WO2017158723A1 - Power supply device and surgical system - Google Patents

Power supply device and surgical system Download PDF

Info

Publication number
WO2017158723A1
WO2017158723A1 PCT/JP2016/058149 JP2016058149W WO2017158723A1 WO 2017158723 A1 WO2017158723 A1 WO 2017158723A1 JP 2016058149 W JP2016058149 W JP 2016058149W WO 2017158723 A1 WO2017158723 A1 WO 2017158723A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
voltage
circuit
supply device
output
Prior art date
Application number
PCT/JP2016/058149
Other languages
French (fr)
Japanese (ja)
Inventor
禎嘉 高見
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2016/058149 priority Critical patent/WO2017158723A1/en
Publication of WO2017158723A1 publication Critical patent/WO2017158723A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power supply device for supplying power to a treatment tool and a surgical system including the power supply device.
  • the power supply device includes a DC / DC converter and a DC / AC converter.
  • a DC / DC converter and a DC / AC converter.
  • International Publication No. 2011/106187 discloses a technology related to a power supply device for an automobile.
  • a GaN MESFET is used as a switching device of a DC / AC inverter.
  • an output from a DC / AC inverter is input to an electronic device via a PLC coupler which is a logic circuit.
  • a surgical system for treating living tissue using various energy is known.
  • energy given to a living tissue for example, high-frequency current, heat, ultrasonic vibration and the like are known.
  • Such a surgical system also requires a power supply device that supplies power to the treatment tool.
  • An object of the present invention is to provide a power supply device with good energy efficiency and output characteristics and a surgical system including the power supply device.
  • a power supply device for supplying power to a treatment instrument includes a DC voltage source that outputs a DC voltage, and a DC / AC converter that converts the DC voltage to an AC voltage,
  • the DC / AC converter includes a switch circuit including a gallium nitride-based field effect transistor, a transformer, and a capacitor and an inductor that adjust an output waveform of the switch circuit.
  • a surgical system includes the power supply device and the treatment instrument that is supplied with power from the power supply device.
  • the present invention it is possible to provide a power supply device having good energy efficiency and output characteristics and a surgical system including the power supply device.
  • FIG. 1 is a diagram schematically illustrating a surgical system according to an embodiment.
  • FIG. 2 is a block diagram illustrating an outline of a configuration example of the power supply device according to the embodiment.
  • FIG. 3 is a diagram illustrating an outline of a configuration example of a variable DC power supply according to an embodiment.
  • FIG. 4 is a diagram showing an outline of another configuration example of the variable DC power supply.
  • FIG. 5 is a diagram showing an outline of another configuration example of the variable DC power supply.
  • FIG. 6 is a diagram showing an outline of another configuration example of the variable DC power supply.
  • FIG. 7 is a diagram illustrating an outline of a configuration example of the DC / AC conversion unit according to the first example.
  • FIG. 8 is a diagram illustrating an outline of a configuration example of the DC / AC conversion unit according to the second example.
  • FIG. 9 is a diagram illustrating an outline of a configuration example of a DC / AC conversion unit according to a modification of the second example.
  • FIG. 10 is a diagram illustrating an outline of a configuration example of the DC / AC conversion unit according to the third example.
  • FIG. 11 is a diagram illustrating an outline of a configuration example of the DC / AC conversion unit according to the fourth example.
  • FIG. 12 is a diagram illustrating an outline of a configuration example of the DC / AC conversion unit according to the fifth example.
  • FIG. 13 is a diagram illustrating an outline of a configuration example of the DC / AC conversion unit according to the sixth example.
  • FIG. 10 is a diagram illustrating an outline of a configuration example of the DC / AC conversion unit according to the third example.
  • FIG. 11 is a diagram illustrating an outline of a configuration example of the DC / AC conversion unit according
  • FIG. 14 is a diagram illustrating an outline of a configuration example of the DC / AC conversion unit according to the seventh example.
  • FIG. 15 is a diagram illustrating an outline of a configuration example of a DC / AC conversion unit according to the eighth example.
  • FIG. 16 is a diagram illustrating an outline of a configuration example of the DC / AC conversion unit according to the ninth example.
  • the surgical system 1 is a device used for treatment of a living tissue, and is used for, for example, treatments that stop hemostasis, coagulate, seal, detach, or incise a tissue.
  • the surgical system 1 performs treatment by applying energy to living tissue.
  • the surgical system 1 includes a treatment tool 200 for performing a treatment and a power supply device 100 for supplying power to the treatment tool 200.
  • the treatment tool 200 is a surgical instrument for surgery, for example, for performing treatment by penetrating the abdominal wall.
  • the treatment tool 200 includes a treatment tool main body 220, a shaft 216 attached to the treatment tool main body 220, and a gripping portion 210 that is an end effector provided at the distal end of the shaft 216.
  • the grip portion 210 includes a first grip member 212 and a second grip member 214. When the first grip member 212 is displaced with respect to the second grip member 214, the grip portion 210 is opened and closed.
  • the grasping unit 210 is configured to grasp a living tissue that is a treatment target between the first grasping member 212 and the second grasping member 214.
  • the grasping unit 210 is a part that performs treatment such as grasping a living tissue to be treated and incising the living tissue.
  • the first gripping member 212 or the second gripping member 214 is provided with a heater (not shown).
  • the heater generates heat when electric power is supplied to the heater.
  • the living tissue is treated by transferring the heat generated by the heater to the living tissue.
  • electrodes are provided on the surfaces of the first grasping member 212 and the second grasping member 214 that come into contact with the living tissue, and a high-frequency voltage is applied between the electrodes. When a current flows through the living tissue held between the electrodes, the living tissue generates heat and the living tissue is treated.
  • the second gripping member 214 is connected to an ultrasonic transducer, and the second gripping member that comes into contact with the living tissue vibrates ultrasonically.
  • the living tissue is treated by friction between the second grasping member and the living tissue.
  • the living tissue may be treated with two or more energies among heat, high frequency power and ultrasonic vibration.
  • the operation instrument main body 220 is provided with an operation knob 222 for operating the grip portion 210.
  • an operation knob 222 for operating the grip portion 210.
  • the grip portion 210 is opened and closed.
  • the shape of the treatment tool 200 shown here is an example, and other shapes may be used as long as they have the same function.
  • the shape of the treatment instrument body 220, the length of the shaft 216, the presence / absence of the operation knob 222, the shape of the grip portion 210, and the like can be changed as appropriate.
  • the distal end portion of the treatment instrument 200 does not have a gripping portion, has a shape such as a trowel, and may be configured to be pressed against a treatment target.
  • the treatment tool 200 is not limited to treating the abdominal cavity, and may be, for example, a treatment for treating a joint cavity.
  • the technology according to the present embodiment is not limited to the treatment apparatus used in the rigid endoscope operation as shown in FIG. 1 but is also applied to the treatment apparatus used in the endoscopic operation using the flexible endoscope. obtain.
  • the treatment instrument 200 is connected to the power supply apparatus 100 via the cable 280.
  • the power supply device 100 supplies energy to the treatment tool 200. This energy is converted by, for example, the above-described heater, electrode, ultrasonic transducer, and the like, and is applied to the living tissue held by the holding unit 210.
  • the cable 280 and the power supply apparatus 100 are connected by a cable connector 285, and this connection is detachable. That is, the surgical system 1 is configured so that the treatment tool 200 used for each treatment can be exchanged.
  • a foot switch 290 is connected to the power supply device 100.
  • the foot switch 290 operated with a foot may be replaced with a hand switch operated with a hand or other switches.
  • the pedal of the foot switch 290 When the operator operates the pedal of the foot switch 290, the supply of energy from the power supply device 100 to the treatment tool 200 is switched on / off.
  • the power supply device 100 includes a control circuit 110, a storage device 112, a power supply 120, a variable DC power supply 130, a DC / AC conversion unit 140, a waveform generation circuit 170, and an output detection unit 180.
  • the control circuit 110 controls the operation of each unit of the power supply device 100.
  • the storage device 112 stores, for example, programs necessary for the operation of the control circuit 110, various parameters, and the like.
  • the control circuit 110 includes an integrated circuit such as a central processing unit (CPU), an application specific integrated circuit (ASIC), or a field programmable gate array (FPGA).
  • the control circuit 110 may be configured by one integrated circuit or the like, or may be configured by combining a plurality of integrated circuits. The operation of these integrated circuits is performed in accordance with, for example, a program recorded in the storage area 112 or a recording area in the integrated circuit.
  • the power source 120 is, for example, a power source as a DC voltage source that acquires power from a commercial power source and outputs a constant voltage.
  • the power source 120 may be a battery.
  • the power source 120 that is a battery also outputs a constant voltage.
  • the constant voltage output from the power source 120 is input to the variable DC power source 130.
  • the variable DC power supply 130 transforms the input voltage and outputs a DC voltage.
  • the output of the variable DC power supply 130 is controlled by the control circuit 110. For example, when the output of the treatment instrument 200 is changed, the output voltage of the variable DC power supply 130 is changed.
  • the output of the variable DC power supply 130 is input to the DC / AC converter 140. If the voltage of the power supply 120 may be input to the DC / AC conversion unit 140 as it is, the variable DC power supply 130 may be omitted.
  • the waveform generation circuit 170 is, for example, a pulse generator.
  • the waveform generation circuit 170 outputs, for example, a rectangular wave under the control of the control circuit 110.
  • the DC / AC conversion unit 140 outputs an AC voltage based on the DC output voltage of the variable DC power supply 130 and the output signal that is, for example, a rectangular wave of the waveform generation circuit 170.
  • An example of the configuration of the DC / AC conversion unit 140 will be further described.
  • the DC / AC conversion unit 140 includes a switch circuit 141, a transformer circuit 142, and a matching circuit 143.
  • the transformer circuit 142 includes a transformer 152.
  • a variable DC power supply 130 is connected to the input side of the transformer 152, and a switch circuit 141 is inserted in series.
  • a matching circuit 143 is connected to the output side of the transformer 152.
  • the switch circuit 141 includes a gallium nitride (GaN) -based field effect transistor (FET), for example, a GaN FET 151.
  • the transformer 152 is connected to the drain electrode of the GaN FET 151, the output terminal of the waveform generating circuit 170 is connected to the gate electrode of the GaN FET 151, and the source electrode of the GaN FET 151 is grounded.
  • the GaN FET 151 is turned on, and the voltage of the variable DC power supply 130 is input to the transformer 152.
  • the GaN FET 151 is turned off, and the voltage of the variable DC power supply 130 is not input to the transformer 152.
  • the input to the transformer 152 is controlled by the output of the waveform generation circuit 170.
  • the switch circuit 141 is turned on and off according to the period of the rectangular wave, and the input to the transformer 152 is turned on and off according to the period. And switch.
  • the transformer circuit 142 outputs, for example, a rectangular wave that has been boosted or stepped down.
  • the matching circuit 143 is provided with an appropriately adjusted inductor 153 and capacitor 154 connected in series.
  • the output of the transformer 152 passes through the matching circuit 143 in which the inductor 153 and the capacitor 154 are connected in series, so that the rectangular wave output from the transformer circuit 142 is converted into a sinusoidal signal.
  • the DC / AC converter 140 including the switch circuit 141, the transformer circuit 142, and the matching circuit 143 outputs an AC voltage having a frequency corresponding to the output frequency of the waveform generation circuit 170.
  • the power output from the DC / AC conversion unit 140 is supplied to the treatment instrument 200 via the output detection unit 180.
  • the treatment tool 200 functions to treat a living tissue using the supplied power.
  • the output detection unit 180 includes a current detection circuit 182 and a voltage detection circuit 184.
  • the current detection circuit 182 detects the current value output from the DC / AC conversion unit 140.
  • the voltage detection circuit 184 detects the voltage value output from the DC / AC conversion unit 140.
  • the control circuit 110 acquires the current value detected by the current detection circuit 182 and the voltage value detected by the voltage detection circuit 184 via the A / D converter 186.
  • the input device 192 includes, for example, a touch panel, a keyboard, a switch, and the like.
  • the control circuit 110 acquires an instruction from the user via the input device 192.
  • the display device 194 includes, for example, a liquid crystal display.
  • the display device 194 displays, for example, the state of the power supply device 100 under the control of the control circuit 110.
  • the speaker 196 emits a warning sound or the like under the control of the control circuit 110, for example.
  • the present invention is not limited to this.
  • a wireless system in which all functions of the power supply device 100 are incorporated in the treatment instrument 200 may be used.
  • the surgeon first operates the input device 192 of the power supply device 100 to set the output conditions of the surgical system 1 such as the output target value and the treatment time related to the treatment.
  • the value of each parameter may be set individually, or a set of setting values according to the technique may be selected.
  • the grasping part 210 and the shaft 216 of the treatment instrument 200 are inserted into the abdominal cavity through the abdominal wall, for example.
  • the operator operates the operation knob 222 to open and close the grasping portion 210, and grasps the living tissue that is the treatment target with the first grasping member 212 and the second grasping member 214.
  • the surgeon operates the foot switch 290 after grasping the biological tissue to be treated by the grasping unit 210.
  • power is supplied from the power supply device 100 to the treatment instrument 200 via the cable 280.
  • the treatment tool 200 uses this electric power to apply energy such as heat, ultrasonic vibration, high-frequency current, etc., to the living tissue to be treated to treat the living tissue.
  • the power supply apparatus 100 operates as follows, for example.
  • the control circuit 110 causes the variable DC power supply 130 to output a DC voltage.
  • the variable DC power supply 130 outputs a DC voltage having a voltage value instructed from the control circuit 110 based on the power input from the power supply 120. This voltage is input to the switch circuit 141 of the DC / AC converter 140.
  • the control circuit 110 causes the waveform generation circuit 170 to output a rectangular wave having a necessary frequency and a predetermined voltage value.
  • the output frequency is set to, for example, 200 kHz to 1 MHz.
  • the output frequency is set to, for example, 10 kHz to 1 MHz.
  • the output frequency is set to, for example, 10 kHz to 200 kHz.
  • the power supply apparatus 100 can output a voltage in a frequency range of 10 kHz to 1 MHz.
  • the input to the transformer circuit 142 is switched on and off by the switch circuit 141 in accordance with the waveform of the waveform generation circuit 170.
  • the output voltage of the transformer circuit 142 becomes a rectangular wave corresponding to the output frequency of the waveform generation circuit 170.
  • the rectangular wave voltage is a value transformed with respect to the output voltage of the variable DC power supply 130 as an input.
  • the output of the transformer circuit 142 is input to the matching circuit 143.
  • the matching circuit 143 converts the input rectangular wave into a sine wave and outputs it.
  • the DC / AC converter 140 outputs a sine wave corresponding to the output frequency of the waveform generation circuit 170 in accordance with the output voltage of the variable DC power supply 130.
  • the output of the DC / AC converter 140 is supplied to the treatment instrument 200.
  • the control circuit 110 monitors the output of the DC / AC conversion unit 140 via the output detection unit 180.
  • the control circuit 110 performs feedback control according to the output of the DC / AC converter 140, and appropriately adjusts the outputs of the variable DC power supply 130 and the waveform generation circuit 170.
  • a gallium nitride-based field effect transistor is used for the switch circuit 141 of the DC / AC converter 140.
  • Gallium nitride-based field effect transistors are characterized by a low on-resistance and a small gate capacitance compared to conventional field effect transistors (FETs) using silicon (Si), such as MOSFETs. Since the on-resistance is small, for example, a conduction loss, which is a power loss in the GaN FET 151 during a period in which the GaN FET 151 is on, is smaller than that of, for example, a MOSFET.
  • the power supply device 100 since the gate capacitance is small, the switching of the switch becomes steep, and the switching loss, which is a loss of power when the switch is switched, is smaller than that of, for example, a MOSFET. That is, the power supply device 100 according to the present embodiment has high energy efficiency. Furthermore, since the conduction loss and the switching loss are small, the power supply device 100 as a whole can be miniaturized such that heat generation is small and the radiator is simplified.
  • the gallium nitride-based field effect transistor is characterized in that it can be downsized as compared with the conventional silicon-based field effect transistor. Since the element is miniaturized, it is possible to obtain an effect that the inductance of the wiring is reduced and the distortion of the output waveform is reduced. In addition, a gallium nitride-based field effect transistor has a feature of low reverse recovery charge. For this reason, according to the gallium nitride-based field effect transistor, an effect that the distortion of the output waveform is reduced can be obtained. Thus, since the distortion of the output waveform is small, an effect of reducing noise can be obtained. In addition, since the gallium nitride-based field effect transistor is miniaturized, it has a feature that its operation is fast and high frequency is easy. For this reason, the inductor and the capacitor can be downsized.
  • variable DC power supply 130 is preferably a step-down DC / DC converter and is boosted by the transformer circuit 142.
  • the voltage input to the switch circuit 141 can be reduced and the output voltage of the DC / AC converter 140 can be increased.
  • the above-described problem of current coplus is suppressed.
  • the output and switching waveform of the DC / AC converter 140 are stabilized, and as a result, noise can be suppressed.
  • the downsizing of the apparatus is particularly effective in a wireless surgical system that is realized by, for example, mounting a power supply apparatus equipped with a battery on the treatment instrument 200.
  • a transformer 152 is provided downstream of the variable DC power supply 130.
  • the circuit is disconnected by the transformer 152, and the power supply 120 is not directly connected to the treatment instrument 200.
  • an excessive current is prevented from flowing through the treatment instrument 200. This is particularly effective when the treatment tool 200 is a high-frequency treatment tool that allows current to flow through a living tissue.
  • the capacitor 154 is inserted in series with the output circuit from the transformer circuit 142. For this reason, direct current does not flow in this circuit. This is particularly effective when the treatment tool 200 is a high-frequency treatment tool that allows current to flow through a living tissue.
  • variable DC power supply 130 can take various configurations, a gallium nitride field effect transistor having excellent characteristics as described above may be used.
  • the variable DC power supply includes a GaN FET 131 that functions as a switching element, an inductor 132, and a capacitor 133.
  • the GaN FET 131 has a drain electrode connected to the power source 120, a gate electrode connected to the waveform generating circuit 170, and a source electrode grounded.
  • One end of the inductor 132 is connected to the drain electrode of the GaN FET 131, and the other end of the inductor 132 is connected to the DC / AC converter 140.
  • the capacitor 133 is connected to the other end of the inductor 132, and the other end of the capacitor 133 is grounded.
  • the voltage input from the power source 120 is converted into an AC voltage according to the output of the waveform generation circuit 170 by the GaN FET 131. Further, the AC voltage is converted into a DC voltage by the inductor 132 and the capacitor 133. In this way, the variable DC power supply 130 functions as a DC / DC converter as a whole.
  • the DC / DC conversion unit of the variable DC power supply 130 may include the following circuit, for example. That is, for example, as shown in FIG. 4, an asynchronous rectification type circuit using a field effect transistor 134 and a Schottky barrier diode 135 can be used. For example, a synchronous rectification type circuit using two field effect transistors 136 and 137 as shown in FIG. 5 may be used. In either case, a gallium nitride field effect transistor can be used as the field effect transistor.
  • variable DC power supply 130 when the variable DC power supply 130 performs boosting, for example, a booster circuit as shown in FIG. 6 may be used for the DC / DC converter of the variable DC power supply 130. Also in this case, a gallium nitride based field effect transistor can be used as the field effect transistor.
  • a circuit as shown in FIG. 7 may be used.
  • the output terminal of the variable DC power supply 130 is connected to the drain electrode of the GaN FET 151 via the inductor 155, and the output terminal of the waveform generating circuit 170 is connected to the gate electrode of the GaN FET 151.
  • the source electrode is grounded.
  • the output of the waveform generation circuit 170 is equal to or greater than the threshold value, a current flows between the drain electrode and the source electrode of the GaN FET 151, and the drain electrode of the GaN FET 151 becomes the ground potential.
  • the potential of the drain electrode of the GaN FET 151 is controlled by the output of the waveform generation circuit 170.
  • the potential of the drain electrode of the GaN FET 151 has an amplitude corresponding to the output voltage of the variable DC power supply 130 and changes in synchronization with the output of the waveform generation circuit 170. .
  • An inductor 156 and a capacitor 157 are connected in series between the drain electrode of the GaN FET 151 and the transformer 152, and a capacitor 158 is connected between the transformer 152 and the output terminal of the DC / AC converter 140. Yes. Even if comprised in this way, it can function similarly to the above-mentioned embodiment.
  • the switch circuit 141 may include a cascode-connected FET. That is, for example, the switch circuit 141 includes a first FET 161 and a second FET 162.
  • the first FET 161 is, for example, a GaN FET
  • the second FET 162 is a MOSFET.
  • the transformer 152 of the transformer circuit 142 is connected to the drain electrode of the first FET 161, the source electrode of the first FET 161 is connected to the drain electrode of the second FET 162, and the source electrode of the second FET 162 is grounded. .
  • the gate electrodes of the first FET 161 and the second FET 162 are connected to the output terminal of the waveform generation circuit 170.
  • GaN FETs may have normally-on characteristics in which current flows even when the gate voltage is zero. Therefore, by connecting the second FET 162 in series with the first FET 161 that is a GaN FET, the second FET 162 that is a MOSFET can turn off the current. That is, the leakage current is suppressed.
  • an inexpensive low withstand voltage MOSFET can be adopted as the second FET. As a result, the price of the entire apparatus can be suppressed.
  • clamp protection by a diode 163 may be performed.
  • the switch circuit 141 may include a first GaN FET 165 and a second GaN FET 166 connected in parallel. That is, the drain electrodes of the first GaN FET 165 and the second GaN FET 166 are connected to the transformer 152 of the transformer circuit 142. The source electrodes of the first GaN FET 165 and the second GaN FET 166 are grounded. The output terminals of the waveform generation circuit 170 are connected to the gate electrodes of the first GaN FET 165 and the second GaN FET 166.
  • the on-resistance may change depending on the applied voltage. Since the GaN FETs are provided in parallel as in the example shown in FIG. 10, the influence of the change in on-resistance can be suppressed.
  • the GaN FET Since the GaN FET has a small gate capacitance, it is sensitive to noise and easily oscillates. Therefore, by inserting ferrite beads or the like into the wiring to the gate electrode of the GaN FET, noise entering the gate electrode is suppressed. That is, for example, as shown in FIG. 11, an inductor 159 is inserted before the gate electrode of the GaN FET 151. As a result, the influence of noise on the GaN FET 151 is reduced. As a result, oscillation is suppressed and the output and waveform of the DC / AC converter 140 are stabilized.
  • a half bridge circuit may be used as shown in FIG. If a GaN FET having good characteristics is used for the first FET 1511 and the second FET 1512 used in the half-bridge circuit, the same effect as described above can be obtained.
  • switch circuit 141 for example, a half bridge circuit and a phase shift method may be used as shown in FIG. If a GaN FET having good characteristics is used for the first FET 1521 and the second FET 1522 used in the half-bridge circuit, the same effect as described above can be obtained.
  • a full bridge circuit and a phase shift method may be used for the switch circuit 141 as shown in FIG. If a GaN FET having good characteristics is used for the first FET 1531, the second FET 1532, the third FET 1533, and the fourth FET 1534 used in the full bridge circuit, the same effect as described above can be obtained.
  • the matching circuit 143 includes a low pass filter using the first inductor 1541 and the first capacitor 1542 and a low pass filter using the second inductor 1543 and the second capacitor 1544. If a GaN FET having good characteristics is used for the first switch element 1551, the second switch element 1552, the third switch element 1553, and the fourth switch element 1554 expressed by SW used in the full-bridge class D amplifier. The effect similar to the above-mentioned effect is acquired.
  • the matching circuit 143 includes a low pass filter using the first inductor 1541 and the first capacitor 1542 and a low pass filter using the second inductor 1543 and the second capacitor 1544.
  • circuit configuration examples have been described above, the present embodiment is not limited to these circuit configurations.
  • the circuit can be changed as appropriate as long as it follows the purpose of the example of each circuit configuration described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Surgical Instruments (AREA)

Abstract

A power supply device (100) for supplying power to a treatment tool (200) is provided with: a direct current voltage source (120) that outputs a direct current voltage; and a DC-AC conversion unit (140) that converts a direct current voltage into an alternating current voltage. The DC-AC conversion unit (140) includes: a switch circuit (141) that is provided with a gallium nitride field effect transistor (151); a transformer (152); and a capacitor (154) and an inductor (153) for reshaping an output waveform by the switch circuit (141).

Description

電源装置及び手術システムPower supply device and surgical system
 本発明は、処置具に電力を供給するための電源装置及び当該電源装置を備える手術システムに関する。 The present invention relates to a power supply device for supplying power to a treatment tool and a surgical system including the power supply device.
 一般に、種々の機器に電力を供給する種々の電源装置が知られている。電源装置には、DC/DC変換部やDC/AC変換部が含まれている。例えば、国際公開第2011/106187号には、自動車の電源装置に係る技術が開示されている。この電源装置では、DC/ACインバーターのスイッチングデバイスとしてGaNMESFETが用いられることが開示されている。また、この電源装置では、DC/ACインバーターからの出力がロジック回路であるPLCカプラを介して電子デバイスに入力されることが開示されている。 Generally, various power supply devices that supply power to various devices are known. The power supply device includes a DC / DC converter and a DC / AC converter. For example, International Publication No. 2011/106187 discloses a technology related to a power supply device for an automobile. In this power supply apparatus, it is disclosed that a GaN MESFET is used as a switching device of a DC / AC inverter. Further, in this power supply apparatus, it is disclosed that an output from a DC / AC inverter is input to an electronic device via a PLC coupler which is a logic circuit.
 また、種々のエネルギーを用いて生体組織を処置する手術システムが知られている。生体組織に与えられるエネルギーとしては、例えば、高周波電流、熱、超音波振動等が知られている。このような手術システムにおいても、処置具に電力を供給する電源装置が必要である。 Also, a surgical system for treating living tissue using various energy is known. As energy given to a living tissue, for example, high-frequency current, heat, ultrasonic vibration and the like are known. Such a surgical system also requires a power supply device that supplies power to the treatment tool.
 処置具に電力を供給するための電源装置であって、エネルギー効率及び出力特性がよい電源装置が求められている。 There is a need for a power supply device for supplying power to a treatment instrument and having good energy efficiency and output characteristics.
 本発明は、エネルギー効率及び出力特性がよい電源装置及び当該電源装置を備える手術システムを提供することを目的とする。 An object of the present invention is to provide a power supply device with good energy efficiency and output characteristics and a surgical system including the power supply device.
 本発明の一態様によれば、処置具に電力を供給するための電源装置は、直流電圧を出力する直流電圧源と、直流電圧を交流電圧に変換するDC/AC変換部とを備え、前記DC/AC変換部は、窒化ガリウム系の電界効果トランジスタを備えるスイッチ回路と、変圧器と、前記スイッチ回路による出力波形を整えるキャパシタ及びインダクタとを含む。 According to an aspect of the present invention, a power supply device for supplying power to a treatment instrument includes a DC voltage source that outputs a DC voltage, and a DC / AC converter that converts the DC voltage to an AC voltage, The DC / AC converter includes a switch circuit including a gallium nitride-based field effect transistor, a transformer, and a capacitor and an inductor that adjust an output waveform of the switch circuit.
 本発明の一態様によれば、手術システムは、前記電源装置と、前記電源装置から電力を供給される前記処置具とを備える。 According to one aspect of the present invention, a surgical system includes the power supply device and the treatment instrument that is supplied with power from the power supply device.
 本発明によれば、エネルギー効率及び出力特性がよい電源装置及び当該電源装置を備える手術システムを提供できる。 According to the present invention, it is possible to provide a power supply device having good energy efficiency and output characteristics and a surgical system including the power supply device.
図1は、一実施形態に係る手術システムの概略を示す図である。FIG. 1 is a diagram schematically illustrating a surgical system according to an embodiment. 図2は、一実施形態に係る電源装置の構成例の概略を示すブロック図である。FIG. 2 is a block diagram illustrating an outline of a configuration example of the power supply device according to the embodiment. 図3は、一実施形態に係る可変直流電源の構成例の概略を示す図である。FIG. 3 is a diagram illustrating an outline of a configuration example of a variable DC power supply according to an embodiment. 図4は、可変直流電源の他の構成例の概略を示す図である。FIG. 4 is a diagram showing an outline of another configuration example of the variable DC power supply. 図5は、可変直流電源の他の構成例の概略を示す図である。FIG. 5 is a diagram showing an outline of another configuration example of the variable DC power supply. 図6は、可変直流電源の他の構成例の概略を示す図である。FIG. 6 is a diagram showing an outline of another configuration example of the variable DC power supply. 図7は、第1の例に係るDC/AC変換部の構成例の概略を示す図である。FIG. 7 is a diagram illustrating an outline of a configuration example of the DC / AC conversion unit according to the first example. 図8は、第2の例に係るDC/AC変換部の構成例の概略を示す図である。FIG. 8 is a diagram illustrating an outline of a configuration example of the DC / AC conversion unit according to the second example. 図9は、第2の例の変形例に係るDC/AC変換部の構成例の概略を示す図である。FIG. 9 is a diagram illustrating an outline of a configuration example of a DC / AC conversion unit according to a modification of the second example. 図10は、第3の例に係るDC/AC変換部の構成例の概略を示す図である。FIG. 10 is a diagram illustrating an outline of a configuration example of the DC / AC conversion unit according to the third example. 図11は、第4の例に係るDC/AC変換部の構成例の概略を示す図である。FIG. 11 is a diagram illustrating an outline of a configuration example of the DC / AC conversion unit according to the fourth example. 図12は、第5の例に係るDC/AC変換部の構成例の概略を示す図である。FIG. 12 is a diagram illustrating an outline of a configuration example of the DC / AC conversion unit according to the fifth example. 図13は、第6の例に係るDC/AC変換部の構成例の概略を示す図である。FIG. 13 is a diagram illustrating an outline of a configuration example of the DC / AC conversion unit according to the sixth example. 図14は、第7の例に係るDC/AC変換部の構成例の概略を示す図である。FIG. 14 is a diagram illustrating an outline of a configuration example of the DC / AC conversion unit according to the seventh example. 図15は、第8の例に係るDC/AC変換部の構成例の概略を示す図である。FIG. 15 is a diagram illustrating an outline of a configuration example of a DC / AC conversion unit according to the eighth example. 図16は、第9の例に係るDC/AC変換部の構成例の概略を示す図である。FIG. 16 is a diagram illustrating an outline of a configuration example of the DC / AC conversion unit according to the ninth example.
 本発明の一実施形態について図面を参照して説明する。本実施形態に係る手術システム1の外観の概略図を図1に示す。手術システム1は、生体組織の治療に用いられる装置であり、例えば、止血したり、組織を凝固させたり、封止したり、切離したり、切開したりする処置に用いられる。手術システム1は、生体組織にエネルギーを作用させることで処置を行う。 An embodiment of the present invention will be described with reference to the drawings. A schematic diagram of the appearance of the surgical system 1 according to the present embodiment is shown in FIG. The surgical system 1 is a device used for treatment of a living tissue, and is used for, for example, treatments that stop hemostasis, coagulate, seal, detach, or incise a tissue. The surgical system 1 performs treatment by applying energy to living tissue.
 〈手術システムの構成〉
 図1に示すように、手術システム1は、処置を行うための処置具200と処置具200に対して電力を供給するための電源装置100とを備える。処置具200は、例えば腹壁を貫通させて処置を行うための、外科治療用手術器具である。処置具200は、処置具本体220と、処置具本体220に取り付けられたシャフト216と、シャフト216の先端に設けられたエンドエフェクタである把持部210とを有する。
<Surgery system configuration>
As shown in FIG. 1, the surgical system 1 includes a treatment tool 200 for performing a treatment and a power supply device 100 for supplying power to the treatment tool 200. The treatment tool 200 is a surgical instrument for surgery, for example, for performing treatment by penetrating the abdominal wall. The treatment tool 200 includes a treatment tool main body 220, a shaft 216 attached to the treatment tool main body 220, and a gripping portion 210 that is an end effector provided at the distal end of the shaft 216.
 把持部210は、第1の把持部材212と第2の把持部材214とを有する。第1の把持部材212が第2の把持部材214に対して変位することで、把持部210は開閉する。把持部210は、第1の把持部材212と第2の把持部材214との間に処置対象である生体組織を把持するように構成されている。把持部210は、処置対象である生体組織を把持して、生体組織を切開する等の処置を行う部分である。 The grip portion 210 includes a first grip member 212 and a second grip member 214. When the first grip member 212 is displaced with respect to the second grip member 214, the grip portion 210 is opened and closed. The grasping unit 210 is configured to grasp a living tissue that is a treatment target between the first grasping member 212 and the second grasping member 214. The grasping unit 210 is a part that performs treatment such as grasping a living tissue to be treated and incising the living tissue.
 例えば、第1の把持部材212又は第2の把持部材214には、図示しないヒータが設けられている。当該ヒータに電力が供給されることでヒータが発熱する。ヒータで発生した熱が生体組織に伝達されることによって、生体組織が処置される。あるいは、例えば、第1の把持部材212及び第2の把持部材214の生体組織と接触する面には電極が設けられており、当該電極間に高周波電圧が印加される。当該電極間に把持された生体組織に電流が流れることで、生体組織は発熱し、生体組織が処置される。あるいは、例えば第2の把持部材214は、超音波振動子に接続されており、生体組織と接触する第2の把持部材が超音波振動する。第2の把持部材と生体組織との摩擦によって、生体組織が処置される。あるいは、熱、高周波電力及び超音波振動のうち2つ以上のエネルギーによって生体組織が処置されてもよい。 For example, the first gripping member 212 or the second gripping member 214 is provided with a heater (not shown). The heater generates heat when electric power is supplied to the heater. The living tissue is treated by transferring the heat generated by the heater to the living tissue. Alternatively, for example, electrodes are provided on the surfaces of the first grasping member 212 and the second grasping member 214 that come into contact with the living tissue, and a high-frequency voltage is applied between the electrodes. When a current flows through the living tissue held between the electrodes, the living tissue generates heat and the living tissue is treated. Alternatively, for example, the second gripping member 214 is connected to an ultrasonic transducer, and the second gripping member that comes into contact with the living tissue vibrates ultrasonically. The living tissue is treated by friction between the second grasping member and the living tissue. Alternatively, the living tissue may be treated with two or more energies among heat, high frequency power and ultrasonic vibration.
 処置具本体220には、把持部210を操作するための操作ノブ222が取り付けられている。例えば、操作ノブ222が操作されることで、把持部210が開閉する。 The operation instrument main body 220 is provided with an operation knob 222 for operating the grip portion 210. For example, when the operation knob 222 is operated, the grip portion 210 is opened and closed.
 なお、ここで示した処置具200の形状は、もちろん一例であり、同様の機能を有していれば、他の形状でもよい。例えば、処置具本体220の形状、シャフト216の長さ、操作ノブ222の有無、把持部210の形状等は適宜変更され得る。また、例えば、処置具200の先端部は、把持部を有しておらず、こて状等の形状を有しており、処置対象に押し付けられるように構成されていてもよい。また、処置具200は腹腔内を処置するものに限らず、例えば関節腔内を処置するもの等であってもよい。また、本実施形態に係る技術は、図1に示すような硬性鏡手術に用いられる処置装置に限らず、軟性内視鏡を用いた内視鏡手術に用いられるような処置装置にも適用され得る。 Note that the shape of the treatment tool 200 shown here is an example, and other shapes may be used as long as they have the same function. For example, the shape of the treatment instrument body 220, the length of the shaft 216, the presence / absence of the operation knob 222, the shape of the grip portion 210, and the like can be changed as appropriate. Further, for example, the distal end portion of the treatment instrument 200 does not have a gripping portion, has a shape such as a trowel, and may be configured to be pressed against a treatment target. Further, the treatment tool 200 is not limited to treating the abdominal cavity, and may be, for example, a treatment for treating a joint cavity. Further, the technology according to the present embodiment is not limited to the treatment apparatus used in the rigid endoscope operation as shown in FIG. 1 but is also applied to the treatment apparatus used in the endoscopic operation using the flexible endoscope. obtain.
 処置具200は、ケーブル280を介して電源装置100に接続されている。電源装置100は、処置具200にエネルギーを供給する。このエネルギーは、例えば、前述のヒータ、電極及び超音波振動子等によって変換され、把持部210に把持された生体組織に付与される。ケーブル280と電源装置100とは、ケーブルコネクタ285によって接続されており、この接続は着脱自在となっている。すなわち、この手術システム1は、処置毎に使用する処置具200を交換することができるように構成されている。 The treatment instrument 200 is connected to the power supply apparatus 100 via the cable 280. The power supply device 100 supplies energy to the treatment tool 200. This energy is converted by, for example, the above-described heater, electrode, ultrasonic transducer, and the like, and is applied to the living tissue held by the holding unit 210. The cable 280 and the power supply apparatus 100 are connected by a cable connector 285, and this connection is detachable. That is, the surgical system 1 is configured so that the treatment tool 200 used for each treatment can be exchanged.
 電源装置100には、フットスイッチ290が接続されている。足で操作されるフットスイッチ290は、手で操作されるハンドスイッチやその他のスイッチに置き換えられてもよい。フットスイッチ290のペダルを術者が操作することにより、電源装置100から処置具200へのエネルギーの供給のオン/オフが切り換えられる。 A foot switch 290 is connected to the power supply device 100. The foot switch 290 operated with a foot may be replaced with a hand switch operated with a hand or other switches. When the operator operates the pedal of the foot switch 290, the supply of energy from the power supply device 100 to the treatment tool 200 is switched on / off.
 〈電源装置の構成〉
 電源装置100の構成例の概略を図2のブロック図に示す。図2に示すように、電源装置100は、制御回路110と、記憶装置112と、電源120と、可変直流電源130と、DC/AC変換部140と、波形生成回路170と、出力検出部180と、A/D変換器186と、入力装置192と、表示装置194と、スピーカ196とを備える。
<Configuration of power supply>
A schematic configuration example of the power supply apparatus 100 is shown in a block diagram of FIG. As shown in FIG. 2, the power supply device 100 includes a control circuit 110, a storage device 112, a power supply 120, a variable DC power supply 130, a DC / AC conversion unit 140, a waveform generation circuit 170, and an output detection unit 180. An A / D converter 186, an input device 192, a display device 194, and a speaker 196.
 制御回路110は、電源装置100の各部の動作を制御する。記憶装置112は、例えば、制御回路110の動作に必要なプログラム、各種パラメータ等を記憶している。制御回路110は、Central Processing Unit(CPU)、Application Specific Integrated Circuit(ASIC)、又はField Programmable Gate Array(FPGA)等の集積回路等を含む。制御回路110は、1つの集積回路等で構成されてもよいし、複数の集積回路等が組み合わされて構成されてもよい。これら集積回路の動作は、例えば記憶装置112や集積回路内の記録領域に記録されたプログラムに従って行われる。 The control circuit 110 controls the operation of each unit of the power supply device 100. The storage device 112 stores, for example, programs necessary for the operation of the control circuit 110, various parameters, and the like. The control circuit 110 includes an integrated circuit such as a central processing unit (CPU), an application specific integrated circuit (ASIC), or a field programmable gate array (FPGA). The control circuit 110 may be configured by one integrated circuit or the like, or may be configured by combining a plurality of integrated circuits. The operation of these integrated circuits is performed in accordance with, for example, a program recorded in the storage area 112 or a recording area in the integrated circuit.
 電源120は、例えば商用電源から電力を取得し定電圧を出力する直流電圧源としての電源である。電源120は、バッテリーであってもよい。バッテリーである電源120も、定電圧を出力する。 The power source 120 is, for example, a power source as a DC voltage source that acquires power from a commercial power source and outputs a constant voltage. The power source 120 may be a battery. The power source 120 that is a battery also outputs a constant voltage.
 可変直流電源130には、電源120から出力された定電圧が入力される。可変直流電源130は、入力された電圧を変圧して直流電圧を出力する。可変直流電源130の出力は、制御回路110により制御される。例えば処置具200の出力を変化させるとき、可変直流電源130の出力電圧が変化させられる。可変直流電源130の出力は、DC/AC変換部140に入力される。なお、電源120の電圧がそのままDC/AC変換部140に入力されてもよい場合には、可変直流電源130は、省略されてもよい。 The constant voltage output from the power source 120 is input to the variable DC power source 130. The variable DC power supply 130 transforms the input voltage and outputs a DC voltage. The output of the variable DC power supply 130 is controlled by the control circuit 110. For example, when the output of the treatment instrument 200 is changed, the output voltage of the variable DC power supply 130 is changed. The output of the variable DC power supply 130 is input to the DC / AC converter 140. If the voltage of the power supply 120 may be input to the DC / AC conversion unit 140 as it is, the variable DC power supply 130 may be omitted.
 波形生成回路170は、例えばパルスジェネレータである。波形生成回路170は、制御回路110の制御下で、例えば矩形波を出力する。 The waveform generation circuit 170 is, for example, a pulse generator. The waveform generation circuit 170 outputs, for example, a rectangular wave under the control of the control circuit 110.
 DC/AC変換部140は、可変直流電源130の直流の出力電圧と、波形生成回路170の例えば矩形波である出力信号とに基づいて、交流電圧を出力する。DC/AC変換部140の構成の一例についてさらに説明する。DC/AC変換部140は、スイッチ回路141と、変圧回路142と、マッチング回路143とを備える。 The DC / AC conversion unit 140 outputs an AC voltage based on the DC output voltage of the variable DC power supply 130 and the output signal that is, for example, a rectangular wave of the waveform generation circuit 170. An example of the configuration of the DC / AC conversion unit 140 will be further described. The DC / AC conversion unit 140 includes a switch circuit 141, a transformer circuit 142, and a matching circuit 143.
 変圧回路142は、変圧器152を有する。変圧器152の入力側には、可変直流電源130が接続されており、スイッチ回路141が直列に挿入されている。一方、変圧器152の出力側には、マッチング回路143が接続されている。 The transformer circuit 142 includes a transformer 152. A variable DC power supply 130 is connected to the input side of the transformer 152, and a switch circuit 141 is inserted in series. On the other hand, a matching circuit 143 is connected to the output side of the transformer 152.
 スイッチ回路141は、窒化ガリウム(GaN)系の電界効果トランジスタ(FET)、例えばGaN FET151を有する。GaN FET151のドレイン電極には変圧器152が接続されており、GaN FET151のゲート電極には波形生成回路170の出力端が接続されており、GaN FET151のソース電極は接地されている。波形生成回路170の出力が閾値以上であるとき、GaN FET151はオン状態となり、可変直流電源130の電圧が変圧器152に入力される。一方、波形生成回路170の出力が閾値未満であるとき、GaN FET151はオフ状態となり、可変直流電源130の電圧は変圧器152に入力されない。このように、変圧器152への入力は、波形生成回路170の出力によって制御される。例えば波形生成回路170の出力が矩形波であるとき、スイッチ回路141は当該矩形波の周期に応じてオンとオフとが切り換わり、変圧器152への入力は、この周期に応じてオンとオフとが切り換わる。その結果、変圧回路142からは、昇圧又は降圧された例えば矩形波が出力される。 The switch circuit 141 includes a gallium nitride (GaN) -based field effect transistor (FET), for example, a GaN FET 151. The transformer 152 is connected to the drain electrode of the GaN FET 151, the output terminal of the waveform generating circuit 170 is connected to the gate electrode of the GaN FET 151, and the source electrode of the GaN FET 151 is grounded. When the output of the waveform generation circuit 170 is equal to or greater than the threshold value, the GaN FET 151 is turned on, and the voltage of the variable DC power supply 130 is input to the transformer 152. On the other hand, when the output of the waveform generation circuit 170 is less than the threshold value, the GaN FET 151 is turned off, and the voltage of the variable DC power supply 130 is not input to the transformer 152. As described above, the input to the transformer 152 is controlled by the output of the waveform generation circuit 170. For example, when the output of the waveform generation circuit 170 is a rectangular wave, the switch circuit 141 is turned on and off according to the period of the rectangular wave, and the input to the transformer 152 is turned on and off according to the period. And switch. As a result, the transformer circuit 142 outputs, for example, a rectangular wave that has been boosted or stepped down.
 マッチング回路143には、適切に調節されたインダクタ153とキャパシタ154とが直列に接続されて設けられている。変圧器152の出力が、インダクタ153とキャパシタ154とが直列に接続されたマッチング回路143を通過することで、変圧回路142から出力された矩形波は、正弦波状の信号に変換される。以上のように、スイッチ回路141、変圧回路142及びマッチング回路143を含むDC/AC変換部140は、波形生成回路170の出力周波数に応じた周波数を有する交流電圧を出力する。 The matching circuit 143 is provided with an appropriately adjusted inductor 153 and capacitor 154 connected in series. The output of the transformer 152 passes through the matching circuit 143 in which the inductor 153 and the capacitor 154 are connected in series, so that the rectangular wave output from the transformer circuit 142 is converted into a sinusoidal signal. As described above, the DC / AC converter 140 including the switch circuit 141, the transformer circuit 142, and the matching circuit 143 outputs an AC voltage having a frequency corresponding to the output frequency of the waveform generation circuit 170.
 DC/AC変換部140から出力された電力は、出力検出部180を介して処置具200へと供給される。処置具200は、供給された電力を用いて生体組織を処置するように機能する。出力検出部180は、電流検出回路182と電圧検出回路184とを備える。電流検出回路182は、DC/AC変換部140から出力された電流値を検出する。電圧検出回路184は、DC/AC変換部140から出力された電圧値を検出する。制御回路110は、A/D変換器186を介して、電流検出回路182で検出された電流値及び電圧検出回路184で検出された電圧値を取得する。 The power output from the DC / AC conversion unit 140 is supplied to the treatment instrument 200 via the output detection unit 180. The treatment tool 200 functions to treat a living tissue using the supplied power. The output detection unit 180 includes a current detection circuit 182 and a voltage detection circuit 184. The current detection circuit 182 detects the current value output from the DC / AC conversion unit 140. The voltage detection circuit 184 detects the voltage value output from the DC / AC conversion unit 140. The control circuit 110 acquires the current value detected by the current detection circuit 182 and the voltage value detected by the voltage detection circuit 184 via the A / D converter 186.
 入力装置192は、例えばタッチパネル、キーボード、スイッチ等を含む。制御回路110は、入力装置192を介してユーザからの指示を取得する。表示装置194は、例えば液晶ディスプレイ等を含む。表示装置194は、制御回路110の制御下で、例えば電源装置100の状態等を表示する。スピーカ196は、制御回路110の制御下で、例えば警告音等を発する。 The input device 192 includes, for example, a touch panel, a keyboard, a switch, and the like. The control circuit 110 acquires an instruction from the user via the input device 192. The display device 194 includes, for example, a liquid crystal display. The display device 194 displays, for example, the state of the power supply device 100 under the control of the control circuit 110. The speaker 196 emits a warning sound or the like under the control of the control circuit 110, for example.
 なお、本実施形態では、手術システム1として、処置具200と電源装置100とがケーブル280で接続されている例を示した。しかしながらこれに限らず、例えば電源装置100の機能を全て処置具200に組み込んだワイヤレス型のシステムであってもよい。 In the present embodiment, an example in which the treatment tool 200 and the power supply device 100 are connected by the cable 280 is shown as the surgical system 1. However, the present invention is not limited to this. For example, a wireless system in which all functions of the power supply device 100 are incorporated in the treatment instrument 200 may be used.
 〈手術システムの動作〉
 本実施形態に係る手術システム1の動作について説明する。術者は、まず電源装置100の入力装置192を操作して、処置に係る出力目標値や処置時間等の手術システム1の出力条件を設定する。出力条件は、各パラメータの値が個別に設定されるようになっていてもよいし、術式に応じた設定値のセットが選択されるようになっていてもよい。
<Operation of the surgical system>
Operation | movement of the surgery system 1 which concerns on this embodiment is demonstrated. The surgeon first operates the input device 192 of the power supply device 100 to set the output conditions of the surgical system 1 such as the output target value and the treatment time related to the treatment. As the output condition, the value of each parameter may be set individually, or a set of setting values according to the technique may be selected.
 処置具200の把持部210及びシャフト216は、例えば、腹壁を通して腹腔内に挿入される。術者は、操作ノブ222を操作して把持部210を開閉させ、第1の把持部材212と第2の把持部材214とで処置対象である生体組織を把持する。 The grasping part 210 and the shaft 216 of the treatment instrument 200 are inserted into the abdominal cavity through the abdominal wall, for example. The operator operates the operation knob 222 to open and close the grasping portion 210, and grasps the living tissue that is the treatment target with the first grasping member 212 and the second grasping member 214.
 術者は、把持部210によって処置対象の生体組織を把持したら、フットスイッチ290を操作する。フットスイッチ290がオンに切り換えられると、電源装置100から、ケーブル280を介して処置具200に電力が供給される。処置具200は、この電力を利用して、処置対象である生体組織に熱、超音波振動、高周波電流等といったエネルギーを付与し、生体組織を処置する。 The surgeon operates the foot switch 290 after grasping the biological tissue to be treated by the grasping unit 210. When the foot switch 290 is switched on, power is supplied from the power supply device 100 to the treatment instrument 200 via the cable 280. The treatment tool 200 uses this electric power to apply energy such as heat, ultrasonic vibration, high-frequency current, etc., to the living tissue to be treated to treat the living tissue.
 このとき、電源装置100は、例えば次のように動作する。制御回路110は、可変直流電源130に直流電圧を出力させる。可変直流電源130は、電源120から入力された電力に基づいて、制御回路110から指示された電圧値を有する直流電圧を出力する。この電圧は、DC/AC変換部140のスイッチ回路141へと入力される。さらに、制御回路110は、波形生成回路170に、必要な周波数を有し、所定の電圧値を有する矩形波を出力させる。例えば、処置具200が生体組織に高周波電流を流す高周波処置具であるとき、出力周波数は例えば200kHz~1MHzに設定される。また、例えば処置具200が生体組織に熱エネルギーを与えるためにヒータを有しているとき、出力周波数は例えば10kHz~1MHzに設定される。また、例えば処置具200が生体組織を超音波振動で処置するために超音波振動子を有しているとき、出力周波数は、例えば10kHz~200kHzに設定される。このように、電源装置100が種々の処置具200に対応するためには、電源装置100は、10kHz以上1MHz以下の周波数の範囲で電圧を出力できることが好ましい。 At this time, the power supply apparatus 100 operates as follows, for example. The control circuit 110 causes the variable DC power supply 130 to output a DC voltage. The variable DC power supply 130 outputs a DC voltage having a voltage value instructed from the control circuit 110 based on the power input from the power supply 120. This voltage is input to the switch circuit 141 of the DC / AC converter 140. Further, the control circuit 110 causes the waveform generation circuit 170 to output a rectangular wave having a necessary frequency and a predetermined voltage value. For example, when the treatment instrument 200 is a high-frequency treatment instrument that causes a high-frequency current to flow through a living tissue, the output frequency is set to, for example, 200 kHz to 1 MHz. For example, when the treatment tool 200 has a heater for applying thermal energy to the living tissue, the output frequency is set to, for example, 10 kHz to 1 MHz. For example, when the treatment tool 200 has an ultrasonic transducer for treating a living tissue with ultrasonic vibration, the output frequency is set to, for example, 10 kHz to 200 kHz. Thus, in order for the power supply apparatus 100 to correspond to various treatment tools 200, it is preferable that the power supply apparatus 100 can output a voltage in a frequency range of 10 kHz to 1 MHz.
 変圧回路142への入力は、スイッチ回路141によって波形生成回路170の波形に応じてオンとオフとで切り換えられる。その結果、変圧回路142の出力電圧は、波形生成回路170の出力周波数に応じた矩形波となる。この矩形波の電圧は、入力である可変直流電源130の出力電圧に対して変圧された値となる。変圧回路142の出力は、マッチング回路143に入力される。マッチング回路143は、入力された矩形波を正弦波に変換し、出力する。 The input to the transformer circuit 142 is switched on and off by the switch circuit 141 in accordance with the waveform of the waveform generation circuit 170. As a result, the output voltage of the transformer circuit 142 becomes a rectangular wave corresponding to the output frequency of the waveform generation circuit 170. The rectangular wave voltage is a value transformed with respect to the output voltage of the variable DC power supply 130 as an input. The output of the transformer circuit 142 is input to the matching circuit 143. The matching circuit 143 converts the input rectangular wave into a sine wave and outputs it.
 このようにして、DC/AC変換部140からは、可変直流電源130の出力電圧に応じ、波形生成回路170の出力周波数に応じた正弦波が出力される。DC/AC変換部140の出力は、処置具200に供給される。このとき、制御回路110は、DC/AC変換部140の出力を、出力検出部180を介してモニタリングする。制御回路110は、DC/AC変換部140の出力に応じたフィードバック制御を行い、可変直流電源130及び波形生成回路170の出力を適宜に調整する。生体組織に所望のエネルギーが投与され、生体組織の処置が終了すると、処置具200への電力の供給は停止される。以上によって生体組織の処置が完了する。 In this way, the DC / AC converter 140 outputs a sine wave corresponding to the output frequency of the waveform generation circuit 170 in accordance with the output voltage of the variable DC power supply 130. The output of the DC / AC converter 140 is supplied to the treatment instrument 200. At this time, the control circuit 110 monitors the output of the DC / AC conversion unit 140 via the output detection unit 180. The control circuit 110 performs feedback control according to the output of the DC / AC converter 140, and appropriately adjusts the outputs of the variable DC power supply 130 and the waveform generation circuit 170. When desired energy is administered to the living tissue and the treatment of the living tissue is completed, the supply of electric power to the treatment tool 200 is stopped. The treatment of the living tissue is thus completed.
 〈電源装置の構成の利点〉
 本実施形態に係る電源装置100では、DC/AC変換部140のスイッチ回路141に、窒化ガリウム系の電界効果トランジスタが用いられている。窒化ガリウム系の電界効果トランジスタは、従来のシリコン(Si)を用いた電界効果トランジスタ(FET)、例えばMOSFET等と比較して、オン抵抗が小さく、ゲート容量が小さいという特徴を有する。オン抵抗が小さいため、例えばGaN FET151がオンになっている期間のGaN FET151における電力の損失であるコンダクションロスが例えばMOSFET等と比較して小さい。また、ゲート容量が小さいため、スイッチの切り換えが急峻となり、スイッチの切り換わり時の電力の損失であるスイッチングロスが例えばMOSFET等と比較して小さい。すなわち、本実施形態に係る電源装置100は、エネルギー効率がよい。さらに、コンダクションロス及びスイッチングロスが小さいため、発熱が小さく、放熱器が簡略化される等、電源装置100全体として小型化され得る。
<Advantages of power supply configuration>
In the power supply apparatus 100 according to the present embodiment, a gallium nitride-based field effect transistor is used for the switch circuit 141 of the DC / AC converter 140. Gallium nitride-based field effect transistors are characterized by a low on-resistance and a small gate capacitance compared to conventional field effect transistors (FETs) using silicon (Si), such as MOSFETs. Since the on-resistance is small, for example, a conduction loss, which is a power loss in the GaN FET 151 during a period in which the GaN FET 151 is on, is smaller than that of, for example, a MOSFET. In addition, since the gate capacitance is small, the switching of the switch becomes steep, and the switching loss, which is a loss of power when the switch is switched, is smaller than that of, for example, a MOSFET. That is, the power supply device 100 according to the present embodiment has high energy efficiency. Furthermore, since the conduction loss and the switching loss are small, the power supply device 100 as a whole can be miniaturized such that heat generation is small and the radiator is simplified.
 また、窒化ガリウム系の電界効果トランジスタは、従来のシリコン系の電界効果トランジスタと比較して小型化が可能であるという特徴がある。素子が小型化されるため、配線のインダクタンスが減少し、出力波形の歪みが減少するという効果が得られる。また、窒化ガリウム系の電界効果トランジスタでは、逆回復電荷が小さいという特徴がある。このため、窒化ガリウム系の電界効果トランジスタによれば、出力波形の歪みが減少するという効果が得られる。このように出力波形の歪みが小さいため、ノイズが低減するという効果が得られる。また、窒化ガリウム系の電界効果トランジスタは小型化されるため、動作が早く高周波化が容易であるという特徴がある。このため、インダクタ及びキャパシタの小型化も可能になる。 Further, the gallium nitride-based field effect transistor is characterized in that it can be downsized as compared with the conventional silicon-based field effect transistor. Since the element is miniaturized, it is possible to obtain an effect that the inductance of the wiring is reduced and the distortion of the output waveform is reduced. In addition, a gallium nitride-based field effect transistor has a feature of low reverse recovery charge. For this reason, according to the gallium nitride-based field effect transistor, an effect that the distortion of the output waveform is reduced can be obtained. Thus, since the distortion of the output waveform is small, an effect of reducing noise can be obtained. In addition, since the gallium nitride-based field effect transistor is miniaturized, it has a feature that its operation is fast and high frequency is easy. For this reason, the inductor and the capacitor can be downsized.
 なお、窒化ガリウム系の電界効果トランジスタは、ドレイン電圧の増加に伴ってオン抵抗が増加する電流コプラスの問題が生じ得る。このため、電界効果トランジスタに係るドレイン電圧は高くならないことが好ましい。そこで、本実施形態では、ドレイン電圧を抑制するために、可変直流電源130は降圧DC/DCコンバータとし、変圧回路142で昇圧することが好ましい。このようにすることで、スイッチ回路141に入力される電圧を小さくし、DC/AC変換部140の出力電圧は高くすることができる。その結果、上述の電流コプラスの問題は抑制される。以上により、DC/AC変換部140の出力及びスイッチング波形が安定し、その結果、ノイズも抑制され得る。 It should be noted that a gallium nitride-based field effect transistor may have a problem of current coplus in which on-resistance increases as the drain voltage increases. For this reason, it is preferable that the drain voltage concerning a field effect transistor does not become high. Therefore, in the present embodiment, in order to suppress the drain voltage, the variable DC power supply 130 is preferably a step-down DC / DC converter and is boosted by the transformer circuit 142. By doing so, the voltage input to the switch circuit 141 can be reduced and the output voltage of the DC / AC converter 140 can be increased. As a result, the above-described problem of current coplus is suppressed. As described above, the output and switching waveform of the DC / AC converter 140 are stabilized, and as a result, noise can be suppressed.
 装置の小型化については、例えばバッテリーを搭載した電源装置を、処置具200に搭載して実現されるようなワイヤレス型の手術システムにおいて、特に効果を奏する。 The downsizing of the apparatus is particularly effective in a wireless surgical system that is realized by, for example, mounting a power supply apparatus equipped with a battery on the treatment instrument 200.
 また、本実施形態の回路構成では、可変直流電源130の下流に変圧器152が設けられている。変圧器152によって回路が切り離され、処置具200には、電源120が直接接続されていないことになる。その結果、処置具200に過剰な電流が流れることが防止される。このことは、処置具200が生体組織に電流を流す高周波処置具である場合に特に効果を奏する。 In the circuit configuration of the present embodiment, a transformer 152 is provided downstream of the variable DC power supply 130. The circuit is disconnected by the transformer 152, and the power supply 120 is not directly connected to the treatment instrument 200. As a result, an excessive current is prevented from flowing through the treatment instrument 200. This is particularly effective when the treatment tool 200 is a high-frequency treatment tool that allows current to flow through a living tissue.
 また、本実施形態では、キャパシタ154が変圧回路142からの出力回路に直列に挿入されている。このため、本回路では直流電流が流れない。このことは、処置具200が生体組織に電流を流す高周波処置具である場合に特に効果を奏する。 In this embodiment, the capacitor 154 is inserted in series with the output circuit from the transformer circuit 142. For this reason, direct current does not flow in this circuit. This is particularly effective when the treatment tool 200 is a high-frequency treatment tool that allows current to flow through a living tissue.
 〈可変直流電源の構成例〉
 可変直流電源130は、種々の構成を取り得るが、上述のとおり特性に優れる窒化ガリウム系の電界効果トランジスタが用いられてもよい。例えば図3に示すように構成され得る。可変直流電源は、スイッチング素子として機能するGaN FET131と、インダクタ132と、キャパシタ133とを備える。GaN FET131は、そのドレイン電極に電源120が接続されており、ゲート電極に波形生成回路170が接続されており、ソース電極が接地されている。GaN FET131のドレイン電極には、インダクタ132の一端が接続され、インダクタ132の他端はDC/AC変換部140に接続されている。キャパシタ133の一端は、インダクタ132の前記他端に接続され、キャパシタ133の他端は接地されている。以上のような回路構成を有することで、GaN FET131によって、電源120から入力された電圧は、波形生成回路170の出力に応じた交流電圧に変換される。さらに、インダクタ132とキャパシタ133とによって、交流電圧は、直流電圧に変換される。このようにして、可変直流電源130は、全体としてDC/DC変換部として機能する。
<Configuration example of variable DC power supply>
Although the variable DC power supply 130 can take various configurations, a gallium nitride field effect transistor having excellent characteristics as described above may be used. For example, it may be configured as shown in FIG. The variable DC power supply includes a GaN FET 131 that functions as a switching element, an inductor 132, and a capacitor 133. The GaN FET 131 has a drain electrode connected to the power source 120, a gate electrode connected to the waveform generating circuit 170, and a source electrode grounded. One end of the inductor 132 is connected to the drain electrode of the GaN FET 131, and the other end of the inductor 132 is connected to the DC / AC converter 140. One end of the capacitor 133 is connected to the other end of the inductor 132, and the other end of the capacitor 133 is grounded. With the circuit configuration as described above, the voltage input from the power source 120 is converted into an AC voltage according to the output of the waveform generation circuit 170 by the GaN FET 131. Further, the AC voltage is converted into a DC voltage by the inductor 132 and the capacitor 133. In this way, the variable DC power supply 130 functions as a DC / DC converter as a whole.
 可変直流電源130にGaN FET131が用いられることで、上述と同様に、効率の改善、ノイズの低減、装置の小型化等の効果が得られる。 By using the GaN FET 131 for the variable DC power supply 130, effects such as improvement of efficiency, reduction of noise, and miniaturization of the device can be obtained as described above.
 また、可変直流電源130が降圧を行う場合、可変直流電源130のDC/DC変換部は、例えば次のような回路を含み得る。すなわち、例えば、図4に示すように、電界効果トランジスタ134とショットキーバリアダイオード135を用いた非同期整流型の回路が用いられ得る。また、例えば、図5に示すような、2つの電界効果トランジスタ136,137を用いた同期整流型の回路が用いられ得る。いずれの場合にも、電界効果トランジスタには、窒化ガリウム系の電界効果トランジスタが用いられ得る。 Further, when the variable DC power supply 130 performs step-down, the DC / DC conversion unit of the variable DC power supply 130 may include the following circuit, for example. That is, for example, as shown in FIG. 4, an asynchronous rectification type circuit using a field effect transistor 134 and a Schottky barrier diode 135 can be used. For example, a synchronous rectification type circuit using two field effect transistors 136 and 137 as shown in FIG. 5 may be used. In either case, a gallium nitride field effect transistor can be used as the field effect transistor.
 また、可変直流電源130が昇圧を行う場合、可変直流電源130のDC/DC変換部には、例えば図6に示すような昇圧回路が用いられてもよい。この場合も、電界効果トランジスタには、窒化ガリウム系の電界効果トランジスタが用いられ得る。 Further, when the variable DC power supply 130 performs boosting, for example, a booster circuit as shown in FIG. 6 may be used for the DC / DC converter of the variable DC power supply 130. Also in this case, a gallium nitride based field effect transistor can be used as the field effect transistor.
 〈DC/AC変換部の他の構成例〉
 DC/AC変換部140の構成も、適宜に変更され得る。いくつかの例を次に示す。
<Another configuration example of the DC / AC conversion unit>
The configuration of the DC / AC converter 140 can also be changed as appropriate. Here are some examples:
 (第1の例)
 例えば、図7に示すような回路が用いられてもよい。GaN FET151のドレイン電極には、インダクタ155を介して可変直流電源130の出力端が接続されており、GaN FET151のゲート電極には、波形生成回路170の出力端が接続されており、GaN FET151のソース電極は、接地されている。波形生成回路170の出力が閾値以上であるとき、GaN FET151のドレイン電極とソース電極との間で電流が流れ、GaN FET151のドレイン電極は接地電位となる。一方、波形生成回路170の出力が閾値未満であるとき、GaN FET151のドレイン電極とソース電極との間で電流が流れず、GaN FET151のドレイン電極は可変直流電源の出力電位となる。このように、GaN FET151のドレイン電極の電位は、波形生成回路170の出力によって制御される。例えば波形生成回路170の出力が矩形波であるとき、GaN FET151のドレイン電極の電位は、可変直流電源130の出力電圧に応じた振幅を有し、波形生成回路170の出力と同期して変化する。GaN FET151のドレイン電極と変圧器152との間にインダクタ156とキャパシタ157とが直列に接続されており、変圧器152とDC/AC変換部140の出力端との間にキャパシタ158が接続されている。このように構成されても、上述の実施形態と同様に、機能し得る。
(First example)
For example, a circuit as shown in FIG. 7 may be used. The output terminal of the variable DC power supply 130 is connected to the drain electrode of the GaN FET 151 via the inductor 155, and the output terminal of the waveform generating circuit 170 is connected to the gate electrode of the GaN FET 151. The source electrode is grounded. When the output of the waveform generation circuit 170 is equal to or greater than the threshold value, a current flows between the drain electrode and the source electrode of the GaN FET 151, and the drain electrode of the GaN FET 151 becomes the ground potential. On the other hand, when the output of the waveform generation circuit 170 is less than the threshold, no current flows between the drain electrode and the source electrode of the GaN FET 151, and the drain electrode of the GaN FET 151 becomes the output potential of the variable DC power supply. Thus, the potential of the drain electrode of the GaN FET 151 is controlled by the output of the waveform generation circuit 170. For example, when the output of the waveform generation circuit 170 is a rectangular wave, the potential of the drain electrode of the GaN FET 151 has an amplitude corresponding to the output voltage of the variable DC power supply 130 and changes in synchronization with the output of the waveform generation circuit 170. . An inductor 156 and a capacitor 157 are connected in series between the drain electrode of the GaN FET 151 and the transformer 152, and a capacitor 158 is connected between the transformer 152 and the output terminal of the DC / AC converter 140. Yes. Even if comprised in this way, it can function similarly to the above-mentioned embodiment.
 (第2の例)
 例えば、図8に示すように、スイッチ回路141は、カスコード接続されたFETを含んでもよい。すなわち、例えば、スイッチ回路141は、第1のFET161と第2のFET162とを含む。ここで、第1のFET161は例えばGaN FETであり、第2のFET162はMOSFETである。第1のFET161のドレイン電極に変圧回路142の変圧器152が接続され、第1のFET161のソース電極は第2のFET162のドレイン電極に接続され、第2のFET162のソース電極は接地されている。第1のFET161及び第2のFET162のゲート電極は、波形生成回路170の出力端に接続されている。
(Second example)
For example, as shown in FIG. 8, the switch circuit 141 may include a cascode-connected FET. That is, for example, the switch circuit 141 includes a first FET 161 and a second FET 162. Here, the first FET 161 is, for example, a GaN FET, and the second FET 162 is a MOSFET. The transformer 152 of the transformer circuit 142 is connected to the drain electrode of the first FET 161, the source electrode of the first FET 161 is connected to the drain electrode of the second FET 162, and the source electrode of the second FET 162 is grounded. . The gate electrodes of the first FET 161 and the second FET 162 are connected to the output terminal of the waveform generation circuit 170.
 GaN FETは、ゲート電圧が0であっても電流が流れるノーマリーオンの特性を有することがある。そこで、GaN FETである第1のFET161と直列に第2のFET162が接続されることで、MOSFETである第2のFET162が電流をオフにすることができる。すなわち、漏れ電流が抑制される。ここで、第1のFETとして小型で高耐圧なGaN FETが用いられることで、第2のFETとして安価な低耐圧のMOSFETが採用され得る。その結果、装置全体の価格も抑制され得る。 GaN FETs may have normally-on characteristics in which current flows even when the gate voltage is zero. Therefore, by connecting the second FET 162 in series with the first FET 161 that is a GaN FET, the second FET 162 that is a MOSFET can turn off the current. That is, the leakage current is suppressed. Here, by using a small and high withstand voltage GaN FET as the first FET, an inexpensive low withstand voltage MOSFET can be adopted as the second FET. As a result, the price of the entire apparatus can be suppressed.
 なお、低耐圧な第2のFETを保護するために、変形例として図9に示すように、ダイオード163によるクランプ保護がなされてもよい。 In addition, in order to protect the second FET having a low withstand voltage, as shown in FIG. 9 as a modification, clamp protection by a diode 163 may be performed.
 (第3の例)
 例えば、図10に示すように、スイッチ回路141は、並列に接続された第1のGaN FET165と第2のGaN FET166とを備えていてもよい。すなわち、第1のGaN FET165及び第2のGaN FET166のドレイン電極は、変圧回路142の変圧器152に接続されている。第1のGaN FET165及び第2のGaN FET166のソース電極は、接地されている。第1のGaN FET165及び第2のGaN FET166のゲート電極には、波形生成回路170の出力端が接続されている。
(Third example)
For example, as illustrated in FIG. 10, the switch circuit 141 may include a first GaN FET 165 and a second GaN FET 166 connected in parallel. That is, the drain electrodes of the first GaN FET 165 and the second GaN FET 166 are connected to the transformer 152 of the transformer circuit 142. The source electrodes of the first GaN FET 165 and the second GaN FET 166 are grounded. The output terminals of the waveform generation circuit 170 are connected to the gate electrodes of the first GaN FET 165 and the second GaN FET 166.
 GaN FETでは、印加される電圧に応じてオン抵抗が変化することがある。図10に示す例のようにGaN FETが並列に設けられていることで、オン抵抗の変化の影響が抑制され得る。 In the GaN FET, the on-resistance may change depending on the applied voltage. Since the GaN FETs are provided in parallel as in the example shown in FIG. 10, the influence of the change in on-resistance can be suppressed.
 (第4の例)
 GaN FETは、ゲート容量が小さいため、ノイズに敏感であり、発振しやすい。そこで、GaN FETのゲート電極への配線にフェライトビーズ等を挿入することで、ゲート電極に入るノイズを抑制する。すなわち、例えば図11に示すように、GaN FET151のゲート電極の手前に、インダクタ159を挿入する。これにより、GaN FET151に与えるノイズの影響が減少する。その結果、発振が抑制され、DC/AC変換部140の出力と波形が安定化する。
(Fourth example)
Since the GaN FET has a small gate capacitance, it is sensitive to noise and easily oscillates. Therefore, by inserting ferrite beads or the like into the wiring to the gate electrode of the GaN FET, noise entering the gate electrode is suppressed. That is, for example, as shown in FIG. 11, an inductor 159 is inserted before the gate electrode of the GaN FET 151. As a result, the influence of noise on the GaN FET 151 is reduced. As a result, oscillation is suppressed and the output and waveform of the DC / AC converter 140 are stabilized.
 (第5の例)
 スイッチ回路141には、例えば図12に示すようにハーフブリッジ回路が用いられてもよい。ハーフブリッジ回路に用いられる第1のFET1511及び第2のFET1512に特性がよいGaN FETが用いられれば、上述の効果と同様の効果が得られる。
(Fifth example)
As the switch circuit 141, for example, a half bridge circuit may be used as shown in FIG. If a GaN FET having good characteristics is used for the first FET 1511 and the second FET 1512 used in the half-bridge circuit, the same effect as described above can be obtained.
 (第6の例)
 スイッチ回路141には、例えば図13に示すようにハーフブリッジ回路と、フェーズシフト方式が用いられてもよい。ハーフブリッジ回路に用いられる第1のFET1521及び第2のFET1522に特性がよいGaN FETが用いられれば、上述の効果と同様の効果が得られる。
(Sixth example)
As the switch circuit 141, for example, a half bridge circuit and a phase shift method may be used as shown in FIG. If a GaN FET having good characteristics is used for the first FET 1521 and the second FET 1522 used in the half-bridge circuit, the same effect as described above can be obtained.
 (第7の例)
 スイッチ回路141には、例えば図14に示すようにフルブリッジ回路と、フェーズシフト方式が用いられてもよい。フルブリッジ回路に用いられる第1のFET1531、第2のFET1532、第3のFET1533及び第4のFET1534に特性がよいGaN FETが用いられれば、上述の効果と同様の効果が得られる。
(Seventh example)
For example, a full bridge circuit and a phase shift method may be used for the switch circuit 141 as shown in FIG. If a GaN FET having good characteristics is used for the first FET 1531, the second FET 1532, the third FET 1533, and the fourth FET 1534 used in the full bridge circuit, the same effect as described above can be obtained.
 (第8の例)
 スイッチ回路141には、例えば図15に示すようにフルブリッジD級アンプが用いられてもよい。この場合、マッチング回路143は、第1のインダクタ1541及び第1のキャパシタ1542を用いたローパスフィルタと、第2のインダクタ1543及び第2のキャパシタ1544を用いたローパスフィルタとを含む。フルブリッジD級アンプに用いられるSWで表記された第1のスイッチ素子1551、第2のスイッチ素子1552、第3のスイッチ素子1553及び第4のスイッチ素子1554に特性がよいGaN FETが用いられれば、上述の効果と同様の効果が得られる。
(Eighth example)
As the switch circuit 141, for example, a full bridge class D amplifier may be used as shown in FIG. In this case, the matching circuit 143 includes a low pass filter using the first inductor 1541 and the first capacitor 1542 and a low pass filter using the second inductor 1543 and the second capacitor 1544. If a GaN FET having good characteristics is used for the first switch element 1551, the second switch element 1552, the third switch element 1553, and the fourth switch element 1554 expressed by SW used in the full-bridge class D amplifier. The effect similar to the above-mentioned effect is acquired.
 (第9の例)
 スイッチ回路141には、例えば図16に示すようにフルブリッジD級アンプの並列接続が用いられてもよい。この場合、マッチング回路143は、第1のインダクタ1541及び第1のキャパシタ1542を用いたローパスフィルタと、第2のインダクタ1543及び第2のキャパシタ1544を用いたローパスフィルタとを含む。フルブリッジD級アンプに用いられる第1のスイッチ素子1561、第2のスイッチ素子1562、第3のスイッチ素子1563、第4のスイッチ素子1564、第5のスイッチ素子1565、第6のスイッチ素子1566、第7のスイッチ素子1567及び第8のスイッチ素子1568に特性がよいGaN FETが用いられれば、上述の効果と同様の効果が得られる。
(Ninth example)
For the switch circuit 141, for example, a parallel connection of full-bridge class D amplifiers may be used as shown in FIG. In this case, the matching circuit 143 includes a low pass filter using the first inductor 1541 and the first capacitor 1542 and a low pass filter using the second inductor 1543 and the second capacitor 1544. A first switch element 1561, a second switch element 1562, a third switch element 1563, a fourth switch element 1564, a fifth switch element 1565, a sixth switch element 1566, which are used in a full-bridge class D amplifier, If GaN FETs with good characteristics are used for the seventh switch element 1567 and the eighth switch element 1568, the same effects as described above can be obtained.
 以上、いくつかの回路構成例を示したが、本実施形態はこれらの回路構成に限定されない。上述の各回路構成の例の趣旨に沿っていれば、回路は適宜に変更され得る。 Although several circuit configuration examples have been described above, the present embodiment is not limited to these circuit configurations. The circuit can be changed as appropriate as long as it follows the purpose of the example of each circuit configuration described above.

Claims (9)

  1.  直流電圧を出力する直流電圧源と、
     直流電圧を交流電圧に変換するDC/AC変換部と
     を備え、
     前記DC/AC変換部は、窒化ガリウム系の電界効果トランジスタを備えるスイッチ回路と、変圧器と、前記スイッチ回路による出力波形を整えるキャパシタ及びインダクタとを含む、
     処置具に電力を供給するための電源装置。
    A DC voltage source that outputs a DC voltage;
    A DC / AC converter for converting a DC voltage into an AC voltage,
    The DC / AC converter includes a switch circuit including a gallium nitride-based field effect transistor, a transformer, and a capacitor and an inductor that adjust an output waveform of the switch circuit.
    A power supply device for supplying power to the treatment tool.
  2.  前記キャパシタは、前記処置具への出力回路に直列に挿入されている、請求項1に記載の電源装置。 The power supply device according to claim 1, wherein the capacitor is inserted in series with an output circuit to the treatment instrument.
  3.  前記DC/AC変換部の出力周波数は、10kHz以上1MHz以下で変化する、請求項1に記載の電源装置。 The power supply device according to claim 1, wherein an output frequency of the DC / AC conversion unit changes between 10 kHz and 1 MHz.
  4.  前記直流電圧源と前記DC/AC変換部との間に設けられ、前記直流電圧源の出力電圧を変圧して前記DC/AC変換部に出力するDC/DC変換部をさらに備え、
     前記DC/DC変換部は、窒化ガリウム系の電界効果トランジスタを含む、
     請求項1に記載の電源装置。
    A DC / DC converter provided between the DC voltage source and the DC / AC converter, and transforming an output voltage of the DC voltage source and outputting the transformed voltage to the DC / AC converter;
    The DC / DC converter includes a gallium nitride based field effect transistor,
    The power supply device according to claim 1.
  5.  前記DC/DC変換部は、前記出力電圧を降圧する、請求項4に記載の電源装置。 The power supply apparatus according to claim 4, wherein the DC / DC conversion unit steps down the output voltage.
  6.  前記交流電圧の周波数に対応する矩形波を出力する波形生成回路をさらに備え、
     前記電界効果トランジスタのゲート電極に前記矩形波が入力される、
     請求項1に記載の電源装置。
    A waveform generation circuit that outputs a rectangular wave corresponding to the frequency of the AC voltage;
    The rectangular wave is input to the gate electrode of the field effect transistor.
    The power supply device according to claim 1.
  7.  前記電界効果トランジスタの前記ゲート電極にインダクタが接続されている、請求項6に記載の電源装置。 The power supply device according to claim 6, wherein an inductor is connected to the gate electrode of the field effect transistor.
  8.  前記DC/AC変換部は、前記窒化ガリウム系の電界効果トランジスタにカスコード接続されたシリコン系の電界効果トランジスタをさらに含む、請求項1に記載の電源装置。 The power supply apparatus according to claim 1, wherein the DC / AC converter further includes a silicon-based field effect transistor cascode-connected to the gallium nitride-based field effect transistor.
  9.  請求項1に記載の電源装置と、
     前記電源装置から電力を供給される前記処置具と
     を備える手術システム。
    A power supply device according to claim 1;
    A surgical system comprising: the treatment tool supplied with electric power from the power supply device.
PCT/JP2016/058149 2016-03-15 2016-03-15 Power supply device and surgical system WO2017158723A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/058149 WO2017158723A1 (en) 2016-03-15 2016-03-15 Power supply device and surgical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/058149 WO2017158723A1 (en) 2016-03-15 2016-03-15 Power supply device and surgical system

Publications (1)

Publication Number Publication Date
WO2017158723A1 true WO2017158723A1 (en) 2017-09-21

Family

ID=59851145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058149 WO2017158723A1 (en) 2016-03-15 2016-03-15 Power supply device and surgical system

Country Status (1)

Country Link
WO (1) WO2017158723A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4290768A1 (en) * 2022-06-08 2023-12-13 Harman International Industries, Incorporated Audio amplifier

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61125324A (en) * 1984-11-22 1986-06-13 オリンパス光学工業株式会社 Temperature measuring apparatus for endoscope using liquid crystal
JPH06327257A (en) * 1993-05-07 1994-11-25 Matsushita Electric Works Ltd Power device
JP2007325467A (en) * 2006-06-05 2007-12-13 National Institute Of Advanced Industrial & Technology Integrated design method, system and program of power converter
WO2013136415A1 (en) * 2012-03-12 2013-09-19 三菱電機株式会社 Power conversion apparatus
JP2015185618A (en) * 2014-03-20 2015-10-22 株式会社東芝 semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61125324A (en) * 1984-11-22 1986-06-13 オリンパス光学工業株式会社 Temperature measuring apparatus for endoscope using liquid crystal
JPH06327257A (en) * 1993-05-07 1994-11-25 Matsushita Electric Works Ltd Power device
JP2007325467A (en) * 2006-06-05 2007-12-13 National Institute Of Advanced Industrial & Technology Integrated design method, system and program of power converter
WO2013136415A1 (en) * 2012-03-12 2013-09-19 三菱電機株式会社 Power conversion apparatus
JP2015185618A (en) * 2014-03-20 2015-10-22 株式会社東芝 semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4290768A1 (en) * 2022-06-08 2023-12-13 Harman International Industries, Incorporated Audio amplifier

Similar Documents

Publication Publication Date Title
US20210186554A1 (en) Medical device
US8187262B2 (en) Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
US10842563B2 (en) System and method for power control of electrosurgical resonant inverters
CA2582171C (en) System and method for generating radio frequency energy
US7744593B2 (en) High-frequency power supply device and electrosurgical device
JP6517211B2 (en) Medical device
JP2023071701A (en) System and method for driving ultrasonic handpiece with linear amplifier
US8685015B2 (en) System and method for multi-pole phase-shifted radio frequency application
US8292883B2 (en) Electrosurgical apparatus and method of controlling electrosurgical apparatus
CA2849543A1 (en) Gain compensation for a full bridge inverter
CN107536640B (en) Device and method for welding biological tissue by high-frequency current
CN111655179B (en) Generator
WO2017158723A1 (en) Power supply device and surgical system
JP2008194520A (en) Interference wave apparatus and sine wave generating circuit used therefor
US10206734B2 (en) High-frequency generator for electric surgical instrument
KR20180078107A (en) Apparatus and method for frequency controlling of ultrasonic surgery unit
JP2011025060A (en) Ultrasonic treatment device
CN109938803A (en) The method of ultrasonic surgical apparatus and determining resonance frequency based on active power tuning

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894346

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16894346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP