WO2017156741A1 - 一种头部姿态补偿方法及相关设备 - Google Patents
一种头部姿态补偿方法及相关设备 Download PDFInfo
- Publication number
- WO2017156741A1 WO2017156741A1 PCT/CN2016/076583 CN2016076583W WO2017156741A1 WO 2017156741 A1 WO2017156741 A1 WO 2017156741A1 CN 2016076583 W CN2016076583 W CN 2016076583W WO 2017156741 A1 WO2017156741 A1 WO 2017156741A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compensation coefficient
- compensation
- current
- current time
- head posture
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
Definitions
- the present invention relates to the field of image processing, and in particular, to a head posture compensation method and related equipment.
- Virtual reality technology is a computer simulation system that can create and experience a virtual world. It uses a computer to generate a simulation environment. It is a multi-source information fusion interactive system simulation of three-dimensional dynamic vision and physical behavior to immerse users in the system. Environment.
- the user's head position needs to be tracked to display the image that the user can see in real time, specifically through the sensor integrated on the VR glasses.
- the gyroscope collects the offset angle ⁇ data of the user's head, and then integrates the collected data through the MCU chip (which can be integrated with the sensor) to generate the user's head angle data, and adds the predicted point deviation angle to the CPU.
- the GPU processes the rendering, and finally reaches the real-time display of the image seen by the user's head.
- the VR device includes three gyroscopes, each of which includes angular velocity data, geomagnetic sensor data, and gravity sensor data. Therefore, with nine directions of data, since the angular velocity data measured by the gyroscope may deviate from the actual angular velocity of the object, There will be drift. Therefore, it is usually necessary to calculate the angular velocity compensation amount based on the geomagnetic sensor geomagnetic data and the gravity sensor acceleration data to adjust the accuracy of the angular velocity data. Usually, the fixed value compensation coefficient is used to cause the gyroscope to adjust the angular velocity accuracy. High, it will cause the image displayed to the user to shake and drift, reducing the user's experience.
- the embodiment of the present invention provides a head posture compensation method and related equipment.
- an embodiment of the present invention provides a head posture compensation method, where the method includes:
- the current head pose is compensated for by the compensation coefficient, the head pose being used to generate a current image.
- determining the corresponding compensation coefficient according to the motion speed of the current moment including:
- the current head pose is compensated for by the compensation coefficient, the head pose being used to generate a current image.
- mapping between the different motion speeds and the compensation coefficients includes:
- the velocity w A ⁇ +H, where A and H are constants, and ⁇ is a compensation coefficient.
- the compensating the current head posture by using the compensation coefficient of the current moment specifically includes:
- the compensation coefficient at the current time is calculated by the adjusted head posture formula of the gyroscope, and the head posture of the adjusted gyroscope is calculated, wherein the head posture formula is
- w is the real-time angular velocity measured by the gyroscope
- Q(t) is the current head attitude
- Q(t-1) is the head posture of the previous frame
- ⁇ is the head posture calculated based on the geomagnetic sensor data and the gravity sensor data.
- the amount of compensation, ⁇ is the compensation coefficient.
- an embodiment of the present invention provides a device for head posture compensation, where the image generation device has a function of implementing the behavior of the image generation device in the above first aspect.
- the functions may be implemented by hardware or by corresponding software implemented by hardware.
- the hardware or software includes one or more modules corresponding to the functions described above.
- the structure of the device for image generation includes a processor for storing a program supporting image generation to execute the above method, and a memory configured to execute the memory Stored in the program.
- the image generating device may also include a communication interface for the image generating device to communicate with other devices or communication networks.
- an embodiment of the present invention provides a computer storage medium for storing computer software instructions for a device for compensating for head posture, which is configured to perform the above aspects.
- the solution provided by the invention improves the accuracy of the measured angular velocity data by dynamically adjusting the angular velocity compensation amount of the gyroscope, and avoids obvious jitter and drift of the image seen by the human eye, thereby improving the user's Experience.
- FIG. 1 is a flowchart of an embodiment of a head posture compensation method provided in an embodiment of the present invention
- FIG. 1-b is a structural diagram of an embodiment of a head posture compensating apparatus provided in an embodiment of the present invention.
- FIG. 2 is a structural diagram of an embodiment of a head posture compensating apparatus provided in an embodiment of the present invention.
- An embodiment of the head posture compensation method in the embodiment of the present invention includes:
- the corresponding compensation coefficient is determined according to the motion speed of the current moment.
- the speed of motion here can be an angular velocity, and different angular velocities can correspond to different compensation coefficients during the detection process.
- it may include:
- the compensation coefficient of the current time is determined according to the motion speed of the current moment and the correspondence.
- the current head pose is compensated for current by using the compensation coefficient.
- the current head motion can be compensated by the current motion speed combined with the compensation coefficient.
- the head pose includes a plurality of parameter determinations, and the compensation coefficient can compensate the operation process to improve the accuracy and avoid image jitter and drift.
- a method for compensating a head posture is provided in the embodiment of the present invention, where the method includes:
- the angular velocity w A ⁇ + H, where A and H are constants, and ⁇ is a compensation coefficient.
- the compensation coefficient at the current time is calculated by the adjusted head posture formula of the gyroscope, and the head posture of the adjusted gyroscope is calculated, wherein the head posture formula is
- w is the real-time angular velocity measured by the gyroscope
- Q(t) is the current head attitude
- Q(t-1) is the head posture of the previous moment
- ⁇ is the head posture calculated based on the geomagnetic sensor data and the gravity sensor data.
- the amount of compensation, ⁇ is the compensation coefficient.
- the accuracy of the measured head posture data is improved, and the image that is seen by the human eye is prevented from having obvious jitter and drift, thereby improving the user experience.
- a head posture compensation device is provided in the embodiment of the present invention, and the device includes:
- the determining module 100 determines a corresponding compensation coefficient according to the motion speed of the current time; the determining module specifically includes:
- the configuration unit 101 is configured to configure a correspondence between different speeds and compensation coefficients
- the obtaining unit 102 is configured to acquire a motion speed of the current time of the device
- a determining unit 103 configured to determine a compensation coefficient of the current time according to the motion speed of the current moment and the correspondence relationship;
- the processing module 104 compensates the current head posture by using the compensation coefficient of the current time.
- the configuration unit 101 is further configured to:
- the angular velocity w A ⁇ + H, where A and H are constants, and ⁇ is a compensation coefficient.
- processing unit 104 is further configured to:
- the compensation coefficient at the current time is calculated by the adjusted head posture formula of the gyroscope, and the head posture of the adjusted gyroscope is calculated.
- w is the real-time angular velocity measured by the gyroscope
- Q(t) is the current head attitude
- Q(t-1) is the head pose of the previous frame
- ⁇ is the head based on the geomagnetic sensor data and the gravity sensor data.
- the compensation amount of the part attitude, ⁇ is the compensation coefficient.
- the head posture compensation device is a virtual reality device.
- the device of the present invention further provides a device for compensating the head posture, which is characterized by comprising: a processor and a memory, wherein
- a computer readable program is stored in the memory
- the processor is configured to run a program in the memory, the processor to:
- the current head pose is compensated for by the compensation coefficient of the current time, the head pose being used to generate a current image.
- FIG. 2 is a schematic diagram of a computer device according to an embodiment of the present invention.
- the image generation device 200 includes at least one processor 201, a communication bus 202, a memory 203, and at least one communication interface 204.
- the processor 201 can be a general purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the program of the present invention.
- CPU central processing unit
- ASIC application-specific integrated circuit
- Communication bus 202 can include a path for communicating information between the components described above.
- the communication interface 204 uses devices such as any transceiver for communicating with other devices or communication networks, such as Ethernet, Radio Access Network (RAN), Wireless Local Area Networks (WLAN), and the like.
- RAN Radio Access Network
- WLAN Wireless Local Area Networks
- the memory 203 can be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions.
- the dynamic storage device can also be an Electrically Erasable Programmable Read-Only Memory (EEPROM), a Compact Disc Read-Only Memory (CD-ROM) or other optical disc storage, and a disc storage device. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
- the memory can exist independently and be connected to the processor via a bus.
- the memory can also be integrated with the processor.
- the memory 203 is used to store program code for executing the solution of the present invention, and is controlled by the processor 201 for execution.
- the processor 201 is configured to execute the storage in the memory 203 code.
- processor 201 may include one or more CPUs, such as CPU0 and CPU1 in FIG.
- image generation device 200 may include multiple processors, such as processor 201 and processor 208 in FIG. Each of these processors can be a single-CPU processor or a multi-core processor.
- a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
- the image generation device 200 may further include an output device 205 and an input device 206.
- Output device 205 is in communication with processor 201 and can display information in a variety of ways.
- the output device 205 can be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector. Wait.
- Input device 206 is in communication with processor 201 and can accept user input in a variety of ways.
- input device 206 can be a mouse, keyboard, touch screen device or sensing device, and the like.
- the head posture compensation device 200 described above may be a general purpose computer device or a dedicated computer device.
- the image generating device 200 may be a virtual reality device, a desktop computer, a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet computer, a wireless terminal device, a communication device, and an embedded device.
- PDA personal digital assistant
- the embodiment of the present invention does not limit the type of the head posture compensation device 200.
- the disclosed system, apparatus, and method may be implemented in other manners.
- the device embodiments described above are merely illustrative.
- the division of the unit is only a logical function division.
- there may be another division manner for example, multiple units or components may be combined or Can be integrated Go to another system, or some features can be ignored or not executed.
- the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
- each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
一种头部姿态补偿方法及装置,该方法首先配置不同速度与补偿系数的对应关系(S101),获取设备当前时刻的运动速度(S102),根据所述当前时刻的运动速度和所述对应关系确定当前时刻的补偿系数(S103),利用所述当前时刻的补偿系数对当前的头部姿态进行补偿(S104)。上述方法及装置,提高了测得角速度数据的准确度,避免导致人眼看到的画面有明显的抖动和漂移,提升了用户的体验感。
Description
本发明涉及图像处理领域,特别涉及一种头部姿态补偿方法及相关设备。
虚拟现实技术是一种可以创建和体验虚拟世界的计算机仿真系统它利用计算机生成一种模拟环境是一种多源信息融合的交互式的三维动态视景和实体行为的系统仿真使用户沉浸到该环境中。
在虚拟现实(Virtual Reality,VR)智能设备工作过程中,需要对用户的头部位置进行追踪,以实时准确的显示用户可看到的图像,具体是通过集成在VR眼镜上的传感器(sensor)、陀螺仪采集用户头部的偏移角度θ数据,再通过MCU芯片(可与传感器集成在一起)对采集的数据进行融合计算生成用户头部角度数据,加上预测点偏离角度后发送给CPU及GPU处理渲染,最终达到实时显示用户头部看到的图像。
VR设备包括三个陀螺仪,每个陀螺仪上包括角速度数据、地磁传感器数据以及重力传感器数据,因此,具有9个方向的数据,由于陀螺仪测量的角速度数据与实物实际角速度会有偏差,即会产生漂移,因此,通常需要根据地磁传感器地磁数据以及重力传感器加速度数据来计算角速度的补偿量,以调整角速度数据的准确度,通常采用固定值的补偿系数导致陀螺仪的调整后角速度准确度不高,会使得显示给用户的图像产生抖动和漂移,降低了用户的体验感。
发明内容
有鉴于此,本发明实施例提供了一种头部姿态补偿方法及相关设备。
第一方面,本发明实施例提供了一种头部姿态补偿方法,所述方法包括:
根据当前时刻的运动速度确定对应的补偿系数;
利用所述补偿系数对当前的头部姿态进行补偿,所述头部姿态用于生成当前图像。
可选地,所述根据当前时刻的运动速度确定对应的补偿系数,包括:
配置不同运动速度与补偿系数的对应关系;
获取设备当前时刻的运动速度;
根据所述当前时刻的运动速度和所述对应关系确定当前时刻的补偿系数;
利用所述补偿系数对当前的头部姿态进行补偿,所述头部姿态用于生成当前图像。
可选地,所述配置不同运动速度与补偿系数的对应关系具体包括:
在不同运动速度下,设置不同的补偿系数,根据画面显示质量,得出补偿系数与设备的运动速度的对应关系。
可选地,所述对应关系为:
速度w=Aη+H,其中A和H均为常数,所述η为补偿系数。
可选地,所述利用所述当前时刻的补偿系数对当前的头部姿态进行补偿具体包括:
当前时刻的补偿系数通过陀螺仪的调整后头部姿态公式,计算得到调整后的陀螺仪的头部姿态,其中,所述头部姿态公式为
第二方面,本发明实施例提供了一种头部姿态补偿的设备,该图像生成的设备具有实现上述第一方面中图像生成设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,图像生成的设备的结构中包括处理器和存储器,所述存储器用于存储支持图像生成的设备执行上述方法的程序,所述处理器被配置为用于执行所述存储器中存储的程序。所述图像生成设备还可以包括通信接口,用于图像生成设备与其他设备或通信网络通信。
第三方面,本发明实施例提供了一种计算机存储介质,用于储存为上述头部姿态补偿的设备所用的计算机软件指令,其包含用于执行上述方面
为图像生成的设备所设计的程序。
相较于现有技术,本发明提供的方案通过动态调整陀螺仪的角速度补偿量,提高了测得角速度数据的准确度,避免导致人眼看到的画面有明显的抖动和漂移,提升了用户的体验感。
本发明的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
图1-a是本发明实施例中提供的头部姿态补偿方法的一种实施例的流程图;
图1-b是本发明实施例中提供的头部姿态补偿装置的一种实施例的结构图;
图2是本发明实施例中提供的头部姿态补偿设备的一种实施例的结构图。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本发明实施例中的头部姿态补偿方法的一种实施例,所述方法包括:
根据当前时刻的运动速度确定对应的补偿系数。
这里的运动速度可以是角速度,在检测过程中,不同的角速度可以对应不同的补偿系数。
具体可以包括:
配置不同运动速度与补偿系数的对应关系;
获取设备当前时刻的运动速度;
根据所述当前时刻的运动速度和所述对应关系确定当前时刻的补偿系数。
利用所述补偿系数对当前的头部姿态进行补偿当前。
通过当前的运动速度结合补偿系数可以对当前的头部姿态进行补偿,头部姿态包括多个参数确定,通过补偿系数可以对运算过程中进行补偿,提高准确度,避免造成图像的抖动和漂移。
结合图1-a所示,本发明实施例中提供一种头部姿态补偿方法,所述方法包括:
S101、配置不同运动速度与补偿系数的对应关系。
在不同运动速度下,设置不同的补偿系数,根据画面显示效果,得出补偿系数与设备的运动速度的对应关系。
所述对应关系为:
角速度w=Aη+H,其中A和H均为常数,所述η为补偿系数。
S102、获取设备当前时刻的运动速度。
S103、根据所述当前时刻的运动速度和所述对应关系确定当前时刻的补偿系数。
S104、利用所述当前时刻的补偿系数对当前的头部姿态进行补偿。
当前时刻的补偿系数通过陀螺仪的调整后头部姿态公式,计算得到调整后的陀螺仪的头部姿态,其中,所述头部姿态公式为
通过动态调整陀螺仪的头部姿态补偿量,提高了测得头部姿态数据的准确度,避免导致人眼看到的画面有明显的抖动和漂移,提升了用户的体验感。
结合图1-b所示,本发明实施例中提供了一种头部姿态补偿装置,所述装置包括:
确定模块100,根据当前时刻的运动速度确定对应的补偿系数;确定模块具体包括:
配置单元101,用于配置不同速度与补偿系数的对应关系;
获取单元102,用于获取设备当前时刻的运动速度;
确定单元103,用于根据所述当前时刻的运动速度和所述对应关系确定当前时刻的补偿系数;
处理模块104,利用所述当前时刻的补偿系数对当前的头部姿态进行补偿。
可选地,所述配置单元101还用于:
在不同运动速度下,设置不同的补偿系数,根据画面显示效果,得出补偿系数与设备的运动速度的对应关系。
可选地,所述对应关系为:
角速度w=Aη+H,其中A和H均为常数,所述η为补偿系数。
可选地,所述处理单元104还用于:
当前时刻的补偿系数通过陀螺仪的调整后头部姿态公式,计算得到调整后的陀螺仪的头部姿态,所述头部姿态公式为
其中,w为陀螺仪测量的实时角速度,Q(t)为当前的头部姿态,Q(t-1)为上一帧的头部姿态,Δ为根据地磁传感器数据以及重力传感器数据来计算头部姿态的补偿量,η为补偿系数。
可选地,所述头部姿态补偿装置为虚拟现实设备。
本发明实施例中还提供一种头部姿态补偿的设备,其特征在于,包括:处理器和存储器,其中,
所述存储器中存有计算机可读程序;
所述处理器通过运行所述存储器中的程序,所述处理器用于:
配置不同运动速度与补偿系数的对应关系;
获取设备当前时刻的运动速度;
根据所述当前时刻的运动速度和所述对应关系确定当前时刻的补偿系数;
利用所述当前时刻的补偿系数对当前的头部姿态进行补偿,所述头部姿态用于生成当前图像。
图2所示为本发明实施例提供的计算机设备示意图。图像生成设备200包括至少一个处理器201,通信总线202,存储器203以及至少一个通信接口204。
处理器201可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本发明方案程序执行的集成电路。
通信总线202可包括一通路,在上述组件之间传送信息。所述通信接口204,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(RAN),无线局域网(Wireless Local Area Networks,WLAN)等。
存储器203可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,所述存储器203用于存储执行本发明方案的程序代码,并由处理器201来控制执行。所述处理器201用于执行所述存储器203中存储的
程序代码。
在具体实现中,作为一种实施例,处理器201可以包括一个或多个CPU,例如图2中的CPU0和CPU1。
在具体实现中,作为一种实施例,图像生成设备200可以包括多个处理器,例如图2中的处理器201和处理器208。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,图像生成设备200还可以包括输出设备205和输入设备206。输出设备205和处理器201通信,可以以多种方式来显示信息。例如,输出设备205可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备206和处理器201通信,可以以多种方式接受用户的输入。例如,输入设备206可以是鼠标、键盘、触摸屏设备或传感设备等。
上述的头部姿态补偿设备200可以是一个通用计算机设备或者是一个专用计算机设备。在具体实现中,图像生成设备200可以是虚拟现实设备、台式机、便携式电脑、网络服务器、掌上电脑(Personal Digital Assistant,PDA)、移动手机、平板电脑、无线终端设备、通信设备、嵌入式设备或有图5中类似结构的设备,本发明实施例不限定头部姿态补偿设备200的类型。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成
到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
以上对本发明所提供的一种图像生成方法及相关设备进行了详细介绍,对于本领域的一般技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
Claims (10)
- 一种头部姿态补偿方法,其特征在于,所述方法包括:根据当前时刻的运动速度确定对应的补偿系数;利用所述补偿系数对当前的头部姿态进行补偿。
- 根据权利要求1所述的方法,其特征在于,所述根据当前时刻的运动速度确定对应的补偿系数,包括:配置不同运动速度与补偿系数的对应关系;获取设备当前时刻的运动速度;根据所述当前时刻的运动速度和所述对应关系确定当前时刻的补偿系数。
- 根据权利要求2所述的方法,其特征在于,所述配置不同运动速度与补偿系数的对应关系具体包括:在不同运动速度下,设置不同的补偿系数,根据画面显示效果,得出补偿系数与设备的运动速度的对应关系。
- 根据权利要求2所述的方法,其特征在于,所述对应关系为:角速度w=Aη+H,其中A和H均为常数,所述η为补偿系数。
- 一种头部姿态补偿装置,其特征在于,所述装置包括:确定模块,根据当前时刻的运动速度确定对应的补偿系数;处理模块,利用所述当前时刻的补偿系数对当前的角速度进行补偿当前。
- 根据权利要求6所述的装置,其特征在于,所述确定模块包括:配置单元,用于配置不同速度与补偿系数的对应关系;获取单元,用于获取设备当前时刻的运动速度;确定单元,用于根据所述当前时刻的运动速度和所述对应关系确定当前时刻的补偿系数。
- 根据权利要求7所述的装置,其特征在于,所述配置单元还用于:在不同运动速度下,设置不同的补偿系数,根据画面显示效果,得出补偿系数与设备的运动速度的对应关系。
- 根据权利要求5至8中任一项所述的装置,其特征在于,所述头部姿态补偿为虚拟现实设备。
- 一种图像生成的设备,其特征在于,包括:处理器和存储器,其中,所述存储器中存有计算机可读程序;所述处理器通过运行所述存储器中的程序,以用于完成上述权利要求1至5所述的方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/076583 WO2017156741A1 (zh) | 2016-03-17 | 2016-03-17 | 一种头部姿态补偿方法及相关设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/076583 WO2017156741A1 (zh) | 2016-03-17 | 2016-03-17 | 一种头部姿态补偿方法及相关设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017156741A1 true WO2017156741A1 (zh) | 2017-09-21 |
Family
ID=59850577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/076583 WO2017156741A1 (zh) | 2016-03-17 | 2016-03-17 | 一种头部姿态补偿方法及相关设备 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017156741A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110827226A (zh) * | 2019-11-13 | 2020-02-21 | 北京迈格威科技有限公司 | 骨骼点的平滑方法、装置和电子设备 |
WO2023217198A1 (zh) * | 2022-05-11 | 2023-11-16 | 闪耀现实(无锡)科技有限公司 | 用于在头戴显示设备显示画面的方法、装置及电子设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101387926A (zh) * | 2007-09-14 | 2009-03-18 | 林金鸿 | 具多轴控制的遥控或指针控制装置及方法 |
CN102981646A (zh) * | 2012-12-10 | 2013-03-20 | 江苏惠通集团有限责任公司 | 姿态感知设备输出控制方法、显示控制方法及装置、系统 |
US20140104445A1 (en) * | 2012-10-12 | 2014-04-17 | Qualcomm Incorporated | Gyroscope conditioning and gyro-camera alignment |
CN103776451A (zh) * | 2014-03-04 | 2014-05-07 | 哈尔滨工业大学 | 一种基于mems的高精度三维姿态惯性测量系统以及测量方法 |
CN104956648A (zh) * | 2012-12-26 | 2015-09-30 | 莫韦公司 | 用于在固定参照系中感测物体在空间中的取向的方法和设备 |
-
2016
- 2016-03-17 WO PCT/CN2016/076583 patent/WO2017156741A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101387926A (zh) * | 2007-09-14 | 2009-03-18 | 林金鸿 | 具多轴控制的遥控或指针控制装置及方法 |
US20140104445A1 (en) * | 2012-10-12 | 2014-04-17 | Qualcomm Incorporated | Gyroscope conditioning and gyro-camera alignment |
CN102981646A (zh) * | 2012-12-10 | 2013-03-20 | 江苏惠通集团有限责任公司 | 姿态感知设备输出控制方法、显示控制方法及装置、系统 |
CN104956648A (zh) * | 2012-12-26 | 2015-09-30 | 莫韦公司 | 用于在固定参照系中感测物体在空间中的取向的方法和设备 |
CN103776451A (zh) * | 2014-03-04 | 2014-05-07 | 哈尔滨工业大学 | 一种基于mems的高精度三维姿态惯性测量系统以及测量方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110827226A (zh) * | 2019-11-13 | 2020-02-21 | 北京迈格威科技有限公司 | 骨骼点的平滑方法、装置和电子设备 |
CN110827226B (zh) * | 2019-11-13 | 2022-09-27 | 北京迈格威科技有限公司 | 骨骼点的平滑方法、装置和电子设备 |
WO2023217198A1 (zh) * | 2022-05-11 | 2023-11-16 | 闪耀现实(无锡)科技有限公司 | 用于在头戴显示设备显示画面的方法、装置及电子设备 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210118357A1 (en) | Optimized Display Image Rendering | |
US10372205B2 (en) | Reducing rendering computation and power consumption by detecting saccades and blinks | |
CN107077548B (zh) | 虚拟可穿戴物 | |
CN106575162B (zh) | 促成计算设备上基于动态眼睛扭转的眼睛跟踪 | |
WO2020140758A1 (zh) | 图像显示方法、图像处理方法和相关设备 | |
CN107204044B (zh) | 一种基于虚拟现实的画面显示方法及相关设备 | |
WO2022022141A1 (zh) | 图像显示方法、装置、计算机设备及存储介质 | |
US9286713B2 (en) | 3D design and collaboration over a network | |
JP7487293B2 (ja) | 仮想カメラの動きを制御する方法及び装置並びコンピュータ装置及びプログラム | |
US9792673B2 (en) | Facilitating projection pre-shaping of digital images at computing devices | |
US12101557B2 (en) | Pose tracking for rolling shutter camera | |
US10937192B2 (en) | Resolving incorrect distributed simultaneous localization and mapping (SLAM) data in edge cloud architectures | |
US12105553B2 (en) | Synchronizing systems on a chip using a shared clock | |
US20240283554A1 (en) | Synchronizing systems-on-chip using gpio timestamps | |
WO2017156741A1 (zh) | 一种头部姿态补偿方法及相关设备 | |
CN107203257A (zh) | 一种头部姿态补偿方法及相关设备 | |
KR20240090407A (ko) | 칩 아이웨어 상의 듀얼 시스템 | |
KR20240090409A (ko) | 칩 아이웨어 상의 듀얼 시스템 | |
CN114201028A (zh) | 扩增实境系统与其锚定显示虚拟对象的方法 | |
WO2017156742A1 (zh) | 一种基于虚拟现实的画面显示方法及相关设备 | |
US11507185B1 (en) | Electrooculography-based eye tracking using normalized electrode input | |
US11380071B2 (en) | Augmented reality system and display method for anchoring virtual object thereof | |
US20240312145A1 (en) | Tight imu-camera coupling for dynamic bending estimation | |
CN117034585A (zh) | 多显示器的编排方法、装置和电子设备 | |
CN115885316A (zh) | 身高检测方法、装置及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16893906 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 28/01/2019) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16893906 Country of ref document: EP Kind code of ref document: A1 |