WO2017158716A1 - Throttle mechanism and air-conditioning system - Google Patents

Throttle mechanism and air-conditioning system Download PDF

Info

Publication number
WO2017158716A1
WO2017158716A1 PCT/JP2016/058116 JP2016058116W WO2017158716A1 WO 2017158716 A1 WO2017158716 A1 WO 2017158716A1 JP 2016058116 W JP2016058116 W JP 2016058116W WO 2017158716 A1 WO2017158716 A1 WO 2017158716A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
refrigerant
capillary
expansion valve
electronic expansion
Prior art date
Application number
PCT/JP2016/058116
Other languages
French (fr)
Japanese (ja)
Inventor
創一朗 越
琢也 向山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018505102A priority Critical patent/JPWO2017158716A1/en
Priority to CN201690000324.8U priority patent/CN206861938U/en
Priority to PCT/JP2016/058116 priority patent/WO2017158716A1/en
Publication of WO2017158716A1 publication Critical patent/WO2017158716A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator

Definitions

  • the present invention relates to a throttle mechanism that suppresses sound generated when a refrigerant flows, and an air conditioner including the throttle mechanism.
  • FIG. 6 is a refrigerant circuit diagram showing a conventional air conditioner.
  • the air conditioner 200 is configured by connecting a compressor 201, an outdoor heat exchanger 202, a throttle mechanism 203, and an indoor heat exchanger 204 in series with a refrigerant pipe. Further, in the conventional air conditioner 200 shown in FIG. 6, an electronic expansion valve 205 and a capillary tube 206 (capillary tube) are connected in series along the refrigerant flow direction to constitute a throttle mechanism 203. That is, the air conditioner 200 adjusts the pressure reduction effect of the capillary tube 206 by adjusting the opening degree of the electronic expansion valve 205.
  • the electronic expansion valve 205 and the capillary tube 206 are connected in series to form the throttle mechanism 203, so that compared with the case where the throttle mechanism 203 is configured by only one of the electronic expansion valve 205 and the capillary tube 206, the refrigerant Although the sound caused by the flow can be suppressed, a loud sound may still be generated. Such a loud sound propagates to the indoor heat exchanger through the refrigerant pipe, giving the user an unpleasant feeling.
  • the throttle amount of the electronic expansion valve is adjusted so that the decompression effect of the electronic expansion valve and the capillary is equally divided.
  • the thing is proposed (for example, refer patent document 1).
  • the opening degree of the electronic expansion valve the flow rate of the refrigerant at the capillary outlet is reduced, and the propagation of the sound caused by the refrigerant flow to the indoor heat exchanger is aimed at.
  • the present invention has been made in order to solve the above-described problem, and a throttle mechanism that can suppress the sound generated when the refrigerant flows from propagating to the indoor heat exchanger more than before, and the throttle mechanism. It aims at obtaining the equipped air conditioner.
  • a throttling mechanism includes an electronic expansion valve, a capillary tube provided downstream of the electronic expansion valve in a refrigerant flow direction, and a refrigerant pipe that connects the electronic expansion valve and the capillary tube,
  • the refrigerant pipe includes a first pipe connected to the electronic expansion valve, and a second pipe provided between the first pipe and the capillary and having an inner diameter larger than the inner diameter of the first pipe. Is.
  • the air conditioner according to the present invention includes the throttle mechanism according to the present invention and an indoor heat exchanger connected to the capillary of the throttle mechanism.
  • the sound generated when the refrigerant flows through the electronic expansion valve enters the second pipe through the first pipe in the second pipe having a larger inner diameter than the first pipe.
  • the sound propagation energy is dispersed and the sound pressure level is lowered.
  • a rapid contraction portion is formed in which the inner diameter is rapidly reduced from the second pipe to the capillary. For this reason, in this rapid contraction part, the sound wave which can penetrate
  • FIG. 1 is a refrigerant circuit diagram illustrating an air conditioner according to Embodiment 1 of the present invention.
  • FIG. 2 is an enlarged view showing the vicinity of the capillary of the throttle mechanism of the air conditioner.
  • the white arrow shown in FIG.1 and FIG.2 has shown the flow direction of the refrigerant
  • the air conditioner 100 is configured by connecting a compressor 1, an outdoor heat exchanger 2, a throttle mechanism 3, and an indoor heat exchanger 4 in series with a refrigerant pipe.
  • the compressor 1 compresses a low-temperature and low-pressure gas refrigerant into a high-temperature and high-pressure gas refrigerant.
  • the outdoor heat exchanger 2 is provided, for example, outdoors, and discharges heat from the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 to the outside air and condenses it into a high-pressure liquid refrigerant.
  • the throttle mechanism 3 decompresses and expands the high-pressure liquid refrigerant flowing out of the outdoor heat exchanger 2 to form a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • the indoor heat exchanger 4 is provided in an air-conditioning target space such as a room, for example, and causes the low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed out of the throttle mechanism 3 to absorb the heat of the air in the air-conditioning target space. To evaporate.
  • the throttling mechanism 3 includes an electronic expansion valve 5, a capillary tube 20 (capillary tube) provided downstream of the electronic expansion valve 5 in the refrigerant flow direction, and the electronic expansion valve 5.
  • coolant piping which connects the said capillary 20 in series is provided.
  • the capillary 20 is more specifically connected to the indoor heat exchanger 4 through the refrigerant pipe 7 at the outlet 22 of the capillary 20.
  • a throttle mechanism configured by connecting an electronic expansion valve and a capillary tube in series with a refrigerant pipe has been proposed. Specifically, as shown in FIG. 6, in such a conventional throttle mechanism 203, an electronic expansion valve 205 and a capillary tube 206 are connected in series by a refrigerant pipe 207.
  • the second pipe 10 is provided between the first pipe 6 and the capillary 20 corresponding to the conventional refrigerant pipe 207. That is, in the first embodiment, the refrigerant pipe connecting the electronic expansion valve 5 and the capillary 20 is between the first pipe 6 connected to the electronic expansion valve 5 and the first pipe 6 and the capillary 20.
  • the 2nd piping 10 provided in this is provided.
  • the inner diameter of the second pipe 10 is larger than the inner diameter of the first pipe 6.
  • the capillary 20 is the portion having the smallest inner diameter in the flow path through which the refrigerant flows, the inner diameter of the second pipe 10 is larger than the inner diameter of the capillary 20.
  • the inner diameter of the flow path through which the refrigerant flows from the downstream end 11 of the second pipe 10 to the inlet end of the capillary 20 (in the first embodiment, the end on the side where the inlet 21 is formed). Constitutes an abrupt contraction part that rapidly shrinks. This rapid contraction portion can arbitrarily set the reduction ratio of the inner diameter of the flow path through which the refrigerant flows.
  • the downstream end 11 of the second pipe 10 and the capillary tube 20 are connected by a third pipe 23 that is shorter than the first pipe 6.
  • the configuration is not limited thereto, and the downstream end 11 of the second pipe 10 and the capillary tube 20 may be directly connected.
  • the rapid contraction portion formed from the downstream end portion 11 of the second pipe 10 to the capillary tube 20 is a portion that attenuates sound propagation energy.
  • the degree of reduction of the inner diameter of the flow path through which the refrigerant flows can be increased, that is, the degree of arbitrary setting of the reduction ratio of the inner diameter increases. This is preferable because the attenuation effect of sound propagation energy can be improved.
  • the sound pressure level of the sound entering the second pipe 10 such as the sound generated when the refrigerant flows through the electronic expansion valve 5 is expressed as follows. Can be reduced. Specifically, the sound entering the second pipe 10 enters from the first pipe 6 side (upper side in FIG. 2), similarly to the refrigerant. When sound enters the second pipe 10 through the first pipe 6, the sound propagation energy is dispersed in the second pipe 10 having an inner diameter larger than that of the first pipe 6, and the sound pressure level is lowered.
  • invade into the capillary tube 20 is limited, and the sound wave which could not penetrate
  • the sound propagation energy at the outlet 22 of the capillary 20 is reduced, and as a result, the sound pressure level transmitted from the indoor heat exchanger 4 to the user can also be lowered.
  • FIG. 3 is a diagram showing a silencing effect of the aperture mechanism according to Embodiment 1 of the present invention.
  • the horizontal axis of FIG. 3 indicates the frequency of sound entering the second pipe 10 of the throttle mechanism 3.
  • the continuous line shown in FIG. 3 has shown the silencing effect of the aperture mechanism 3 which concerns on this Embodiment 1.
  • FIG. 3 shows the silencing effect of the comparative example.
  • the second pipe 10 is removed from the throttle mechanism 3 according to the first embodiment, and the first pipe 6 and the capillary 20 are connected.
  • the comparative example shows the silencing effect of the conventional diaphragm mechanism 203 shown in FIG.
  • the inner diameter of the flow path through which the refrigerant flows is reduced at the connection point between the first pipe 6 and the capillary 20. For this reason, as shown in FIG. 3, there is a slight silencing effect.
  • the second pipe 10 having an inner diameter larger than that of the first pipe 6 is provided on the upstream side of the capillary tube 20 to increase the reduction ratio of the inner diameter of the flow path through which the refrigerant flows, thereby increasing 350 In almost all regions above [Hz], an effect of reducing the sound pressure level is obtained as compared with the comparative example.
  • the air conditioner 100 including the throttle mechanism 3 according to the first embodiment it is possible to suppress the propagation of sound having various characteristics to the indoor heat exchanger 4.
  • FIG. FIG. 4 is an enlarged view showing the vicinity of the capillary tube of the throttle mechanism of the air conditioner according to Embodiment 2 of the present invention.
  • the air conditioner 100 according to Embodiment 2 will be described with reference to FIG.
  • items that are not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.
  • the difference between the air conditioner 100 according to the second embodiment and the first embodiment is the configuration of the aperture mechanism 3.
  • the refrigerant inlet 21 to the capillary 20 is disposed in the internal space of the second pipe 10.
  • the refrigerant inlet 21 to the capillary 20 is connected to the inside of the second pipe 10. Arranged in space.
  • the refrigerant inlet 21 to the capillary 20 may be disposed in the internal space of the second pipe 10 by inserting the end of the capillary 20 on the second pipe 10 side into the second pipe 10.
  • the throttle mechanism 3 configured in this way, as in the first embodiment, when sound enters the second pipe 10 through the first pipe 6, the second pipe having a larger inner diameter than the first pipe 6.
  • the propagation energy of the sound is dispersed within 10 and the sound pressure level is lowered.
  • the rapid contraction part comprised from the downstream edge part 11 of the 2nd piping 10 to the capillary tube 20
  • invade into the capillary tube 20 is limited, and the sound wave which could not penetrate
  • the propagation energy is attenuated.
  • the sound propagation energy at the outlet 22 of the capillary 20 is reduced, and as a result, the sound pressure level transmitted from the indoor heat exchanger 4 to the user can also be lowered.
  • the refrigerant inlet 21 to the capillary tube 20 is disposed in the internal space of the second pipe 10, so that it is near the downstream end 11 of the second pipe 10. It is possible to suppress the energy of the sound bounced back and entering the entrance 21. That is, it is possible to further suppress the sound entering from the inlet 21 from being transmitted to the indoor heat exchanger 4 side through the capillary 20.
  • the reduction rate of the inner diameter of the flow path through which the refrigerant flows can be further reduced.
  • an inclined portion is formed at the downstream end portion 11 of the second pipe 10 so that the inner diameter is gradually narrowed, and the inlet 21 of the capillary tube 20 is connected to the downstream end portion 11. It was.
  • the inner diameter of the flow path through which the refrigerant flows can be reduced without sandwiching the inclined portion. For this reason, the effect of attenuating the sound propagation energy by the abrupt contraction portion in which the inner diameter of the flow path through which the refrigerant flows is further increased.
  • FIG. 5 is a diagram showing the silencing effect of the aperture mechanism according to Embodiment 2 of the present invention.
  • the horizontal axis of FIG. 5 indicates the frequency of the sound entering the second pipe 10 of the throttle mechanism 3.
  • the dashed-dotted line shown in FIG. 5 has shown the silencing effect of the aperture mechanism 3 which concerns on this Embodiment 2.
  • FIG. The silencing effect of the throttling mechanism 3 according to the second embodiment is that the refrigerant inlet 21 to the capillary 20 is arranged at a position of the second pipe 10 that is 1 ⁇ 2 of the refrigerant flow direction.
  • the silencing effect of the diaphragm mechanism 3 shown in the first embodiment is also indicated by a solid line.
  • the diaphragm mechanism 3 according to the second embodiment can obtain the effect of reducing the sound pressure level in the same manner as the diaphragm mechanism 3 described in the first embodiment.
  • the diaphragm mechanism 3 according to the second embodiment is more effective in silencing the sound having a higher frequency than the diaphragm mechanism 3 shown in the first embodiment.
  • the silencing effect can be further improved as compared with the first embodiment, and the sound with various characteristics can be obtained from the indoor heat exchanger 4. Propagation up to can be further suppressed. Further, the diaphragm mechanism 3 according to the second embodiment also has an advantage that the effect can be obtained by a small shape change (that is, a small cost fluctuation) of the component.
  • the frequency band of the sound with a large silencing effect is determined by the distance from the inlet of the second pipe 10 to the inlet 21 of the refrigerant to the capillary 20.
  • the throttling mechanism 3 according to the second embodiment determines the distance from the inlet of the second pipe 10 to the refrigerant inlet 21 from the inlet of the second pipe 10 depending on the insertion length of the third pipe 23 or the capillary 20 into the second pipe 10. Can be set. For this reason, the diaphragm mechanism 3 according to the second embodiment can easily change the frequency band of a sound with a large silencing effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

The throttle mechanism according to the present invention is provided with: an electronic expansion valve; a capillary tube that is disposed on the downstream side of the electronic expansion valve in the direction of refrigerant flow; and refrigerant piping that connects between the electronic expansion valve and the capillary tube, wherein the refrigerant piping is provided with a first pipe connected to the electronic expansion valve, and is also provided with a second pipe that is disposed between the first pipe and the capillary tube and has an inner diameter larger than that of the first pipe.

Description

絞り機構及び空気調和機Throttle mechanism and air conditioner
 本発明は、冷媒が流れる際に発生する音の抑制を図った絞り機構、及び、該絞り機構を備えた空気調和機に関するものである。 The present invention relates to a throttle mechanism that suppresses sound generated when a refrigerant flows, and an air conditioner including the throttle mechanism.
 図6は、従来の空気調和機を示す冷媒回路図である。空気調和機200は、圧縮機201、室外側熱交換器202、絞り機構203及び室内側熱交換器204が冷媒配管で直列に接続されて構成されている。また、図6に示す従来の空気調和機200は、冷媒の流れ方向に沿って電子膨張弁205及び毛細管206(キャピラリーチューブ)を直列に接続し、絞り機構203を構成している。つまり、空気調和機200は、電子膨張弁205の開度を調節することにより、毛細管206の減圧効果を調節している。 FIG. 6 is a refrigerant circuit diagram showing a conventional air conditioner. The air conditioner 200 is configured by connecting a compressor 201, an outdoor heat exchanger 202, a throttle mechanism 203, and an indoor heat exchanger 204 in series with a refrigerant pipe. Further, in the conventional air conditioner 200 shown in FIG. 6, an electronic expansion valve 205 and a capillary tube 206 (capillary tube) are connected in series along the refrigerant flow direction to constitute a throttle mechanism 203. That is, the air conditioner 200 adjusts the pressure reduction effect of the capillary tube 206 by adjusting the opening degree of the electronic expansion valve 205.
 空気調和機の絞り機構では、冷媒を減圧する際、冷媒の流れに起因する音が発生することがしばしばある。上述のように電子膨張弁205及び毛細管206を直列接続して絞り機構203を構成することにより、電子膨張弁205及び毛細管206のうちの一方のみで絞り機構203を構成する場合に比べ、冷媒の流れに起因する音を抑制することができるが、依然として大きな音が発生する場合がある。その様な大きな音は、冷媒配管を通じて室内側熱交換器へ伝搬し、使用者に不快感を与える。 In the throttle mechanism of an air conditioner, when the pressure of the refrigerant is reduced, a sound due to the flow of the refrigerant is often generated. As described above, the electronic expansion valve 205 and the capillary tube 206 are connected in series to form the throttle mechanism 203, so that compared with the case where the throttle mechanism 203 is configured by only one of the electronic expansion valve 205 and the capillary tube 206, the refrigerant Although the sound caused by the flow can be suppressed, a loud sound may still be generated. Such a loud sound propagates to the indoor heat exchanger through the refrigerant pipe, giving the user an unpleasant feeling.
 そこで、電子膨張弁及び毛細管を直列接続して絞り機構を構成した従来の空気調和機には、電子膨張弁の絞り量を調節し、電子膨張弁と毛細管の減圧効果を等分するようにしたものが提案されている(例えば特許文献1参照)。このように電子膨張弁の開度を調節することにより、毛細管出口の冷媒の流速を低減し、冷媒の流れに起因する音が室内側熱交換器に伝搬することの抑制を図っている。 Therefore, in the conventional air conditioner in which the electronic expansion valve and the capillary tube are connected in series to form the throttle mechanism, the throttle amount of the electronic expansion valve is adjusted so that the decompression effect of the electronic expansion valve and the capillary is equally divided. The thing is proposed (for example, refer patent document 1). Thus, by adjusting the opening degree of the electronic expansion valve, the flow rate of the refrigerant at the capillary outlet is reduced, and the propagation of the sound caused by the refrigerant flow to the indoor heat exchanger is aimed at.
特開平8-219591号公報Japanese Patent Laid-Open No. 8-219591
 電子膨張弁及び毛細管を直列接続して絞り機構を構成した従来の空気調和機においては、使用環境温度及び圧縮機回転数の変化等によって、電子膨張弁の開度が変化する。このため、特許文献1のように、電子膨張弁と毛細管の減圧効果を等分するように電子膨張弁の開度を設定することは、実際には極めて困難である。また、絞り機構において冷媒が流れる際に発生する音の特性(周波数、音圧レベル等)も電子膨張弁の開度に伴って変化するため、全ての音の発生を抑制することは困難である。したがって、従来の空気調和機は、依然として、絞り機構において冷媒が流れる際に発生する音が室内側熱交換器へ伝搬し、使用者に不快感を与えてしまうという課題があった。 In a conventional air conditioner in which an electronic expansion valve and a capillary tube are connected in series to form a throttling mechanism, the opening degree of the electronic expansion valve changes due to changes in the operating environment temperature and the compressor rotational speed. For this reason, as in Patent Document 1, it is actually very difficult to set the opening of the electronic expansion valve so that the decompression effect of the electronic expansion valve and the capillary is equally divided. In addition, since the characteristics (frequency, sound pressure level, etc.) of sound generated when the refrigerant flows in the throttle mechanism also change with the opening of the electronic expansion valve, it is difficult to suppress the generation of all sounds. . Therefore, the conventional air conditioner still has a problem that the sound generated when the refrigerant flows in the throttle mechanism propagates to the indoor heat exchanger, causing discomfort to the user.
 本発明は、上記の課題を解決するためになされたものであり、冷媒が流れる際に発生する音が室内側熱交換器へ伝搬することを従来よりも抑制できる絞り機構、及び該絞り機構を備えた空気調和機を得ることを目的とする。 The present invention has been made in order to solve the above-described problem, and a throttle mechanism that can suppress the sound generated when the refrigerant flows from propagating to the indoor heat exchanger more than before, and the throttle mechanism. It aims at obtaining the equipped air conditioner.
 本発明に係る絞り機構は、電子膨張弁と、該電子膨張弁の冷媒の流れ方向の下流側に設けられた毛細管と、前記電子膨張弁と前記毛細管とを接続する冷媒配管とを備え、前記冷媒配管は、前記電子膨張弁と接続された第1配管と、該第1配管と前記毛細管との間に設けられ、内径が前記第1配管の内径よりも大きい第2配管と、を備えたものである。 A throttling mechanism according to the present invention includes an electronic expansion valve, a capillary tube provided downstream of the electronic expansion valve in a refrigerant flow direction, and a refrigerant pipe that connects the electronic expansion valve and the capillary tube, The refrigerant pipe includes a first pipe connected to the electronic expansion valve, and a second pipe provided between the first pipe and the capillary and having an inner diameter larger than the inner diameter of the first pipe. Is.
 また、本発明に係る空気調和機は、本発明に係る前記絞り機構と、前記絞り機構の前記毛細管と接続された室内側熱交換器と、を備えたものである。 The air conditioner according to the present invention includes the throttle mechanism according to the present invention and an indoor heat exchanger connected to the capillary of the throttle mechanism.
 本発明に係る絞り機構においては、電子膨張弁で冷媒が流れる際に発生した音は、第1配管を介して第2配管に進入した際、第1配管よりも内径が大きい第2配管内で当該音の伝搬エネルギーが分散し、音圧レベルが低下する。また、本発明に係る絞り機構においては、第2配管から毛細管にかけて内径が急激に縮小する急縮部を構成する。このため、この急縮部において、毛細管に侵入できる音波が限定され、侵入できなかった音波は第2配管内に留まって打ち消しあうことにより、伝搬エネルギーが減衰する。したがって、本発明に係る絞り機構を空気調和機に採用することにより、電子膨張弁にて発生する多様な特性の音が冷媒配管を通じて室内側熱交換器まで伝搬することを抑制できる。 In the throttling mechanism according to the present invention, the sound generated when the refrigerant flows through the electronic expansion valve enters the second pipe through the first pipe in the second pipe having a larger inner diameter than the first pipe. The sound propagation energy is dispersed and the sound pressure level is lowered. Further, in the throttle mechanism according to the present invention, a rapid contraction portion is formed in which the inner diameter is rapidly reduced from the second pipe to the capillary. For this reason, in this rapid contraction part, the sound wave which can penetrate | invade into a capillary tube is limited, and the propagation energy attenuate | damps by the sound wave which could not penetrate | invade staying in the 2nd piping and canceling. Therefore, by adopting the throttle mechanism according to the present invention in the air conditioner, it is possible to suppress the propagation of sound having various characteristics generated by the electronic expansion valve to the indoor heat exchanger through the refrigerant pipe.
本発明の実施の形態1に係る空気調和機を示す冷媒回路図である。It is a refrigerant circuit figure which shows the air conditioner which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和機の絞り機構の毛細管近傍を示す拡大図である。It is an enlarged view which shows the capillary vicinity of the aperture mechanism of the air conditioner which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る絞り機構の消音効果を示す図である。It is a figure which shows the silencing effect of the aperture mechanism which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る空気調和機の絞り機構の毛細管近傍を示す拡大図である。It is an enlarged view which shows the capillary vicinity of the aperture mechanism of the air conditioner which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る絞り機構の消音効果を示す図である。It is a figure which shows the silencing effect of the aperture mechanism which concerns on Embodiment 2 of this invention. 従来の空気調和機を示す冷媒回路図である。It is a refrigerant circuit diagram which shows the conventional air conditioner.
実施の形態1.
 図1は、本発明の実施の形態1に係る空気調和機を示す冷媒回路図である。また、図2は、この空気調和機の絞り機構の毛細管近傍を示す拡大図である。なお、図1及び図2に示す白抜き矢印は、冷媒の流れ方向を示している。
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram illustrating an air conditioner according to Embodiment 1 of the present invention. FIG. 2 is an enlarged view showing the vicinity of the capillary of the throttle mechanism of the air conditioner. In addition, the white arrow shown in FIG.1 and FIG.2 has shown the flow direction of the refrigerant | coolant.
 本実施の形態1に係る空気調和機100は、圧縮機1、室外側熱交換器2、絞り機構3及び室内側熱交換器4が冷媒配管で直列に接続されて構成されている。圧縮機1は、低温低圧のガス冷媒を高温高圧のガス冷媒に圧縮するものである。室外側熱交換器2は、例えば屋外に設けられ、圧縮機1から吐出された高温高圧のガス冷媒から外気に熱を放出させ、高圧の液冷媒に凝縮するものである。絞り機構3は、室外側熱交換器2から流出した高圧の液冷媒を減圧して膨張させ、低温低圧の気液二相冷媒にするものである。室内側熱交換器4は、例えば部屋等の空調対象空間に設けられ、絞り機構3から流出した低温低圧の気液二相冷媒に空調対象空間の空気の熱を吸収させ、低温低圧のガス冷媒に蒸発させるものである。 The air conditioner 100 according to Embodiment 1 is configured by connecting a compressor 1, an outdoor heat exchanger 2, a throttle mechanism 3, and an indoor heat exchanger 4 in series with a refrigerant pipe. The compressor 1 compresses a low-temperature and low-pressure gas refrigerant into a high-temperature and high-pressure gas refrigerant. The outdoor heat exchanger 2 is provided, for example, outdoors, and discharges heat from the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 to the outside air and condenses it into a high-pressure liquid refrigerant. The throttle mechanism 3 decompresses and expands the high-pressure liquid refrigerant flowing out of the outdoor heat exchanger 2 to form a low-temperature and low-pressure gas-liquid two-phase refrigerant. The indoor heat exchanger 4 is provided in an air-conditioning target space such as a room, for example, and causes the low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed out of the throttle mechanism 3 to absorb the heat of the air in the air-conditioning target space. To evaporate.
 また、本実施の形態1に係る絞り機構3は、電子膨張弁5と、該電子膨張弁5の冷媒の流れ方向の下流側に設けられた毛細管20(キャピラリーチューブ)と、電子膨張弁5と前記毛細管20とを直列に接続する冷媒配管とを備えている。また、毛細管20は、より詳しくは毛細管20の出口22は、冷媒配管7で室内側熱交換器4と接続されている。ここで、電子膨張弁と毛細管とを冷媒配管で直列接続して構成された絞り機構は、従来より提案されている。詳しくは、図6に示すように、このような従来の絞り機構203は、電子膨張弁205と毛細管206とが冷媒配管207で直列に接続されている。 The throttling mechanism 3 according to the first embodiment includes an electronic expansion valve 5, a capillary tube 20 (capillary tube) provided downstream of the electronic expansion valve 5 in the refrigerant flow direction, and the electronic expansion valve 5. The refrigerant | coolant piping which connects the said capillary 20 in series is provided. The capillary 20 is more specifically connected to the indoor heat exchanger 4 through the refrigerant pipe 7 at the outlet 22 of the capillary 20. Here, a throttle mechanism configured by connecting an electronic expansion valve and a capillary tube in series with a refrigerant pipe has been proposed. Specifically, as shown in FIG. 6, in such a conventional throttle mechanism 203, an electronic expansion valve 205 and a capillary tube 206 are connected in series by a refrigerant pipe 207.
 一方、本実施の形態1に係る絞り機構3においては、従来の冷媒配管207に相当する第1配管6と毛細管20との間に、第2配管10を備えている。つまり、本実施の形態1においては、電子膨張弁5と毛細管20とを接続する冷媒配管は、電子膨張弁5に接続された第1配管6と、該第1配管6と毛細管20との間に設けられた第2配管10とを備えている。この第2配管10の内径は、第1配管6の内径よりも大きくなっている。換言すると、毛細管20は冷媒が流れる流路の中で最も内径が小さい箇所となるため、第2配管10の内径は毛細管20の内径よりも大きいものとなる。このため、第2配管10の下流側端部11から毛細管20の入口側端部(本実施の形態1では、入口21が形成されている側の端部)にかけて、冷媒が流れる流路の内径が急激に縮小する急縮部を構成する。この急縮部は、冷媒が流れる流路の内径の縮小率を任意に設定することが可能である。 On the other hand, in the throttle mechanism 3 according to the first embodiment, the second pipe 10 is provided between the first pipe 6 and the capillary 20 corresponding to the conventional refrigerant pipe 207. That is, in the first embodiment, the refrigerant pipe connecting the electronic expansion valve 5 and the capillary 20 is between the first pipe 6 connected to the electronic expansion valve 5 and the first pipe 6 and the capillary 20. The 2nd piping 10 provided in this is provided. The inner diameter of the second pipe 10 is larger than the inner diameter of the first pipe 6. In other words, since the capillary 20 is the portion having the smallest inner diameter in the flow path through which the refrigerant flows, the inner diameter of the second pipe 10 is larger than the inner diameter of the capillary 20. For this reason, the inner diameter of the flow path through which the refrigerant flows from the downstream end 11 of the second pipe 10 to the inlet end of the capillary 20 (in the first embodiment, the end on the side where the inlet 21 is formed). Constitutes an abrupt contraction part that rapidly shrinks. This rapid contraction portion can arbitrarily set the reduction ratio of the inner diameter of the flow path through which the refrigerant flows.
 なお、本実施の形態1では、第1配管6よりも短い第3配管23によって、第2配管10の下流側端部11と毛細管20とを接続している。しかしながら、当該構成に限らず、第2配管10の下流側端部11と毛細管20とを直接接続してもよい。後述のように、第2配管10の下流側端部11から毛細管20にかけて構成される急縮部は、音の伝搬エネルギーを減衰させる箇所となる。第2配管10の下流側端部11と毛細管20とを直接接続した方が、冷媒が流れる流路の内径の縮小度合いを大きくできるため、つまり内径の縮小率の設定の任意度が大きくなるため、音の伝搬エネルギーの減衰効果を向上でき好ましい。 In the first embodiment, the downstream end 11 of the second pipe 10 and the capillary tube 20 are connected by a third pipe 23 that is shorter than the first pipe 6. However, the configuration is not limited thereto, and the downstream end 11 of the second pipe 10 and the capillary tube 20 may be directly connected. As will be described later, the rapid contraction portion formed from the downstream end portion 11 of the second pipe 10 to the capillary tube 20 is a portion that attenuates sound propagation energy. When the downstream end 11 of the second pipe 10 and the capillary tube 20 are directly connected, the degree of reduction of the inner diameter of the flow path through which the refrigerant flows can be increased, that is, the degree of arbitrary setting of the reduction ratio of the inner diameter increases. This is preferable because the attenuation effect of sound propagation energy can be improved.
 上述のように構成された本実施の形態1に係る絞り機構3においては、電子膨張弁5を冷媒が流れる際に発生した音等、第2配管10に進入した音の音圧レベルを以下のように低減できる。
 詳しくは、第2配管10に進入する音は、冷媒と同様に、第1配管6側(図2の上側)から進入する。第1配管6を介して第2配管10に音が進入した際、第1配管6よりも内径が大きい第2配管10内で当該音の伝搬エネルギーが分散し、音圧レベルが低下する。また、第2配管10の下流側端部11から毛細管20にかけて構成される急縮部において、毛細管20に侵入できる音波が限定され、侵入できなかった音波は第2配管10内に留まって打ち消しあうことにより、伝搬エネルギーが減衰する。上記の作用により、毛細管20の出口22での音の伝搬エネルギーは小さくなり、結果として室内側熱交換器4から使用者に伝わる音圧レベルも下げることができる。
In the throttle mechanism 3 according to the first embodiment configured as described above, the sound pressure level of the sound entering the second pipe 10 such as the sound generated when the refrigerant flows through the electronic expansion valve 5 is expressed as follows. Can be reduced.
Specifically, the sound entering the second pipe 10 enters from the first pipe 6 side (upper side in FIG. 2), similarly to the refrigerant. When sound enters the second pipe 10 through the first pipe 6, the sound propagation energy is dispersed in the second pipe 10 having an inner diameter larger than that of the first pipe 6, and the sound pressure level is lowered. Moreover, in the rapid contraction part comprised from the downstream edge part 11 of the 2nd piping 10 to the capillary tube 20, the sound wave which can penetrate | invade into the capillary tube 20 is limited, and the sound wave which could not penetrate | invade remains in the 2nd piping 10, and cancels out. This attenuates the propagation energy. By the above action, the sound propagation energy at the outlet 22 of the capillary 20 is reduced, and as a result, the sound pressure level transmitted from the indoor heat exchanger 4 to the user can also be lowered.
 図3は、本発明の実施の形態1に係る絞り機構の消音効果を示す図である。ここで、図3の横軸は、絞り機構3の第2配管10に進入する音の周波数を示している。また、図3に示す実線が、本実施の形態1に係る絞り機構3の消音効果を示している。なお、図3に示す破線は、比較例の消音効果を示すものである。この比較例は、本実施の形態1に係る絞り機構3から第2配管10を取り外し、第1配管6と毛細管20とを接続したものである。換言すると、比較例は、図6に示した従来の絞り機構203の消音効果を示しているともいえる。 FIG. 3 is a diagram showing a silencing effect of the aperture mechanism according to Embodiment 1 of the present invention. Here, the horizontal axis of FIG. 3 indicates the frequency of sound entering the second pipe 10 of the throttle mechanism 3. Moreover, the continuous line shown in FIG. 3 has shown the silencing effect of the aperture mechanism 3 which concerns on this Embodiment 1. FIG. In addition, the broken line shown in FIG. 3 shows the silencing effect of the comparative example. In this comparative example, the second pipe 10 is removed from the throttle mechanism 3 according to the first embodiment, and the first pipe 6 and the capillary 20 are connected. In other words, it can be said that the comparative example shows the silencing effect of the conventional diaphragm mechanism 203 shown in FIG.
 比較例においても、第1配管6と毛細管20との接続箇所において、冷媒が流れる流路の内径が縮小する。このため、図3に示すように、わずかながら消音効果がある。一方、本実施の形態1のように、第1配管6よりも内径が大きな第2配管10を毛細管20の上流側に設け、冷媒が流れる流路の内径の縮小率を大きくすることにより、350[Hz]以上のほぼ全ての領域において、比較例よりも音圧レベルを低減させる効果が得られる。 Also in the comparative example, the inner diameter of the flow path through which the refrigerant flows is reduced at the connection point between the first pipe 6 and the capillary 20. For this reason, as shown in FIG. 3, there is a slight silencing effect. On the other hand, as in the first embodiment, the second pipe 10 having an inner diameter larger than that of the first pipe 6 is provided on the upstream side of the capillary tube 20 to increase the reduction ratio of the inner diameter of the flow path through which the refrigerant flows, thereby increasing 350 In almost all regions above [Hz], an effect of reducing the sound pressure level is obtained as compared with the comparative example.
 以上、本実施の形態1に係る絞り機構3を備えた空気調和機100においては、多様な特性の音が室内側熱交換器4まで伝搬することを抑制できる。 As described above, in the air conditioner 100 including the throttle mechanism 3 according to the first embodiment, it is possible to suppress the propagation of sound having various characteristics to the indoor heat exchanger 4.
実施の形態2.
 図4は、本発明の実施の形態2に係る空気調和機の絞り機構の毛細管近傍を示す拡大図である。以下、図4を用いて、本実施の形態2に係る空気調和機100について説明する。なお、本実施の形態2において、特に記述しない項目については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 2. FIG.
FIG. 4 is an enlarged view showing the vicinity of the capillary tube of the throttle mechanism of the air conditioner according to Embodiment 2 of the present invention. Hereinafter, the air conditioner 100 according to Embodiment 2 will be described with reference to FIG. In the second embodiment, items that are not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.
 本実施の形態2に係る空気調和機100が実施の形態1と異なる点は、絞り機構3の構成である。詳しくは、本実施の形態2に係る絞り機構3においては、毛細管20への冷媒の入口21が、第2配管10の内部空間に配置されている。なお、本実施の形態2では、第3配管23における第2配管10側の端部を第2配管10の内部に挿入することにより、毛細管20への冷媒の入口21を第2配管10の内部空間に配置している。毛細管20における第2配管10側の端部を第2配管10の内部に挿入することにより、毛細管20への冷媒の入口21を第2配管10の内部空間に配置しても勿論よい。 The difference between the air conditioner 100 according to the second embodiment and the first embodiment is the configuration of the aperture mechanism 3. Specifically, in the throttle mechanism 3 according to the second embodiment, the refrigerant inlet 21 to the capillary 20 is disposed in the internal space of the second pipe 10. In the second embodiment, by inserting the end of the third pipe 23 on the second pipe 10 side into the second pipe 10, the refrigerant inlet 21 to the capillary 20 is connected to the inside of the second pipe 10. Arranged in space. Of course, the refrigerant inlet 21 to the capillary 20 may be disposed in the internal space of the second pipe 10 by inserting the end of the capillary 20 on the second pipe 10 side into the second pipe 10.
 このように構成された絞り機構3においても、実施の形態1と同様に、第1配管6を介して第2配管10に音が進入した際、第1配管6よりも内径が大きい第2配管10内で当該音の伝搬エネルギーが分散し、音圧レベルが低下する。また、第2配管10の下流側端部11から毛細管20にかけて構成される急縮部において、毛細管20に侵入できる音波が限定され、侵入できなかった音波は第2配管10内に留まって打ち消しあうことにより、伝搬エネルギーが減衰する。上記の作用により、毛細管20の出口22での音の伝搬エネルギーは小さくなり、結果として室内側熱交換器4から使用者に伝わる音圧レベルも下げることができる。 Also in the throttle mechanism 3 configured in this way, as in the first embodiment, when sound enters the second pipe 10 through the first pipe 6, the second pipe having a larger inner diameter than the first pipe 6. The propagation energy of the sound is dispersed within 10 and the sound pressure level is lowered. Moreover, in the rapid contraction part comprised from the downstream edge part 11 of the 2nd piping 10 to the capillary tube 20, the sound wave which can penetrate | invade into the capillary tube 20 is limited, and the sound wave which could not penetrate | invade remains in the 2nd piping 10, and cancels out. As a result, the propagation energy is attenuated. By the above action, the sound propagation energy at the outlet 22 of the capillary 20 is reduced, and as a result, the sound pressure level transmitted from the indoor heat exchanger 4 to the user can also be lowered.
 さらに、本実施の形態2に係る絞り機構3においては、毛細管20への冷媒の入口21が第2配管10の内部空間に配置されているので、第2配管10の下流側端部11近傍にぶつかり跳ね返った音のエネルギーが入口21に侵入することを抑制できる。つまり、入口21から侵入する音が毛細管20を通って室内側熱交換器4側へ伝わることをより抑制できる。 Furthermore, in the throttling mechanism 3 according to the second embodiment, the refrigerant inlet 21 to the capillary tube 20 is disposed in the internal space of the second pipe 10, so that it is near the downstream end 11 of the second pipe 10. It is possible to suppress the energy of the sound bounced back and entering the entrance 21. That is, it is possible to further suppress the sound entering from the inlet 21 from being transmitted to the indoor heat exchanger 4 side through the capillary 20.
 また、毛細管20への冷媒の入口21を第2配管10の内部空間に配置することによって、冷媒が流れる流路の内径の縮小率をさらに小さくすることができる。詳しくは、実施形態1では、緩やかに内径が狭くなっていくように第2配管10の下流側端部11に傾斜部を形成し、該下流側端部11に毛細管20の入口21を接続していた。一方、本実施形態2では、上記の傾斜部を挟むことなく、冷媒が流れる流路の内径を縮小することができる。このため、冷媒が流れる流路の内径が縮小する急縮部による音の伝搬エネルギーを減衰させる効果は、より大きくなる。 Further, by arranging the refrigerant inlet 21 to the capillary 20 in the internal space of the second pipe 10, the reduction rate of the inner diameter of the flow path through which the refrigerant flows can be further reduced. Specifically, in the first embodiment, an inclined portion is formed at the downstream end portion 11 of the second pipe 10 so that the inner diameter is gradually narrowed, and the inlet 21 of the capillary tube 20 is connected to the downstream end portion 11. It was. On the other hand, in Embodiment 2, the inner diameter of the flow path through which the refrigerant flows can be reduced without sandwiching the inclined portion. For this reason, the effect of attenuating the sound propagation energy by the abrupt contraction portion in which the inner diameter of the flow path through which the refrigerant flows is further increased.
 図5は、本発明の実施の形態2に係る絞り機構の消音効果を示す図である。ここで、図5の横軸は、絞り機構3の第2配管10に進入する音の周波数を示している。また、図5に示す一点鎖線が、本実施の形態2に係る絞り機構3の消音効果を示している。この本実施の形態2に係る絞り機構3の消音効果は、第2配管10における冷媒流れ方向の1/2の長さの位置に、毛細管20への冷媒の入口21を配置したものである。なお、図5には、実施の形態1で示した絞り機構3の消音効果も実線で示している。 FIG. 5 is a diagram showing the silencing effect of the aperture mechanism according to Embodiment 2 of the present invention. Here, the horizontal axis of FIG. 5 indicates the frequency of the sound entering the second pipe 10 of the throttle mechanism 3. Moreover, the dashed-dotted line shown in FIG. 5 has shown the silencing effect of the aperture mechanism 3 which concerns on this Embodiment 2. FIG. The silencing effect of the throttling mechanism 3 according to the second embodiment is that the refrigerant inlet 21 to the capillary 20 is arranged at a position of the second pipe 10 that is ½ of the refrigerant flow direction. In FIG. 5, the silencing effect of the diaphragm mechanism 3 shown in the first embodiment is also indicated by a solid line.
 図6に示すように、本実施の形態2に係る絞り機構3は、実施の形態1で示した絞り機構3と同様に音圧レベルを低減させる効果が得られることがわかる。特に、本実施の形態2に係る絞り機構3は、実施の形態1で示した絞り機構3に比べ、周波数が高い音に対しての消音効果がより向上している。 As shown in FIG. 6, it can be seen that the diaphragm mechanism 3 according to the second embodiment can obtain the effect of reducing the sound pressure level in the same manner as the diaphragm mechanism 3 described in the first embodiment. In particular, the diaphragm mechanism 3 according to the second embodiment is more effective in silencing the sound having a higher frequency than the diaphragm mechanism 3 shown in the first embodiment.
 以上、本実施の形態2に係る絞り機構3を備えた空気調和機100においては、実施の形態1よりもさらに消音効果を向上させることができ、多様な特性の音が室内側熱交換器4まで伝搬することをより抑制できる。また、本実施の形態2に係る絞り機構3は、部品の小さな形状変更(つまり小さなコスト変動)で当該効果が得られるという利点もある。 As described above, in the air conditioner 100 provided with the throttle mechanism 3 according to the second embodiment, the silencing effect can be further improved as compared with the first embodiment, and the sound with various characteristics can be obtained from the indoor heat exchanger 4. Propagation up to can be further suppressed. Further, the diaphragm mechanism 3 according to the second embodiment also has an advantage that the effect can be obtained by a small shape change (that is, a small cost fluctuation) of the component.
 ここで、第2配管10の入口から毛細管20への冷媒の入口21までの距離によって、消音効果の大きな音の周波数帯が決まる。本実施の形態2に係る絞り機構3は、第3配管23又は毛細管20の第2配管10への挿入長さによって、第2配管10の入口から毛細管20への冷媒の入口21までの距離を設定することができる。このため、本実施の形態2に係る絞り機構3は、消音効果の大きな音の周波数帯を容易に変更することもできる。 Here, the frequency band of the sound with a large silencing effect is determined by the distance from the inlet of the second pipe 10 to the inlet 21 of the refrigerant to the capillary 20. The throttling mechanism 3 according to the second embodiment determines the distance from the inlet of the second pipe 10 to the refrigerant inlet 21 from the inlet of the second pipe 10 depending on the insertion length of the third pipe 23 or the capillary 20 into the second pipe 10. Can be set. For this reason, the diaphragm mechanism 3 according to the second embodiment can easily change the frequency band of a sound with a large silencing effect.
 なお、第1配管6の端部を第2配管10の内部に挿入することにより、第2配管10へ進入する音の入口位置を変更することも可能である。このため、第1配管6の端部を第2配管10の内部に挿入することによっても、消音効果の大きな音の周波数帯を容易に変更することができる。この際、第3配管23又は毛細管20の端部を第2配管10内に挿入していても、勿論よい。 In addition, it is also possible to change the inlet position of the sound entering the second pipe 10 by inserting the end of the first pipe 6 into the second pipe 10. For this reason, by inserting the end of the first pipe 6 into the second pipe 10, it is possible to easily change the frequency band of the sound having a great silencing effect. At this time, of course, the end of the third pipe 23 or the capillary 20 may be inserted into the second pipe 10.
 1 圧縮機、2 室外側熱交換器、3 絞り機構、4 室内側熱交換器、5 電子膨張弁、6 第1配管、7 冷媒配管、10 第2配管、11 下流側端部、20 毛細管、21 入口、22 出口、23 第3配管、100 空気調和機、200 空気調和機(従来)、201 圧縮機(従来)、202 室外側熱交換器(従来)、203 絞り機構(従来)、204 室内側熱交換器(従来)、205 電子膨張弁(従来)、206 毛細管(従来)、207 冷媒配管(従来)。 1 compressor, 2 outdoor heat exchanger, 3 throttle mechanism, 4 indoor heat exchanger, 5 electronic expansion valve, 6 1st piping, 7 refrigerant piping, 10 2nd piping, 11 downstream end, 20 capillary tube, 21 inlet, 22 outlet, 23 3rd piping, 100 air conditioner, 200 air conditioner (conventional), 201 compressor (conventional), 202 outdoor heat exchanger (conventional), 203 throttle mechanism (conventional), 204 chambers Inner heat exchanger (conventional), 205 electronic expansion valve (conventional), 206 capillary tube (conventional), 207 refrigerant piping (conventional).

Claims (6)

  1.  電子膨張弁と、該電子膨張弁の冷媒の流れ方向の下流側に設けられた毛細管と、前記電子膨張弁と前記毛細管とを接続する冷媒配管とを備え、
     前記冷媒配管は、
     前記電子膨張弁と接続された第1配管と、
     該第1配管と前記毛細管との間に設けられ、内径が前記第1配管の内径よりも大きい第2配管と、
     を備えたことを特徴とする絞り機構。
    An electronic expansion valve, a capillary tube provided downstream of the electronic expansion valve in the flow direction of the refrigerant, and a refrigerant pipe connecting the electronic expansion valve and the capillary tube,
    The refrigerant pipe is
    A first pipe connected to the electronic expansion valve;
    A second pipe provided between the first pipe and the capillary, the inner diameter of which is larger than the inner diameter of the first pipe;
    A diaphragm mechanism characterized by comprising:
  2.  前記毛細管への冷媒の入口が、前記第2配管の内部空間に配置されていることを特徴とする請求項1に記載の絞り機構。 The throttle mechanism according to claim 1, wherein an inlet of the refrigerant to the capillary is disposed in an internal space of the second pipe.
  3.  前記第2配管と前記毛細管とを接続する第3配管を備え、
     前記第3配管における前記第2配管側の端部が、前記第2配管の内部に挿入されていることを特徴とする請求項2に記載の絞り機構。
    A third pipe connecting the second pipe and the capillary;
    The throttle mechanism according to claim 2, wherein an end of the third pipe on the second pipe side is inserted into the second pipe.
  4.  前記毛細管の端部が、前記第2配管の内部に挿入されていることを特徴とする請求項2に記載の絞り機構。 The throttle mechanism according to claim 2, wherein an end of the capillary tube is inserted into the second pipe.
  5.  前記第1配管の端部が、前記第2配管の内部に挿入されていることを特徴とする請求項1~請求項4のいずれか一項に記載の絞り機構。 The throttle mechanism according to any one of claims 1 to 4, wherein an end of the first pipe is inserted into the second pipe.
  6.  請求項1~請求項5のいずれか一項に記載の絞り機構と、
     前記絞り機構の前記毛細管と接続された室内側熱交換器と、
     を備えたことを特徴とする空気調和機。
    A diaphragm mechanism according to any one of claims 1 to 5,
    An indoor heat exchanger connected to the capillary of the throttle mechanism;
    An air conditioner characterized by comprising:
PCT/JP2016/058116 2016-03-15 2016-03-15 Throttle mechanism and air-conditioning system WO2017158716A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018505102A JPWO2017158716A1 (en) 2016-03-15 2016-03-15 Throttle mechanism and air conditioner
CN201690000324.8U CN206861938U (en) 2016-03-15 2016-03-15 Throttle mechanism and air conditioner
PCT/JP2016/058116 WO2017158716A1 (en) 2016-03-15 2016-03-15 Throttle mechanism and air-conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/058116 WO2017158716A1 (en) 2016-03-15 2016-03-15 Throttle mechanism and air-conditioning system

Publications (1)

Publication Number Publication Date
WO2017158716A1 true WO2017158716A1 (en) 2017-09-21

Family

ID=59852190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058116 WO2017158716A1 (en) 2016-03-15 2016-03-15 Throttle mechanism and air-conditioning system

Country Status (3)

Country Link
JP (1) JPWO2017158716A1 (en)
CN (1) CN206861938U (en)
WO (1) WO2017158716A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107917557A (en) * 2017-10-26 2018-04-17 海信科龙电器股份有限公司 A kind of restriction sleeve and air conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116171U (en) * 1984-01-12 1985-08-06 株式会社東芝 refrigeration cycle
JPH08159511A (en) * 1994-12-09 1996-06-21 Toshiba Corp Indoor unit for air conditioner
JPH09133434A (en) * 1995-11-09 1997-05-20 Matsushita Electric Ind Co Ltd Pulse type electronic expansion valve refrigerant circuit
CN101852520A (en) * 2009-03-30 2010-10-06 浙江春晖智能控制股份有限公司 Thermostatic expansion valve with damping structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116171U (en) * 1984-01-12 1985-08-06 株式会社東芝 refrigeration cycle
JPH08159511A (en) * 1994-12-09 1996-06-21 Toshiba Corp Indoor unit for air conditioner
JPH09133434A (en) * 1995-11-09 1997-05-20 Matsushita Electric Ind Co Ltd Pulse type electronic expansion valve refrigerant circuit
CN101852520A (en) * 2009-03-30 2010-10-06 浙江春晖智能控制股份有限公司 Thermostatic expansion valve with damping structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107917557A (en) * 2017-10-26 2018-04-17 海信科龙电器股份有限公司 A kind of restriction sleeve and air conditioner

Also Published As

Publication number Publication date
JPWO2017158716A1 (en) 2018-09-27
CN206861938U (en) 2018-01-09

Similar Documents

Publication Publication Date Title
JP4823288B2 (en) Silencer for electronic equipment
KR101030440B1 (en) Absorption and Expansion Type Duct Silencer for Air Conditioning Occuring Noise Reduction Owing to Absorption and Expansion of Sound Wave
WO2016208372A1 (en) Construction machine
JP6095628B2 (en) Silencer for air conditioner and air conditioner equipped with the silencer
WO2017158716A1 (en) Throttle mechanism and air-conditioning system
JP5535098B2 (en) Refrigeration cycle equipment
US10738744B2 (en) Vacuum actuated multi-frequency quarter-wave resonator for an internal combustion engine
CN109386505B (en) Silencer for refrigerating device and refrigerating device
US11041657B2 (en) Hot-water supply apparatus
US11536501B2 (en) Oil separator with integrated muffler
CN210220039U (en) Amortization formula connecting pipe and air conditioner
JPWO2019082300A1 (en) Refrigeration cycle equipment unit, refrigeration cycle equipment and electrical equipment
JP2020159305A (en) Silencer
JPH06194006A (en) Refrigerator
JP2014177931A (en) Exhaust device
JP6799974B2 (en) Refrigeration cycle equipment
WO2016056077A1 (en) Expansion valve, and refrigeration cycle device using expansion valve
JP2020106131A (en) Pulsation damping device and air conditioning device comprising the same
JPH08159616A (en) Cooling cycle
JP2020106130A (en) Pulsation damping device and air conditioning device comprising the same
JP2017122559A (en) Corner vane and silencer using corner vane
WO2018198321A1 (en) Refrigeration cycle device, and electric apparatus provided with refrigeration cycle device
WO2019207717A1 (en) Air conditioner
JP2015165097A (en) Exhaust system of engine
JP2019056555A (en) Refrigeration cycle device and electric device including the refrigeration cycle device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018505102

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894340

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16894340

Country of ref document: EP

Kind code of ref document: A1