible to fill the fuel cell vehicles at each of the business sites with hydrogen, divides the filling-possible time period into a plurality of unit times, carries out a computation to determine filling times at which the filling with hydrogen is carried out from among the plurality of unit times such that overlaps of the filling times among the business sites is reduced, and generates a hydrogen demand forecast which includes information of the filling times of the fuel cell vehicles at each of the business sites which are determined by said computation.

Description

水素管理システムおよび統合水素管理装置Hydrogen management system and integrated hydrogen management system
 本発明の実施形態は、水素管理システムおよび統合水素管理装置に関する。 Embodiments of the present invention relate to a hydrogen management system and an integrated hydrogen management apparatus.
 クリーンな次世代エネルギーとして水素が注目されており、この水素を燃料とする燃料電池(FC:Fuel Cell)車両が増加すると予想されている。例えば物流事業者が倉庫等で使うフォークリフトについても、これまで利用されてきたディーゼルエンジン方式やバッテリ方式のフォークリフトに代わり、燃料電池式フォークリフト(FCフォークリフト)が増加してくると予想されている。 Hydrogen is attracting attention as a clean next-generation energy, and it is expected that fuel cell (FC) vehicles using this hydrogen as fuel will increase. For example, forklifts used by logistics companies in warehouses, etc., fuel cell forklifts (FC forklifts) are expected to increase in place of diesel engine type and battery type forklifts that have been used so far.
特開2006-1797号公報JP 2006-1797 A 特許第5679920号公報Japanese Patent No. 5679920 特許第5432292号公報Japanese Patent No. 5432292
 FCフォークリフト等の燃料電池車両に水素を供給する水素ステーションは、製造コストが非常に高いため、複数の事業所で水素ステーションを共有して使用する形態が考えられている。 Hydrogen stations that supply hydrogen to fuel cell vehicles such as FC forklifts are very expensive to manufacture, so it is conceivable that hydrogen stations are shared by multiple offices.
 しかしながら、複数の事業所で水素ステーションを共用する場合、燃料電池車両に水素の充填待ちが発生する可能性がある。例えば、水素の充填待ちの時間が長いと、燃料切れが生じたり、作業が滞ったりして、業務に支障をきたすことが考えられる。 However, when hydrogen stations are shared by multiple offices, there is a possibility that the fuel cell vehicle may wait for hydrogen filling. For example, if the waiting time for filling with hydrogen is long, it is conceivable that the fuel will run out or the work will be delayed, which hinders the work.
 本発明が解決しようとする課題は、複数の事業所で水素ステーションを共用する形態において水素充填待ちの発生を抑制することができる水素管理システムおよび統合水素管理装置を提供することにある。 The problem to be solved by the present invention is to provide a hydrogen management system and an integrated hydrogen management apparatus capable of suppressing the occurrence of waiting for hydrogen filling in a form in which a plurality of business offices share a hydrogen station.
 実施形態の水素管理システムは、燃料電池車両に水素を充填するための水素ステーションを複数の事業所が共用する水素供給システムに適用される水素管理システムであって、各事業所の燃料電池車両の水素需要予測を生成する複数の水素管理手段と、前記複数の水素管理手段により生成された各事業所の燃料電池車両の水素需要予測および各事業所の燃料電池車両の水素の充填が可能な充填可能時間帯の情報に基づき、当該充填可能時間帯を複数の単位時間に分け、前記複数の単位時間の中から水素の充填を実施する充填実施時間を事業所間での重複が抑制されるように決定する演算を行い、当該演算により決定した各事業所の燃料電池車両の充填実施時間の情報を含む水素需要予測を生成する統合水素管理手段とを具備する。 The hydrogen management system of the embodiment is a hydrogen management system that is applied to a hydrogen supply system in which a plurality of business sites share a hydrogen station for filling a fuel cell vehicle with hydrogen, and the fuel cell vehicle of each business site. A plurality of hydrogen management means for generating a hydrogen demand forecast, and a hydrogen demand forecast for the fuel cell vehicles at each business site generated by the plurality of hydrogen management means and a filling capable of filling hydrogen in the fuel cell vehicles at each business site Based on the information on the available time zone, the chargeable time zone is divided into a plurality of unit times, and the filling time for performing the hydrogen filling from the plurality of unit times is prevented from overlapping between establishments. And an integrated hydrogen management means for generating a hydrogen demand prediction including information on the filling time of the fuel cell vehicle at each office determined by the calculation.
第1の実施形態に係る水素供給システムの全体構成を示す図。The figure which shows the whole structure of the hydrogen supply system which concerns on 1st Embodiment. 1台分の水素MMSの機能構成例を示すブロック図。The block diagram which shows the function structural example of the hydrogen MMS for 1 unit | set. 統合水素MMS60とその周辺との接続関係を示す図。The figure which shows the connection relationship of integrated hydrogen MMS60 and its periphery. 統合水素MMS60の機能構成を示すブロック図。The block diagram which shows the function structure of integrated hydrogen MMS60. 統合水素需要予測部63による主要な動作を示す図。The figure which shows the main operation | movement by the integrated hydrogen demand prediction part 63. FIG. 「充填可能性の評価値算出」の詳細な動作を示す図。The figure which shows the detailed operation | movement of "evaluation value calculation of a filling possibility". 「事業所間での時間的整合性の評価値算出」の詳細な動作を示す図。The figure which shows the detailed operation | movement of "evaluation value of time consistency between establishments". 「充填間隔の評価値算出」の詳細な動作を示す図。The figure which shows the detailed operation | movement of "evaluation value calculation of a filling interval". 第2の実施形態における統合水素需要予測部63による評価値算出前のチェックの動作を示す図。The figure which shows the operation | movement of the check before evaluation value calculation by the integrated hydrogen demand prediction part 63 in 2nd Embodiment. 図9中のステップS106の「充填可能性のチェック」の詳細な動作を示す図。The figure which shows the detailed operation | movement of the "check of a filling possibility" of step S106 in FIG. 図9中のステップS112の「事業所間での時間的整合性のチェック」の詳細な動作を示す図。The figure which shows detailed operation | movement of the "check of the time consistency between establishments" of step S112 in FIG. 第1の実施形態と第3の実施形態との充填実施時間の候補の表現方法の違いを対比して示す図。The figure which contrasts and shows the difference in the expression method of the candidate of the filling implementation time of 1st Embodiment and 3rd Embodiment. 第5の実施形態における「事業所間での時間的整合性の評価値算出」の詳細な動作の前半を示す図。The figure which shows the first half of the detailed operation | movement of "the evaluation value calculation of the temporal consistency between establishments" in 5th Embodiment. 第5の実施形態における「事業所間での時間的整合性の評価値算出」の詳細な動作の後半を示す図。The figure which shows the second half of the detailed operation | movement of "the evaluation value calculation of the temporal consistency between establishments" in 5th Embodiment. 第6の実施形態における統合水素MMS60とその周辺との接続関係を示す図。The figure which shows the connection relation of integrated hydrogen MMS60 and its periphery in 6th Embodiment. 第7の実施形態における統合水素MMS60とその周辺との接続関係を示す図。The figure which shows the connection relation of integrated hydrogen MMS60 and its periphery in 7th Embodiment. 充填可能時間帯をオペレータが指定することを可能とする表示画面の例を示す図。The figure which shows the example of the display screen which enables an operator to specify the filling possible time slot | zone. 事業所優先度をオペレータが指定することを可能とする表示画面の例を示す図。The figure which shows the example of the display screen which enables an operator to specify the establishment priority. 統合水素MMS60が水素MMS50A,50Bから受信するデータの例を示す図。The figure which shows the example of the data which integrated hydrogen MMS60 receives from hydrogen MMS50A, 50B. 統合水素MMS60が水素EMS70及び移動式水素ステーション用運行管理システム30に送信するデータ、および、統合水素MMS60が移動式水素ステーション用運行管理システム30から受信するデータの例を示す図。The figure which shows the example of the data which the integrated hydrogen MMS60 transmits to the hydrogen EMS70 and the operation management system 30 for mobile hydrogen stations, and the data which the integrated hydrogen MMS60 receives from the operation management system 30 for mobile hydrogen stations. 第10の実施形態における統合水素MMS60の構成を示す図。The figure which shows the structure of the integrated hydrogen MMS60 in 10th Embodiment.
 (第1の実施形態)
 図1は、第1の実施形態に係る水素供給システムの全体構成を示す図である。
(First embodiment)
FIG. 1 is a diagram illustrating an overall configuration of the hydrogen supply system according to the first embodiment.
 [システム構成]
 この水素供給システムは、発電設備10、水素製造装置11、水素タンク12、移動式水素ステーション20、移動式水素ステーション用運行管理システム(以下、「運行管理システム」)30、事業所AおよびBがそれぞれ所有するFCフォークリフト群41A,41B,および42A,42B、水素MMS(Mobility Management System)50A,50B、統合水素MMS60、水素EMS(Energy Management System)70等を含む。
[System configuration]
This hydrogen supply system includes a power generation facility 10, a hydrogen production apparatus 11, a hydrogen tank 12, a mobile hydrogen station 20, a mobile hydrogen station operation management system (hereinafter referred to as an “operation management system”) 30, and offices A and B. FC forklifts 41A, 41B and 42A, 42B, hydrogen MMS (Mobility Management System) 50A, 50B, integrated hydrogen MMS 60, hydrogen EMS (Energy Management System) 70, etc., respectively, are included.
 発電設備10は、太陽光発電や風力発電など、自然エネルギーを利用した発電を行う。 The power generation facility 10 performs power generation using natural energy such as solar power generation and wind power generation.
 水素製造装置11は、発電設備10により発電された電気と水から水電解によって水素を製造する。 The hydrogen production apparatus 11 produces hydrogen by water electrolysis from electricity and water generated by the power generation facility 10.
 水素タンク12は、水素製造装置11により製造された水素を貯蔵する。 The hydrogen tank 12 stores the hydrogen produced by the hydrogen production apparatus 11.
 移動式水素ステーション20は、水素製造装置11あるいは水素タンク12から水素を取り込んで貯蔵する水素貯蔵設備や、貯蔵した水素をFCフォークリフト等の燃料電池車両に充填するための充填設備(ディスペンサー等)を備えている。この移動式水素ステーション20は、複数の事業所A,Bで共用される。なお、本実施形態では水素ステーション20が移動式の水素ステーション(移動車両)である場合を例示するが、移動できない固定式の水素ステーション(定置型設備)に代えて実施してもよい。その場合、移動式水素ステーション用運行管理システム30の設置は不要となる。 The mobile hydrogen station 20 has a hydrogen storage facility that takes in hydrogen from the hydrogen production apparatus 11 or the hydrogen tank 12 and stores it, and a filling facility (dispenser or the like) for filling the stored hydrogen into a fuel cell vehicle such as an FC forklift. I have. The mobile hydrogen station 20 is shared by a plurality of offices A and B. In this embodiment, the case where the hydrogen station 20 is a mobile hydrogen station (moving vehicle) is illustrated, but the hydrogen station 20 may be replaced with a stationary hydrogen station (stationary facility) that cannot move. In that case, the installation of the operation management system 30 for the mobile hydrogen station becomes unnecessary.
 上記移動式水素ステーション20は、移動式水素ステーション用運行管理システム30により運行が管理され、例えば事業所A用の充填エリアや事業所B用の充填エリアを巡回し、それぞれの充填エリアにおいて事業所Aで使用するFCフォークリフト群41A,41Bや、事業所Bで使用するFCフォークリフト群42A,42Bに水素を充填する。 The operation of the mobile hydrogen station 20 is managed by the mobile hydrogen station operation management system 30. For example, the mobile hydrogen station 20 circulates the filling area for the business office A and the filling area for the business office B. The FC forklift groups 41A and 41B used in A and the FC forklift groups 42A and 42B used in the office B are filled with hydrogen.
 移動式水素ステーション用運行管理システム30は、統合水素MMS60から提供される水素需要予測(例えば、時間帯毎の水素要求量の瞬時値を示す情報)を用いて、移動式水素ステーション20の稼働計画を立て、移動式水素ステーション20の日々の運行を管理する。 The operation management system 30 for the mobile hydrogen station uses the hydrogen demand prediction provided from the integrated hydrogen MMS 60 (for example, information indicating the instantaneous value of the hydrogen demand for each time zone) to plan the operation of the mobile hydrogen station 20. To manage the daily operation of the mobile hydrogen station 20.
 FCフォークリフト群41A,41B,42A,42Bは、各事業所で主に物流事業を運営するにあたり使用する燃料電池車両である。例えば、事業所Aでは複数のエリアにおいてFCフォークリフト群41A,41Bを使用し、事業所Bでは複数のエリアにおいてFCフォークリフト群42A,42Bを使用する。 FC forklift groups 41A, 41B, 42A, and 42B are fuel cell vehicles that are mainly used for operating a logistics business at each business office. For example, the establishment A uses FC forklift groups 41A and 41B in a plurality of areas, and the establishment B uses FC forklift groups 42A and 42B in a plurality of areas.
 水素MMS50A,50Bは、事業所毎に設けられる水素管理装置である。例えば、水素MMS50Aは事業所Aに対応して設けられ、水素MMS50Bは事業所Bに対応して設けられる。 Hydrogen MMS 50A, 50B is a hydrogen management device provided for each office. For example, the hydrogen MMS 50A is provided corresponding to the business office A, and the hydrogen MMS 50B is provided corresponding to the business office B.
 水素MMS50Aは、水素需要予測(例えば、FCフォークリフト群41A,41Bの時間帯毎の水素需要予測量の積算値を示す情報)および補足情報(例えば、前日のFCフォークリフト群41A,41Bの残燃料量を示す情報)を生成する。同様に、水素需要予測(例えば、FCフォークリフト群42A,42Bの時間帯毎の水素需要予測量の積算値を示す情報)および補足情報(例えば、前日のFCフォークリフト群42A,42Bの残燃料量を示す情報)を生成する。水素需要予測は、例えば、WMS(Warehouse Management System)やASN(Advanced Shipping Notice)や気象予測、ディスペンサーから得られる情報を利用して得られる。 The hydrogen MMS 50A includes a hydrogen demand prediction (for example, information indicating an integrated value of the predicted hydrogen demand for each time zone of the FC forklift groups 41A and 41B) and supplementary information (for example, the remaining fuel amount of the FC forklift groups 41A and 41B on the previous day). Is generated). Similarly, the hydrogen demand forecast (for example, information indicating the integrated value of the hydrogen demand forecast amount for each time zone of the FC forklift groups 42A, 42B) and supplementary information (for example, the remaining fuel amount of the FC forklift groups 42A, 42B on the previous day) Information). The hydrogen demand prediction is obtained by using, for example, information obtained from WMS (Warehouse Management System), ASN (Advanced Shipping Shipping), weather prediction, or a dispenser.
 統合水素MMS60は、水素MMS50A,50Bからそれぞれ提供される水素需要予測(例えば、時間帯毎の水素需要予測量の積算値を示す情報)を統合して、新たな水素需要予測(例えば、時間帯毎の水素要求量の瞬時値を示す情報)を生成し、これを移動式水素ステーション用運行管理システム30や水素EMS70へ送信する。 The integrated hydrogen MMS 60 integrates the hydrogen demand predictions provided from the hydrogen MMSs 50A and 50B (for example, information indicating the integrated value of the predicted hydrogen demand for each time zone), and creates a new hydrogen demand forecast (eg, the time zone). Information indicating an instantaneous value of each hydrogen demand amount) is generated and transmitted to the mobile hydrogen station operation management system 30 and the hydrogen EMS 70.
 水素EMS70は、太陽光発電や風力発電の発電可能量予測や、FCフォークリフトのディスペンサー以外に水素貯蔵設備から水素が供給される需要家の水素需要予測を行い、統合水素MMS60(あるいは水素MMS50A,50B)から得られる水素需要予測と合わせて、水素製造計画を立てる。 The hydrogen EMS 70 predicts the amount of power that can be generated by solar power generation and wind power generation, and also predicts the hydrogen demand of consumers who are supplied with hydrogen from a hydrogen storage facility in addition to the dispenser of the FC forklift. The integrated hydrogen MMS 60 (or hydrogen MMS 50A, 50B) A hydrogen production plan is made together with the hydrogen demand forecast obtained from
 ここで、水素MMS50A,50Bの構成について説明する。水素MMS50A,50Bは、それぞれ図2に示す共通の機能構成を有する。 Here, the configuration of the hydrogen MMS 50A and 50B will be described. The hydrogen MMSs 50A and 50B have a common functional configuration shown in FIG.
 [水素MMS50A,50Bの構成]
 図2は、1台分の水素MMS(例えば、水素MMS50A)の機能構成例を示すブロック図である。図2に示すように、水素MMS50Aは、UI(User Interface)50a,50c,50e、区分・ディスペンサー設定部50b、データベース50d,50f、予測実績表示部50g、予測結果修正部50h、24時間分予測部50i、再予測部50j、水素貯蔵要求量計算部50k、通信部50mを有する。UI50a,50c,50eは、1つのUIであってもよい。データベース50d,50fは1つの記憶装置で構成されてもよい。
[Configuration of hydrogen MMS 50A and 50B]
FIG. 2 is a block diagram illustrating a functional configuration example of one hydrogen MMS (for example, hydrogen MMS 50A). As shown in FIG. 2, the hydrogen MMS 50A includes UI (User Interface) 50a, 50c, 50e, a classification / dispenser setting unit 50b, databases 50d, 50f, a predicted performance display unit 50g, a prediction result correction unit 50h, and a prediction for 24 hours. Unit 50i, re-prediction unit 50j, hydrogen storage request amount calculation unit 50k, and communication unit 50m. The UIs 50a, 50c, and 50e may be a single UI. The databases 50d and 50f may be composed of one storage device.
 水素MMS50Aでは、(1)WMS31や、オペレータが操作したUI50cから入力してDB50dに蓄積された過去データと、(2)ASN32、カレンダーデータ33、気象予測データ34、オペレータが操作したUI50eから入力してDB50fに蓄積された予測対象日データとに基づいて、24時間分予測部50iが24時間分の水素需要予測を行ない、その予測結果に基づいて水素貯蔵要求量計算部50kが水素貯蔵要求量を計算して、通信部50mから統合水素MMS60に通知する。 In the hydrogen MMS 50A, (1) past data input from the WMS 31 or UI 50c operated by the operator and accumulated in the DB 50d, and (2) input from the ASN 32, calendar data 33, weather forecast data 34, and UI 50e operated by the operator. Based on the prediction target date data accumulated in the DB 50f, the 24-hour prediction unit 50i performs a 24-hour hydrogen demand prediction, and based on the prediction result, the hydrogen storage requirement calculation unit 50k calculates the hydrogen storage requirement amount. Is calculated and notified to the integrated hydrogen MMS 60 from the communication unit 50m.
 上記の通知後、統合水素MMS60から上記水素貯蔵要求量を反映した水素需要予測が水素EMS70に伝えられ、水素EMS70が水素製造計画を立案する。FCフォークリフトが実際に水素の充填を行なって完了したタイミングで、水素MMS50Aが再予測実施判断を行い、前述した水素需要予測の結果に対する水素充填の実績値の誤差が大きい場合は再予測部50jによる再予測を行う。この場合、再予測結果に基づいて水素貯蔵要求量計算部50kが水素貯蔵要求量を計算して、通信部50mから統合水素MMS60に通知する。この通知後、統合水素MMS60から上記水素貯蔵要求量を反映した水素需要予測が水素EMS70に伝えられ、水素EMS70が水素製造計画を再度立案する。 After the above notification, the hydrogen demand forecast reflecting the hydrogen storage requirement amount is transmitted from the integrated hydrogen MMS 60 to the hydrogen EMS 70, and the hydrogen EMS 70 formulates a hydrogen production plan. At the timing when the FC forklift truck is actually filled with hydrogen, the hydrogen MMS 50A makes a re-prediction execution decision. If the actual value of hydrogen filling with respect to the result of hydrogen demand prediction described above is large, the re-predicting unit 50j Re-predict. In this case, the hydrogen storage requirement calculation unit 50k calculates the hydrogen storage requirement amount based on the re-prediction result, and notifies the integrated hydrogen MMS 60 from the communication unit 50m. After this notification, the hydrogen demand prediction reflecting the hydrogen storage requirement amount is transmitted from the integrated hydrogen MMS 60 to the hydrogen EMS 70, and the hydrogen EMS 70 makes a hydrogen production plan again.
 24時間分予測部50iによる水素需要予測は、各区分に対して行われる。各区分は、FCフォークリフトが担当する作業によって分けられ、水素需要予測のための単位として定義する。 The hydrogen demand prediction by the 24-hour prediction unit 50i is performed for each section. Each category is divided by the work that the FC forklift is in charge of, and is defined as a unit for hydrogen demand prediction.
 各区分は、例えば倉庫などで作業を行う各エリアに相当し、各FCフォークリフトがそれぞれのエリアで専任の作業を行う。例えばディスペンサーが複数台あり、それぞれが離れた場所に設けられる場合、区分・ディスペンサー設定部50bは、オペレータがUI50aを操作することで入力した区分設定情報、および、ディスペンサーの場所を示す設定情報を得ると、これらの情報に基づいて、それぞれの区分を担当するFCフォークリフトが、どのディスペンサーに水素を充填しに行くかを設定するための、区分とディスペンサーとの対応付けを行なう。 Each division corresponds to each area where work is performed in a warehouse, for example, and each FC forklift performs dedicated work in each area. For example, when there are a plurality of dispensers and each is provided at a location separated from each other, the category / dispenser setting unit 50b obtains category setting information input by the operator operating the UI 50a and setting information indicating the location of the dispenser. Based on these information, the FC forklift in charge of each section associates the section with the dispenser for setting which dispenser is to be filled with hydrogen.
 また、予測実績表示部50gは、予測した充填水素量(積算)と、水素貯蔵要求量と「過去実績データの充填水素量(積算)とをグラフにて画面表示する。 Further, the predicted performance display unit 50g displays the predicted charged hydrogen amount (integrated), the required hydrogen storage amount, and the “filled hydrogen amount (integrated) of past performance data” on a screen.
 予測結果修正部50hは、予測実績表示部50gに表示された、予測した充填水素量(積算)と水素貯蔵要求量を、オペレータによるUI50eに対する任意の修正のための操作により修正して、新たな需要予測結果として水素貯蔵要求量計算部50kに出力する。 The prediction result correction unit 50h corrects the predicted charged hydrogen amount (integration) and the hydrogen storage request amount displayed on the prediction result display unit 50g by an operation for arbitrary correction on the UI 50e by the operator, and creates a new It outputs to the hydrogen storage requirement calculation part 50k as a demand prediction result.
 次に、図3および図4を参照して、統合水素MMS60について説明する。 Next, the integrated hydrogen MMS 60 will be described with reference to FIG. 3 and FIG.
 [統合水素MMS60の構成]
 図3は、統合水素MMS60とその周辺との接続関係を示す図である。また、図4は、統合水素MMS60の機能構成を示すブロック図である。なお、図3、図4では、移動式の水素ステーションを用いる場合の例を示しているが、固定式水素ステーションを用いる場合は、移動式水素ステーション用運行管理システム30の設置や輸送情報の送受は不要となる。
[Configuration of integrated hydrogen MMS60]
FIG. 3 is a diagram showing a connection relationship between the integrated hydrogen MMS 60 and its periphery. FIG. 4 is a block diagram showing a functional configuration of the integrated hydrogen MMS 60. 3 and 4 show an example in which a mobile hydrogen station is used. However, in the case of using a fixed hydrogen station, installation of the mobile hydrogen station operation management system 30 and transmission / reception of transportation information are shown. Is no longer necessary.
 本実施形態の水素供給システムでは、前述したように複数の事業所A,Bで水素ステーション20を共用するため、各物流事業所のFCフォークリフトは自由な時間に充填することができない。そのため、本実施形態では、各事業所のオペレータに、各事業所で使用するFCフォークリフト群の水素の充填が可能な充填可能時間帯を指定してもらった上で、その時間帯の中で各FCフォークリフトに対する水素の充填を行うように設定する。その際、事業所間で充填時間が重複する場合には、当該重複をできるだけ減らすための調整も行う。 In the hydrogen supply system of this embodiment, since the hydrogen station 20 is shared by a plurality of business establishments A and B as described above, the FC forklift at each logistics business establishment cannot be filled in free time. Therefore, in this embodiment, after having the operator of each business site specify the chargeable time zone in which the hydrogen of the FC forklift group used at each business site can be charged, Set to fill hydrogen into FC forklift. At that time, if the filling time overlaps between establishments, adjustments are also made to reduce the overlap as much as possible.
 図3に示すように、統合水素MMS60は、事業所Aの事業所システム80Aもしくはオペレータ端末81Aから事業所情報(例えば、事業所Aに関する基本情報やオペレータが指定した充填可能時間帯を示す情報など)を受信する。同様に、統合水素MMS60は、事業所Bの事業所システム80Bもしくはオペレータ端末81Bから事業所情報(例えば、事業所Bに関する基本情報やオペレータが指定した充填可能時間帯を示す情報など)を受信する。また、統合水素MMS60は、統合水素MMS60の保守管理会社のオペレータ端末81Zから事業所設定情報(例えば、事業所毎の水素充填の優先度を示す情報など)を受信する。 As shown in FIG. 3, the integrated hydrogen MMS 60 receives establishment information from the establishment system 80A of the establishment A or the operator terminal 81A (for example, basic information related to the establishment A and information indicating a rechargeable time zone specified by the operator). ). Similarly, the integrated hydrogen MMS 60 receives the establishment information (for example, basic information about the establishment B or information indicating the rechargeable time zone specified by the operator) from the establishment system 80B of the establishment B or the operator terminal 81B. . Further, the integrated hydrogen MMS 60 receives establishment setting information (for example, information indicating the priority of hydrogen filling for each establishment) from the operator terminal 81Z of the maintenance management company of the integrated hydrogen MMS 60.
 また、統合水素MMS60は、事業所Aの水素MMS50A,事業所Bの水素MMS50Bから、それぞれ、前述した水素需要予測および補足情報を受信する。 Further, the integrated hydrogen MMS 60 receives the above-described hydrogen demand prediction and supplementary information from the hydrogen MMS 50A of the business office A and the hydrogen MMS 50B of the business office B, respectively.
 また、統合水素MMS60は、受信した各種の情報を用いて、新たな水素需要予測(例えば、時間帯毎の水素要求量の瞬時値を示す情報)を生成し、この新たな水素需要予測(以下、単に「水素要求量」と呼ぶ場合がある)を移動式水素ステーション用運行管理システム30や水素EMS70へ送信する。 Further, the integrated hydrogen MMS 60 generates a new hydrogen demand forecast (for example, information indicating an instantaneous value of the hydrogen demand amount for each time zone) using the received various information, and this new hydrogen demand forecast (hereinafter referred to as “hydrogen demand forecast”). May be simply referred to as “hydrogen demand”) to the mobile hydrogen station operation management system 30 or the hydrogen EMS 70.
 特に、統合水素MMS60は、受信した水素需要予測および充填可能時間帯を示す情報に基づき、当該充填可能時間帯を複数の単位時間に分け、これら複数の単位時間の中から水素の充填を実施する充填実施時間を事業所間での重複が抑制されるように決定する演算を行い、当該演算により決定した各事業所のFCフォークリフト群の充填実施時間の情報を含む新たな水素需要予測を生成する。 In particular, the integrated hydrogen MMS 60 divides the chargeable time zone into a plurality of unit times based on the received hydrogen demand prediction and information indicating the chargeable time zone, and performs hydrogen filling from the plurality of unit times. Performs a calculation to determine the filling time so that duplication between sites is suppressed, and generates a new hydrogen demand forecast including information on the filling time of the FC forklift group of each site determined by the calculation .
 また、統合水素MMS60は、移動式水素ステーション用運行管理システム30から輸送情報(例えば、各事業所用の充填エリア間の移動時間を示す情報や、各FCフォークリフトの搭載可能水素量を示す情報など)を受信し、受信した情報を必要に応じて前述した演算に適用する。 In addition, the integrated hydrogen MMS 60 is transported from the mobile hydrogen station operation management system 30 (for example, information indicating the travel time between filling areas for each office, information indicating the amount of hydrogen that can be mounted on each FC forklift, etc.). And the received information is applied to the above-described calculation as necessary.
 図4に示すように、統合水素MMS60は、事業所情報受信部61、水素需要予測受信部62、統合水素需要予測部63、統合水素需要送信部64、水素輸送情報受信部65、UI66などの各種の機能を備えている。 As shown in FIG. 4, the integrated hydrogen MMS 60 includes an establishment information receiving unit 61, a hydrogen demand forecast receiving unit 62, an integrated hydrogen demand forecasting unit 63, an integrated hydrogen demand sending unit 64, a hydrogen transport information receiving unit 65, a UI 66, and the like. It has various functions.
 事業所情報受信部61は、事業所Aの水素MMS50A,事業所Bの水素MMS50Bからそれぞれ前述した水素需要予測および補足情報を受信する機能である。 The establishment information receiving unit 61 has a function of receiving the above-described hydrogen demand prediction and supplementary information from the hydrogen MMS 50A of the establishment A and the hydrogen MMS 50B of the establishment B, respectively.
 水素需要予測受信部62は、各事業所の事業所システム80A,80Bやオペレータ端末81A,81B、81Zからそれぞれ前述した事業所情報や事業所設定情報を受信する機能である。 The hydrogen demand prediction receiving unit 62 has a function of receiving the above-mentioned office information and office setting information from the office systems 80A and 80B and the operator terminals 81A, 81B, and 81Z of the respective offices.
 統合水素需要予測部63は、受信された各種の情報から前述した新たな水素需要予測を生成する機能である。 The integrated hydrogen demand prediction unit 63 has a function of generating the above-described new hydrogen demand prediction from the received various information.
 統合水素需要送信部64は、生成された新たな水素需要予測を移動式水素ステーション用運行管理システム30や水素EMS70へ送信する機能である。 The integrated hydrogen demand transmission unit 64 is a function of transmitting the generated new hydrogen demand prediction to the mobile hydrogen station operation management system 30 and the hydrogen EMS 70.
 水素輸送情報受信部65は、移動式水素ステーション用運行管理システム30から前述した輸送情報を受信する機能である。 The hydrogen transport information receiving unit 65 has a function of receiving the transport information described above from the mobile hydrogen station operation management system 30.
 UI66は、前述した充填可能時間帯や、事業所毎の水素充填の優先度などを、オペレータが指定することを可能とする画面を提供するユーザインタフェース機能である。 The UI 66 is a user interface function that provides a screen that allows the operator to specify the above-described filling possible time zone, the priority of hydrogen filling for each office, and the like.
 上記統合水素需要予測部63は、情報設定部91、演算処理部92、情報提供部93などの機能を含む。 The integrated hydrogen demand prediction unit 63 includes functions such as an information setting unit 91, a calculation processing unit 92, and an information providing unit 93.
 情報設定部91は、各事業所のFCフォークリフト群の充填可能時間帯の中の充填実施時間の候補を所定のアルゴリズムに従って仮決定して所定の記憶領域に設定する機能を有する。設定する充填実施時間の候補は、例えば水素の充填を行うか否かを単位時間毎に示す2値の変数で表現する。 The information setting unit 91 has a function of tentatively determining a filling execution time candidate in a filling available time zone of the FC forklift group of each office according to a predetermined algorithm and setting it in a predetermined storage area. The filling execution time candidate to be set is expressed by, for example, a binary variable indicating whether or not hydrogen filling is performed for each unit time.
 演算処理部92は、情報設定部91によりそれぞれ設定された事業所毎の充填実施時間の候補が所定の評価基準を満たさない場合には情報設定部91に別の候補を設定させる処理を繰り返し、前記評価基準を満たす場合に当該候補を充填実施時間として決定する機能を有する。 The arithmetic processing unit 92 repeats a process of causing the information setting unit 91 to set another candidate when the filling time candidate for each establishment set by the information setting unit 91 does not satisfy a predetermined evaluation criterion, When the evaluation criteria are satisfied, the candidate is determined as a filling execution time.
 情報提供部93は、演算処理部92により決定された各事業所の燃料電池車両の充填実施時間の情報を含む水素需要予測を、統合水素需要送信部64を通じて移動式水素ステーション用運行管理システム30や水素EMS70に提供する機能を有する。 The information providing unit 93 generates a hydrogen demand prediction including information on the filling time of the fuel cell vehicle at each business site determined by the arithmetic processing unit 92 through the integrated hydrogen demand transmitting unit 64, and the operation management system 30 for the mobile hydrogen station. And a function provided to the hydrogen EMS 70.
 上記演算処理部92は、情報設定部91によりそれぞれ設定された事業所毎の充填実施時間の候補が前記評価基準を満たすか否かの判定を行うに際し、(1)充填可能性、(2)事業所間での時間的整合性、(3)充填間隔をそれぞれ示す第1の評価値、第2の評価値、第3の評価値を算出し、これらの評価値を前記評価基準に適用して判定を行う。 When the calculation processing unit 92 determines whether or not the filling time candidate for each establishment set by the information setting unit 91 satisfies the evaluation criteria, (1) filling possibility, (2) Calculate the first evaluation value, the second evaluation value, and the third evaluation value that indicate the temporal consistency between establishments, and (3) the filling interval, respectively, and apply these evaluation values to the evaluation criteria. To make a decision.
 例えば、第1の評価値、第2の評価値、第3の評価値にそれぞれ所定の重み付けを掛けた上で、それぞれを加算して得られる値を総合評価値とする。この総合評価値が、所定の基準値を下回れば(あるいは上回れば)、情報設定部91によりそれぞれ設定された事業所毎の充填実施時間の候補は評価基準を満たしていると判定し、当該候補を充填実施時間として決定する。 For example, the first evaluation value, the second evaluation value, and the third evaluation value are multiplied by predetermined weights, and values obtained by adding the respective weights are set as the total evaluation value. If this comprehensive evaluation value falls below (or exceeds) a predetermined reference value, it is determined that the filling time candidate for each establishment set by the information setting unit 91 satisfies the evaluation criteria, and the candidate Is determined as the filling time.
 第1の評価値は、例えば前日の残燃料だけでは、FCフォークリフト群の水素が無くなる時までに予測需要量の水素が充填されずにFCフォークリフト群の水素が不足する度合いを示す評価値とする。この評価値を使用することにより、FCフォークリフト群に燃料切れが発生することを防げる。 The first evaluation value is, for example, an evaluation value indicating the degree of shortage of hydrogen in the FC forklift group without being filled with the predicted amount of hydrogen by the time when the hydrogen in the FC forklift group is exhausted only with the remaining fuel of the previous day. . By using this evaluation value, it is possible to prevent the FC forklift group from running out of fuel.
 第2の評価値は、例えば事業所間で同時に充填が行われる事象が生じる度合いを示す評価値とする。この評価値を使用することにより、事業所間で同時に水素ステーションが使用されるという時間的不整合の発生を防げる。 The second evaluation value is, for example, an evaluation value indicating the degree of occurrence of an event in which filling is simultaneously performed between establishments. By using this evaluation value, it is possible to prevent occurrence of time inconsistency that hydrogen stations are simultaneously used between offices.
 第3の評価値は、例えば1つの事業所内で充填が行われる時間間隔が長引く度合いを示す評価値とする。この評価値は必須ではないが、この評価値を採用することにより、充填の行われない無駄な時間が発生することを低減できる。 The third evaluation value is, for example, an evaluation value indicating the degree to which the time interval for filling in one office is prolonged. Although this evaluation value is not essential, the use of this evaluation value can reduce the occurrence of wasted time during which no filling is performed.
 以下の説明では、第1の評価値、第2の評価値、第3の評価値を、それぞれ、「充填可能性の評価値」、「事業所間での時間的不整合の評価値」、「充填間隔の評価値」と呼ぶ場合がある。 In the following description, the first evaluation value, the second evaluation value, and the third evaluation value are respectively referred to as “fillability evaluation value”, “temporal inconsistency evaluation value between establishments”, Sometimes referred to as “evaluation value of filling interval”.
 次に、図5を参照して、統合水素需要予測部63による主要な動作を説明する。 Next, main operations performed by the integrated hydrogen demand prediction unit 63 will be described with reference to FIG.
 統合水素需要予測部63は、事業所毎に、FCフォークリフト群の充填可能時間帯の中の充填実施時間の候補を所定のアルゴリズムに従って仮決定する処理を行う。 The integrated hydrogen demand prediction unit 63 performs a process of temporarily determining a filling execution time candidate in the filling time zone of the FC forklift group according to a predetermined algorithm for each business site.
 統合水素需要予測部63は、各事業所を事業所番号n=1,2,…で識別し、最初に事業所番号n=1の事業所を対象にした処理を開始する(ステップS11)。 The integrated hydrogen demand prediction unit 63 identifies each establishment by establishment number n = 1, 2,..., And first starts processing for the establishment with establishment number n = 1 (step S11).
 次に、統合水素需要予測部63は、対象の事業所nのFCフォークリフト群の前日の残燃料量をR(n)とし(ステップS12)、対象の事業所nの複数の充填可能時間帯をF(n,i)(i=1,2,…,I(n))とする(ステップS12)。なお、i=1,2,…,I(n)は、各充填可能時間帯を識別するための充填可能時間帯番号を表している。 Next, the integrated hydrogen demand forecasting unit 63 sets the remaining fuel amount of the previous day of the FC forklift group at the target establishment n as R (n) (step S12), and sets a plurality of rechargeable time zones at the target establishment n. Let F (n, i) (i = 1, 2,..., I (n)) (step S12). In addition, i = 1, 2,..., I (n) represents a filling time zone number for identifying each filling time zone.
 次に、統合水素需要予測部63は、番号i=1の充填可能時間帯を対象にした処理を開始する(ステップS14)。 Next, the integrated hydrogen demand prediction unit 63 starts processing for the refillable time zone of number i = 1 (step S14).
 統合水素需要予測部63は、充填可能時間帯F(n,i)を例えば1分単位の単位時間に分割し、各単位時間の間に水素を充填するか否かを示す2値の変数G(n,i,j)(j=1,2,…,J(n,j))の値をランダムに決定する(ステップS15)。なお、j=1,2,…,J(n,j)は、各単位時間を識別するための単位時間番号を表している。こうした変数Gを用いた処理により、充填可能時間帯F(n,i)の中の充填実施時間の候補が仮決定される。 The integrated hydrogen demand prediction unit 63 divides the rechargeable time zone F (n, i) into unit times of, for example, 1 minute, and a binary variable G indicating whether or not hydrogen is charged during each unit time. The value of (n, i, j) (j = 1, 2,..., J (n, j)) is randomly determined (step S15). Here, j = 1, 2,..., J (n, j) represents a unit time number for identifying each unit time. By such processing using the variable G, candidates for filling time within the filling possible time zone F (n, i) are provisionally determined.
 ここで、i=1,2,…,I(n)の全ての充填可能時間帯についての処理が完了していなければ(ステップS16のN)、次の番号の充填可能時間帯を対象にした処理を開始し(ステップS17)、ステップS15からの処理を繰り返す。 Here, if the processing for all the chargeable time zones of i = 1, 2,..., I (n) is not completed (N in step S16), the next available number of chargeable time zones is targeted. The process is started (step S17), and the process from step S15 is repeated.
 一方、i=1,2,…,I(n)の全ての充填可能時間帯についての処理が完了している場合(ステップS16のY)、全事業所についての処理が完了していなければ(ステップS18のN)、次の事業所番号の事業所を対象にした処理を開始し(ステップS19)、ステップS12からの処理を繰り返す。全事業所についての処理が完了していれば(ステップS18のY)、後で詳述する評価値(総合評価値)の算出を行う(ステップS20)。 On the other hand, if the processing for all refillable time zones of i = 1, 2,..., I (n) has been completed (Y in step S16), the processing has not been completed for all offices ( N of step S18), the process for the next office number is started (step S19), and the process from step S12 is repeated. If the processing has been completed for all offices (Y in step S18), an evaluation value (total evaluation value), which will be described in detail later, is calculated (step S20).
 ここで、算出された評価値が閾値以下でなければ(ステップS21のN)、ステップS11からの処理を繰り返す。算出された評価値が閾値以下であれば(ステップS21のY)、仮決定されていた各候補を充填実施時間として決定し、処理を終了する。 Here, if the calculated evaluation value is not less than or equal to the threshold value (N in step S21), the processing from step S11 is repeated. If the calculated evaluation value is equal to or smaller than the threshold value (Y in step S21), each temporarily determined candidate is determined as the filling execution time, and the process is terminated.
 [評価値の算出]
 次に、ステップS20の「評価値の算出」の詳細な動作を説明する。
[Calculation of evaluation value]
Next, the detailed operation of “calculation of evaluation value” in step S20 will be described.
 まず、統合水素需要予測部63は、「充填可能性」の評価値を算出する。また、統合水素需要予測部63は、「事業所間での時間的整合性」の評価値を算出する。さらに、統合水素需要予測部63は、「充填間隔」の評価値を算出する。最後に、統合水素需要予測部63は、算出した「充填可能性」、「事業所間での時間的整合性」、「充填間隔」の各評価値に、それぞれ、重みW0、W1、W2を掛けた上で、それらを加算する。この加算処理により得られる値を、最終的な評価値(総合評価値)とする。 First, the integrated hydrogen demand prediction unit 63 calculates an evaluation value of “fillability”. Further, the integrated hydrogen demand prediction unit 63 calculates an evaluation value of “temporal consistency between establishments”. Further, the integrated hydrogen demand prediction unit 63 calculates an evaluation value of “filling interval”. Finally, the integrated hydrogen demand prediction unit 63 assigns weights W0, W1, and W2 to the calculated evaluation values of the “filling possibility”, “temporal consistency between establishments”, and “filling interval”, respectively. Multiply them and add them. A value obtained by this addition processing is set as a final evaluation value (total evaluation value).
 [充填可能性の評価値算出]
 次に、図6を参照して、「充填可能性の評価値算出」の詳細な動作を説明する。
[Calculation of fillability evaluation value]
Next, with reference to FIG. 6, the detailed operation of “evaluation of fillability evaluation value” will be described.
 統合水素需要予測部63は、事業所毎に、FCフォークリフト群の水素が足りなくなる時までに予測需要量の水素が充填されるかどうかを調べ、充填されない場合のFCフォークリフト群の不足量の総量を評価値とする。 The integrated hydrogen demand forecasting unit 63 examines whether or not the hydrogen of the FC forklift group will be filled by the time when the hydrogen of the FC forklift group is insufficient, and the total amount of the shortage of the FC forklift group when not filled. Is an evaluation value.
 まず、統合水素需要予測部63は、充填可能性の評価値をEfとし、初期値としてEf=0を設定する(ステップS41)。 First, the integrated hydrogen demand prediction unit 63 sets Ef as the evaluation value of the possibility of filling, and sets Ef = 0 as the initial value (step S41).
 そして、統合水素需要予測部63は、事業所番号n=1の事業所を対象にした処理を開始する(ステップS42)。 Then, the integrated hydrogen demand prediction unit 63 starts a process for the establishment with the establishment number n = 1 (step S42).
 統合水素需要予測部63は、1日を構成する24時間を1時間単位に分割して、各単位時間をt=1,2,…,24とし、初期値としてt=1を設定する(ステップS43)。 The integrated hydrogen demand forecasting unit 63 divides 24 hours constituting one day into units of one hour, sets each unit time to t = 1, 2,..., 24, and sets t = 1 as an initial value (step) S43).
 また、統合水素需要予測部63は、事業所番号nの事業所の評価値をEf(n)とし、初期値としてEf(n)=0を設定する(ステップS44)。 Also, the integrated hydrogen demand prediction unit 63 sets Ef (n) as the evaluation value of the establishment with the establishment number n, and sets Ef (n) = 0 as the initial value (step S44).
 そして、統合水素需要予測部63は、対象の事業所nの時間tにおける水素需要予測(積算値)をP(n,t)とする(ステップS45)。 Then, the integrated hydrogen demand prediction unit 63 sets the hydrogen demand prediction (integrated value) at the time t of the target office n as P (n, t) (step S45).
 ここで、統合水素需要予測部63は、P(n,t)≧R(n)が成立するか否か、すなわち、対象の事業所nの時間tにおける水素需要予測(積算値)が前日の残燃料量以上であるか否かを判定する(ステップS46)。該当しない場合は(ステップS46のN)、水素の不足は発生しないものとみなし、不足量の演算を行うことなく、ステップS52へと進む。一方、該当する場合は(ステップS46のY)、不足量の演算を開始する。 Here, the integrated hydrogen demand prediction unit 63 determines whether or not P (n, t) ≧ R (n) is satisfied, that is, the hydrogen demand prediction (integrated value) at the time t of the target office n is the previous day. It is determined whether or not the fuel amount is equal to or greater than the remaining fuel amount (step S46). If not applicable (N in step S46), it is considered that hydrogen shortage does not occur, and the process proceeds to step S52 without calculating the shortage. On the other hand, if applicable (Y in step S46), calculation of the deficiency is started.
 まず、統合水素需要予測部63は、FCフォークリフト群が前日の残燃料量だけで不足し始める時間をT_lossとし(ステップS47)、時間T_lossから時間tまでの水素需要予測(積算値)の差分をΔPとし(ステップS48)、対象の事業所nが時間1からtまでに充填される水素量をDとする。 First, the integrated hydrogen demand prediction unit 63 sets T_loss as the time when the FC forklift group starts shortage only with the remaining fuel amount of the previous day (step S47), and calculates the difference in hydrogen demand prediction (integrated value) from time T_loss to time t. ΔP is set (step S48), and D is the amount of hydrogen charged by the target office n from time 1 to t.
 そして、統合水素需要予測部63は、ΔPがDよりも大きいか否かを判定する(ステップS50)。該当しない場合は(ステップS50のN)、水素の不足は発生しないものとみなし、ステップS52へと進む。一方、該当する場合は(ステップS50のY)、水素の不足が発生するものとみなし、現在の評価値Ef(n)に、不足量に相当する「ΔP-D」を加算する(ステップS51)
 ここで、時間t=1,2,…,24の全てについての処理が完了していなければ(ステップS52のY)、次の時間を対象にした処理を開始し(ステップS53)、ステップS45からの処理を繰り返す。
And the integrated hydrogen demand prediction part 63 determines whether (DELTA) P is larger than D (step S50). If not applicable (N in step S50), it is considered that there is no shortage of hydrogen, and the process proceeds to step S52. On the other hand, if applicable (Y in step S50), it is assumed that a shortage of hydrogen occurs, and “ΔP−D” corresponding to the shortage is added to the current evaluation value Ef (n) (step S51).
Here, if the processing for all the times t = 1, 2,..., 24 is not completed (Y in step S52), the processing for the next time is started (step S53), and from step S45. Repeat the process.
 一方、時間t=1,2,…,24の全てについての処理が完了していれば(ステップS52のN)、対象の事業所nの重みWef(n)を設定し(ステップS54)、現在の評価値Efに、対象の事業所nの評価値Ef(n)に重みWef(n)を掛けた値を加算する(ステップS55)。 On the other hand, if processing for all of the times t = 1, 2,..., 24 is completed (N in step S52), the weight Wef (n) of the target office n is set (step S54), and the current A value obtained by multiplying the evaluation value Ef (n) of the target office n by the weight Wef (n) is added to the evaluation value Ef (step S55).
 ここで、全事業所についての処理が完了していなければ(ステップS56のN)、次の事業所番号の事業所を対象にした処理を開始し(ステップS57)、ステップS43からの処理を繰り返す。全事業所についての処理が完了していれば(ステップS56のY)、充填可能性の評価値算出を終了する。 If the processes for all the establishments are not completed (N in step S56), the process for the establishment of the next establishment number is started (step S57), and the processes from step S43 are repeated. . If the processing for all offices has been completed (Y in step S56), the evaluation value calculation of the filling possibility ends.
 [事業所間での時間的整合性の評価値算出]
 次に、図7を参照して、「事業所間での時間的整合性の評価値算出」の詳細な動作を説明する。
[Calculation of evaluation value of temporal consistency between offices]
Next, with reference to FIG. 7, the detailed operation of “calculation of evaluation value of temporal consistency between establishments” will be described.
 統合水素需要予測部63は、時間帯毎に、全事業所が同時に充填することが無いかどうかを調べ、重複している事業所数を評価値とする。 The integrated hydrogen demand prediction unit 63 examines whether or not all the establishments are not filled at the same time for each time period, and sets the number of duplicate establishments as an evaluation value.
 まず、統合水素需要予測部63は、時間的整合性の評価値をEtとし、初期値としてEt=0を設定し(ステップS61)、時間t=1を対象にした処理を開始する(ステップS62)。 First, the integrated hydrogen demand prediction unit 63 sets Et as an evaluation value of temporal consistency, sets Et = 0 as an initial value (step S61), and starts processing for time t = 1 (step S62). ).
 また、統合水素需要予測部63は、時間tで充填が実施されるか否かを示すフラグをF_flagとし、初期値としてF_flagをfalse(充填が実施されない)に設定して(ステップS63)、事業所番号n=1の事業所についての処理を開始する(ステップS64)。 Further, the integrated hydrogen demand prediction unit 63 sets F_flag as a flag indicating whether or not filling is performed at time t, sets F_flag to false (no filling is performed) as an initial value (step S63), and The process for the office with the office number n = 1 is started (step S64).
 そして、統合水素需要予測部63は、事業所nのFCフォークリフト群が時間tにて充填されるか否かを判定する(ステップS65)。該当しない場合は(ステップS65のN)、ステップS69へと進む。 Then, the integrated hydrogen demand prediction unit 63 determines whether or not the FC forklift group at the office n is filled at time t (step S65). If not applicable (N in step S65), the process proceeds to step S69.
 一方、事業所nのFCフォークリフト群が時間tにて充填される場合は(ステップS65のY)、フラグF_flagが「true」(充填が実施される)になっているか否かを判定する(ステップS66)。該当しない場合は(ステップS66のN)、ステップS68へと進み、フラグF_flagを「true」(充填が実施される)に設定する。一方、フラグF_flagが「true」(充填が実施される)になっている場合は、他の事業所FCフォークリフト群も時間tにて充填されるものとみなし、現在の評価値Etに1を加算する(ステップS67)。この場合、フラグF_flagは「true」のままとする(ステップS68)。 On the other hand, when the FC forklift group of the office n is filled at time t (Y in Step S65), it is determined whether or not the flag F_flag is “true” (filling is performed) (Step S65). S66). When not applicable (N of step S66), it progresses to step S68 and sets flag F_flag to "true" (filling is implemented). On the other hand, if the flag F_flag is “true” (filling is performed), it is assumed that other establishments FC forklifts are also filled at time t, and 1 is added to the current evaluation value Et. (Step S67). In this case, the flag F_flag remains “true” (step S68).
 ここで、全事業所についての処理が完了していなければ(ステップS69のN)、次の事業所番号の事業所を対象にした処理を開始し(ステップS70)、ステップS65からの処理を繰り返す。全事業所についての処理が完了していれば(ステップS69のY)、ステップS71へ進む。 Here, if the processes for all the establishments are not completed (N in step S69), the process for the establishment of the next establishment number is started (step S70), and the processes from step S65 are repeated. . If processing for all offices has been completed (Y in step S69), the process proceeds to step S71.
 ここで、時間t=1,2,…,24の全てについての処理が完了していなければ(ステップS71のY)、次の時間を対象にした処理を開始し(ステップS72)、ステップS63からの処理を繰り返す。 If the processes for all the times t = 1, 2,..., 24 have not been completed (Y in step S71), the process for the next time is started (step S72), and from step S63. Repeat the process.
 一方、時間t=1,2,…,24の全てについての処理が完了していれば(ステップS71のN)、事業所間での時間的整合性の評価値算出を終了する。 On the other hand, if the processing for all of the times t = 1, 2,..., 24 is completed (N in step S71), the calculation of the evaluation value of the temporal consistency between establishments is terminated.
 [充填間隔の評価値算出]
 次に、図8を参照して、「充填間隔の評価値算出」の詳細な動作を説明する。
[Calculation of evaluation value of filling interval]
Next, with reference to FIG. 8, a detailed operation of “calculation of evaluation value of filling interval” will be described.
 統合水素需要予測部63は、1つの事業所内で、前回充填が行われてから次に充填が行われるまでの時間間隔が長すぎることがないか否かを調べ、時間間隔の総計を評価値とする。 The integrated hydrogen demand prediction unit 63 checks whether or not the time interval from the previous filling to the next filling is not too long in one establishment, and evaluates the total time interval as an evaluation value. And
 まず、統合水素需要予測部63は、充填間隔の評価値をEdとし、初期値としてEd=0を設定する(ステップS81)。 First, the integrated hydrogen demand prediction unit 63 sets the evaluation value of the filling interval to Ed, and sets Ed = 0 as an initial value (step S81).
 そして、統合水素需要予測部63は、事業所番号n=1の事業所を対象にした処理を開始する(ステップS82)。 Then, the integrated hydrogen demand prediction unit 63 starts a process for the establishment number n = 1 (step S82).
 統合水素需要予測部63は、事業所番号nの事業所の評価値をEd(n)とし、初期値としてEd(n)=0を設定する(ステップS83)
 また、統合水素需要予測部63は、前回充填時間をtpとし、初期値としてtp=1を設定する(ステップS84)。
The integrated hydrogen demand prediction unit 63 sets the evaluation value of the establishment with the establishment number n as Ed (n), and sets Ed (n) = 0 as the initial value (step S83).
Further, the integrated hydrogen demand prediction unit 63 sets tp as the previous filling time and sets tp = 1 as an initial value (step S84).
 また、統合水素需要予測部63は、1日を構成する24時間を1時間単位に分割して、各単位時間をt=1,2,…,24とし、初期値としてt=1を設定する(ステップS85)。 Further, the integrated hydrogen demand prediction unit 63 divides 24 hours constituting one day into 1 hour units, sets each unit time to t = 1, 2,..., 24, and sets t = 1 as an initial value. (Step S85).
 そして、統合水素需要予測部63は、事業所nのFCフォークリフト群が時間tにて充填されるか否かを判定する(ステップS86)。該当しない場合は(ステップS86のN)、ステップS89へと進む。 Then, the integrated hydrogen demand prediction unit 63 determines whether or not the FC forklift group at the office n is filled at time t (step S86). If not applicable (N in step S86), the process proceeds to step S89.
 一方、事業所nのFCフォークリフト群が時間tにて充填される場合は(ステップS86のY)、現在の評価値Ed(n)に、充填間隔に相当する「t-tp」を加算する(ステップS87)。 On the other hand, when the FC forklift group at the office n is filled at time t (Y in step S86), “t-tp” corresponding to the filling interval is added to the current evaluation value Ed (n) ( Step S87).
 そして、統合水素需要予測部63は、前回充填時間tpを時間tとする(ステップS88)。 Then, the integrated hydrogen demand prediction unit 63 sets the previous filling time tp as the time t (step S88).
 ここで、時間t=1,2,…,24の全てについての処理が完了していなければ(ステップS89のN)、次の時間を対象にした処理を開始し(ステップS90)、ステップS86からの処理を繰り返す。 Here, if the processing for all the times t = 1, 2,..., 24 has not been completed (N in step S89), the processing for the next time is started (step S90), and from step S86. Repeat the process.
 一方、時間t=1,2,…,24の全てについての処理が完了していれば(ステップS89のY)、対象の事業所nの重みWed(n)を設定し(ステップS91)、現在の評価値Edに、対象の事業所nの評価値Ed(n)に重みWed(n)を掛けた値を加算する(ステップS92)。 On the other hand, if the processing for all the times t = 1, 2,..., 24 is completed (Y in step S89), the weight Wed (n) of the target office n is set (step S91), A value obtained by multiplying the evaluation value Ed (n) of the target office n by the weight Wed (n) is added to the evaluation value Ed (step S92).
 ここで、全事業所についての処理が完了していなければ(ステップS93のN)、次の事業所番号の事業所を対象にした処理を開始し(ステップS94)、ステップS83からの処理を繰り返す。全事業所についての処理が完了していれば(ステップS94のY)、充填間隔の評価値算出を終了する。 If the processes for all the establishments are not completed (N in step S93), the process for the establishment of the next establishment number is started (step S94), and the processes from step S83 are repeated. . If the processing for all offices has been completed (Y in step S94), the evaluation value calculation of the filling interval is terminated.
 なお、上述した動作においては、最適な評価値を得るために、シミュレーテッドアニーリングやタブーサーチ、遺伝的アルゴリズムなどを利用してもよい。この場合、G(n,i,j)に設定する2値はランダムではなく、最適化処理の中でよい解を得た場合の値を保持しておき、その値を利用するようにしてもよい。また、評価終了の判定は、評価値が閾値以下、または規定回数の繰り返しの中で最小となるか、または評価値の変化率が閾値以下となった時、のいずれか、あるいはそれらの組み合わせで行うようにしてもよい。 In the above-described operation, simulated annealing, tabu search, a genetic algorithm, or the like may be used in order to obtain an optimum evaluation value. In this case, the binary value set for G (n, i, j) is not random, but a value obtained when a good solution is obtained in the optimization process is held, and the value may be used. Good. In addition, the determination of the end of evaluation is either when the evaluation value is equal to or less than the threshold, or when the evaluation value becomes the minimum during the specified number of repetitions, or the rate of change of the evaluation value is equal to or less than the threshold, or a combination thereof. You may make it perform.
 第1の実施形態によれば、複数の事業所で水素ステーションを共用するに際し、燃料電池車両に水素の充填待ちが発生する事象の発生を抑え、燃料切れや作業が停滞の発生を抑え、業務に支障をきたす事態を防ぐことができる。 According to the first embodiment, when a hydrogen station is shared by a plurality of business establishments, it is possible to suppress the occurrence of an event that a fuel cell vehicle is waiting to be charged with hydrogen, to suppress the occurrence of fuel shortage and work stagnation. Can be prevented.
 また、ランダムに設定された事業所毎の充填実施時間の候補が評価基準を満たすか否かの判定を行うに際し、充填可能性、事業所間での時間的整合性、充填間隔のそれぞれの評価値を算出し、それぞれに重みを掛けた上で、加算して得られる値を最終的な評価値として評価基準に適用して判定を行っているため、適切な充填量、適切な充填タイミングを実現でき、これにより事業所適切な水素要求量を提示することができる。 In addition, when determining whether or not the candidates for filling time for each establishment set at random satisfy the evaluation criteria, each evaluation of filling possibility, temporal consistency between establishments, and filling interval is performed. Since each value is calculated, weighted to each, and the value obtained by addition is applied to the evaluation criteria as the final evaluation value, determination is made, so an appropriate filling amount and an appropriate filling timing are set. It can be realized, and this makes it possible to present an appropriate amount of hydrogen demand at the establishment.
 なお、本実施形態では複数の事業所が水素ステーションを共有する場合を例示したが、当該複数の事業所は、それぞれ事業者が異なる複数の事業所であってもよいし、同一事業者の複数の事業所であってもよい。 In the present embodiment, a case where a plurality of business establishments share a hydrogen station has been illustrated. However, the plurality of business establishments may be a plurality of business establishments with different business establishments, or a plurality of business establishments of the same business establishment. It may be a business office.
 (第2の実施形態)
 次に、第2の実施形態について説明する。なお、前述した第1の実施形態と共通する部分の説明を省略する。以下では、第1の実施形態と異なる部分について説明する。
(Second Embodiment)
Next, a second embodiment will be described. Note that description of portions common to the first embodiment described above is omitted. Below, a different part from 1st Embodiment is demonstrated.
 水素供給システムの全体構成やMMS50A,50B、統合水素MMS60の構成については、既に説明した通りである。ただし、第2の実施形態は、統合水素MMS60の統合水素需要予測部63で行われる評価値の算出の手順が第1の実施形態とは異なる。 The overall configuration of the hydrogen supply system and the configurations of the MMS 50A and 50B and the integrated hydrogen MMS 60 are as described above. However, the second embodiment differs from the first embodiment in the evaluation value calculation procedure performed by the integrated hydrogen demand prediction unit 63 of the integrated hydrogen MMS 60.
 第1の実施形態では、「充填可能性の評価値算出」と「事業所間での時間的整合性の評価値算出」と「充填間隔の評価値算出」とを一連の演算処理の中で行ったのに対し、第2の実施形態では、評価値算出の前に「充填可能性のチェック」と「時間的整合性のチェック」を行い、それらのチェックを行った後に「充填間隔の評価値算出」を行う。 In the first embodiment, “evaluation value calculation of filling possibility”, “evaluation value calculation of temporal consistency between establishments”, and “evaluation value calculation of filling interval” are performed in a series of arithmetic processing. In contrast, in the second embodiment, the “fillability check” and the “time consistency check” are performed before the evaluation value is calculated, and after these checks are performed, the “fill interval evaluation” is performed. Perform value calculation.
 より具体的には、統合水素需要予測部63は、充填可能時間帯の中の充填実施時間の候補が所定の評価基準を満たすか否かの判定を行うに際し、(1)FCフォークリフト群の水素が無くなる時までに予測需要量の水素が充填されずに水素が不足する事象が生じるか否かを判定し、該事象が生じないと判定した場合に、(2)事業所間で同時に充填が行われる事象が生じるか否かを判定し、該事象が生じないと判定した場合に、(3)「充填間隔の評価値算出」を行い、算出した評価値を評価基準に適用して判定を行う。 More specifically, the integrated hydrogen demand prediction unit 63 determines (1) hydrogen of the FC forklift group when determining whether or not the candidate for the filling time in the filling time zone satisfies a predetermined evaluation criterion. It is determined whether or not there is an event that the demand for hydrogen is not filled by the time when there is no more hydrogen and there is a shortage of hydrogen, and when it is determined that this event does not occur, (2) When it is determined whether or not the event to be performed occurs and it is determined that the event does not occur, (3) “Evaluation value calculation of filling interval” is performed, and the calculated evaluation value is applied to the evaluation criterion to determine Do.
 [評価値算出前のチェック]
 次に、図9を参照して、第2の実施形態における統合水素需要予測部63による評価値算出前のチェックの動作を説明する。
[Check before calculating evaluation value]
Next, with reference to FIG. 9, the check operation before the evaluation value calculation by the integrated hydrogen demand prediction unit 63 in the second embodiment will be described.
 最初に、統合水素需要予測部63は、図5で説明したステップS11~S15の処理と同様の処理を行う(ステップS101~S105)。 First, the integrated hydrogen demand prediction unit 63 performs processing similar to the processing in steps S11 to S15 described in FIG. 5 (steps S101 to S105).
 そして、統合水素需要予測部63は、後で詳述する「充填可能性のチェック」を実施する(ステップS106)。 Then, the integrated hydrogen demand prediction unit 63 carries out “checking of filling possibility” described in detail later (step S106).
 ここで、統合水素需要予測部63は、「充填可能性のチェック」の結果が充填可能を示さない場合(ステップS107のN)、ステップS105の処理を繰り返す。 Here, the integrated hydrogen demand prediction unit 63 repeats the processing of step S105 when the result of the “checking of filling possibility” does not indicate that filling is possible (N in step S107).
 一方、「充填可能性のチェック」の結果が充填可能を示す場合(ステップS107のY)、統合水素需要予測部63は、図5で説明したステップS16~S19の処理と同様の処理を行う(ステップS108~S111)。 On the other hand, when the result of “checking of filling possibility” indicates that filling is possible (Y in step S107), the integrated hydrogen demand prediction unit 63 performs the same process as the process of steps S16 to S19 described in FIG. Steps S108 to S111).
 全事業所についての処理が完了していれば(ステップS110のY)、後で詳述する「事業所間での時間的整合性のチェック」を行う(ステップS20)。 If the processing for all offices has been completed (Y in step S110), “time consistency check between offices” to be described in detail later is performed (step S20).
 ここで、時間的不整合があれば(ステップS113のY)、ステップS102からの処理を繰り返す。 Here, if there is a temporal inconsistency (Y in step S113), the processing from step S102 is repeated.
 一方、時間的不整合が無ければ(ステップS113のN)、後で詳述する評価値の算出を行う(ステップS112)。 On the other hand, if there is no temporal inconsistency (N in step S113), an evaluation value described in detail later is calculated (step S112).
 ここで、算出された評価値が閾値以下でなければ(ステップS115のN)、ステップS101からの処理を繰り返す。算出された評価値が閾値以下であれば(ステップS115のY)、仮決定されていた各候補を充填実施時間として決定し、処理を終了する。 Here, if the calculated evaluation value is not less than or equal to the threshold value (N in step S115), the processing from step S101 is repeated. If the calculated evaluation value is equal to or less than the threshold value (Y in step S115), each candidate that has been provisionally determined is determined as the filling execution time, and the process ends.
 [充填可能性のチェック]
 次に、図10を参照して、図9中のステップS106の「充填可能性のチェック」の詳細な動作を説明する。
[Checking filling possibility]
Next, with reference to FIG. 10, the detailed operation of “checking of filling possibility” in step S106 in FIG. 9 will be described.
 最初に、統合水素需要予測部63は、1日を構成する24時間を1時間単位に分割して、各単位時間をt=1,2,…,24とし、初期値としてt=1を設定する(ステップS101)。 First, the integrated hydrogen demand prediction unit 63 divides 24 hours constituting one day into one hour units, sets each unit time to t = 1, 2,..., 24, and sets t = 1 as an initial value. (Step S101).
 次に、統合水素需要予測部63は、図6で説明したステップS45~S49の処理と同様の処理を行う(ステップS122~S129)。 Next, the integrated hydrogen demand prediction unit 63 performs the same processing as the processing of steps S45 to S49 described in FIG. 6 (steps S122 to S129).
 そして、統合水素需要予測部63は、ΔPがDよりも大きいか否かを判定する(ステップS130)。該当しない場合は(ステップS130のN)、ステップS124へと進む。 And the integrated hydrogen demand prediction part 63 determines whether (DELTA) P is larger than D (step S130). When not applicable (N of step S130), it progresses to step S124.
 ここで、時間t=1,2,…,24の全てについての処理が完了していなければ(ステップS124のY)、次の時間を対象にした処理を開始し(ステップS125)、ステップS122からの処理を繰り返す。一方、時間t=1,2,…,24の全てについての処理が完了していれば(ステップS124のN)、充填可能であると判定し(ステップS126)、充填可能性のチェックの処理を終了する。 Here, if the processing for all the times t = 1, 2,..., 24 is not completed (Y in step S124), the processing for the next time is started (step S125), and from step S122. Repeat the process. On the other hand, if the processing for all of the times t = 1, 2,..., 24 is completed (N in step S124), it is determined that filling is possible (step S126), and the filling possibility check processing is performed. finish.
 また、ステップS130において、ΔPがDよりも大きいと判定した場合は(ステップS130のY)、充填不能であると判定し(ステップS131)、充填可能性のチェックの処理を終了する。 If it is determined in step S130 that ΔP is larger than D (Y in step S130), it is determined that filling is impossible (step S131), and the filling possibility check process is terminated.
 [事業所間での時間的整合性のチェック]
 次に、図11を参照して、図9中のステップS112の「事業所間での時間的整合性のチェック」の詳細な動作を説明する。
[Checking temporal consistency between offices]
Next, with reference to FIG. 11, the detailed operation of “Checking temporal consistency between offices” in step S112 in FIG. 9 will be described.
 統合水素需要予測部63は、図7で説明したステップS61~S72の処理と同様の処理を行う(ステップS141~S152)。ただし、ステップS151において、時間t=1,2,…,24の全てについての処理が完了していれば(ステップS151のN)、評価値Etに応じて整合性あり又は整合性なしの判定を行う(ステップS153)。ここでは、Etが閾値を超えていれば整合性なしと判定し、超えていなければ整合性ありと判定する。 The integrated hydrogen demand prediction unit 63 performs the same processing as the processing of steps S61 to S72 described in FIG. 7 (steps S141 to S152). However, in step S151, if processing for all of the times t = 1, 2,..., 24 is completed (N in step S151), determination of consistency or non-consistency is made according to the evaluation value Et. This is performed (step S153). Here, if Et exceeds the threshold, it is determined that there is no consistency, and if Et does not exceed, it is determined that there is consistency.
 [評価値の算出]
 次に、図9中のステップS114の「評価値の算出」の詳細な動作を説明する。
[Calculation of evaluation value]
Next, the detailed operation of “calculation of evaluation value” in step S114 in FIG. 9 will be described.
 まず、統合水素需要予測部63は、「充填間隔」の評価値を算出する。最後に、統合水素需要予測部63は、算出した「充填間隔」の評価値を、最終的な評価値とする。 First, the integrated hydrogen demand prediction unit 63 calculates an evaluation value of “filling interval”. Finally, the integrated hydrogen demand prediction unit 63 sets the calculated evaluation value of “filling interval” as the final evaluation value.
 第2の実施形態によれば、評価値が低くなることが予想される場合には評価を実施しないため、計算時間の短縮が可能となる。 According to the second embodiment, when the evaluation value is expected to be low, the evaluation is not performed, so that the calculation time can be shortened.
 (第3の実施形態)
 次に、第3の実施形態について説明する。なお、前述した第1の実施形態と共通する部分の説明を省略する。
(Third embodiment)
Next, a third embodiment will be described. Note that description of portions common to the first embodiment described above is omitted.
 第3の実施形態は、第1の実施形態における統合水素MMS60の変形例を示すものである。第1の実施形態では、事業所毎の充填可能時間帯の中の充填実施時間を、水素の充填を行うか否かを単位時間毎に示す2値の変数で表現したのに対し、第3の実施形態では、その充填実施時間を、水素の充填開始時間と充填終了時間を示す変数で表現する。 The third embodiment shows a modification of the integrated hydrogen MMS 60 in the first embodiment. In the first embodiment, the filling execution time in the filling available time zone for each business site is expressed by a binary variable indicating whether or not to perform hydrogen filling for each unit time. In this embodiment, the filling time is expressed by variables indicating the filling start time and filling end time of hydrogen.
 図12に、第1の実施形態と第3の実施形態との充填実施時間の候補の表現方法の違いを対比して示す。図中、nは各事業所を識別するための事業所番号を表し、iは各充填可能時間帯を識別するための充填可能時間帯番号を表し、jは各単位時間を識別するための単位時間番号を表す。 FIG. 12 shows the difference in the filling method candidate expression method between the first embodiment and the third embodiment. In the figure, n represents an establishment number for identifying each establishment, i represents a refillable time zone number for identifying each refillable time zone, and j represents a unit for identifying each unit time. Represents a time number.
 図12(a)に示すように、第1の実施形態では、統合水素需要予測部63は、事業所毎の充填可能時間帯を例えば1分単位の単位時間に分割し、各単位時間の間に水素を充填するか否かを2値の変数で表現し、この情報に基づく水素需要予測(例えば、時間帯毎の水素要求量の瞬時値を示す情報)を生成するものであった。 As shown in FIG. 12 (a), in the first embodiment, the integrated hydrogen demand prediction unit 63 divides the rechargeable time zone for each establishment into unit times of, for example, 1 minute, Whether or not to fill with hydrogen is expressed by a binary variable, and a hydrogen demand prediction based on this information (for example, information indicating an instantaneous value of a hydrogen demand amount for each time zone) is generated.
 これに対し、第2の実施形態では、統合水素需要予測部63は、図12(b)に示すように、事業所毎の充填可能時間帯を、充填の開始時間の変数Gstart(n,i)及び終了時間の変数Gend(n,i)で表現し、この情報に基づく水素需要予測(例えば、時間帯毎の水素要求量の瞬時値を示す情報)を生成する。 On the other hand, in the second embodiment, as shown in FIG. 12B, the integrated hydrogen demand prediction unit 63 sets the filling available time zone for each establishment as a variable Gstart (n, i for filling start time). ) And an end time variable Gend (n, i), and a hydrogen demand prediction based on this information (for example, information indicating an instantaneous value of the hydrogen demand for each time zone) is generated.
 なお、最適な評価値を得るために、シミュレーテッドアニーリングやタブーサーチ、遺伝的アルゴリズムなどを利用してもよい。この場合、充填の開始時間と終了時間に設定する値はランダムではなく、最適化処理の中でよい解を得た場合の値を保持しておき、その値を利用するようにしてもよい。 In order to obtain an optimum evaluation value, simulated annealing, tabu search, a genetic algorithm, or the like may be used. In this case, the values set for the start time and end time of filling are not random, and values obtained when a good solution is obtained in the optimization process may be held and used.
 第3の実施形態によれば、第1の実施形態に比べ、充填する/しないの変化を少なくすることができ、運用時の遅延に対する耐性を向上させ、また、移動式水素ステーション20の事業所間での頻繁な行き来を抑制することができる。 According to the third embodiment, compared to the first embodiment, it is possible to reduce the change of filling / non-filling, to improve resistance to delay during operation, and to establish an office of the mobile hydrogen station 20 You can suppress frequent traffic between them.
 (第4の実施形態)
 次に、第4の実施形態について説明する。なお、前述した第2の実施形態及び第3の実施形態と共通する部分の説明を省略する。
(Fourth embodiment)
Next, a fourth embodiment will be described. In addition, description of the part which is common in 2nd Embodiment and 3rd Embodiment mentioned above is abbreviate | omitted.
 第3の実施形態は第1の実施形態における統合水素MMS60の変形例を示すものであった。これに対し、第4の実施形態は第2の実施形態における統合水素MMS60の変形例を示すものである。 3rd Embodiment showed the modification of the integrated hydrogen MMS60 in 1st Embodiment. On the other hand, the fourth embodiment shows a modification of the integrated hydrogen MMS 60 in the second embodiment.
 すなわち、第2の実施形態では、統合水素需要予測部63は、事業所毎の充填可能時間帯の中の充填実施時間を、水素の充填を行うか否かを単位時間毎に示す2値の変数で表現したのに対し、第4の実施形態では、その充填実施時間を、水素の充填開始時間と充填終了時間を示す変数で表現する。第2の実施形態と第4の実施形態との具体的な違いは、図12で説明したのと同様となる。 That is, in the second embodiment, the integrated hydrogen demand prediction unit 63 is a binary indicating whether or not to perform hydrogen filling for each unit time as the filling time in the filling available time zone for each office. In contrast to the variable expression, in the fourth embodiment, the filling execution time is expressed by variables indicating the hydrogen filling start time and the filling end time. The specific difference between the second embodiment and the fourth embodiment is the same as described with reference to FIG.
 第4の実施形態によれば、第3の実施形態に比べ、充填する/しないの変化を少なくすることができ、運用時の遅延に対する耐性を向上させ、また、移動式水素ステーション20の事業所間での頻繁な行き来を抑制することができる。 According to the fourth embodiment, compared to the third embodiment, it is possible to reduce the change of filling / non-filling, to improve resistance to delay during operation, and to establish an office of the mobile hydrogen station 20 You can suppress frequent traffic between them.
 (第5の実施形態)
 次に、第5の実施形態について説明する。なお、前述した第1の実施形態と共通する部分の説明を省略する。
(Fifth embodiment)
Next, a fifth embodiment will be described. Note that description of portions common to the first embodiment described above is omitted.
 第1~第4の実施形態では、事業所間の時間的整合性を確認するに際し、事業所間で充填が重複する時間をチェックするものであった(例えば図7を参照)。これに対し、第5の実施形態では、事業所間の時間的整合性を確認するに際し、事業所間で充填が重複する時間だけでなく、移動式水素ステーション20の移動時間も考慮する。 In the first to fourth embodiments, when confirming the temporal consistency between the establishments, the time when the filling overlaps between the establishments is checked (see, for example, FIG. 7). On the other hand, in the fifth embodiment, when confirming the temporal consistency between the establishments, not only the time when the filling overlaps between the establishments but also the movement time of the mobile hydrogen station 20 is considered.
 すなわち、第5の実施形態では、統合水素需要予測部63は、複数の単位時間の中から水素の充填を実施する充填実施時間を事業所間での重複が抑制されるように決定する演算を行うに際し、移動式水素ステーション20の移動時間を加味した演算を行う。 In other words, in the fifth embodiment, the integrated hydrogen demand prediction unit 63 performs an operation for determining a filling execution time for performing hydrogen filling from a plurality of unit times so that duplication between offices is suppressed. In performing the calculation, a calculation is performed in consideration of the moving time of the mobile hydrogen station 20.
 [事業所間での時間的整合性の評価値算出]
 次に、図13A,図13Bを参照して、第5の実施形態における「事業所間での時間的整合性の評価値算出」の詳細な動作を説明する。
[Calculation of evaluation value of temporal consistency between offices]
Next, with reference to FIG. 13A and FIG. 13B, the detailed operation of “evaluation value of temporal consistency between offices” in the fifth embodiment will be described.
 まず、図13Aに示すように、統合水素需要予測部63は、時間的整合性の評価値をEtとし、初期値としてEt=0を設定し(ステップS171)、時間t=1を対象にした処理を開始する(ステップS172)。 First, as shown in FIG. 13A, the integrated hydrogen demand prediction unit 63 sets Et as the evaluation value of temporal consistency, sets Et = 0 as the initial value (step S171), and targets time t = 1. The process is started (step S172).
 また、統合水素需要予測部63は、事業所番号n=1の事業所についての処理を開始する(ステップS173)。 Also, the integrated hydrogen demand prediction unit 63 starts processing for the business establishment with the business establishment number n = 1 (step S173).
 まず、統合水素需要予測部63は、事業所mのFCフォークリフト群が最後に最後に充填された時間をLastT(m)とし、このLastT(m)の初期値として、移動式水素ステーション20が拠点から事業所mまで移動するのに必要な時間を設定する(ステップS174)。 First, the integrated hydrogen demand forecasting unit 63 sets LastT (m) as the last filling time of the FC forklift group of the establishment m, and the mobile hydrogen station 20 is set as the initial value of the LastT (m). The time required to move from the office to the office m is set (step S174).
 ここで、全事業所についての処理が完了していなければ(ステップS175のN)、次の事業所番号の事業所を対象にした処理を開始し(ステップS176)、ステップS174の処理を繰り返す。全事業所についての処理が完了していれば(ステップS176のY)、図13BのステップS177へ進む。 Here, if the processes for all the establishments are not completed (N in step S175), the process for the establishment of the next establishment number is started (step S176), and the process of step S174 is repeated. If processing for all offices has been completed (Y in step S176), the process proceeds to step S177 in FIG. 13B.
 統合水素需要予測部63は、時間tで充填が実施されるか否かを示すフラグF_flagをfalse(充填が実施されない)に設定し(ステップS177)、事業所番号n=1の事業所についての処理を開始する(ステップS178)。 The integrated hydrogen demand prediction unit 63 sets a flag F_flag indicating whether or not filling is performed at time t to false (no filling is performed) (step S177), and the establishment number n = 1 for the establishment The process is started (step S178).
 そして、統合水素需要予測部63は、事業所nのFCフォークリフト群が時間tにて充填されるか否かを判定する(ステップS179)。該当しない場合は(ステップS179のN)、ステップS185へと進む。 Then, the integrated hydrogen demand prediction unit 63 determines whether or not the FC forklift group at the office n is filled at time t (step S179). When not applicable (N of step S179), it progresses to step S185.
 一方、事業所nのFCフォークリフト群が時間tにて充填される場合は(ステップS179のY)、ステップS180に進む。 On the other hand, when the FC forklift group at the office n is filled at time t (Y in step S179), the process proceeds to step S180.
 統合水素需要予測部63は、事業所n以外の事業所mに対して、「t-LastT(m)」が最小となる事業所(事業所n以外で最後に充填した事業所)をxとし(ステップS180)、事業所xから事業所nまでの移動時間をMove_Tとする(ステップS181)。 The integrated hydrogen demand forecasting unit 63 sets x for the establishment m other than the establishment n that has the smallest “t-LastT (m)” (the establishment filled last except for the establishment n). (Step S180), the movement time from the office x to the office n is Move_T (step S181).
 また、統合水素需要予測部63は、「Move_T-(t-LastT(m))」をPena_Tとする(ステップS182)、現在の評価値Etに、Pena_Tを加算する(ステップS183)。ただし、Pena_Tが0以下の値の場合は、Pena_Tの加算は行わない(Pena_T=0とする)。 Also, the integrated hydrogen demand prediction unit 63 sets “Move_T− (t−LastT (m))” as Pena_T (step S182), and adds Pena_T to the current evaluation value Et (step S183). However, when Pena_T is 0 or less, Pena_T is not added (Pena_T = 0).
 例えば、Pena_Tが「t-LastT(m)」よりも大きいと、移動式水素ステーション20が事業所nの位置に時間tまでにたどり着けなくなるため、評価値Etを悪化させる(増加させる)。 For example, if Pena_T is larger than “t-LastT (m)”, the mobile hydrogen station 20 cannot reach the location of the office n by the time t, so that the evaluation value Et is deteriorated (increased).
 次に、統合水素需要予測部63は、tにLastT(n)を設定する(ステップS184)。 Next, the integrated hydrogen demand prediction unit 63 sets LastT (n) to t (step S184).
 ここで、全事業所についての処理が完了していなければ(ステップS185のN)、次の事業所番号の事業所を対象にした処理を開始し(ステップS186)、ステップS179からの処理を繰り返す。全事業所についての処理が完了していれば(ステップS185のY)、ステップS187へ進む。 If the processes for all the establishments are not completed (N in step S185), the process for the establishment of the next establishment number is started (step S186), and the processes from step S179 are repeated. . If processing for all offices has been completed (Y in step S185), the process proceeds to step S187.
 ここで、時間t=1,2,…,24の全てについての処理が完了していなければ(ステップS187のY)、次の時間を対象にした処理を開始し(ステップS188)、ステップS177からの処理を繰り返す。 Here, if the processing for all of the times t = 1, 2,..., 24 has not been completed (Y in step S187), the processing for the next time is started (step S188), and from step S177. Repeat the process.
 一方、時間t=1,2,…,24の全てについての処理が完了していれば(ステップS187のN)、評価値Etに応じて整合性あり又は整合性なしの判定を行う(ステップS189)。ここでは、Etが閾値を超えていれば整合性なしと判定し、超えていなければ整合性ありと判定する。 On the other hand, if the processing for all of the times t = 1, 2,..., 24 is completed (N in step S187), it is determined whether or not there is consistency according to the evaluation value Et (step S189). ). Here, if Et exceeds the threshold, it is determined that there is no consistency, and if Et does not exceed, it is determined that there is consistency.
 第5の実施形態によれば、第1~第4の実施形態に比べ、移動式水素ステーション20の移動時間も加味したより精度の高い時間的整合性の評価を行うことができる。 According to the fifth embodiment, compared with the first to fourth embodiments, it is possible to evaluate the temporal consistency with higher accuracy in consideration of the moving time of the mobile hydrogen station 20.
 (第6の実施形態)
 次に、第6の実施形態について説明する。なお、前述した第1の実施形態と共通する部分の説明を省略する。
(Sixth embodiment)
Next, a sixth embodiment will be described. Note that description of portions common to the first embodiment described above is omitted.
 第6の実施形態は、充填不可能な場合の条件再設定と再予測の具体例を提案するものである。 The sixth embodiment proposes a concrete example of condition resetting and re-prediction when filling is impossible.
 図14は、第6の実施形態における統合水素MMS60とその周辺との接続関係を示す図である。 FIG. 14 is a diagram showing a connection relationship between the integrated hydrogen MMS 60 and its periphery in the sixth embodiment.
 第1~第5の実施形態の構成では、充填可能時間帯に充填することが不可能な場合、充填待ちの時間が増大する場合が考えられる。そこで、第6の実施形態では、統合水素MMS60は、充填可能時間帯での充填が不可能な場合、移動式水素ステーション用運行管理システム30に対し、水素ステーション台数の増加要求R1を行ったり、オペレータ端末81A,81Bに対して充填可能時間帯の変更要求R2A,R2Bを行ったりする機能を備える。 In the configurations of the first to fifth embodiments, it is conceivable that the filling waiting time may increase when it is impossible to fill the filling time zone. Therefore, in the sixth embodiment, the integrated hydrogen MMS 60 makes an increase request R1 of the number of hydrogen stations to the mobile hydrogen station operation management system 30 when the filling in the available time zone is impossible. It has a function of making a change request R2A, R2B of a filling time zone to the operator terminals 81A, 81B.
 また、統合水素MMS60は、移動式水素ステーション用運行管理システム30から、水素ステーション台数の更新の通知を受けた場合や、オペレータ端末81A,81Bから、充填可能性時間帯の更新の通知を受けた場合には、通知された情報を用いて水素需要予測の演算の再実行を行う機能を備える。 In addition, the integrated hydrogen MMS 60 receives a notification of the update of the number of hydrogen stations from the operation management system 30 for the mobile hydrogen station or a notification of the update of the charging possibility time zone from the operator terminals 81A and 81B. In some cases, a function is provided for performing re-execution of hydrogen demand prediction using the notified information.
 第6の実施形態によれば、充填待ちの発生をより効果的に抑制することができる。 According to the sixth embodiment, it is possible to more effectively suppress the waiting for filling.
 (第7の実施形態)
 次に、第7の実施形態について説明する。なお、前述した第1の実施形態と共通する部分の説明を省略する。
(Seventh embodiment)
Next, a seventh embodiment will be described. Note that description of portions common to the first embodiment described above is omitted.
 第7の実施形態は、再予測要求を受けた場合の再予測の具体例を提案するものである。 The seventh embodiment proposes a specific example of re-prediction when a re-prediction request is received.
 図15は、第7の実施形態における統合水素MMS60とその周辺との接続関係を示す図である。 FIG. 15 is a diagram showing a connection relationship between the integrated hydrogen MMS 60 and its periphery in the seventh embodiment.
 第7の実施形態では、統合水素MMS60は、水素EMS70もしくは移動式水素ステーション用運行管理システム30から再予測要求R11(例えば、再計画要求や条件設定)を受けた場合に、水素MMS50A,50Bに対して水素需要予測の演算の再実行の要求R12A,R12Bを行ってその結果を得ると共に、当該統合水素MMS60における水素需要予測の演算の再実行を行う機能を備える。 In the seventh embodiment, when the integrated hydrogen MMS 60 receives a re-prediction request R11 (for example, a re-planning request or condition setting) from the hydrogen EMS 70 or the mobile hydrogen station operation management system 30, the hydrogen MMS 50A, 50B On the other hand, a request for re-execution of hydrogen demand prediction calculation R12A, R12B is performed to obtain the result, and a function for re-execution of hydrogen demand prediction calculation in the integrated hydrogen MMS 60 is provided.
 第7の実施形態によれば、外部の状態変化に対する柔軟性を向上させることができる。 According to the seventh embodiment, flexibility with respect to an external state change can be improved.
 (第8の実施形態)
 次に、第8の実施形態について説明する。なお、前述した第1の実施形態と共通する部分の説明を省略する。
(Eighth embodiment)
Next, an eighth embodiment will be described. Note that description of portions common to the first embodiment described above is omitted.
 第8の実施形態は、統合水素MMS60がUI66を通じてオペレータ端末81A,81に提供するオペレータの入力画面の具体例を提案するものである。 The eighth embodiment proposes a specific example of an operator input screen that the integrated hydrogen MMS 60 provides to the operator terminals 81A and 81 through the UI 66.
 第8の実施形態では、統合水素MMS60は、事業所A,Bのそれぞれのオペレータがオペレータ端末81A,81Bにより事業所情報(充填可能時間帯など)を入力するための表示画面を提供する。 In the eighth embodiment, the integrated hydrogen MMS 60 provides a display screen for the operators of the offices A and B to input the office information (such as filling time zone) through the operator terminals 81A and 81B.
 図16に、充填可能時間帯をオペレータが指定することを可能とする表示画面の例を示す。図16(a)は、各充填可能時間帯の開始時刻と終了時刻をそれぞれ指定する方式の表示画面101を例示するものである。また、図16(b)は、各充填可能時間帯の開始時刻から終了時刻までの範囲をそれぞれ指定する方式の表示画面102を例示するものである。 FIG. 16 shows an example of a display screen that allows an operator to specify a filling time zone. FIG. 16A illustrates a display screen 101 of a method for designating the start time and end time of each filling time zone. FIG. 16B illustrates a display screen 102 of a method for designating a range from the start time to the end time of each filling time zone.
 また、第8の実施形態では、統合水素MMS60は、統合水素MMS60の保守管理会社のオペレータがオペレータ端末81Zにより事業所設定情報(事業所優先度など)を入力するための表示画面を提供する。 Further, in the eighth embodiment, the integrated hydrogen MMS 60 provides a display screen for the operator of the maintenance management company of the integrated hydrogen MMS 60 to input the office setting information (such as the office priority) using the operator terminal 81Z.
 図17に、事業所優先度(事業所毎の水素充填の優先度)をオペレータが指定することを可能とする表示画面の例を示す。 FIG. 17 shows an example of a display screen that allows the operator to specify the establishment priority (priority of hydrogen filling for each establishment).
 図17(a)は、各事業所を優先度の高い順に配置する方式の表示画面103を例示するものである。また、図17(b)は、各事業所に対して優先度を指定する方式の表示画面104を例示するものである。 FIG. 17 (a) illustrates a display screen 103 of a method in which the respective offices are arranged in descending order of priority. FIG. 17B illustrates a display screen 104 in which a priority is designated for each office.
 第8の実施形態によれば、オペレータが情報を入力する際の手間を低減することができると共に、誤入力を防止することができる。 According to the eighth embodiment, it is possible to reduce time and effort required for an operator to input information and to prevent erroneous input.
 (第9の実施形態)
 次に、第9の実施形態について説明する。なお、前述した第1の実施形態と共通する部分の説明を省略する。
(Ninth embodiment)
Next, a ninth embodiment will be described. Note that description of portions common to the first embodiment described above is omitted.
 第9の実施形態は、統合水素MMS60が送受する水素需要予測等のデータの具体例を示すものである。 The ninth embodiment shows a specific example of data such as hydrogen demand prediction transmitted and received by the integrated hydrogen MMS 60.
 図18に、統合水素MMS60が水素MMS50A,50Bから受信するデータ(水素需要予測及び補足情報)の例を示す。図18の例では、水素需要予測として、時間帯毎の水素需要予測量の積算値を示す情報105が示されている。また、補足情報として、前日の残燃料の量を示す情報106が示されている。なお、通信方式は、統合水素MMS60が水素MMS50A,50Bからデータを直接受信する方式でもよいが、統合水素MMS内のデータベースまたは共有ファイルに対して各装置がアクセスする方式を採用してもよい。 FIG. 18 shows an example of data (hydrogen demand prediction and supplementary information) received by the integrated hydrogen MMS 60 from the hydrogen MMSs 50A and 50B. In the example of FIG. 18, information 105 indicating an integrated value of the predicted hydrogen demand for each time zone is shown as the hydrogen demand prediction. Further, information 106 indicating the amount of remaining fuel on the previous day is shown as supplementary information. The communication method may be a method in which the integrated hydrogen MMS 60 directly receives data from the hydrogen MMSs 50A and 50B, but may be a method in which each device accesses a database or a shared file in the integrated hydrogen MMS.
 また、図19に、統合水素MMS60が水素EMS70及び移動式水素ステーション用運行管理システム30に送信するデータ(水素需要予測)、および、統合水素MMS60が移動式水素ステーション用運行管理システム30から受信するデータ(輸送情報)の例を示す。図19の例では、水素需要予測として、時間帯毎の水素要求量の瞬時値を示す情報107が示されている。また、輸送情報として、移動元の事業所,移動先の事業所,事業所間の移動時間を含む情報108、および、車両ID,搭載可能水素量を含む情報109が示されている。なお、通信方式としては、統合水素MMS60が水素EMS70や移動式水素ステーション用運行管理システム30と直接送受信する方式でもよいが、統合水素MMS内のデータベースまたは共有ファイルに対して各装置がアクセスする方式を採用してもよい。 Further, FIG. 19 shows data (hydrogen demand prediction) transmitted by the integrated hydrogen MMS 60 to the hydrogen EMS 70 and the mobile hydrogen station operation management system 30, and the integrated hydrogen MMS 60 receives from the mobile hydrogen station operation management system 30. An example of data (transport information) is shown. In the example of FIG. 19, information 107 indicating an instantaneous value of the hydrogen demand amount for each time zone is shown as the hydrogen demand prediction. In addition, as the transport information, information 108 including the source office, the destination office, the travel time between offices, and the information 109 including the vehicle ID and the mountable hydrogen amount are shown. The communication method may be a method in which the integrated hydrogen MMS 60 directly transmits / receives to / from the hydrogen EMS 70 or the mobile hydrogen station operation management system 30, but each device accesses a database or a shared file in the integrated hydrogen MMS. May be adopted.
 なお、図19では、水素ステーションが移動水素ステーションである場合を例示しているが、固定式水素ステーションを採用する場合、移動式水素ステーション用運行管理システム30や輸送情報を送受する処理は不要となる。 Note that FIG. 19 illustrates the case where the hydrogen station is a mobile hydrogen station. However, when a fixed hydrogen station is employed, the mobile hydrogen station operation management system 30 and the process of sending and receiving transport information are not necessary. Become.
 第9の実施形態によれば、データを簡潔にすることができると共に、データ通信をより効果的に行うことができる。 According to the ninth embodiment, data can be simplified and data communication can be performed more effectively.
 (第10の実施形態)
 次に、第10の実施形態について説明する。なお、前述した第1の実施形態と共通する部分の説明を省略する。
(Tenth embodiment)
Next, a tenth embodiment will be described. Note that description of portions common to the first embodiment described above is omitted.
 第10の実施形態は、第1の実施形態における統合水素MMS60の変形例を示すものである。 The tenth embodiment shows a modification of the integrated hydrogen MMS 60 in the first embodiment.
 第1の実施形態では、個々の水素MMS50A,50Bは,統合水素MMS60とは独立した装置であったが、第10の実施形態では、統合水素MMS60は、水素MMS50A,50Bの機能を備えるものとする。 In the first embodiment, the individual hydrogen MMSs 50A and 50B are devices independent of the integrated hydrogen MMS 60, but in the tenth embodiment, the integrated hydrogen MMS 60 has the functions of the hydrogen MMSs 50A and 50B. To do.
 図20は、第10の実施形態における統合水素MMS60の構成を示す図である。 FIG. 20 is a diagram illustrating a configuration of the integrated hydrogen MMS 60 in the tenth embodiment.
 図20に示すように、統合水素MMS60には、水素MMS機能50が備えられる。この水素MMS機能50は、前述の水素MMS50A,50Bの機能に相当する水素需要予測部51を有する。この水素需要予測部51は、事業所A,Bから水素消費量を示す情報を受信して、前述の水素MMS50A,50Bが生成する水素需要予測と同様の水素需要予測を生成して統合水素需要予測部63へ送る。 As shown in FIG. 20, the integrated hydrogen MMS 60 is provided with a hydrogen MMS function 50. The hydrogen MMS function 50 includes a hydrogen demand prediction unit 51 corresponding to the functions of the hydrogen MMS 50A and 50B described above. The hydrogen demand prediction unit 51 receives information indicating the hydrogen consumption from the establishments A and B, generates a hydrogen demand prediction similar to the hydrogen demand prediction generated by the hydrogen MMS 50A and 50B, and integrates the hydrogen demand. Send to prediction unit 63.
 第10の実施形態によれば、複数の事業所が同時に水素MMSを導入する場合に、導入のコストを削減することができる。 According to the tenth embodiment, when a plurality of business establishments simultaneously introduce hydrogen MMS, the introduction cost can be reduced.
 以上詳述したように、少なくとも1つの実施形態によれば、複数の事業所で水素ステーションを共用する形態において水素充填待ちの発生を抑制することができる。 As described in detail above, according to at least one embodiment, it is possible to suppress the occurrence of waiting for hydrogen filling in a form in which a plurality of business sites share a hydrogen station.
 各実施形態に記載した手法は、計算機(コンピュータ)に実行させることができるプログラム(ソフトウエア手段)として、例えば磁気ディスク(フロッピー(登録商標)ディスク、ハードディスク等)、光ディスク(CD‐ROM、DVD、MO等)、半導体メモリ(ROM、RAM、フラッシュメモリ等)等の記録媒体に格納し、また通信媒体により伝送して頒布することもできる。なお、媒体側に格納されるプログラムには、計算機に実行させるソフトウエア手段(実行プログラムのみならずテーブルやデータ構造も含む)を計算機内に構成させる設定プログラムをも含む。本装置を実現する計算機は、記録媒体に記録されたプログラムを読み込み、また場合により設定プログラムによりソフトウエア手段を構築し、このソフトウエア手段によって動作が制御されることにより上述した処理を実行する。なお、本明細書でいう記録媒体は、頒布用に限らず、計算機内部あるいはネットワークを介して接続される機器に設けられた磁気ディスクや半導体メモリ等の記憶媒体を含むものである。 The method described in each embodiment is, for example, a magnetic disk (floppy (registered trademark) disk, hard disk, etc.), optical disk (CD-ROM, DVD, etc.) as a program (software means) that can be executed by a computer (computer). MO, etc.), a semiconductor memory (ROM, RAM, flash memory, etc.), etc., can be stored in a recording medium, or can be transmitted and distributed by a communication medium. The program stored on the medium side includes a setting program that configures software means (including not only the execution program but also a table and data structure) in the computer. A computer that implements this apparatus reads a program recorded on a recording medium, constructs software means by a setting program as the case may be, and executes the above-described processing by controlling the operation by this software means. The recording medium referred to in this specification is not limited to distribution, but includes a storage medium such as a magnetic disk or a semiconductor memory provided in a computer or a device connected via a network.
 なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 In addition, although several embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
 10…発電設備、11…水素製造装置、12…水素タンク、20…水素ステーション、30…移動式水素ステーション用運行管理システム、41A,41B,42A,42B…FCフォークリフト群、50A,50B…水素MMS(Mobility Management System)、51…水素需要予測部、60…統合水素MMS(Mobility Management System)、70…水素EMS(Energy Management System)。 DESCRIPTION OF SYMBOLS 10 ... Power generation equipment, 11 ... Hydrogen production apparatus, 12 ... Hydrogen tank, 20 ... Hydrogen station, 30 ... Operation management system for mobile hydrogen stations, 41A, 41B, 42A, 42B ... FC forklift group, 50A, 50B ... Hydrogen MMS (Mobility Management System), 51 ... Hydrogen demand prediction section, 60 ... Integrated hydrogen MMS (Mobility Management System), 70 ... Hydrogen EMS (Energy Management System).

Claims (13)

  1.  燃料電池車両に水素を充填するための水素ステーションを複数の事業所で共用する水素供給システムに適用される水素管理システムであって、
     各事業所の燃料電池車両の水素需要予測を生成する複数の水素管理手段と、
     前記複数の水素管理手段により生成された各事業所の燃料電池車両の水素需要予測および各事業所の燃料電池車両の水素の充填が可能な充填可能時間帯の情報に基づき、当該充填可能時間帯を複数の単位時間に分け、前記複数の単位時間の中から水素の充填を実施する充填実施時間を事業所間での重複が抑制されるように決定する演算を行い、当該演算により決定した各事業所の燃料電池車両の充填実施時間の情報を含む水素需要予測を生成する統合水素管理手段と
     を具備する水素管理システム。
    A hydrogen management system applied to a hydrogen supply system in which a hydrogen station for filling a fuel cell vehicle with hydrogen is shared by a plurality of business establishments,
    A plurality of hydrogen management means for generating hydrogen demand forecasts for fuel cell vehicles at each site;
    Based on the hydrogen demand forecast of the fuel cell vehicle at each business site generated by the plurality of hydrogen management means and the information on the rechargeable time zone in which the fuel cell vehicle at each business site can be filled with hydrogen, Is divided into a plurality of unit times, and the operation for determining the filling time for performing hydrogen filling from the plurality of unit times so as to suppress duplication between establishments is performed, and each determined by the calculation A hydrogen management system comprising: an integrated hydrogen management means for generating a hydrogen demand prediction including information on a filling time of a fuel cell vehicle at an office.
  2.  前記統合水素管理手段は、
     各事業所の燃料電池車両の充填可能時間帯の中の充填実施時間の候補を所定のアルゴリズムに従って仮決定して所定の記憶領域に設定する情報設定手段と、
     前記情報設定手段によりそれぞれ設定した充填実施時間の候補が所定の評価基準を満たさない場合には前記情報設定手段に別の候補を設定させる処理を繰り返し、前記評価基準を満たす場合に当該候補を充填実施時間として決定する演算処理手段と
     を有する請求項1に記載の水素管理システム。
    The integrated hydrogen management means includes
    Information setting means for tentatively determining a filling execution time candidate in the filling time zone of the fuel cell vehicle of each office according to a predetermined algorithm and setting it in a predetermined storage area;
    If the filling execution time candidates set by the information setting means do not satisfy a predetermined evaluation criterion, the information setting means repeats the process of setting another candidate, and if the evaluation criteria are satisfied, the candidate is filled. The hydrogen management system according to claim 1, further comprising: an arithmetic processing unit that determines the execution time.
  3.  前記演算処理手段は、事業所毎の充填実施時間の候補が前記評価基準を満たすか否かの判定を行うに際し、
     燃料電池車両の水素が無くなる時までに予測需要量の水素が充填されずに水素が不足する度合いを示す第1の評価値を算出し、
     事業所間で同時に充填が行われる事象が生じる度合いを示す第2の評価値を算出し、
     算出した前記第1の評価値と前記第2の評価値とを前記評価基準に適用して判定を行う
     請求項2に記載の水素管理システム。
    The arithmetic processing means, when determining whether or not the filling time candidate for each establishment satisfies the evaluation criteria,
    Calculating a first evaluation value indicating a degree of hydrogen shortage without being filled with a predicted demand amount of hydrogen by a time when the fuel cell vehicle runs out of hydrogen;
    Calculating a second evaluation value indicating the degree of occurrence of the simultaneous filling event between the establishments;
    The hydrogen management system according to claim 2, wherein the determination is performed by applying the calculated first evaluation value and the second evaluation value to the evaluation criterion.
  4.  前記演算処理手段は、候補が前記評価基準を満たすか否かの判定を行うに際し、
    さらに、1つの事業所内で充填が行われる時間間隔が長引く度合いを示す第3の評価値を算出し、
     算出した前記第1の評価値と前記第2の評価値と前記第3の評価値とを前記評価基準に適用して判定を行う
     請求項3に記載の水素管理システム。
    The arithmetic processing means determines whether the candidate satisfies the evaluation criterion,
    Furthermore, a third evaluation value indicating the degree to which the time interval for filling in one office is prolonged is calculated,
    The hydrogen management system according to claim 3, wherein determination is performed by applying the calculated first evaluation value, the second evaluation value, and the third evaluation value to the evaluation criterion.
  5.  前記演算処理手段は、候補が所定の評価基準を満たすか否かの判定を行うに際し、
     (1)燃料電池車両の水素が無くなる時までに予測需要量の水素が充填されずに水素が不足する事象が生じるか否かを判定し、該事象が生じないと判定した場合に、(2)事業所間で同時に充填が行われる事象が生じるか否かを判定し、該事象が生じないと判定した場合に、(3)1つの事業所内で充填が行われる時間間隔が長引く度合いを示す第3の評価値を算出し、算出した前記第3の評価値を前記評価基準に適用して判定を行う
     請求項2に記載の水素管理システム。
    The arithmetic processing means determines whether the candidate satisfies a predetermined evaluation criterion,
    (1) It is determined whether or not an event of insufficient hydrogen occurs without filling the predicted demand amount of hydrogen by the time when the fuel cell vehicle runs out of hydrogen. ) Determining whether or not there will be an event in which filling is performed at the same time between offices, and if it is determined that the event does not occur, (3) indicates the extent to which the time interval at which filling is performed within one office is prolonged The hydrogen management system according to claim 2, wherein a third evaluation value is calculated, and determination is performed by applying the calculated third evaluation value to the evaluation criterion.
  6.  前記水素ステーションは、水素供給先へ移動する移動式水素ステーションである請求項1乃至5のいずれかに記載の水素管理システム。 The hydrogen management system according to any one of claims 1 to 5, wherein the hydrogen station is a mobile hydrogen station that moves to a hydrogen supply destination.
  7.  前記統合水素管理手段は、
     水素需要予測として時間帯毎の水素要求量を示す情報を、前記移動式水素ステーションの運行を管理する運行管理システムに通知する
     請求項6に記載の水素管理システム。
    The integrated hydrogen management means includes
    The hydrogen management system according to claim 6, wherein information indicating a hydrogen demand amount for each time zone is notified to an operation management system that manages operation of the mobile hydrogen station as a hydrogen demand prediction.
  8.  前記統合水素管理手段は、
     充填実施時間を事業所間での重複が抑制されるように決定する演算を行うに際し、前記移動式水素ステーションの移動時間を加味した演算を行う
     請求項6又は7記載の水素管理システム。
    The integrated hydrogen management means includes
    8. The hydrogen management system according to claim 6, wherein when performing an operation for determining filling time so that duplication between business establishments is suppressed, an operation is performed in consideration of a moving time of the mobile hydrogen station.
  9.  前記統合水素管理手段は、
     充填可能時間帯での充填が不可能な場合、前記移動式水素ステーションの運行を管理する運行管理システムに対し、水素ステーション台数の増加要求を行い、オペレータ端末に対し、充填可能時間帯の変更要求を行い、前記運行管理システムから、水素ステーション台数の更新の通知を受けた場合、もしくはオペレータ端末から、充填可能性時間帯の更新の通知を受けた場合に、通知された情報を用いて前記演算を再実行する
     請求項6乃至8に記載の水素管理システム。
    The integrated hydrogen management means includes
    If charging is not possible during the filling time zone, the operation management system that manages the operation of the mobile hydrogen station is requested to increase the number of hydrogen stations, and the operator terminal is requested to change the filling time zone. When the notification of the update of the number of hydrogen stations is received from the operation management system, or the update of the charging possibility time zone is received from the operator terminal, the calculation is performed using the notified information. The hydrogen management system according to any one of claims 6 to 8.
  10.  前記統合水素管理手段は、
     他の装置から再予測要求を受けた場合に、前記複数の水素管理手段に対して水素需要予測の演算の再実行を要求してその結果を得ると共に、当該統合水素管理手段における水素需要予測の演算の再実行を行う機能を備える
     請求項1乃至9のいずれか1項に記載の水素管理システム。
    The integrated hydrogen management means includes
    When a re-prediction request is received from another device, the plurality of hydrogen management means are requested to re-execute a hydrogen demand prediction calculation, and the result is obtained. The hydrogen management system according to any one of claims 1 to 9, comprising a function of re-executing the calculation.
  11.  前記統合水素管理手段は、
     充填可能時間帯および事業所毎の水素充填の優先度の少なくとも一方をオペレータが指定することを可能とする画面を提供する
     請求項1乃至10のいずれか1項に記載の水素管理システム。
    The integrated hydrogen management means includes
    The hydrogen management system according to any one of claims 1 to 10, wherein a screen that allows an operator to specify at least one of a filling time period and a priority of hydrogen filling for each office is provided.
  12.  前記統合水素管理手段は、
     各水素管理手段から、水素需要予測として時間帯毎の水素需要予測量の積算値を示す情報を受信し、
     外部の装置へ、水素需要予測として時間帯毎の水素要求量の瞬時値を示す情報を送信する
     請求項1乃至11のいずれか1項に記載の水素管理システム。
    The integrated hydrogen management means includes
    From each hydrogen management means, information indicating the integrated value of the hydrogen demand forecast amount for each time zone is received as a hydrogen demand forecast,
    The hydrogen management system according to any one of claims 1 to 11, wherein information indicating an instantaneous value of a hydrogen demand amount for each time zone is transmitted to an external device as a hydrogen demand prediction.
  13.  水素を燃料電池車両に充填するための水素ステーションを複数の事業所で共用する水素供給システムに適用される統合水素管理装置であって、
     各事業所の燃料電池車両の水素需要予測を生成する複数の水素管理手段と、
     前記複数の水素管理手段により生成された各事業所の燃料電池車両の水素需要予測および各事業所の燃料電池車両の水素の充填が可能な充填可能時間帯の情報に基づき、当該充填可能時間帯を複数の単位時間に分け、前記複数の単位時間の中から水素の充填を実施する充填実施時間を事業所間での重複が抑制されるように決定する演算を行い、当該演算により決定した各事業所の燃料電池車両の充填実施時間の情報を含む水素需要予測を生成する統合水素管理手段と
     を具備する統合水素管理装置。
    An integrated hydrogen management device applied to a hydrogen supply system in which a hydrogen station for filling hydrogen into a fuel cell vehicle is shared by a plurality of offices,
    A plurality of hydrogen management means for generating hydrogen demand forecasts for fuel cell vehicles at each site;
    Based on the hydrogen demand forecast of the fuel cell vehicle at each business site generated by the plurality of hydrogen management means and the information on the rechargeable time zone in which the fuel cell vehicle at each business site can be filled with hydrogen, Is divided into a plurality of unit times, and the operation for determining the filling time for performing hydrogen filling from the plurality of unit times so as to suppress duplication between establishments is performed, and each determined by the calculation An integrated hydrogen management device comprising: an integrated hydrogen management means for generating a hydrogen demand prediction including information on a filling time of a fuel cell vehicle at an office.
PCT/JP2016/058337 2016-03-16 2016-03-16 Hydrogen management system and integrated hydrogen management device WO2017158762A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/058337 WO2017158762A1 (en) 2016-03-16 2016-03-16 Hydrogen management system and integrated hydrogen management device
JP2018505137A JP6462951B2 (en) 2016-03-16 2016-03-16 Hydrogen management system and integrated hydrogen management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/058337 WO2017158762A1 (en) 2016-03-16 2016-03-16 Hydrogen management system and integrated hydrogen management device

Publications (1)

Publication Number Publication Date
WO2017158762A1 true WO2017158762A1 (en) 2017-09-21

Family

ID=59850250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058337 WO2017158762A1 (en) 2016-03-16 2016-03-16 Hydrogen management system and integrated hydrogen management device

Country Status (2)

Country Link
JP (1) JP6462951B2 (en)
WO (1) WO2017158762A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109064656A (en) * 2018-08-16 2018-12-21 黄竹磬 Business model and its management system based on Hydrogen Fuel-cell Vehicles energy storing and electricity generating income
WO2019059321A1 (en) * 2017-09-25 2019-03-28 旭化成株式会社 Planning device, method of creating operation planning, hydrogen manufacturing method, and program
WO2020121441A1 (en) * 2018-12-12 2020-06-18 東芝エネルギーシステムズ株式会社 Hydrogen energy control system and control method for hydrogen energy control system
CN112856213A (en) * 2021-01-19 2021-05-28 湖北和远气体股份有限公司 Bottled gas factory pims system
WO2021148221A1 (en) * 2020-01-22 2021-07-29 Robert Bosch Gmbh Method for filling a hydrogen tank of a motor vehicle comprising a fuel cell drive, and motor vehicle
JPWO2020121447A1 (en) * 2018-12-12 2021-10-07 東芝エネルギーシステムズ株式会社 Hydrogen system control device and hydrogen system control method
US20220397238A1 (en) * 2019-11-18 2022-12-15 Jfe Steel Corporation Hydrogen supply system
US11913606B2 (en) 2019-01-18 2024-02-27 Nel Hydrogen A/S Large-scale hydrogen refueling station

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002544389A (en) * 1999-05-12 2002-12-24 スチュアート エナーヂ システムズ コーポレーシヨン Energy distribution network
JP2005350299A (en) * 2004-06-10 2005-12-22 Hitachi Ltd Hydrogen fuel production system, hydrogen fuel production method and hydrogen fuel production program
JP2006001797A (en) * 2004-06-17 2006-01-05 Toho Gas Co Ltd Operation control device of hydrogen production system
JP2009221045A (en) * 2008-03-14 2009-10-01 Honda Motor Co Ltd Power generation and hydrogen generation system
JP2013015933A (en) * 2011-07-01 2013-01-24 Mitsubishi Electric Corp Vehicle reservation management device, vehicle reservation management system, vehicle reservation management method for vehicle reservation management device and vehicle reservation management program
JP2013015156A (en) * 2011-06-30 2013-01-24 Kobe Steel Ltd Hydrogen station

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4153690B2 (en) * 2001-10-25 2008-09-24 本田技研工業株式会社 Hydrogen stand filling management device
WO2013099549A1 (en) * 2011-12-27 2013-07-04 三菱電機株式会社 Energy management system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002544389A (en) * 1999-05-12 2002-12-24 スチュアート エナーヂ システムズ コーポレーシヨン Energy distribution network
JP2005350299A (en) * 2004-06-10 2005-12-22 Hitachi Ltd Hydrogen fuel production system, hydrogen fuel production method and hydrogen fuel production program
JP2006001797A (en) * 2004-06-17 2006-01-05 Toho Gas Co Ltd Operation control device of hydrogen production system
JP2009221045A (en) * 2008-03-14 2009-10-01 Honda Motor Co Ltd Power generation and hydrogen generation system
JP2013015156A (en) * 2011-06-30 2013-01-24 Kobe Steel Ltd Hydrogen station
JP2013015933A (en) * 2011-07-01 2013-01-24 Mitsubishi Electric Corp Vehicle reservation management device, vehicle reservation management system, vehicle reservation management method for vehicle reservation management device and vehicle reservation management program

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11620545B2 (en) 2017-09-25 2023-04-04 Asahi Kasei Kabushiki Kaisha Planning apparatus, method of generating operating plan, hydrogen production method, and computer readable storage medium
WO2019059321A1 (en) * 2017-09-25 2019-03-28 旭化成株式会社 Planning device, method of creating operation planning, hydrogen manufacturing method, and program
JPWO2019059321A1 (en) * 2017-09-25 2020-10-15 旭化成株式会社 Planning equipment, operation plan generation method, hydrogen production method, and program
JP7061616B2 (en) 2017-09-25 2022-04-28 旭化成株式会社 Planning equipment, operation plan generation method, hydrogen production method, and program
CN109064656A (en) * 2018-08-16 2018-12-21 黄竹磬 Business model and its management system based on Hydrogen Fuel-cell Vehicles energy storing and electricity generating income
JPWO2020121447A1 (en) * 2018-12-12 2021-10-07 東芝エネルギーシステムズ株式会社 Hydrogen system control device and hydrogen system control method
US11784335B2 (en) 2018-12-12 2023-10-10 Toshiba Energy Systems & Solutions Corporation Hydrogen-energy control system and control method for hydrogen-energy control system
JPWO2020121441A1 (en) * 2018-12-12 2021-10-07 東芝エネルギーシステムズ株式会社 Hydrogen energy control system and control method of hydrogen energy control system
JP7096909B2 (en) 2018-12-12 2022-07-06 東芝エネルギーシステムズ株式会社 Hydrogen system control device and hydrogen system control method
JP7177854B2 (en) 2018-12-12 2022-11-24 東芝エネルギーシステムズ株式会社 Hydrogen energy control system and control method for hydrogen energy control system
WO2020121441A1 (en) * 2018-12-12 2020-06-18 東芝エネルギーシステムズ株式会社 Hydrogen energy control system and control method for hydrogen energy control system
US11913606B2 (en) 2019-01-18 2024-02-27 Nel Hydrogen A/S Large-scale hydrogen refueling station
US20220397238A1 (en) * 2019-11-18 2022-12-15 Jfe Steel Corporation Hydrogen supply system
JP2023510767A (en) * 2020-01-22 2023-03-15 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method for tank filling a hydrogen tank of a motor vehicle having a fuel cell drive and the motor vehicle
WO2021148221A1 (en) * 2020-01-22 2021-07-29 Robert Bosch Gmbh Method for filling a hydrogen tank of a motor vehicle comprising a fuel cell drive, and motor vehicle
JP7429793B2 (en) 2020-01-22 2024-02-08 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method of filling a hydrogen tank of a car with a fuel cell drive device, and a car
US12066153B2 (en) 2020-01-22 2024-08-20 Robert Bosch Gmbh Method for filling a hydrogen tank of a motor vehicle comprising a fuel cell drive and motor vehicle
CN112856213A (en) * 2021-01-19 2021-05-28 湖北和远气体股份有限公司 Bottled gas factory pims system

Also Published As

Publication number Publication date
JP6462951B2 (en) 2019-01-30
JPWO2017158762A1 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
JP6462951B2 (en) Hydrogen management system and integrated hydrogen management system
An et al. Battery-swapping facility planning for electric buses with local charging systems
James et al. Autonomous vehicle logistic system: Joint routing and charging strategy
Abdullah et al. Reinforcement learning based EV charging management systems–a review
James Two-stage request scheduling for autonomous vehicle logistic system
CN108334991B (en) Electric vehicle charging station planning method and system
US9620959B2 (en) Enhanced grid reliability through predictive analysis and dynamic action for stable power distribution
Zhang et al. A bi-level optimization framework for charging station design problem considering heterogeneous charging modes
EP2760696B1 (en) Method and system for charging electric vehicles
Li-ying et al. Multiple charging station location-routing problem with time window of electric vehicle.
Moghaddam et al. Dispatch management of portable charging stations in electric vehicle networks
JP6441542B2 (en) Hydrogen management system and hydrogen management method
CN110245791A (en) A kind of order processing method and system
Al-Hanahi et al. An optimal charging solution for commercial electric vehicles
Mirheli et al. Hierarchical optimization of charging infrastructure design and facility utilization
Xiong et al. Modeling and simulation for effectiveness evaluation of dynamic discrete military supply chain networks
Sultanuddin et al. Development of improved reinforcement learning smart charging strategy for electric vehicle fleet
Rahmani-Andebili et al. Optimal incentive plans for plug-in electric vehicles
Iacobucci et al. Cascaded model predictive control for shared autonomous electric vehicles systems with V2G capabilities
Shipman et al. Learning capacity: predicting user decisions for vehicle-to-grid services
Shen et al. Integrated optimization of electric vehicles charging location and allocation for valet charging service
CN106980953A (en) A kind of dynamic path planning method of Logistics Oriented
AU2014201562B2 (en) Enhanced grid reliability through predictive analysis and dynamic action for stable power distribution
Goncearuc et al. The barriers to widespread adoption of vehicle-to-grid: A comprehensive review
Jindal et al. Sustainable smart energy cyber-physical system: Can electric vehicles suffice its needs?

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018505137

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894380

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16894380

Country of ref document: EP

Kind code of ref document: A1