WO2017158654A1 - Electrode unit manufacturing method, and electrolyzed water generating device manufacturing method - Google Patents

Electrode unit manufacturing method, and electrolyzed water generating device manufacturing method Download PDF

Info

Publication number
WO2017158654A1
WO2017158654A1 PCT/JP2016/001608 JP2016001608W WO2017158654A1 WO 2017158654 A1 WO2017158654 A1 WO 2017158654A1 JP 2016001608 W JP2016001608 W JP 2016001608W WO 2017158654 A1 WO2017158654 A1 WO 2017158654A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode unit
manufacturing
water
porous
electrode
Prior art date
Application number
PCT/JP2016/001608
Other languages
French (fr)
Japanese (ja)
Inventor
内藤 勝之
直美 信田
英男 太田
横田 昌広
二階堂 勝
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to CN201680001047.7A priority Critical patent/CN109072462B/en
Priority to PCT/JP2016/001608 priority patent/WO2017158654A1/en
Priority to JP2018505564A priority patent/JP6746681B2/en
Publication of WO2017158654A1 publication Critical patent/WO2017158654A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms

Definitions

  • the present invention relates to an electrode unit manufacturing method and an electrolyzed water generating device manufacturing method.
  • hypochlorous acid water is used for disinfection and sterilization.
  • Hypochlorous acid water is safe for the human body and approved as a food additive.
  • a two-chamber or three-chamber electrolyzed water generating device is provided between a pair of electrodes.
  • a partition is provided.
  • the partition wall is composed of, for example, an ion exchange membrane or a porous membrane having a property of selectively passing chloride ions, sodium ions, and the like.
  • the present invention has been made under the above circumstances, and an object thereof is to shorten the rise time of the apparatus.
  • an electrode unit manufacturing method is used in an electrolyzed water generating device that generates electrolyzed water by electrolyzing an electrolytic solution, and includes an electrode and a porous film.
  • a method for producing a unit comprising the step of immersing the porous membrane in a liquid having a property of being mixed with water and having a surface tension lower than that of water.
  • FIG. 1 It is a figure which shows schematic structure of the electrolyzed water generating apparatus which concerns on this embodiment. It is a figure which shows a porous membrane and an electrode typically. It is a perspective view of an electrode unit. It is an expansion perspective view of an electrode unit. It is a figure which expands and shows a porous membrane partially. It is a perspective view of an electrode. It is a perspective view of an electrode. It is sectional drawing of an electrode. It is sectional drawing of an electrode. It is a flowchart which shows the manufacturing method of an electrolyzed water generating apparatus. It is a figure for demonstrating the manufacturing method of an electrolyzed water generating apparatus. It is a figure for demonstrating the manufacturing method of an electrolyzed water generating apparatus.
  • an orthogonal coordinate system including an X axis, a Y axis, and a Z axis that are orthogonal to each other is used as appropriate.
  • FIG. 1 is a diagram illustrating a schematic configuration of an electrolyzed water generating apparatus 10 according to the present embodiment.
  • the electrolyzed water generating apparatus 10 is an apparatus that generates acidic water containing acidic hypochlorous acid and alkaline water containing alkaline sodium hydroxide by electrolyzing salt water.
  • the electrolyzed water generator 10 includes an electrolyzer 11, a salt water tank 12, a circulation pump 31, a pressure adjustment valve 32, and a DC power source 33.
  • the electrolytic cell 11 is a container made of, for example, resin or stainless steel.
  • the inside of the electrolytic cell 11 is divided into an intermediate chamber S1, an anode chamber S2, and a cathode chamber S3 by a set of porous films 21 and 22.
  • the porous membrane 21 is, for example chloride ion Cl - is a porous membrane having a property of passing anions such.
  • the porous film 22 is a porous film having a property of passing cations such as sodium ion Na + , for example.
  • the intermediate chamber S1 is a space sandwiched between two porous films 21 and 22.
  • the intermediate chamber S1 is filled with water containing sodium chloride (NaCl) as an electrolyte.
  • the intermediate chamber S ⁇ b> 1 communicates with the outside through a water supply port 111 and a drain port 112 provided in the electrolytic cell 11.
  • the anode chamber S2 is a space adjacent to the intermediate chamber S1 through the porous membrane 21.
  • An electrode 23 for generating acidic water is disposed in the anode chamber S2.
  • the anode chamber S ⁇ b> 2 communicates with the outside through a water supply port 113 and a drain port 114 provided in the electrolytic cell 11.
  • the cathode chamber S3 is a space adjacent to the intermediate chamber S1 through the porous film 22. In the cathode chamber S3, an electrode 24 for generating alkaline water is disposed.
  • the cathode chamber S3 communicates with the outside through a water supply port 115 and a water discharge port 116 provided in the electrolytic cell 11.
  • the electrode 23 serving as an anode is made of, for example, titanium (Ti), stainless steel (SUS), chromium (Cr), nickel (Ni), aluminum (Al), or an alloy thereof.
  • the electrode 23 is shaped into a rectangular plate shape and has a plurality of openings.
  • a noble metal catalyst such as platinum (Pt) or an oxide catalyst such as iridium oxide is attached to the surface of the electrode 23.
  • the electrode 24 serving as a cathode is configured in the same manner as the electrode 23.
  • a metal having corrosion resistance such as titanium or stainless steel can be used as it is without attaching a catalyst.
  • Raw water is supplied from the water supply ports 113 and 115 to the anode chamber S2 and the cathode chamber S3.
  • raw water tap water, well water, etc. can be used, for example.
  • the raw water supplied to the anode chamber S2 and the cathode chamber S3 is preferably soft water with reduced alkali components from the viewpoint of preventing the deposition of scales mainly composed of calcium carbonate.
  • This type of soft water can be generated, for example, by using a water softener using an ion exchange resin.
  • the salt water tank 12 is a tank that stores salt water.
  • the salt water tank 12 is provided with an outlet 121 and an inlet 122 for circulating salt water between the electrolytic tank 11.
  • salt water for example, salt water generated by adding sodium chloride (NaCl) as an electrolyte to water (H 2 O), or by adding salt such as potassium chloride (KCl) containing chlorine to water.
  • NaCl sodium chloride
  • KCl potassium chloride
  • the concentration of the salt water is not particularly limited, but considering the stability during electrolysis, it is preferable that the concentration is somewhat high. By using saturated sodium chloride as the salt water, it becomes easy to maintain a constant salt water concentration.
  • the pressure adjustment valve 32 is provided in a pipe line laid across the drain port 112 of the intermediate chamber S1 and the inlet 122 of the salt water tank 12.
  • the circulation pump 31 is provided in a pipe line laid across the outlet 121 of the salt water tank 12 and the water supply port 111 of the intermediate chamber S1.
  • the circulation pump 31 supplies the salt water from the salt water tank 12 to the intermediate chamber S 1 of the electrolytic cell 11. Thereby, salt water circulates between the intermediate chamber S1 of the electrolytic cell 11 and the salt water tank 12.
  • the flow rate of the salt water circulating between the intermediate chamber S1 and the salt water tank 12 is adjusted by the pressure adjusting valve 32.
  • DC power supply 33 applies voltage to electrode 23 and electrode 24.
  • a voltage is applied to the electrodes 23 and 24 so that the electrode 23 is an anode and the electrode 24 is a cathode.
  • Raw water is supplied to the anode chamber S2 and the cathode chamber S3 at a predetermined flow rate.
  • a voltage is applied to the electrodes 23 and 24 by the DC power source 33.
  • M represents a catalyst.
  • a side reaction represented by the following formula (5) may occur.
  • oxygen is generated.
  • the side reaction in the entire anode chamber S2 is represented by the following formula (6).
  • the total reaction including the anode and the cathode is expressed by the following formula (8).
  • the acidic water generated in the anode chamber S2 is discharged from the drain port 114 leading to the anode chamber S2. Further, the alkaline water generated in the cathode chamber S3 is discharged from the drain 116 that leads to the cathode chamber S3. As mentioned above, in the electrolyzed water generating apparatus 10, acidic water and alkaline water are generated.
  • FIG. 2 is a diagram schematically showing the porous membranes 21 and 22 and the electrodes 23 and 24. As shown in FIG. 2, the porous membranes 21 and 22 and the electrodes 23 and 24 are disposed via a spacer 35.
  • the spacer 35 is, for example, a casing that constitutes the intermediate chamber S1.
  • the porous films 21 and 22, the electrodes 23 and 24, and the spacer 35 constitute the electrode unit 100.
  • FIG. 3 is a perspective view of the electrode unit 100.
  • FIG. 4 is a developed perspective view of the electrode unit 100.
  • the electrode unit 100 has the porous film 21 and the electrode 23 arranged on the upper surface (the surface on the + Z side) of the spacer 35, and the lower surface (the ⁇ Z side on the ⁇ Z side). Formed on the surface) by disposing the porous membrane 22 and the electrode 24.
  • the spacer 35 is a rectangular frame-shaped member whose longitudinal direction is the X-axis direction and whose inside is hollow.
  • the spacer 35 is made of, for example, resin or stainless steel.
  • the spacer 35 is formed with a water supply port 111 and a water discharge port 112 that communicate with the internal space.
  • the salt water circulates inside the spacer 35 through the water supply port 111 and the drain port 112.
  • a porous body that holds salt water may be disposed in the internal space of the spacer 35.
  • a meandering flow path, a flow path that branches into a plurality, and the like may be formed in the internal space of the spacer 35.
  • FIG. 5 is a partially enlarged view showing the porous membranes 21 and 22. As shown in FIG. 5, a plurality of pores 200 are formed in the porous films 21 and 22. The surfaces of the porous membranes 21 and 22 are preferably covered with an inorganic oxide. The porous films 21 and 22 preferably contain an inorganic oxide inside.
  • porous films 21 and 22 chemically stable polytetrafluoroethylene, polyethylene, polyvinylidene fluoride, polyvinylidene chloride, or the like is used as a base material.
  • the porous membrane 21 that partitions the anode chamber S2 is preferably covered with an inorganic oxide that makes the zeta potential positive in a region where the pH is 2 to 6.
  • a porous membrane satisfying this condition is chemically stable and has high transport performance for anions in a weakly acidic region.
  • zirconium oxide, titanium oxide, aluminum oxide, tin oxide, zircon, copper oxide, iron oxide, and mixed oxides thereof can be used.
  • zirconium oxide, aluminum oxide, titanium oxide, and zircon can be used as the inorganic oxide having good chemical stability.
  • the inorganic oxide having good bending resistance is zirconium oxide.
  • the inorganic oxide may contain a hydroxide, an alkoxide, an oxyhalide, or a hydrate.
  • a hydroxide an alkoxide, an oxyhalide, or a hydrate.
  • an inorganic oxide is produced through hydrolysis of a metal halide or metal alkoxide, a mixture of these may be formed depending on the post-treatment temperature.
  • the abundance ratio of the inorganic oxide in the porous film may be varied depending on the location. For example, the presence ratio of the inorganic oxide around the pores or on the surface may be increased.
  • the inorganic oxide a composite oxide such as zircon or a mixture of different inorganic oxides can be used.
  • the porous film may be covered with two or more different oxides, and the abundance ratio of each oxide may be made different depending on the position of the porous film.
  • the surface of the porous film may be coated with zirconium oxide having a large bending strength, and the inside may be coated with titanium oxide having a large positive potential absolute value.
  • the zeta potential on the surface of the porous membrane is preferably greater than ⁇ 30 mV at pH 4.
  • the zeta potential on the surface of the porous membrane is preferably larger than ⁇ 15 mV.
  • the porous membrane 22 that partitions the cathode chamber S3 is preferably covered with an inorganic oxide that has a negative zeta potential in the region where the pH is 8 to 10.
  • a porous membrane that satisfies this condition has high transport performance for cations in the weakly alkaline region.
  • inorganic oxide for example, zirconium oxide, titanium oxide, aluminum oxide, tungsten oxide, zircon, silicon oxide, and zeolite can be used.
  • a mixture of the above oxides may be used as the inorganic oxide.
  • the abundance ratio and type of inorganic oxide in the porous film may be changed depending on the location.
  • the surface of the porous film may be coated with zirconium oxide having a high bending strength, and the inside may be coated with silicon oxide having a negative potential in a wide pH range.
  • a porous film coated with an inorganic oxide can be formed by applying nanoparticles to a porous substrate. Further, by using the sol-gel method, a porous film having pores that are irregularly arranged two-dimensionally or three-dimensionally can be formed. Such a porous film is resistant to bending and the like.
  • the inorganic oxide may have dispersed particles, or the particles may form an aggregate to form a network.
  • the pore diameters of the pores formed in the porous membranes 21 and 22 may be different from one side of the porous membranes 21 and 22 to the other side.
  • the pore diameter on the electrode 23 side may be smaller than the pore diameter on the electrode 24 side.
  • Anions such as chloride ion Cl 2 ⁇ can easily move toward the electrode 23 even if the pore diameter on the electrode 23 side is small.
  • the porous membrane 21 when the pore diameter of the pores on the electrode 23 side is larger than the pore diameter of the pores on the electrode 24 side, chlorine easily diffuses in the vicinity of the porous membrane.
  • the pore diameter of the pores of the porous membrane can be measured using, for example, a scanning electron microscope (SEM).
  • Electrode 6 and 7 are perspective views of the electrode 23.
  • FIG. The electrode 23 has a thickness of about 1 mm and is shaped into a rectangular plate having the X-axis direction as the longitudinal direction.
  • the electrode 23 includes a frame-shaped frame portion 201, a plurality of lattice portions 202 having a longitudinal direction in the X-axis direction, and a beam portion 203 having a longitudinal direction in the Y-axis direction.
  • the lattice unit 202 and the beam unit 203 are provided in a space defined by the frame unit 201 so as to cross each other.
  • the lattice unit 202 is stretched across a space defined by the frame unit 201 so as to be parallel to the X axis.
  • the beam portion 203 is stretched in a space defined by the frame portion 201 so as to be parallel to the Y axis.
  • FIG. 8 is a diagram showing an AA cross section in FIG.
  • the lattice portions 202 are arranged at equal intervals along the Y axis so that the pitch P1 is 0.5 mm.
  • the lattice portion 202 is shaped so that the thickness D1 is 0.1 to 0.2 mm and the cross section is a trapezoid. For this reason, in the opening sandwiched between the lattice portions 202, the dimension W1 in the Y-axis direction on the + Z side is 0.4 mm, and the dimension W2 in the Y-axis direction on the ⁇ Z side is 0.2 mm.
  • FIG. 9 is a diagram showing a BB cross section in FIG.
  • the beam portions 203 are arranged at equal intervals along the X-axis so that the pitch P2 is 2.4 mm.
  • the beam portion 203 is shaped so that the thickness D2 is 0.3 to 0.4 mm and the cross section is a trapezoid. For this reason, in the opening sandwiched between the beam portions 203, the dimension W3 in the X-axis direction on the ⁇ Z side is 1.6 mm, and the dimension W4 in the X-axis direction on the + Z side is 1.2 mm.
  • the electrode 23 configured as described above can be manufactured, for example, by performing etching treatment on both surfaces of a metal plate made of stainless steel or titanium having a thickness of about 0.5 to 1 mm. Therefore, the + Z side surface of the frame portion 201 and the + Z side surface of the lattice portion 202 are located in the same plane, and the ⁇ Z side surface of the frame portion 201 and the ⁇ Z side surface of the beam portion 203 are the same. Located in the plane. The four corners of the rectangular opening are rounded.
  • the ratio of the area A1 of the region sandwiched on the ⁇ Z side of the lattice portion 202 to the area A0 of the + Z side surface of the electrode 23 is about 40%.
  • the electrode 23 is disposed such that the longitudinal direction is the vertical direction and the surface on the + Z side faces the porous film.
  • the area A2 of the opening that penetrates the electrode 23 is about 20% of the area A0 of the + Z side surface of the electrode 23.
  • the ratio of the area A2 to the area A0 is preferably 50% or less.
  • the electrode 24 is configured similarly to the electrode 23.
  • the shape of the opening part of the electrodes 23 and 24 can be arbitrarily determined, such as a circle, an ellipse, or a polygon.
  • the corner is preferably rounded. By rounding the corner portion, stress concentration can be made difficult to occur.
  • Chloride ions are supplied from the porous membrane side to the electrode. Chloride ions passing through the porous membrane do not flow out from the place where the porous membrane and the electrode are in contact, but flow out from the opening through which the electrode 23 penetrates. For this reason, in order to increase the concentration of chloride ions at the electrode 23, it is important to prevent the outflow of chloride ions from the opening of the electrode 23.
  • the opening area of the openings of the electrodes 23 and 24 is 0.01 mm 2 to 4 mm 2 .
  • the opening area is smaller than 0.01 mm 2 , it becomes difficult to discharge reaction products such as gas and hypochlorous acid to the outside. For this reason, the electrodes 23 and 24 are likely to deteriorate.
  • the opening area is larger than 4 mm 2 , chloride ions are likely to flow out, the electric resistance of the electrodes 23 and 24 is increased, and the electrolysis efficiency is lowered.
  • the opening area is preferably 0.1 mm 2 to 1.5 mm 2 .
  • the opening area is more preferably 0.2 mm 2 to 1 mm 2 .
  • the porous material is shaped to prepare the porous films 21 and 22 shown in FIG. 4 (step S101).
  • preprocessing is performed on the porous films 21 and 22 (step S102).
  • the pretreatment is a treatment for improving the affinity of the porous membranes 21 and 22 to the liquid by modifying the surfaces of the porous membranes 21 and 22.
  • preprocessing plasma processing, electron beam processing, UV ozone processing, etc. are performed, for example.
  • the plasma treatment is a treatment in which the surfaces of the porous films 21 and 22 are irradiated with, for example, oxygen plasma.
  • the electron beam treatment is a treatment for irradiating the surfaces of the porous films 21 and 22 with an electron beam.
  • the UV ozone treatment is a treatment for irradiating the surfaces of the porous films 21 and 22 with ultraviolet rays. By these treatments, the surfaces of the porous membranes 21 and 22 are modified, and the affinity for the liquid is improved.
  • the liquid 51 is a liquid having a property that is compatible with water and having a surface tension of 35 mN / m or less.
  • the liquid 51 for example, as shown in FIG. 11, an ethanol aqueous solution having an ethanol concentration of 30% by weight or more can be considered.
  • the concentration of ethanol is preferably 50% by weight or more, and particularly preferably 90% by weight or more.
  • the liquid 51 may be 99.5% so-called absolute ethanol.
  • the aqueous solution of surfactant may be sufficient.
  • the liquid 51 having a lower surface tension than water enters the pores of the porous membranes 21 and 22.
  • the porous membranes 21 and 22 are washed with water 52 such as tap water (step S104).
  • water 52 such as tap water
  • the surfaces of the porous membranes 21 and 22 and the inside of the pores are in a state in which they are familiar with the liquid 51 having an affinity for water. For this reason, by washing the porous membranes 21 and 22 with water, the surface and the inside of the porous membranes 21 and 22 are in a state of being in contact with the water 52.
  • the porous films 21 and 22 are taken out, and the porous film 21 and the electrode 23 are arranged on the upper surface side of the spacer 35 and the lower surface side of the spacer 35 as shown in FIG.
  • the porous membrane 22 and the electrode 24 are disposed.
  • the spacer 35, the porous films 21 and 22, and the electrodes 23 and 24 are assembled and integrated (step S105).
  • the spacer 35, the porous films 21 and 22, and the electrodes 23 and 24 are integrated by, for example, fixing the electrodes 23 and 24 to the spacer 35. Thereby, the electrode unit 100 is assembled.
  • the electrode unit 100 is sandwiched between a resin casing 151 having an anode chamber S2 formed therein and a resin casing 152 having a cathode chamber S3 formed therein. 151 and 152 are fixed with screws or the like. Thereby, the electrolytic cell 11 is assembled (step S106).
  • the spacer 151, the porous membranes 21 and 22, and the electrodes 23 and 24 are composed of a casing 151 having an anode chamber S 2 formed therein and a casing 152 having a cathode chamber S 3 formed therein.
  • the spacers 35, the porous membranes 21 and 22, and the electrodes 23 and 24 may be integrated by fixing the casings 151 and 152 with screws or the like.
  • auxiliaries such as the salt water tank 12, the circulation pump 31, the pressure adjustment valve 32, and the DC power source 33 are connected to the electrolytic cell 11 configured as described above (step S107). Thereby, the electrolyzed water generating apparatus 10 shown in FIG. 1 is assembled.
  • the porous membranes 21 and 22 are immersed in the liquid 51 during the manufacturing process of the electrode unit 100 (step S103).
  • the porous membranes 21 and 22 are washed with water 52 such as tap water (step S104).
  • water 52 such as tap water
  • the surface of the porous membranes 21 and 22 and the inside of the pores are in a state of becoming familiar with the liquid 51 having affinity for water.
  • the porous membranes 21 and 22 are washed with water, so that the surfaces and the inside of the porous membranes 21 and 22 become familiar with the water 52.
  • the porous membranes 21 and 22 are in a state of having a short time affinity with the salt water and tap water in the intermediate chamber S1, the anode chamber S2, and the cathode chamber S3. As a result, it is possible to shorten the rise time from when the electrolyzed water generating device 10 is started until the electrolysis is stably performed.
  • the electrolyzed water generating device 10 After the electrolyzed water generating device 10 is started up, ionic species remain on the surfaces and pores of the porous membranes 21 and 22 even if the electrolyzed water generating device 10 is dried. Therefore, even when the electrolyzed water generating apparatus 10 is started next time, electrolysis can be stably performed in a short time. For this reason, the electrolyzed water generating apparatus 10 may be preliminarily operated before operation. Even if the electrolyzed water generating device is dried after the preliminary operation, the electrolyzed water generating device can be started up in a short time.
  • the liquid 51 is preferably made of ethanol and water. Ethanol has low environmental impact and high safety. For this reason, the porous membranes 21 and 22 immersed in the liquid 51 can be safely washed with water.
  • the porous membranes 21 and 22 are immersed in the liquid 51, the porous membranes 21 and 22 are pretreated. For this reason, the hydrophilicity of the surface of the porous membranes 21 and 22 improves. Accordingly, the porous films 21 and 22 can be satisfactorily made compatible with the liquid 51 or the water 52 in the subsequent processing (steps S103 and S104).
  • the liquid 51 may contain alcohols such as methanol, propanol, and isopropanol.
  • the surface tension of the liquid 51 is 35 mN / m or less, but the surface tension of the liquid 51 is preferably 30 mN / m or less. In particular, the surface tension of the liquid 51 is preferably 25 mN / m or less.
  • the surface tension of the liquid 51 can be measured by various methods. For example, the measurement can be performed using a Wilhelmy method, a ring method, a hanging drop method, a maximum bubble pressure method, or the like.
  • the ring method is suitable for measuring the surface tension of alcohol or an aqueous alcohol solution.
  • the hanging drop method is suitable for measuring the surface tension of an aqueous solution containing a surfactant.
  • the porous membranes 21 and 22 are washed with water.
  • the porous membranes 21 and 22 may be washed with water containing chloride ions. Thereby, after starting electrolyzed water production
  • the chloride ion source is preferably a chloride such as sodium chloride or potassium chloride.
  • the concentration of chloride contained in water when the porous membranes 21 and 22 are washed is preferably 1% by weight saturation concentration.
  • the chloride concentration is more preferably 3% by weight saturation, and particularly preferably 5% by weight saturation.
  • the porous membranes 21 and 22 are immersed in the liquid 51 after the pretreatment (step S102) (step S103). Not only this but after performing pre-processing, you may perform the process which makes the porous membranes 21 and 22 contact alkoxide solutions, such as aluminum, zirconium, and titanium. By performing this step, oxides or hydroxides such as aluminum, or intermediates thereof are generated on the surfaces of the porous films 21 and 22 and the surfaces of the pores. Thereby, the hydrophilicity of the porous membranes 21 and 22 is increased, and the liquid 51 is more easily immersed. Moreover, since affinity with a chloride ion increases, it is preferable.
  • alkoxide methoxide, ethoxide, propoxide, isopropoxide and the like can be used. From the viewpoint of solubility and hydrolysis, it is preferable to use isopropoxide. These concentrations are preferably about 5% to 95% of the saturated concentration. Further, it is more preferably 20% to 90% of the saturated concentration, and particularly preferably 50% to 80% of the saturated concentration. If the concentration is less than 5% of the saturation concentration, the effect is small. At the saturated concentration, the stability of the liquid becomes poor.
  • the step of bringing the porous membranes 21 and 22 into contact with the alkoxide solution is preferably performed after the pretreatment (step S102).
  • an alkoxide solution such as aluminum, zirconium, or titanium
  • the oxide as the reaction product is stably stabilized. 21 and 22 are fixed.
  • the oxide is particularly stably fixed to the porous films 21 and 22.
  • Porous polytetrafluoroethylene film, porous polyethylene film, etc. have a porous structure formed by stretching or the like, but it is generally difficult to control the size of the pores. In addition, since these films have low mechanical strength, they may be stretched by water pressure or the like to change the pore diameter. On the other hand, glass fiber is chemically stable, has high strength, and is hardly deformed by water pressure. Therefore, as the porous film, glass fiber and polytetrafluoroethylene or polyvinylidene fluoride may be mixed to form a composite film. Thereby, adjustment of a hole diameter becomes easy and a chemical strength and mechanical strength can be improved. Among the above materials, it is preferable to laminate a porous polytetrafluoroethylene film and glass fiber.
  • the polyethylene porous membrane has a slight problem with heat resistance, but the polyvinylidene fluoride has a slight problem with alkali resistance.
  • the porous membranes 21 and 22 are immersed in the liquid 51 (step S103), and then the porous membranes 21 and 22 are washed with water (step S104).
  • the manufacturing method according to this modified example first, as shown in FIG. 3, after the porous membranes 21, 22, the electrodes 23, 24 and the spacers 35 are integrated to assemble the electrode unit 100, as shown in FIG. As described above, the electrode unit 100 is immersed in the liquid 51. By dipping the electrode unit 100 in the liquid 51, the liquid 51 having a lower surface tension than water enters the pores of the porous films 21 and 22.
  • the electrode unit 100 is manufactured by washing the electrode unit 100 with water 52 such as tap water.
  • water 52 such as tap water.
  • the surfaces of the porous membranes 21 and 22 and the inside of the pores are in a state in which they are familiar with the liquid 51 having an affinity for water. For this reason, by washing the electrode unit 100 with water, the surface and the inside of the porous membranes 21 and 22 are in a state of being in contact with the water 52.
  • the electrode unit 100 is sandwiched between the casing 151 in which the anode chamber S2 is formed and the casing 152 in which the cathode chamber S3 is formed, and the casings 151 and 152 are screwed together. Fix with etc. Thereby, the electrolytic cell 11 is completed.
  • auxiliary equipment such as the salt water tank 12, the circulation pump 31, the pressure adjustment valve 32, and the DC power source 33 is connected to the electrolytic cell 11 configured as described above. Thereby, the electrolyzed water generating apparatus 10 shown in FIG. 1 is completed.
  • Example 1 In the electrolyzed water generating apparatus 10 shown in FIG. 1, a polytetrafluoroethylene porous membrane (manufactured by Sumitomo Electric: Poreflon HPW-010-30) having a thickness of 30 ⁇ m and a glass cloth having a thickness of 75 ⁇ m (Nittobo: 3313) Is used as a raw material for the porous membranes 21 and 22.
  • the polytetrafluoroethylene porous membrane and the glass cloth are integrated by heating and pressing to 100 ° C. in a state where both are stacked.
  • the solution is subjected to dip coating using a mixed solution containing 30% by weight of titania nanoparticles with respect to polytetrafluoroethylene.
  • a laminated body is heated to 200 degreeC and the porous membranes 21 and 22 are produced.
  • the amount of polytetrafluoroethylene fine particles added is 16 mg / cm 2 and the heating time of the laminate is about 20 minutes.
  • porous membranes 21 and 22 are placed in the atmosphere at 200 ° C. Allow to dry for a while.
  • the zeta potential on the surfaces of the porous membranes 21 and 22 thus completed is ⁇ 10 mV at ph4. Further, it is ⁇ 40 mV at pH 8-10.
  • a flat titanium plate having a plate thickness of 0.5 mm is used as a substrate.
  • the substrate has a length of 15 cm and a width of 10 cm.
  • through holes having a diameter of 1.5 mm are formed in a hexagonal lattice shape with a pitch of 2.2 mm by punching.
  • the electrode 23 is immersed in a 10 wt% oxalic acid aqueous solution at 80 ° C. for 1 hour. Next, a voltage of 10 V is applied for 2 hours while the electrode 23 is immersed in a mixed aqueous solution of 1M ammonium sulfate and 0.5M ammonium fluoride. Thus, the electrode 23 is anodized.
  • a solution prepared by adding 1-butanol to 0.25 M (Ir) to iridium chloride (IrCl 3 .nH 2 O) is applied to both surfaces of the electrode 23.
  • the electrode 23 is dried and baked to form a catalyst layer on the surface of the electrode 23. Drying is performed by placing the electrode 23 in an atmosphere of 80 ° C. for 10 minutes, and baking is performed by heating the electrode 23 to 450 ° C. and maintaining it for 10 minutes.
  • the catalyst layer is formed on the surface of the electrode 23 by repeating the application, drying, and firing five times.
  • a flat SUS304S plate having a plate thickness of 0.5 mm is used as a substrate.
  • the substrate has a length of 15 cm and a width of 10 cm.
  • through holes having a diameter of 1.5 mm are formed in a hexagonal lattice shape with a pitch of 2.2 mm by punching.
  • the substrate of the electrode 24 is used as it is as the electrode 24 without forming a catalyst layer or the like on the surface.
  • porous polystyrene having a thickness of 5 mm is disposed as a holder for holding the electrolytic solution.
  • the porous membranes 21 and 22 are immersed in 90% ethanol (10% is almost water) having a surface tension at 20 ° C. of 24 mN / m for 1 minute. Thereafter, the porous membranes 21 and 22 are washed with water. Next, as can be seen with reference to FIGS. 3 and 4 without drying the porous membranes 21 and 22, the resin spacers 35, the porous membranes 21 and 22, and the electrodes 23 and 24 are screwed or packed.
  • the electrode unit 100 is configured by assembling and integrating them.
  • the resin electrolytic cell 11 is configured using the electrode unit 100.
  • auxiliary equipment is connected to the electrolytic cell 11 to constitute the three-chamber electrolyzed water generating apparatus 10 shown in FIG.
  • the electrolytic cell 11 is connected to a conduit for supplying water from a commercial water supply facility to the anode chamber S2 and the cathode chamber S3.
  • the porous membranes 21 and 22 are not dried during this period after being washed with water.
  • the brine tank 12 is supplied with saturated saline.
  • a conductivity sensor is installed at the drain port 114 of the electrolytic cell 11 shown in FIG. 1, and a pH sensor is installed at the drain port 116.
  • the electrolyzed water generating apparatus 10 configured as described above is operated under the condition that the flow rate of salt water is 2 L / min and the voltage between electrodes is 6V. As a result, hypochlorous acid water is generated in the anode chamber S2, and hydrogen and sodium hydroxide water are generated in the cathode chamber S3.
  • the electrolyzed water generating apparatus 10 is in a steady operation state in which electrolysis is stabilized within 2 minutes from the start of operation. Then, after draining water and salt water from the electrolyzed water production
  • Comparative Example 1 >> The porous membranes 21 and 22 are immersed in 90% ethanol having a surface tension at 20 ° C. of 24 mN / m for 1 minute. Thereafter, the porous membranes 21 and 22 are dried without washing with water. The porous units 21 and 22 constitute the electrode unit 100. Similarly, the electrolyzed water generating apparatus 10 including the electrode unit 100 is operated under the condition that the flow rate of the salt water is 2 L / min and the voltage between the electrodes is 6V. The electrolyzed water generating apparatus 10 according to Comparative Example 1 takes time for the rise of the interelectrode current, and enters a steady operation state in which electrolysis is stable after 30 minutes or more have elapsed from the start of operation.
  • Comparative Example 2 >> The porous membranes 21 and 22 are immersed in a 20% aqueous ethanol solution having a surface tension of 38 mN / m at 20 ° C. for 1 minute. Thereafter, the porous membranes 21 and 22 are washed with water. Next, the electrode unit 100 is composed of the porous films 21 and 22 without drying the porous films 21 and 22. Similarly, the electrolyzed water generating apparatus 10 including the electrode unit 100 is operated under the condition that the flow rate of the salt water is 2 L / min and the voltage between the electrodes is 6V.
  • the electrolyzed water generating apparatus 10 takes time for the rise of the interelectrode current, and after 15 minutes or more have elapsed from the start of operation, the electrolyzed water generating apparatus 10 enters a steady operation state in which electrolysis is stable.
  • Example 1 and Comparative Examples 1 and 2 show that the electrolyzed water generator 10 is obtained by immersing the porous membranes 21 and 22 in water-containing ethanol having a surface tension of 35 mN / m or less and then washing with water. It shows that the rise time of is reduced.
  • Example 2 In the electrolyzed water generating apparatus 10 configured in the same manner as in Example 1, the porous membranes 21 and 22 obtained in the same manner as in Example 1 are placed in 90% ethanol having a surface tension at 20 ° C. of 24 mN / m for 1 minute. Immerse. Thereafter, the porous membranes 21 and 22 are washed with an aqueous sodium chloride solution having a concentration of 10% instead of water. Then, after the porous membranes 21 and 22 are dried at room temperature overnight, the electrode units 100 are constituted by the porous membranes 21 and 22. Similarly, the electrolyzed water generating apparatus 10 including the electrode unit 100 is operated under the condition that the flow rate of the salt water is 2 L / min and the voltage between the electrodes is 6V. The electrolyzed water generating apparatus 10 according to Example 2 is in a steady operation state in which electrolysis is stabilized within 4 minutes from the start of operation.
  • Example 2 and Comparative Examples 1 and 2 show that the porous membranes 21 and 22 are immersed in hydrous ethanol having a surface tension of 35 mN / m or less, and then washed with an aqueous sodium chloride solution having a concentration of 10%. Thus, even when the electrolyzed water generating apparatus 10 is dried, the rise time is shortened.
  • Example 3 The porous membranes 21 and 22 obtained in the same manner as in Example 1 are neither immersed in an aqueous ethanol solution nor washed with water, and are used in a dry state to constitute the electrode unit 100. Then, the electrode unit 100 is immersed in 90% ethanol having a surface tension at 20 ° C. of 24 mN / m for 1 minute. Thereafter, the electrode unit 100 is washed with water. Similarly, the electrolyzed water generating apparatus 10 including the electrode unit 100 is operated under the condition that the flow rate of the salt water is 2 L / min and the voltage between the electrodes is 6V. The electrolyzed water generating apparatus 10 according to Example 3 is in a steady operation state in which electrolysis is stabilized within 2 minutes from the start of operation.
  • Example 4 In the electrolyzed water generating apparatus according to Example 4, the anode chamber S2 is disposed so as to surround the intermediate chamber S1 and the cathode chamber S3, as shown in FIG. Moreover, this electrolyzed water production
  • generation apparatus is equipped with the batch-type electrolyzer 11A in which a water flow is formed by natural convection of salt water or water without a pump or piping.
  • the capacity of the anode chamber S2 is 2L, and the capacity of the cathode chamber S3 is 0.1L.
  • As the electrode unit an electrode unit having the same configuration as in the first embodiment is used. The size of the electrode unit is small, and the size of the electrode is 4 cm in length and 3 cm in width.
  • the porous membrane is immersed in 90% ethanol having a surface tension of 24 mN / m at 20 ° C. for 1 minute and washed with water.
  • the porous membrane is integrated with an electrode or the like without drying to constitute an electrode unit.
  • the electrolyzed water generating apparatus is operated under the condition where the interelectrode voltage is 7V. As a result, hypochlorous acid water is generated in the anode chamber S2, and hydrogen and sodium hydroxide water are generated in the cathode chamber S3. This electrolyzed water generating apparatus is in a steady operation state in which electrolysis is stabilized within 2 minutes from the start of operation.
  • Example 5 In the electrolyzed water generating apparatus 10 shown in FIG. 1, a polyethylene porous film having a thickness of 30 ⁇ m is used as the porous films 21 and 22.
  • the configuration other than the porous membranes 21 and 22 is the same as the configuration of the electrolyzed water generating apparatus according to the first embodiment.
  • the porous membranes 21 and 22 are immersed in an aqueous solution of a SPAN20 surfactant having a surface tension at 20 ° C. of 32 mN / m. Thereafter, the porous membranes 21 and 22 are washed with an aqueous sodium chloride solution having a concentration of 10%.
  • the electrode unit 100 is configured using the porous membranes 21 and 22 without drying the porous membranes 21 and 22.
  • the electrolyzed water generating apparatus 10 including the electrode unit 100 is operated under the condition that the flow rate of the salt water is 2 L / min and the voltage between the electrodes is 6V.
  • the electrolyzed water generating apparatus 10 according to Example 5 is in a steady operation state in which electrolysis is stabilized within 3 minutes from the start of operation.
  • Comparative Example 3 In the electrolyzed water generating apparatus 10 configured in the same manner as in Example 5, the porous membranes 21 and 22 are immersed in an aqueous solution of a SPAN20 surfactant having a surface tension at 20 ° C. of 36 mN / m. Thereafter, the porous membranes 21 and 22 are washed with an aqueous sodium chloride solution having a concentration of 10%. Next, the electrode unit 100 is configured using the porous membranes 21 and 22 without drying the porous membranes 21 and 22.
  • the electrolyzed water generating apparatus 10 including the electrode unit 100 is operated under the condition that the flow rate of the salt water is 2 L / min and the voltage between the electrodes is 6V.
  • the electrolyzed water generating apparatus 10 according to Comparative Example 3 enters a steady operation state in which electrolysis is stable after 10 minutes or more have elapsed from the start of operation.
  • Example 5 As a result of Example 5 and Comparative Example 3, the electrolyzed water generating device was obtained by immersing the porous membranes 21 and 22 in an aqueous solution having a surface tension of 35 mN / m or less and then washing with a sodium chloride aqueous solution. 10 shows that the rise time is shortened.
  • Example 6 In the electrolyzed water generating apparatus 10 shown in FIG. 1, a polyethylene porous film having a thickness of 30 ⁇ m is used as the porous films 21 and 22. Then, after the porous films 21 and 22 are subjected to plasma treatment, they are immersed for 1 minute in isopropyl alcohol of aluminum isopropoxide having a concentration of 5% by weight. Thereafter, the porous membranes 21 and 22 are dried by being placed in an atmosphere of 90 ° C. for 10 minutes. Next, the porous membranes 21 and 22 are immersed in an aqueous solution of a SPAN20 surfactant having a surface tension at 20 ° C. of 32 mN / m. Thereafter, the porous membranes 21 and 22 are washed with a saturated sodium chloride aqueous solution.
  • a SPAN20 surfactant having a surface tension at 20 ° C. of 32 mN / m.
  • the electrode unit 100 is configured using the porous membranes 21 and 22 without drying the porous membranes 21 and 22.
  • the electrolyzed water generating apparatus 10 including this electrode unit 100 is operated under the condition that the flow rate of salt water is 2 L / min and the voltage between electrodes is 6V.
  • the electrolyzed water generating apparatus 10 according to Example 6 is in a steady operation state in which electrolysis is stabilized within 2 minutes from the start of operation.
  • Example 7 The electrode unit 100 is configured in the same manner as in Example 6 except that instead of using an aqueous solution of a SPAN20 surfactant having a surface tension of 32 mN / m, a 30% ethanol aqueous solution having a surface tension of 33 mN / m is used.
  • the electrolyzed water generating apparatus 10 including this electrode unit 100 is operated under the condition that the flow rate of salt water is 2 L / min and the voltage between electrodes is 6V.
  • the electrolyzed water generating apparatus according to Example 7 is in a steady operation state in which electrolysis is stabilized within 3 minutes from the start of operation.
  • Example 8 The electrode unit 100 is configured in the same manner as in Example 7 except that it is washed with water instead of washing with a saturated sodium chloride solution.
  • the electrolyzed water generating apparatus 10 including this electrode unit 100 is operated under the condition that the flow rate of salt water is 2 L / min and the voltage between electrodes is 6V.
  • the electrolyzed water generating apparatus according to Example 8 is in a steady operation state in which electrolysis is stabilized within 5 minutes from the start of operation.
  • Comparative Example 4 An electrode unit is constructed in the same manner as in Example 7 except that a 20% aqueous ethanol solution having a surface tension of 38 mN / m is used instead of using an aqueous solution of a SPAN20 surfactant having a surface tension of 33 mN / m.
  • the electrolyzed water generating apparatus 10 including this electrode unit 100 is operated under the condition that the flow rate of salt water is 2 L / min and the voltage between electrodes is 6V.
  • the electrolyzed water generating apparatus according to Example 7 enters a steady operation state in which electrolysis is stabilized after 8 minutes or more have elapsed from the start of operation.
  • Example 9 In the electrolyzed water generating apparatus 10 shown in FIG. 1, a polyethylene porous film having a thickness of 30 ⁇ m is used as the porous films 21 and 22.
  • the configuration other than the porous membranes 21 and 22 is the same as the configuration of the electrolyzed water generating apparatus according to the first embodiment.
  • the porous membranes 21 and 22 are immersed in 99.5% methanol having a surface tension at 20 ° C. of 23 mN / m. Thereafter, the porous membranes 21 and 22 are washed with water.
  • the electrode unit 100 is configured using the porous membranes 21 and 22 without drying the porous membranes 21 and 22.
  • the electrolyzed water generating apparatus 10 including the electrode unit 100 is operated under the condition that the flow rate of the salt water is 2 L / min and the voltage between the electrodes is 6V.
  • the electrolyzed water generating apparatus 10 according to Example 9 is in a steady operation state in which electrolysis is stabilized within 2 minutes from the start of operation.
  • the table shown in FIG. 17 is a table showing the rise time of the electrolyzed water generating apparatus according to each example and comparative example. As shown in the table, the electrolyzed water generating apparatus according to the present example rises within 5 minutes, while the electrolyzed water generating apparatus according to the comparative example requires at least 8 minutes or more for rising.
  • this embodiment presents an example of a method for manufacturing an electrode unit (steps S101 to S105) and a method for manufacturing an electrolyzed water generating device (steps S101 to S107), and thereby limits the scope of the invention. Not intended to do. What has the requirements of the present invention is included in the scope of the present invention regardless of the name.
  • the name of the present invention is a manufacturing method of an electrode unit and a manufacturing method of an electrolyzed water generating device
  • the manufacturing method concerning the present invention includes various modifications, such as maintenance provided with the constituent features of the present invention.

Abstract

This method, for manufacturing an electrode unit which is provided with an electrode and a porous membrane and which is used in an electrolyzed water generating device for generating electrolyzed water by electrolysis of an electrolytic solution, involves a step in which the porous membrane is immersed in a liquid having the property of being miscible with water and having a surface tension lower than that of water. This method of manufacturing an electrolyzed water generating device involves a step for manufacturing an electrode unit by means of the aforementioned electrode unit manufacturing method, and a step for installing the electrode unit in an electrolytic cell.

Description

電極ユニットの製造方法、及び電解水生成装置の製造方法Electrode unit manufacturing method and electrolyzed water generating device manufacturing method
 本発明は、電極ユニットの製造方法、及び電解水生成装置の製造方法に関する。 The present invention relates to an electrode unit manufacturing method and an electrolyzed water generating device manufacturing method.
 近年、水を電気分解することで、例えばアルカリイオン水、オゾン水、又は次亜塩素酸水など、種々の機能を有する電解水や、水素などを生成する装置が提案されている。 In recent years, an apparatus for generating electrolyzed water having various functions, such as alkaline ionized water, ozone water, or hypochlorous acid water, hydrogen, etc., by electrolyzing water has been proposed.
 例えば、塩化ナトリウムなどの電解質を添加した水に通電すると、陽極側に酸性水が生成され、陰極側にアルカリ性水が生成される。陽極側に生成される酸性水は、次亜塩素酸を含み殺菌作用を有している。このため、次亜塩素酸水は、消毒や殺菌に使用される。また、次亜塩素酸水は、人体に安全で食品添加物としても認可されている。 For example, when electricity is supplied to water to which an electrolyte such as sodium chloride is added, acidic water is generated on the anode side and alkaline water is generated on the cathode side. The acidic water produced on the anode side contains hypochlorous acid and has a bactericidal action. For this reason, hypochlorous acid water is used for disinfection and sterilization. Hypochlorous acid water is safe for the human body and approved as a food additive.
 次亜塩素酸水を生成するための電解水生成装置としては、種々の方式の装置が提案されているが、中でも2室型或いは3室型の電解水生成装置は、一対の電極の間に隔壁が設けられる。隔壁は、例えば塩化物イオンやナトリウムイオンなどを選択的に通過させる性質を有するイオン交換膜や多孔質膜から構成される。 As an electrolyzed water generating device for generating hypochlorous acid water, various types of devices have been proposed. Among them, a two-chamber or three-chamber electrolyzed water generating device is provided between a pair of electrodes. A partition is provided. The partition wall is composed of, for example, an ion exchange membrane or a porous membrane having a property of selectively passing chloride ions, sodium ions, and the like.
特開2006-322053号公報JP 2006-322053 A
 隔壁として用いられる多孔質膜は、水との親和性が低いため、水や塩水になじませるのにある程度の時間が必要である。そのため、電解水生成装置では、装置を起動してから電解が安定して行われるまでに、ある程度長い時間が必要であった。 Since a porous membrane used as a partition wall has low affinity with water, it takes a certain amount of time to adjust to water or salt water. For this reason, in the electrolyzed water generating apparatus, a certain amount of time is required until the electrolysis is stably performed after the apparatus is started.
 本発明は、上述の事情の下になされたもので、装置の立ち上がり時間を短縮することを課題とする。 The present invention has been made under the above circumstances, and an object thereof is to shorten the rise time of the apparatus.
 上記課題を解決するため、本実施形態に係る電極ユニットの製造方法は、電解液を電気分解することにより、電解水を生成する電解水生成装置に用いられ、電極と多孔質膜とを備える電極ユニットの製造方法であって、前記多孔質膜を、水と混和する性質を有するとともに、水よりも表面張力が低い液体に浸漬する工程を含む。 In order to solve the above problems, an electrode unit manufacturing method according to the present embodiment is used in an electrolyzed water generating device that generates electrolyzed water by electrolyzing an electrolytic solution, and includes an electrode and a porous film. A method for producing a unit, comprising the step of immersing the porous membrane in a liquid having a property of being mixed with water and having a surface tension lower than that of water.
本実施形態に係る電解水生成装置の概略構成を示す図である。It is a figure which shows schematic structure of the electrolyzed water generating apparatus which concerns on this embodiment. 多孔質膜、及び電極を模式的に示す図である。It is a figure which shows a porous membrane and an electrode typically. 電極ユニットの斜視図であるIt is a perspective view of an electrode unit. 電極ユニットの展開斜視図であるIt is an expansion perspective view of an electrode unit. 多孔質膜を一部拡大して示す図である。It is a figure which expands and shows a porous membrane partially. 電極の斜視図である。It is a perspective view of an electrode. 電極の斜視図である。It is a perspective view of an electrode. 電極の断面図である。It is sectional drawing of an electrode. 電極の断面図である。It is sectional drawing of an electrode. 電解水生成装置の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of an electrolyzed water generating apparatus. 電解水生成装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of an electrolyzed water generating apparatus. 電解水生成装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of an electrolyzed water generating apparatus. 電解槽の斜視図である。It is a perspective view of an electrolytic cell. 電解水生成装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of an electrolyzed water generating apparatus. 電解水生成装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of an electrolyzed water generating apparatus. 実施例に係る電解槽を示す図である。It is a figure which shows the electrolytic cell which concerns on an Example. 実施例の結果、及び比較例の結果を説明するための表である。It is a table | surface for demonstrating the result of an Example and the result of a comparative example.
 以下、本発明の実施形態を図面に基づいて説明する。実施形態の説明にあたっては、相互に直交するX軸、Y軸、Z軸からなる直交座標系を適宜用いる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the embodiment, an orthogonal coordinate system including an X axis, a Y axis, and a Z axis that are orthogonal to each other is used as appropriate.
《装置構成》
 図1は、本実施形態に係る電解水生成装置10の概略構成を示す図である。電解水生成装置10は、塩水を電気分解することにより、酸性の次亜塩素酸を含む酸性水と、アルカリ性の水酸化ナトリウムを含むアルカリ性水と、を生成する装置である。
"Device configuration"
FIG. 1 is a diagram illustrating a schematic configuration of an electrolyzed water generating apparatus 10 according to the present embodiment. The electrolyzed water generating apparatus 10 is an apparatus that generates acidic water containing acidic hypochlorous acid and alkaline water containing alkaline sodium hydroxide by electrolyzing salt water.
 図1に示されるように、電解水生成装置10は、電解槽11、塩水タンク12、循環ポンプ31、圧力調整バルブ32、直流電源33を備えている。 As shown in FIG. 1, the electrolyzed water generator 10 includes an electrolyzer 11, a salt water tank 12, a circulation pump 31, a pressure adjustment valve 32, and a DC power source 33.
 電解槽11は、例えば樹脂やステンレス鋼などからなる容体である。電解槽11の内部は、1組の多孔質膜21,22によって、中間室S1,陽極室S2,陰極室S3に区分されている。多孔質膜21は、例えば塩化物イオンClなどの陰イオンを通過させる性質を有する多孔質膜である。また、多孔質膜22は、例えばナトリウムイオンNaなどの陽イオンを通過させる性質を有する多孔質膜である。 The electrolytic cell 11 is a container made of, for example, resin or stainless steel. The inside of the electrolytic cell 11 is divided into an intermediate chamber S1, an anode chamber S2, and a cathode chamber S3 by a set of porous films 21 and 22. The porous membrane 21 is, for example chloride ion Cl - is a porous membrane having a property of passing anions such. The porous film 22 is a porous film having a property of passing cations such as sodium ion Na + , for example.
 中間室S1は、2つの多孔質膜21,22によって挟まれる空間である。中間室S1は、塩化ナトリウム(NaCl)を電解質とする水が充填される。中間室S1は、電解槽11に設けられる給水口111と排水口112を介して、外部と通じている。 The intermediate chamber S1 is a space sandwiched between two porous films 21 and 22. The intermediate chamber S1 is filled with water containing sodium chloride (NaCl) as an electrolyte. The intermediate chamber S <b> 1 communicates with the outside through a water supply port 111 and a drain port 112 provided in the electrolytic cell 11.
 陽極室S2は、多孔質膜21を介して、中間室S1に隣接する空間である。陽極室S2には、酸性水を生成するための電極23が配置される。陽極室S2は、電解槽11に設けられる給水口113と排水口114を介して、外部と通じている。 The anode chamber S2 is a space adjacent to the intermediate chamber S1 through the porous membrane 21. An electrode 23 for generating acidic water is disposed in the anode chamber S2. The anode chamber S <b> 2 communicates with the outside through a water supply port 113 and a drain port 114 provided in the electrolytic cell 11.
 陰極室S3は、多孔質膜22を介して、中間室S1に隣接する空間である。陰極室S3は、アルカリ性水を生成するための電極24が配置される。陰極室S3は、電解槽11に設けられる給水口115と排水口116を介して、外部と通じている。 The cathode chamber S3 is a space adjacent to the intermediate chamber S1 through the porous film 22. In the cathode chamber S3, an electrode 24 for generating alkaline water is disposed. The cathode chamber S3 communicates with the outside through a water supply port 115 and a water discharge port 116 provided in the electrolytic cell 11.
 陽極となる電極23は、例えば、チタン(Ti)、ステンレス鋼(SUS)、クロム(Cr)、ニッケル(Ni)、アルミニウム(Al)、或いはこれらの合金からなる。電極23は、長方形板状に整形され、複数の開口部が形成されている。 The electrode 23 serving as an anode is made of, for example, titanium (Ti), stainless steel (SUS), chromium (Cr), nickel (Ni), aluminum (Al), or an alloy thereof. The electrode 23 is shaped into a rectangular plate shape and has a plurality of openings.
 電界反応を効率よく促進させる観点から、電極23の表面には、例えば、白金(Pt)などの貴金属触媒や、酸化イリジウムなどの酸化物触媒が添着されている。 From the viewpoint of efficiently promoting the electric field reaction, for example, a noble metal catalyst such as platinum (Pt) or an oxide catalyst such as iridium oxide is attached to the surface of the electrode 23.
 陰極となる電極24も、電極23と同様に構成されている。陰極となる電極24では、触媒を添着させることなく、チタンやステンレス鋼などの耐食性を有する金属を、そのまま用いることもできる。 The electrode 24 serving as a cathode is configured in the same manner as the electrode 23. In the electrode 24 serving as a cathode, a metal having corrosion resistance such as titanium or stainless steel can be used as it is without attaching a catalyst.
 陽極室S2、及び陰極室S3には、給水口113,115から、原水が供給される。原水としては、例えば、水道水、井戸水等を用いることができる。陽極室S2,及び陰極室S3に供給される原水は、炭酸カルシウムを主成分とするスケールの堆積を防止する観点から、アルカリ成分が低減された軟水を用いることが好ましい。この種の軟水は、例えば、イオン交換樹脂を利用した軟水器を用いることで、生成することができる。 Raw water is supplied from the water supply ports 113 and 115 to the anode chamber S2 and the cathode chamber S3. As raw water, tap water, well water, etc. can be used, for example. The raw water supplied to the anode chamber S2 and the cathode chamber S3 is preferably soft water with reduced alkali components from the viewpoint of preventing the deposition of scales mainly composed of calcium carbonate. This type of soft water can be generated, for example, by using a water softener using an ion exchange resin.
 塩水タンク12は、塩水を貯留するタンクである。塩水タンク12には、電解槽11との間で塩水を循環させるための流出口121と流入口122が設けられている。 The salt water tank 12 is a tank that stores salt water. The salt water tank 12 is provided with an outlet 121 and an inlet 122 for circulating salt water between the electrolytic tank 11.
 塩水としては、例えば、水(HO)に、電解質として塩化ナトリウム(NaCl)を加えることにより生成される塩水、或いは、水に、塩素を含む塩化カリウム(KCl)などの塩を加えることにより生成される塩水が用いられる。塩水の濃度は特に制限されるものではないが、電解時の安定性を考慮すると、ある程度濃度が高い方が好ましい。塩水として飽和塩化ナトリウムを用いることで、塩水の濃度を一定に維持することが容易になる。 As salt water, for example, salt water generated by adding sodium chloride (NaCl) as an electrolyte to water (H 2 O), or by adding salt such as potassium chloride (KCl) containing chlorine to water. The resulting brine is used. The concentration of the salt water is not particularly limited, but considering the stability during electrolysis, it is preferable that the concentration is somewhat high. By using saturated sodium chloride as the salt water, it becomes easy to maintain a constant salt water concentration.
 圧力調整バルブ32は、中間室S1の排水口112と、塩水タンク12の流入口122とにわたって敷設される管路に設けられている。 The pressure adjustment valve 32 is provided in a pipe line laid across the drain port 112 of the intermediate chamber S1 and the inlet 122 of the salt water tank 12.
 循環ポンプ31は、塩水タンク12の流出口121と、中間室S1の給水口111とにわたって敷設される管路に設けられている。循環ポンプ31は、塩水タンク12の塩水を、電解槽11の中間室S1に供給する。これにより、塩水が、電解槽11の中間室S1と塩水タンク12の間を循環する。中間室S1と塩水タンク12の間を循環する塩水の流量は圧力調整バルブ32によって調整される。 The circulation pump 31 is provided in a pipe line laid across the outlet 121 of the salt water tank 12 and the water supply port 111 of the intermediate chamber S1. The circulation pump 31 supplies the salt water from the salt water tank 12 to the intermediate chamber S 1 of the electrolytic cell 11. Thereby, salt water circulates between the intermediate chamber S1 of the electrolytic cell 11 and the salt water tank 12. The flow rate of the salt water circulating between the intermediate chamber S1 and the salt water tank 12 is adjusted by the pressure adjusting valve 32.
 直流電源33は、電極23と電極24に電圧を印加する。電解水生成装置10では、電極23が陽極で、電極24が陰極になるように、それぞれの電極23,24に電圧が印加される。 DC power supply 33 applies voltage to electrode 23 and electrode 24. In the electrolyzed water generating apparatus 10, a voltage is applied to the electrodes 23 and 24 so that the electrode 23 is an anode and the electrode 24 is a cathode.
《装置動作》
 次に、上述のように構成される電解水生成装置10の動作について説明する。電解水生成装置10では、循環ポンプ31が運転されと、塩水タンク12の塩水が、電解槽11の中間室S1に供給される。そして、中間室S1に塩水が一定量蓄えられると、中間室S1からの塩水が、圧力調整バルブ32を介して、塩水タンク12に戻る。これにより、中間室S1と塩水タンク12との間で塩水が循環し、中間室S1は、一定濃度の塩水が蓄えられている状態になる。
<Device operation>
Next, operation | movement of the electrolyzed water generating apparatus 10 comprised as mentioned above is demonstrated. In the electrolyzed water generating apparatus 10, when the circulation pump 31 is operated, the salt water in the salt water tank 12 is supplied to the intermediate chamber S 1 of the electrolyzer 11. When a certain amount of salt water is stored in the intermediate chamber S 1, the salt water from the intermediate chamber S 1 returns to the salt water tank 12 via the pressure adjustment valve 32. Thereby, salt water circulates between intermediate room S1 and salt water tank 12, and intermediate room S1 will be in the state where salt water of fixed concentration is stored.
 陽極室S2及び陰極室S3には、所定の流量で原水が供給される。陽極室S2及び陰極室S3に原水が供給されると、直流電源33によって、電極23,24に電圧が印加される。これにより、陽極室S2では、次式(1),(2),(3)に示される反応が起こる。なお、式中のMは触媒を示す。 Raw water is supplied to the anode chamber S2 and the cathode chamber S3 at a predetermined flow rate. When raw water is supplied to the anode chamber S2 and the cathode chamber S3, a voltage is applied to the electrodes 23 and 24 by the DC power source 33. Thereby, in the anode chamber S2, reactions represented by the following formulas (1), (2), and (3) occur. In the formula, M represents a catalyst.
 式(1)~(3)から、陽極室S2全体での反応は、次式(4)に示される。 From the equations (1) to (3), the reaction in the whole anode chamber S2 is represented by the following equation (4).
M+HO→M-OH+H+e …(1)
M-OH→M-O+H+e …(2)
M-O+Cl+H→M+HClO …(3)
O+Cl→HClO+H+2e …(4)
M + H 2 O → M−OH + H + + e (1)
M−OH → M−O + H + + e (2)
M−O + Cl + H + → M + HClO (3)
H 2 O + Cl → HClO + H + + 2e (4)
 また、陽極室S2では、次式(5)に示される副反応が起こる場合がある。副反応では、酸素が発生する。式(1),(2),(5)から、陽極室S2全体での副反応は、次式(6)に示される。 In the anode chamber S2, a side reaction represented by the following formula (5) may occur. In the side reaction, oxygen is generated. From the formulas (1), (2), and (5), the side reaction in the entire anode chamber S2 is represented by the following formula (6).
2M-O→2M+O …(5)
2HO→O+2H+2e …(6)
2M−O → 2M + O 2 (5)
2H 2 O → O 2 + 2H + + 2e (6)
 一方、陰極室S3では、次式(7)に示される反応が起こる。 On the other hand, in the cathode chamber S3, a reaction represented by the following formula (7) occurs.
2HO+2e→H+2OH …(7) 2H 2 O + 2e → H 2 + 2OH (7)
 陽極と陰極を含めた全反応は次式(8)式で表わされる。 The total reaction including the anode and the cathode is expressed by the following formula (8).
2NaCl+3HO→HClO+HCl+2NaOH+H …(8) 2NaCl + 3H 2 O → HClO + HCl + 2NaOH + H 2 (8)
 陽極室S2に生成される酸性水は、陽極室S2に通じる排水口114から排出される。また、陰極室S3に生成されるアルカリ性水は、陰極室S3に通じる排水口116から排出される。以上のように、電解水生成装置10では、酸性水とアルカリ性水が生成される。 The acidic water generated in the anode chamber S2 is discharged from the drain port 114 leading to the anode chamber S2. Further, the alkaline water generated in the cathode chamber S3 is discharged from the drain 116 that leads to the cathode chamber S3. As mentioned above, in the electrolyzed water generating apparatus 10, acidic water and alkaline water are generated.
 図2は、多孔質膜21,22、及び電極23,24を模式的に示す図である。図2に示されるよう、多孔質膜21,22及び電極23,24は、スペーサ35を介して配置される。スペーサ35は、例えば中間室S1を構成するケーシングである。本実施形態では、多孔質膜21,22、電極23,24、及びスペーサ35は、電極ユニット100を構成する。 FIG. 2 is a diagram schematically showing the porous membranes 21 and 22 and the electrodes 23 and 24. As shown in FIG. 2, the porous membranes 21 and 22 and the electrodes 23 and 24 are disposed via a spacer 35. The spacer 35 is, for example, a casing that constitutes the intermediate chamber S1. In the present embodiment, the porous films 21 and 22, the electrodes 23 and 24, and the spacer 35 constitute the electrode unit 100.
《電極ユニット》
 図3は、電極ユニット100の斜視図である。また、図4は、電極ユニット100の展開斜視図である。図3及び図4を参照するとわかるように、電極ユニット100は、スペーサ35の上面(+Z側の面)に、多孔質膜21及び電極23を配置して、スペーサ35の下面(-Z側の面)に、多孔質膜22及び電極24を配置することにより形成される。
<Electrode unit>
FIG. 3 is a perspective view of the electrode unit 100. FIG. 4 is a developed perspective view of the electrode unit 100. As can be seen with reference to FIGS. 3 and 4, the electrode unit 100 has the porous film 21 and the electrode 23 arranged on the upper surface (the surface on the + Z side) of the spacer 35, and the lower surface (the −Z side on the −Z side). Formed on the surface) by disposing the porous membrane 22 and the electrode 24.
《スペーサ》
 スペーサ35は、X軸方向を長手方向とし、内部が中空の長方形枠状の部材である。スペーサ35は、例えば、樹脂やステンレスからなる。スペーサ35には、内部空間に通じる給水口111と排水口112が形成されている。給水口111と排水口112を介して、塩水がスペーサ35の内部を循環する。
"Spacer"
The spacer 35 is a rectangular frame-shaped member whose longitudinal direction is the X-axis direction and whose inside is hollow. The spacer 35 is made of, for example, resin or stainless steel. The spacer 35 is formed with a water supply port 111 and a water discharge port 112 that communicate with the internal space. The salt water circulates inside the spacer 35 through the water supply port 111 and the drain port 112.
 上記スペーサ35の内部空間には、例えば塩水を保持する多孔体などを配置してもよい。また、スペーサ35の内部空間に、蛇行する流路や、複数に分岐する流路などを形成してもよい。 In the internal space of the spacer 35, for example, a porous body that holds salt water may be disposed. In addition, a meandering flow path, a flow path that branches into a plurality, and the like may be formed in the internal space of the spacer 35.
《多孔質膜》
 多孔質膜21,22は、スペーサ35とほぼ等しい大きさに整形されている。図5は、多孔質膜21,22を一部拡大して示す図である。図5に示されるように、多孔質膜21,22には、複数の細孔200が形成されている。多孔質膜21,22の表面は、無機酸化物によって被覆されていることが好ましい。多孔質膜21、22は、内部に無機酸化物を含有していることが好ましい。
<Porous membrane>
The porous membranes 21 and 22 are shaped to be approximately the same size as the spacer 35. FIG. 5 is a partially enlarged view showing the porous membranes 21 and 22. As shown in FIG. 5, a plurality of pores 200 are formed in the porous films 21 and 22. The surfaces of the porous membranes 21 and 22 are preferably covered with an inorganic oxide. The porous films 21 and 22 preferably contain an inorganic oxide inside.
 多孔質膜21,22には、化学的に安定なポリテトラフルオロエチレン、ポリエチレン、ポリフッ化ビニリデン、ポリ塩化ビニリデン等が基材として用いられる。 For the porous films 21 and 22, chemically stable polytetrafluoroethylene, polyethylene, polyvinylidene fluoride, polyvinylidene chloride, or the like is used as a base material.
 陽極室S2を区画する多孔質膜21は、pHが2乃至6である領域でのゼータ電位が正になる無機酸化物によって被覆されていることが好ましい。この条件を満たす多孔質膜は化学的に安定であり、弱酸性領域において陰イオンに対する輸送性能が高い。 The porous membrane 21 that partitions the anode chamber S2 is preferably covered with an inorganic oxide that makes the zeta potential positive in a region where the pH is 2 to 6. A porous membrane satisfying this condition is chemically stable and has high transport performance for anions in a weakly acidic region.
 この種の無機酸化物としては、例えば、酸化ジルコニウム、酸化チタン、酸化アルミニウム、酸化スズ、ジルコン、酸化銅、酸化鉄およびこれらの混合酸化物を用いることができる。特に、化学的安定性が良好な無機酸化物として、酸化ジルコニウム、酸化アルミニウム、酸化チタン、ジルコンを用いることができる。この中で、曲げ耐性が良好な無機酸化物は、酸化ジルコニウムである。 As this kind of inorganic oxide, for example, zirconium oxide, titanium oxide, aluminum oxide, tin oxide, zircon, copper oxide, iron oxide, and mixed oxides thereof can be used. In particular, zirconium oxide, aluminum oxide, titanium oxide, and zircon can be used as the inorganic oxide having good chemical stability. Among these, the inorganic oxide having good bending resistance is zirconium oxide.
 無機酸化物は、水酸化物やアルコキシド、オキシハロゲン化物、水和物を含んでいてもよい。金属ハロゲン化物や金属アルコキシドの加水分解を経て無機酸化物を作製すると、後処理の温度によっては、これらの混合物になることがある。多孔質膜における無機酸化物の存在比率を、場所によって異ならしめることとしてもよい。例えば、細孔の周りや表面に無機酸化物の存在比率を多くすることとしてもよい。 The inorganic oxide may contain a hydroxide, an alkoxide, an oxyhalide, or a hydrate. When an inorganic oxide is produced through hydrolysis of a metal halide or metal alkoxide, a mixture of these may be formed depending on the post-treatment temperature. The abundance ratio of the inorganic oxide in the porous film may be varied depending on the location. For example, the presence ratio of the inorganic oxide around the pores or on the surface may be increased.
 無機酸化物として、ジルコンのような複合酸化物や、相互に異なる無機酸化物の混合物を使用することができる。多孔質膜は、異なる2種以上の酸化物によって被覆されていてもよく、各酸化物の存在比率を、多孔質膜の位置によって異ならしめることとしてもよい。例えば、多孔質膜の表面を、曲げ強度の大きい酸化ジルコニウムで被覆し、内部を正の電位の絶対値が大きい酸化チタンで被覆することとしてもよい。 As the inorganic oxide, a composite oxide such as zircon or a mixture of different inorganic oxides can be used. The porous film may be covered with two or more different oxides, and the abundance ratio of each oxide may be made different depending on the position of the porous film. For example, the surface of the porous film may be coated with zirconium oxide having a large bending strength, and the inside may be coated with titanium oxide having a large positive potential absolute value.
 多孔質膜の表面のゼータ電位は、pH4において-30mVより大きくするのが好ましい。多孔質膜の表面のゼータ電位が-30mVより小さい、と多孔質膜に電圧をかけても塩素イオンが浸透しにくくなる傾向がある。多孔質膜の表面のゼータ電位は、-15mVより大きいことが好ましい。 The zeta potential on the surface of the porous membrane is preferably greater than −30 mV at pH 4. When the zeta potential on the surface of the porous membrane is smaller than −30 mV, chloride ions tend to hardly penetrate even when a voltage is applied to the porous membrane. The zeta potential on the surface of the porous membrane is preferably larger than −15 mV.
 陰極室S3を区画する多孔質膜22は、pHが8乃至10である領域でのゼータ電位が負になる無機酸化物によって被覆されていることが好ましい。この条件を満たす多孔質膜は、弱アルカリ性領域において陽イオンに対する輸送性能が高い。 The porous membrane 22 that partitions the cathode chamber S3 is preferably covered with an inorganic oxide that has a negative zeta potential in the region where the pH is 8 to 10. A porous membrane that satisfies this condition has high transport performance for cations in the weakly alkaline region.
 この種の無機酸化物としては、例えば、酸化ジルコニウム、酸化チタン、酸化アルミニウム、酸化タングステン、ジルコン、酸化ケイ素、及びゼオライトを用いることができる。無機酸化物として上記酸化物の混合物を使用してもよい。また、多孔質膜における無機酸化物の存在比率や種類を、場所によって異なるしめることとしてもよい。例えば、多孔質膜の表面を、曲げ強度の大きい酸化ジルコニウムで被覆し、内部を、広いpH領域において電位が負になる酸化シリコンで被覆することとしてもよい。 As this kind of inorganic oxide, for example, zirconium oxide, titanium oxide, aluminum oxide, tungsten oxide, zircon, silicon oxide, and zeolite can be used. A mixture of the above oxides may be used as the inorganic oxide. Further, the abundance ratio and type of inorganic oxide in the porous film may be changed depending on the location. For example, the surface of the porous film may be coated with zirconium oxide having a high bending strength, and the inside may be coated with silicon oxide having a negative potential in a wide pH range.
 無機酸化物に被覆された多孔質膜は、多孔体基材にナノ粒子を塗布することにより形成することができる。また、ゾルーゲル法を用いることで、二次元的、或いは三次元的に不規則に配置される孔を有する多孔質膜を形成することができる。このような多孔質膜は、曲げ等にも強くなる。無機酸化物は、粒子が分散していてもよいし、粒子が集合体を形成してネットワーク状になっていてもよい。 A porous film coated with an inorganic oxide can be formed by applying nanoparticles to a porous substrate. Further, by using the sol-gel method, a porous film having pores that are irregularly arranged two-dimensionally or three-dimensionally can be formed. Such a porous film is resistant to bending and the like. The inorganic oxide may have dispersed particles, or the particles may form an aggregate to form a network.
 多孔質膜21,22に形成された細孔の孔径は、多孔質膜21,22の一側と他側で異なっていてもよい。例えば、多孔質膜21では、電極23側の細孔の孔径の方が、電極24側の細孔の孔径よりも小さくてもよい。塩化物イオンClなどの陰イオンは、電極23側の細孔の孔径が小さくても、電極23に向かって容易に移動することができる。逆に、多孔質膜21において、電極23側の細孔の孔径の方が、電極24側の細孔の孔径よりも大きい場合には、塩素が多孔質膜近傍で拡散しやすくなる。多孔質膜の細孔の孔径は、例えば走査型電子顕微鏡(SEM)などを用いて測定することができる。 The pore diameters of the pores formed in the porous membranes 21 and 22 may be different from one side of the porous membranes 21 and 22 to the other side. For example, in the porous membrane 21, the pore diameter on the electrode 23 side may be smaller than the pore diameter on the electrode 24 side. Anions such as chloride ion Cl 2 can easily move toward the electrode 23 even if the pore diameter on the electrode 23 side is small. On the contrary, in the porous membrane 21, when the pore diameter of the pores on the electrode 23 side is larger than the pore diameter of the pores on the electrode 24 side, chlorine easily diffuses in the vicinity of the porous membrane. The pore diameter of the pores of the porous membrane can be measured using, for example, a scanning electron microscope (SEM).
《電極》
 図6及び図7は、電極23の斜視図である。電極23は、厚さが1mm程度で、X軸方向を長手方向とする長方形板状に整形されている。電極23は、枠状のフレーム部201と、X軸方向を長手方向とする複数の格子部202と、Y軸方向を長手方向とするビーム部203の3部分からなる。
"electrode"
6 and 7 are perspective views of the electrode 23. FIG. The electrode 23 has a thickness of about 1 mm and is shaped into a rectangular plate having the X-axis direction as the longitudinal direction. The electrode 23 includes a frame-shaped frame portion 201, a plurality of lattice portions 202 having a longitudinal direction in the X-axis direction, and a beam portion 203 having a longitudinal direction in the Y-axis direction.
 格子部202とビーム部203は、フレーム部201に規定される空間に、相互に交差するように設けられている。格子部202は、フレーム部201に規定される空間に、X軸に平行になるように張り渡されている。また、ビーム部203は、フレーム部201に規定される空間に、Y軸に平行になるように張り渡されている。 The lattice unit 202 and the beam unit 203 are provided in a space defined by the frame unit 201 so as to cross each other. The lattice unit 202 is stretched across a space defined by the frame unit 201 so as to be parallel to the X axis. Further, the beam portion 203 is stretched in a space defined by the frame portion 201 so as to be parallel to the Y axis.
 図8は、図6におけるAA断面を示す図である。図8に示されるように、格子部202は、ピッチP1が0.5mmとなるように、Y軸に沿って等間隔に配列されている。また、格子部202は、厚さD1が0.1~0.2mmで、断面が台形になるように整形されている。そのため、格子部202に挟まれる開口部は、+Z側のY軸方向の寸法W1が0.4mmであり、-Z側のY軸方向の寸法W2が0.2mmとなっている。 FIG. 8 is a diagram showing an AA cross section in FIG. As shown in FIG. 8, the lattice portions 202 are arranged at equal intervals along the Y axis so that the pitch P1 is 0.5 mm. The lattice portion 202 is shaped so that the thickness D1 is 0.1 to 0.2 mm and the cross section is a trapezoid. For this reason, in the opening sandwiched between the lattice portions 202, the dimension W1 in the Y-axis direction on the + Z side is 0.4 mm, and the dimension W2 in the Y-axis direction on the −Z side is 0.2 mm.
 図9は、図7におけるBB断面を示す図である。図9に示されるように、ビーム部203は、ピッチP2が2.4mmとなるように、X軸に沿って等間隔に配列されている。また、ビーム部203は、厚さD2が0.3~0.4mmで、断面が台形になるように整形されている。そのため、ビーム部203に挟まれる開口部は、-Z側のX軸方向の寸法W3が1.6mmであり、+Z側のX軸方向の寸法W4が1.2mmとなっている。 FIG. 9 is a diagram showing a BB cross section in FIG. As shown in FIG. 9, the beam portions 203 are arranged at equal intervals along the X-axis so that the pitch P2 is 2.4 mm. The beam portion 203 is shaped so that the thickness D2 is 0.3 to 0.4 mm and the cross section is a trapezoid. For this reason, in the opening sandwiched between the beam portions 203, the dimension W3 in the X-axis direction on the −Z side is 1.6 mm, and the dimension W4 in the X-axis direction on the + Z side is 1.2 mm.
 上述のように構成される電極23は、例えば、厚さが0.5~1mm程度で、ステンレス鋼或いはチタンからなる金属板の両面に、エッチング処理を施すことにより製造することができる。そのため、フレーム部201の+Z側の面と、格子部202の+Z側の面は同一面内に位置し、フレーム部201の-Z側の面と、ビーム部203の-Z側の面は同一面内に位置する。また、長方形の開口部の四隅は丸みを帯びた形状になっている。 The electrode 23 configured as described above can be manufactured, for example, by performing etching treatment on both surfaces of a metal plate made of stainless steel or titanium having a thickness of about 0.5 to 1 mm. Therefore, the + Z side surface of the frame portion 201 and the + Z side surface of the lattice portion 202 are located in the same plane, and the −Z side surface of the frame portion 201 and the −Z side surface of the beam portion 203 are the same. Located in the plane. The four corners of the rectangular opening are rounded.
 なお、図6及び図7では、10本の格子部202が描かれているが、実際の電極には、数十~数百の格子部202が形成される。これにより、電極23の+Z側の面の面積A0に対して、格子部202の-Z側に挟まれる領域の面積A1の割合は約40%となる。電極23は、長手方向が鉛直方向となり、+Z側の面が多孔質膜に対向するように配置される。 In FIG. 6 and FIG. 7, ten lattice parts 202 are drawn, but tens to hundreds of lattice parts 202 are formed on an actual electrode. Accordingly, the ratio of the area A1 of the region sandwiched on the −Z side of the lattice portion 202 to the area A0 of the + Z side surface of the electrode 23 is about 40%. The electrode 23 is disposed such that the longitudinal direction is the vertical direction and the surface on the + Z side faces the porous film.
 図6及び図7では、3本のビーム部203が描かれているが、実際の電極には、数十のビーム部203が形成される。このため、電極23を貫通する開口部の面積A2は、電極23の+Z側の面の面積A0の20%程度となっている。電極23では、面積A0に対する面積A2の割合が50%以下であることが好ましい。 6 and 7, three beam portions 203 are drawn, but several tens of beam portions 203 are formed on an actual electrode. For this reason, the area A2 of the opening that penetrates the electrode 23 is about 20% of the area A0 of the + Z side surface of the electrode 23. In the electrode 23, the ratio of the area A2 to the area A0 is preferably 50% or less.
 また、電極24についても、電極23と同様に構成される。 Also, the electrode 24 is configured similarly to the electrode 23.
 なお、電極23,24の開口部の形状は、円形、楕円形、或いは多角形など任意に決めることができる。開口部の形状を四角形や菱形などの多角形とする場合は、コーナーが丸みを帯びていることが好ましい。コーナー部分を丸めることで、応力集中を起こりにくくすることができる。 In addition, the shape of the opening part of the electrodes 23 and 24 can be arbitrarily determined, such as a circle, an ellipse, or a polygon. When the shape of the opening is a polygon such as a quadrangle or a rhombus, the corner is preferably rounded. By rounding the corner portion, stress concentration can be made difficult to occur.
 陽極としての電極23での塩化物イオンの濃度が低いと、式(5)に示される反応が起こりやすくなる。したがって、次亜塩素酸を効率よく生成するには塩化物イオンの濃度を高くすることが必要である。塩化物イオンは多孔質膜側から電極へ供給される。多孔質膜を通過する塩化物イオンは、多孔質膜と電極とが接しているところからは流出せず、電極23の貫通した開口部から流出する。このため、電極23での塩化物イオンの濃度を上げるには、電極23の開口部からの塩化物イオンの流出を防止することが重要となる。 When the concentration of chloride ions at the electrode 23 as the anode is low, the reaction represented by the formula (5) tends to occur. Therefore, in order to efficiently generate hypochlorous acid, it is necessary to increase the concentration of chloride ions. Chloride ions are supplied from the porous membrane side to the electrode. Chloride ions passing through the porous membrane do not flow out from the place where the porous membrane and the electrode are in contact, but flow out from the opening through which the electrode 23 penetrates. For this reason, in order to increase the concentration of chloride ions at the electrode 23, it is important to prevent the outflow of chloride ions from the opening of the electrode 23.
 そのため、電極23,24の開口部の開口面積は0.01mmから4mmとなっている。開口面積が0.01mmより小さいと、ガスや次亜塩素酸などの反応生成物を外部へ排出するのが困難になる。このため電極23,24の劣化等が起こりやすくなる。また、開口面積が4mmより大きいと、塩化物イオンが流出しやすく、また電極23,24の電気抵抗が大きくなり、電解効率が低下する。開口面積は、0.1mm乃至1.5mmであることが好ましい。また、開口面積は、0.2mm乃至1mmであることが、より好ましい。 Therefore, the opening area of the openings of the electrodes 23 and 24 is 0.01 mm 2 to 4 mm 2 . When the opening area is smaller than 0.01 mm 2 , it becomes difficult to discharge reaction products such as gas and hypochlorous acid to the outside. For this reason, the electrodes 23 and 24 are likely to deteriorate. On the other hand, if the opening area is larger than 4 mm 2 , chloride ions are likely to flow out, the electric resistance of the electrodes 23 and 24 is increased, and the electrolysis efficiency is lowered. The opening area is preferably 0.1 mm 2 to 1.5 mm 2 . The opening area is more preferably 0.2 mm 2 to 1 mm 2 .
《製造方法》
 次に上述のように構成される電極ユニット100を備える電解水生成装置10の製造方法について、図10のフローチャートに基づいて説明する。
"Production method"
Next, the manufacturing method of the electrolyzed water generating apparatus 10 provided with the electrode unit 100 comprised as mentioned above is demonstrated based on the flowchart of FIG.
 電極ユニット100を製造する際には、まず、多孔質材料を整形して、図4に示される多孔質膜21,22を準備する(ステップS101)。次に、多孔質膜21,22に対する前処理を行う(ステップS102)。 When manufacturing the electrode unit 100, first, the porous material is shaped to prepare the porous films 21 and 22 shown in FIG. 4 (step S101). Next, preprocessing is performed on the porous films 21 and 22 (step S102).
 前処理は、多孔質膜21,22の表面を改質することにより、多孔質膜21,22の液体に対する親和性を向上させるための処理である。前処理としては、例えば、プラズマ処理、電子線処理、及びUVオゾン処理等が実行される。 The pretreatment is a treatment for improving the affinity of the porous membranes 21 and 22 to the liquid by modifying the surfaces of the porous membranes 21 and 22. As preprocessing, plasma processing, electron beam processing, UV ozone processing, etc. are performed, for example.
 プラズマ処理は、多孔質膜21,22の表面に、例えば酸素プラズマを照射する処理である。電子線処理は、多孔質膜21,22の表面に、電子線を照射する処理である。UVオゾン処理は、多孔質膜21,22の表面に、紫外線を照射する処理である。これらの処理により、多孔質膜21,22の表面が改質し、液体に対する親和性が向上する。 The plasma treatment is a treatment in which the surfaces of the porous films 21 and 22 are irradiated with, for example, oxygen plasma. The electron beam treatment is a treatment for irradiating the surfaces of the porous films 21 and 22 with an electron beam. The UV ozone treatment is a treatment for irradiating the surfaces of the porous films 21 and 22 with ultraviolet rays. By these treatments, the surfaces of the porous membranes 21 and 22 are modified, and the affinity for the liquid is improved.
 次に、図11に示されるように、多孔質膜21,22を、液体51に浸漬する(ステップS103)。液体51は、水と親和する性質を有し、表面張力が35mN/m以下の液体である。液体51としては、例えば、図11に示すようにエタノールの濃度が30重量%以上のエタノール水溶液が考えられる。エタノールの濃度は、50重量%以上であることが好ましく、特に90重量%以上であることが好ましい。また、液体51は、99.5%のいわゆる無水エタノールであってもよい。また、界面活性剤の水溶液であってもよい。 Next, as shown in FIG. 11, the porous membranes 21 and 22 are immersed in the liquid 51 (step S103). The liquid 51 is a liquid having a property that is compatible with water and having a surface tension of 35 mN / m or less. As the liquid 51, for example, as shown in FIG. 11, an ethanol aqueous solution having an ethanol concentration of 30% by weight or more can be considered. The concentration of ethanol is preferably 50% by weight or more, and particularly preferably 90% by weight or more. The liquid 51 may be 99.5% so-called absolute ethanol. Moreover, the aqueous solution of surfactant may be sufficient.
 多孔質膜21,22を液体51に浸漬することで、水に比べて表面張力の低い液体51が、多孔質膜21,22の細孔に進入する。 By immersing the porous membranes 21 and 22 in the liquid 51, the liquid 51 having a lower surface tension than water enters the pores of the porous membranes 21 and 22.
 次に、図12に示されるように、多孔質膜21,22を、水道水などの水52を用いて水洗いする(ステップS104)。多孔質膜21,22の表面や細孔の内部は、水に対して親和性を有する液体51となじんだ状態になっている。このため、多孔質膜21,22を水洗いすることで、多孔質膜21,22の表面や内部が水52となじんだ状態になる。 Next, as shown in FIG. 12, the porous membranes 21 and 22 are washed with water 52 such as tap water (step S104). The surfaces of the porous membranes 21 and 22 and the inside of the pores are in a state in which they are familiar with the liquid 51 having an affinity for water. For this reason, by washing the porous membranes 21 and 22 with water, the surface and the inside of the porous membranes 21 and 22 are in a state of being in contact with the water 52.
 次に、多孔質膜21,22をとり出して、図4に示されるように、スペーサ35の上面側に、多孔質膜21及び電極23を配置し、スペーサ35の下面側に。多孔質膜22及び電極24を配置する。そして、図3に示されるように、スペーサ35、多孔質膜21,22、電極23,24を組み付けて一体化する(ステップS105)。スペーサ35、多孔質膜21,22、電極23,24は、例えば、スペーサ35に、電極23,24が固定されることで、一体化される。これにより、電極ユニット100が組み立てられる。 Next, the porous films 21 and 22 are taken out, and the porous film 21 and the electrode 23 are arranged on the upper surface side of the spacer 35 and the lower surface side of the spacer 35 as shown in FIG. The porous membrane 22 and the electrode 24 are disposed. Then, as shown in FIG. 3, the spacer 35, the porous films 21 and 22, and the electrodes 23 and 24 are assembled and integrated (step S105). The spacer 35, the porous films 21 and 22, and the electrodes 23 and 24 are integrated by, for example, fixing the electrodes 23 and 24 to the spacer 35. Thereby, the electrode unit 100 is assembled.
 次に、図13に示されるように、内部に陽極室S2が形成された樹脂製のケーシング151と、内部に陰極室S3が形成された樹脂製のケーシング152で、電極ユニット100を挟み、ケーシング151,152同士をネジ等で固定する。これにより、電解槽11が組み立てられる(ステップS106)。 Next, as shown in FIG. 13, the electrode unit 100 is sandwiched between a resin casing 151 having an anode chamber S2 formed therein and a resin casing 152 having a cathode chamber S3 formed therein. 151 and 152 are fixed with screws or the like. Thereby, the electrolytic cell 11 is assembled (step S106).
 なお、図13に示されるように、内部に陽極室S2が形成されたケーシング151と、内部に陰極室S3が形成されたケーシング152で、スペーサ35、多孔質膜21,22、電極23,24を挟み、ケーシング151,152同士をネジ等で固定することで、スペーサ35、多孔質膜21,22、電極23,24を一体化してもよい。 As shown in FIG. 13, the spacer 151, the porous membranes 21 and 22, and the electrodes 23 and 24 are composed of a casing 151 having an anode chamber S 2 formed therein and a casing 152 having a cathode chamber S 3 formed therein. The spacers 35, the porous membranes 21 and 22, and the electrodes 23 and 24 may be integrated by fixing the casings 151 and 152 with screws or the like.
 次に、上述のように構成される電解槽11に、塩水タンク12、循環ポンプ31、圧力調整バルブ32、直流電源33などの補機類を接続する(ステップS107)。これにより、図1に示される電解水生成装置10が組み立てられる。 Next, auxiliaries such as the salt water tank 12, the circulation pump 31, the pressure adjustment valve 32, and the DC power source 33 are connected to the electrolytic cell 11 configured as described above (step S107). Thereby, the electrolyzed water generating apparatus 10 shown in FIG. 1 is assembled.
 以上説明したように、本実施形態では、電極ユニット100の製造過程で、多孔質膜21,22が、液体51に浸漬される(ステップS103)。次に、水道水などの水52によって、多孔質膜21,22が水洗いされる(ステップS104)。以上の工程を経ることにより、多孔質膜21,22の表面や細孔の内部が、水に対して親和性を有する液体51となじんだ状態になる。そして、多孔質膜21,22が水洗いされることで、多孔質膜21,22の表面や内部が水52となじんだ状態になる。 As described above, in the present embodiment, the porous membranes 21 and 22 are immersed in the liquid 51 during the manufacturing process of the electrode unit 100 (step S103). Next, the porous membranes 21 and 22 are washed with water 52 such as tap water (step S104). By passing through the above process, the surface of the porous membranes 21 and 22 and the inside of the pores are in a state of becoming familiar with the liquid 51 having affinity for water. Then, the porous membranes 21 and 22 are washed with water, so that the surfaces and the inside of the porous membranes 21 and 22 become familiar with the water 52.
 したがって、多孔質膜21,22は、中間室S1、陽極室S2、陰極室S3の塩水や水道水と短時間に親和する状態になる。その結果、電解水生成装置10を起動してから、電解が安定して行われるまでの立ち上がり時間を短縮することができる。 Therefore, the porous membranes 21 and 22 are in a state of having a short time affinity with the salt water and tap water in the intermediate chamber S1, the anode chamber S2, and the cathode chamber S3. As a result, it is possible to shorten the rise time from when the electrolyzed water generating device 10 is started until the electrolysis is stably performed.
 なお、電解水生成装置10が一度立ち上がった後は、電解水生成装置10を乾燥させたとしても、多孔質膜21,22の表面や細孔に、イオン種が残った状態になっている。そのため、次に電解水生成装置10を起動したときにも、短時間のうちに電解を安定して行うことができる。このため、電解水生成装置10を、稼働前に予備運転することとしてもよい。予備運転後に電解水生成装置が乾燥したとしても、当該電解水生成装置を短時間に立ち上げることができる。 It should be noted that after the electrolyzed water generating device 10 is started up, ionic species remain on the surfaces and pores of the porous membranes 21 and 22 even if the electrolyzed water generating device 10 is dried. Therefore, even when the electrolyzed water generating apparatus 10 is started next time, electrolysis can be stably performed in a short time. For this reason, the electrolyzed water generating apparatus 10 may be preliminarily operated before operation. Even if the electrolyzed water generating device is dried after the preliminary operation, the electrolyzed water generating device can be started up in a short time.
 また、液体51は、エタノールと水からなることが好ましい。エタノールは、環境への負荷が少なく安全性も高い。このため、液体51に浸漬した多孔質膜21,22を、安全に水洗いすることができる。 The liquid 51 is preferably made of ethanol and water. Ethanol has low environmental impact and high safety. For this reason, the porous membranes 21 and 22 immersed in the liquid 51 can be safely washed with water.
 本実施形態では、多孔質膜21,22を液体51に浸漬する前に、多孔質膜21,22に前処理が行われる。このため、多孔質膜21,22の表面の親水性が向上する。したがって、その後の処理(ステップS103,104)で、良好に多孔質膜21,22と、液体51或いは水52とを親和させることができる。 In this embodiment, before the porous membranes 21 and 22 are immersed in the liquid 51, the porous membranes 21 and 22 are pretreated. For this reason, the hydrophilicity of the surface of the porous membranes 21 and 22 improves. Accordingly, the porous films 21 and 22 can be satisfactorily made compatible with the liquid 51 or the water 52 in the subsequent processing (steps S103 and S104).
 なお、上記実施形態では、液体51がエタノールを含む場合について説明した。これに限らず、液体51は、例えばメタノール、プロパノール、イソプロパノールなどのアルコール類を含んでいてもよい。 In the above embodiment, the case where the liquid 51 contains ethanol has been described. However, the liquid 51 may contain alcohols such as methanol, propanol, and isopropanol.
 上記実施形態では、液体51の表面張力は35mN/m以下であることとしたが、液体51の表面張力は、30mN/m以下であることが好ましい。特に、液体51の表面張力は、25mN/m以下であることが好ましい。液体51の表面張力は、種々の方法で測定することができる。例えば、Wilhelmy法、リング法、懸滴法、最大泡圧法などを用いて測定することができる。アルコールやアルコール水溶液の表面張力の計測には、リング法が適している。また、界面活性剤を含有する水溶液の表面張力の計測には、懸滴法が適している。 In the above embodiment, the surface tension of the liquid 51 is 35 mN / m or less, but the surface tension of the liquid 51 is preferably 30 mN / m or less. In particular, the surface tension of the liquid 51 is preferably 25 mN / m or less. The surface tension of the liquid 51 can be measured by various methods. For example, the measurement can be performed using a Wilhelmy method, a ring method, a hanging drop method, a maximum bubble pressure method, or the like. The ring method is suitable for measuring the surface tension of alcohol or an aqueous alcohol solution. The hanging drop method is suitable for measuring the surface tension of an aqueous solution containing a surfactant.
 上記実施形態では、多孔質膜21,22を水で洗う場合について説明した。これに限らず、塩化物イオンが含まれる水で、多孔質膜21,22を洗浄することとしてもよい。これにより、電解水生成装置10を起動してから、電解が安定して行われるまでの立ち上がり時間を更に短縮することができる。 In the above embodiment, the case where the porous membranes 21 and 22 are washed with water has been described. Not limited to this, the porous membranes 21 and 22 may be washed with water containing chloride ions. Thereby, after starting electrolyzed water production | generation apparatus 10, the starting time until electrolysis is performed stably can further be shortened.
 塩化物イオン源としては、塩化ナトリウムもしくは塩化カリウム等の塩化物が好ましい。多孔質膜21,22を洗浄するときの水に含まれる塩化物の濃度は、1重量%飽和濃度であることが好ましい。塩化物の濃度は、3重量%飽和濃度であることがより好ましく、特に5重量%飽和濃度であることが好ましい。 The chloride ion source is preferably a chloride such as sodium chloride or potassium chloride. The concentration of chloride contained in water when the porous membranes 21 and 22 are washed is preferably 1% by weight saturation concentration. The chloride concentration is more preferably 3% by weight saturation, and particularly preferably 5% by weight saturation.
 上記実施形態では、前処理(ステップS102)の後に、多孔質膜21,22を液体51に浸漬することとした(ステップS103)。これに限らず、前処理を行った後に、多孔質膜21,22を、アルミニウム、ジルコニウム、チタン等のアルコキシド溶液に接触させる工程を行ってもよい。この工程を行うことで、多孔質膜21,22の表面や細孔の表面に、これらアルミニウム等の酸化物や水酸化物、或いはこれらの中間物が生成する。これにより、多孔質膜21,22の親水性が増大し、液体51が、より浸みこみやすくなる。また、塩化物イオンとの親和性も増加するため好ましい。 In the above embodiment, the porous membranes 21 and 22 are immersed in the liquid 51 after the pretreatment (step S102) (step S103). Not only this but after performing pre-processing, you may perform the process which makes the porous membranes 21 and 22 contact alkoxide solutions, such as aluminum, zirconium, and titanium. By performing this step, oxides or hydroxides such as aluminum, or intermediates thereof are generated on the surfaces of the porous films 21 and 22 and the surfaces of the pores. Thereby, the hydrophilicity of the porous membranes 21 and 22 is increased, and the liquid 51 is more easily immersed. Moreover, since affinity with a chloride ion increases, it is preferable.
 アルコキシドとしては、メトキシド、エトキシド、プロポキシド、イソプロポキシドなどを用いることができる。溶解度および加水分解の観点からは、イソプロポキシドを用いることが好ましい。これらの濃度は飽和濃度の5%乃至95%程度が好ましい。また、飽和濃度の20%乃至90%であることがより好ましく、特に、飽和濃度の50%乃至80%であることが好ましい。濃度が、飽和濃度の5%より小さいと効果が少ない。飽和濃度では液体の安定性が悪くなる。 As the alkoxide, methoxide, ethoxide, propoxide, isopropoxide and the like can be used. From the viewpoint of solubility and hydrolysis, it is preferable to use isopropoxide. These concentrations are preferably about 5% to 95% of the saturated concentration. Further, it is more preferably 20% to 90% of the saturated concentration, and particularly preferably 50% to 80% of the saturated concentration. If the concentration is less than 5% of the saturation concentration, the effect is small. At the saturated concentration, the stability of the liquid becomes poor.
 多孔質膜21,22をアルコキシド溶液に接触させる工程は、前処理(ステップS102)の後で行うのが好ましい。前処理の後で上記工程を行うことで、多孔質膜21,22と、アルミニウム、ジルコニウム、チタン等のアルコキシド溶液とが接触したときに、反応生成物としての酸化物が安定して多孔質膜21,22に固定される。前処理として、プラズマ処理、或いは電子線処理を行うと、酸化物が特に安定して多孔質膜21,22に固定される。 The step of bringing the porous membranes 21 and 22 into contact with the alkoxide solution is preferably performed after the pretreatment (step S102). By performing the above steps after the pretreatment, when the porous membranes 21 and 22 come into contact with an alkoxide solution such as aluminum, zirconium, or titanium, the oxide as the reaction product is stably stabilized. 21 and 22 are fixed. When plasma treatment or electron beam treatment is performed as pretreatment, the oxide is particularly stably fixed to the porous films 21 and 22.
 上記実施形態では、化学的に安定なポリテトラフルオロエチレン、ポリエチレン、ポリフッ化ビニリデン、ポリ塩化ビニリデン等が、多孔質膜21,22の基材として用いられることとした。 In the above embodiment, chemically stable polytetrafluoroethylene, polyethylene, polyvinylidene fluoride, polyvinylidene chloride, or the like is used as the base material of the porous membranes 21 and 22.
 多孔質ポリテトラフルオロエチレン膜や、多孔質ポリエチレン膜等は延伸等によって多孔構造が作製されるが、一般に孔の大きさの制御が難しい。また、これらの膜は機械的な強度が弱いために、水圧等で伸びて孔径が変化することがある。一方、ガラス繊維は化学的に安定であり、強度も高く水圧による変形が少ない。そのため、多孔質膜としては、ガラス繊維とポリテトラフルオロエチレンもしくはポリフッ化ビニリデンを混合して複合膜とすることとしてもよい。これにより、孔径の調整が容易になり、化学的強度、及び機械的強度を向上させることができる。上記材質の中では、多孔質ポリテトラフルオロエチレン膜とガラス繊維を積層させることが好ましい。ポリエチレン多孔質膜では耐熱性に若干であるが問題があり、ポリフッ化ビニリデンでは耐アルカリ性に若干であるが問題がある。 Porous polytetrafluoroethylene film, porous polyethylene film, etc. have a porous structure formed by stretching or the like, but it is generally difficult to control the size of the pores. In addition, since these films have low mechanical strength, they may be stretched by water pressure or the like to change the pore diameter. On the other hand, glass fiber is chemically stable, has high strength, and is hardly deformed by water pressure. Therefore, as the porous film, glass fiber and polytetrafluoroethylene or polyvinylidene fluoride may be mixed to form a composite film. Thereby, adjustment of a hole diameter becomes easy and a chemical strength and mechanical strength can be improved. Among the above materials, it is preferable to laminate a porous polytetrafluoroethylene film and glass fiber. The polyethylene porous membrane has a slight problem with heat resistance, but the polyvinylidene fluoride has a slight problem with alkali resistance.
《変形例》
 次に、上記実施形態に係る製造方法の変形例について説明する。上記実施形態では、多孔質膜21,22を液体51に浸漬し(ステップS103)、その後、多孔質膜21,22を水洗いすることとした(ステップS104)。本変形例に係る製造方法では、まず、図3に示されるように、多孔質膜21,22,電極23,24,及びスペーサ35を一体して電極ユニット100を組み立てた後に、図14に示されるように、電極ユニット100を、液体51に浸漬する。電極ユニット100を液体51に浸漬することで、水に比べて表面張力の低い液体51が、多孔質膜21,22の細孔に進入する。
<Modification>
Next, a modification of the manufacturing method according to the above embodiment will be described. In the above embodiment, the porous membranes 21 and 22 are immersed in the liquid 51 (step S103), and then the porous membranes 21 and 22 are washed with water (step S104). In the manufacturing method according to this modified example, first, as shown in FIG. 3, after the porous membranes 21, 22, the electrodes 23, 24 and the spacers 35 are integrated to assemble the electrode unit 100, as shown in FIG. As described above, the electrode unit 100 is immersed in the liquid 51. By dipping the electrode unit 100 in the liquid 51, the liquid 51 having a lower surface tension than water enters the pores of the porous films 21 and 22.
 次に、図15に示されるように、電極ユニット100を、水道水などの水52を用いて水洗いすることにより電極ユニットを製造する。多孔質膜21,22の表面や細孔の内部は、水に対して親和性を有する液体51となじんだ状態になっている。このため、電極ユニット100を水洗いすることで、多孔質膜21,22の表面や内部が水52となじんだ状態になる。 Next, as shown in FIG. 15, the electrode unit 100 is manufactured by washing the electrode unit 100 with water 52 such as tap water. The surfaces of the porous membranes 21 and 22 and the inside of the pores are in a state in which they are familiar with the liquid 51 having an affinity for water. For this reason, by washing the electrode unit 100 with water, the surface and the inside of the porous membranes 21 and 22 are in a state of being in contact with the water 52.
 次に、図13に示されるように、内部に陽極室S2が形成されたケーシング151と、内部に陰極室S3が形成されたケーシング152で、電極ユニット100を挟み、ケーシング151,152同士をネジ等で固定する。これにより、電解槽11が完成する。 Next, as shown in FIG. 13, the electrode unit 100 is sandwiched between the casing 151 in which the anode chamber S2 is formed and the casing 152 in which the cathode chamber S3 is formed, and the casings 151 and 152 are screwed together. Fix with etc. Thereby, the electrolytic cell 11 is completed.
 次に、上述のように構成される電解槽11に、塩水タンク12、循環ポンプ31、圧力調整バルブ32、直流電源33などの補機類を接続する。これにより、図1に示される電解水生成装置10が完成する。 Next, auxiliary equipment such as the salt water tank 12, the circulation pump 31, the pressure adjustment valve 32, and the DC power source 33 is connected to the electrolytic cell 11 configured as described above. Thereby, the electrolyzed water generating apparatus 10 shown in FIG. 1 is completed.
 以上説明したように、本変形例では、電極ユニット100のみを交換部品などとして大量に作り置きしておくことが可能となる。 As described above, in this modification, only the electrode unit 100 can be made in large quantities as replacement parts.
 次に、本実施形態の効果を示す実施例について説明する。 Next, examples showing the effects of this embodiment will be described.
《実施例1》
 図1に示される電解水生成装置10において、厚さ30μmのポリテトラフルオロエチレン多孔質膜(住友電工社製:ポアフロンHPW-010-30)と、厚さ75μmのガラスクロス(日東紡:3313)を一体化したものを多孔質膜21,22の原料として用いる。ポリテトラフルオロエチレン多孔質膜とガラスクロスは、双方を重ねた状態で100℃まで加熱してプレスすることで一体化する。
Example 1
In the electrolyzed water generating apparatus 10 shown in FIG. 1, a polytetrafluoroethylene porous membrane (manufactured by Sumitomo Electric: Poreflon HPW-010-30) having a thickness of 30 μm and a glass cloth having a thickness of 75 μm (Nittobo: 3313) Is used as a raw material for the porous membranes 21 and 22. The polytetrafluoroethylene porous membrane and the glass cloth are integrated by heating and pressing to 100 ° C. in a state where both are stacked.
 次に、ポリテトラフルオロエチレン多孔質膜とガラスクロスの積層体のガラスクロス面に対して、ポリテトラフルオロエチレン微粒子分散液(三井・デュポン社:フロロケミカル31-JR)を2倍に希釈した分散液に、チタニアナノ粒子をポリテトラフルオロエチレンに対して30wt%含有させた混合液を用いたディップコーティングを行う。そして、積層体を200℃まで加熱して多孔質膜21,22を作製する。ポリテトラフルオロエチレン微粒子の添加量は16mg/cm2であり、積層体の加熱時間は約20分である。 Next, a dispersion obtained by diluting a polytetrafluoroethylene fine particle dispersion (Mitsui / DuPont: Fluorochemical 31-JR) twice with respect to the glass cloth surface of the polytetrafluoroethylene porous membrane and glass cloth laminate. The solution is subjected to dip coating using a mixed solution containing 30% by weight of titania nanoparticles with respect to polytetrafluoroethylene. And a laminated body is heated to 200 degreeC and the porous membranes 21 and 22 are produced. The amount of polytetrafluoroethylene fine particles added is 16 mg / cm 2 and the heating time of the laminate is about 20 minutes.
 次に、多孔質膜21,22に対して、テトライソプロポキシジルコニウム(IV)の5%イソプロパノール溶液を用いたディップコーティングを行った後、多孔質膜21,22を、200℃の大気中に1時間置いて乾燥させる。このようにして完成した多孔質膜21,22の表面のゼータ電位は、ph4において-10mVである。また、pH8~10において-40mVである。 Next, after dip coating using a 5% isopropanol solution of tetraisopropoxyzirconium (IV) is performed on the porous membranes 21 and 22, the porous membranes 21 and 22 are placed in the atmosphere at 200 ° C. Allow to dry for a while. The zeta potential on the surfaces of the porous membranes 21 and 22 thus completed is −10 mV at ph4. Further, it is −40 mV at pH 8-10.
 陽極としての電極23については、基材として板厚が0.5mmの平坦なチタン板を用いる。基材は、長さが15cmmで、幅が10cmである。基材には、パンチングにより、直径1.5mmの貫通孔をピッチ2.2mmで六方格子状に形成する。 For the electrode 23 as an anode, a flat titanium plate having a plate thickness of 0.5 mm is used as a substrate. The substrate has a length of 15 cm and a width of 10 cm. On the base material, through holes having a diameter of 1.5 mm are formed in a hexagonal lattice shape with a pitch of 2.2 mm by punching.
 電極23を、80℃の10wt%シュウ酸水溶液に1時間浸漬する。次に、電極23を、1M硫酸アンモニウムと0.5Mフッ化アンモニウムの混合水溶液に浸漬した状態で、10Vの電圧を2時間印加する。このように、電極23を陽極酸化させる。 The electrode 23 is immersed in a 10 wt% oxalic acid aqueous solution at 80 ° C. for 1 hour. Next, a voltage of 10 V is applied for 2 hours while the electrode 23 is immersed in a mixed aqueous solution of 1M ammonium sulfate and 0.5M ammonium fluoride. Thus, the electrode 23 is anodized.
 次に、塩化イリジウム(IrCl・nHO)に、1-ブタノールを0.25M(Ir)になるように加えて調整した溶液を、電極23の両面に塗布する。その後、電極23を、乾燥及び焼成して、電極23の表面に触媒層を形成する。乾燥は、電極23を80℃の大気中に10分間置くことで行い、焼成は、電極23を450℃になるまで加熱し、10分間維持することで行う。本実施例では、上記塗布、乾燥、焼成を5回繰り返すことで、電極23の表面に触媒層を形成する。 Next, a solution prepared by adding 1-butanol to 0.25 M (Ir) to iridium chloride (IrCl 3 .nH 2 O) is applied to both surfaces of the electrode 23. Thereafter, the electrode 23 is dried and baked to form a catalyst layer on the surface of the electrode 23. Drying is performed by placing the electrode 23 in an atmosphere of 80 ° C. for 10 minutes, and baking is performed by heating the electrode 23 to 450 ° C. and maintaining it for 10 minutes. In the present embodiment, the catalyst layer is formed on the surface of the electrode 23 by repeating the application, drying, and firing five times.
 陰極としての電極24については、基材として板厚が0.5mmの平坦なSUS304S板を用いる。基材は、長さが15cmmで、幅が10cmである。基材には、パンチングにより、直径1.5mmの貫通孔をピッチ2.2mmで六方格子状に形成する。電極24の基材については、表面に触媒層等を形成することなく、そのまま電極24として用いる。 For the electrode 24 as a cathode, a flat SUS304S plate having a plate thickness of 0.5 mm is used as a substrate. The substrate has a length of 15 cm and a width of 10 cm. On the base material, through holes having a diameter of 1.5 mm are formed in a hexagonal lattice shape with a pitch of 2.2 mm by punching. The substrate of the electrode 24 is used as it is as the electrode 24 without forming a catalyst layer or the like on the surface.
 中間室S1を有するスペーサ35には、電解液を保持する保持体として、厚さ5mmの多孔質ポリスチレンを配置する。 In the spacer 35 having the intermediate chamber S1, porous polystyrene having a thickness of 5 mm is disposed as a holder for holding the electrolytic solution.
 上記多孔質膜21,22を、20℃での表面張力が24mN/mの90%エタノール(10%はほとんど水)に1分間浸漬する。その後、多孔質膜21,22を、水で洗浄する。次に、多孔質膜21,22を乾燥させることなく、図3及び図4を参照するとわかるように、樹脂製のスペーサ35、多孔質膜21,22、及び電極23,24を、ネジやパッキンを用いて組み付けて一体化し、電極ユニット100を構成する。そして、電極ユニット100を用いて樹脂製の電解槽11を構成する。 The porous membranes 21 and 22 are immersed in 90% ethanol (10% is almost water) having a surface tension at 20 ° C. of 24 mN / m for 1 minute. Thereafter, the porous membranes 21 and 22 are washed with water. Next, as can be seen with reference to FIGS. 3 and 4 without drying the porous membranes 21 and 22, the resin spacers 35, the porous membranes 21 and 22, and the electrodes 23 and 24 are screwed or packed. The electrode unit 100 is configured by assembling and integrating them. The resin electrolytic cell 11 is configured using the electrode unit 100.
 次に、電解槽11に補機類を接続し、図1に示される3室型の電解水生成装置10を構成する。電解槽11には、商用の水道設備からの水を陽極室S2、及び陰極室S3に供給するための管路を接続する。多孔質膜21,22を、水で洗浄してからこの間乾燥させることはない。また、塩水タンク12には、飽和食塩水を供給する。図1に示される電解槽11の排水口114には、導電率センサーを設置し、排水口116には、pHセンサーを設置する。 Next, auxiliary equipment is connected to the electrolytic cell 11 to constitute the three-chamber electrolyzed water generating apparatus 10 shown in FIG. The electrolytic cell 11 is connected to a conduit for supplying water from a commercial water supply facility to the anode chamber S2 and the cathode chamber S3. The porous membranes 21 and 22 are not dried during this period after being washed with water. The brine tank 12 is supplied with saturated saline. A conductivity sensor is installed at the drain port 114 of the electrolytic cell 11 shown in FIG. 1, and a pH sensor is installed at the drain port 116.
 上述のように構成される電解水生成装置10を、塩水の流量を2L/分、電極間電圧を6Vとした条件で運転する。これにより、陽極室S2では、次亜塩素酸水が生成され、陰極室S3では、水素および水酸化ナトリウム水が生成される。この電解水生成装置10は、運転開始から2分以内に電解が安定する定常運転状態になる。その後、電解水生成装置10から、水及び塩水を抜いて乾燥させた後に、再度運転を開始する。この場合にも、電解水生成装置10は、運転開始から3分以内に電解が安定する定常運転状態になる。 The electrolyzed water generating apparatus 10 configured as described above is operated under the condition that the flow rate of salt water is 2 L / min and the voltage between electrodes is 6V. As a result, hypochlorous acid water is generated in the anode chamber S2, and hydrogen and sodium hydroxide water are generated in the cathode chamber S3. The electrolyzed water generating apparatus 10 is in a steady operation state in which electrolysis is stabilized within 2 minutes from the start of operation. Then, after draining water and salt water from the electrolyzed water production | generation apparatus 10, and making it dry, a driving | operation is started again. Also in this case, the electrolyzed water generating apparatus 10 is in a steady operation state in which electrolysis is stabilized within 3 minutes from the start of operation.
《比較例1》
 上記多孔質膜21,22を、20℃での表面張力が24mN/mの90%エタノールに1分間浸漬する。その後、多孔質膜21,22を水で洗浄することなく、乾燥させる。この多孔質膜21,22で電極ユニット100を構成する。この電極ユニット100を備える電解水生成装置10を、同様に、塩水の流量を2L/分、電極間電圧を6Vとした条件で運転する。比較例1に係る電解水生成装置10は、電極間電流の立ち上がりに時間を要し、運転開始から30分以上経過してから、電解が安定する定常運転状態になる。
<< Comparative Example 1 >>
The porous membranes 21 and 22 are immersed in 90% ethanol having a surface tension at 20 ° C. of 24 mN / m for 1 minute. Thereafter, the porous membranes 21 and 22 are dried without washing with water. The porous units 21 and 22 constitute the electrode unit 100. Similarly, the electrolyzed water generating apparatus 10 including the electrode unit 100 is operated under the condition that the flow rate of the salt water is 2 L / min and the voltage between the electrodes is 6V. The electrolyzed water generating apparatus 10 according to Comparative Example 1 takes time for the rise of the interelectrode current, and enters a steady operation state in which electrolysis is stable after 30 minutes or more have elapsed from the start of operation.
《比較例2》
 上記多孔質膜21,22を、20℃での表面張力が38mN/mの20%エタノール水溶液に1分間浸漬する。その後、多孔質膜21,22を水で洗浄する。次に、多孔質膜21,22を乾燥させることなく、多孔質膜21,22で電極ユニット100を構成する。この電極ユニット100を備える電解水生成装置10を、同様に、塩水の流量を2L/分、電極間電圧を6Vとした条件で運転する。比較例2に係る電解水生成装置10は、電極間電流の立ち上がりに時間を要し、運転開始から15分以上経過してから、電解が安定する定常運転状態になる。
<< Comparative Example 2 >>
The porous membranes 21 and 22 are immersed in a 20% aqueous ethanol solution having a surface tension of 38 mN / m at 20 ° C. for 1 minute. Thereafter, the porous membranes 21 and 22 are washed with water. Next, the electrode unit 100 is composed of the porous films 21 and 22 without drying the porous films 21 and 22. Similarly, the electrolyzed water generating apparatus 10 including the electrode unit 100 is operated under the condition that the flow rate of the salt water is 2 L / min and the voltage between the electrodes is 6V. The electrolyzed water generating apparatus 10 according to Comparative Example 2 takes time for the rise of the interelectrode current, and after 15 minutes or more have elapsed from the start of operation, the electrolyzed water generating apparatus 10 enters a steady operation state in which electrolysis is stable.
 上記、実施例1、及び比較例1,2の結果は、多孔質膜21,22を、表面張力が35mN/m以下の含水エタノールに浸漬し、その後、水洗いすることで、電解水生成装置10の立ち上がり時間が短縮されることを示している。 The results of Example 1 and Comparative Examples 1 and 2 show that the electrolyzed water generator 10 is obtained by immersing the porous membranes 21 and 22 in water-containing ethanol having a surface tension of 35 mN / m or less and then washing with water. It shows that the rise time of is reduced.
《実施例2》
 実施例1と同様に構成される電解水生成装置10において、実施例1と同様にして得られる多孔質膜21,22を、20℃での表面張力が24mN/mの90%エタノールに1分間浸漬する。その後、多孔質膜21,22を、水ではなく、濃度10%の塩化ナトリウム水溶液で洗浄する。そして、多孔質膜21,22を、室温で一晩乾燥させた後、多孔質膜21,22で電極ユニット100を構成する。この電極ユニット100を備える電解水生成装置10を、同様に、塩水の流量を2L/分、電極間電圧を6Vとした条件で運転する。実施例2に係る電解水生成装置10は、運転開始から4分以内に電解が安定する定常運転状態になる。
Example 2
In the electrolyzed water generating apparatus 10 configured in the same manner as in Example 1, the porous membranes 21 and 22 obtained in the same manner as in Example 1 are placed in 90% ethanol having a surface tension at 20 ° C. of 24 mN / m for 1 minute. Immerse. Thereafter, the porous membranes 21 and 22 are washed with an aqueous sodium chloride solution having a concentration of 10% instead of water. Then, after the porous membranes 21 and 22 are dried at room temperature overnight, the electrode units 100 are constituted by the porous membranes 21 and 22. Similarly, the electrolyzed water generating apparatus 10 including the electrode unit 100 is operated under the condition that the flow rate of the salt water is 2 L / min and the voltage between the electrodes is 6V. The electrolyzed water generating apparatus 10 according to Example 2 is in a steady operation state in which electrolysis is stabilized within 4 minutes from the start of operation.
 上記、実施例2、及び比較例1,2の結果は、多孔質膜21,22を、表面張力が35mN/m以下の含水エタノールに浸漬し、その後、濃度10%の塩化ナトリウム水溶液で洗浄することで、電解水生成装置10を乾燥させても、立ち上がり時間が短縮されることを示している。 The results of Example 2 and Comparative Examples 1 and 2 show that the porous membranes 21 and 22 are immersed in hydrous ethanol having a surface tension of 35 mN / m or less, and then washed with an aqueous sodium chloride solution having a concentration of 10%. Thus, even when the electrolyzed water generating apparatus 10 is dried, the rise time is shortened.
《実施例3》
 実施例1と同様にして得られる多孔質膜21,22を、エタノール水溶液への浸漬及び水洗いの双方がされておらず、乾燥した状態で用いて、電極ユニット100を構成する。そして、電極ユニット100を、20℃での表面張力が24mN/mの90%エタノールに1分間浸漬する。その後、電極ユニット100を、水で洗浄する。この電極ユニット100を備える電解水生成装置10を、同様に、塩水の流量を2L/分、電極間電圧を6Vとした条件で運転する。実施例3に係る電解水生成装置10は、運転開始から2分以内に電解が安定する定常運転状態になる。
Example 3
The porous membranes 21 and 22 obtained in the same manner as in Example 1 are neither immersed in an aqueous ethanol solution nor washed with water, and are used in a dry state to constitute the electrode unit 100. Then, the electrode unit 100 is immersed in 90% ethanol having a surface tension at 20 ° C. of 24 mN / m for 1 minute. Thereafter, the electrode unit 100 is washed with water. Similarly, the electrolyzed water generating apparatus 10 including the electrode unit 100 is operated under the condition that the flow rate of the salt water is 2 L / min and the voltage between the electrodes is 6V. The electrolyzed water generating apparatus 10 according to Example 3 is in a steady operation state in which electrolysis is stabilized within 2 minutes from the start of operation.
《実施例4》
 実施例4に係る電解水生成装置は、図16に示されるように、中間室S1及び陰極室S3を包囲するように陽極室S2が配置されている。また、本電解水生成装置は、ポンプや配管などがなく、塩水や水の自然対流により水流が形成されるバッチ型の電解槽11Aを備える。陽極室S2の容量は2Lで、陰極室S3の容量は0.1Lである。電極ユニットは、実施例1と同様の構成の電極ユニットが用いられる。なお、電極ユニットのサイズは小さく、電極の大きさは、長さが4cmで幅が3cmである。
Example 4
In the electrolyzed water generating apparatus according to Example 4, the anode chamber S2 is disposed so as to surround the intermediate chamber S1 and the cathode chamber S3, as shown in FIG. Moreover, this electrolyzed water production | generation apparatus is equipped with the batch-type electrolyzer 11A in which a water flow is formed by natural convection of salt water or water without a pump or piping. The capacity of the anode chamber S2 is 2L, and the capacity of the cathode chamber S3 is 0.1L. As the electrode unit, an electrode unit having the same configuration as in the first embodiment is used. The size of the electrode unit is small, and the size of the electrode is 4 cm in length and 3 cm in width.
 また、電極ユニットの製造時には、実施例1の場合と同様に、多孔質膜を、20℃での表面張力が24mN/mの90%エタノールに1分間浸漬し、水で洗浄する。次に、多孔質膜を乾燥させることなく、電極等と一体化し、電極ユニットを構成する。 Further, at the time of manufacturing the electrode unit, as in the case of Example 1, the porous membrane is immersed in 90% ethanol having a surface tension of 24 mN / m at 20 ° C. for 1 minute and washed with water. Next, the porous membrane is integrated with an electrode or the like without drying to constitute an electrode unit.
 本実施例に係る電解水生成装置を、電極間電圧を7Vとした条件で運転する。これにより、陽極室S2では、次亜塩素酸水が生成され、陰極室S3では、水素および水酸化ナトリウム水が生成される。この電解水生成装置は、運転開始から2分以内に電解が安定する定常運転状態になる。 The electrolyzed water generating apparatus according to this example is operated under the condition where the interelectrode voltage is 7V. As a result, hypochlorous acid water is generated in the anode chamber S2, and hydrogen and sodium hydroxide water are generated in the cathode chamber S3. This electrolyzed water generating apparatus is in a steady operation state in which electrolysis is stabilized within 2 minutes from the start of operation.
《実施例5》
 図1に示される電解水生成装置10において、厚さ30μmのポリエチレン多孔質膜を、多孔質膜21,22として用いる。多孔質膜21,22以外の構成は、実施例1に係る電解水生成装置の構成と同様である。
Example 5
In the electrolyzed water generating apparatus 10 shown in FIG. 1, a polyethylene porous film having a thickness of 30 μm is used as the porous films 21 and 22. The configuration other than the porous membranes 21 and 22 is the same as the configuration of the electrolyzed water generating apparatus according to the first embodiment.
 上記多孔質膜21,22を、20℃での表面張力が32mN/mのSPAN20界面活性剤の水溶液に浸漬する。その後、多孔質膜21,22を、濃度10%の塩化ナトリウム水溶液で洗浄する。次に、多孔質膜21,22を乾燥させることなく、多孔質膜21,22を用いて電極ユニット100を構成する。この電極ユニット100を備える電解水生成装置10を、同様に、塩水の流量を2L/分、電極間電圧を6Vとした条件で運転する。実施例5に係る電解水生成装置10は、運転開始から3分以内に電解が安定する定常運転状態になる。 The porous membranes 21 and 22 are immersed in an aqueous solution of a SPAN20 surfactant having a surface tension at 20 ° C. of 32 mN / m. Thereafter, the porous membranes 21 and 22 are washed with an aqueous sodium chloride solution having a concentration of 10%. Next, the electrode unit 100 is configured using the porous membranes 21 and 22 without drying the porous membranes 21 and 22. Similarly, the electrolyzed water generating apparatus 10 including the electrode unit 100 is operated under the condition that the flow rate of the salt water is 2 L / min and the voltage between the electrodes is 6V. The electrolyzed water generating apparatus 10 according to Example 5 is in a steady operation state in which electrolysis is stabilized within 3 minutes from the start of operation.
《比較例3》
 実施例5と同様に構成される電解水生成装置10において、上記多孔質膜21,22を、20℃での表面張力が36mN/mのSPAN20界面活性剤の水溶液に浸漬する。その後、多孔質膜21,22を、濃度10%の塩化ナトリウム水溶液で洗浄する。次に、多孔質膜21,22を乾燥させることなく、多孔質膜21,22を用いて電極ユニット100を構成する。
<< Comparative Example 3 >>
In the electrolyzed water generating apparatus 10 configured in the same manner as in Example 5, the porous membranes 21 and 22 are immersed in an aqueous solution of a SPAN20 surfactant having a surface tension at 20 ° C. of 36 mN / m. Thereafter, the porous membranes 21 and 22 are washed with an aqueous sodium chloride solution having a concentration of 10%. Next, the electrode unit 100 is configured using the porous membranes 21 and 22 without drying the porous membranes 21 and 22.
 この電極ユニット100を備える電解水生成装置10を、同様に、塩水の流量を2L/分、電極間電圧を6Vとした条件で運転する。比較例3に係る電解水生成装置10は、運転開始から10分以上経過してから、電解が安定する定常運転状態になる。 Similarly, the electrolyzed water generating apparatus 10 including the electrode unit 100 is operated under the condition that the flow rate of the salt water is 2 L / min and the voltage between the electrodes is 6V. The electrolyzed water generating apparatus 10 according to Comparative Example 3 enters a steady operation state in which electrolysis is stable after 10 minutes or more have elapsed from the start of operation.
 上記、実施例5、及び比較例3の結果は、多孔質膜21,22を、表面張力が35mN/m以下の水溶液に浸漬し、その後、塩化ナトリウム水溶液で洗浄することで、電解水生成装置10の立ち上がり時間が短縮されることを示している。 As a result of Example 5 and Comparative Example 3, the electrolyzed water generating device was obtained by immersing the porous membranes 21 and 22 in an aqueous solution having a surface tension of 35 mN / m or less and then washing with a sodium chloride aqueous solution. 10 shows that the rise time is shortened.
《実施例6》
 図1に示される電解水生成装置10において、厚さ30μmのポリエチレン多孔質膜を、多孔質膜21,22として用いる。そして、多孔質膜21,22にプラズマ処理を施した後に、濃度が5重量%のアルミニウムイソプロポキドのイソプロピルアルコールに1分間浸漬する。その後、多孔質膜21,22を、90℃の大気中に10分間置くことで乾燥させる。次に、多孔質膜21,22を、20℃での表面張力が32mN/mのSPAN20界面活性剤の水溶液に浸漬する。その後、多孔質膜21,22を、飽和濃度の塩化ナトリウム水溶液で洗浄する。
Example 6
In the electrolyzed water generating apparatus 10 shown in FIG. 1, a polyethylene porous film having a thickness of 30 μm is used as the porous films 21 and 22. Then, after the porous films 21 and 22 are subjected to plasma treatment, they are immersed for 1 minute in isopropyl alcohol of aluminum isopropoxide having a concentration of 5% by weight. Thereafter, the porous membranes 21 and 22 are dried by being placed in an atmosphere of 90 ° C. for 10 minutes. Next, the porous membranes 21 and 22 are immersed in an aqueous solution of a SPAN20 surfactant having a surface tension at 20 ° C. of 32 mN / m. Thereafter, the porous membranes 21 and 22 are washed with a saturated sodium chloride aqueous solution.
 上記多孔質膜21,22を乾燥させることなく、多孔質膜21,22を用いて電極ユニット100を構成する。この電極ユニット100を備える電解水生成装置10を、塩水の流量を2L/分、電極間電圧を6Vとした条件で運転する。実施例6に係る電解水生成装置10は、運転開始から2分以内に電解が安定する定常運転状態になる。 The electrode unit 100 is configured using the porous membranes 21 and 22 without drying the porous membranes 21 and 22. The electrolyzed water generating apparatus 10 including this electrode unit 100 is operated under the condition that the flow rate of salt water is 2 L / min and the voltage between electrodes is 6V. The electrolyzed water generating apparatus 10 according to Example 6 is in a steady operation state in which electrolysis is stabilized within 2 minutes from the start of operation.
《実施例7》
 表面張力32mN/mのSPAN20界面活性剤の水溶液を用いる代わりに、表面張力33mN/mの30%エタノール水溶液を用いることを除いては実施例6と同様にして電極ユニット100を構成する。この電極ユニット100を備える電解水生成装置10を、塩水の流量を2L/分、電極間電圧を6Vとした条件で運転する。実施例7に係る電解水生成装置は、運転開始から3分以内に電解が安定する定常運転状態になる。
Example 7
The electrode unit 100 is configured in the same manner as in Example 6 except that instead of using an aqueous solution of a SPAN20 surfactant having a surface tension of 32 mN / m, a 30% ethanol aqueous solution having a surface tension of 33 mN / m is used. The electrolyzed water generating apparatus 10 including this electrode unit 100 is operated under the condition that the flow rate of salt water is 2 L / min and the voltage between electrodes is 6V. The electrolyzed water generating apparatus according to Example 7 is in a steady operation state in which electrolysis is stabilized within 3 minutes from the start of operation.
《実施例8》
 飽和濃度の塩化ナトリウム水溶液で洗浄する代わりに水で洗浄することを除いては実施例7と同様にして電極ユニット100を構成する。この電極ユニット100を備える電解水生成装置10を、塩水の流量を2L/分、電極間電圧を6Vとした条件で運転する。実施例8に係る電解水生成装置は、運転開始から5分以内に電解が安定する定常運転状態になる。
Example 8
The electrode unit 100 is configured in the same manner as in Example 7 except that it is washed with water instead of washing with a saturated sodium chloride solution. The electrolyzed water generating apparatus 10 including this electrode unit 100 is operated under the condition that the flow rate of salt water is 2 L / min and the voltage between electrodes is 6V. The electrolyzed water generating apparatus according to Example 8 is in a steady operation state in which electrolysis is stabilized within 5 minutes from the start of operation.
《比較例4》
 表面張力33mN/mのSPAN20界面活性剤の水溶液を用いる代わりに、表面張力38mN/mの20%エタノール水溶液を用いることを除いては実施例7と同様にして電極ユニットを構成する。この電極ユニット100を備える電解水生成装置10を、塩水の流量を2L/分、電極間電圧を6Vとした条件で運転する。実施例7に係る電解水生成装置は、運転開始から8分以上経過してから、電解が安定する定常運転状態になる。
<< Comparative Example 4 >>
An electrode unit is constructed in the same manner as in Example 7 except that a 20% aqueous ethanol solution having a surface tension of 38 mN / m is used instead of using an aqueous solution of a SPAN20 surfactant having a surface tension of 33 mN / m. The electrolyzed water generating apparatus 10 including this electrode unit 100 is operated under the condition that the flow rate of salt water is 2 L / min and the voltage between electrodes is 6V. The electrolyzed water generating apparatus according to Example 7 enters a steady operation state in which electrolysis is stabilized after 8 minutes or more have elapsed from the start of operation.
《実施例9》
 図1に示される電解水生成装置10において、厚さ30μmのポリエチレン多孔質膜を、多孔質膜21,22として用いる。多孔質膜21,22以外の構成は、実施例1に係る電解水生成装置の構成と同様である。
Example 9
In the electrolyzed water generating apparatus 10 shown in FIG. 1, a polyethylene porous film having a thickness of 30 μm is used as the porous films 21 and 22. The configuration other than the porous membranes 21 and 22 is the same as the configuration of the electrolyzed water generating apparatus according to the first embodiment.
 上記多孔質膜21,22を、20℃での表面張力が23mN/mの99.5%メタノールに浸漬する。その後、多孔質膜21,22を水で洗浄する。次に、多孔質膜21,22を乾燥させることなく、多孔質膜21,22を用いて電極ユニット100を構成する。この電極ユニット100を備える電解水生成装置10を、同様に、塩水の流量を2L/分、電極間電圧を6Vとした条件で運転する。実施例9に係る電解水生成装置10は、運転開始から2分以内に電解が安定する定常運転状態になる。 The porous membranes 21 and 22 are immersed in 99.5% methanol having a surface tension at 20 ° C. of 23 mN / m. Thereafter, the porous membranes 21 and 22 are washed with water. Next, the electrode unit 100 is configured using the porous membranes 21 and 22 without drying the porous membranes 21 and 22. Similarly, the electrolyzed water generating apparatus 10 including the electrode unit 100 is operated under the condition that the flow rate of the salt water is 2 L / min and the voltage between the electrodes is 6V. The electrolyzed water generating apparatus 10 according to Example 9 is in a steady operation state in which electrolysis is stabilized within 2 minutes from the start of operation.
 図17に示される表は、各実施例、及び比較例に係る電解水生成装置の立ち上がり時間を示す表である。表に示されるように、本実施例に係る電解水生成装置は、5分以内に立ち上がるが、比較例に係る電解水生成装置は、立ち上がりに少なくとも8分以上を要する。 The table shown in FIG. 17 is a table showing the rise time of the electrolyzed water generating apparatus according to each example and comparative example. As shown in the table, the electrolyzed water generating apparatus according to the present example rises within 5 minutes, while the electrolyzed water generating apparatus according to the comparative example requires at least 8 minutes or more for rising.
 以上、本発明の実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施しうるものであり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 As mentioned above, although embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
 つまり、本実施形態は、電極ユニットの製造方法(ステップS101~S105)、及び電解水生成装置の製造方法(ステップS101~S107)を例として提示したものであって、これによって発明の範囲を限定することは意図していない。本発明の構成要件を備えるものは、名称の如何にかかわらず、本発明の範囲に含まれるものである。例えば、本発明の名称は、電極ユニットの製造方法及び電解水生成装置の製造方法であるが、本発明に係る製造方法は、本発明の構成要件を備えるメンテナンスなどの種々の変形を含む。 That is, this embodiment presents an example of a method for manufacturing an electrode unit (steps S101 to S105) and a method for manufacturing an electrolyzed water generating device (steps S101 to S107), and thereby limits the scope of the invention. Not intended to do. What has the requirements of the present invention is included in the scope of the present invention regardless of the name. For example, although the name of the present invention is a manufacturing method of an electrode unit and a manufacturing method of an electrolyzed water generating device, the manufacturing method concerning the present invention includes various modifications, such as maintenance provided with the constituent features of the present invention.
 10 電解水生成装置
 11,11A 電解槽
 12 塩水タンク
 21,22 多孔質膜
 23,24 電極
 31 循環ポンプ
 32 圧力調整バルブ
 33 直流電源
 35 スペーサ
 51 液体
 52 水
 100 電極ユニット
 111,113,115 給水口
 112,114,116 排水口
 121 流出口
 122 流入口
 151,152 ケーシング
 200 細孔
 201 フレーム部
 202 格子部
 203 ビーム部
 S1 中間室
 S2 陽極室
 S3 陰極室
DESCRIPTION OF SYMBOLS 10 Electrolyzed water production | generation apparatus 11,11A Electrolysis tank 12 Salt water tank 21,22 Porous membrane 23,24 Electrode 31 Circulation pump 32 Pressure adjustment valve 33 DC power supply 35 Spacer 51 Liquid 52 Water 100 Electrode unit 111,113,115 Water supply port 112 , 114, 116 Drainage port 121 Outflow port 122 Inflow port 151, 152 Casing 200 Pore 201 Frame portion 202 Lattice portion 203 Beam portion S1 Intermediate chamber S2 Anode chamber S3 Cathode chamber

Claims (18)

  1.  電解液を電気分解することにより、電解水を生成する電解水生成装置に用いられ、電極と多孔質膜とを備える電極ユニットの製造方法であって、
     前記多孔質膜を、水と混和する性質を有するとともに、水よりも表面張力が低い液体に浸漬する工程を含む電極ユニットの製造方法。
    A method for producing an electrode unit comprising an electrode and a porous membrane, which is used in an electrolyzed water generating device that generates electrolyzed water by electrolyzing an electrolytic solution,
    An electrode unit manufacturing method comprising a step of immersing the porous membrane in a liquid having a property of being mixed with water and having a surface tension lower than that of water.
  2.  前記液体は、表面張力が35mN/m以下である請求項1に記載の電極ユニットの製造方法。 The method for producing an electrode unit according to claim 1, wherein the liquid has a surface tension of 35 mN / m or less.
  3.  前記液体は、アルコールを含む水溶液である請求項1に記載の電極ユニットの製造方法。 The method for manufacturing an electrode unit according to claim 1, wherein the liquid is an aqueous solution containing alcohol.
  4.  前記液体は、30重量%以上のエタノールを含む水溶液である請求項3に記載の電極ユニットの製造方法。 The method for producing an electrode unit according to claim 3, wherein the liquid is an aqueous solution containing 30% by weight or more of ethanol.
  5.  前記液体は、純度90%以上のエタノールである請求項1に記載の電極ユニットの製造方法。 The method for manufacturing an electrode unit according to claim 1, wherein the liquid is ethanol having a purity of 90% or more.
  6.  前記液体は、純度90%以上のメタノールである請求項1に記載の電極ユニットの製造方法。 The method for manufacturing an electrode unit according to claim 1, wherein the liquid is methanol having a purity of 90% or more.
  7.  前記液体は、界面活性剤の水溶液である請求項1に記載の電極ユニットの製造方法。 The method for producing an electrode unit according to claim 1, wherein the liquid is an aqueous solution of a surfactant.
  8.  前記液体に浸漬された前記多孔質膜を水洗いする工程を含む請求項1乃至7のいずれか一項に記載の電極ユニットの製造方法。 The method for manufacturing an electrode unit according to any one of claims 1 to 7, comprising a step of washing the porous film immersed in the liquid with water.
  9.  前記多孔質膜は、塩化物イオンを含む水によって水洗いされる請求項8に記載の電極ユニットの製造方法。 The method for manufacturing an electrode unit according to claim 8, wherein the porous membrane is washed with water containing chloride ions.
  10.  前記多孔質膜は、塩化物イオンを含む水によって水洗いした後、乾燥される請求項7、又は9に記載の電極ユニットの製造方法。 The method for manufacturing an electrode unit according to claim 7 or 9, wherein the porous membrane is washed with water containing chloride ions and then dried.
  11.  前記多孔質膜を前記液体に浸漬する前に、前記多孔質膜に対して、プラズマ処理、電子線処理、及びUVオゾン処理のうちの少なくとも1つを施す工程を含む請求項1乃至10のいずれか一項に記載の電極ユニットの製造方法。 11. The method according to claim 1, further comprising: performing at least one of plasma treatment, electron beam treatment, and UV ozone treatment on the porous membrane before immersing the porous membrane in the liquid. A method for manufacturing the electrode unit according to claim 1.
  12.  前記多孔質膜を前記液体に浸漬する前に、前記多孔質膜を、アルミニウム、ジルコニウム及びチタンのうちの少なくとも1つのアルコキシド溶液に接触させる工程を含む請求項1乃至11のいずれか一項に記載の電極ユニットの製造方法。 12. The method according to claim 1, further comprising a step of contacting the porous film with an alkoxide solution of at least one of aluminum, zirconium, and titanium before immersing the porous film in the liquid. Of manufacturing the electrode unit.
  13.  前記多孔質膜は、ポリエチレン、ポリフッ化ビニリデン、及びポリ四フッ化エチレンのうちの少なくとも1つを含有する請求項1乃至12のいずれか一項に記載の電極ユニットの製造方法。 The method for manufacturing an electrode unit according to any one of claims 1 to 12, wherein the porous film contains at least one of polyethylene, polyvinylidene fluoride, and polytetrafluoroethylene.
  14.  前記多孔質膜は、酸化チタン、酸化アルミニウム、酸化ジルコニウム、ジルコンのうちの少なくとも1つの粒子を含有する請求項1乃至13のいずれか一項に記載の電極ユニットの製造方法。 The method for manufacturing an electrode unit according to any one of claims 1 to 13, wherein the porous film contains at least one particle of titanium oxide, aluminum oxide, zirconium oxide, and zircon.
  15.  前記電解液を保持する保持手段を介して、一組の前記電極を相互に対向するように配置する工程と、
     前記電極の間に、前記電解液を保持する保持手段を介して、一組の隔膜を配置する工程と、
     を含む請求項1乃至14のいずれか一項に記載の電極ユニットの製造方法
    Disposing a set of the electrodes so as to oppose each other via a holding means for holding the electrolytic solution;
    Arranging a pair of diaphragms between the electrodes via a holding means for holding the electrolytic solution;
    The manufacturing method of the electrode unit as described in any one of Claims 1 thru | or 14 containing these
  16.  一組の前記隔膜の双方が前記多孔質膜である請求項15に記載の電極ユニットの製造方法。 The method for manufacturing an electrode unit according to claim 15, wherein both of the pair of the diaphragms are the porous films.
  17.  請求項1乃至16のいずれか一項に記載の電極ユニットの製造方法によって電極ユニットを製造する工程と、
     前記電極ユニットを、電解槽に設置する工程と、
     を含む電解水生成装置の製造方法。
    A step of manufacturing an electrode unit by the method for manufacturing an electrode unit according to any one of claims 1 to 16,
    Installing the electrode unit in an electrolytic cell;
    The manufacturing method of the electrolyzed water generating apparatus containing this.
  18.  前記電解水生成装置を予備運転する工程と、
     前記予備運転を行った後に、前記電極ユニットを乾燥させる工程と、
     を含む請求項17に記載の電解水生成装置の製造方法。
    Preliminarily operating the electrolyzed water generating device;
    A step of drying the electrode unit after performing the preliminary operation;
    The manufacturing method of the electrolyzed water generating apparatus of Claim 17 containing this.
PCT/JP2016/001608 2016-03-18 2016-03-18 Electrode unit manufacturing method, and electrolyzed water generating device manufacturing method WO2017158654A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680001047.7A CN109072462B (en) 2016-03-18 2016-03-18 Method for manufacturing electrode unit and method for manufacturing electrolyzed water production apparatus
PCT/JP2016/001608 WO2017158654A1 (en) 2016-03-18 2016-03-18 Electrode unit manufacturing method, and electrolyzed water generating device manufacturing method
JP2018505564A JP6746681B2 (en) 2016-03-18 2016-03-18 Method of manufacturing electrode unit and method of manufacturing electrolyzed water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/001608 WO2017158654A1 (en) 2016-03-18 2016-03-18 Electrode unit manufacturing method, and electrolyzed water generating device manufacturing method

Publications (1)

Publication Number Publication Date
WO2017158654A1 true WO2017158654A1 (en) 2017-09-21

Family

ID=59851549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001608 WO2017158654A1 (en) 2016-03-18 2016-03-18 Electrode unit manufacturing method, and electrolyzed water generating device manufacturing method

Country Status (3)

Country Link
JP (1) JP6746681B2 (en)
CN (1) CN109072462B (en)
WO (1) WO2017158654A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6764209B1 (en) * 2020-02-28 2020-09-30 株式会社アクト Generator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011536A (en) * 1983-06-17 1985-01-21 ヘキスト セラニーズ コーポレーシヨン Polyolefinic microporous material treated with repeatingly aqueous solution-rewettable surfactant
JPH0610179A (en) * 1992-04-13 1994-01-18 E I Du Pont De Nemours & Co Method for electrolysis using polymer additive for film tank operation
JPH06128783A (en) * 1991-11-08 1994-05-10 E I Du Pont De Nemours & Co Wetting of diaphragm
JP2003346837A (en) * 2002-05-28 2003-12-05 Asahi Kasei Corp Highly heat resistant ion exchange membrane
JP2012057229A (en) * 2010-09-10 2012-03-22 Japan Organo Co Ltd Scale prevention method for three-compartment electrolytic water generator, and three-compartment electrolytic water generator
JP2014012889A (en) * 2012-06-08 2014-01-23 Nitto Denko Corp Ion permeable diaphragm

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011536A (en) * 1983-06-17 1985-01-21 ヘキスト セラニーズ コーポレーシヨン Polyolefinic microporous material treated with repeatingly aqueous solution-rewettable surfactant
JPH06128783A (en) * 1991-11-08 1994-05-10 E I Du Pont De Nemours & Co Wetting of diaphragm
JPH0610179A (en) * 1992-04-13 1994-01-18 E I Du Pont De Nemours & Co Method for electrolysis using polymer additive for film tank operation
JP2003346837A (en) * 2002-05-28 2003-12-05 Asahi Kasei Corp Highly heat resistant ion exchange membrane
JP2012057229A (en) * 2010-09-10 2012-03-22 Japan Organo Co Ltd Scale prevention method for three-compartment electrolytic water generator, and three-compartment electrolytic water generator
JP2014012889A (en) * 2012-06-08 2014-01-23 Nitto Denko Corp Ion permeable diaphragm

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6764209B1 (en) * 2020-02-28 2020-09-30 株式会社アクト Generator
JP2021134406A (en) * 2020-02-28 2021-09-13 株式会社アクト Generator

Also Published As

Publication number Publication date
CN109072462A (en) 2018-12-21
JPWO2017158654A1 (en) 2018-07-12
CN109072462B (en) 2021-05-18
JP6746681B2 (en) 2020-08-26

Similar Documents

Publication Publication Date Title
JP6542265B2 (en) Porous diaphragm, method for producing the same, electrode unit for producing hypochlorous acid water, and apparatus for producing hypochlorous acid water using the same
JP6407963B2 (en) Electrode unit, electrolytic cell including electrode unit, and electrolysis apparatus
CN106661743B (en) Electrode unit, electrolytic cell provided with electrode unit, electrolytic device, and method for manufacturing electrode of electrode unit
JP5311245B2 (en) GAS GENERATOR, GAS GENERATION METHOD, AND DEVICE AND METHOD USING THE SAME
JP6062597B2 (en) ELECTROLYTIC DEVICE, ELECTRODE UNIT, AND ELECTROLYTIC WATER GENERATION METHOD
CN104418409A (en) Strongly-alkaline (acidic) electrolytic water generation device
WO2016043134A1 (en) Electrode unit, electrolysis device, and electrode used in electrolysis device
JP6639638B2 (en) Electrolysis electrode, electrode unit, and electrolyzed water generator
JP6746681B2 (en) Method of manufacturing electrode unit and method of manufacturing electrolyzed water generator
JP6585176B2 (en) Electrode, electrode unit, and electrolysis device
JP3202182U (en) Gas generator
CN108193226B (en) Composite electrode assembly
JP6408033B2 (en) Electrode unit and electrolysis apparatus using the same
JP2018076554A (en) Anion exchange membrane, electrolytic cell, and electrolytic water generator
JP6208380B2 (en) Electrode for electrolysis, electrode unit, and electrolysis apparatus
JP2018044229A (en) Electrolysis cell, electrolytic water generator using the same and manufacturing method of electrolysis cell
JP2017170298A (en) Electrolytic water generator
JP6862232B2 (en) A method for manufacturing a diaphragm and a method for manufacturing an electrode unit using the diaphragm.
JP2018161631A (en) Electrolyzed water generator
JP2019214777A (en) Apparatus for producing chlorous acid-containing aqueous liquid
JP2020506051A (en) ELECTROLYSIS MODULE, ELECTROLYSIS WATER GENERATION DEVICE INCLUDING THE SAME, AND METHOD OF OPERATING ELECTROLYSIS WATER GENERATION DEVICE

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018505564

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894278

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16894278

Country of ref document: EP

Kind code of ref document: A1