WO2017156703A1 - 一种处理解调参考信号的方法及设备 - Google Patents

一种处理解调参考信号的方法及设备 Download PDF

Info

Publication number
WO2017156703A1
WO2017156703A1 PCT/CN2016/076355 CN2016076355W WO2017156703A1 WO 2017156703 A1 WO2017156703 A1 WO 2017156703A1 CN 2016076355 W CN2016076355 W CN 2016076355W WO 2017156703 A1 WO2017156703 A1 WO 2017156703A1
Authority
WO
WIPO (PCT)
Prior art keywords
dmrs
service data
transmission link
base sequence
location
Prior art date
Application number
PCT/CN2016/076355
Other languages
English (en)
French (fr)
Inventor
孙晓东
王达
王键
曾勇波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680080939.0A priority Critical patent/CN108605318B/zh
Priority to PCT/CN2016/076355 priority patent/WO2017156703A1/zh
Publication of WO2017156703A1 publication Critical patent/WO2017156703A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and device for processing a demodulation reference signal.
  • the fifth generation (English full name: The fifth generation, abbreviation: 5G) mobile communication system application scenarios include not only enhanced mobile broadband service scenarios, but also large-scale Internet of Things connection, ultra low latency (English full name: Ultra Low Latency, Abbreviations: ULL) and ultra-reliable transmission scenarios.
  • the service model is a small data packet requiring low latency transmission. For example, remote meter reading, industrial control, etc.
  • the minimum unit of resource allocation in the time domain of the traditional 4G mobile communication system is a transmission time interval (English full name: Transmission Timing Interval, abbreviation: TTI), that is, 1 ms, which is compared with the ULL service transmission. Big.
  • TTI Transmission Timing Interval
  • the minimum unit of time domain resource allocation for ULL service transmission in 5G mobile communication system needs to be changed to short TTI, and the minimum unit of short TTI is one orthogonal frequency division multiple access (English full name: Orthogonal Frequency Division Multiple Access, abbreviation : OFDMA) or single carrier frequency division multiple access (English full name: Single Carrier Frequency Division Multiple Access, abbreviation: SC-FDMA) symbol.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the ULL service occupies one OFDMA or a part of subcarriers in one SC-FDMA symbol.
  • the demodulation reference signal (English name: Demodulation Reference Signal, abbreviation: DMRS) is located.
  • DMRS Demodulation Reference Signal
  • an SC-FDMA symbol is occupied.
  • the physical uplink shared channel (English full name: Physical Uplink Share Channel, abbreviated: PUSCH) uses a Zadoff-Chu sequence for the DMRS.
  • the mapping mode of the traditional 4G mobile communication system DMRS cannot reduce the uplink transmission delay.
  • Embodiments of the present invention provide a method and a device for processing a demodulation reference signal, which are used to solve the traditional The mapping mode of the 4G mobile communication system DMRS cannot reduce the problem of uplink transmission delay.
  • a first aspect of the embodiments of the present invention provides a method for processing a demodulation reference signal DMRS, which is applied to transmission of ultra low latency ULL service data, and a minimum unit of the ULL service data allocated in a time domain of a transmission link
  • the smallest unit allocated by the ULL service data in the frequency domain of the transmission link is a resource grid block (English name: Resource Element Block, abbreviation: REB)
  • the REB includes a service data resource grid RE and a DMRS RE, where the service data RE is used to transmit the ULL service data, the DMRS RE is used for performing channel estimation and detection on the ULL service data, and transmitting the DMRS corresponding to the ULL service data
  • the method includes: determining, by the first device a first location in the transmission link of the DMRS, wherein the first location is an initial location of the DMRS mapped to the DMRS RE corresponding to the transmission link; when the first device is configured with a cell-related shift and/or Or
  • a REB includes a service data RE and a DMRS RE, where the DMRS RE is used for channel estimation and detection of the ULL service data, and transmits a DMRS corresponding to the ULL service data, where a cell related shift is set in the first device.
  • the first device maps the DMRS to the corresponding location according to the first function, thereby improving the demodulation of the ULL service data, and improving the utilization of the radio resource.
  • the determining, by the first device, the first location of the DMRS in the transmission link includes: acquiring, by the first device, the resource occupied by the ULL service data; The first device determines, according to the resource occupied by the ULL service data, the first location of the DMRS in the transmission link.
  • the first device determines, according to the resource occupied by the ULL service data, the first location of the DMRS in the transmission link, that is, the first location is that the DMRS is mapped to the DMRS RE corresponding to the transmission link.
  • the initial position For example, each of the REBs includes five service data REs and one DMRS RE, and the first device determines the DMRS RE location corresponding to the DMRS according to the resources occupied by the ULL service data.
  • the first device determines a DMRS in the transmission link. Before the location, the first device determines a first DMRS base sequence; the first device determines a second DMRS base sequence by using an autocorrelation and a cross-correlation of the first DMRS base sequence; the first device uses the second DMRS The base sequence is substituted into a second function to determine the DMRS, wherein the DMRS is used to map into the DMRS RE.
  • the first device obtains a DMRS base sequence of a certain length according to the generation manner of the DMRS base sequence in the 4G mobile communication system, and intercepts the DMRS base sequence according to the required DMRS base sequence length, thereby obtaining the first a DMRS-based sequence, further determining the second DMRS-based sequence according to an autocorrelation and a cross-correlation of the first DMRS-based sequence, wherein the first DMRS-based sequence having the largest autocorrelation value and the smallest cross-correlation value is generally determined as the A second DMRS base sequence, wherein the second DMRS base sequence is a DMRS base sequence available for the ULL traffic data.
  • the second location is represented by (k, s), where k represents a subcarrier position occupied by the DMRS in a frequency domain of the transmission link, and k is preset by the first device.
  • s represents the symbol position occupied by the DMRS in the time domain of the transmission link, and the first function is expressed as among them, Indicates the first position, m is the number of the REB, Indicates the number of REs included in one REB corresponding to the ULL service data; Indicates cell related shift, Indicates the cell identity PCI, Represents a symbol-dependent shift, n sc represents the symbol identifier occupied by the ULL service data, and N SC represents the total number of symbols occupied by the ULL service data.
  • the DMRS may be shifted according to the physical cell identifier. If the first device is configured with a symbol-related shift, the DMRS may be moved according to the symbol occupied by the ULL service data. Bit, thereby improving the demodulation accuracy of ULL traffic data.
  • represents the number of second DMRS base sequences reusable, j represents a complex number, and n represents a position number of the second DMRS base sequence; Representing the second DMRS base sequence, u represents a group number, and v represents a group number, Indicates the length of the second DMRS base sequence.
  • the second DMRS base sequence is substituted into the second function, and the DMRS is determined, and the DMRS is mapped to the DMRS RE location of the corresponding transmission link, and then the ULL service data is performed on the DMRS RE.
  • a second aspect of the embodiment of the present invention provides a first device, where the first device is configured to transmit ultra-low latency ULL service data, where the minimum unit allocated in the time domain of the transmission link is a symbol.
  • the minimum unit allocated by the ULL service data in the frequency domain of the transmission link is a resource grid block REB, and the REB includes a service data resource grid RE and a DMRS RE, wherein the service data RE is used to transmit the ULL service.
  • the DMRS RE is used for performing channel estimation and detection on the ULL service data, and transmitting the DMRS corresponding to the ULL service data, where the first device includes:
  • a determining module configured to determine a first location of the DMRS in the transmission link, where the first location is an initial location of the DMRS mapped to the DMRS RE corresponding to the transmission link;
  • the determining module is further configured to determine, according to the first function, a second location of the DMRS on the transmission link when the first device is configured with a cell-related shift and/or a symbol-related shift;
  • a processing module configured to map the DMRS to the second location.
  • a REB includes a service data RE and a DMRS RE, where the DMRS RE is used for channel estimation and detection of the ULL service data, and transmits a DMRS corresponding to the ULL service data, where a cell related shift is set in the first device.
  • the processing module maps the DMRS to the corresponding position according to the first function, thereby improving the demodulation of the ULL service data and improving the utilization of the radio resource.
  • the determining module is specifically configured to obtain a resource occupied by the ULL service data, and determine, according to the resource occupied by the ULL service data, the DMRS in the transmission chain. The first position in the road.
  • the determining module determines, according to the resource occupied by the ULL service data, the first location of the DMRS in the transmission link, that is, the first location is that the DMRS is mapped to the DMRS RE corresponding to the transmission link. initial position.
  • each REB includes 5 service data REs and 1 DMRS. The RE determines that the module determines the DMRS RE location corresponding to the DMRS according to the resource occupied by the ULL service data.
  • the determining module is further configured to determine a first DMRS base sequence, using an autocorrelation of the first DMRS base sequence, before determining a first location of the DMRS in the transmission link.
  • the cross-correlation determines a second DMRS base sequence and substitutes the second DMRS base sequence into a second function to determine the DMRS, wherein the DMRS is used to map into the DMRS RE.
  • the determining module obtains a DMRS base sequence of a certain length according to the generation manner of the DMRS base sequence in the 4G mobile communication system, and intercepts the DMRS base sequence according to the required DMRS base sequence length, thereby obtaining the first DMRS.
  • Base sequence further, determining the second DMRS base sequence according to autocorrelation and cross-correlation of the first DMRS base sequence, wherein the first DMRS base sequence having the largest autocorrelation value and the smallest cross-correlation value is generally determined as the base sequence
  • the second location is represented by (k, s), where k represents a subcarrier position occupied by the DMRS in a frequency domain of the transmission link, and k is preset by the first device.
  • s represents the symbol position occupied by the DMRS in the time domain of the transmission link, and the first function is expressed as among them, Indicates the first position, m is the number of the REB, Indicates the number of REs included in one REB corresponding to the ULL service data; Indicates cell related shift, Indicates the cell identity PCI, Represents a symbol-dependent shift, n sc represents the symbol identifier occupied by the ULL service data, and N SC represents the total number of symbols occupied by the ULL service data.
  • represents the number of second DMRS base sequences reusable, j represents a complex number, and n represents a position number of the second DMRS base sequence; Representing the second DMRS base sequence, u represents the group number, and v represents the group number, Indicates the length of the second DMRS base sequence.
  • the DMRS may be shifted according to the physical cell identifier. If the first device is configured with a symbol-related shift, the DMRS may be moved according to the symbol occupied by the ULL service data. Bit, thereby improving the demodulation accuracy of ULL traffic data.
  • a third aspect of the embodiments of the present invention provides a first device, including: one or more processors, a memory, a bus system, and a transceiver, the processor, the memory, and the transceiver passing the bus Connected to the system; wherein the memory stores one or more programs, the one or more programs including instructions that, when executed by the first device, cause the first device to perform the first aspect or the first aspect A possible implementation of the method described.
  • a REB includes a service data RE and a DMRS RE, where the DMRS RE is used for channel estimation and detection of the ULL service data, and transmits a DMRS corresponding to the ULL service data, where a cell related shift is set in the first device.
  • the first device maps the DMRS to the corresponding location according to the first function, thereby improving the demodulation of the ULL service data, and improving the utilization of the radio resource.
  • FIG. 1 is a schematic diagram of an embodiment of a method for processing a DMRS according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of ULL service resource allocation according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a DMRS occupied position according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a DMRS occupied location mapping according to an embodiment of the present invention.
  • FIG. 3-c is another schematic structural diagram of a DMRS occupied location mapping according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of another DMRS occupation location mapping according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a first device according to an embodiment of the present invention.
  • FIG. 5 is another schematic structural diagram of a first device according to an embodiment of the present invention.
  • the technical solution of the present invention can be applied to various communication systems, for example, Global System for Mobile Communication (English name: Global System for Mobile Communication, abbreviation: GSM), code division multiple access (English full name: CodeDivision Multiple Access, abbreviation: CDMA System, Wideband Code Division Multiple Access Wireless (WCDMA), General Packet Radio Service (English: Radio Packet Service, Abbreviation: GPRS), Long Term Evolution (English name: Long Term Evolution) , abbreviation: LTE) and so on.
  • GSM Global System for Mobile Communication
  • CDMA System Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access Wireless
  • GPRS General Packet Radio Service
  • Long Term Evolution English name: Long Term Evolution
  • LTE Long Term Evolution
  • the first device is a base station, where the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station (eNB or e- in LTE). NodeB, evolutional Node B), the invention is not limited.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved base station
  • e- in LTE evolved base station
  • the first device is a mobility management network element
  • the mobility management network element may be an extended universal mobile communication system (English full name: Universal Mobile Telecommunications System, abbreviation: UMTS) terrestrial wireless access network (English full name: Evolved UMTS Territorial Radio Access Network, abbreviation: E-UTRAN) Mobile management entity (English full name: Mobile Managenment Entity, abbreviation: MME), and UMTS Territorial Radio Access Network (English name: UMTS Territorial Radio Access Network, abbreviation: UTRAN) GSM EDGE radio access network (English full name: GSM EDGE Radio Access Network, abbreviation: GERAN) connected to the General Packet Radio Service Support Node (Serving GPRS (General Packet Radio Service) Support Node); or access gateway in non-3GPP networks (English full name: Access Gateway, abbreviation: AGW), wireless local area network (English name: Wireless Local Area Network, abbreviation: WLAN) with evolved packet data gateway (English full name: E
  • the scenario applied by the present invention is first introduced.
  • the minimum unit of resource allocation in the time domain of the traditional 4G mobile communication system is one TTI, that is, 1 ms, and the delay is relative to the ULL service. Larger in transmission.
  • the minimum unit of time domain resource allocation for ULL traffic transmission in a 5G mobile communication system needs to be changed to a short TTI, and the minimum unit of the short TTI is one OFDMA or SC-FDMA symbol.
  • the ULL service occupies one OFDMA or a part of subcarriers in one SC-FDMA symbol.
  • the DMRS In the uplink of the conventional 4G mobile communication system, the DMRS is located in the middle of one subframe and occupies one SC-FDMA symbol, for example
  • the DMRS corresponding to the PUSCH adopts a Zadoff-Chu sequence.
  • the DMRS corresponding to the PUSCH is mapped to the fourth SC-FDMA symbol of each slot; when the subframe is configured as an extended cyclic prefix
  • the DMRS corresponding to the PUSCH is mapped to the third SC-FDMA symbol of each slot. Therefore, the mapping mode of the traditional 4G mobile communication system DMRS cannot reduce the uplink transmission delay.
  • one or more independent areas may be divided into ULL service-dedicated areas in the system frequency band, and the minimum unit of ULL service data allocation in the time domain resource is one SC-FDMA.
  • the smallest unit of frequency domain resource allocation is one REB.
  • An REB includes service data RE and DMRS RE, wherein the service data RE is used for transmitting ULL service data; the DMRS RE is used for transmitting ULL service data and corresponding DMRS, and performing channel estimation and detection on the ULL service data.
  • the SC-FDMA symbol in the ULL service-dedicated area can be divided into multiple REBs, and the PUSCH and the physical uplink control channel (English full name: Physical Uplink Control Channel, abbreviated: PUCCH) in the traditional 4G mobile communication system, physical random connection
  • the incoming channel English full name: Physical Random Access Channel, abbreviation: PRACH
  • DMRS and sounding reference signal
  • SRS Sounding Reference Signal
  • FIG. 1 is a schematic diagram of an embodiment of a method for processing a DMRS according to an embodiment of the present invention, where the method is applied to transmission of ultra-low latency ULL service data, and the ULL service data is allocated in a time domain of a transmission link.
  • the minimum unit is a symbol, and the ULL service data is allocated in the frequency domain of the transmission link.
  • the minimum unit is a resource raster block REB, and the REB includes a service data resource raster RE and a DMRS RE, wherein the service data RE is used to transmit the ULL service data, and the DMRS RE is used to the ULL service data.
  • the channel is estimated and detected, and the DMRS corresponding to the ULL service data is transmitted.
  • Step 101 The first device determines a first DMRS base sequence.
  • the first device determines the first DMRS base sequence according to the manner in which the DMRS base sequence is generated in the 4G mobile communication. among them, Indicates the length of the first DMRS base sequence, and m represents the number of resource blocks RB allocated by the first device on the transmission link, Indicates the number of subcarriers included in each RB. Indicates the maximum number of RBs included on the transmission link.
  • the formula is: among them, Representing the first DMRS base sequence, Representing the length of the Zadoff-Chu sequence, n' is the position number of the first DMRS base sequence, x q is the qth Zadoff-Chu sequence, and x q is defined as:
  • the length of the first DMRS base sequence is an integer multiple of the number of RB subcarriers. Taking a normal subframe as an example, the length of the first DMRS base sequence is an integer multiple of 12 RB subcarriers. . It is assumed that in the 5G mobile communication system, the second DMRS base sequence of the ULL service data needs to have a length of 6, which can be obtained according to the generation manner of the DMRS base sequence in the 4G mobile communication system.
  • the first DMRS base sequence as shown in Table 1 and Table 2, further intercepts any 6 bits in the first DMRS base sequence group as the available first DMRS base sequence corresponding to the ULL service data.
  • Step 102 The first device determines a second DMRS base sequence by using autocorrelation and cross-correlation of the first DMRS base sequence.
  • the available first DMRS base sequence with the largest autocorrelation value and the smallest cross-correlation value is selected as the second DMRS base sequence corresponding to the ULL service data.
  • the group number of the second DMRS base sequence is kept unchanged. It can be seen that when the length of the ULL service data DMRS base sequence is 6, the group number of the available second DMRS base sequence does not include 3, 4, 14, 20, 23.
  • the second DMRS base sequence corresponding to the ULL service data is generated by: firstly, generating a first DMRS base sequence according to a manner generated by the transmission link corresponding to the DMRS base sequence in the existing 4G mobile communication system, and requesting a corresponding transmission link
  • the length of the first DMRS base sequence is not less than the ULL service corresponding DMRS motif
  • the length of the column requirement and is an integer multiple of the number of subcarriers included in each RB
  • the length of the DM service base sequence corresponding to the ULL service is extracted from the generated first DMRS base sequence to obtain the available first DMRS base sequence; Calculating the autocorrelation and cross-correlation between the base sequences in the available first DMRS base sequence after cropping; and then selecting the available first DMRS base sequence with the largest autocorrelation value and the smallest cross-correlation value as the ULL service corresponding
  • the second DMRS base sequence finally, the group number of the second DMRS base sequence is kept
  • Step 103 The first device substitutes the second DMRS base sequence into a second function to determine the DMRS.
  • the DMRS is used to map to the DMRS RE, wherein the second function is represented as among them, Representing the DMRS, ⁇ represents a number of second DMRS base sequence reusable, j represents a complex number, and n represents a position number of the second DMRS base sequence; Representing the second DMRS base sequence, u represents a group number, and v represents a group number, Representing the length of the second DMRS base sequence.
  • Step 104 The first device determines a first location of the DMRS in the transmission link.
  • the first location is that the DMRS is mapped to an initial location on the DMRS RE corresponding to the transmission link.
  • the determining, by the first device, the first location of the DMRS in the transmission link includes: the first device acquiring a resource occupied by the ULL service data; and the first device according to the ULL service The resources occupied by the data determine a first location of the DMRS in the transmission link.
  • Step 105 The first device determines whether a cell-related shift and/or a symbol-related shift is set. If yes, step 106 is performed, and if not, the process ends.
  • the DMRS mapping process corresponding to the ULL service data determines the initial location of the DMRS RE. If the base station configures the cell-related shift, the RE occupied by the DMRS may be based on the physical layer.
  • the cell identifier (English name: Physical Layer Cell Identity, abbreviation: PCI) is shifted; if the base station is configured with symbol-dependent shift, the DMRS occupies the RE according to the symbol occupied by the UE; if the base station simultaneously configures the cell and the symbol For the related shift, the DMRS occupied RE can be shifted according to the symbols occupied by the PCI and the UE.
  • Step 106 The first device determines a second location of the DMRS on the transmission link according to a first function, and maps the DMRS to the second location.
  • the second location is represented by (k, s), where k represents a subcarrier position occupied by the DMRS in a frequency domain of the transmission link, and k is preset by the first device, and s represents a symbol position occupied by the DMRS on a time domain of the transmission link, the first function being represented as among them, Representing the first location, m is the number of the REB, Representing the number of REs included in one REB corresponding to the ULL service data; Indicates cell related shift, Indicates the cell identity PCI, Represents a symbol-dependent shift, N sc denotes a symbol identifier occupied by the ULL service data, and N SC denotes a total number of symbols occupied by the ULL service data.
  • the uplink subframe is a normal cyclic prefix, and the PUCCH format is 1/1a/1b.
  • One or more separate areas are allocated within the system band as dedicated areas for ULL traffic data.
  • a SC-FDMA symbol is divided into multiple REBs in the frequency domain. Assuming that each REB has 6 REs, including 1 DMRS RE and 5 service data REs, the resource allocation of one subframe in the uplink is as shown in the figure. 2 is shown.
  • the DMRS overhead corresponding to the PUSCH is about 14% ((the number of DMRS REs in one PRB) / 84 (the number of REs in one PRB is 12*7) * 100%), the ULL service area.
  • the overhead of the inner DMRS is about 17% (2*7 (DMRS RE number in one PRB)/84*100%), and the DMRS overhead in the ULL service area is close to the PUSCH, which does not bring about significant system performance degradation.
  • the base station configures the cell-related shift, and if there are three cells, and the cell PCI is 0, 2, and 4 respectively, the first device maps the RE occupied by the DMRS to the second location, as shown in Figure 3. If the ULL service data DMRS is mapped, the base station configures the symbol correlation shift, and the ULL service occupies 3 symbols, the first device maps the RE occupied by the DMRS to the second position as shown in FIG.
  • the base station simultaneously configures the cell and the symbol-related shift, and assumes that there are two cells, the cell PCI is 0, 4, and each cell ULL service occupies 3 symbols, then the first device maps the RE occupied by the DMRS to The second position is shown in Figure 3-d.
  • the first device when the ULL service of the 5G mobile communication system is uplinked, the first device can configure the DMRS to be shifted according to the cell PCI, thereby effectively avoiding interference between adjacent cells DMRS, and the first device system can also configure DMRS according to ULL. The number of occupied symbols is shifted, thereby improving channel estimation accuracy and improving detection performance.
  • the ULL service resource allocation and the DMRS-based sequence generation method are compatible with the conventional 4G mobile communication system.
  • a schematic structural diagram of a first device 400 in the embodiment of the present invention is configured to transmit ultra-low latency ULL service data, where the ULL service data is allocated in a time domain of a transmission link.
  • the smallest unit is a symbol
  • the smallest unit allocated in the frequency domain of the transmission link is a resource grid block REB
  • the REB includes a service data resource grid RE and a DMRS RE
  • the service data RE is used to transmit the ULL service data
  • the DMRS RE is used to perform channel estimation and detection on the ULL service data and to transmit the DMRS corresponding to the ULL service data
  • the first device 400 includes:
  • the module 401 and the processing module 402 are determined.
  • a determining module 401 configured to determine a first location of the DMRS in the transmission link, where the first location is an initial location on the DMRS RE that is mapped to the DMRS corresponding to the transmission link;
  • the determining module 401 is specifically configured to acquire resources occupied by the ULL service data, and determine, according to the resources occupied by the ULL service data, the DMRS in the transmission link. a location.
  • the determining module 401 is further configured to: before determining a first location of the DMRS in the transmission link, determine a first DMRS base sequence, using the first DMRS base sequence The second DMRS base sequence is determined by autocorrelation and cross-correlation, and the second DMRS base sequence is substituted into a second function to determine the DMRS, wherein the DMRS is used to map into the DMRS RE.
  • Representing the DMRS ⁇ represents a number of second DMRS base sequence reusable, j represents a complex number, and n represents a position number of the second DMRS base sequence; Representing the second DMRS base sequence, u represents a group number, and v represents a group number, Representing the length of the second DMRS base sequence.
  • the determining module 401 is further configured to: when the first device is configured with a cell-related shift and/or a symbol-related shift, determine a second location of the DMRS on the transmission link according to a first function;
  • the second location is represented by (k, s), where k represents a subcarrier position occupied by the DMRS in a frequency domain of the transmission link, and k is preset by the first device, and s represents a symbol position occupied by the DMRS on a time domain of the transmission link, the first function being represented as among them, Representing the first location, m is the number of the REB, Representing the number of REs included in one REB corresponding to the ULL service data; Indicates cell related shift, Indicates the cell identity PCI, Represents a symbol-dependent shift, N sc denotes a symbol identifier occupied by the ULL service data, and N SC denotes a total number of symbols occupied by the ULL service data.
  • the processing module 402 is configured to map the DMRS to the second location.
  • a REB includes a service data RE and a DMRS RE, where the DMRS RE is used for channel estimation and detection of the ULL service data, and transmits a DMRS corresponding to the ULL service data, where a cell related shift is set in the first device.
  • the processing module maps the DMRS to the corresponding position according to the first function, thereby improving the demodulation of the ULL service data and improving the utilization of the radio resource.
  • the determining module 401 and the processing module 402 may be software modules, which may be executed in a processor of the computer system, or may be a specific integrated circuit.
  • FIG. 4 illustrates the specific structure of the first device from the perspective of the functional module.
  • the specific structure of the first device is described from the hardware point of view below with reference to the embodiment of FIG. 5:
  • FIG. 5 another schematic structural diagram of a first device 500 in an embodiment of the present invention includes one or more processors 501, a memory 502, a bus system 503, and a transceiver 504.
  • the processor 501 The memory 502 and the transceiver 504 are coupled by the bus system 503, and the memory 502 stores one or more programs 505, the one or more programs 505 including An instruction that, when executed by the first device 500, causes the first device 500 to perform the method as shown in the embodiment of FIG.
  • the processor 501 may be a CPU, and the processor 501 may also be other general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), off-the-shelf programmable gate arrays (FPGAs), or the like. Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and more.
  • the general purpose processor may be a microprocessor, or the processor may be any conventional processor or the like.
  • the step of accessing the hard disk data of the master device by the first device may be completed by using an integrated logic circuit of the hardware in the processor 501 or an instruction in a software form, which may be directly implemented by the hardware processor, or processed. The combination of hardware and software modules in the device is completed.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 502, and the processor 501 reads the information in the memory 502 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the first device shown in FIG. 5 may correspond to the first device in the method for processing the DMRS in the embodiment of the present invention, and the foregoing and other operations and/or functions of the respective units in the first device respectively In order to implement the corresponding process of the method shown in FIG. 3, for brevity, details are not described herein again.
  • a REB includes a service data RE and a DMRS RE, where the DMRS RE is used for channel estimation and detection of the ULL service data, and transmits a DMRS corresponding to the ULL service data, where a cell related shift is set in the first device.
  • the first device maps the DMRS to the corresponding location according to the first function, thereby improving the demodulation of the ULL service data, and improving the utilization of the radio resource.
  • the disclosed system, device and method The law can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of cells is only a logical function division.
  • multiple units or components may be combined or integrated. Go to another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units.
  • the technical solutions provided in this embodiment may be implemented by selecting some or all of the units according to actual needs.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • An integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, can be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种处理解调参考信号的方法及设备,用于解决传统4G移动通信系统DMRS的映射方式不能降低上行传输时延的问题。该方法应用于超低时延ULL业务数据的传输,该ULL业务数据在传输链路的时域上分配的最小单位为一个符号,该ULL业务数据在该传输链路的频域上分配的最小单位为一个资源栅格块REB,该方法包括:第一设备确定DMRS在该传输链路中的第一位置;当该第一设备设置有小区相关移位和/或符号相关移位时,该第一设备根据第一函数确定该DMRS在该传输链路上的第二位置,并将该DMRS映射至该第二位置上。

Description

一种处理解调参考信号的方法及设备 技术领域
本发明涉及通信技术领域,具体涉及一种处理解调参考信号的方法及设备。
背景技术
未来第五代(英文全称:The fifth Generation,缩写:5G)移动通信系统的应用场景不仅包含增强移动宽带业务场景,还包含大规模物联网连接、超低时延(英文全称:Ultra Low Latency,缩写:ULL)和超高可靠性传输场景。一般而言,在大规模物联网、ULL和超高可靠传输场景下,业务模型为小数据包,要求低时延传输。例如,远程抄表、工业控制等。
对于ULL业务传输,传统4G移动通信系统在时域上资源分配的最小单位为一个传输时间间隔(英文全称:Transmission Timing Interval,缩写:TTI),即1ms,该时延相对ULL业务传输而言较大。5G移动通信系统中的ULL业务传输时域资源分配的最小单位相应地需要变为短TTI,短TTI的最小单位为一个正交频分多址接入(英文全称:Orthogonal Frequency Division Multiple Access,缩写:OFDMA)或单载波频分多址接入(英文全称:Single Carrier Frequency Division Multiple Access,缩写:SC-FDMA)符号。同时,在频域上ULL业务占用一个OFDMA或一个SC-FDMA符号中的部分子载波,传统4G移动通信系统的上行链路,解调参考信号(英文全称:Demodulation Reference Signal,缩写:DMRS)位于一个子帧中间,占用一个SC-FDMA符号,例如:物理上行共享信道(英文全称:Physical Uplink Share Channel,缩写:PUSCH)对应的DMRS采用Zadoff-Chu序列,当子帧配置为普通循环前缀时,PUSCH对应的DMRS映射到每个时隙的第4个SC-FDMA符号上;当子帧配置为扩展循环前缀时,PUSCH对应的DMRS映射至每个时隙的第3个SC-FDMA符号上。因此,传统4G移动通信系统DMRS的映射方式不能降低上行传输时延。
发明内容
本发明实施例提供了一种处理解调参考信号的方法及设备,用于解决传统 4G移动通信系统DMRS的映射方式不能降低上行传输时延的问题。
本发明实施例的第一方面提供一种处理解调参考信号DMRS的方法,该方法应用于超低时延ULL业务数据的传输,该ULL业务数据在传输链路的时域上分配的最小单位为一个符号,该ULL业务数据在该传输链路的频域上分配的最小单位为一个资源栅格块(英文全称:Resource Element Block,缩写:REB),该REB包括业务数据资源栅格RE和DMRS RE,其中,该业务数据RE用于传输该ULL业务数据,该DMRS RE用于对该ULL业务数据进行信道估计和检测以及传输该ULL业务数据对应的DMRS,该方法包括:第一设备确定DMRS在该传输链路中的第一位置,其中,该第一位置为该DMRS映射至该传输链路对应的该DMRS RE上的初始位置;当该第一设备设置有小区相关移位和/或符号相关移位时,该第一设备根据第一函数确定该DMRS在该传输链路上的第二位置,并将该DMRS映射至该第二位置上。
可见,针对ULL业务数据,第一设备在其传输链路的时域上分配的最小单位是一个符号,在频域上分配的最小单位是一个REB,从而有效降低传输时延。另外,一个REB中包括业务数据RE和DMRS RE,其中,该DMRS RE用于对该ULL业务数据进行信道估计和检测以及传输该ULL业务数据对应的DMRS,当第一设备中设置有小区相关移位和/或符号相关移位时,第一设备根据第一函数将DMRS映射至对应的位置上,从而提高该ULL业务数据的解调,提升了无线资源的利用率。
结合本发明实施例的第一方面,在一些可能的实现方式中,该第一设备确定DMRS在该传输链路中的第一位置包括:该第一设备获取该ULL业务数据占用的资源;该第一设备根据该ULL业务数据占用的资源确定该DMRS在该传输链路中的第一位置。
在实际应用中,第一设备根据该ULL业务数据占用的资源确定该DMRS在传输链路中的第一位置,即:该第一位置为该DMRS映射至该传输链路对应的该DMRS RE上的初始位置。例如:每个REB中包括5个业务数据RE和1个DMRS RE,则第一设备根据该ULL业务数据占用的资源确定该DMRS对应的DMRS RE位置。
在另一些可能的实现方式中,该第一设备确定DMRS在该传输链路中的第 一位置之前,该第一设备确定第一DMRS基序列;该第一设备利用该第一DMRS基序列的自相关性和互相关性确定第二DMRS基序列;该第一设备将该第二DMRS基序列代入第二函数以确定该DMRS,其中,该DMRS用于映射至该DMRS RE中。
在实际应用中,第一设备按照4G移动通信系统中DMRS基序列的产生方式,得到一定长度的DMRS基序列,并根据所需的DMRS基序列长度从该DMRS基序列中截取,从而得到第一DMRS基序列,进一步,根据第一DMRS基序列的自相关性和互相关性确定该第二DMRS基序列,其中,一般将自相关值最大且互相关值最小的第一DMRS基序列确定为该第二DMRS基序列,其中,该第二DMRS基序列为该ULL业务数据可用的DMRS基序列。
在另一些可能的实现方式中,该第二位置用(k,s)表示,其中,k表示该DMRS在该传输链路的频域上占用的子载波位置,k由该第一设备预先设置,s表示该DMRS在该传输链路的时域上占用的符号位置,该第一函数表示为
Figure PCTCN2016076355-appb-000001
其中,
Figure PCTCN2016076355-appb-000002
表示该第一位置,m为REB的编号,
Figure PCTCN2016076355-appb-000003
表示该ULL业务数据对应的一个REB中包含的RE数;
Figure PCTCN2016076355-appb-000004
表示小区相关移位,
Figure PCTCN2016076355-appb-000005
表示小区标识PCI,
Figure PCTCN2016076355-appb-000006
表示符号相关移位,
Figure PCTCN2016076355-appb-000007
nsc表示该ULL业务数据占用的符号标识,NSC表示该ULL业务数据占用的总符号数。
在实际应用中,若第一设备配置了小区相关移位,则DMRS可根据物理小区标识进行移位,若第一设备配置了符号相关移位,则DMRS可根据ULL业务数据占用的符号进行移位,从而提高ULL业务数据的解调精确度。
在另一些可能的实现方式中,该第二函数表示
Figure PCTCN2016076355-appb-000008
,其中,
Figure PCTCN2016076355-appb-000009
表示该DMRS,α表示第二DMRS基序列可复用的数目,j表示复数,n表示该第二DMRS基序列的位置编号;
Figure PCTCN2016076355-appb-000010
表示该第二DMRS基序列, u表示组号,v表示组内编号,
Figure PCTCN2016076355-appb-000011
表示该第二DMRS基序列的长度。
在实际应用中,将第二DMRS基序列代入该第二函数中,则确定该DMRS,并将该DMRS映射至对应的传输链路的DMRS RE位置上,进而对DMRS RE对该ULL业务数据进行信道估计和检测以及传输该ULL业务数据对应的DMRS。
本发明实施例第二方面提供了一种第一设备,该第一设备用于传输超低时延ULL业务数据,该ULL业务数据在传输链路的时域上分配的最小单位为一个符号,该ULL业务数据在该传输链路的频域上分配的最小单位为一个资源栅格块REB,该REB包括业务数据资源栅格RE和DMRS RE,其中,该业务数据RE用于传输该ULL业务数据,该DMRS RE用于对该ULL业务数据进行信道估计和检测以及传输该ULL业务数据对应的DMRS,该第一设备包括:
确定模块,用于确定DMRS在该传输链路中的第一位置,其中,该第一位置为该DMRS映射至该传输链路对应的该DMRS RE上的初始位置;
该确定模块,还用于当该第一设备设置有小区相关移位和/或符号相关移位时,根据第一函数确定该DMRS在该传输链路上的第二位置;
处理模块,用于将该DMRS映射至该第二位置上。
可见,针对ULL业务数据,第一设备在其传输链路的时域上分配的最小单位是一个符号,在频域上分配的最小单位是一个REB,从而有效降低传输时延。另外,一个REB中包括业务数据RE和DMRS RE,其中,该DMRS RE用于对该ULL业务数据进行信道估计和检测以及传输该ULL业务数据对应的DMRS,当第一设备中设置有小区相关移位和/或符号相关移位时,处理模块根据第一函数将DMRS映射至对应的位置上,从而提高该ULL业务数据的解调,提升了无线资源的利用率。
结合本发明实施例的第一方面,在一些可能的实现方式中,该确定模块,具体用于获取该ULL业务数据占用的资源,并根据该ULL业务数据占用的资源确定该DMRS在该传输链路中的第一位置。
在实际应用中,确定模块根据该ULL业务数据占用的资源确定该DMRS在传输链路中的第一位置,即:该第一位置为该DMRS映射至该传输链路对应的该DMRS RE上的初始位置。例如:每个REB中包括5个业务数据RE和1个DMRS  RE,则确定模块根据该ULL业务数据占用的资源确定该DMRS对应的DMRS RE位置。
在另一些可能的实现方式中,该确定模块,还用于在确定DMRS在该传输链路中的第一位置之前,确定第一DMRS基序列,利用该第一DMRS基序列的自相关性和互相关性确定第二DMRS基序列,并将该第二DMRS基序列代入第二函数以确定该DMRS,其中,该DMRS用于映射至该DMRS RE中。
在实际应用中,确定模块按照4G移动通信系统中DMRS基序列的产生方式,得到一定长度的DMRS基序列,并根据所需的DMRS基序列长度从该DMRS基序列中截取,从而得到第一DMRS基序列,进一步,根据第一DMRS基序列的自相关性和互相关性确定该第二DMRS基序列,其中,一般将自相关值最大,且互相关值最小的第一DMRS基序列确定为该第二DMRS基序列,其中,该第二DMRS基序列为该ULL业务数据可用的DMRS基序列。
在另一些可能的实现方式中,该第二位置用(k,s)表示,其中,k表示该DMRS在该传输链路的频域上占用的子载波位置,k由该第一设备预先设置,s表示该DMRS在该传输链路的时域上占用的符号位置,该第一函数表示为
Figure PCTCN2016076355-appb-000012
其中,
Figure PCTCN2016076355-appb-000013
表示该第一位置,m为REB的编号,
Figure PCTCN2016076355-appb-000014
表示该ULL业务数据对应的一个REB中包含的RE数;
Figure PCTCN2016076355-appb-000015
表示小区相关移位,
Figure PCTCN2016076355-appb-000016
表示小区标识PCI,
Figure PCTCN2016076355-appb-000017
表示符号相关移位,
Figure PCTCN2016076355-appb-000018
nsc表示该ULL业务数据占用的符号标识,NSC表示该ULL业务数据占用的总符号数。
在另一些可能的实现方式中,该第二函数表示
Figure PCTCN2016076355-appb-000019
,其中,
Figure PCTCN2016076355-appb-000020
表示该DMRS,α表示第二DMRS基序列可复用的数目,j表示复数,n表示该第二DMRS基序列的位置编号;
Figure PCTCN2016076355-appb-000021
表示该第二DMRS基序列,u表示组号,v表示组内编号,
Figure PCTCN2016076355-appb-000022
表示该第二DMRS基序列的长度。
在实际应用中,若第一设备配置了小区相关移位,则DMRS可根据物理小区标识进行移位,若第一设备配置了符号相关移位,则DMRS可根据ULL业务数据占用的符号进行移位,从而提高ULL业务数据的解调精确度。
本发明实施例第三方面提供了一种第一设备,包括:一个或多个处理器、存储器、总线系统以及收发器,该处理器、该存储器和该收发器通过该总线 系统相连;其中,该存储器中存储一个或多个程序,该一个或多个程序包括指令,该指令当被该第一设备执行时使所述第一设备执行如第一方面或者第一方面任一可能的实现方式所述的方法。
可见,针对ULL业务数据,第一设备在其传输链路的时域上分配的最小单位是一个符号,在频域上分配的最小单位是一个REB,从而有效降低传输时延。另外,一个REB中包括业务数据RE和DMRS RE,其中,该DMRS RE用于对该ULL业务数据进行信道估计和检测以及传输该ULL业务数据对应的DMRS,当第一设备中设置有小区相关移位和/或符号相关移位时,第一设备根据第一函数将DMRS映射至对应的位置上,从而提高该ULL业务数据的解调,提升了无线资源的利用率。
附图说明
图1为本发明实施例中处理DMRS的方法的一个实施例示意图;
图2为本发明实施例中ULL业务资源分配的结构示意图;
图3-a为本发明实施例中DMRS占用位置的结构示意图;
图3-b为本发明实施例中DMRS占用位置映射的一个结构示意图;
图3-c为本发明实施例中DMRS占用位置映射的另一个结构示意图;
图3-d为本发明实施例中DMRS占用位置映射的另一个结构示意图;
图4为本发明实施例中第一设备的一个结构示意图;
图5为本发明实施例中第一设备的另一个结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术 语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本发明的技术方案,可以应用于各种通信系统,例如:全球移动通信系统(英文全称:Global System for Mobile Communication,缩写:GSM),码分多址(英文全称:CodeDivision Multiple Access,缩写:CDMA)系统,宽带码分多址(英文全称:Wideband Code DivisionMultiple Access Wireless,缩写:WCDMA),通用分组无线业务(英文全称:General Packet Radio Service,缩写:GPRS),长期演进(英文全称:Long Term Evolution,缩写:LTE)等。
第一设备为基站,其中,基站可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(eNB或e-NodeB,evolutionalNode B),本发明并不限定。
或者,第一设备为移动管理网元,其中,移动管理网元可以是与演进通用移动通信系统(英文全称:Universal Mobile Telecommunications System,缩写:UMTS)陆地无线接入网(英文全称:Evolved UMTS Territorial Radio Access Network,缩写:E-UTRAN)连接的移动管理实体(英文全称:Mobile Managenment Entity,缩写:MME)、与UMTS陆地无线接入网(英文全称:UMTS Territorial Radio Access Network,缩写:UTRAN)/GSM EDGE无线接入网(英文全称:GSM EDGE Radio Access Network,缩写:GERAN)连接的通用分组无线业务服务节点(Serving GPRS(General Packet Radio Service)Support Node);或非3GPP网络中的接入网关(英文全称:Access Gateway,缩写:AGW)、无线局域网(英文全称:Wireless Local Area Network,缩写:WLAN)中具有演进分组数据网关(英文全称:Evolved Packet Data Gateway,缩写:EPDG)移动管理逻辑功能的实体、微波存取全球互通(英文全称:Worldwide Interoperability for Microwave Access,缩写:WiMAX)网络中的接入服务网络网关(英文全称:Access Service Network Gateway,缩写:ASN GW)、或宽带码分多址接入(英文全称:Code Division Multiple Access,缩写: CDMA)网络中具有高速率分组数据接入网(英文全称:High Rate Packet Data Access Network,缩写:HRPD-AN)接入移动管理逻辑功能的实体、或其它网络中实现用户设备移动管理逻辑功能的实体。
在介绍本发明实施例之前,先介绍一下本发明所应用的场景,针对ULL业务传输,传统4G移动通信系统在时域上资源分配的最小单位为一个TTI,即1ms,该时延相对ULL业务传输而言较大。5G移动通信系统中的ULL业务传输时域资源分配的最小单位相应地需要变为短TTI,短TTI的最小单位为一个OFDMA或SC-FDMA符号。同时,在频域上ULL业务占用一个OFDMA或一个SC-FDMA符号中的部分子载波,在传统4G移动通信系统的上行链路中,DMRS位于一个子帧中间,占用一个SC-FDMA符号,例如:PUSCH对应的DMRS采用Zadoff-Chu序列,当子帧配置为普通循环前缀时,PUSCH对应的DMRS映射到每个时隙的第4个SC-FDMA符号上;当子帧配置为扩展循环前缀时,PUSCH对应的DMRS映射至每个时隙的第3个SC-FDMA符号上。因此,传统4G移动通信系统DMRS的映射方式不能降低上行传输时延。
在未来5G移动通信系统中,针对ULL业务数据传输时,可在系统频带内划分一块或多块独立的区域作为ULL业务专用区域,ULL业务数据在时域资源分配的最小单位为一个SC-FDMA符号,频域资源分配的最小单位为一个REB。一个REB包含业务数据RE和DMRS RE,其中,业务数据RE用于传输ULL业务数据;DMRS RE用于传输ULL业务数据以及相对应的DMRS,以及对ULL业务数据进行信道估计和检测。如此,ULL业务专用区域内的SC-FDMA符号可划分为多个REB,而传统4G移动通信系统内的PUSCH、物理上行控制信道(英文全称:Physical Uplink Control Channel,缩写:PUCCH)、物理随机接入信道(英文全称:Physical Random Access Channel,缩写:PRACH)、DMRS和探测参考信号(英文全称:Sounding Reference Signal,缩写:SRS)保持不变。根据ULL业务对时延要求的不同,一个ULL业务可能在时域或频域上占用若干个REB,ULL业务资源分配时遵循先频域后时域的原则。
请参阅图1,本发明实施例中处理DMRS的方法的一个实施例示意图,其中,该方法应用于超低时延ULL业务数据的传输,该ULL业务数据在传输链路的时域上分配的最小单位为一个符号,该ULL业务数据在所述传输链路的频域上分配 的最小单位为一个资源栅格块REB,该REB包括业务数据资源栅格RE和DMRS RE,其中,该业务数据RE用于传输所述ULL业务数据,该DMRS RE用于对所述ULL业务数据进行信道估计和检测以及传输该ULL业务数据对应的DMRS,该实施例的具体流程如下步骤:
步骤101、第一设备确定第一DMRS基序列。
在实际应用中,第一设备按照4G移动通信中DMRS基序列的产生方式确定第一DMRS基序列,
Figure PCTCN2016076355-appb-000023
其中,
Figure PCTCN2016076355-appb-000024
表示第一DMRS基序列的长度,m表示所述第一设备在所述传输链路上分配的资源块RB数目,
Figure PCTCN2016076355-appb-000025
表示每个RB包含的子载波数,
Figure PCTCN2016076355-appb-000026
表示传输链路上包含的最大RB数。
其中,当第一DMRS基序列的长度大于
Figure PCTCN2016076355-appb-000027
时,第一DMRS基序列的产生公式为:
Figure PCTCN2016076355-appb-000028
其中,
Figure PCTCN2016076355-appb-000029
表示所述第一DMRS基序列,
Figure PCTCN2016076355-appb-000030
表示Zadoff-Chu序列的长度,n'为第一DMRS基序列的位置编号,xq表示第q个Zadoff-Chu序列,xq的定义为:
Figure PCTCN2016076355-appb-000031
其中,q的定义为:
Figure PCTCN2016076355-appb-000032
当第一DMRS基序列的长度小于
Figure PCTCN2016076355-appb-000033
时,第一DMRS基序列的产生公式为:
Figure PCTCN2016076355-appb-000034
其中,φ(n')由表一和表二所示:
Figure PCTCN2016076355-appb-000035
表一(
Figure PCTCN2016076355-appb-000036
时φ(n'))
Figure PCTCN2016076355-appb-000037
表二(
Figure PCTCN2016076355-appb-000038
时φ(n'))
在传统4G移动通信系统中,第一DMRS基序列的长度为一个RB子载波数的整数倍,以普通子帧为例,第一DMRS基序列的长度均为一个RB子载波数12的整数倍。假设在5G移动通信系统中,ULL业务数据的第二DMRS基序列需要的长度为6, 可按照4G移动通信系统中DMRS基序列的产生方式,得到长度为
Figure PCTCN2016076355-appb-000039
的第一DMRS基序列,如表1和表二所示,进一步,截取该第一DMRS基序列组中任意6位作为ULL业务数据对应的可用第一DMRS基序列。
步骤102、第一设备利用所述第一DMRS基序列的自相关性和互相关性确定第二DMRS基序列。
其中,ULL业务数据DMRS基序列间的相关性如表三所示:
[根据细则26改正29.04.2016] 
Figure WO-DOC-TABLE-3
表三
在实际应用中,选择自相关值最大且互相关值最小的可用第一DMRS基序列作为ULL业务数据对应的第二DMRS基序列。
在一些可能的实现方式中,为了兼容现有的4G移动通信系统,保留第二DMRS基序列的组号不变。可见,当ULL业务数据DMRS基序列的长度为6时,可用第二DMRS基序列的组号不包含3、4、14、20、23。
可见,ULL业务数据对应的第二DMRS基序列的产生方式为:首先,根据现有4G移动通信系统中传输链路对应DMRS基序列产生的方式生成第一DMRS基序列,要求传输链路对应的第一DMRS基序列的长度不小于ULL业务对应DMRS基序 列需求的长度,且为每个RB中包含子载波数的整数倍;其次,从生成的第一DMRS基序列中截取ULL业务对应DMRS基序列需求的长度得到可用第一DMRS基序列;再次,计算裁剪后得的可用第一DMRS基序列中各基序列之间的自相关性和互相关性;然后,选择自相关值最大且互相关值最小的可用第一DMRS基序列作为ULL业务对应的第二DMRS基序列;最后,保持第二DMRS基序列的组号不变,以兼容现有4G移动通信系统。
步骤103、第一设备将所述第二DMRS基序列代入第二函数以确定所述DMRS。
其中,所述DMRS用于映射至所述DMRS RE中,其中,所述第二函数表示为
Figure PCTCN2016076355-appb-000041
其中,
Figure PCTCN2016076355-appb-000042
表示所述DMRS,α表示第二DMRS基序列可复用的数目,j表示复数,n表示所述第二DMRS基序列的位置编号;
Figure PCTCN2016076355-appb-000043
表示所述第二DMRS基序列,u表示组号,v表示组内编号,
Figure PCTCN2016076355-appb-000044
表示所述第二DMRS基序列的长度。
步骤104、第一设备确定DMRS在所述传输链路中的第一位置。
其中,所述第一位置为所述DMRS映射至所述传输链路对应的所述DMRS RE上的初始位置。
在实际应用中,所述第一设备确定DMRS在所述传输链路中的第一位置包括:所述第一设备获取所述ULL业务数据占用的资源;所述第一设备根据所述ULL业务数据占用的资源确定所述DMRS在所述传输链路中的第一位置。
步骤105、第一设备确定是否设置有小区相关移位和/或符号相关移位,若是,则执行步骤106,若否,则结束流程。
在实际应用中,ULL业务数据对应的DMRS映射的过程:根据调度信息决定的ULL业务数据占用资源得到DMRS RE的初始位置,若基站配置了小区相关移位,则DMRS占用的RE可根据物理层小区标识(英文全称:Physical Layer Cell Identity,缩写:PCI)进行移位;若基站配置了符号相关移位,则DMRS占用RE可根据UE占用的符号进行移位;若基站同时配置了小区和符号相关移位,则DMRS占用RE可根据PCI和UE占用的符号进行移位。
步骤106、第一设备根据第一函数确定所述DMRS在所述传输链路上的第二位置,并将所述DMRS映射至所述第二位置上。
其中,所述第二位置用(k,s)表示,其中,k表示所述DMRS在所述传输链路的频域上占用的子载波位置,k由所述第一设备预先设置,s表示所述DMRS在所述传输链路的时域上占用的符号位置,所述第一函数表示为
Figure PCTCN2016076355-appb-000045
其中,
Figure PCTCN2016076355-appb-000046
表示所述第一位置,m为REB的编号,
Figure PCTCN2016076355-appb-000047
表示所述ULL业务数据对应的一个REB中包含的RE数;
Figure PCTCN2016076355-appb-000048
表示小区相关移位,
Figure PCTCN2016076355-appb-000049
表示小区标识PCI,
Figure PCTCN2016076355-appb-000050
表示符号相关移位,
Figure PCTCN2016076355-appb-000051
nsc表示所述ULL业务数据占用的符号标识,NSC表示所述ULL业务数据占用的总符号数。
以4G移动通信系统上行链路为例,假设上行子帧为普通循环前缀,PUCCH格式为1/1a/1b。在系统频带内分配一块或多块独立的区域作为ULL业务数据的专用区域。频域上将一个SC-FDMA符号划分为多个REB,假设每个REB有6个RE,其中包含1个DMRS RE,5个业务数据RE,则上行链路一个子帧的资源分配情况如图2所示。
从图2中可以看出,PUSCH对应的DMRS开销约为14%((1个PRB中的DMRS RE数)/84(1个PRB中的RE数12*7)*100%),ULL业务区域内DMRS的开销约为17%(2*7(1个PRB中的DMRS RE数)/84*100%),ULL业务区域内的DMRS开销接近PUSCH,不会带来明显的系统性能降低。
以ULL业务区域内一个PRB组为例,假设REB的长度为6个RE,其中DMRS RE占用每个REB的第一个RE,则默认情况下,DMRS占用的第一位置示意如图3-a所示。
若ULL业务数据DMRS映射时,基站配置小区相关移位,假设存在3个小区,小区PCI分别为0、2、4,则第一设备将DMRS占用的RE映射至第二位置,如图3-b所示;若ULL业务数据DMRS映射时,基站配置符号相关移位,ULL业务占用3个符号,则第一设备将DMRS占用的RE映射至第二位置如图3-c所示;若ULL业务数 据DMRS映射时,基站同时配置小区和符号相关移位,假设存在2个小区,小区PCI分别为0,4,每个小区ULL业务占用3个符号,则第一设备将DMRS占用的RE映射至第二位置如图3-d所示。
可见,未来5G移动通信系统的ULL业务上行传输时,第一设备可配置DMRS根据小区PCI进行移位,从而可以有效避免相邻小区DMRS之间的干扰,第一设备统也可配置DMRS根据ULL占用符号数进行移位,从而可以提高信道估计精确度,提升检测性能,不仅如此,ULL业务资源分配和DMRS基序列产生方式可兼容传统4G移动通信系统。
为便于更好的实施本发明实施例的上述相关方法,下面还提供用于配合上述方法的相关装置。
请参阅图4,本发明实施例中第一设备400的一个结构示意图,所述第一设备400用于传输超低时延ULL业务数据,所述ULL业务数据在传输链路的时域上分配的最小单位为一个符号,所述ULL业务数据在所述传输链路的频域上分配的最小单位为一个资源栅格块REB,所述REB包括业务数据资源栅格RE和DMRS RE,其中,所述业务数据RE用于传输所述ULL业务数据,所述DMRS RE用于对所述ULL业务数据进行信道估计和检测以及传输所述ULL业务数据对应的DMRS,所述第一设备400包括:确定模块401和处理模块402。
确定模块401,用于确定DMRS在所述传输链路中的第一位置,其中,所述第一位置为所述DMRS映射至所述传输链路对应的所述DMRS RE上的初始位置;
在一些可能的实现方式中,所述确定模块401,具体用于获取所述ULL业务数据占用的资源,并根据所述ULL业务数据占用的资源确定所述DMRS在所述传输链路中的第一位置。
在另一些可能的实现方式中,所述确定模块401,还用于在确定DMRS在所述传输链路中的第一位置之前,确定第一DMRS基序列,利用所述第一DMRS基序列的自相关性和互相关性确定第二DMRS基序列,并将所述第二DMRS基序列代入第二函数以确定所述DMRS,其中,所述DMRS用于映射至所述DMRS RE中。
其中,所述第二函数表示为
Figure PCTCN2016076355-appb-000052
其中,
Figure PCTCN2016076355-appb-000053
表示所述DMRS,α表示第二DMRS基序列可复用的数目,j表示复数,n表示所述第二DMRS基序列的位置编号;
Figure PCTCN2016076355-appb-000054
表示所述第二DMRS基序列,u表示组号,v表示组内编号,
Figure PCTCN2016076355-appb-000055
表示所述第二DMRS基序列的长度。
所述确定模块401,还用于当所述第一设备设置有小区相关移位和/或符号相关移位时,根据第一函数确定所述DMRS在所述传输链路上的第二位置;
其中,所述第二位置用(k,s)表示,其中,k表示所述DMRS在所述传输链路的频域上占用的子载波位置,k由所述第一设备预先设置,s表示所述DMRS在所述传输链路的时域上占用的符号位置,所述第一函数表示为
Figure PCTCN2016076355-appb-000056
其中,
Figure PCTCN2016076355-appb-000057
表示所述第一位置,m为REB的编号,
Figure PCTCN2016076355-appb-000058
表示所述ULL业务数据对应的一个REB中包含的RE数;
Figure PCTCN2016076355-appb-000059
表示小区相关移位,
Figure PCTCN2016076355-appb-000060
表示小区标识PCI,
Figure PCTCN2016076355-appb-000061
表示符号相关移位,
Figure PCTCN2016076355-appb-000062
nsc表示所述ULL业务数据占用的符号标识,NSC表示所述ULL业务数据占用的总符号数。
处理模块402,用于将所述DMRS映射至所述第二位置上。
可见,针对ULL业务数据,第一设备在其传输链路的时域上分配的最小单位是一个符号,在频域上分配的最小单位是一个REB,从而有效降低传输时延。另外,一个REB中包括业务数据RE和DMRS RE,其中,该DMRS RE用于对该ULL业务数据进行信道估计和检测以及传输该ULL业务数据对应的DMRS,当第一设备中设置有小区相关移位和/或符号相关移位时,处理模块根据第一函数将DMRS映射至对应的位置上,从而提高该ULL业务数据的解调,提升了无线资源的利用率。
一种可能的实现方式,确定模块401和处理模块402可以是软件模块,可以在计算机系统的处理器中执行,也可以是特定的集成电路。
图4所示的实施例从功能模块的角度对第一设备的具体结构进行了说明,以下结合图5的实施例从硬件角度对第一设备的具体结构进行说明:
请参阅图5,本发明实施例中第一设备500的另一个结构示意图,该第一设备500包括一个或多个处理器501、存储器502、总线系统503以及收发器504,所述处理器501、所述存储器502和所述收发器504通过所述总线系统503相连其中,所述存储器502中存储一个或多个程序505,所述一个或多个程序505包括 指令,所述指令当被所述第一设备500执行时使所述第一设备500执行如图1实施例中所示的方法。
需要说明的是,该处理器501可以是CPU,该处理器501还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器,或者该处理器也可以是任何常规的处理器等。在实现过程中,第一设备访问该主设备的硬盘数据的步骤可以通过处理器501中的硬件的集成逻辑电路或者软件形式的指令完成,可以是直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器502,处理器501读取存储器502中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
需要说明的是,图5所示的第一设备可对应于本发明实施例中的处理DMRS的方法中的第一设备,并且第一设备中的各个单元的上述和其它操作和/或功能分别为了实现图3所示方法的相应流程,为了简洁,在此不再赘述。
综上,针对ULL业务数据,第一设备在其传输链路的时域上分配的最小单位是一个符号,在频域上分配的最小单位是一个REB,从而有效降低传输时延。另外,一个REB中包括业务数据RE和DMRS RE,其中,该DMRS RE用于对该ULL业务数据进行信道估计和检测以及传输该ULL业务数据对应的DMRS,当第一设备中设置有小区相关移位和/或符号相关移位时,第一设备根据第一函数将DMRS映射至对应的位置上,从而提高该ULL业务数据的解调,提升了无线资源的利用率。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的便携式电子设备,计算机可读存储介质和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方 法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例提供的技术方案。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上对本发明所提供的一种处理解调参考信号的方法及设备进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本发明的限制。

Claims (11)

  1. 一种处理解调参考信号DMRS的方法,其特征在于,所述方法应用于超低时延ULL业务数据的传输,所述ULL业务数据在传输链路的时域上分配的最小单位为一个符号,所述ULL业务数据在所述传输链路的频域上分配的最小单位为一个资源栅格块REB,所述REB包括业务数据资源栅格RE和DMRS RE,其中,所述业务数据RE用于传输所述ULL业务数据,所述DMRS RE用于对所述ULL业务数据进行信道估计和检测以及传输所述ULL业务数据对应的DMRS,所述方法包括:
    第一设备确定DMRS在所述传输链路中的第一位置,其中,所述第一位置为所述DMRS映射至所述传输链路对应的所述DMRS RE上的初始位置;
    当所述第一设备设置有小区相关移位和/或符号相关移位时,所述第一设备根据第一函数确定所述DMRS在所述传输链路上的第二位置,并将所述DMRS映射至所述第二位置上。
  2. 根据权利要求1所述的方法,其特征在于,所述第一设备确定DMRS在所述传输链路中的第一位置包括:
    所述第一设备获取所述ULL业务数据占用的资源;
    所述第一设备根据所述ULL业务数据占用的资源确定所述DMRS在所述传输链路中的第一位置。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一设备确定DMRS在所述传输链路中的第一位置之前,所述方法还包括:
    所述第一设备确定第一DMRS基序列;
    所述第一设备利用所述第一DMRS基序列的自相关性和互相关性确定第二DMRS基序列;
    所述第一设备将所述第二DMRS基序列代入第二函数以确定所述DMRS,其中,所述DMRS用于映射至所述DMRS RE中。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述第二位置用(k,s)表示,其中,k表示所述DMRS在所述传输链路的频域上占用的子载波位置,k由所述第一设备预先设置,s表示所述DMRS在所述传输链路的时域上占用的 符号位置,所述第一函数表示为
    Figure PCTCN2016076355-appb-100001
    其中,
    Figure PCTCN2016076355-appb-100002
    表示所述第一位置,m为REB的编号,
    Figure PCTCN2016076355-appb-100003
    表示所述ULL业务数据对应的一个REB中包含的RE数;
    Figure PCTCN2016076355-appb-100004
    表示小区相关移位,
    Figure PCTCN2016076355-appb-100005
    表示小区标识PCI,
    Figure PCTCN2016076355-appb-100006
    表示符号相关移位,
    Figure PCTCN2016076355-appb-100007
    nsc表示所述ULL业务数据占用的符号标识,NSC表示所述ULL业务数据占用的总符号数。
  5. 根据权利要求3或4所述的方法,其特征在于,所述第二函数表示为
    Figure PCTCN2016076355-appb-100008
    其中,
    Figure PCTCN2016076355-appb-100009
    表示所述DMRS,α表示第二DMRS基序列可复用的数目,j表示复数,n表示所述第二DMRS基序列的位置编号;
    Figure PCTCN2016076355-appb-100010
    表示所述第二DMRS基序列,u表示组号,v表示组内编号,
    Figure PCTCN2016076355-appb-100011
    表示所述第二DMRS基序列的长度。
  6. 一种第一设备,其特征在于,所述第一设备用于传输超低时延ULL业务数据,所述ULL业务数据在传输链路的时域上分配的最小单位为一个符号,所述ULL业务数据在所述传输链路的频域上分配的最小单位为一个资源栅格块REB,所述REB包括业务数据资源栅格RE和DMRS RE,其中,所述业务数据RE用于传输所述ULL业务数据,所述DMRS RE用于对所述ULL业务数据进行信道估计和检测以及传输所述ULL业务数据对应的DMRS,所述第一设备包括:
    确定模块,用于确定DMRS在所述传输链路中的第一位置,其中,所述第一位置为所述DMRS映射至所述传输链路对应的所述DMRS RE上的初始位置;
    所述确定模块,还用于当所述第一设备设置有小区相关移位和/或符号相关移位时,根据第一函数确定所述DMRS在所述传输链路上的第二位置;
    处理模块,用于将所述DMRS映射至所述第二位置上。
  7. 根据权利要求6所述的第一设备,其特征在于,所述确定模块,具体用于获取所述ULL业务数据占用的资源,并根据所述ULL业务数据占用的资源确定所述DMRS在所述传输链路中的第一位置。
  8. 根据权利要求6或7所述的第一设备,其特征在于,所述确定模块,还用于在确定DMRS在所述传输链路中的第一位置之前,确定第一DMRS基序列, 利用所述第一DMRS基序列的自相关性和互相关性确定第二DMRS基序列,并将所述第二DMRS基序列代入第二函数以确定所述DMRS,其中,所述DMRS用于映射至所述DMRS RE中。
  9. 根据权利要求6至8任一项所述的第一设备,其特征在于,所述第二位置用(k,s)表示,其中,k表示所述DMRS在所述传输链路的频域上占用的子载波位置,k由所述第一设备预先设置,s表示所述DMRS在所述传输链路的时域上占用的符号位置,所述第一函数表示为
    Figure PCTCN2016076355-appb-100012
    其中,
    Figure PCTCN2016076355-appb-100013
    表示所述第一位置,m为REB的编号,
    Figure PCTCN2016076355-appb-100014
    表示所述ULL业务数据对应的一个REB中包含的RE数;
    Figure PCTCN2016076355-appb-100015
    表示小区相关移位,
    Figure PCTCN2016076355-appb-100016
    Figure PCTCN2016076355-appb-100017
    表示小区标识PCI,
    Figure PCTCN2016076355-appb-100018
    表示符号相关移位,
    Figure PCTCN2016076355-appb-100019
    nsc表示所述ULL业务数据占用的符号标识,NSC表示所述ULL业务数据占用的总符号数。
  10. 根据权利要求8或9所述的第一设备,其特征在于,所述第二函数表示为
    Figure PCTCN2016076355-appb-100020
    其中,
    Figure PCTCN2016076355-appb-100021
    表示所述DMRS,α表示第二DMRS基序列可复用的数目,j表示复数,n表示所述第二DMRS基序列的位置编号;
    Figure PCTCN2016076355-appb-100022
    表示所述第二DMRS基序列,u表示组号,v表示组内编号,
    Figure PCTCN2016076355-appb-100023
    表示所述第二DMRS基序列的长度。
  11. 一种第一设备,其特征在于,包括:
    一个或多个处理器、存储器、总线系统以及收发器,所述处理器、所述存储器和所述收发器通过所述总线系统相连;
    其中,所述存储器中存储一个或多个程序,所述一个或多个程序包括指令,所述指令当被所述第一设备执行时使所述第一设备执行如权利要求1至5任一项所述的方法。
PCT/CN2016/076355 2016-03-15 2016-03-15 一种处理解调参考信号的方法及设备 WO2017156703A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680080939.0A CN108605318B (zh) 2016-03-15 2016-03-15 一种处理解调参考信号的方法及设备
PCT/CN2016/076355 WO2017156703A1 (zh) 2016-03-15 2016-03-15 一种处理解调参考信号的方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/076355 WO2017156703A1 (zh) 2016-03-15 2016-03-15 一种处理解调参考信号的方法及设备

Publications (1)

Publication Number Publication Date
WO2017156703A1 true WO2017156703A1 (zh) 2017-09-21

Family

ID=59850574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076355 WO2017156703A1 (zh) 2016-03-15 2016-03-15 一种处理解调参考信号的方法及设备

Country Status (2)

Country Link
CN (1) CN108605318B (zh)
WO (1) WO2017156703A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014113546A1 (en) * 2013-01-16 2014-07-24 Interdigital Patent Holdings, Inc. Improved uplink spectrum efficiency
WO2015021317A1 (en) * 2013-08-08 2015-02-12 Intel Corporation User equipment and method for packet based device-to-device (d2d) discovery in an lte network
CN104919737A (zh) * 2013-01-18 2015-09-16 高通股份有限公司 长期演进(lte)中的基于内插的信道状态信息(csi)增强
WO2015142139A1 (en) * 2014-03-21 2015-09-24 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving reference signal in device-to-device communication

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931437A (zh) * 2009-06-19 2010-12-29 松下电器产业株式会社 无线通信系统中的解调参考信号设置方法及装置
CN101741462B (zh) * 2009-12-14 2014-03-12 中兴通讯股份有限公司 解调参考信号动态循环移位参数的处理方法
CN103095637A (zh) * 2012-12-18 2013-05-08 李文龙 一种解调参考信号传输的方法和系统
US9197385B2 (en) * 2013-03-28 2015-11-24 Sharp Laboratories Of America, Inc. Systems and methods for demodulation reference signal selection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014113546A1 (en) * 2013-01-16 2014-07-24 Interdigital Patent Holdings, Inc. Improved uplink spectrum efficiency
CN104919737A (zh) * 2013-01-18 2015-09-16 高通股份有限公司 长期演进(lte)中的基于内插的信道状态信息(csi)增强
WO2015021317A1 (en) * 2013-08-08 2015-02-12 Intel Corporation User equipment and method for packet based device-to-device (d2d) discovery in an lte network
WO2015142139A1 (en) * 2014-03-21 2015-09-24 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving reference signal in device-to-device communication

Also Published As

Publication number Publication date
CN108605318A (zh) 2018-09-28
CN108605318B (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
US11665656B2 (en) Information transmission method and information transmission apparatus
WO2022068836A1 (zh) 定位参考信号的传输方法及装置、存储介质、终端
US8401111B2 (en) Method and apparatus for sequencing and correlating a positioning reference signal
TWI751294B (zh) 傳輸訊號的方法、終端設備和網路設備
EP3493501B1 (en) Signal sending method, network device and terminal device
WO2019080120A1 (zh) 无线通信方法和设备
JP2022179624A (ja) 検出ウィンドウ指示方法及び装置
WO2019024756A1 (zh) 通信方法、网络设备和中继设备
WO2020221173A1 (zh) 一种通信方法与终端装置
TW201931879A (zh) 車聯網中用於傳輸數據的方法、終端設備和網路設備
TW201919360A (zh) 傳輸訊息的方法和設備
TWI746549B (zh) 訊號傳輸的方法、網路設備和終端設備
JP2021503210A (ja) リソース構成方法、端末装置及びネットワーク装置
RU2742601C1 (ru) Способ осуществления беспроводной связи, сетевое устройство и терминальное устройство
EP3444996B1 (en) Signal transmission method and device
WO2018228181A1 (zh) 一种pbch专属解调参考信号传输方法及装置
WO2018126968A1 (zh) 一种信号发送、接收方法及装置
US20220077954A1 (en) Method and apparatus for dummy sequence insertion in data modulation
CN113411176B (zh) Pdsch解资源映射方法及装置、计算机可读存储介质、基带芯片
WO2017156703A1 (zh) 一种处理解调参考信号的方法及设备
CN110890946A (zh) 解调参考信号的传输方法、网络侧设备及用户设备
WO2018120172A1 (zh) 用于传输信号的方法和网络设备
WO2020088080A1 (zh) 传输参考信号的方法与设备
TWI744426B (zh) 用於解調共用參考訊號的方法、終端設備和網路設備
WO2018053752A1 (zh) 传输系统信息的方法、网络设备和终端设备

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893868

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16893868

Country of ref document: EP

Kind code of ref document: A1