WO2017157794A1 - Method for welding a conductive element to a battery terminal - Google Patents

Method for welding a conductive element to a battery terminal Download PDF

Info

Publication number
WO2017157794A1
WO2017157794A1 PCT/EP2017/055700 EP2017055700W WO2017157794A1 WO 2017157794 A1 WO2017157794 A1 WO 2017157794A1 EP 2017055700 W EP2017055700 W EP 2017055700W WO 2017157794 A1 WO2017157794 A1 WO 2017157794A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole
wafer
conductive element
battery
impact
Prior art date
Application number
PCT/EP2017/055700
Other languages
French (fr)
Inventor
Michel Combier
Original Assignee
Accuwatt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Accuwatt filed Critical Accuwatt
Publication of WO2017157794A1 publication Critical patent/WO2017157794A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/242Fillet welding, i.e. involving a weld of substantially triangular cross section joining two parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/323Bonding taking account of the properties of the material involved involving parts made of dissimilar metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/38Conductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/26Alloys of Nickel and Cobalt and Chromium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/516Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method of welding between a conductive element and a battery pole, preferably electrochemical (also called electrochemical accumulator), in particular a battery of small dimensions, such as a 26650 battery of cylindrical conformation of 26. mm diameter by 65 mm length.
  • electrochemical also called electrochemical accumulator
  • the present invention also relates to an assembly formed of a battery and a conductive element, said assembly being obtained by welding, according to the invention, between a conductive element and a battery pole.
  • the small size batteries according to the state of the art are typically stainless steel containers and are well suited to the production of batteries of all sizes by series or parallel association of said batteries.
  • the formats referenced 18650, of cylindrical conformation of 18 mm in diameter by 65 mm in length, and 26650 have the advantage of being manufactured by many manufacturers and to be easily integrated because of their small sizes. It is thus possible to make battery sets of any shape and power, also called "pack" batteries.
  • Such battery assemblies can be used statically, for example to supply an electrical network of a dwelling, possibly as backup from a main supply or as a primary supply source, or dynamically, for example to power, continuously or intermittently, the electrical circuit of a vehicle such as a hybrid automobile.
  • the use of these battery formats requires the need to associate a large number of batteries to obtain sufficient capacity for the aforementioned uses, which requires the realization of many electrical interconnections of said batteries.
  • the interconnection of a first pole of a battery and a second pole of another battery is usually achieved by means of resistance welding.
  • Resistance welding is a process without a filler metal that uses the combined effects of mechanical pressure and electrical current passing through the parts.
  • the parts to be welded are superimposed and are clamped locally between two electrodes to create a preferred contact area which constitutes an electrical resistance.
  • the assembly formed by the parts and electrodes is traversed by a very strong welding current, under a low voltage, which causes a strong rise in temperature by the Joule effect.
  • the heating results in the localized fusion of the two parts in the preferred contact area, followed by the formation of a recrystallized metal core.
  • a conductive element soldered to the battery poles is constituted by a metal strip.
  • a welding head For each embodiment of a connection between a conductive element and a battery, a welding head is lowered, the welding is performed, then the welding head is raised. The operation typically takes one second.
  • the resistance welding of 10,000 conductive elements requires about 40,000 connections, or about 11 hours of welding.
  • the continuing decline in the price of batteries makes the relative cost of the welding step relative to the cost of assembly increasingly important.
  • resistance welding requires the use of metal strips sufficiently fine to allow said welding. Such metal strips are fragile, which limits the intensity of currents that can circulate. Finally, resistance welding generates significant contact resistances, typically of the order of 120 ⁇ per connection.
  • An object of the invention is to propose a method of welding between a conductive element and a pole of a battery:
  • the conductive element has a thickness greater than that of a pole of a battery, without damaging the pole of the battery, and / or
  • At least one of the abovementioned objectives is reached with a welding method between a conductive element and a pole of a battery, said method comprising at least one firing of a laser beam on respectively at least one impact point located on a wafer of the conductive element, said wafer being in contact with said pole along a nip, said conducting element being made of copper or a copper alloy and said laser beam having a wavelength of between 500 and 560 nm.
  • the laser beam has a wavelength of between 531 and 533 nm. Even more preferably, the laser beam has a wavelength of 532 nm.
  • a laser may be called a green laser.
  • the contact line belongs to a region of the pole extending in a plane, called plane of the pole, and the laser beam of each shot forms an angle less than 90 ° with said plane of the pole, preferably less than 60 °.
  • the conductive element may extend towards the wafer in a direction, called wafer direction, and the laser beam may propagate, at the point of impact, in a direction of propagation, said propagation direction being at least partly opposed to said slice direction.
  • each shot is preferably made by emitting a pulse of the laser beam by a laser.
  • the method according to the invention may further comprise, for each point of impact, an emission of an argon flow in the direction of this point of impact.
  • each shot hits the pole at the same time as it hits the edge.
  • each shot can hit the pole and then be reflected by said pole and then hit the edge.
  • each shot, the laser is focused on the point of impact.
  • the at least one shot comprises several shots on several impact points located on the edge of the conductive element, said plurality of shots being distributed along the line of contact.
  • the pole may be nickel or a nickel alloy.
  • the conductive element may have a thickness at each point of impact which is greater than a thickness of the battery pole at this point of impact, the thickness of the conductive element preferably being greater than at 0.5 mm and the thickness of the pole being preferably less than 0.2 mm.
  • the laser beam has a wavefront dimension (called "waste" in English), at the point of impact, set substantially equal to the thickness of the conductive element.
  • the wafer has a decreasing thickness in the direction of the nip.
  • the conductive element is in the form of a plate, said plate having two faces connected by a border, said border comprising the edge.
  • a conducting element comprising copper or a copper alloy
  • a welding step according to the first aspect of the invention, or one or more of its improvements, between a wafer of said conductive element and a pole of a battery of said two batteries, and
  • a welding step according to the first aspect of the invention, or one or more of its improvements, between another wafer, or said wafer, of said conducting element and a pole of the other battery of said two batteries.
  • a third aspect of the invention there is provided a method of assembling several batteries, in which each pole of a battery is electrically connected to one pole of each of the other batteries, by a plurality of implementations of the method assembly according to the second aspect of the invention.
  • the at least two implementations of the assembly method according to the second aspect of the invention can be carried out in parallel with time.
  • FIG. 1 is a perspective diagram of an embodiment of a welding method P according to the invention.
  • FIG. 2 comprises four perspective diagrams, each illustrating a firing configuration of a laser beam of the implementation of FIG. 1;
  • FIG. 3 is a sectional diagram of a profile of a conductive element during the implementation of the welding process P;
  • FIG. 4 illustrates a plurality of shots implemented in one embodiment of the method according to the invention;
  • FIG. 5 is a perspective diagram of the result of an implementation of the method of assembling several batteries according to the invention.
  • FIG. 6 is a perspective diagram of the result of another implementation of the method of assembling several batteries according to the invention.
  • conductive element 100a a conductive element 100a and a pole 202 of a battery 200.
  • the present invention is preferably directed at a current-conducting element, ie a conductive element having a resistivity of less than 100 ⁇ 10 -9 ⁇ -m at 300 K (Kelvin).
  • the present invention is preferably a cylindrical container battery.
  • the invention does not preferably target a battery of prismatic type or of polymer plate type.
  • the present invention is intended, preferably, in particular batteries comprising containers comprising, in all or part, stainless steel.
  • Electrochemical accumulators of lithium-ion, lithium-titanate, lithium-iron phosphate, lithium-sulfur, sodium-ion type are in particular envisaged.
  • the battery 200 is of cylindrical conformation, 18 mm in diameter by 65 mm in length.
  • the conductive member 100a is preferably made of copper or copper alloy.
  • copper alloy the present description is preferably an alloy in which the copper content is predominant, that is to say at least half of the atoms are copper atoms.
  • the copper or copper alloy connectors are preferably chosen to be more robust (because they are thicker) than the connectors used in the prior art. Such connectors allow the circulation of currents of greater intensity than those which can circulate in the connectors implemented in the prior art.
  • the pole 202 is, in Figure 1, the negative pole of the battery 200, also called anode, and is preferably made of nickel.
  • the pole could be made of nickel alloy.
  • nickel alloy the present description is aimed preferably at an alloy in which the nickel content is predominant, that is to say of which at least half of the atoms are nickel atoms.
  • the nickel or a nickel alloy reflects a laser beam having a wavelength such as that used by the method P.
  • a shot on the edge of the conductive element allows a large thickness H of the conductive element 100a outside this wafer.
  • the green wavelength makes it possible to melt the copper alloy without damaging the nickel pole, and thus to draw with the laser beam at the junction between the element 100a and the pole 202.
  • the conductive element 100a is made in the form of a copper plate, said plate having two faces 108 and 110, parallel to each other and connected by a border 112.
  • One end of the conductive element 100a is laid flat on the pole 202, and partially covers the pole 202.
  • each of the faces 108 and 110 is parallel to a plane 400 of the pole 202.
  • a wafer 102a of the edge 112 of the conductive member 100a is in contact with the pole 202 along a nip 104.
  • the other end of the copper plate rests partly on another anode of another battery.
  • a laser 300 is shown in FIG. 1.
  • the laser 300 is configured to transmit and fire a laser beam 302 in the form of pulses.
  • the laser beam 302 has a wavelength of 532 nm.
  • the use of a laser in pulse mode makes it possible to avoid an excessive depth of fusion of an impact point during a shot.
  • the method comprises at least one shot T1a of the laser beam 302 at an impact point 402 located on the wafer 102a of the conductive member 100a.
  • the firing Tla forms a weld between the conductive element 100a and the pole 202.
  • the weld is located on and around the point of impact 402, that is to say on and around the nip 104.
  • the wavelength of the laser beam is selected to form a weld between the battery pole material and the copper, or copper alloy of the conductor.
  • the power of the laser can be between 50 W and 100 W.
  • Laser welding achieves electrical continuity of the conductive element and the battery.
  • the expression "at least one point of impact on the slice” means that there may be, for the same shot, other points of impact, for example on line 104 and / or on pole 202.
  • the welding method P does not include, for making each weld, mechanical displacement of a welding head. In particular, it does not require an approach phase and removal of the laser head 300.
  • the welding process P is faster than that of the prior art. Typically, the welding time of the method P is 0.1 seconds.
  • the welding process P is mechanically simpler than that of the prior art.
  • connection resistances generated by the welding method P are lower than those generated in the prior art. Resistances twice lower than those generated in the prior art could be measured, of the order of 60 ⁇ per connection.
  • a laser head 300 comprises an optical deflection system 304, well known in the field of laser devices (for example a pair of moving mirrors and / or lenses), to deviate the laser beam 302 without moving the laser head 300.
  • the laser that is heavy is not mobile, but simply and quickly moves a lens and / or a mirror to move the beam emitted by the laser.
  • the method P may also comprise several shots.
  • the shot Tla and a shot T2a are made on several points of impact located on the edge 102a of the conductive element 100a.
  • the shots T1a and T2a are distributed parallel or along the contact line 104. Only two shots are shown in FIG. 4, but other shots can be made. These shots form several welds, preferably joined, all of which is called weld seam.
  • These shots can be carried out continuously by the laser 300, for example at a transmission frequency of several tens of pulses per second, for example at a frequency greater than 90 Hz.
  • Figure 2 illustrates four firing patterns, Tla, Tlb, Tic and Tld of the laser beam 302, respectively on the upper left, upper right, lower left and lower right sides of the figure.
  • the firing hits the pole 202 at the same time as it hits the wafer 102a. Only the size of the laser beam 302 at the point of impact 402 changes. The size of the laser beam 302 is smaller than the thickness of the wafer in the first configuration and greater than the thickness of the wafer in the second configuration.
  • a thickness preferably denotes a thickness along an axis perpendicular to the plane 400 of the pole 202 comprising the contact line 104.
  • the firing strikes the pole 202, then is reflected by the pole 202 to hit the edge 402.
  • the contact line 104 belongs to a region Z (FIG. 1) of the pole extending along the plane 400.
  • the laser beam of each firing Tla, T2a, Tlb, Tic, Tld forms an angle approximately equal to 45 ° with the plane 400.
  • This angle has the advantage of allowing the use of a reflection of the laser beam by the pole of the battery.
  • nickel or a nickel alloy reflect a laser beam having a wavelength such as that used by method P.
  • the nickel reflection coefficient of such a laser beam is of the order of 60% .
  • This angle also has the advantage of avoiding reflection of the laser beam towards the laser head.
  • the conductive element 100a extends in the direction of the wafer 102a in a direction dTl, said slice direction.
  • the laser beam propagates, at the point of impact, along a propagation direction d1 (FIG. 4).
  • the propagation direction dP1 comprises a component opposite to said dT1 slice direction.
  • the conductive element has a thickness H 1 which is greater than a thickness H2 of the battery pole at the level of the contact line 104:
  • the thickness H 1 of the conductive element is preferably greater than 0.3 mm, more preferably greater than 0.5 mm, more preferably greater than 0.8 mm, the thickness H 2 of the battery pole. is preferably less than 0.5 mm, more preferably less than 0.3 mm,
  • the plate has a thickness of about 0.5 mm at the point impact 402.
  • the pole of the battery has a thickness of about 0.25 mm at said point of impact.
  • the method P allows welding between a pole and a connector, said pole having a thickness less than that of the conductive element, without damaging said pole of the battery.
  • the size of the wavefront (denoted "waste” in English) of the laser beam at the point of impact is set substantially equal to the thickness Hl of the conductive element.
  • the size of the weld is maximum, for example 0.5 mm in the examples shown.
  • the connection resistance thus generated is minimal.
  • Figure 3 illustrates a sectional diagram of a second conductive element 100b.
  • the conductor 100b has a wafer 102b located at one end of the conductive element 100b which has a decreasing thickness in the direction of the nip 104.
  • FIG. 3 there is furthermore shown a shot Tle taken perpendicular to the pole 202.
  • the shot Tle does not touch the pole 202.
  • FIG. 5 illustrates an assembly of several batteries, numbered B1 to B12 implementing a method P.
  • Each pole of one of the batteries B1 to B12 is connected to one pole of each of the other batteries by soldering of conductive elements.
  • FIG. 5 illustrates the possibility of using a conductor, here the conductor C2, to connect two batteries, here the batteries B3 and B4.
  • FIG. 5 also illustrates the possibility, according to the invention, of using the same conductor, here the conductor C1, to connect three batteries, here the batteries B1, B5 and B9. More than three batteries could be connected by the method P using the same conductor.
  • Figure 6 illustrates a possibility of welding a multitude of batteries, that is to say a "pack" of batteries, using only one driver.
  • the two holding plates each comprise six through holes arranged parallel to each other and staggered arranged to accommodate and block a battery end, that is to say a battery pole.
  • a conductive element 100c made of copper, is disposed in contact with the poles, respectively PI to P6 of the six batteries A1 to A6, the poles being disposed on the other side of the body of the batteries relative to the holding plate M .
  • Six welds S1 to S6 are produced in accordance with the method P, respectively between the batteries B1 to B6 and the conductive element 100c, thereby electrically connecting the batteries together by a conductive element made in the form of a copper plate.
  • the copper plate has a better resistance to the passage of strong currents than a metal strip, that each weld performed by the laser has a lower contact resistance to a weld performed by a resistance welding and that the time of manufacturing is faster than that required for resistance welding.

Abstract

The present application relates to a process for welding a conductive element (100a) to a terminal (202; 204) of a battery (200), the process comprising respectively firing (T1a) at least once a laser beam (302) at at least one point of impact (402) located on an edge face (102a) of the conductive element (100a), the edge face (102a) making contact with the terminal along a line of contact (104), the conductive element (100a) being made of copper or a copper alloy and the laser beam (302) having a wavelength comprised between 500 and 560 nm.

Description

PROCEDE DE SOUDAGE ENTRE UN ELEMENT CONDUCTEUR ET  WELDING METHOD BETWEEN A CONDUCTIVE ELEMENT AND
UN POLE DE BATTERIE  A BATTERY POLE
Introduction Introduction
La présente invention se rapporte à un procédé de soudage entre un élément conducteur et un pôle de batterie, de préférence électrochimique (aussi appelée accumulateur électrochimique), notamment une batterie de petites dimensions, telle qu'une batterie au format 26650 de conformation cylindrique de 26 mm de diamètre par 65 mm de longueur.  The present invention relates to a method of welding between a conductive element and a battery pole, preferably electrochemical (also called electrochemical accumulator), in particular a battery of small dimensions, such as a 26650 battery of cylindrical conformation of 26. mm diameter by 65 mm length.
La présente invention concerne aussi un ensemble formé d'une batterie et d'un élément conducteur, ledit ensemble étant obtenu par soudage, selon l'invention, entre un élément conducteur et un pôle de batterie.  The present invention also relates to an assembly formed of a battery and a conductive element, said assembly being obtained by welding, according to the invention, between a conductive element and a battery pole.
Art antérieur  Prior art
Les batteries de petites dimensions selon l'état de l'art sont typiquement des conteneurs en acier inoxydable et sont bien adaptées à la réalisation d'ensemble de batteries de toutes tailles par association en série ou en parallèle desdites batteries.  The small size batteries according to the state of the art are typically stainless steel containers and are well suited to the production of batteries of all sizes by series or parallel association of said batteries.
Les formats référencés 18650, de conformation cylindrique de 18 mm de diamètre par 65 mm de longueur, et 26650 ont pour avantage d'être fabriqués par de nombreux constructeurs et d'être facilement intégrables en raison de leurs petites tailles. Il est ainsi possible de réaliser des ensembles de batteries de toute forme et de toute puissance, aussi appelés « pack » de batteries.  The formats referenced 18650, of cylindrical conformation of 18 mm in diameter by 65 mm in length, and 26650 have the advantage of being manufactured by many manufacturers and to be easily integrated because of their small sizes. It is thus possible to make battery sets of any shape and power, also called "pack" batteries.
De tels ensembles de batteries peuvent être utilisés de manière statique, par exemple pour alimenter un réseau électrique d'une habitation, éventuellement en secours d'une alimentation principale ou comme source primaire d'alimentation, ou de manière dynamique, par exemple pour alimenter, en permanence ou par intermittence, le circuit électrique d'un véhicule tel qu'une automobile hybride. L'utilisation de ces formats de batterie nécessite de devoir associer un grand nombre de batteries pour obtenir une capacité suffisante pour les usages précités, ce qui exige la réalisation de nombreuses interconnexions électriques desdites batteries. Such battery assemblies can be used statically, for example to supply an electrical network of a dwelling, possibly as backup from a main supply or as a primary supply source, or dynamically, for example to power, continuously or intermittently, the electrical circuit of a vehicle such as a hybrid automobile. The use of these battery formats requires the need to associate a large number of batteries to obtain sufficient capacity for the aforementioned uses, which requires the realization of many electrical interconnections of said batteries.
L'interconnexion d'un premier pôle d'une batterie et d'un deuxième pôle d'une autre batterie est habituellement réalisée au moyen d'un soudage par résistance. Le soudage par résistance est un procédé sans métal d'apport qui utilise les effets conjugués d'une pression mécanique et d'un courant électrique traversant les pièces. Les pièces à souder sont superposées et sont serrées localement entre deux électrodes pour créer une zone de contact privilégiée qui constitue une résistance électrique. L'ensemble formé des pièces et électrodes est traversé par un très fort courant de soudage, sous une faible tension, qui provoque une forte élévation de la température par effet Joule. L'échauffement entraîne la fusion localisée des deux pièces dans la zone de contact privilégiée, suivie de la formation d'un noyau de métal recristallisé. Dans l'application du procédé de soudage par résistance à l'interconnexion de batteries, un élément conducteur soudé aux pôles de batteries est constitué d'un feuillard métallique.  The interconnection of a first pole of a battery and a second pole of another battery is usually achieved by means of resistance welding. Resistance welding is a process without a filler metal that uses the combined effects of mechanical pressure and electrical current passing through the parts. The parts to be welded are superimposed and are clamped locally between two electrodes to create a preferred contact area which constitutes an electrical resistance. The assembly formed by the parts and electrodes is traversed by a very strong welding current, under a low voltage, which causes a strong rise in temperature by the Joule effect. The heating results in the localized fusion of the two parts in the preferred contact area, followed by the formation of a recrystallized metal core. In the application of the resistance welding process to the battery interconnection, a conductive element soldered to the battery poles is constituted by a metal strip.
Pour chaque réalisation d'une connexion entre un élément conducteur et une batterie, une tête de soudage est abaissée, la soudure est réalisée, puis la tête de soudage est relevée. L'opération dure typiquement une seconde. Le soudage par résistance de 10 000 éléments conducteurs nécessite de l'ordre de 40 000 connexions, soit environ 11 heures de soudage. La baisse continue du prix des batteries rend le coût relatif de l'étape de soudage par rapport au coût de l'assemblage de plus en plus important.  For each embodiment of a connection between a conductive element and a battery, a welding head is lowered, the welding is performed, then the welding head is raised. The operation typically takes one second. The resistance welding of 10,000 conductive elements requires about 40,000 connections, or about 11 hours of welding. The continuing decline in the price of batteries makes the relative cost of the welding step relative to the cost of assembly increasingly important.
Par ailleurs, le soudage par résistance nécessite l'utilisation de feuillards métalliques suffisamment fins pour permettre ledit soudage. De tels feuillards métalliques sont fragiles, ce qui limite l'intensité des courants qui peuvent y circuler. Enfin, le soudage par résistance génère des résistances de contact importantes, typiquement de l'ordre de 120 μΩ par connexion. Furthermore, the resistance welding requires the use of metal strips sufficiently fine to allow said welding. Such metal strips are fragile, which limits the intensity of currents that can circulate. Finally, resistance welding generates significant contact resistances, typically of the order of 120 μΩ per connection.
Un but de l'invention est de proposer un procédé de soudage entre un élément conducteur et un pôle d'une batterie :  An object of the invention is to propose a method of welding between a conductive element and a pole of a battery:
- qui soit plus rapide que celui de l'art antérieur, et/ou  which is faster than that of the prior art, and / or
- qui soit mécaniquement plus simple que celui de l'art antérieur, et/ou,  which is mechanically simpler than that of the prior art, and / or,
- qui permette de faire circuler des courants de plus grandes intensités dans les connecteurs que dans ceux mis en œuvre dans l'art antérieur, et/ou  which makes it possible to circulate currents of greater intensity in the connectors than in those implemented in the prior art, and / or
- qui permette d'utiliser des connecteurs plus robustes que ceux mis en œuvre dans l'art antérieur, et/ou  which makes it possible to use connectors that are more robust than those used in the prior art, and / or
- pour lequel l'élément conducteur présente une épaisseur supérieure à celle d'un pôle d'une batterie, sans endommager le pôle de la batterie, et/ou  for which the conductive element has a thickness greater than that of a pole of a battery, without damaging the pole of the battery, and / or
- qui présente des résistances de connexions inférieures à celles générées dans l'art antérieur.  which has connection resistances lower than those generated in the prior art.
Exposé de l'invention  Presentation of the invention
Selon un premier aspect de l'invention, on atteint au moins l'un des objectifs précités avec un procédé de soudage entre un élément conducteur et un pôle d'une batterie, ledit procédé comprenant au moins un tir d'un faisceau laser sur respectivement au moins un point d'impact situé sur une tranche de l'élément conducteur, ladite tranche étant en contact avec ledit pôle le long d'une ligne de contact, ledit élément conducteur étant en cuivre ou en un alliage de cuivre et ledit faisceau laser présentant une longueur d'onde comprise entre 500 et 560 nm.  According to a first aspect of the invention, at least one of the abovementioned objectives is reached with a welding method between a conductive element and a pole of a battery, said method comprising at least one firing of a laser beam on respectively at least one impact point located on a wafer of the conductive element, said wafer being in contact with said pole along a nip, said conducting element being made of copper or a copper alloy and said laser beam having a wavelength of between 500 and 560 nm.
De préférence, le faisceau laser présente une longueur d'onde comprise entre 531 et 533 nm. De manière encore plus préférée, le faisceau laser présente une longueur d'onde de 532 nm. Un tel laser peut être dénommé laser vert. Dans une réalisation du procédé selon l'invention, la ligne de contact appartient à une région du pôle s'étendant selon un plan, dit plan du pôle, et le faisceau laser de chaque tir forme un angle inférieur à 90° avec ledit plan du pôle, de préférence inférieur à 60°. Avantageusement, l'élément conducteur peut s'étendre en direction de la tranche selon une direction, dite direction de tranche, et le faisceau laser se propager, au niveau du point d'impact, selon une direction de propagation, ladite direction de propagation étant au moins en partie opposée à ladite direction de tranche. Preferably, the laser beam has a wavelength of between 531 and 533 nm. Even more preferably, the laser beam has a wavelength of 532 nm. Such a laser may be called a green laser. In one embodiment of the method according to the invention, the contact line belongs to a region of the pole extending in a plane, called plane of the pole, and the laser beam of each shot forms an angle less than 90 ° with said plane of the pole, preferably less than 60 °. Advantageously, the conductive element may extend towards the wafer in a direction, called wafer direction, and the laser beam may propagate, at the point of impact, in a direction of propagation, said propagation direction being at least partly opposed to said slice direction.
Plus avantageusement, chaque tir est de préférence réalisé par émission d'une impulsion du faisceau laser par un laser.  More preferably, each shot is preferably made by emitting a pulse of the laser beam by a laser.
Le procédé selon l'invention peut en outre comprendre, pour chaque point d'impact, une émission d'un flux d'argon en direction de ce point d'impact.  The method according to the invention may further comprise, for each point of impact, an emission of an argon flow in the direction of this point of impact.
De préférence, chaque tir frappe le pôle en même temps qu'il frappe la tranche.  Preferably, each shot hits the pole at the same time as it hits the edge.
Avantageusement, chaque tir peut frapper le pôle puis être réfléchi par ledit pôle pour ensuite frapper la tranche.  Advantageously, each shot can hit the pole and then be reflected by said pole and then hit the edge.
Selon une possibilité, aucun tir ne frappe le pôle.  According to one possibility, no shot hits the pole.
Dans une réalisation, à chaque tir, le laser est focalisé sur le point d'impact.  In one embodiment, each shot, the laser is focused on the point of impact.
De préférence, l'au moins un tir comprend plusieurs tirs sur plusieurs points d'impact situés sur la tranche de l'élément conducteur, lesdits plusieurs tirs étant répartis le long de la ligne de contact.  Preferably, the at least one shot comprises several shots on several impact points located on the edge of the conductive element, said plurality of shots being distributed along the line of contact.
Le pôle peut être en nickel ou en un alliage de nickel.  The pole may be nickel or a nickel alloy.
Avantageusement, l'élément conducteur peut présenter une épaisseur au niveau de chaque point d'impact qui est supérieure à une épaisseur du pôle de la batterie au niveau de ce point d'impact, l'épaisseur de l'élément conducteur étant de préférence supérieure à 0,5 mm et l'épaisseur du pôle étant de préférence inférieure à 0,2 mm. De préférence, le faisceau laser possède une dimension de front d'onde (dénommée « waste » en anglais), au niveau du point d'impact, réglée sensiblement égale à l'épaisseur de l'élément conducteur. Advantageously, the conductive element may have a thickness at each point of impact which is greater than a thickness of the battery pole at this point of impact, the thickness of the conductive element preferably being greater than at 0.5 mm and the thickness of the pole being preferably less than 0.2 mm. Preferably, the laser beam has a wavefront dimension (called "waste" in English), at the point of impact, set substantially equal to the thickness of the conductive element.
Selon une possibilité, la tranche possède une épaisseur décroissante en direction de la ligne de contact.  According to one possibility, the wafer has a decreasing thickness in the direction of the nip.
Selon une réalisation, l'élément conducteur est réalisé sous forme de plaque, ladite plaque présentant deux faces reliées par une bordure, ladite bordure comprenant la tranche.  According to one embodiment, the conductive element is in the form of a plate, said plate having two faces connected by a border, said border comprising the edge.
Selon un deuxième aspect de l'invention, il est proposé un procédé d'assemblage de deux batteries au moyen d'un élément conducteur comprenant du cuivre ou un alliage de cuivre, ledit procédé comprenant :  According to a second aspect of the invention, there is provided a method of assembling two batteries by means of a conducting element comprising copper or a copper alloy, said method comprising:
- une étape de soudage, selon le premier aspect de l'invention, ou l'un ou plusieurs de ses perfectionnements, entre une tranche dudit élément conducteur et un pôle d'une batterie desdites deux batteries, et  a welding step, according to the first aspect of the invention, or one or more of its improvements, between a wafer of said conductive element and a pole of a battery of said two batteries, and
- une étape de soudage, selon le premier aspect de l'invention, ou l'un ou plusieurs de ses perfectionnements, entre une autre tranche, ou ladite tranche, dudit élément conducteur et un pôle de l'autre batterie desdites deux batteries.  a welding step, according to the first aspect of the invention, or one or more of its improvements, between another wafer, or said wafer, of said conducting element and a pole of the other battery of said two batteries.
Selon un troisième aspect de l'invention, il est proposé un procédé d'assemblage de plusieurs batteries, dans lequel chaque pôle d'une batterie est relié électriquement à un pôle de chacune des autres batteries, par une pluralité de mises en œuvre du procédé d'assemblage selon le deuxième aspect de l'invention.  According to a third aspect of the invention, there is provided a method of assembling several batteries, in which each pole of a battery is electrically connected to one pole of each of the other batteries, by a plurality of implementations of the method assembly according to the second aspect of the invention.
Les au moins deux mises en œuvre du procédé d'assemblage selon le deuxième aspect de l'invention peuvent être réalisées parallèlement dans le temps.  The at least two implementations of the assembly method according to the second aspect of the invention can be carried out in parallel with time.
Selon un quatrième aspect de l'invention, il est proposé un ensemble de plusieurs batteries assemblées par un procédé d'assemblage de plusieurs batteries selon le troisième aspect de l'invention, ou l'un ou plusieurs de ses perfectionnements. According to a fourth aspect of the invention, there is provided a set of several batteries assembled by a method assembly of several batteries according to the third aspect of the invention, or one or more of its improvements.
Description des figures  Description of figures
D'autres particularités et avantages de l'invention apparaîtront à la lecture de la description détaillée de mises en œuvre et de modes de réalisation nullement limitatifs, au regard de figures annexées sur lesquelles :  Other features and advantages of the invention will appear on reading the detailed description of implementations and non-limiting embodiments, with reference to the appended figures in which:
- la figure 1 est un schéma en perspective d'une réalisation d'un procédé de soudage P selon l'invention ;  - Figure 1 is a perspective diagram of an embodiment of a welding method P according to the invention;
- la figure 2 comporte quatre schémas en perspective, chacun illustrant une configuration de tir d'un faisceau laser de la mise en œuvre de la figure 1 ;  FIG. 2 comprises four perspective diagrams, each illustrating a firing configuration of a laser beam of the implementation of FIG. 1;
- la figure 3 est un schéma en coupe d'un profil d'un élément conducteur lors de la mise en œuvre du procédé de soudage P ; - la figure 4 illustre une pluralité de tirs mis en œuvre dans un mode de réalisation du procédé selon l'invention ;  - Figure 3 is a sectional diagram of a profile of a conductive element during the implementation of the welding process P; FIG. 4 illustrates a plurality of shots implemented in one embodiment of the method according to the invention;
- la figure 5 est un schéma en perspective du résultat d'une mise en œuvre du procédé d'assemblage de plusieurs batteries selon l'invention ;  FIG. 5 is a perspective diagram of the result of an implementation of the method of assembling several batteries according to the invention;
- la figure 6 est un schéma en perspective du résultat d'une autre mise en œuvre du procédé d'assemblage de plusieurs batteries selon l'invention.  - Figure 6 is a perspective diagram of the result of another implementation of the method of assembling several batteries according to the invention.
Description détaillée  detailed description
Ces modes de réalisation n'étant nullement limitatifs, on pourra notamment réaliser des variantes de l'invention ne comprenant qu'une sélection de caractéristiques décrites par la suite, telles que décrites ou généralisées, isolées des autres caractéristiques décrites, si cette sélection de caractéristiques est suffisante pour conférer un avantage technique ou pour différencier l'invention par rapport à l'état de la technique.  These embodiments being in no way limiting, it will be possible in particular to make variants of the invention comprising only a selection of characteristics described hereinafter, as described or generalized, isolated from the other characteristics described, if this selection of characteristics is sufficient to confer a technical advantage or to differentiate the invention from the state of the art.
Il est illustré sur la figure 1 un élément conducteur 100a et un pôle 202 d'une batterie 200. Par élément conducteur, la présente invention vise, de préférence, un élément conducteur de courant, c'est-à-dire un élément conducteur présentant une résistivité inférieure à lOOxlO"9 Ω-m à 300 K (kelvin). It is illustrated in Figure 1 a conductive element 100a and a pole 202 of a battery 200. By conductive element, the present invention is preferably directed at a current-conducting element, ie a conductive element having a resistivity of less than 100 × 10 -9 Ω-m at 300 K (Kelvin).
Par batterie, la présente invention vise, de préférence, une batterie en conteneur cylindrique. L'invention ne vise, de préférence, pas une batterie de type prismatique ou de type plaque polymère.  By battery, the present invention is preferably a cylindrical container battery. The invention does not preferably target a battery of prismatic type or of polymer plate type.
Par batterie, la présente invention vise, de préférence, en particulier des batteries comprenant des conteneurs comportant, en tout ou partie, de l'acier inoxydable.  By battery, the present invention is intended, preferably, in particular batteries comprising containers comprising, in all or part, stainless steel.
Différents types d'accumulateurs électrochimiques de batteries sont envisagés. Les accumulateurs électrochimiques de type lithium- ion, lithium-titanate, lithium-phosphate de fer, lithium-soufre, sodium-ion sont notamment envisagés.  Different types of electrochemical accumulators of batteries are envisaged. Electrochemical accumulators of lithium-ion, lithium-titanate, lithium-iron phosphate, lithium-sulfur, sodium-ion type are in particular envisaged.
Sur la figure 1, la batterie 200 est de conformation cylindrique, de 18 mm de diamètre par 65 mm de longueur.  In Figure 1, the battery 200 is of cylindrical conformation, 18 mm in diameter by 65 mm in length.
L'élément conducteur 100a est de préférence en cuivre ou en alliage de cuivre.  The conductive member 100a is preferably made of copper or copper alloy.
Par alliage de cuivre, la présente description vise, de préférence, un alliage dans lequel la teneur en cuivre est majoritaire, c'est-à-dire dont au moins la moitié des atomes sont des atomes de cuivre.  By copper alloy, the present description is preferably an alloy in which the copper content is predominant, that is to say at least half of the atoms are copper atoms.
Les connecteurs en cuivre ou en alliage de cuivre sont, de préférence, choisis plus robustes (car plus épais) que les connecteurs mis en œuvre dans l'art antérieur. De tels connecteurs permettent la circulation de courants de plus grande intensité que ceux pouvant circuler dans les connecteurs mis en œuvre dans l'art antérieur.  The copper or copper alloy connectors are preferably chosen to be more robust (because they are thicker) than the connectors used in the prior art. Such connectors allow the circulation of currents of greater intensity than those which can circulate in the connectors implemented in the prior art.
Le pôle 202 est, sur la figure 1, le pôle négatif de la batterie 200, aussi appelé anode, et est fabriqué, de préférence, en nickel. Le pôle pourrait être fabriqué en alliage de nickel. Par alliage de nickel, la présente description vise, de préférence, un alliage dans lequel la teneur en nickel est majoritaire, c'est-à-dire dont au moins la moitié des atomes sont des atomes de nickel. The pole 202 is, in Figure 1, the negative pole of the battery 200, also called anode, and is preferably made of nickel. The pole could be made of nickel alloy. By nickel alloy, the present description is aimed preferably at an alloy in which the nickel content is predominant, that is to say of which at least half of the atoms are nickel atoms.
Le nickel ou un alliage de nickel réfléchissent un faisceau laser présentant une longueur d'onde telle que celle utilisée par le procédé P.  The nickel or a nickel alloy reflects a laser beam having a wavelength such as that used by the method P.
Un tir sur la tranche de l'élément conducteur permet une grande épaisseur H de l'élément conducteur 100a en dehors de cette tranche.  A shot on the edge of the conductive element allows a large thickness H of the conductive element 100a outside this wafer.
La longueur d'onde verte permet de faire fondre l'alliage de cuivre sans endommager le pôle en nickel, et donc de tirer avec le faisceau laser à la jonction entre l'élément 100a et le pôle 202.  The green wavelength makes it possible to melt the copper alloy without damaging the nickel pole, and thus to draw with the laser beam at the junction between the element 100a and the pole 202.
Sur le schéma représenté, l'élément conducteur 100a est réalisé sous forme de plaque de cuivre, ladite plaque présentant deux faces 108 et 110, parallèles entre elles et reliées par une bordure 112.  In the diagram shown, the conductive element 100a is made in the form of a copper plate, said plate having two faces 108 and 110, parallel to each other and connected by a border 112.
Une extrémité de l'élément conducteur 100a est posée à plat sur le pôle 202, et recouvre partiellement le pôle 202. Dans cette mise en œuvre, chacune des faces 108 et 110 est parallèle à un plan 400 du pôle 202.  One end of the conductive element 100a is laid flat on the pole 202, and partially covers the pole 202. In this implementation, each of the faces 108 and 110 is parallel to a plane 400 of the pole 202.
Comme représenté sur la figure 1, une tranche 102a de la bordure 112 de l'élément conducteur 100a est en contact avec le pôle 202 le long d'une ligne de contact 104.  As shown in FIG. 1, a wafer 102a of the edge 112 of the conductive member 100a is in contact with the pole 202 along a nip 104.
L'autre extrémité de la plaque de cuivre repose en partie sur une autre anode d'une autre batterie.  The other end of the copper plate rests partly on another anode of another battery.
Un laser 300 est représenté sur la figure 1. Le laser 300 est configuré pour émettre et tirer un faisceau laser 302 sous forme d'impulsions. Le faisceau laser 302 présente une longueur d'onde de 532 nm.  A laser 300 is shown in FIG. 1. The laser 300 is configured to transmit and fire a laser beam 302 in the form of pulses. The laser beam 302 has a wavelength of 532 nm.
L'utilisation d'un laser en mode impulsion permet d'éviter une trop grande profondeur de fusion d'un point d'impact lors d'un tir. Le procédé comprend au moins un tir Tla du faisceau laser 302 sur un point d'impact 402 situé sur la tranche 102a de l'élément conducteur 100a. Le tir Tla forme une soudure entre l'élément conducteur 100a et le pôle 202. La soudure est localisée sur et autour du point d'impact 402, c'est-à-dire sur et autour de la ligne de contact 104. The use of a laser in pulse mode makes it possible to avoid an excessive depth of fusion of an impact point during a shot. The method comprises at least one shot T1a of the laser beam 302 at an impact point 402 located on the wafer 102a of the conductive member 100a. The firing Tla forms a weld between the conductive element 100a and the pole 202. The weld is located on and around the point of impact 402, that is to say on and around the nip 104.
La longueur d'onde du faisceau laser est choisie de manière à former une soudure entre le matériau du pôle de la batterie et le cuivre, ou l'alliage de cuivre du conducteur.  The wavelength of the laser beam is selected to form a weld between the battery pole material and the copper, or copper alloy of the conductor.
La puissance du laser peut être comprise entre 50 W et 100 W. The power of the laser can be between 50 W and 100 W.
Le soudage au laser réalise une continuité électrique de l'élément conducteur et de la batterie. Laser welding achieves electrical continuity of the conductive element and the battery.
Dans la présente description, l'expression « au moins un point d'impact sur la tranche » signifie qu'il peut y avoir, pour un même tir, d'autres points d'impacts, par exemple sur la ligne 104 et/ou sur le pôle 202.  In the present description, the expression "at least one point of impact on the slice" means that there may be, for the same shot, other points of impact, for example on line 104 and / or on pole 202.
Le procédé de soudage P ne comprend pas, pour réaliser chaque soudure, de déplacement mécanique d'une tête de soudage. En particulier, il ne nécessite pas de phase d'approche et de retrait de la tête du laser 300. Le procédé de soudage P est donc plus rapide que celui de l'art antérieur. Typiquement, la durée de soudage du procédé P est de 0,1 seconde.  The welding method P does not include, for making each weld, mechanical displacement of a welding head. In particular, it does not require an approach phase and removal of the laser head 300. The welding process P is faster than that of the prior art. Typically, the welding time of the method P is 0.1 seconds.
Ne nécessitant pas de mise en pression des deux matériaux à souder, le procédé de soudage P est mécaniquement plus simple que celui de l'art antérieur.  Not requiring pressurization of the two materials to be welded, the welding process P is mechanically simpler than that of the prior art.
Les résistances de connexion générées par le procédé de soudage P sont inférieures à celles générées dans l'art antérieur. Des résistances deux fois inférieures à celles générées dans l'art antérieur ont pu être mesurées, de l'ordre de 60 μΩ par connexion.  The connection resistances generated by the welding method P are lower than those generated in the prior art. Resistances twice lower than those generated in the prior art could be measured, of the order of 60 μΩ per connection.
Une tête du laser 300 comprend un système de déviation optique 304, bien connu du domaine des dispositifs laser (par exemple une paire de miroirs mobiles et/ou de lentilles), pour dévier le faisceau laser 302 sans bouger la tête du laser 300. Ainsi, le laser qui est lourd n'est pas mobile, mais on déplace simplement et rapidement une lentille et/ou un miroir pour déplacer le faisceau émis par le laser. A laser head 300 comprises an optical deflection system 304, well known in the field of laser devices (for example a pair of moving mirrors and / or lenses), to deviate the laser beam 302 without moving the laser head 300. Thus, the laser that is heavy is not mobile, but simply and quickly moves a lens and / or a mirror to move the beam emitted by the laser.
Comme l'illustre la figure 4, le procédé P peut aussi comprendre plusieurs tirs. Le tir Tla et un tir T2a sont effectués sur plusieurs points d'impact situés sur la tranche 102a de l'élément conducteur 100a. Les tirs Tla et T2a sont répartis parallèlement ou le long de la ligne de contact 104. Seuls deux tirs sont représentés sur la figure 4, mais d'autres tirs peuvent être effectués. Ces tirs forment plusieurs soudures, de préférence jointives, dont l'ensemble est dénommé cordon de soudure.  As illustrated in FIG. 4, the method P may also comprise several shots. The shot Tla and a shot T2a are made on several points of impact located on the edge 102a of the conductive element 100a. The shots T1a and T2a are distributed parallel or along the contact line 104. Only two shots are shown in FIG. 4, but other shots can be made. These shots form several welds, preferably joined, all of which is called weld seam.
Ces tirs peuvent être effectués en rafale par le laser 300, par exemple à une fréquence d'émission de plusieurs dizaines d'impulsions par seconde, par exemple à une fréquence supérieure à 90 Hz.  These shots can be carried out continuously by the laser 300, for example at a transmission frequency of several tens of pulses per second, for example at a frequency greater than 90 Hz.
Il est également illustré sur la figure 1, pour chaque point d'impact, une émission d'un flux d'argon 502 en direction de ce point d'impact. Ce flux d'argon 502 a pour objectif d'empêcher l'oxydation du cuivre lors du soudage.  It is also illustrated in Figure 1, for each point of impact, an emission of an argon flow 502 towards this point of impact. This flow of argon 502 aims to prevent the oxidation of copper during welding.
La figure 2 illustre quatre configurations de tir, Tla, Tlb, Tic et Tld du faisceau laser 302, respectivement sur les cadrans haut- gauche, haut-droite, bas-gauche et bas-droite de la figure.  Figure 2 illustrates four firing patterns, Tla, Tlb, Tic and Tld of the laser beam 302, respectively on the upper left, upper right, lower left and lower right sides of the figure.
Dans les configurations de tir Tla et Tic, les tirs frappent le pôle 202 en même temps qu'ils frappent la tranche 102a. Seule la taille du faisceau laser 302 au niveau du point d'impact 402 change. La taille du faisceau laser 302 est inférieure à l'épaisseur de la tranche dans la première configuration et supérieure à l'épaisseur de la tranche dans la deuxième configuration.  In the Tla and Tic firing configurations, the firing hits the pole 202 at the same time as it hits the wafer 102a. Only the size of the laser beam 302 at the point of impact 402 changes. The size of the laser beam 302 is smaller than the thickness of the wafer in the first configuration and greater than the thickness of the wafer in the second configuration.
Dans la présente description, une épaisseur désigne, de préférence, une épaisseur selon un axe perpendiculaire au plan 400 du pôle 202 comprenant la ligne de contact 104. Dans la configuration de tir Tlb, le tir frappe le pôle 202, puis est réfléchi par le pôle 202 pour frapper la tranche 402. In the present description, a thickness preferably denotes a thickness along an axis perpendicular to the plane 400 of the pole 202 comprising the contact line 104. In the Tlb firing configuration, the firing strikes the pole 202, then is reflected by the pole 202 to hit the edge 402.
Dans la configuration de tir Tld, aucun tir ne frappe le pôle 202. Dans les exemples représentés sur les figures 1, 2 et 4, la ligne de contact 104 appartient à une région Z (figure 1) du pôle s'étendant selon le plan 400. Le faisceau laser de chaque tir Tla, T2a, Tlb, Tic, Tld, forme un angle a environ égal à 45° avec le plan 400.  In the firing configuration Tld, no firing hits the pole 202. In the examples shown in FIGS. 1, 2 and 4, the contact line 104 belongs to a region Z (FIG. 1) of the pole extending along the plane 400. The laser beam of each firing Tla, T2a, Tlb, Tic, Tld forms an angle approximately equal to 45 ° with the plane 400.
Cet angle a pour avantage de permettre l'utilisation d'une réflexion du faisceau laser par le pôle de la batterie. En effet, le nickel ou un alliage de nickel réfléchissent un faisceau laser présentant une longueur d'onde telle que celle utilisée par le procédé P. Le coefficient de réflexion par le nickel d'un tel faisceau laser est de l'ordre de 60 %. Cet angle a également pour avantage d'éviter une réflexion du faisceau laser en direction de la tête du laser.  This angle has the advantage of allowing the use of a reflection of the laser beam by the pole of the battery. Indeed, nickel or a nickel alloy reflect a laser beam having a wavelength such as that used by method P. The nickel reflection coefficient of such a laser beam is of the order of 60% . This angle also has the advantage of avoiding reflection of the laser beam towards the laser head.
Dans les exemples représentés sur les figures 4 et 6, l'élément conducteur 100a s'étend en direction de la tranche 102a selon une direction dTl, dite direction de tranche. Dans ces exemples, le faisceau laser se propage, au niveau du point d'impact, selon une direction de propagation dPl (figure 4). La direction de propagation dPl comprend une composante opposée à ladite direction de tranche dTl .  In the examples shown in Figures 4 and 6, the conductive element 100a extends in the direction of the wafer 102a in a direction dTl, said slice direction. In these examples, the laser beam propagates, at the point of impact, along a propagation direction d1 (FIG. 4). The propagation direction dP1 comprises a component opposite to said dT1 slice direction.
Dans chacun des exemples illustrés, l'élément conducteur présente une épaisseur H l qui est supérieure à une épaisseur H2 du pôle de la batterie au niveau de la ligne de contact 104 :  In each of the illustrated examples, the conductive element has a thickness H 1 which is greater than a thickness H2 of the battery pole at the level of the contact line 104:
- l'épaisseur Hl de l'élément conducteur est de préférence supérieure à 0,3 mm, plus préférentiellement supérieure à 0,5 mm, de manière plus préférentielle supérieure à 0,8 mm, - l'épaisseur H2 du pôle de la batterie est de préférence inférieure à 0,5 mm, plus préférentiellement inférieure à 0,3 mm,  the thickness H 1 of the conductive element is preferably greater than 0.3 mm, more preferably greater than 0.5 mm, more preferably greater than 0.8 mm, the thickness H 2 of the battery pole. is preferably less than 0.5 mm, more preferably less than 0.3 mm,
- dans les exemples représentés, la plaque présente une épaisseur de l'ordre de 0,5 mm au niveau du point d'impact 402. Le pôle de la batterie présente une épaisseur de l'ordre de 0,25 mm au niveau dudit point d'impact. in the examples shown, the plate has a thickness of about 0.5 mm at the point impact 402. The pole of the battery has a thickness of about 0.25 mm at said point of impact.
Ainsi, le procédé P permet le soudage entre un pôle et un connecteur, ledit pôle présentant une épaisseur inférieure à celle de l'élément conducteur, sans endommager ledit pôle de la batterie. Thus, the method P allows welding between a pole and a connector, said pole having a thickness less than that of the conductive element, without damaging said pole of the battery.
La dimension du front d'onde (dénommée « waste » en anglais) du faisceau laser au niveau du point d'impact, est réglée sensiblement égale, à l'épaisseur Hl de l'élément conducteur. Ainsi, la taille de la soudure est maximale, par exemple de 0,5 mm dans les exemples représentés. La résistance de connexion ainsi générée est minimale.The size of the wavefront (denoted "waste" in English) of the laser beam at the point of impact, is set substantially equal to the thickness Hl of the conductive element. Thus, the size of the weld is maximum, for example 0.5 mm in the examples shown. The connection resistance thus generated is minimal.
La figure 3 illustre un schéma en coupe d'un deuxième élément conducteur 100 b. Dans l'exemple représenté, le conducteur 100 b présente une tranche 102 b située à une extrémité de l'élément conducteur 100 b qui possède une épaisseur décroissante en direction de la ligne de contact 104. Figure 3 illustrates a sectional diagram of a second conductive element 100b. In the example shown, the conductor 100b has a wafer 102b located at one end of the conductive element 100b which has a decreasing thickness in the direction of the nip 104.
Ce qui est décrit en référence aux figures 1, 2 et 4, s'applique également au deuxième élément conducteur 102 b.  What is described with reference to FIGS. 1, 2 and 4, also applies to the second conductive element 102b.
Sur la figure 3, il est en outre représenté un tir Tle effectué perpendiculairement au pôle 202. Dans l'exemple représenté, le tir Tle ne touche pas le pôle 202.  In FIG. 3, there is furthermore shown a shot Tle taken perpendicular to the pole 202. In the example shown, the shot Tle does not touch the pole 202.
L'exemple de la figure 5 illustre un assemblage de plusieurs batteries, numérotées Bl à B12 mettant en œuvre un procédé P.  The example of FIG. 5 illustrates an assembly of several batteries, numbered B1 to B12 implementing a method P.
Chaque pôle d'une des batteries Bl à B12 est relié à un pôle de chacune des autres batteries par soudages d'éléments conducteurs.  Each pole of one of the batteries B1 to B12 is connected to one pole of each of the other batteries by soldering of conductive elements.
L'exemple de la figure 5 illustre la possibilité d'utiliser un conducteur, ici le conducteur C2, pour relier deux batteries, ici les batteries B3 et B4.  The example of FIG. 5 illustrates the possibility of using a conductor, here the conductor C2, to connect two batteries, here the batteries B3 and B4.
L'exemple de la figure 5 illustre aussi la possibilité, selon l'invention, d'utiliser un même conducteur, ici le conducteur Cl, pour relier trois batteries, ici les batteries Bl, B5 et B9. Plus de trois batteries pourraient être reliées par le procédé P en utilisant un même conducteur. La figure 6 illustre une possibilité de souder une multitude de batteries, c'est-à-dire un « pack » de batteries, en n'utilisant qu'un seul conducteur. The example of FIG. 5 also illustrates the possibility, according to the invention, of using the same conductor, here the conductor C1, to connect three batteries, here the batteries B1, B5 and B9. More than three batteries could be connected by the method P using the same conductor. Figure 6 illustrates a possibility of welding a multitude of batteries, that is to say a "pack" of batteries, using only one driver.
Six batteries Al à A6 sont partiellement visibles sur la figure 6. Les six batteries sont maintenues parallèlement entre elles et en quinconce au moyen de deux plaques de maintien M l et M2 en plastique.  Six batteries Al to A6 are partially visible in Figure 6. The six batteries are held parallel to each other and staggered by means of two holding plates M l and M2 plastic.
A cet effet, les deux plaques de maintien comprennent chacune six trous traversants disposés parallèlement entre eux et en quinconce agencés pour loger et bloquer une extrémité de batterie, c'est-à-dire un pôle de batterie.  For this purpose, the two holding plates each comprise six through holes arranged parallel to each other and staggered arranged to accommodate and block a battery end, that is to say a battery pole.
Un élément conducteur 100c, fabriqué en cuivre, est disposé en contact avec des pôles, respectivement PI à P6 des six batteries Al à A6, les pôles étant disposés de l'autre côté du corps des batteries par rapport à la plaque de maintien M l .  A conductive element 100c, made of copper, is disposed in contact with the poles, respectively PI to P6 of the six batteries A1 to A6, the poles being disposed on the other side of the body of the batteries relative to the holding plate M .
Six soudures SI à S6 sont réalisées en conformité avec le procédé P, respectivement entre les batteries Bl à B6 et l'élément conducteur 100c, reliant ainsi électriquement les batteries entre elles par un élément conducteur réalisé sous forme de plaque de cuivre. On note que la plaque de cuivre présente une meilleure résistance au passage de courants forts qu'un feuillard en métal, que chaque soudure effectuée par le laser présente une résistance de contact inférieure à une soudure effectuée par un soudage par résistance et que le temps de fabrication est plus rapide que celui nécessaire au soudage par résistance.  Six welds S1 to S6 are produced in accordance with the method P, respectively between the batteries B1 to B6 and the conductive element 100c, thereby electrically connecting the batteries together by a conductive element made in the form of a copper plate. It is noted that the copper plate has a better resistance to the passage of strong currents than a metal strip, that each weld performed by the laser has a lower contact resistance to a weld performed by a resistance welding and that the time of manufacturing is faster than that required for resistance welding.
Bien sûr, l'invention n'est pas limitée aux exemples qui viennent d'être décrits et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l'invention. De plus, les différentes caractéristiques, formes, variantes et modes de réalisation de l'invention peuvent être associés les uns avec les autres selon diverses combinaisons dans la mesure où ils ne sont pas incompatibles ou exclusifs les uns des autres. Il est représenté sur les figures 4 et 6 une deuxième direction de tranche dT2 qui est orthogonale à la direction dTl . Il est en outre représenté sur la figure 4 une tranche 102c qui est orthogonale à la tranche 102a. Le conducteur 100a (figure 4) s'étend aussi en direction de la tranche 102c selon la deuxième direction dT2, représentée en pointillé. Il est possible de faire se propager un faisceau laser, au niveau d'un point d'impact sur la tranche 102c, selon une direction de propagation dP2, ladite direction de propagation dP2 ayant une composante opposée à la deuxième direction de tranche dT2. On peut ainsi effectuer la soudure de l'élément conducteur entre le pôle et la tranche 102c de l'élément conducteur. Of course, the invention is not limited to the examples that have just been described and many adjustments can be made to these examples without departing from the scope of the invention. In addition, the various features, shapes, variants and embodiments of the invention may be associated with each other in various combinations to the extent that they are not incompatible or exclusive of each other. It is shown in Figures 4 and 6 a second slice direction dT2 which is orthogonal to the direction dTl. It is further shown in Figure 4 a wafer 102c which is orthogonal to wafer 102a. The conductor 100a (FIG. 4) also extends in the direction of the wafer 102c along the second direction dT2, shown in dashed line. It is possible to propagate a laser beam, at a point of impact on the wafer 102c, in a propagation direction dP2, said propagation direction dP2 having a component opposite to the second wafer direction dT2. It is thus possible to weld the conductive element between the pole and the wafer 102c of the conductive element.

Claims

Revendications claims
1. Procédé de soudage entre un élément conducteur (100a, 100 b, 100c) et un pôle (202 ; 204, PI - P6) d'une batterie (200 ; Bl, B2 ; Bl - B12, Bl - B6), ledit procédé comprenant au moins un tir (Tla ; T2a ; Tlb ; Tic ; Tld ; Tle) d'un faisceau laser (302) sur respectivement au moins un point d'impact (402) situé sur une tranche (102a ; 102 b ; 102c) de l'élément conducteur, ladite tranche étant en contact avec ledit pôle le long d'une ligne de contact (104), ledit élément conducteur étant en cuivre ou en un alliage de cuivre et ledit faisceau laser présentant une longueur d'onde comprise entre 500 et 560 nm. A method of welding between a conductive member (100a, 100b, 100c) and a pole (202; 204, PI - P6) of a battery (200; B1, B2; B1 - B12, B1 - B6); method comprising at least one firing (Tla; T2a; Tlb; Tic; Tld; Tle) of a laser beam (302) on respectively at least one impact point (402) located on a wafer (102a; 102b; 102c ) of the conductive element, said wafer being in contact with said pole along a nip (104), said conductive element being made of copper or a copper alloy and said laser beam having a wavelength comprised between 500 and 560 nm.
2. Procédé selon la revendication 1, dans lequel la ligne de contact appartient à une région (Z) du pôle s'étendant selon un plan2. Method according to claim 1, wherein the nip belongs to a region (Z) of the pole extending in a plane
(400), dit plan du pôle, et dans lequel le faisceau laser de chaque tir forme un angle (a) inférieur à 90° avec ledit plan du pôle, de préférence inférieur à 60°. (400), said plane of the pole, and wherein the laser beam of each shot forms an angle (a) less than 90 ° with said plane of the pole, preferably less than 60 °.
3. Procédé selon la revendication 1 ou 2, dans lequel l'élément conducteur s'étend en direction de la tranche selon une direction (dTl, dT2), dite direction de tranche, et dans lequel le faisceau laser se propage, au niveau du point d'impact, selon une direction de propagation (dPl, dP2), ladite direction de propagation ayant au moins une composante opposée à ladite direction de tranche. 3. The method of claim 1 or 2, wherein the conductive element extends towards the wafer in a direction (dTl, dT2), said wafer direction, and wherein the laser beam propagates at the impact point, according to a propagation direction (dP1, dP2), said propagation direction having at least one component opposite said wafer direction.
4. Procédé selon l'une quelconque des revendications précédentes, comprenant en outre, pour chaque point d'impact, une émission d'un flux d'argon (502) en direction de ce point d'impact. 4. A method according to any one of the preceding claims, further comprising, for each point of impact, an emission of an argon stream (502) towards this point of impact.
5. Procédé selon l'une quelconque des revendications précédentes, dans lequel chaque tir (Tla ; T2a ; Tic) frappe le pôle en même temps qu'il frappe la tranche (102a, 102 b). 5. A method according to any one of the preceding claims, wherein each shot (T1a, T2a, Tic) strikes the pole at the same time as it strikes the wafer (102a, 102b).
6. Procédé selon l'une quelconque des revendications précédentes, dans lequel chaque tir (Tlb) frappe le pôle puis est réfléchi par ledit pôle pour ensuite frapper la tranche (102a). 6. Method according to any one of the preceding claims, wherein each shot (Tlb) strikes the pole and is reflected by said pole to then hit the wafer (102a).
7. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'au moins un tir comprend plusieurs tirs (Tla, T2a) sur plusieurs points d'impact situés sur la tranche (102a) de l'élément conducteur (100a), lesdits tirs étant répartis le long de la ligne de contact. 7. A method according to any one of the preceding claims, wherein the at least one shot comprises several shots (Tla, T2a) on several impact points located on the wafer (102a) of the conductive element (100a), said shots being distributed along the line of contact.
8. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'élément conducteur présente une épaisseur (106) au niveau de chaque point d'impact qui est supérieure à une épaisseur (206) du pôle de la batterie au niveau de ce point d'impact. The method of any of the preceding claims, wherein the conductive member has a thickness (106) at each point of impact that is greater than a thickness (206) of the battery pole at that point of contact. point of impact.
9. Procédé selon l'une quelconque des revendications précédentes, dans lequel la tranche (102 b) possède une épaisseur décroissante en direction de la ligne de contact. The method of any of the preceding claims, wherein the wafer (102b) has a decreasing thickness toward the nip.
10. Procédé d'assemblage de deux batteries (Bl, B2) au moyen d'un élément conducteur (100a) comprenant du cuivre ou un alliage de cuivre, ledit procédé comprenant : A method of assembling two batteries (B1, B2) by means of a conductive element (100a) comprising copper or a copper alloy, said method comprising:
- une étape de soudage selon l'une quelconque des revendications précédentes entre une tranche dudit élément conducteur et un pôle (202) d'une batterie (Bl) desdites deux batteries, et - une étape de soudage selon l'une quelconque des revendications précédentes entre une autre tranche, ou ladite tranche, dudit élément conducteur et un pôle (2022) de l'autre batterie (B2) desdites deux batteries. - A welding step according to any one of the preceding claims between a wafer of said conductive element and a pole (202) of a battery (Bl) of said two batteries, and - A welding step according to any one of the preceding claims between another wafer, or said wafer, said conductive element and a pole (2022) of the other battery (B2) of said two batteries.
11. Procédé d'assemblage de plusieurs batteries (Bl - B12), dans lequel chaque pôle d'une batterie est relié électriquement à un pôle de chacune des autres batteries, par une pluralité de mises en œuvre du procédé d'assemblage selon la revendication précédente. 11. A method of assembling a plurality of batteries (Bl-B12), wherein each pole of a battery is electrically connected to a pole of each of the other batteries, by a plurality of implementations of the assembly method according to the claim previous.
PCT/EP2017/055700 2016-03-17 2017-03-10 Method for welding a conductive element to a battery terminal WO2017157794A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1652257A FR3048906B1 (en) 2016-03-17 2016-03-17 WELDING METHOD BETWEEN A CONDUCTIVE ELEMENT AND A BATTERY POLE AND BATTERIES ASSEMBLED WITH SUCH A METHOD
FR1652257 2016-03-17

Publications (1)

Publication Number Publication Date
WO2017157794A1 true WO2017157794A1 (en) 2017-09-21

Family

ID=55808746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/055700 WO2017157794A1 (en) 2016-03-17 2017-03-10 Method for welding a conductive element to a battery terminal

Country Status (2)

Country Link
FR (1) FR3048906B1 (en)
WO (1) WO2017157794A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018212335A1 (en) * 2018-07-24 2020-01-30 Robert Bosch Gmbh Electrical connector, power electronics, battery module and method for electrical connection
FR3109021A1 (en) 2020-04-02 2021-10-08 Elwedys ELECTROCHEMICAL CELL ASSEMBLY
CN113649698A (en) * 2021-08-30 2021-11-16 上海兰钧新能源科技有限公司 Novel pole welding process and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270033A (en) * 2007-04-23 2008-11-06 Toshiba Corp Battery module and battery module connecting method
KR20120051163A (en) * 2010-11-12 2012-05-22 아이피지 포토닉스 코리아(주) Apparatus and method for welding of electrode of secondary battery
JP2012238393A (en) * 2009-09-18 2012-12-06 Panasonic Corp Battery pack, battery pack assembly and battery module
DE102013227003A1 (en) * 2013-12-20 2015-06-25 Robert Bosch Gmbh Electronic control module and method for manufacturing an electronic control module
WO2015103622A1 (en) * 2014-01-06 2015-07-09 Ipg Photonics Corporation Ultra-high power single mode green fiber laser operating in continuous wave and quasi-continuous wave regimes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270033A (en) * 2007-04-23 2008-11-06 Toshiba Corp Battery module and battery module connecting method
JP2012238393A (en) * 2009-09-18 2012-12-06 Panasonic Corp Battery pack, battery pack assembly and battery module
KR20120051163A (en) * 2010-11-12 2012-05-22 아이피지 포토닉스 코리아(주) Apparatus and method for welding of electrode of secondary battery
DE102013227003A1 (en) * 2013-12-20 2015-06-25 Robert Bosch Gmbh Electronic control module and method for manufacturing an electronic control module
WO2015103622A1 (en) * 2014-01-06 2015-07-09 Ipg Photonics Corporation Ultra-high power single mode green fiber laser operating in continuous wave and quasi-continuous wave regimes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 201124, Derwent World Patents Index; AN 2011-C88939, XP002765263 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018212335A1 (en) * 2018-07-24 2020-01-30 Robert Bosch Gmbh Electrical connector, power electronics, battery module and method for electrical connection
FR3109021A1 (en) 2020-04-02 2021-10-08 Elwedys ELECTROCHEMICAL CELL ASSEMBLY
CN113649698A (en) * 2021-08-30 2021-11-16 上海兰钧新能源科技有限公司 Novel pole welding process and device

Also Published As

Publication number Publication date
FR3048906A1 (en) 2017-09-22
FR3048906B1 (en) 2018-04-27

Similar Documents

Publication Publication Date Title
EP2842185B1 (en) Bushing forming a terminal for a lithium storage battery and related storage battery
CA2698700C (en) Module for electrical energy storage assemblies having a flat connecting strip
WO2017157794A1 (en) Method for welding a conductive element to a battery terminal
FR3056022B1 (en) DEVICE FOR ELECTRICALLY INTERCONNECTING BATTERY ELEMENTS AND BATTERY OF BATTERIES PROVIDED WITH SUCH A DEVICE
FR2925768A1 (en) MULTIPOLAR BATTERY WITH IMPROVED INTERPLACE SEALING
FR2731845A1 (en) BATTERIES, ESPECIALLY FOR USE IN VEHICLES AND BOATS
FR2995730B1 (en) BATTERY MODULE
WO2019193293A1 (en) Method and device for laser welding a first component to a second component
EP3711104B1 (en) Power unit made up of a solder-free assembly of a plurality of battery cells
EP1221729A1 (en) Electrical connection system for electrochemical generators
EP2461394A1 (en) Energy-storage flange and method for manufacturing same
EP3538313A1 (en) Method for magnetic pulse soldering of a stack of sheets
EP3152791A1 (en) Connection device for a battery
EP3073551B1 (en) Electrochemical generator
FR2943462A1 (en) Connecting structure for exteriorly connecting battery cells in series, has connecting graphite alloy block made of graphite alloy and connected to positive electrode terminal of battery cell
EP0117804B1 (en) Manufacturing method of a microwave cavity, and cavity obtained thereby
EP3720626B1 (en) Methods for shaping/welding parts by means of magnetic pulse
FR3109021A1 (en) ELECTROCHEMICAL CELL ASSEMBLY
FR3056856B1 (en) THERMOELECTRIC ELEMENT, MODULE AND GENERATOR FOR A THERMAL MOTOR VEHICLE AND METHOD OF MANUFACTURING THE MODULE
FR3137794A1 (en) SOLUTION FOR PREHEATING AN ELECTRIC VEHICLE BATTERY
FR3139742A1 (en) Spot welding process
EP4007061A1 (en) Advanced connection system of at least one electric energy storage unit, storage unit and associated power supply
EP0782244A1 (en) Fast diode having high breakdown voltage and high direct current capability, obtained by assembling elementary diodes
EP3549186A1 (en) Alkaline battery
FR2664090A1 (en) IMPROVED FAST FUSE.

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17713186

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17713186

Country of ref document: EP

Kind code of ref document: A1