WO2017156941A1 - 一种用于温室的温控装置 - Google Patents

一种用于温室的温控装置 Download PDF

Info

Publication number
WO2017156941A1
WO2017156941A1 PCT/CN2016/089852 CN2016089852W WO2017156941A1 WO 2017156941 A1 WO2017156941 A1 WO 2017156941A1 CN 2016089852 W CN2016089852 W CN 2016089852W WO 2017156941 A1 WO2017156941 A1 WO 2017156941A1
Authority
WO
WIPO (PCT)
Prior art keywords
greenhouse
temperature control
receiving box
phase change
loaded
Prior art date
Application number
PCT/CN2016/089852
Other languages
English (en)
French (fr)
Inventor
铁生年
柳馨
铁健
蒋自鹏
Original Assignee
严利容
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 严利容 filed Critical 严利容
Publication of WO2017156941A1 publication Critical patent/WO2017156941A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Definitions

  • the invention relates to the field of phase change energy storage materials applied to greenhouse heating, and particularly relates to a method for applying rubber variable energy storage materials to a greenhouse.
  • the inorganic powder phase change energy storage composite material is mainly a composite of some crystalline hydrated salts, such as calcium chloride hexahydrate, sodium sulfate decahydrate, sodium carbonate decahydrate, magnesium chloride hexahydrate, sodium hydrogen phosphate decahydrate, sulfur pentoxide One or more of sodium sulfate, sodium acetate trihydrate and inorganic substances such as sodium chloride, borax, carbon powder, potassium chloride, potassium nitrate, lithium nitrate, lithium carbonate, lithium chloride, carbon nanotubes, graphene One or several composites are made.
  • phase change materials It is usually an important class of low-temperature energy storage phase change materials, and has wide application range, low price, large thermal conductivity, large latent heat, large volumetric heat storage density, etc., and thus has been widely used and concerned.
  • solid-liquid phase change materials Due to the liquid leakage in the solid-liquid phase change process, the stratification, supercooling and corrosion problems of phase change energy storage materials are in practical applications. Subject to certain restrictions. For the further development of solid inorganic phase change materials, its encapsulation technology has been developed and valued.
  • the present invention provides a temperature control device for a greenhouse, which is applied to a "shelf-type" simple greenhouse, and solves the problem that the solid-liquid phase change energy storage material package is easy to leak and phase change energy storage material. Stratification and overcooling, corrosion problems.
  • This temperature control device for greenhouses includes:
  • phase change energy storage material is selected from the group consisting of Na 2 SO 4 ⁇ 10H 2 O, Na 2 CO 3 ⁇ 10H 2 O, NaCl, borax, carbon powder, potassium chloride, potassium nitrate, lithium nitrate, lithium carbonate, One or more of lithium chloride, sodium acetate trihydrate, paraffin, carbon nanotubes, and graphene.
  • the capsule has a volume of from 1 cm 3 to 20 cm 3 .
  • the receiving box is enclosed by four side walls and a bottom surface; the receiving box has a volume ranging from 2.4 cm 3 to 32 cm 3 .
  • the storage rack comprises a plurality of plies and a support for supporting the ply; the length and width of the ply are respectively in the range of 3 m to 10 m and 2 m to 3 m.
  • the number of the laminates is not more than 5; the distance between two adjacent laminates ranges from 5 cm to 20 cm.
  • the capsule material is made of plastic; the material of the receiving box and/or the storage rack is a high molecular polymer or a heat conductive metal.
  • the invention utilizes the capsule to encapsulate the inorganic powder phase change energy storage material, and achieves the effect of adjusting the greenhouse temperature by selecting the storage mode and the position.
  • the energy storage material of the capsule obtained by the invention has uniform distribution and high phase transformation, and solves the stratification phenomenon, supercooling phenomenon, leakage phenomenon and corrosion problem of the inorganic phase change material.
  • the structure of the invention is simple and easy to implement, and is favorable for preparing a phase change energy storage material with high heat storage/release efficiency in a large batch to provide auxiliary heating or temperature control in a greenhouse.
  • FIG. 1 is a schematic structural view of a receiving box in an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the structure of a storage rack in which a receiving box is placed in an embodiment of the present invention.
  • FIG. 3 is a schematic view showing the structure of a greenhouse in which a storage rack is placed in an embodiment of the present invention.
  • the present invention provides a heating apparatus for a greenhouse, comprising:
  • a housing box 2 loaded with a plurality of said capsules 1;
  • the storage rack 3 carrying the receiving box 2; the storage rack 3 is placed inside the wall 4 facing north.
  • the capsule of the embodiment is made of plastic, and the inside thereof is encapsulated with an inorganic powder phase change energy storage material, and the phase change energy storage material is selected from the group consisting of Na 2 SO 4 ⁇ 10H 2 O, Na 2 CO 3 ⁇ 10H. 2 O, NaCl, borax, carbon powder, potassium chloride, potassium nitrate, lithium nitrate, lithium carbonate, lithium chloride, sodium acetate trihydrate, paraffin, carbon nanotubes and graphene.
  • the capsule structure is respectively connected with abutting portions, and the two mating portions are provided with a matching snap design (not shown) to prevent leakage of the phase change energy storage material loaded therein.
  • the receiving box 3 can be, for example, an open box with a top surface omitted. Referring to FIG. 1 , the receiving box of the present embodiment is finally surrounded by four side walls and a bottom surface, and the general volume ranges from 2.4. Cm 3 ⁇ 32cm 3 . Specifically, the range of the length 2a, the height 2b, and the width 2c of the housing box is 40 cm to 80 cm, 3 cm to 10 cm, and 20 cm to 40 cm, respectively.
  • the material of the receiving box can be a high molecular polymer or a heat conducting metal, so that the capsule placed therein can efficiently store/release heat, and plays a role in regulating and controlling the temperature of the greenhouse.
  • the storage rack 3 includes a plurality of laminations 31 and a bracket 32 for supporting the laminations 31; the length 3c and the width 3a of the laminations 31 are respectively 3m to 10m, 2m ⁇ 3m.
  • the number of the laminates is not more than 5; the distance 3d between two adjacent laminates ranges from 5 cm to 20 cm.
  • the height 3b of the storage rack 3 ranges from 20 to 40 cm.
  • the greenhouse of the present embodiment can be simply constructed, for example, the greenhouse is constructed as a "shelter", but at least includes a wall 4 facing north and a cover 5 for heat preservation.
  • the storage rack 3 is disposed inside the wall 4 facing north, and the storage rack 3 in the greenhouse stands against the wall, and can be arranged in plurality, and a plurality of storage racks 3 can be placed according to the actual length of the wall 4.
  • the top of the wall 4 is provided with a rear slope 41, which is at an angle of 135° to the inner side of the wall 4 for supporting the cover layer 5.
  • several temperature sensors and solar radiation sensors are installed inside and outside the greenhouse. Wherein, as shown in FIG.
  • four temperature sensors and one solar radiation sensor are disposed in the greenhouse of the present example, wherein one temperature sensor and the solar radiation sensor are disposed at the same position on the storage rack 3; 4a is each The height of the temperature sensor is about 1-1.5 meters; 4b is the distance between two adjacent temperature sensors, about 1.5-2 meters; 4c is the width of the greenhouse, about 8-10 meters; 4d is the greenhouse wall facing north wall The height of 4 is about 2.5-3 meters.
  • a temperature sensor is also provided outside the greenhouse to the same height as the temperature sensor in the temperature greenhouse.
  • the capsule energy storage material obtained in the embodiment has uniform distribution and high phase transformation, and solves the stratification phenomenon, supercooling phenomenon, leakage phenomenon and corrosion problem of the inorganic phase change material, and the method is simple and convenient, and is favorable for mass preparation of heat storage.
  • the phase-release energy storage material with high release efficiency is applied to the greenhouse to provide an auxiliary temperature control method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Central Heating Systems (AREA)
  • Greenhouses (AREA)
  • Building Environments (AREA)

Abstract

一种用于温室的温控装置,其包括:装载有相变储能的胶囊(1);装载有若干颗所述胶囊(1)的容纳箱(2);以及装载有所述容纳箱(2)的储物架(3);所述储物架(3)放置于朝北的墙体内侧。该装置结构简单,有利于大批量制备热量存储/释放效率高的相变储能材料应用于温室提供辅助温控。

Description

一种用于温室的温控装置 技术领域
本发明涉及相变储能材料应用温室供暖领域,具体涉及一种胶变储能材料应用于温室大棚的方法。
背景技术
无机粉体相变储能复合材料主要为一些结晶水合盐的复合物,如六水氯化钙、十水硫酸钠、十水碳酸钠、六水氯化镁、十二水磷酸氢钠、五水硫代硫酸钠、三水醋酸钠的一种或几种与无机物如氯化钠、硼砂、碳粉、氯化钾、硝酸钾、硝酸锂、碳酸锂,氯化锂、碳纳米管、石墨烯一种或几种复合制得。其通常是低温储能相变材料中重要的一类,具有使用范围广、价格较便宜、热导率较大、潜热较大、体积储热密度大等优点,因此得到了广泛应用与关注。但其作为固一液相变材料中重要的一类,由于固一液相变过程中的液体渗漏污染环境,相变储能材料分层现象和过冷现象以及腐蚀问题,在实际应用中受到了一定限制。为了固体无机相变材料的进一步发展,其胶囊化技术得到了广发开发与重视。
发明内容
为克服现有技术的不足,本发明提供一种用于温室的温控装置,应用于“搭棚式”的简易温室,解决固—液相变储能材料封装易泄露、相变储能材料分层现象和过冷现象、腐蚀问题。
这种用于温室的温控装置,包括:
装载有相变储能材料的胶囊;
装载有若干颗所述胶囊的容纳箱;以及
装载有所述容纳箱的储物架;所述储物架放置于朝北的墙体内侧。
进一步地,所述相变储能材料选自Na2SO4·10H2O、Na2CO3·10H2O、NaCl、硼砂、碳粉、氯化钾、硝酸钾、硝酸锂、碳酸锂,氯化锂、三水醋酸钠、石蜡、碳纳米管和石墨烯中的一种或几种。
进一步地,所述胶囊体积为1cm3~20cm3
进一步地,所述容纳箱由四个侧壁及一个底面围合而成;所述容纳箱体积范围为2.4cm3~32cm3
进一步地,所述储物架包括若干层板以及用于支撑所述层板的支架;所述层板的长度、宽度范围分别为3m~10m、2m~3m。
进一步地,所述层板的数量为不超过5个;两个相邻所述层板之间的距离范围为5cm~20cm。
进一步地,所述胶囊材质为塑料;所述容纳箱和/或所述储物架的材质为高分子聚合物或导热金属。
有益效果:
本发明利用胶囊封装无机粉状相变储能材料,通过储存方式和位置的选择来达到调节温室温度的效果。本发明所得胶囊储能材料分布均匀,相变焓高,解决了无机相变材料的分层现象和过冷现象、泄露现象、腐蚀问题。本发明结构简单易行,有利于大批量制备热量存储/释放效率高的相变储能材料应用于温室提供辅助供暖或温度控制。
附图说明
图1为本发明实施例中容纳箱的结构示意图。
图2为本发明实施例中放置有容纳箱的储物架结构示意图。
图3为本发明实施例中放置有储物架的温室结构示意图。
具体实施方式
下面,将结合附图对本发明实施例做详细介绍。
参阅图2,本发明提供一种用于温室的供暖装置,其包括:
装载有相变储能材料的胶囊1;
装载有若干颗所述胶囊1的容纳箱2;以及
装载有所述容纳箱2的储物架3;所述储物架3放置于朝北的墙体4内侧。
具体地,本实施例的胶囊材质为塑料,其内部则封装无机粉状相变储能材 料,该所述相变储能材料选自Na2SO4·10H2O、Na2CO3·10H2O、NaCl、硼砂、碳粉、氯化钾、硝酸钾、硝酸锂、碳酸锂,氯化锂、三水醋酸钠、石蜡、碳纳米管和石墨烯中的一种或几种。其中,胶囊结构为分别连个对接的部分,两个对接的部分之间设有相互匹配的卡扣设计(图中未示出),能防止装载于其中的相变储能材料泄漏。
所述容纳箱3可例如为一省略顶面的开敞式箱体,参见图1所示,本实施例的容纳箱最后由四个侧壁及一个底面围合而成,一般体积范围在2.4cm3~32cm3。具体地,容纳箱的长2a、高2b、宽2c的范围分别为40cm~80cm、3cm~10cm、20cm~40cm。容纳箱的材质可以为高分子聚合物或导热金属,使得放入其中的胶囊能高效地储存/释放热量,起到对温室温度调节和控制的作用。
进一步地,为了提高胶囊对温室的温控作用,需要辅助合适的储物架3。如图2所示,所述储物架3包括若干层板31以及用于支撑所述层板31的支架32;所述层板31的长度3c、宽度3a范围分别为3m~10m、2m~3m。所述层板的数量为不超过5个;两个相邻所述层板之间的距离3d范围为5cm~20cm。整体来说,储物架3的高度3b范围为20~40cm。
最后,如图3所示,本实施例的温室可简单构建,例如,该温室构建成“搭棚式”,但至少包括朝北的墙体4以及用于保温的覆盖层5。该储物架3安置于朝北的墙体4内侧,温室中储物架3倚墙而立,可多个排列,根据所述墙体4的实际长度安放多个储物架3即可。所述墙体4顶端设有后坡41,所述后坡41与所述墙体4内侧成135°角,用于支撑覆盖层5。为了监测所构建的温室大棚的温度变化,在温室大棚的内、外设置了若干个温度传感器以及太阳辐射传感器。其中,如图3所示,本实例的温室大棚中设置了四个温度传感器以及一个太阳辐射传感器,其中一个温度传感器与太阳辐射传感器同设于储物架3上的同一位置;4a为每个温度传感器的高度,约1-1.5米;4b为相邻两个温度传感器之间距离,约1.5-2米;4c为温室大棚的宽度,约8-10米;4d为温室大棚朝北墙体4的高度,约2.5-3米。在温室大棚外还设置有一个温度传感器,与温度大棚内的温度传感器同一高度。
本实施例所得胶囊储能材料分布均匀,相变焓高,解决了无机相变材料的分层现象和过冷现象、泄露现象、腐蚀问题,该方法简单易行,有利于大批量制备热量存储/释放效率高的相变储能材料应用于温室大棚提供辅助温控方法。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通 技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (7)

  1. 一种用于温室的温控装置,其中,包括:
    装载有相变储能材料的胶囊;
    装载有若干颗所述胶囊的容纳箱;以及
    装载有所述容纳箱的储物架;所述储物架放置于朝北的墙体内侧。
  2. 根据权利要求1所述用于温室的供暖装置,其中,所述相变储能材料选自Na2SO4·10H2O、Na2CO3·10H2O、NaCl、硼砂、碳粉、氯化钾、硝酸钾、硝酸锂、碳酸锂,氯化锂、三水醋酸钠、石蜡、碳纳米管和石墨烯中的一种或几种。
  3. 根据权利要求1所述用于温室的温控装置,其中,所述胶囊体积为1cm3~20cm3
  4. 根据权利要求1所述用于温室的温控装置,其中,所述容纳箱由四个侧壁及一个底面围合而成;所述容纳箱体积范围为2.4cm3~32cm3
  5. 根据权利要求1所述用于温室的供暖装置,其中,所述储物架包括若干层板以及用于支撑所述层板的支架;所述层板的长度、宽度范围分别为3m~10m、2m~3m。
  6. 根据权利要求1所述用于温室的温控装置,其中,所述层板的数量为不超过5个;两个相邻所述层板之间的距离范围为5cm~20cm。
  7. 根据权利要求1所述用于温室的温控装置,其中,所述胶囊材质为塑料;所述容纳箱和/或所述储物架的材质为高分子聚合物或导热金属。
PCT/CN2016/089852 2016-03-14 2016-07-13 一种用于温室的温控装置 WO2017156941A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610142610.4A CN105706789A (zh) 2016-03-14 2016-03-14 一种用于温室的温控装置
CN201610142610.4 2016-03-14

Publications (1)

Publication Number Publication Date
WO2017156941A1 true WO2017156941A1 (zh) 2017-09-21

Family

ID=56157675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/089852 WO2017156941A1 (zh) 2016-03-14 2016-07-13 一种用于温室的温控装置

Country Status (2)

Country Link
CN (1) CN105706789A (zh)
WO (1) WO2017156941A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105706789A (zh) * 2016-03-14 2016-06-29 青海大学 一种用于温室的温控装置
CN106234084A (zh) * 2016-09-18 2016-12-21 大顺国际花卉股份有限公司 一种储存温室多余热量和防止温室高温的方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2000253C2 (nl) * 2006-10-02 2008-04-04 Harry Schmitz Samenstel van tuinbouwinrichting en veeteeltinrichting.
CN101672119A (zh) * 2009-10-15 2010-03-17 白建国 相变储能太阳能温室建筑结构体系
CN203492470U (zh) * 2013-10-13 2014-03-26 王干 一种基于相变保温墙的日光温室大棚
CN203597171U (zh) * 2013-12-13 2014-05-21 中国农业大学 一种相变材料在日光温室中应用的实验装置
CN105706789A (zh) * 2016-03-14 2016-06-29 青海大学 一种用于温室的温控装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58187251U (ja) * 1982-06-08 1983-12-13 来代 忠良 蓄熱装置付きフイルムハウス
US20100022697A1 (en) * 2006-03-23 2010-01-28 Unversidad De Castilla-La Mancha Process for microencapsulation of phase change materials, microcapsules obtained and uses thereof
CN101255331A (zh) * 2008-02-20 2008-09-03 西北农林科技大学 一种复合相变储热材料及制备方法
CN201388419Y (zh) * 2009-03-16 2010-01-27 徐燕妮 新能源相变储能抗菌智能调控温室大棚
CN101760182B (zh) * 2009-05-14 2012-06-27 肖吕明 一种相变恒温材料
CN201811626U (zh) * 2010-08-11 2011-04-27 中原工学院 一种柔性、相变纤维基储能装置
CN105009998A (zh) * 2015-07-02 2015-11-04 栗世芳 太阳能和地热能复合温室

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2000253C2 (nl) * 2006-10-02 2008-04-04 Harry Schmitz Samenstel van tuinbouwinrichting en veeteeltinrichting.
CN101672119A (zh) * 2009-10-15 2010-03-17 白建国 相变储能太阳能温室建筑结构体系
CN203492470U (zh) * 2013-10-13 2014-03-26 王干 一种基于相变保温墙的日光温室大棚
CN203597171U (zh) * 2013-12-13 2014-05-21 中国农业大学 一种相变材料在日光温室中应用的实验装置
CN105706789A (zh) * 2016-03-14 2016-06-29 青海大学 一种用于温室的温控装置

Also Published As

Publication number Publication date
CN105706789A (zh) 2016-06-29

Similar Documents

Publication Publication Date Title
Wang et al. Enhancing solar steam generation using a highly thermally conductive evaporator support
Pincemin et al. Highly conductive composites made of phase change materials and graphite for thermal storage
Alkilani et al. Review of solar air collectors with thermal storage units
Canbazoğlu et al. Enhancement of solar thermal energy storage performance using sodium thiosulfate pentahydrate of a conventional solar water-heating system
Wu et al. Dynamic performances of solar heat storage system with packed bed using myristic acid as phase change material
Mhiri et al. Numerical and experimental investigations of melting process of composite material (nanoPCM/carbon foam) used for thermal energy storage
Chaichan et al. Enhancing a Trombe wall charging and discharging processes by adding nano-Al2O3 to phase change materials
Haldorai et al. A review on thermal energy storage systems in solar air heaters
Zhang et al. Anisotropically conductive Mg (NO3) 2· 6H2O/g-C3N4-graphite sheet phase change material for enhanced photo-thermal storage
Chen et al. Usage strategy of phase change materials in plastic greenhouses, in hot summer and cold winter climate
Ling et al. Active heat storage characteristics of active–passive triple wall with phase change material
Zhang et al. Solar vapor generator: a natural all-in-one 3D system derived from cattail
CN106839851B (zh) 一种自搅拌固液相变储热装置
WO2017156941A1 (zh) 一种用于温室的温控装置
Gu et al. Round-the-clock interfacial solar vapor generator enabled by form-stable phase change materials with enhanced photothermal conversion capacity
Yin et al. Graphene tube shaped photothermal layer for efficient solar-driven interfacial evaporation
Han et al. Investigating the performance enhancement of copper fins on trapezoidal thermochemical reactor
Zhao et al. Regenerable aerogel‐based thermogalvanic cells for efficient low‐grade heat harvesting from solar radiation and interfacial solar evaporation systems
Sharma et al. Performance investigation of flat plate solar collector with nanoparticle enhanced integrated thermal energy storage system
Ding et al. Enhancing the heat storage performance of a Na2HPO4· 12H2O system via introducing multiwalled carbon nanotubes
Zhong et al. Surrounding effects on the evaporation efficiency of a bi-layered structure for solar steam generation
Zhang et al. Preparation and characteristic of wood-based inorganic composite phase change material with effective anisotropic thermal conductivity for thermal energy storage
Ramazani et al. Super-fast discharge of phase change materials by using an intermediate boiling fluid
He et al. LBM prediction of effective electric and species transport properties of lithium-ion battery graphite anode
CN103468216B (zh) 一种磷酸盐无机纳米相变储能材料及其制备方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894102

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 05.02.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16894102

Country of ref document: EP

Kind code of ref document: A1