WO2017158227A1 - System and method for the dynamic characterisation of railway superstructure elements and computer program - Google Patents

System and method for the dynamic characterisation of railway superstructure elements and computer program Download PDF

Info

Publication number
WO2017158227A1
WO2017158227A1 PCT/ES2017/070159 ES2017070159W WO2017158227A1 WO 2017158227 A1 WO2017158227 A1 WO 2017158227A1 ES 2017070159 W ES2017070159 W ES 2017070159W WO 2017158227 A1 WO2017158227 A1 WO 2017158227A1
Authority
WO
WIPO (PCT)
Prior art keywords
superstructure
elements
dynamic
railway
load
Prior art date
Application number
PCT/ES2017/070159
Other languages
Spanish (es)
French (fr)
Inventor
Jordi ROMEU GARBÍ
Arnau CLOT RAZQUIN
Robert ARCOS VILLAMARÍN
Jordi SANS GARCIA
Original Assignee
Universitat Politècnica De Catalunya
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Politècnica De Catalunya filed Critical Universitat Politècnica De Catalunya
Publication of WO2017158227A1 publication Critical patent/WO2017158227A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table

Definitions

  • the purpose of this application is to register a system and method for dynamic characterization of elements of railway superstructures, as well as a computer program to carry out said method that incorporates notable innovations.
  • the invention proposes the development of a mobile plant system and a corresponding method that falls within the field of the study of the dynamic characterization of superstructures.
  • a railway superstructure includes a set of elements that go from the rail to the platform on which the track sits. Each of these elements determines the performance of the railway superstructure in terms of safety (stability and reliability of the superstructure), environmental impact (generation and propagation of noise and vibrations) and maintenance costs (growth of road roughness, wear wave, degradation of the ballast, damage to the sleepers and fasteners ). Consequently, knowledge of the dynamic stiffness and damping properties of each element is essential to predict the performance of a railway superstructure at the project stage as well as to optimize the maintenance of functioning superstructures, so that they remain within the safety margin and environmental impact for which they were designed. In general, stiffness and damping should be determined from dynamic tests in the appropriate frequency range. Static deformation tests do not allow the determination of damping or dynamic stiffness.
  • Partial tests are those that allow determining the dynamic properties of some components of the railway superstructure. Specifically, it is possible to distinguish between the tests to characterize elements of the superstructure (rail, support, ballast, crossbar) and the tests to characterize the substructure (sub-ballast, platform, terrain)
  • the most common procedure to characterize elements of the superstructure consists of the impact test by means of an instrumented hammer.
  • the rail is excited by an impact with a hammer that contains a load cell capable of recording the force performed.
  • the response of the system to said excitation is measured by accelerometers at different points of the superstructure.
  • the transfer function between the impact force and the displacement is compared with a mathematical model of the superstructure dynamics, such as a system of two degrees of freedom m , or a numerical model of a limited section of track [3]. , 81 .
  • the main problems of this procedure are its inability to excite the complete superstructure (so it is only possible to analyze the behavior of the rail, clamping and crossbar [9] ), the inability to excite the system below 50 Hz, thus as the impossibility of determining the behavior of the elements under a static load equivalent to the weight per axis, a factor that alters the properties to be determined [2, 3] .
  • the substructure properties are tested using standardized land characterization procedures in general, such as the SASW test or the "crosshole / downhole" seismic, which require specific and different equipment and procedures from the soil test. superstructure.
  • the overall test of the response of a railway superstructure is currently achieved by a car equipped with equipment for reading the deformation of the track under the weight of the car itself.
  • TLV Rack Loading Vehicle
  • TLVs are self-styled "Portancemetre" that allows determining the rigidity of the railway superstructure for a limited range of frequencies.
  • the system uses a system of unbalanced counterbalanced masses installed in a chassis, which generate a vertical oscillating force. This force is transmitted to the track through the wheel-rail contact that equips the system. The calculation of the transmitted force is estimated indirectly from the measure of acceleration in one of the system's masses.
  • a step forward between TLVs is the rolling stiffness measurement vehicle (RSMV), which is capable of dynamically exciting the railway superstructure up to 50 Hz by using two oscillating masses moved by hydraulic pistons and located in the vertical of one of the axes that support the wagon [0] .
  • the dynamic stiffness of the superstructure as a whole is calculated from the measurement of transmitted force and acceleration of the contact axis itself. If the stiffness found as a function of frequency is compared with the response of a simplified model of a railway superstructure composed of a beam on elastic ground, the properties of these equivalent elements can be estimated [12, 3] , but the properties cannot be determined of each of the elements that really constitute the railway superstructure.
  • a superstructure component is understood as any element that is part of it, such as a rail, a rail fastener, a ballast or block, a sleeper, etc.
  • the vertical, horizontal, frontal, posterior, lateral, axial senses must be considered in a condition of use.
  • An object of the present invention is a mobile plant system for dynamic characterization of railway superstructure elements comprising:
  • an exciter device linked to a railway superstructure in which the exciter device in turn comprises vibration and load generating means arranged in a bed that is linkable at least to one track through at least one coupling means to the superstructure as a support;
  • a data processing means in communication with a load sensing means and a vibration acceleration sensing means, in which the load sensing means are arranged at least in a support and the vibration acceleration sensing means are susceptible to position at least one component of the superstructure.
  • a simple and portable mobile plant system is achieved that allows to dynamically accurately characterize each and every one of the components of a railway superstructure.
  • the present system is directly applicable on the railway superstructure, does not require a wagon, and allows the whole process of characterization of the superstructure to be integrated without the need for other devices.
  • the data of the load and acceleration of the vibration applied on the chosen components of the superstructure are collected and processed.
  • the vibration and load generating means may comprise at least one pair of counter-rotating disks of mass arranged unbalanced with respect to their respective axes of rotation, in which the disks are driven by less a drive unit, in which a first disk is linked to the drive unit through a power or primary transmission, and the second disk is linked to the drive unit through a synchronized or secondary transmission.
  • the pair of discs may comprise holes, recesses or protuberances positioned eccentrically, and capable of carrying inserts of determined masses. Thanks to this feature it is possible to modify the load applied to the superstructure depending on the needs, simply and quickly.
  • the vibration and load generating means are configured to vary their frequency. In this way, a system that varies tonal excitation within a given interval can be achieved, in addition to the variation of the load.
  • the load sensing means may comprise a load cell.
  • the vibration acceleration sensing means may comprise a plurality of positionable accelerometers in a superstructure with a ballast track, such that at least one accelerometer is capable of being positioned in a rail fastener, another between a pair of sleepers, another in one naughty and another in a land adjacent to a ballast.
  • the vibration acceleration sensor means may comprise a plurality of positionable accelerometers in a plate track or floating slab superstructure in which a track is subject to a plurality of blocks arranged on at least one plate, such that at least An accelerometer is capable of positioning itself in a rail fastener, another between blocks, another in a block, another in the plate and another in a land adjacent to the plate.
  • the coupling means by way of support can be advantageously mobile with respect to the bed. In this way the present mobile plant system can be positioned on tracks with different widths from each other.
  • Another object of the present invention is a method for dynamic characterization of railway superstructure elements comprising the steps of:
  • the present method allows to fully control the force that runs on the track, as there are no other ways of transmitting force between the machine and the track.
  • the element of the superstructure to which the face is applied can be at least one way.
  • Ü (x u ) is the vibration acceleration in a given frequency domain for at least one evaluation position x u at a point in the superstructure
  • is the operator that represents the analytical or numerical model
  • p is at least one input variable of the analytical or numerical model
  • F (x f ) is at least one dynamic sinusoidal force in the determined frequency domain and applied over at least a certain excitation position x f in the superstructure.
  • the variable p may be at least the value of the dynamic stiffness or the damping of each component of the superstructure.
  • at least one parameter p of Formula 1 is calculated, minimizing a real part:
  • Ü theo (x u ) is a vibration acceleration previously estimated from an analytical or numerical model ⁇
  • Ü exp (x u ) is a vibration acceleration measured experimentally in a given frequency domain for at least one evaluation position x u at a point in the superstructure
  • F exp ( x f ) is a dynamic sinusoidal force measured experimentally in the determined frequency domain and applied over at least a certain excitation position x f in the superstructure.
  • This model ⁇ can be of two-dimensional or three-dimensional type.
  • the tonal excitation of stage a) can advantageously occur in a frequency range between 1 and 80 Hz. And even more advantageously, the tonal excitation of stage a) can occur in a frequency range between 10 and 80 Hz.
  • a further object of the invention is a computer program comprising program instructions for making a computer system perform the method for dynamic characterization of railway superstructures as defined above.
  • Said computer program may be included in storage media, such as recording media, a computer memory, or a read-only memory, or it may be carried by a carrier signal.
  • Figure 2. It is a schematic and rear perspective view of the exciter device of Figure 1;
  • Figure 3. It is a schematic and front view of the exciter device of Figure 1;
  • Figure 4. It is a schematic and rear view of the exciter device of Figure 1;
  • Figure 5. It is a schematic and side view of the exciter device of Figure 1;
  • Figure 6. It is a schematic and plan view of the exciter device of Figure 1;
  • Figure 7. It is a schematic and front view of a mobile plant system of the present invention, arranged in a railway superstructure;
  • Figure 8. It is a schematic view from below of the exciter device with the supports in a first position
  • Figure 9. It is a schematic and side view of the exciter device of Figure 8.
  • Figure 10. It is a schematic view from below of the exciter device with the supports in a second position;
  • Figure 1 It is a schematic and side view of the exciter device of Figure 10;
  • Figure 12.- It is a schematic elevation view of a support
  • Figure 13 It is a schematic sectional view of the support of Figure 12 according to the cutting line A-A ';
  • Figure 14.- It is a schematic and side view of the support of Figure 12; Y
  • Figure 15.- It is a schematic sectional side view of the support of Figure 12 along the line B-B '.
  • the present mobile plant system 100 for dynamic characterization of railway superstructures 200 comprises an exciter device 1 linked to a railway superstructure 200.
  • the connection in the mobile plant system 100 and the superstructure 200 is preferably carried out directly, without the intervention of other devices or assemblies, such as a modified wagon or wagon.
  • the exciter device 1 in turn comprises vibration and load generating means arranged on a bench 30 that is linkable to at least one track 201 through at least some coupling means to the structure as a support 40.
  • the bench 30 may comprise a plurality of profiles on which a laminar element rests, defining a platform, as seen in the images. It is not ruled out that the present exciter device 1 can be linked or resting on other components of the superstructure 200
  • the vibration and load generating means comprise a pair of counter-rotating discs 21, 22 with a mass arranged in an unbalanced manner with respect to their respective axes of rotation.
  • This unbalanced mass causes that when rotating a load is generated on the superstructure 200 with a certain vibration. It is clear that the number of discs can be changed depending on the needs.
  • the disks 21, 22 are driven by a driving unit 23, in this case an electric motor with a variable operating speed to be able to modify the frequency of the vibration generated on the superstructure 200.
  • a first disk 21 is linked to the drive unit 23 through a power transmission 27 or primary, and the transmission is preferably carried out by trapezoidal belts, with the double purpose of preventing transfer of operating vibrations between motor and discs 21, 22 and make the exchange of pulleys easier.
  • Both discs 21, 22 are installed on bearing supports to facilitate rotation.
  • the drive unit 23 drives the first disk 21 through the power transmission 27, so that it rotates around its axis E1. From the first disc 21 the movement is transmitted to the second disc 22 by means of a synchronized transmission 24 or secondary.
  • the synchronization transmission 24 can be a plurality of gears (not shown) that can vary the synchrony between discs 21, 22, however it is preferred that said synchrony is 1/1.
  • these discs 21, 22 comprise two threaded holes 26 positioned eccentrically and capable of carrying inserts 25 of determined masses.
  • other variants such as recesses or protrusions can be used to position the inserts 25.
  • the shape of the inserts 25 in the present invention is elongated with a threaded tip (not illustrated) capable of being threaded into the corresponding hole 26.
  • the inserts 25 are the causes of the imbalance of the discs 21, 22 and, consequently, of the generation of the excitation force with a pair of components: horizontal F1 and vertical F2.
  • the holes 26 are located symmetrically with respect to an axis of symmetry between the two disks 21, 22 and the masses of the inserted inserts 25 are exactly the same for the two disks 21 , 22.
  • the opposite directions of the two rotations R1 and R2, estimating discs 21, 22 with twin inserts 25, get the horizontal components F1 to cancel each other out.
  • the present mobile plant system 100 further comprises data processing means (50) in communication with load sensing means 6 and vibration acceleration sensing means 7.
  • Load sensing means 6 are preferably arranged in each support 40 and the vibration acceleration sensor means 6 are capable of positioning at least one component of the superstructure 200.
  • four supports 40 are used to link the bench 30 to quadrilateral mode on tracks 201 of superstructure 200, however the number of supports 40 may vary according to the requirements of each situation.
  • FIG. 8-1 the exciter device 1 can be seen with a bench 30 provided with a series of holes 31 or the like where the supports 40 can be linked by means of unrepresented screws that cross the openings 43 associated with the holes 31. Between the figures 8 and 10 the different position of the supports 40 can be clearly seen.
  • FIGS 12-15 the configuration of a support 40 is illustrated in more detail.
  • the support 40 comprises a first base 41 linked to a second base 42 rotatably as a hinge. Between the first base 41 and the second base 42, the load sensing means 6 are arranged. To prevent damage to said means, a pair of positionable stems 44 are also arranged so that the relative distance between the first base 41 is adjusted. and the second base 42.
  • each support 40 comprises a plate 46 for lateral contact with track 201.
  • the load sensing means 6 comprise a load cell, preferably located in each of the supports 40. These load cells are configured to only convey information about axial stresses.
  • the vibration acceleration sensing means 7 may comprise a plurality of positionable accelerometers in a superstructure 200 with a ballast track, that is to say that railway track seated on ballast 204.
  • an accelerometer can be positioned in a rail fastener 202, another accelerometer between a pair of sleepers 203, another accelerometer in a sleeper 203 and another accelerometer in a land adjacent to a ballast 204.
  • the vibration acceleration sensor means 6 may comprise a plurality of positionable accelerometers in a plate track superstructure 200 or floating slab in which the track 201 is subject to a plurality of blocks arranged on at least one plate, such that at least one accelerometer is capable of being positioned in a rail fastener 202, another between blocks, another in a block, another on the plate and another on land adjacent to the plate.
  • the number and location of the vibration acceleration sensor means 7 will be variable depending on the type of superstructure 200 and the level of detail required in the study.
  • the accelerometer network must be sufficiently extensive to capture all the dynamic singularities of superstructure 200. This implies that a minimum of one accelerometer should be placed per component of superstructure 200.
  • the exciter device 1 can be ballasted for example up to a maximum total added weight of 6 tons.
  • the dynamic stiffness and damping of the aforementioned elastomeric materials depend on the load to which they are subjected, mainly the weight that falls on the wheel which in turn depends on the type of train.
  • the exciter device 1 can be loaded so that the axle weight of various types of rail can be emulated and the influence of the weight on the stiffness and damping value can be detected.
  • a method is followed with a series of main stages.
  • a mobile plant system 100 will be employed as described above.
  • the method comprises the steps of: a) generating at least one tonal excitation and a load F3 on a path 201, as a preferred example of a component of the superstructure 200 (it could be another). This stage can occur when the discs 21, 22 are provided with counter-rotation, respectively provided with a insert 25 of predetermined mass. By varying the mass of the inserts 25, the load F3 or compression force that is applied on the superstructure 200 to be characterized may be varied.
  • the drive and regulation of the drive unit 23 are preferably managed by the processing means 50, although it can be done manually by the operator.
  • tonal excitation on track 201 can occur in a frequency range between 1 and 80 Hz, and even more preferably in a frequency range between 10 and 80 Hz following the provisions of ISO 2631- 2. It is evident that such intervals may vary; b) measure the load F3 or dynamic sinusoidal force applied on track 201 and the acceleration of the vibrations induced in at least one element of the superstructure 200. The information is received in the processing means 50, from the plurality of sensors ; c) invert an analytical or numerical model of superstructure 200 based on the acceleration measured in step b).
  • the analytical or numerical model of the superstructure 200 that is preferably used is determined according to the following formula:
  • Ü (x u ) (p, F (x f )), Formula 1 in which Ü (x u ) is the vibration acceleration in a given frequency domain for at least one evaluation position x u at a point in the superstructure 200,
  • is the operator that represents the analytical or numerical model
  • p is at least one input variable of the analytical or numerical model, such as dynamic stiffness and / or damping of at least one component of the superstructure, and
  • F (x f ) is at least one dynamic sinusoidal force or load F3 in the determined frequency domain and applied over at least a certain excitation position x f in the superstructure 200.
  • Ü theo (x u ) is a vibration acceleration previously estimated from an analytical or numerical model ⁇
  • Ü exp (x u ) is a vibration acceleration measured experimentally in a given frequency domain for at least one evaluation position x u at a point of superstructure 200,
  • F exp ( x f ) is a sinusoidal dynamic force measured experimentally in the determined frequency domain and applied over at least a certain excitation position x f in superstructure 200. It is understood that this dynamic sinusoidal force will be received from the four cells of load arranged respectively in each of the supports 40.
  • the suffixes "theo" refer to theoretical values that are estimated to apply the analytical or numerical model like that of Formula 1. Next and selecting the same evaluation and excitation positions that in the theoretical model, the experimental values referred to with the suffix "exp" are obtained.
  • the models ⁇ must be correctly chosen according to the type of superstructure 200 to be characterized and the level of accuracy in the required characterization.
  • the more detailed analytical or numerical models, which may allow more precise characterizations, are more computationally expensive, so a compromise appropriate to the needs of the study must be reached.
  • the models ⁇ implemented for the realization of the present mobile plant system 100 can be classified into two large branches according to their complexity: - Two-dimensional superstructure models: These models do not take into account the dynamic variability of the superstructure in the transverse direction (with respect to the direction of advance) to track 201 with the exception of the terrain, which is three-dimensional. Its calculation speed is very high. These models are based on the adaptation of the model presented in [5] to all major types of railway superstructures.
  • Three-dimensional superstructure models arise from the adaptation of the model presented in [6] to all the major types of railway superstructures, although with a higher computational cost than the previous models.
  • Three-dimensional FEM (finite element method) models can also be used for the same purpose, which entail a higher computational cost but allow a more accurate representation of the geometry of the problem and, consequently, better results in dynamic characterization [7] .
  • F2 can be of the same magnitude as F3.
  • F3 is distributed among the different supports 40 presented by the invention, in this case there are four, so that F3 is the sum of the vertical load applied through each of the four supports 40. It is important to clarify that if Fi is the vertical load of each of the supports 40, this can vary between the same supports 40. If you work with a two-dimensional model, the most appropriate is to use a single F3 and if you work with a three-dimensional model, you could work with some more accurate and detailed F3 data for each support 40. This in turn allows a more precise identification of the magnitudes sought.
  • a computer program is also provided that comprises program instructions to make a computer system, such as processing means 50, perform the method for dynamic characterization of railway superstructures 200 as defined above.
  • Said computer program may be stored in physical storage media, such as recording media, a computer memory, or a read-only memory, that is, any entity or device capable of carrying said computer program.
  • the computer program can also be carried by a carrier signal, such as electrical or optical, which can be transmitted via electrical or optical cable or by radio or other means.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Machines For Laying And Maintaining Railways (AREA)

Abstract

The invention relates to a system for the dynamic characterisation of railway superstructure elements, comprising an exciter device that can be connected to a railway superstructure. According to the invention, the exciter device comprises: vibration and load generating means; means for processing data from load sensor means; and vibration acceleration sensor means, which can be positioned in a component of the superstructure. The method of the invention comprises: generating a tonal excitation and a load (F3) on an element of the superstructure; measuring the load (F3) or dynamic sinusoidal force applied to an element of the superstructure and the acceleration of the vibrations induced in an element of the superstructure; and inverting an analytical superstructure model based on the measured acceleration.

Description

DESCRIPCIÓN  DESCRIPTION
Sistema y método para caracterización dinámica de elementos de superestructuras ferroviarias y programa informático System and method for dynamic characterization of elements of railway superstructures and software
OBJETO DE LA INVENCIÓN OBJECT OF THE INVENTION
La presente solicitud tiene por objeto el registro de un sistema y método para caracterización dinámica de elementos de superestructuras ferroviarias, así como programa informático para realizar dicho método que incorpora notables innovaciones. The purpose of this application is to register a system and method for dynamic characterization of elements of railway superstructures, as well as a computer program to carry out said method that incorporates notable innovations.
Más concretamente, la invención propone el desarrollo de un sistema de planta móvil y un método correspondiente que se encuadra en el campo del estudio de la caracterización dinámica de superestructuras. More specifically, the invention proposes the development of a mobile plant system and a corresponding method that falls within the field of the study of the dynamic characterization of superstructures.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
Una superestructura ferroviaria incluye un conjunto de elementos que van desde el carril hasta la plataforma sobre la que se asienta la vía. Cada uno de estos elementos condiciona las prestaciones de la superestructura ferroviaria en cuanto a la seguridad (estabilidad y fiabilidad de la superestructura), impacto ambiental (generación y propagación de ruido y vibraciones) y costes de mantenimiento (crecimiento de rugosidad de la vía, desgaste ondulatorio, degradación del balastro, daños en las traviesas y sujeciones... ). En consecuencia, el conocimiento de las propiedades dinámicas de rigidez y amortiguamiento de cada elemento es esencial para predecir las prestaciones de una superestructura ferroviaria en fase de proyecto así como para optimizar el mantenimiento de superestructuras en funcionamiento, con el fin de que se mantengan dentro del margen de seguridad e impacto ambiental para las que fueron diseñadas. De forma general, rigidez y amortiguamiento deben determinarse a partir de ensayos dinámicos en el rango frecuencial adecuado. Los ensayos de deformación estática no permiten determinar el amortiguamiento ni la rigidez dinámica. A railway superstructure includes a set of elements that go from the rail to the platform on which the track sits. Each of these elements determines the performance of the railway superstructure in terms of safety (stability and reliability of the superstructure), environmental impact (generation and propagation of noise and vibrations) and maintenance costs (growth of road roughness, wear wave, degradation of the ballast, damage to the sleepers and fasteners ...). Consequently, knowledge of the dynamic stiffness and damping properties of each element is essential to predict the performance of a railway superstructure at the project stage as well as to optimize the maintenance of functioning superstructures, so that they remain within the safety margin and environmental impact for which they were designed. In general, stiffness and damping should be determined from dynamic tests in the appropriate frequency range. Static deformation tests do not allow the determination of damping or dynamic stiffness.
Es posible caracterizar la mayoría de componentes mediante ensayos dinámicos en laboratorio, utilizando procedimientos y equipos específicos para elementos individuales [1"41 o plantas de ensayo más completas que incluyan la superestructura 1■ Sin embargo, el ensayo in situ de superestructuras ferroviarias es una práctica inevitable en caso de infraestructuras existentes para las cuales se quiera tener en cuenta las particularidades de la superestructura ya implantada y los efectos de interacción entre todos los elementos. Existen diferentes ensayos in situ de superestructura ferroviaria que se pueden clasificar como ensayos parciales o globales. It is possible to characterize the majority of components through dynamic laboratory tests, using specific procedures and equipment for individual elements [1 "41 or more complete test plants that include superstructure 1 ■ However, the on-site testing of railway superstructures is an inevitable practice in the case of existing infrastructure for which one wishes to take into account the particularities of the already implemented superstructure and the effects of interaction between all the elements. There are different in situ tests of railway superstructure that can be classified as partial or global tests.
Los ensayos parciales son aquellos que permiten determinar las propiedades dinámicas de algunos componentes de la superestructura ferroviaria. En concreto se puede diferenciar entre los ensayos para caracterizar elementos de la superestructura (rail, sujeción, balastro, traviesa) y los ensayos para caracterizar la subestructura (subbalastro, plataforma, terreno) Partial tests are those that allow determining the dynamic properties of some components of the railway superstructure. Specifically, it is possible to distinguish between the tests to characterize elements of the superstructure (rail, support, ballast, crossbar) and the tests to characterize the substructure (sub-ballast, platform, terrain)
El procedimiento más habitual para caracterizar elementos de la superestructura consiste en el ensayo de impacto mediante un martillo instrumentado. El carril es excitado mediante un impacto con un martillo que contiene una célula de carga capaz de registrar la fuerza realizada. La respuesta del sistema a dicha excitación se mide mediante acelerómetros en diferentes puntos de la superestructura. La función de transferencia entre la fuerza de impacto y el desplazamiento se compara con un modelo matemático de la dinámica de la superestructura, como por ejemplo un sistema de dos grados de libertad m, o bien un modelo numérico de una sección limitada de vía [3, 81. Optimizando los parámetros del modelo matemático para que se ajuste a las funciones de transferencia obtenidas experimentalmente, es posible obtener una aproximación a los valores de las propiedades dinámicas deseadas. Los principales problemas de este procedimiento consisten en su incapacidad para excitar la superestructura completa (por lo que solo es posible analizar el comportamiento del carril, sujeción y traviesa [9]), la imposibilidad de excitar el sistema por debajo de los 50 Hz, así como la imposibilidad de determinar el comportamiento de los elementos bajo una carga estática equivalente al peso por eje, factor que altera las propiedades a determinar [2, 3]. El ensayo de las propiedades de la subestructura se realiza mediante los procedimientos estandarizados de caracterización de terreno en general, como por ejemplo el ensayo SASW o el sísmico de "crosshole/downhole", que requieren de un equipamiento y procedimiento específico y diferente del ensayo de superestructura. El ensayo global de la respuesta de una superestructura ferroviaria se consigue actualmente mediante un vagón equipado con equipos de lectura de la deformación de la vía bajo el peso del propio vagón. Con este tipo de vehículos ("Track Loading Vehicle", TLV) se determina la rigidez estática del conjunto de la superestructura, pero no se halla en ningún caso las características individuales de cada elemento constituyente de la superestructura ni tampoco la respuesta en frecuencia puesto que la excitación es la simple carga estática del vagón. Se puede encontrar una completa relación de TLV en la referencia [ 0]. The most common procedure to characterize elements of the superstructure consists of the impact test by means of an instrumented hammer. The rail is excited by an impact with a hammer that contains a load cell capable of recording the force performed. The response of the system to said excitation is measured by accelerometers at different points of the superstructure. The transfer function between the impact force and the displacement is compared with a mathematical model of the superstructure dynamics, such as a system of two degrees of freedom m , or a numerical model of a limited section of track [3]. , 81 . By optimizing the parameters of the mathematical model to fit the experimentally obtained transfer functions, it is possible to obtain an approximation to the values of the desired dynamic properties. The main problems of this procedure are its inability to excite the complete superstructure (so it is only possible to analyze the behavior of the rail, clamping and crossbar [9] ), the inability to excite the system below 50 Hz, thus as the impossibility of determining the behavior of the elements under a static load equivalent to the weight per axis, a factor that alters the properties to be determined [2, 3] . The substructure properties are tested using standardized land characterization procedures in general, such as the SASW test or the "crosshole / downhole" seismic, which require specific and different equipment and procedures from the soil test. superstructure. The overall test of the response of a railway superstructure is currently achieved by a car equipped with equipment for reading the deformation of the track under the weight of the car itself. With this type of vehicles ("Track Loading Vehicle", TLV) the static stiffness of the superstructure as a whole is determined, but in no case is the individual characteristics of each constituent element of the superstructure nor the frequency response found since the excitation is the simple static load of the car. A complete TLV relationship can be found in the reference [0] .
Una variante de estos TLV es el autodenominado "Portancemetre" que permite determinar la rigidez de la superestructura ferroviaria para un rango limitado de frecuencias. El sistema utiliza un sistema de masas desequilibradas contrarrotantes instaladas en un chasis, las cuales generan una fuerza oscilante vertical. Esta fuerza se transmite a la vía a través del contacto rueda-rail que equipa el sistema. El cálculo de la fuerza transmitida se estima de forma indirecta a partir de la medida de aceleración en una de las masas del sistema. A variant of these TLVs is the self-styled "Portancemetre" that allows determining the rigidity of the railway superstructure for a limited range of frequencies. The system uses a system of unbalanced counterbalanced masses installed in a chassis, which generate a vertical oscillating force. This force is transmitted to the track through the wheel-rail contact that equips the system. The calculation of the transmitted force is estimated indirectly from the measure of acceleration in one of the system's masses.
Un paso adelante entre los TLV es el vehículo de medida de rigidez rodante ("rolling stiffness measurement vehicle", RSMV), que es capaz de excitar la superestructura ferroviaria de forma dinámica hasta 50 Hz mediante el uso de dos masas oscilantes movidas por pistones hidráulicos y ubicadas en la vertical de uno de los ejes que soportan al vagón [ 0]. La rigidez dinámica del conjunto de la superestructura es calculada a partir de la medida de fuerza transmitida y aceleración del propio eje de contacto. Si se compara la rigidez hallada en función de la frecuencia con la respuesta de un modelo simplificado de superestructura ferroviaria compuesto de viga sobre suelo elástico se pueden estimar las propiedades de estos elementos equivalentes [12, 3], pero no se llega a determinar las propiedades de cada uno de los elementos que constituyen realmente la superestructura ferroviaria. A step forward between TLVs is the rolling stiffness measurement vehicle (RSMV), which is capable of dynamically exciting the railway superstructure up to 50 Hz by using two oscillating masses moved by hydraulic pistons and located in the vertical of one of the axes that support the wagon [0] . The dynamic stiffness of the superstructure as a whole is calculated from the measurement of transmitted force and acceleration of the contact axis itself. If the stiffness found as a function of frequency is compared with the response of a simplified model of a railway superstructure composed of a beam on elastic ground, the properties of these equivalent elements can be estimated [12, 3] , but the properties cannot be determined of each of the elements that really constitute the railway superstructure.
Existen dispositivos portátiles patentados que tienen como objetivo la excitación de la vía. La solicitud WO 20117015687 (A1) [ ] utiliza las vibraciones que producen las imperfecciones de las superficies de contacto de una rueda rodando sobre elementos rígidos. Las vibraciones producidas son transmitidas al suelo a través del bastidor rígido del sistema. El objetivo del equipo es, sin embargo, la simple excitación de la vía para determinar la propagación de vibraciones en el entorno ferroviario y no la caracterización de los elementos de la vía. Tampoco se controla la fuerza ejercida sobre la vía. DESCRIPCIÓN DE LA INVENCIÓN La presente invención se ha desarrollado con el fin de proporcionar un sistema, un método y un programa informático que resuelvan los inconvenientes anteriormente mencionados, aportando, además, otras ventajas adicionales que serán evidentes a partir de la descripción que se acompaña a continuación. En la presente invención se entiende por componente de superestructura a cualquier elemento que forme parte de ella tal como por ejemplo un rail, una sujeción del raíl, balastro o bloque, una traviesa, etc. Además los sentidos verticales, horizontales, frontal, posterior, lateral, axial deben considerarse en una condición de uso. Es un objeto de la presente invención un sistema de planta móvil para caracterización dinámica de elementos de superestructuras ferroviarias que comprende: There are patented portable devices that aim to excite the track. Application WO 20117015687 (A1) [] uses the vibrations produced by imperfections in the contact surfaces of a wheel rolling on rigid elements. The vibrations produced are transmitted to the ground through the rigid frame of the system. The objective of the equipment is, however, the simple excitation of the track to determine the propagation of vibrations in the railway environment and not the characterization of the track elements. Nor is the force exerted on the track controlled. DESCRIPTION OF THE INVENTION The present invention has been developed in order to provide a system, a method and a computer program that solve the aforementioned drawbacks, also providing other additional advantages that will be apparent from the description that accompanies continuation. In the present invention, a superstructure component is understood as any element that is part of it, such as a rail, a rail fastener, a ballast or block, a sleeper, etc. In addition, the vertical, horizontal, frontal, posterior, lateral, axial senses must be considered in a condition of use. An object of the present invention is a mobile plant system for dynamic characterization of railway superstructure elements comprising:
un dispositivo excitador vinculable a una superestructura ferroviaria, en el que el dispositivo excitador comprende a su vez unos medios generadores de vibraciones y carga dispuestos en una bancada que es vinculable por lo menos a una vía a través de por lo menos unos medios de acoplamiento a la superestructura a modo de apoyo; y an exciter device linked to a railway superstructure, in which the exciter device in turn comprises vibration and load generating means arranged in a bed that is linkable at least to one track through at least one coupling means to the superstructure as a support; Y
unos medios de procesamiento de datos en comunicación con unos medios sensores de carga y unos medios sensores de aceleración de vibraciones, en el que los medios sensores de carga están dispuestos por lo menos en un apoyo y los medios sensores de aceleración de vibraciones son susceptibles de posicionarse por lo menos en un componente de la superestructura. data processing means in communication with a load sensing means and a vibration acceleration sensing means, in which the load sensing means are arranged at least in a support and the vibration acceleration sensing means are susceptible to position at least one component of the superstructure.
Gracias a las citadas características se consigue un sistema de planta móvil sencillo y portable que permite caracterizar dinámicamente con exactitud todos y cada uno de los componentes de una superestructura ferroviaria. El presente sistema es aplicable directamente sobre la superestructura ferroviaria, no requiere de un vagón, y permite integrar todo el proceso de caracterización de la superestructura sin necesidad de otros dispositivos. Se recogen y procesan los datos de la carga y aceleración de la vibración aplicada sobre los componentes elegidos de la superestructura. De acuerdo con una característica de la invención los medios generadores de vibraciones y carga pueden comprender por lo menos un par de discos contra-rotantes de masa dispuesta de forma desequilibrada respecto sus respectivos ejes de rotación, en el que los discos están accionados mediante por lo menos una unidad impulsora, en el que un primer disco está vinculado a la unidad impulsora a través de una transmisión de potencia o primaria, y el segundo disco está vinculado a la unidad impulsora mediante una transmisión de sincronizado o secundaria. Con esta configuración se consigue una alternativa sencilla y eficaz de aplicar cargas exclusivamente verticales y excitación tonal directamente a la superestructura. Thanks to the aforementioned characteristics, a simple and portable mobile plant system is achieved that allows to dynamically accurately characterize each and every one of the components of a railway superstructure. The present system is directly applicable on the railway superstructure, does not require a wagon, and allows the whole process of characterization of the superstructure to be integrated without the need for other devices. The data of the load and acceleration of the vibration applied on the chosen components of the superstructure are collected and processed. According to a feature of the invention, the vibration and load generating means may comprise at least one pair of counter-rotating disks of mass arranged unbalanced with respect to their respective axes of rotation, in which the disks are driven by less a drive unit, in which a first disk is linked to the drive unit through a power or primary transmission, and the second disk is linked to the drive unit through a synchronized or secondary transmission. With this configuration, a simple and efficient alternative to apply exclusively vertical loads and tonal excitation directly to the superstructure is achieved.
El par de discos puede comprender sendos orificios, rebajes o protuberancias posicionados excéntricamente, y susceptibles de portar insertos de masas determinadas. Gracias a esta característica es posible modificar la carga aplicada sobre la superestructura dependiendo de las necesidades, de forma sencilla y rápida. The pair of discs may comprise holes, recesses or protuberances positioned eccentrically, and capable of carrying inserts of determined masses. Thanks to this feature it is possible to modify the load applied to the superstructure depending on the needs, simply and quickly.
Por su parte los medios generadores de vibraciones y carga están configurados para variar su frecuencia. De esta forma se puede conseguir un sistema que varía la excitación tonal dentro de un intervalo determinado, además de la variación de la carga. En una realización los medios sensores de carga pueden comprender una célula de carga. On the other hand, the vibration and load generating means are configured to vary their frequency. In this way, a system that varies tonal excitation within a given interval can be achieved, in addition to the variation of the load. In one embodiment the load sensing means may comprise a load cell.
En cuanto a los medios sensores de aceleración de vibraciones pueden comprender una pluralidad de acelerómetros posicionables en una superestructura de vía balastada, tal que por lo menos un acelerómetro es susceptible de posicionarse en una sujeción del raíl, otro entre un par de traviesas, otro en una traviesa y otro en un terreno colindante a un balastro. As for the vibration acceleration sensing means, they may comprise a plurality of positionable accelerometers in a superstructure with a ballast track, such that at least one accelerometer is capable of being positioned in a rail fastener, another between a pair of sleepers, another in one naughty and another in a land adjacent to a ballast.
Alternativamente los medios sensores de aceleración de vibraciones pueden comprender una pluralidad de acelerómetros posicionables en una superestructura de vía en placa o losa flotante en el que una vía está sujeta a una pluralidad de bloques dispuestos sobre por lo menos una placa, tal que por lo menos un acelerómetro es susceptible de posicionarse en una sujeción del raíl, otro entre bloques, otro en un bloque, otro en la placa y otro en un terreno colindante a la placa. Los medios de acoplamiento a modo de apoyo pueden ser ventajosamente móviles respecto la bancada. De esta forma el presente sistema de planta móvil puede posicionarse sobre vías con distinto ancho entre sí. Es otro objeto de la presente invención un método para caracterización dinámica de elementos de superestructuras ferroviarias que comprende las etapas de: Alternatively, the vibration acceleration sensor means may comprise a plurality of positionable accelerometers in a plate track or floating slab superstructure in which a track is subject to a plurality of blocks arranged on at least one plate, such that at least An accelerometer is capable of positioning itself in a rail fastener, another between blocks, another in a block, another in the plate and another in a land adjacent to the plate. The coupling means by way of support can be advantageously mobile with respect to the bed. In this way the present mobile plant system can be positioned on tracks with different widths from each other. Another object of the present invention is a method for dynamic characterization of railway superstructure elements comprising the steps of:
a) generar al menos una excitación tonal y una carga sobre un elemento de la superestructura, a) generate at least one tonal excitation and a load on an element of the superstructure,
b) medir la carga o fuerza dinámica sinusoidal aplicada sobre por lo menos un elemento de la superestructura y la aceleración de las vibraciones inducidas en por lo menos un elemento de la superestructura, b) measure the sinusoidal dynamic load or force applied on at least one element of the superstructure and the acceleration of the vibrations induced in at least one element of the superstructure,
convertir un modelo analítico o numérico de superestructura en base a la aceleración medida en la etapa b). Gracias a estas características se consigue un método para conseguir caracterizar de forma sencilla y precisa los componentes de la superestructura ferroviaria. El presente método permite tener totalmente controlada la fuerza que se ejecuta sobre la vía, al no haber otras maneras de transmisión de fuerza entre la máquina y la vía. El elemento de la superestructura al que se le aplica la cara puede ser por lo menos una vía. convert an analytical or numerical superstructure model based on the acceleration measured in stage b). Thanks to these characteristics, a method is achieved to achieve a simple and precise characterization of the components of the railway superstructure. The present method allows to fully control the force that runs on the track, as there are no other ways of transmitting force between the machine and the track. The element of the superstructure to which the face is applied can be at least one way.
En una realización preferente del método de la invención, el modelo analítico o numérico de la superestructura se determina de acuerdo con la siguiente fórmula: Ü(xu) = Φ(ρ, F(xf)), Fórmula 1 In a preferred embodiment of the method of the invention, the analytical or numerical model of the superstructure is determined according to the following formula: Ü (x u ) = Φ (ρ, F (x f )), Formula 1
En donde: Where:
Ü(xu) es la aceleración de vibración en un dominio frecuencial determinado para al menos una posición de evaluación xu en un punto de la superestructura, Ü (x u ) is the vibration acceleration in a given frequency domain for at least one evaluation position x u at a point in the superstructure,
Φ es el operador que representa el modelo analítico o numérico, Φ is the operator that represents the analytical or numerical model,
p es al menos una variable de entrada del modelo analítico o numérico y p is at least one input variable of the analytical or numerical model and
F(xf) es al menos una fuerza dinámica sinusoidal en el dominio frecuencial determinado y aplicada sobre por lo menos una determinada posición de excitación xf en la superestructura. Preferiblemente, la variable p puede ser por lo menos el valor de la rigidez dinámica o el amortiguamiento de cada componente de la superestructura. Preferiblemente, en la etapa c) se calcula al menos un parámetro p, de la Fórmula 1 , minimizando una parte real: F (x f ) is at least one dynamic sinusoidal force in the determined frequency domain and applied over at least a certain excitation position x f in the superstructure. Preferably, the variable p may be at least the value of the dynamic stiffness or the damping of each component of the superstructure. Preferably, in step c) at least one parameter p of Formula 1 is calculated, minimizing a real part:
Re(Ütheo(xu) - Üexp(xu)), Re (Ü theo (x u ) - Ü exp (x u )),
y una parte imaginaria: and an imaginary part:
lm(Ütheo(xu) - Üexp(xu)), considerando que Ftheo(xf) = Fexp(xf), lm (Ütheo (x u ) - Ü exp (x u )), considering that F theo (x f ) = F exp (x f ),
en el que in which
Ütheo(xu) es una aceleración de vibración estimada previamente a partir de un modelo analítico o numérico Φ, Ü theo (x u ) is a vibration acceleration previously estimated from an analytical or numerical model Φ,
Ftheo(xf) es una fuerza dinámica sinusoidal determinada previamente, F theo (x f ) is a previously determined sinusoidal dynamic force,
Üexp(xu) es una aceleración de vibración medida experimental mente en un dominio frecuencial determinado para al menos una posición de evaluación xu en un punto de la superestructura, Ü exp (x u ) is a vibration acceleration measured experimentally in a given frequency domain for at least one evaluation position x u at a point in the superstructure,
Fexp(x f) es una fuerza dinámica sinusoidal medida experimental mente en el dominio frecuencial determinado y aplicada sobre por lo menos una determinada posición de excitación xf en la superestructura. F exp ( x f ) is a dynamic sinusoidal force measured experimentally in the determined frequency domain and applied over at least a certain excitation position x f in the superstructure.
Así se consiguen conocer las variables de entrada del modelo analítico o numérico, típicas de una superestructura. Este modelo Φ puede ser de tipo bidimensional o tridimensional. This way, the input variables of the analytical or numerical model, typical of a superstructure, are known. This model Φ can be of two-dimensional or three-dimensional type.
La excitación tonal de la etapa a) se puede producir ventajosamente en un rango de frecuencias entre 1 y 80 Hz. Y de forma aún más ventajosa, la excitación tonal de la etapa a) se puede producir en un rango de frecuencias entre 10 y 80 Hz. The tonal excitation of stage a) can advantageously occur in a frequency range between 1 and 80 Hz. And even more advantageously, the tonal excitation of stage a) can occur in a frequency range between 10 and 80 Hz.
Es un objeto adicional de la invención un programa informático que comprende instrucciones de programa para hacer que un sistema de computación realice el método para caracterización dinámica de elementos superestructuras ferroviarias según se ha definido anteriormente. A further object of the invention is a computer program comprising program instructions for making a computer system perform the method for dynamic characterization of railway superstructures as defined above.
Dicho programa informático puede estar incluido en unos medios de almacenamiento, tales como unos medios de grabación, una memoria de ordenador, o una memoria de solo lectura, o puede portarse por una señal portadora. Otras características y ventajas del sistema de planta móvil para caracterización dinámica de elementos de superestructuras ferroviarias, así como del método seguido y el programa informático objetos de la presente invención resultarán evidentes a partir de la descripción de una realización preferida, pero no exclusiva, que se ilustra a modo de ejemplo no limitativo en los dibujos que se acompañan, en los cuales: Said computer program may be included in storage media, such as recording media, a computer memory, or a read-only memory, or it may be carried by a carrier signal. Other features and advantages of the mobile plant system for dynamic characterization of railway superstructure elements, as well as the method followed and the computer program objects of the present invention will be apparent from the description of a preferred, but not exclusive, embodiment. illustrates by way of non-limiting example in the accompanying drawings, in which:
BREVE DESCRIPCIÓN DE LOS DIBUJOS Figura 1.- Es una vista esquemática y en perspectiva frontal de un dispositivo excitador de la presente invención; BRIEF DESCRIPTION OF THE DRAWINGS Figure 1.- It is a schematic and front perspective view of an exciter device of the present invention;
Figura 2.- Es una vista esquemática y en perspectiva posterior del dispositivo excitador de la figura 1 ;  Figure 2.- It is a schematic and rear perspective view of the exciter device of Figure 1;
Figura 3.- Es una vista esquemática y frontal del dispositivo excitador de la figura 1 ;  Figure 3.- It is a schematic and front view of the exciter device of Figure 1;
Figura 4.- Es una vista esquemática y posterior del dispositivo excitador de la figura 1 ; Figure 4.- It is a schematic and rear view of the exciter device of Figure 1;
Figura 5.- Es una vista esquemática y lateral del dispositivo excitador de la figura 1 ;  Figure 5.- It is a schematic and side view of the exciter device of Figure 1;
Figura 6.- Es una vista esquemática y en planta del dispositivo excitador de la figura 1 ; Figure 6.- It is a schematic and plan view of the exciter device of Figure 1;
Figura 7.- Es una vista esquemática y frontal de un sistema de planta móvil de la presente invención, dispuesto en una superestructura ferroviaria; Figure 7.- It is a schematic and front view of a mobile plant system of the present invention, arranged in a railway superstructure;
Figura 8.- Es una vista esquemática desde debajo del dispositivo excitador con los apoyos en una primera posición; Figure 8.- It is a schematic view from below of the exciter device with the supports in a first position;
Figura 9.- Es una vista esquemática y lateral del dispositivo excitador de la figura 8;  Figure 9.- It is a schematic and side view of the exciter device of Figure 8;
Figura 10.- Es una vista esquemática desde debajo del dispositivo excitador con los apoyos en una segunda posición; Figure 10.- It is a schematic view from below of the exciter device with the supports in a second position;
Figura 1 1.- Es una vista esquemática y lateral del dispositivo excitador de la figura 10; Figure 1 1.- It is a schematic and side view of the exciter device of Figure 10;
Figura 12.- Es una vista esquemática en alzado de un apoyo; Figure 12.- It is a schematic elevation view of a support;
Figura 13.- Es una vista esquemática en sección del apoyo de la figura 12 según la línea de corte A-A';  Figure 13.- It is a schematic sectional view of the support of Figure 12 according to the cutting line A-A ';
Figura 14.- Es una vista esquemática y lateral del apoyo de la figura 12; y  Figure 14.- It is a schematic and side view of the support of Figure 12; Y
Figura 15.- Es una vista esquemática lateral en sección del apoyo de la figura 12 según la línea de corte B-B'. Figure 15.- It is a schematic sectional side view of the support of Figure 12 along the line B-B '.
DESCRIPCIÓN DE UNA REALIZACIÓN PREFERENTE Tal como se muestra en las figuras adjuntas se ilustra una realización preferente pero no exclusiva de la presente invención. DESCRIPTION OF A PREFERRED EMBODIMENT As shown in the accompanying figures, a preferred but not exclusive embodiment of the present invention is illustrated.
En la figura 7, en la cual se han eliminado algunos elementos por motivos de claridad, se puede ver que el presente sistema de planta móvil 100 para caracterización dinámica de superestructuras 200 ferroviarias comprende un dispositivo excitador 1 vinculable a una superestructura 200 ferroviaria. La vinculación en el sistema de planta móvil 100 y la superestructura 200 se realiza preferentemente de forma directa, sin la intervención de otros dispositivos o conjuntos, como por ejemplo un vagón o vagoneta modificados. In Figure 7, in which some elements have been removed for reasons of clarity, it can be seen that the present mobile plant system 100 for dynamic characterization of railway superstructures 200 comprises an exciter device 1 linked to a railway superstructure 200. The connection in the mobile plant system 100 and the superstructure 200 is preferably carried out directly, without the intervention of other devices or assemblies, such as a modified wagon or wagon.
El dispositivo excitador 1 comprende a su vez unos medios generadores de vibraciones y carga dispuestos en una bancada 30 que es vinculable por lo menos a una vía 201 a través de por lo menos unos medios de acoplamiento a la estructura a modo de apoyo 40. La bancada 30 puede comprender una pluralidad de perfiles sobre los que descansa un elemento laminar, definiendo una plataforma, tal como se aprecia en las imágenes. No se descarta que el presente dispositivo excitador 1 pueda vincularse o descansar sobre otros componentes de la superestructura 200 The exciter device 1 in turn comprises vibration and load generating means arranged on a bench 30 that is linkable to at least one track 201 through at least some coupling means to the structure as a support 40. The bench 30 may comprise a plurality of profiles on which a laminar element rests, defining a platform, as seen in the images. It is not ruled out that the present exciter device 1 can be linked or resting on other components of the superstructure 200
En la presente realización preferida los medios generadores de vibraciones y carga comprenden un par de discos 21 , 22 contra-rotantes con una masa dispuesta de forma desequilibrada respecto sus respectivos ejes de rotación. Esta masa desequilibrada provoca que al rotar se genere una carga sobre la superestructura 200 con una vibración determinada. Es evidente que el número de discos puede cambiarse dependiendo de las necesidades. Para poder rotar en las direcciones R1 , R2, los discos 21 , 22 están accionados mediante una unidad impulsora 23, en este caso un motor eléctrico con una velocidad de funcionamiento variable para poder modificar la frecuencia de la vibración generada sobre la superestructura 200. In the present preferred embodiment the vibration and load generating means comprise a pair of counter-rotating discs 21, 22 with a mass arranged in an unbalanced manner with respect to their respective axes of rotation. This unbalanced mass causes that when rotating a load is generated on the superstructure 200 with a certain vibration. It is clear that the number of discs can be changed depending on the needs. To be able to rotate in the directions R1, R2, the disks 21, 22 are driven by a driving unit 23, in this case an electric motor with a variable operating speed to be able to modify the frequency of the vibration generated on the superstructure 200.
Un primer disco 21 está vinculado a la unidad impulsora 23 a través de una transmisión de potencia 27 o primaria, y se realiza la transmisión preferentemente mediante correas trapezoidales, con el doble fin de evitar transferencia de vibraciones de funcionamiento entre motor y discos 21 , 22 y hacer más fácil el intercambio de poleas. Ambos discos 21 , 22 están instalados sobre soportes de rodamientos para facilitar la rotación. Puede verse en la figura 6 que la unidad impulsora 23 acciona el primer disco 21 a través de la transmisión de potencia 27, de forma que rota alrededor de su eje E1. A partir del primer disco 21 se transmite el movimiento al segundo disco 22 mediante una transmisión de sincronizado 24 o secundaria. En este caso, la transmisión de sincronizado 24 puede ser una pluralidad de engranajes (no representada) que pueda variar la sincronía entre discos 21 , 22, no obstante se prefiere que dicha sincronía sea de 1/1. A first disk 21 is linked to the drive unit 23 through a power transmission 27 or primary, and the transmission is preferably carried out by trapezoidal belts, with the double purpose of preventing transfer of operating vibrations between motor and discs 21, 22 and make the exchange of pulleys easier. Both discs 21, 22 are installed on bearing supports to facilitate rotation. It can be seen in Figure 6 that the drive unit 23 drives the first disk 21 through the power transmission 27, so that it rotates around its axis E1. From the first disc 21 the movement is transmitted to the second disc 22 by means of a synchronized transmission 24 or secondary. In this case, the synchronization transmission 24 can be a plurality of gears (not shown) that can vary the synchrony between discs 21, 22, however it is preferred that said synchrony is 1/1.
Para variar fácilmente la masa distribuida de forma desequilibrada por la estructura de los discos 21 , 22, estos discos 21 , 22 comprenden sendos orificios 26 roscados posicionados excéntricamente y susceptibles de portar insertos 25 de masas determinadas. Alternativamente se puede emplear otras variantes como rebajes o protuberancias donde posicionar los insertos 25. La forma de los insertos 25 en la presente invención es alargada con una punta en rosca (no ilustrada) capaz de roscarse en el orificio 26 correspondiente. Como ya se ha comentado, los insertos 25 son los causantes del desequilibrio de los discos 21 , 22 y, consecuentemente, de la generación de la fuerza de excitación con un par de componentes: F1 horizontal y F2 vertical. Para asegurar que la componente horizontal F1 de esta fuerza no sea significativa, los orificios 26 están situados simétricamente respecto a un eje de simetría entre de los dos discos 21 , 22 y las masas de los insertos 25 acoplados son exactamente iguales para los dos discos 21 , 22. Los sentidos opuestos de las dos rotaciones R1 y R2, estimando unos discos 21 , 22 con insertos 25 gemelos, consiguen que las componentes horizontales F1 se anulen entre sí. To easily vary the mass distributed unbalanced by the structure of the discs 21, 22, these discs 21, 22 comprise two threaded holes 26 positioned eccentrically and capable of carrying inserts 25 of determined masses. Alternatively, other variants such as recesses or protrusions can be used to position the inserts 25. The shape of the inserts 25 in the present invention is elongated with a threaded tip (not illustrated) capable of being threaded into the corresponding hole 26. As already mentioned, the inserts 25 are the causes of the imbalance of the discs 21, 22 and, consequently, of the generation of the excitation force with a pair of components: horizontal F1 and vertical F2. To ensure that the horizontal component F1 of this force is not significant, the holes 26 are located symmetrically with respect to an axis of symmetry between the two disks 21, 22 and the masses of the inserted inserts 25 are exactly the same for the two disks 21 , 22. The opposite directions of the two rotations R1 and R2, estimating discs 21, 22 with twin inserts 25, get the horizontal components F1 to cancel each other out.
Se podrán emplear otros métodos para generar las vibraciones y la carga vertical sobre la superestructura, tal como por ejemplo un par de masas oscilantes movidas por pistones hidráulicos (realización no representada), o movidas por motores eléctricos sincronizados entre sí Other methods may be used to generate the vibrations and the vertical load on the superstructure, such as for example a pair of oscillating masses moved by hydraulic pistons (embodiment not shown), or driven by electric motors synchronized with each other.
El presente sistema de planta móvil 100 comprende además unos medios de procesamiento de datos (50) en comunicación con unos medios sensores de carga 6 y unos medios sensores de aceleración de vibraciones 7. Los medios sensores de carga 6 están dispuestos preferentemente en cada apoyo 40 y los medios sensores de aceleración de vibraciones 6 son susceptibles de posicionarse por lo menos en un componente de la superestructura 200. En la realización mostrada, se emplean cuatro apoyos 40 para vincular la bancada 30 a modo de cuadrilátero sobre las vías 201 de la superestructura 200, no obstante el número de apoyos 40 podrá variar según los requisitos de cada situación. The present mobile plant system 100 further comprises data processing means (50) in communication with load sensing means 6 and vibration acceleration sensing means 7. Load sensing means 6 are preferably arranged in each support 40 and the vibration acceleration sensor means 6 are capable of positioning at least one component of the superstructure 200. In the embodiment shown, four supports 40 are used to link the bench 30 to quadrilateral mode on tracks 201 of superstructure 200, however the number of supports 40 may vary according to the requirements of each situation.
. En las figuras 8-1 1 se puede ver el dispositivo excitador 1 con una bancada 30 dotada de una serie de taladros 31 o similares donde se pueden vincular los apoyos 40 mediante unos elementos de tornillería no representados que atraviesan las aberturas 43 asociables a los taladros 31. Entre las figuras 8 y 10 se puede apreciar claramente la distinta posición que adoptan los apoyos 40. En las figuras 12-15 se ilustra con más detalle la configuración de un apoyo 40. El apoyo 40 comprende una primera base 41 vinculada a una segunda base 42 de forma giratoria a modo de bisagra. Entre la primera base 41 y la segunda base 42 están dispuestos los medios sensores de carga 6. Para evitar que se dañen dichos medios, también hay dispuestos un par de vástagos 44 posicionables de forma que se consigue regular la distancia relativa entre la primera base 41 y la segunda base 42. Cuando no se desee hacer mediciones, los vástagos 44 separan ambas bases y cuando se desee medir la carga aplicada, se vuelven a aproximar ambas bases. Los apoyos 40 también presentan por lo menos un tornillo 45 para regulación de altura del apoyo respecto al componente de la superestructura al cual está vinculado, por ejemplo la vía 201. Además cada apoyo 40 comprende una pletina 46 para contactar lateralmente a la vía 201. . In Figures 8-1 1, the exciter device 1 can be seen with a bench 30 provided with a series of holes 31 or the like where the supports 40 can be linked by means of unrepresented screws that cross the openings 43 associated with the holes 31. Between the figures 8 and 10 the different position of the supports 40 can be clearly seen. In figures 12-15 the configuration of a support 40 is illustrated in more detail. The support 40 comprises a first base 41 linked to a second base 42 rotatably as a hinge. Between the first base 41 and the second base 42, the load sensing means 6 are arranged. To prevent damage to said means, a pair of positionable stems 44 are also arranged so that the relative distance between the first base 41 is adjusted. and the second base 42. When measurements are not desired, the rods 44 separate both bases and when it is desired to measure the applied load, both bases are approximated again. The supports 40 also have at least one screw 45 for height adjustment of the support with respect to the component of the superstructure to which it is linked, for example track 201. In addition, each support 40 comprises a plate 46 for lateral contact with track 201.
Para poder conocer en todo momento la carga F3 vertical (esfuerzos de compresión) que se aplica sobre la superestructura 200, los medios sensores de carga 6 comprenden una célula de carga, preferentemente situada en cada uno de los apoyos 40. Estas células de carga están configuradas para que sólo transmitan información sobre esfuerzos axiales. In order to be able to know at all times the vertical load F3 (compression stresses) that is applied on the superstructure 200, the load sensing means 6 comprise a load cell, preferably located in each of the supports 40. These load cells are configured to only convey information about axial stresses.
En un posible ejemplo, los medios sensores de aceleración de vibraciones 7 pueden comprender una pluralidad de acelerómetros posicionables en una superestructura 200 de vía balastada, es decir aquella vía férrea asentada sobre balastro 204. Así un acelerometro puede posicionarse en una sujeción del raíl 202, otro acelerometro entre un par de traviesas 203, otro acelerometro en una traviesa 203 y otro acelerometro en un terreno colindante a un balastro 204. In a possible example, the vibration acceleration sensing means 7 may comprise a plurality of positionable accelerometers in a superstructure 200 with a ballast track, that is to say that railway track seated on ballast 204. Thus, an accelerometer can be positioned in a rail fastener 202, another accelerometer between a pair of sleepers 203, another accelerometer in a sleeper 203 and another accelerometer in a land adjacent to a ballast 204.
En otro ejemplo, los medios sensores de aceleración de vibraciones 6 pueden comprender una pluralidad de acelerómetros posicionables en una superestructura 200 de vía en placa o losa flotante en el que la vía 201 está sujeta a una pluralidad de bloques dispuestos sobre por lo menos una placa, tal que por lo menos un acelerometro es susceptible de posicionarse en una sujeción del raíl 202, otro entre bloques, otro en un bloque, otro en la placa y otro en un terreno colindante a la placa. In another example, the vibration acceleration sensor means 6 may comprise a plurality of positionable accelerometers in a plate track superstructure 200 or floating slab in which the track 201 is subject to a plurality of blocks arranged on at least one plate, such that at least one accelerometer is capable of being positioned in a rail fastener 202, another between blocks, another in a block, another on the plate and another on land adjacent to the plate.
El término "colindante" significa próximo, de forma que el acelerometro sea capaz de captar adecuadamente la aceleración de la vibración generada. The term "adjoining" means close, so that the accelerometer is able to adequately capture the acceleration of the generated vibration.
En vista de los ejemplos analizados, se puede confirmar que el número y situación de los medios sensores de aceleración de vibraciones 7 será variable en función de la tipología de superestructura 200 y el nivel de detalle requerido en el estudio. Para realizar una caracterización precisa, la red de acelerómetros debe ser suficientemente extensa cómo para captar todas las singularidades dinámicas de la superestructura 200. Esto implica que se debería colocarse un mínimo de un acelerometro por componente de la superestructura 200. In view of the examples analyzed, it can be confirmed that the number and location of the vibration acceleration sensor means 7 will be variable depending on the type of superstructure 200 and the level of detail required in the study. To perform an accurate characterization, the accelerometer network must be sufficiently extensive to capture all the dynamic singularities of superstructure 200. This implies that a minimum of one accelerometer should be placed per component of superstructure 200.
El dispositivo excitador 1 puede ser lastrado por ejemplo hasta un peso total máximo añadido de 6 toneladas. Así, los comportamientos no-lineales de materiales elastoméricos existentes en las superestructuras 200 ferroviarias más modernas pueden también ser caracterizados. La rigidez dinámica y el amortiguamiento de los citados materiales elastoméricos (mantas bajo placa, ciertas sujeciones) dependen de la carga a la que están sometidos, principalmente el peso que recae sobre la rueda que depende a su vez del tipo de tren. En la presente invención se puede cargar el dispositivo excitador 1 de forma que se puede emular el peso por eje de diversos tipos de ferrocarril y detectar la influencia del peso en el valor de rigidez y amortiguamiento. The exciter device 1 can be ballasted for example up to a maximum total added weight of 6 tons. Thus, the non-linear behaviors of elastomeric materials existing in the most modern railway superstructures 200 can also be characterized. The dynamic stiffness and damping of the aforementioned elastomeric materials (blankets under plate, certain fasteners) depend on the load to which they are subjected, mainly the weight that falls on the wheel which in turn depends on the type of train. In the present invention, the exciter device 1 can be loaded so that the axle weight of various types of rail can be emulated and the influence of the weight on the stiffness and damping value can be detected.
Para poder caracterizar dinámicamente superestructuras 200 ferroviarias se sigue un método con una serie de etapas principales. Preferiblemente, se empleará un sistema de planta móvil 100 tal y como se ha descrito anteriormente. In order to dynamically characterize railway superstructures 200, a method is followed with a series of main stages. Preferably, a mobile plant system 100 will be employed as described above.
El método comprende las etapas de: a) generar al menos una excitación tonal y una carga F3 sobre una vía 201 , como ejemplo preferido de componente de la superestructura 200 (podría ser otro). Esta etapa se puede producir al accionar en contra- rotación los discos 21 , 22 dotados respectivamente de un inserto 25 de masa predeterminada. Al variar la masa de los insertos 25 se podrá variar la carga F3 o fuerza de compresión que se aplica sobre la superestructura 200 a caracterizar. El accionamiento y regulación de la unidad impulsora 23 están gestionados preferentemente por los medios de procesamiento 50, aunque se podrá realizar de forma manual por parte del operario. En esta etapa, la excitación tonal sobre la vía 201 se puede producir en un rango de frecuencias entre 1 y 80 Hz, y de forma aún más preferida en un rango de frecuencias entre 10 y 80 Hz siguiendo lo establecido por la norma ISO 2631-2. Es evidente que dichos intervalos podrán variar; b) medir la carga F3 o fuerza dinámica sinusoidal aplicada sobre la vía 201 y la aceleración de las vibraciones inducidas en por lo menos un elemento de la superestructura 200. La información es recibida en los medios de procesamiento 50, proveniente de la pluralidad de sensores; c) invertir un modelo analítico o numérico de superestructura 200 en base a la aceleración medida en la etapa b). El modelo analítico o numérico de la superestructura 200 que se emplea de forma preferida, se determina de acuerdo con la siguiente fórmula: The method comprises the steps of: a) generating at least one tonal excitation and a load F3 on a path 201, as a preferred example of a component of the superstructure 200 (it could be another). This stage can occur when the discs 21, 22 are provided with counter-rotation, respectively provided with a insert 25 of predetermined mass. By varying the mass of the inserts 25, the load F3 or compression force that is applied on the superstructure 200 to be characterized may be varied. The drive and regulation of the drive unit 23 are preferably managed by the processing means 50, although it can be done manually by the operator. At this stage, tonal excitation on track 201 can occur in a frequency range between 1 and 80 Hz, and even more preferably in a frequency range between 10 and 80 Hz following the provisions of ISO 2631- 2. It is evident that such intervals may vary; b) measure the load F3 or dynamic sinusoidal force applied on track 201 and the acceleration of the vibrations induced in at least one element of the superstructure 200. The information is received in the processing means 50, from the plurality of sensors ; c) invert an analytical or numerical model of superstructure 200 based on the acceleration measured in step b). The analytical or numerical model of the superstructure 200 that is preferably used is determined according to the following formula:
Ü(xu) = (p, F(xf)), Fórmula 1 en la que Ü(xu) es la aceleración de vibración en un dominio frecuencial determinado para al menos una posición de evaluación xu en un punto de la superestructura 200, Ü (x u ) = (p, F (x f )), Formula 1 in which Ü (x u ) is the vibration acceleration in a given frequency domain for at least one evaluation position x u at a point in the superstructure 200,
Φ es el operador que representa el modelo analítico o numérico, Φ is the operator that represents the analytical or numerical model,
p es al menos una variable de entrada del modelo analítico o numérico, como por ejemplo la rigidez dinámica y/o el amortiguamiento de al menos un componente de la superestructura, y p is at least one input variable of the analytical or numerical model, such as dynamic stiffness and / or damping of at least one component of the superstructure, and
F(xf) es al menos una fuerza dinámica sinusoidal o carga F3 en el dominio frecuencial determinado y aplicada sobre por lo menos una determinada posición de excitación xf en la superestructura 200. F (x f ) is at least one dynamic sinusoidal force or load F3 in the determined frequency domain and applied over at least a certain excitation position x f in the superstructure 200.
Continuando con la etapa c). Para invertir el modelo analítico o numérico y así conocer el o los parámetros p que caracterizan a una superestructura 200 determinada, se calcula el parámetro p de la Fórmula 1 , minimizando una parte real de la diferencia: Re(Ütheo(xu) - Üexp(xu)), y una parte imaginaria de dicha diferencia expresada: lm(Ütheo(xu) - Üexp(xu)). Todo ello se puede hacer considerando que Ftheo(xf) = Fexp(xf) En las citadas expresiones: Continuing with stage c). In order to invert the analytical or numerical model and thus know the parameter (s) that characterize a specific superstructure 200, the parameter p of Formula 1 is calculated, minimizing a real part of the difference: Re (Ü theo (x u ) - Ü exp (x u )), and an imaginary part of said difference expressed: lm (Ü theo (x u ) - Ü exp (x u )). All this can be done considering that F theo (x f ) = F exp (x f ) In the aforementioned expressions:
Ütheo(xu) es una aceleración de vibración estimada previamente a partir de un modelo analítico o numérico Φ, Ü theo (x u ) is a vibration acceleration previously estimated from an analytical or numerical model Φ,
Ftheo(xf) es una fuerza dinámica sinusoidal determinada previamente, F theo (x f ) is a previously determined sinusoidal dynamic force,
Üexp(xu) es una aceleración de vibración medida experimental mente en un dominio frecuencial determinado para al menos una posición de evaluación xu en un punto de la superestructura 200, Ü exp (x u ) is a vibration acceleration measured experimentally in a given frequency domain for at least one evaluation position x u at a point of superstructure 200,
Fexp(x f) es una fuerza dinámica sinusoidal medida experimental mente en el dominio frecuencial determinado y aplicada sobre por lo menos una determinada posición de excitación xf en la superestructura 200. Se entiende que esta fuerza dinámica sinusoidal se recibirá desde las cuatro células de carga dispuestas respectivamente en cada uno de los apoyos 40. Los sufijos "theo" hacen referencia a valores teóricos que se estiman para aplicar el modelo analítico o numérico como el de la Fórmula 1. A continuación y seleccionando las mismas posiciones de evaluación y excitación que en el modelo teórico, se obtienen los valores experimentales referidos con el sufijo "exp". Y como se ha dicho antes se puede considerar que Ftheo(xf) = Fexp(xf), de lo contrario, es decir si la carga F3 difiere del valor teórico estimado, debe ajustarse la masa del inserto 25 para que se aplique la carga F3 adecuada para el cálculo. F exp ( x f ) is a sinusoidal dynamic force measured experimentally in the determined frequency domain and applied over at least a certain excitation position x f in superstructure 200. It is understood that this dynamic sinusoidal force will be received from the four cells of load arranged respectively in each of the supports 40. The suffixes "theo" refer to theoretical values that are estimated to apply the analytical or numerical model like that of Formula 1. Next and selecting the same evaluation and excitation positions that in the theoretical model, the experimental values referred to with the suffix "exp" are obtained. And as said before, it can be considered that F theo (x f ) = F exp (x f ), otherwise, that is, if the load F3 differs from the estimated theoretical value, the mass of the insert 25 must be adjusted so that apply the appropriate F3 load for the calculation.
Una vez se obtienen los valores adecuados de "p", por ejemplo a través de un algoritmo, se consigue aplicar un modelo analítico o numérico como el de la Fórmula 1 que puede caracterizar con exactitud todos y cada uno de los componentes de una superestructura 200 de forma analítica. Once the appropriate values of "p" are obtained, for example through an algorithm, it is possible to apply an analytical or numerical model such as that of Formula 1 that can accurately characterize each and every one of the components of a superstructure 200 analytically
Los modelos Φ deben ser correctamente escogidos según el tipo de superestructura 200 a caracterizar y el nivel de exactitud en la caracterización requerido. Los modelos analíticos o numéricos más detallados, los cuales pueden permitir caracterizaciones más precisas, son más costosos computacionalmente, por lo que se debe llegar a un compromiso adecuado a las necesidades del estudio. Los modelos Φ implementados para la realización del presente sistema de planta móvil 100 se pueden clasificar en dos grandes ramas según su complejidad: - Modelos bidimensionales de superestructura: Estos modelos no tienen en cuenta la variabilidad dinámica de la superestructura en la dirección transversal (respecto a la dirección de avance) a la vía 201 a excepción del terreno, que sí que es tridimensional. Su velocidad de cálculo es muy elevada. Estos modelos están basados en la adaptación del modelo presentado en [ 5] a todos los grandes tipos de superestructuras ferroviarias. The models Φ must be correctly chosen according to the type of superstructure 200 to be characterized and the level of accuracy in the required characterization. The more detailed analytical or numerical models, which may allow more precise characterizations, are more computationally expensive, so a compromise appropriate to the needs of the study must be reached. The models Φ implemented for the realization of the present mobile plant system 100 can be classified into two large branches according to their complexity: - Two-dimensional superstructure models: These models do not take into account the dynamic variability of the superstructure in the transverse direction (with respect to the direction of advance) to track 201 with the exception of the terrain, which is three-dimensional. Its calculation speed is very high. These models are based on the adaptation of the model presented in [5] to all major types of railway superstructures.
- Modelos tridimensionales de superestructura: Surgen de la adaptación del modelo presentado en [ 6] a todos los grandes tipos de superestructuras ferroviarias, aunque con un coste computacional más elevado que los modelos anteriores. También se pueden utilizar modelos FEM (método de elementos finitos) tridimensionales para el mismo cometido, los cuales conllevan un coste computacional mayor pero permiten una representación más veraz de la geometría del problema y, consecuentemente, mejores resultados en la caracterización dinámica [ 7]. Cabe mencionar que teóricamente F2 puede ser de igual magnitud que F3. Sin embargo, en la práctica, la respuesta dinámica de elementos como la bancada 30 pueden alterar esta igualdad. Así que se puede considerar que F2=F3 son aproximadamente iguales pero es necesario tener el valor de F3. F3 se distribuye entre los distintos apoyos 40 que presenta la invención, en el presente caso son cuatro, por lo que F3 es la suma de la carga vertical aplicada a través de cada uno de los cuatro apoyos 40. Es importante matizar que si Fi es la carga vertical de cada uno de los apoyos 40, ésta puede variar entre los mismos apoyos 40. Si se trabaja con un modelo bidimensional, lo más apropiado es usar una F3 única y si se trabaja con un modelo tridimensional, se podría trabajar con unos datos de F3 más precisos y detallados para cada apoyo 40. Esto a su vez permite una identificación más precisa de las magnitudes que se buscan. - Three-dimensional superstructure models: They arise from the adaptation of the model presented in [6] to all the major types of railway superstructures, although with a higher computational cost than the previous models. Three-dimensional FEM (finite element method) models can also be used for the same purpose, which entail a higher computational cost but allow a more accurate representation of the geometry of the problem and, consequently, better results in dynamic characterization [7] . It should be mentioned that theoretically F2 can be of the same magnitude as F3. However, in practice, the dynamic response of elements such as bench 30 can alter this equality. So you can consider that F2 = F3 are approximately equal but it is necessary to have the value of F3. F3 is distributed among the different supports 40 presented by the invention, in this case there are four, so that F3 is the sum of the vertical load applied through each of the four supports 40. It is important to clarify that if Fi is the vertical load of each of the supports 40, this can vary between the same supports 40. If you work with a two-dimensional model, the most appropriate is to use a single F3 and if you work with a three-dimensional model, you could work with some more accurate and detailed F3 data for each support 40. This in turn allows a more precise identification of the magnitudes sought.
También está previsto un programa informático que comprende instrucciones de programa para hacer que un sistema de computación, tal como los medios de procesamiento 50, realice el método para caracterización dinámica de superestructuras 200 ferroviarias según se ha definido anteriormente. A computer program is also provided that comprises program instructions to make a computer system, such as processing means 50, perform the method for dynamic characterization of railway superstructures 200 as defined above.
Dicho programa informático puede estar almacenado en unos medios de almacenamiento físico, tales como unos medios de grabación, una memoria de ordenador, o una memoria de solo lectura, es decir cualquier entidad o dispositivo capaz de portar dicho programa informático. El programa informático también puede ser portado por una señal portadora, tal como eléctrica u óptica, que se puede transmitir vía cable eléctrico u óptico o mediante radio u otros medios. Said computer program may be stored in physical storage media, such as recording media, a computer memory, or a read-only memory, that is, any entity or device capable of carrying said computer program. The computer program can also be carried by a carrier signal, such as electrical or optical, which can be transmitted via electrical or optical cable or by radio or other means.
Los detalles, las formas, las dimensiones y demás elementos accesorios, así como los materiales empleados en la fabricación de los objetos de la invención podrán ser convenientemente sustituidos por otros que no se aparten del ámbito definido por las reivindicaciones que se incluyen a continuación. The details, shapes, dimensions and other accessory elements, as well as the materials used in the manufacture of the objects of the invention may be conveniently substituted by others that do not depart from the scope defined by the claims included below.
REFERENCIAS REFERENCES
[1] Jaroslav Smutny, Measurement and analysis of dynamic and acoustic parameters of rail fastening NDT&E, 37, 1 19-129. 2004, [1] Jaroslav Smutny, Measurement and analysis of dynamic and acoustic parameters of rail fastening NDT & E, 37, 1 19-129. 2004,
[2] J. Maes, H. Sol, P. Guillaume, Measurements of the dynamic railpad properties. [2] J. Maes, H. Sol, P. Guillaume, Measurements of the dynamic railpad properties.
Journal of Sound and Vibration 293 (2006) 557-565.  Journal of Sound and Vibration 293 (2006) 557-565.
[3] Stefano Bruni & Andrea Collina. Modelling the Viscoelastic Behaviour of Elastomeric[3] Stefano Bruni & Andrea Collina. Modeling the Viscoelastic Behavior of Elastomeric
Components: An Application to the Simulation of Train-Track Interaction. VehicleComponents: An Application to the Simulation of Train-Track Interaction. Vehicle
System Dynamics:34 (2000) 283-301. System Dynamics: 34 (2000) 283-301.
[4] S. Kaewunruen and A.M. Remennikov. An alternative rail pad tester for measuring dynamic properties of rail pads under large preloads. Experimental Mechanics,[4] S. Kaewunruen and A.M. Remennikov An alternative rail pad tester for measuring dynamic properties of rail pads under large preloads. Experimental Mechanics,
48(1):55-64, 2008. 48 (1): 55-64, 2008.
[5] C. Guigou-Carter, M. Villot, B. Guillerme, and C. Petit. Analytical and experimental study of sleeper SAT S 312 in slab track Sateba system. Journal of Sound and Vibration, 293(3-5) :878-887, 2006  [5] C. Guigou-Carter, M. Villot, B. Guillerme, and C. Petit. Analytical and experimental study of sleeper SAT S 312 in slab track Sateba system. Journal of Sound and Vibration, 293 (3-5): 878-887, 2006
[6] Van honacker P., Goossens A. Banc d'essai pour voie ferrée. BE 1014836 (A6).  [6] Van Honacker P., Goossens A. Banc d'essai pour voie ferrée. BE 1014836 (A6).
Patente de invención, 2002.  Invention patent, 2002.
[7] S. Kaewunruen, A. Remennikov. Field triáis for dynamic characteristics of railway track and its components using impact excitation technique. NDT&E 40, 510-519. 2007. [7] S. Kaewunruen, A. Remennikov. Field triáis for dynamic characteristics of railway track and its components using impact excitation technique. NDT & E 40, 510-519. 2007
[8] De Man, A. P.; Esveld, C. Recording, estimating and managing the dynamic behaviour of railway structures. Proceedings of the International Seminar on Modal Analysis. KU Leuven; 1998, 2001. p. 749-754. [9] M. Oregui, M. Molodova, A. Núñez, R. Dollevoet, Z. Li, Experimental Investigation Into the Condition of Insulated Rail Joints by Impact Excitation. Experimental Mechanics 2015. [8] De Man, AP; Esveld, C. Recording, estimating and managing the dynamic behavior of railway structures. Proceedings of the International Seminar on Modal Analysis. KU Leuven; 1998, 2001. p. 749-754. [9] M. Oregui, M. Molodova, A. Núñez, R. Dollevoet, Z. Li, Experimental Investigation Into the Condition of Insulated Rail Joints by Impact Excitation. Experimental Mechanics 2015.
[10] E.G. Berggren Railway Track Stiffness. Dynamic Measurements and Evaluation for Efficient Maintenance. PhD thesis, Royal Institute of Technology (KTH), Stockholm, [10] E.G. Berggren Railway Track Stiffness. Dynamic Measurements and Evaluation for Efficient Maintenance. PhD thesis, Royal Institute of Technology (KTH), Stockholm,
2009. 2009
[1 1] Mohsen Hosseingholian, Daniel Levacher et Matoren Khay, Mesure en continu de la raideur dynamique d'une voie ferrée. Rev. can. geotech. vol. 48, 439-450, 201 1.  [1 1] Mohsen Hosseingholian, Daniel Levacher and Matoren Khay, Mesure en continu de la raideur dynamique d'une voie ferrée. Rev. can. geotech vol. 48, 439-450, 201 1.
[12] C. With, A. Bodare, Evaluation of track stiffenss with a vibrator for prediction fo train induced desplacements or railway embarnkments. Soil Dynamics and Earthquake[12] C. With, A. Bodare, Evaluation of track stiffenss with a vibrator for prediction fo train induced displacements or railway embarnkments. Soil Dynamics and Earthquake
Engineering, 29, 1187-1197. 2009. Engineering, 29, 1187-1197. 2009
[13] Eric G. Berggren, AmirM.Kaynia, Bjórn Dehlbom Identification of sustructure properties of railway tracks by dynamic stiffness measurements and simulations. Journal of Sound and Vibration, 329, 3999^1016. 2010. [13] Eric G. Berggren, AmirM. Kaynia, Bjórn Dehlbom Identification of sustructure properties of railway tracks by dynamic stiffness measurements and simulations. Journal of Sound and Vibration, 329, 3999 ^ 1016. 2010
[14] Fenollosa Artes F., Goma Ayats J., Martínez Miralles J. y Cardona Foix, S.. Método para el diagnóstico del nivel de transmisión de vibraciones desde una superficie de tránsito de vehículos ferroviarios y banco de ensayo para su implementación. WO 201 17015687 (A1). Patente de invención, 2009. [14] Fenollosa Artes F., Goma Ayats J., Martínez Miralles J. and Cardona Foix, S .. Method for the diagnosis of the level of vibration transmission from a transit surface of railway vehicles and test bench for its implementation. WO 201 17015687 (A1). Invention patent, 2009.
[15] R. Arcos. A model for railway induced ground vibrations in the frame of preliminary assessment studies, Ph.D. thesis, Universitat Politécnica de Catalunya, 201 1. [15] R. Arcos. A model for railway induced ground vibrations in the frame of preliminary assessment studies, Ph.D. Thesis, Polytechnic University of Catalonia, 201 1.
[16] A. Karlstróm, A. Bostróm. An analytical model for train-induced ground vibrations from railways, Journal of Sound and Vibration, 292(1-2) (2006) 221-241.  [16] A. Karlstróm, A. Bostróm. An analytical model for train-induced ground vibrations from railways, Journal of Sound and Vibration, 292 (1-2) (2006) 221-241.
[17] M Oregui, Z Li and R Dollevoet, An investigation into the vertical dynamics of tracks with monoblock sleepers with a 3D finite-element model. Proc IMechE Part F: J Rail and Rapid Transit, doi: 10.1177/0954409715569558, 2015. [17] M Oregui, Z Li and R Dollevoet, An investigation into the vertical dynamics of tracks with monoblock sleepers with a 3D finite-element model. Proc IMechE Part F: J Rail and Rapid Transit, doi: 10.1177 / 0954409715569558, 2015.

Claims

REIVINDICACIONES
1. Sistema de planta móvil (100) para caracterización dinámica de elementos de superestructuras (200) ferroviarias caracterizado por el hecho de que comprende:  1. Mobile plant system (100) for dynamic characterization of railway superstructures (200) elements characterized by the fact that it comprises:
un dispositivo excitador (1) vinculable a una superestructura (200) ferroviaria, en el que el dispositivo excitador (1) comprende a su vez unos medios generadores de vibraciones y carga (20) dispuestos en una bancada (30) que es vinculable por lo menos a una vía (201) a través de por lo menos unos medios de acoplamiento a la superestructura a modo de apoyo (40); y an exciter device (1) linkable to a railway superstructure (200), in which the exciter device (1) in turn comprises vibration and load generating means (20) arranged on a bench (30) which is linkable by at least one way (201) through at least some means of coupling to the superstructure as a support (40); Y
unos medios de procesamiento de datos (50) en comunicación con unos medios sensores de carga (6) y unos medios sensores de aceleración de vibraciones (7), en el que los medios sensores de carga (6) están dispuestos por lo menos en un apoyo (40) y los medios sensores de aceleración de vibraciones (6) son susceptibles de posicionarse por lo menos en un componente de la superestructura (200). data processing means (50) in communication with a load sensing means (6) and vibration acceleration sensing means (7), in which the load sensing means (6) are arranged in at least one support (40) and the vibration acceleration sensor means (6) are capable of positioning at least one component of the superstructure (200).
2. Sistema de planta móvil (100) para caracterización dinámica de elementos de superestructuras (200) ferroviarias según la reivindicación 1 , caracterizado por el hecho de que los medios generadores de vibraciones y carga (20) comprenden por lo menos un par de discos (21 , 22) contra-rotantes de masa dispuesta de forma desequilibrada respecto sus respectivos ejes de rotación, en el que los discos (21 , 22) están accionados mediante por lo menos una unidad impulsora (23), en el que un primer disco (21) está vinculado a la unidad impulsora (23) a través de una transmisión de potencia (27) o primaria, y el segundo disco (22) está vinculado a la unidad impulsora (23) mediante una transmisión de sincronizado (24) o secundaria. 2. Mobile plant system (100) for dynamic characterization of elements of railway superstructures (200) according to claim 1, characterized in that the vibration and load generating means (20) comprise at least one pair of disks ( 21, 22) counter-rotating mass arranged unbalanced with respect to their respective axes of rotation, in which the disks (21, 22) are driven by at least one driving unit (23), in which a first disk ( 21) is linked to the drive unit (23) through a power transmission (27) or primary, and the second disk (22) is linked to the drive unit (23) by a synchronized (24) or secondary transmission .
3. Sistema de planta móvil (100) para caracterización dinámica de elementos de superestructuras (200) ferroviarias según la reivindicación anterior, caracterizado por el hecho de que en el par de discos (21 , 22) comprenden sendos orificios, rebajes o protuberancias (26) posicionados excéntricamente, y susceptibles de portar insertos (25) de masas determinadas. 3. Mobile plant system (100) for dynamic characterization of elements of railway superstructures (200) according to the preceding claim, characterized in that in the pair of disks (21, 22) they comprise two holes, recesses or protuberances (26 ) positioned eccentrically, and capable of carrying inserts (25) of determined masses.
4. Sistema de planta móvil (100) para caracterización dinámica de elementos de superestructuras (200) ferroviarias según una cualquiera de las reivindicaciones anteriores, caracterizado por el hecho de que los medios generadores de vibraciones y carga (20) están configurados para variar su frecuencia. 4. Mobile plant system (100) for dynamic characterization of elements of railway superstructures (200) according to any one of the preceding claims, characterized in that the vibration and load generating means (20) are configured to vary their frequency .
5. Sistema de planta móvil (100) para caracterización dinámica de elementos de superestructuras (200) ferroviarias según una cualquiera de las reivindicaciones anteriores, caracterizado por el hecho de que los medios sensores de carga (6) comprenden una célula de carga. 5. Mobile plant system (100) for dynamic characterization of elements of railway superstructures (200) according to any one of the preceding claims, characterized in that the load sensing means (6) comprise a load cell.
6. Sistema de planta móvil (100) para caracterización dinámica de elementos de superestructuras (200) ferroviarias según una cualquiera de las reivindicaciones anteriores, caracterizado por el hecho de que los medios sensores de aceleración de vibraciones (7) comprenden una pluralidad de acelerometros posicionables en una superestructura (200) de vía balastada, tal que por lo menos un acelerometro es susceptible de posicionarse en una sujeción del raíl (202), otro entre un par de traviesas (203), otro en una traviesa (203) y otro en un terreno colindante a un balastro (204). 6. Mobile plant system (100) for dynamic characterization of elements of railway superstructures (200) according to any one of the preceding claims, characterized in that the vibration acceleration sensor means (7) comprise a plurality of positionable accelerometers in a superstructure (200) with a ballad track, such that at least one accelerometer is capable of being positioned in a rail fastener (202), another between a pair of sleepers (203), another in a sleeper (203) and another in a land adjacent to a ballast (204).
7. Sistema de planta móvil (100) para caracterización dinámica de elementos de superestructuras (200) ferroviarias según una cualquiera de las reivindicaciones anteriores, caracterizado por el hecho de que los medios sensores de aceleración de vibraciones (7) comprenden una pluralidad de acelerometros posicionables en una superestructura (200) de vía en placa o losa flotante en el que una vía (201) está sujeta a una pluralidad de bloques dispuestos sobre por lo menos una placa, tal que por lo menos un acelerometro es susceptible de posicionarse en una sujeción del raíl (202), otro entre bloques, otro en un bloque, otro en la placa y otro en un terreno colindante a la placa. 7. Mobile plant system (100) for dynamic characterization of elements of railway superstructures (200) according to any one of the preceding claims, characterized in that the vibration acceleration sensor means (7) comprise a plurality of positionable accelerometers in a plate track or floating slab superstructure (200) in which a track (201) is subject to a plurality of blocks arranged on at least one plate, such that at least one accelerometer is capable of being positioned in a clamp of the rail (202), another between blocks, another in a block, another in the plate and another in a land adjacent to the plate.
8. Sistema de planta móvil (100) para caracterización dinámica de elementos de superestructuras (200) ferroviarias según una cualquiera de las reivindicaciones anteriores, caracterizado por el hecho de que los medios de acoplamiento a la estructura a modo de apoyo (40) son móviles respecto la bancada (30). 8. Mobile plant system (100) for dynamic characterization of elements of railway superstructures (200) according to any one of the preceding claims, characterized in that the coupling means to the structure as a support (40) are mobile respect the bench (30).
9. Método para caracterización dinámica de elementos de superestructuras (200) ferroviarias caracterizado por el hecho de que comprende las etapas de: 9. Method for dynamic characterization of elements of railway superstructures (200) characterized by the fact that it comprises the steps of:
a) generar al menos una excitación tonal y una carga (F3) sobre un elemento de la superestructura, a) generate at least one tonal excitation and a load (F3) on an element of the superstructure,
b) medir la carga (F3) o fuerza dinámica sinusoidal aplicada sobre por lo menos un elemento de la superestructura (200), y la aceleración de las vibraciones inducidas en por lo menos un elemento de la superestructura, c) invertir un modelo analítico o numérico de superestructura (200) en base a la aceleración medida en la etapa b). b) measure the load (F3) or dynamic sinusoidal force applied to at least one element of the superstructure (200), and the acceleration of the vibrations induced in at least one element of the superstructure, c) reverse an analytical or numerical superstructure model (200) based on the acceleration measured in step b).
10. Método para caracterización dinámica de elementos de superestructuras (200) ferroviarias según la reivindicación anterior, caracterizado por el hecho de que el modelo analítico o numérico de la superestructura (200) se determina de acuerdo con la siguiente fórmula: 10. Method for dynamic characterization of elements of railway superstructures (200) according to the preceding claim, characterized in that the analytical or numerical model of the superstructure (200) is determined according to the following formula:
Ü(xu) = (p, F(xf)), Fórmula 1 en la que Ü(xu) es la aceleración de vibración en un dominio frecuencial determinado para al menos una posición de evaluación xu en un punto de la superestructura (200), Ü (x u ) = (p, F (x f )), Formula 1 in which Ü (x u ) is the vibration acceleration in a given frequency domain for at least one evaluation position x u at a point in the superstructure (200),
Φ es el operador que representa el modelo analítico o numérico, Φ is the operator that represents the analytical or numerical model,
p es al menos una variable de entrada del modelo analítico o numérico y p is at least one input variable of the analytical or numerical model and
F(xf) es al menos una fuerza dinámica sinusoidal en el dominio frecuencial determinado y aplicada sobre por lo menos una determinada posición de excitación xf en la superestructura (200). F (x f ) is at least one dynamic sinusoidal force in the determined frequency domain and applied over at least a certain excitation position x f in the superstructure (200).
11. Método para caracterización dinámica de elementos de superestructuras (200) ferroviarias según la reivindicación anterior, caracterizado por el hecho de que la variable p es por lo menos la rigidez dinámica o el amortiguamiento. 11. Method for dynamic characterization of elements of railway superstructures (200) according to the preceding claim, characterized in that the variable p is at least dynamic stiffness or damping.
12. Método para caracterización dinámica de elementos de superestructuras (200) ferroviarias según una cualquiera de las reivindicaciones 9-11 , caracterizado por el hecho de que en la etapa c) se calcula al menos un parámetro p de la Fórmula 1 , minimizando una parte real: 12. Method for dynamic characterization of elements of railway superstructures (200) according to any one of claims 9-11, characterized in that at step c) at least one parameter p of Formula 1 is calculated, minimizing a part real:
Re(Ütheo(xu) - Üexp(xu)), Re (Ü theo (x u ) - Ü exp (x u )),
y una parte imaginaria: and an imaginary part:
lm(Ütheo(xu) - Üexp(xu)), considerando que Ftheo(xf) = Fexp(xf), lm (Ü theo (x u ) - Ü exp (x u )), considering that F theo (x f ) = F exp (x f ),
en el que in which
Ütheo(xu) es una aceleración de vibración estimada previamente a partir de un modelo analítico o numérico Φ, Ü theo (x u ) is a vibration acceleration previously estimated from an analytical or numerical model Φ,
Ftheo(xf) es una fuerza dinámica sinusoidal determinada previamente, Üexp(xu) es una aceleración de vibración medida experimental mente en un dominio frecuencial determinado para al menos una posición de evaluación xu en un punto de la superestructura (200), F theo (x f ) is a previously determined sinusoidal dynamic force, Ü exp (x u ) is a vibration acceleration measured experimentally in a given frequency domain for at least one evaluation position x u at a point of the superstructure (200),
Fexp(x f) es una fuerza dinámica sinusoidal medida experimental mente en el dominio frecuencial determinado y aplicada sobre por lo menos una determinada posición de excitación xf en la superestructura (200). F exp ( x f ) is a dynamic sinusoidal force measured experimentally in the determined frequency domain and applied over at least a certain excitation position x f in the superstructure (200).
13. Método para caracterización dinámica de elementos de superestructuras (200) ferroviarias según una cualquiera de las reivindicaciones 9-12, caracterizado por el hecho de que en las etapas b) y b), el elemento de la superestructura (200) al que se le aplica la cara es por lo menos una vía (201). 13. Method for dynamic characterization of elements of railway superstructures (200) according to any one of claims 9-12, characterized in that in stages b) and b), the element of the superstructure (200) to which apply the face is at least one way (201).
14. Método para caracterización dinámica de elementos de superestructuras (200) ferroviarias según una cualquiera de las reivindicaciones 9-13, caracterizado por el hecho de que el modelo Φ es de tipo bidimensional o tridimensional. 14. Method for dynamic characterization of elements of railway superstructures (200) according to any one of claims 9-13, characterized in that the model Φ is of two-dimensional or three-dimensional type.
15. Método para caracterización dinámica de elementos de superestructuras (200) ferroviarias según una cualquiera de las reivindicaciones 9-14, caracterizado por el hecho de que la excitación tonal de la etapa a) se produce en un rango de frecuencias entre 1 y 80 Hz. 15. Method for dynamic characterization of elements of railway superstructures (200) according to any one of claims 9-14, characterized in that the tonal excitation of step a) occurs in a frequency range between 1 and 80 Hz .
16. Método para caracterización dinámica de elementos de superestructuras (200) ferroviarias según una cualquiera de las reivindicaciones 9-14, caracterizado por el hecho de que la excitación tonal de la etapa a) se produce en un rango de frecuencias entre 10 y 80 Hz. 16. Method for dynamic characterization of elements of railway superstructures (200) according to any one of claims 9-14, characterized in that the tonal excitation of step a) occurs in a frequency range between 10 and 80 Hz .
17. Programa informático que comprende instrucciones de programa para hacer que un sistema de computación realice el método para caracterización dinámica de superestructuras (200) ferroviarias según una cualquiera de las reivindicaciones 9-16. 17. Computer program comprising program instructions for making a computer system perform the method for dynamic characterization of railway superstructures (200) according to any one of claims 9-16.
18. Programa informático según la reivindicación anterior que está almacenado en unos medios de almacenamiento. 18. Computer program according to the preceding claim that is stored in storage media.
19. Programa informático según la reivindicación 17 que es portado por una señal portadora. 19. Computer program according to claim 17 which is carried by a carrier signal.
PCT/ES2017/070159 2016-03-18 2017-03-17 System and method for the dynamic characterisation of railway superstructure elements and computer program WO2017158227A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201630324 2016-03-18
ESP201630324 2016-03-18

Publications (1)

Publication Number Publication Date
WO2017158227A1 true WO2017158227A1 (en) 2017-09-21

Family

ID=59851725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2017/070159 WO2017158227A1 (en) 2016-03-18 2017-03-17 System and method for the dynamic characterisation of railway superstructure elements and computer program

Country Status (1)

Country Link
WO (1) WO2017158227A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112857721A (en) * 2021-01-20 2021-05-28 石家庄铁道大学 High-speed railway lining structure pneumatic load response reproduction experiment method containing macroscopic defects

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1014836A6 (en) * 2002-05-17 2004-05-04 Vanhonacker Patrick Test bench for measuring static and dynamic behavior of rail track comprises frame carrying low resonance frequency springs on which anti-vibration supports are fixed serving to carry track section on which carriage runs
ES2361313A1 (en) * 2009-08-06 2011-06-16 Universitat Politècnica De Catalunya Method for diagnosing the level of transmission of vibrations from a rail transportation system and testing area for the implementation thereof
CN104792527A (en) * 2015-04-29 2015-07-22 湖南大学 Test-bed for testing torsional vibration of power transmission system of front-engine rear-drive automobile

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1014836A6 (en) * 2002-05-17 2004-05-04 Vanhonacker Patrick Test bench for measuring static and dynamic behavior of rail track comprises frame carrying low resonance frequency springs on which anti-vibration supports are fixed serving to carry track section on which carriage runs
ES2361313A1 (en) * 2009-08-06 2011-06-16 Universitat Politècnica De Catalunya Method for diagnosing the level of transmission of vibrations from a rail transportation system and testing area for the implementation thereof
CN104792527A (en) * 2015-04-29 2015-07-22 湖南大学 Test-bed for testing torsional vibration of power transmission system of front-engine rear-drive automobile

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BERGGREN, E. ET AL.: "railway track stiffness: dynamic measurements and evaluation for efficient maintenance", TESIS DOCTORAL, KTH, 8 May 2009 (2009-05-08), XP055424683 *
HOSSEINGHOLIAN ET AL.: "Dynamic Track Modulus from Measurement of Track Acceleration by Portancemetre", 9TH WORLD CONGRESS ON RAILWAY RESEARCH, 26 May 2011 (2011-05-26), XP055424670 *
ROBINET, A. ET AL.: "Track stiffness assessment", 8TH WORLD CONGRESS ON RAILWAY RESEARCH, 22 May 2008 (2008-05-22), pages 1 - 8, XP055424674 *
WITH C. ET AL.: "Evaluation of track stiffness with a vibrator for prediction of train-induced displacement on railway embankments", SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, vol. 29, no. 8, 1 August 2009 (2009-08-01), pages 1187 - 1197, XP026128605 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112857721A (en) * 2021-01-20 2021-05-28 石家庄铁道大学 High-speed railway lining structure pneumatic load response reproduction experiment method containing macroscopic defects

Similar Documents

Publication Publication Date Title
Malveiro et al. Model updating of a dynamic model of a composite steel-concrete railway viaduct based on experimental tests
Law et al. Dynamic behavior of damaged concrete bridge structures under moving vehicular loads
ES2889925T3 (en) Method and device for compacting a ballast bed
Kouroussis et al. Railway-induced ground vibrations–a review of vehicle effects
ES2556824T3 (en) Procedure for detecting a defect or defects on a railway track, and a railway vehicle for use in such a procedure
Zangeneh et al. Identification of soil-structure interaction effect in a portal frame railway bridge through full-scale dynamic testing
JP6652910B2 (en) Orbit test equipment
Huang et al. Model test on dynamic characteristics of invert and foundation soils of high-speed railway tunnel
Jain et al. Model based online diagnosis of unbalance and transverse fatigue crack in rotor systems
BR112021007776A2 (en) method and device for stabilizing a railway
ES2671913B1 (en) DESIGN PROCEDURE OF A SYSTEM OF VIA IN PLATE AND SYSTEM OF VIA IN PLATE DESIGNED
Zhang et al. Semi-analytical simulation for ground-borne vibration caused by rail traffic on viaducts: Vibration-isolating effects of multi-layered elastic supports
Ferne et al. Development of a calibration procedure for the UK highways agency traffic-speed deflectometer
WO2017158227A1 (en) System and method for the dynamic characterisation of railway superstructure elements and computer program
BR112019014810A2 (en) METHOD FOR DETECTION, USE OF METHOD FOR DETECTION, DETECTION INSTALLATION AND DETECTION TROLLEY
Marendić et al. Measurement of bridge dynamic displacements and natural frequencies by RTS
JP5501924B2 (en) Roadbed soundness judgment method, roadbed repair method
Jiang et al. Low‐Frequency Vibration Testing of Huge Bucket Wheel Excavator Based on Step‐Decay Signals
Costa et al. Experimental and numerical assessment of the modal parameters of Côa railway bridge
ES2730425B2 (en) Exciter system to induce vibrations in railway bridges
JP4823834B2 (en) Three-dimensional sensing stone using a three-axis acceleration sensor
ES2361313B1 (en) METHOD FOR THE DIAGNOSIS OF THE VIBRATION TRANSMISSION LEVEL FROM A VEHICLE CREDIT CARD SURFACE AND TEST BANK FOR IMPLEMENTATION.
RU2795351C1 (en) Method for assessing the stress-strain state of a railway track in the conditions of the far north and siberia
Keenahan et al. Drive-by damage monitoring of transport infrastructure using direct calculation of the profile
Naser et al. Damage monitoring and field analysis of dynamic responses of ha shuang prestressed concrete box girder oblique bridge before strengthening

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17765910

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17765910

Country of ref document: EP

Kind code of ref document: A1