WO2017156478A1 - Performance system for skiers or the like - Google Patents

Performance system for skiers or the like Download PDF

Info

Publication number
WO2017156478A1
WO2017156478A1 PCT/US2017/021944 US2017021944W WO2017156478A1 WO 2017156478 A1 WO2017156478 A1 WO 2017156478A1 US 2017021944 W US2017021944 W US 2017021944W WO 2017156478 A1 WO2017156478 A1 WO 2017156478A1
Authority
WO
WIPO (PCT)
Prior art keywords
leg
user
shock absorber
lower leg
contacting portion
Prior art date
Application number
PCT/US2017/021944
Other languages
French (fr)
Inventor
Mark R. STEWART
JAN Christian ANDERSEN
Michael Landis
Original Assignee
No Impact Performance LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by No Impact Performance LLC filed Critical No Impact Performance LLC
Publication of WO2017156478A1 publication Critical patent/WO2017156478A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0006Exoskeletons, i.e. resembling a human figure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6829Foot or ankle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6895Sport equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/01Orthopaedic devices, e.g. splints, casts or braces
    • A61F5/0102Orthopaedic devices, e.g. splints, casts or braces specially adapted for correcting deformities of the limbs or for supporting them; Ortheses, e.g. with articulations
    • A61F5/0123Orthopaedic devices, e.g. splints, casts or braces specially adapted for correcting deformities of the limbs or for supporting them; Ortheses, e.g. with articulations for the knees
    • A61F5/0125Orthopaedic devices, e.g. splints, casts or braces specially adapted for correcting deformities of the limbs or for supporting them; Ortheses, e.g. with articulations for the knees the device articulating around a single pivot-point
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/10Athletes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1121Determining geometric values, e.g. centre of rotation or angular range of movement
    • A61B5/1122Determining geometric values, e.g. centre of rotation or angular range of movement of movement trajectories
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/01Orthopaedic devices, e.g. splints, casts or braces
    • A61F5/0102Orthopaedic devices, e.g. splints, casts or braces specially adapted for correcting deformities of the limbs or for supporting them; Ortheses, e.g. with articulations
    • A61F2005/0132Additional features of the articulation
    • A61F2005/0169Additional features of the articulation with damping means
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C11/00Accessories for skiing or snowboarding

Definitions

  • the described embodiments relate generally to a performance system for skiers or the like. More particularly, the present embodiments relate to a performance system for absorbing pressure of a skier, snowboarder or the like and transferring the force to the boots and/or skis (or snowboard).
  • the performance systems of the disclosure reduce leg muscle fatigue and knee pain of skier s/snowboarders.
  • the performance system attaches to a leg and boot of a user. As a user's knees bend through skiing/snowboarding movements, creating additional strain on the user's legs, and the performance system includes a resistance assembly that absorbs part of that pressure on a user's legs and drives the resistance force down to user's boots, acting like a shock absorber. This function also allows the skis or snowboard to keep closer contact with the snow, giving the skier/snowboarder more control through turns.
  • the performance system includes removably fixable leg straps, upper and lower adjustable leg shafts, a resistance assembly with a shock absorber and a variable resistance adjuster, a boot attachment, and an activator switch.
  • the variable resistance adjuster allows an individual to set the system to various levels of resistance.
  • the performance system can also feature built-in performance tracking technology the can measure and store a user's performance output, such as average speeds, number of turns, distance and more.
  • the performance system can also have a built-in avalanche beacon or transmitter.
  • FIG. 1 shows a side view of a performance system in accordance with embodiments of the disclosure.
  • FIG. 2 shows a view of the performance system of FIG. 1 with leg straps in an open orientation, in accordance with embodiments of the disclosure.
  • FIG. 3 shows the adjustable leg shafts, the resistance assembly and boot attachment of the performance system of FIG. 1 , in accordance with embodiments of the disclosure.
  • FIG. 4 is a view illustrating the performance system of FIG. 1 as at to a user's leg and boot, in accordance with embodiments of the disclosure.
  • FIG. 5 is a view illustrating a user (i.e. skier) utilizing the performance system of FIG. 1, in accordance with embodiments of the disclosure.
  • FIG. 6 is an example leg stabilization system, according to an embodiment.
  • FIG. 7 is an example leg stabilization system, according to an embodiment.
  • FIG. 8 is an example boot coupling system, according to an embodiment.
  • the following disclosure relates to a lightweight performance system for skiing or snowboarding that supplements the power of the leg muscles, thereby reducing muscle fatigue and knee pain by absorbing resistance and transfen-ing to the a users boots and/or skis (or snowboard).
  • the performance system shifts the body weight of a skier from a skier's legs to the boots and/or skis for enhancing the skier's performance and minimizing leg strain.
  • the performance system can also be utilized by snowboarders or the like.
  • the performance system includes removably fixable leg straps, upper and lower adjustable leg shafts, a resistance assembly with a shock absorber and a variable resistance adjuster, a boot attachment, and an activator switch.
  • FIG. 1 illustrates a performance system 100 comprising an attachment assembly 110 including a pair of removably fixable leg straps 1 12, and 1 14, a pair of adjustable leg shafts 120 and 130, a resistance assembly 140 including a shock absorber 142 and a variable resistance adjuster 144, a boot attachment 150, and an activator switch or clip 160.
  • an attachment assembly 110 including a pair of removably fixable leg straps 1 12, and 1 14, a pair of adjustable leg shafts 120 and 130, a resistance assembly 140 including a shock absorber 142 and a variable resistance adjuster 144, a boot attachment 150, and an activator switch or clip 160.
  • the attachment assembly 1 10 includes a pair of removably fixable leg straps 1 12 and 114.
  • the removably fixable leg straps 1 12 and 1 14 can be used for securing the performance system 100 to the leg of a user.
  • the removably fixable leg strap 1 12 can be used to secure the system 100 to the user's leg above the knee and removably fixable leg strap 1 14 can be used to secure the system 100 to the user's leg below the knee.
  • removably fixable leg strap 1 12 can be used to secure the system 100 to the user's thigh and removably fixable leg strap 1 14 can be used to secure the system 100 to the user's calf.
  • the performance system may include an optional pelvic harness for further securing the system around the pelvic region of a user.
  • the pelvic harness can be used with a pair of performance systems (i.e. right and left) and coupled to the removably fixable leg strap 1 12 or other portion of each system.
  • the removably fixable straps 112 and 1 14 are non-slip, soft and comfortable straps.
  • the removably fixable straps may be made from a rubber (synthetic or natural) such as a neoprene material or the like. The straps are easily adjusted based on the size of thighs and upper calves of users.
  • the straps include a fixation mechanism or reclosable fastener for securing around the leg of a user.
  • the removably fixable straps 112 and 114 can be unfastened (see Fig. 2) and wrapped around the leg of a user and secured with a fixation mechanism.
  • the removably fixable straps can be neoprene wraps with a fixation mechanism such as Velcro.
  • the fixation mechanism of the removably fixable straps can be a hook and loop fastener.
  • the fixation mechanism can be a magnetic fastener.
  • the removably fixable straps 112 and 114 are disposed on the adjustable shafts 120 and 130, respectively.
  • the adjustable shafts 120 and 130 can be upper and lower leg shafts.
  • the adjustable hafts 120 and 130 can be adjusted based on the length of a user's leg.
  • one shaft and/or both shafts can be adjusted to expand or retract.
  • the adjustable shafts 120 and 130 can be telescopic rods or the like.
  • the adjustable shafts 120 and 130 are made of a lightweight durable material that has sufficient rigidity to resist bending during operation of the performance system 100.
  • the adjustable shafts 120 and 130 can be made from a lightweight metal (e.g. aluminum, titanium, or the like), a lightweight ceramic (e.g. graphite or the like), a plastic or polymer material, a composite material, or any other suitable material known to one of skill in the art.
  • the shafts 120 and 130 are coupled to the resistance assembly 140.
  • the resistance assembly 140 includes a shock absorber 142 and a variable resistance adjuster 144.
  • the resistance assembly absorbs part of the weight of the user as the user bends the knees through each turn and transfers the absorbed force down through the lower shaft 130 and the boot attachment 150 into the boots and skis (or snowboard) of the user.
  • the shock absorber 142 can comprise a resistance spring or compression spring.
  • the shock absorber 142 can be a helical spring that is designed for compression and tension.
  • the shock absorber 142 is coupled to the variable resistance or force adjuster 144 to set the level of resistance.
  • Variable resistance adjustor 144 can be used to variably set the resistance of the shock absorbers 142.
  • the adjustor can be used to tune the amount of compression of the resistance spring in the shock absorber 142.
  • the resistance adjustor 144 is a rotatable dial coupled to the shock absorber 142 that can be rotated to incrementally move the resistance spring between positions of zero compression to a state of full compression.
  • a user can quickly move the resistance adjustor 144 to increase or decrease the amount of pressure the shock absorber 142 is absorbing.
  • a user may desire a minimal amount of pressure absorption at the start of a ski day when the user's legs are fresh. However, as the user exerts energy throughout a day of skiing or snowboarding, the user may desire to increase the amount of pressure absorption to reduce the strain on the user's legs and/or knees.
  • the performance system 100 further includes a boot attachment 150 that can be attached and removably fixed to the boot of a user.
  • the boot attachment 150 fits snugly onto the outer shell of a user's boot. This allows the weight and resistance absorbed by the shock absorber 142 to be transferred to the user's boots and/or skis (or snowboard). In addition to transfer the pressure on a user's legs to reduce fatigue and pain in the legs, the performance system 100 can also have the benefit of giving a user's skis (or snowboard) better contact with the snow.
  • the boot attachment portion 150 can be fixed or coupled to the boot via a clamp or clipping mechanism that can be opened or closed to be removably fixable to the boot.
  • the boot attachment can also include a fixation mechanism such as a Velcro strap for further securing the clamp or clipping mechanism to a user's boot.
  • the performance system 100 also includes an activator switch or clip 160.
  • the activator switch or clip 160 can be used for deactivating or disengaging the resistance assembly 140 without the need to remove any part of the performance system 100 from the user. It provides an easy to reach switch or clip that releases the shock absorber so a user can get on/off the ski lift, take bathroom breaks and any other time a user wants to comfortably sit down.
  • the performance system 100 can be configured to be used on either a user's right or left leg.
  • a user can have a pair of performance systems 100 and attach one to each of the right and left legs.
  • the performance system attached to a user's right leg can operate independently from a user's left leg.
  • a user may have a leg or knee that is weaker than the other leg or knee or be recovering from injury and desire a greater about of pressure absorption one on side than the other.
  • a user can set the variable resistance adjuster on the right leg to a greater level of pressure absorption and have the left performance system set at a lower level of pressure absorption (or vice versa).
  • the performance system 100 can also include performance tracking technology.
  • the performance tracking technology can measure and store date regarding a user's distance, speed, vertical distance, number of turns, force, etc.
  • Such embodiments include a performance tracker system that can include a sensor, a processor, and a memory housed with the performance system 100 to measure and store the performance output of a user.
  • the sensors of the performance tracker system can be an accelerometer, a pressure sensor, or any other suitable type of sensor known to one of skill in the art.
  • the performance tracking systems can include any number of sensors.
  • the performance tracking system can include multiple sensors. The multiple sensors can be the same or different types.
  • the processor of the performance tracker system can be a microprocessor, a microchip, or other suitable processing device known to one of skill in the art.
  • the processor can execute instructions from a program.
  • the program can be stored in the memory.
  • the processor can include one or more internal levels of cache (not shown) and a bus controller or bus interface unit to direct interaction with a processor bus.
  • the processor bus also known as the host bus or the front side bus, may be used to couple the processor with a system interface.
  • the system interface can be connected to the processor bus to interface other components of the performance tracker system with the processor bus.
  • the system interface can include a memory controller for interfacing a memory with the processor bus.
  • the memory can include a dynamic storage device, or a random access memory (RAM) or other computer-readable devices coupled to the processor bus for storing information and instructions to be executed by the processor.
  • the memory also may be used for storing temporary variables or other intermediate information during execution of instructions by the processors.
  • the performance tracker system may include a read only memory (ROM) and/or other static storage device coupled to the processor bus for storing static information and instructions for the processors.
  • ROM read only memory
  • static storage device coupled to the processor bus for storing static information and instructions for the processors.
  • the sensor, processor, and memory of the performance tracker system are built into the performance system to be protected and resist damage from use and the environmental elements such as cold temperatures and moisture (i.e. snow).
  • the performance system can include an optional avalanche beacon or transceiver.
  • the avalanche beacon or transceiver can be used by ski patrols and/or other emergency entities to locate the user in the event the user becomes buried in snow due to an avalanche.
  • the beacon or transceiver is activated and emits a low-power pulsed signal that can be received by ski guides, ski patrols and/or other emergency entities to locate the user.
  • FIG. 6 illustrates a leg stabilization system 200 including a plurality of leg shafts or leg coupling portions 220 and 230, a plurality of selectively couplable leg straps 212, and 214, a resistance assembly 240 including a shock absorber 242, and a plurality of hinges 244, and a boot attachment portion 250.
  • the attachment assembly 210 includes a pair of selectively couplable leg straps 212 and 214.
  • the selectively couplable leg straps 212 and 214 can be used for securing the performance system 200 to the leg of a user.
  • the selectively couplable leg strap 212 can be used to secure the system 200 to the user's leg above the knee and selectively couplable leg strap 214 can be used to secure the system 200 to the user's leg below the knee.
  • selectively couplable leg strap 212 can be used to secure the system 200 to the user's thigh and selectively couplable leg strap 214 can be used to secure the system 200 to the user's calf.
  • the selectively couplable straps 212 and 214 are non-slip, soft and comfortable straps, which are configured to secure the leg of a user to the system 200.
  • the selectively couplable straps may be made from a rubber (synthetic or natural) such as a neoprene material or the like. The straps are easily adjusted based on the size of thighs and upper calves of users.
  • the straps include a selectably fixation mechanism or reclo sable fastener for securing around the leg of a user and coupling to itself or to the system.
  • the removably fixable straps can be neoprene wraps with a fixation mechanism such as Velcro.
  • the fixation mechanism of the removably fixable straps can be a hook and loop fastener.
  • the fixation mechanism can be a magnetic fastener or other suitable fastening system, configuration or device.
  • the selectively couplable straps 212 and 214 are disposed on, or coupled to, the portions 220 and 230, respectively.
  • the portions 220 and 230 can be upper and lower leg contacting portions configured to contact, and generally couple adjacent, generally the backs of the legs of a user.
  • Portions 220 and 230 are rotationally coupled to each other at hinge portions 244.
  • the hinge not on the side of the resistance assembly 240 may be eliminated to further simplify the system and make the system more user-friendly.
  • the portions 220 and 230 are made of a lightweight durable material that has sufficient rigidity to resist bending during operation of the performance system 200, and withstand torsional forces and cold weather.
  • the leg contacting portions 220 and 230 can be made from a lightweight glass filled high impact resistant plastic that is good for very cold temperatures, a lightweight ceramic (e.g. graphite or the like), a plastic or polymer material, a composite material, metal, or combinations thereof, or any other suitable material known to one of skill in the art.
  • Portions 220 and 230 may have openings, as shown, for aesthetics, or to reduce heat build up and user sweating in the areas covered by the portions 220 and 230.
  • the leg coupling portions 220 and 230 can be coupled to the resistance assembly 240, at various locations on shock coupling portion 222 and 232 of the leg coupling portions 220 and 230.
  • Shock coupling portion 222 and 232 may be notches, orifices, or other design or configuration for an end of the shock 242 to be configured to selectively couple to.
  • the resistance assembly 240 includes a shock absorber 242 and may couple to the leg coupling portions 220 and 230 at various locations. This allows the use of a fixed pressure gas spring as a shock absorber 242. Resistance or force may be varied by changing the location of coupling to the leg contacting portions 220 and 230, or may be varied via the shock absorber.
  • leg contacting portions 220 and 230 there may be two or more sized of leg contacting portions 220 and 230 to fit various weight and height users. There may be a way to disengage the shock absorber by the user when getting on and off a ski lift. Furthermore, there may be a way to compress or decompress the shock absorber 242 by the user to make it more easy to get on and off a lift, or to walk, etc.
  • the resistance assembly 240 absorbs part of the weight of the user as the user bends the knees through each turn and transfers the absorbed force down through the lower shaft 230 and the boot attachment 250 into the boots and skis (or snowboard) of the user.
  • the shock absorber 242 can also comprise a resistance spring or compression spring. In some embodiments, the shock absorber 242 can be a helical spring that is designed for compression and tension, or other type of force or shock absorber.
  • FIG. 7 shows another view of an example stabilization system 200.
  • System includes leg contacting portions 220 and 230, coupling portions 212 and 214, shock absorbing system 240, shock absorber 242, and boot contacting portion 250.
  • Portions 220 and 230 may include portion that rotatably couple to each other to form hinges 244a and 244b. In one embodiment, hinge 244a may be eliminated to simplify the system 200, and to enhance user experience.
  • FIG. 8 shows an embodiment of a system coupling portion 270, coupled to a ski boot 400.
  • Portion 270 may couple to the boot 400 via a clip, clamp, screw, or other attachment system or method, or may be integral with the boot 400.
  • Portion 270 may also be configured to receive, or generally selectably, releasably couple, to the boot coupling portion 250. This may be via a clip, spring loaded tab, or other suitable releasably attachable/detachable mechanism such that they will not inadvertently become uncoupled in use.
  • the portions 250, 270 must also be easily detachable such that a user can easily detach them, such as when the user is wearing ski gloves.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Nursing (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Vascular Medicine (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

A leg stabilization or performance system for a skier or snowboarder that absorbs part of the pressure on a user's legs and drives the resistance force down to user's boots, acting like a shock absorber is disclosed. This function also allows the skis or snowboard to keep closer contact with the snow, giving the skier/snowboarder more control through the turns. The performance system includes removably fixable leg straps, upper and lower adjustable leg shafts or portions, a resistance assembly with a shock absorber and a variable resistance adjuster, a boot attachment, and an activator switch. The configuration of the system allows a user to set the system to various levels of resistance.

Description

PERFORMANCE SYSTEM FOR SKIERS OR THE LIKE
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority to, and benefit from, provisional patent application serial number 62/306,476, entitled "PERFORMANCE SYSTEM FOR SKIERS OR THE LIKE", filed March 10, 2016, which is incorporated by reference for all purposes.
BACKGROUND
[0002] The described embodiments relate generally to a performance system for skiers or the like. More particularly, the present embodiments relate to a performance system for absorbing pressure of a skier, snowboarder or the like and transferring the force to the boots and/or skis (or snowboard).
[0003] Winter activities such as skiing and snowboarding have been popular sports for many years. In recent years ski and snowboard equipment has advanced significantly to enhance skiing and snowboarding performance and safety. Skiers, snowboarders, and manufacturers of equipment are constantly looking for innovations which will enhance the performance of skiers/snowboarders and make the sports even more pleasurable.
[0004] Skiing and snowboarding, turning techniques particularly, place unusual strain on the legs of skiers and snowboarders. A substantial amount of the strain on the legs is caused by the upper body weight of the skier/snowboarder and the impact of the skis/snowboard on the slope. This can lead to leg muscle fatigue and/or pain. Consequently the fatigue and/or painful decreases skiing/snowboarding time and the enjoyment of the sports. What is needed is a generally simple, cost effective, easy to use, leg stabilizer. SUMMARY
[0005] The performance systems of the disclosure reduce leg muscle fatigue and knee pain of skier s/snowboarders. The performance system attaches to a leg and boot of a user. As a user's knees bend through skiing/snowboarding movements, creating additional strain on the user's legs, and the performance system includes a resistance assembly that absorbs part of that pressure on a user's legs and drives the resistance force down to user's boots, acting like a shock absorber. This function also allows the skis or snowboard to keep closer contact with the snow, giving the skier/snowboarder more control through turns.
[0006] In embodiments, the performance system includes removably fixable leg straps, upper and lower adjustable leg shafts, a resistance assembly with a shock absorber and a variable resistance adjuster, a boot attachment, and an activator switch. The variable resistance adjuster allows an individual to set the system to various levels of resistance.
[0007] In other embodiments, the performance system can also feature built-in performance tracking technology the can measure and store a user's performance output, such as average speeds, number of turns, distance and more.
[0008] In still other embodiments, the performance system can also have a built-in avalanche beacon or transmitter.
BRIEF DESCRIPTION OF THE DRAWINGS
[0009] The disclosure will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:
[00010] FIG. 1 shows a side view of a performance system in accordance with embodiments of the disclosure. [00011] FIG. 2 shows a view of the performance system of FIG. 1 with leg straps in an open orientation, in accordance with embodiments of the disclosure.
[00012] FIG. 3 shows the adjustable leg shafts, the resistance assembly and boot attachment of the performance system of FIG. 1 , in accordance with embodiments of the disclosure.
[00013] FIG. 4 is a view illustrating the performance system of FIG. 1 as at to a user's leg and boot, in accordance with embodiments of the disclosure.
[00014] FIG. 5 is a view illustrating a user (i.e. skier) utilizing the performance system of FIG. 1, in accordance with embodiments of the disclosure.
[00015] FIG. 6 is an example leg stabilization system, according to an embodiment.
[00016] FIG. 7 is an example leg stabilization system, according to an embodiment.
[00017] FIG. 8 is an example boot coupling system, according to an embodiment.
DETAILED DESCRIPTION
[00018] Reference will now be made in detail to representative embodiments illustrated in the accompanying drawings. It should be understood that the following descriptions are not intended to limit the embodiments to one preferred embodiment. To the contrary, it is intended to cover alternatives, modifications, and equivalents as can be included within the spirit and scope of the described embodiments as defined by the appended claims.
[00019] The following disclosure relates to a lightweight performance system for skiing or snowboarding that supplements the power of the leg muscles, thereby reducing muscle fatigue and knee pain by absorbing resistance and transfen-ing to the a users boots and/or skis (or snowboard). By way of example with a skier, the performance system shifts the body weight of a skier from a skier's legs to the boots and/or skis for enhancing the skier's performance and minimizing leg strain. The performance system can also be utilized by snowboarders or the like. [00020] In embodiments, the performance system includes removably fixable leg straps, upper and lower adjustable leg shafts, a resistance assembly with a shock absorber and a variable resistance adjuster, a boot attachment, and an activator switch.
[00021] These and other embodiments are discussed below with reference to FIGs. 1 - 5. However, those skilled in the art will readily appreciate that the detailed description given herein with respect to these figures is for explanatory purposes only and should not be construed as limiting.
[00022] FIG. 1 illustrates a performance system 100 comprising an attachment assembly 110 including a pair of removably fixable leg straps 1 12, and 1 14, a pair of adjustable leg shafts 120 and 130, a resistance assembly 140 including a shock absorber 142 and a variable resistance adjuster 144, a boot attachment 150, and an activator switch or clip 160.
[00023] The attachment assembly 1 10 includes a pair of removably fixable leg straps 1 12 and 114. The removably fixable leg straps 1 12 and 1 14 can be used for securing the performance system 100 to the leg of a user. The removably fixable leg strap 1 12 can be used to secure the system 100 to the user's leg above the knee and removably fixable leg strap 1 14 can be used to secure the system 100 to the user's leg below the knee. In some embodiments, removably fixable leg strap 1 12 can be used to secure the system 100 to the user's thigh and removably fixable leg strap 1 14 can be used to secure the system 100 to the user's calf. In still other embodiments, the performance system may include an optional pelvic harness for further securing the system around the pelvic region of a user. In such embodiments, the pelvic harness can be used with a pair of performance systems (i.e. right and left) and coupled to the removably fixable leg strap 1 12 or other portion of each system. [00024] In embodiments, the removably fixable straps 112 and 1 14 are non-slip, soft and comfortable straps. In some embodiments, the removably fixable straps may be made from a rubber (synthetic or natural) such as a neoprene material or the like. The straps are easily adjusted based on the size of thighs and upper calves of users. The straps include a fixation mechanism or reclosable fastener for securing around the leg of a user. As illustrated in Figs. 1 and 2, the removably fixable straps 112 and 114 can be unfastened (see Fig. 2) and wrapped around the leg of a user and secured with a fixation mechanism. In some embodiments, the removably fixable straps can be neoprene wraps with a fixation mechanism such as Velcro. In other embodiments, the fixation mechanism of the removably fixable straps can be a hook and loop fastener. In other embodiments, the fixation mechanism can be a magnetic fastener.
[00025] The removably fixable straps 112 and 114 are disposed on the adjustable shafts 120 and 130, respectively. The adjustable shafts 120 and 130 can be upper and lower leg shafts. In embodiments, the adjustable hafts 120 and 130 can be adjusted based on the length of a user's leg. In some embodiments, one shaft and/or both shafts can be adjusted to expand or retract. In some embodiments, the adjustable shafts 120 and 130 can be telescopic rods or the like.
[00026] The adjustable shafts 120 and 130 are made of a lightweight durable material that has sufficient rigidity to resist bending during operation of the performance system 100. In some embodiments, the adjustable shafts 120 and 130 can be made from a lightweight metal (e.g. aluminum, titanium, or the like), a lightweight ceramic (e.g. graphite or the like), a plastic or polymer material, a composite material, or any other suitable material known to one of skill in the art. The shafts 120 and 130 are coupled to the resistance assembly 140.
[00027] As illustrated in Figs. 1 and 3, the resistance assembly 140 includes a shock absorber 142 and a variable resistance adjuster 144. The resistance assembly absorbs part of the weight of the user as the user bends the knees through each turn and transfers the absorbed force down through the lower shaft 130 and the boot attachment 150 into the boots and skis (or snowboard) of the user. The shock absorber 142 can comprise a resistance spring or compression spring. In some embodiments, the shock absorber 142 can be a helical spring that is designed for compression and tension. The shock absorber 142 is coupled to the variable resistance or force adjuster 144 to set the level of resistance.
[00028] Variable resistance adjustor 144 can be used to variably set the resistance of the shock absorbers 142. The adjustor can be used to tune the amount of compression of the resistance spring in the shock absorber 142. In some embodiments, the resistance adjustor 144 is a rotatable dial coupled to the shock absorber 142 that can be rotated to incrementally move the resistance spring between positions of zero compression to a state of full compression. In operation, a user can quickly move the resistance adjustor 144 to increase or decrease the amount of pressure the shock absorber 142 is absorbing. By way of example, without intending to be limiting, a user may desire a minimal amount of pressure absorption at the start of a ski day when the user's legs are fresh. However, as the user exerts energy throughout a day of skiing or snowboarding, the user may desire to increase the amount of pressure absorption to reduce the strain on the user's legs and/or knees.
[00029 J The performance system 100 further includes a boot attachment 150 that can be attached and removably fixed to the boot of a user. The boot attachment 150 fits snugly onto the outer shell of a user's boot. This allows the weight and resistance absorbed by the shock absorber 142 to be transferred to the user's boots and/or skis (or snowboard). In addition to transfer the pressure on a user's legs to reduce fatigue and pain in the legs, the performance system 100 can also have the benefit of giving a user's skis (or snowboard) better contact with the snow. [00030] In some embodiments, the boot attachment portion 150 can be fixed or coupled to the boot via a clamp or clipping mechanism that can be opened or closed to be removably fixable to the boot. In some embodiments, the boot attachment can also include a fixation mechanism such as a Velcro strap for further securing the clamp or clipping mechanism to a user's boot.
[00031] As shown in the figures, the performance system 100 also includes an activator switch or clip 160. The activator switch or clip 160 can be used for deactivating or disengaging the resistance assembly 140 without the need to remove any part of the performance system 100 from the user. It provides an easy to reach switch or clip that releases the shock absorber so a user can get on/off the ski lift, take bathroom breaks and any other time a user wants to comfortably sit down.
[00032] The performance system 100 can be configured to be used on either a user's right or left leg. In operation, a user can have a pair of performance systems 100 and attach one to each of the right and left legs. Further, the performance system attached to a user's right leg can operate independently from a user's left leg. For example, by way of illustration without intending to be limiting, a user may have a leg or knee that is weaker than the other leg or knee or be recovering from injury and desire a greater about of pressure absorption one on side than the other. In such cases, a user can set the variable resistance adjuster on the right leg to a greater level of pressure absorption and have the left performance system set at a lower level of pressure absorption (or vice versa).
[00033] In some embodiments, the performance system 100 can also include performance tracking technology. The performance tracking technology can measure and store date regarding a user's distance, speed, vertical distance, number of turns, force, etc. Such embodiments include a performance tracker system that can include a sensor, a processor, and a memory housed with the performance system 100 to measure and store the performance output of a user. ( 000341 The sensors of the performance tracker system can be an accelerometer, a pressure sensor, or any other suitable type of sensor known to one of skill in the art. The performance tracking systems can include any number of sensors. In some embodiments, the performance tracking system can include multiple sensors. The multiple sensors can be the same or different types.
[00035] The processor of the performance tracker system can be a microprocessor, a microchip, or other suitable processing device known to one of skill in the art. The processor can execute instructions from a program. The program can be stored in the memory. The processor can include one or more internal levels of cache (not shown) and a bus controller or bus interface unit to direct interaction with a processor bus. The processor bus, also known as the host bus or the front side bus, may be used to couple the processor with a system interface. The system interface can be connected to the processor bus to interface other components of the performance tracker system with the processor bus. For example, the system interface can include a memory controller for interfacing a memory with the processor bus.
1000361 The memory can include a dynamic storage device, or a random access memory (RAM) or other computer-readable devices coupled to the processor bus for storing information and instructions to be executed by the processor. The memory also may be used for storing temporary variables or other intermediate information during execution of instructions by the processors. The performance tracker system may include a read only memory (ROM) and/or other static storage device coupled to the processor bus for storing static information and instructions for the processors. The performance tracker system described in the preceding paragraphs is but one possible example of a computer system that may employ or be configured in accordance with aspects of the present disclosure.
[00037] The sensor, processor, and memory of the performance tracker system are built into the performance system to be protected and resist damage from use and the environmental elements such as cold temperatures and moisture (i.e. snow).
[00038] In some embodiments, the performance system can include an optional avalanche beacon or transceiver. The avalanche beacon or transceiver can be used by ski patrols and/or other emergency entities to locate the user in the event the user becomes buried in snow due to an avalanche. In operation, when the user begins a descent on a slope, the beacon or transceiver is activated and emits a low-power pulsed signal that can be received by ski guides, ski patrols and/or other emergency entities to locate the user.
[00039] FIG. 6 illustrates a leg stabilization system 200 including a plurality of leg shafts or leg coupling portions 220 and 230, a plurality of selectively couplable leg straps 212, and 214, a resistance assembly 240 including a shock absorber 242, and a plurality of hinges 244, and a boot attachment portion 250.
[00040] The attachment assembly 210 includes a pair of selectively couplable leg straps 212 and 214. The selectively couplable leg straps 212 and 214 can be used for securing the performance system 200 to the leg of a user. The selectively couplable leg strap 212 can be used to secure the system 200 to the user's leg above the knee and selectively couplable leg strap 214 can be used to secure the system 200 to the user's leg below the knee.
(000411 In some embodiments, selectively couplable leg strap 212 can be used to secure the system 200 to the user's thigh and selectively couplable leg strap 214 can be used to secure the system 200 to the user's calf. [00042] In embodiments, the selectively couplable straps 212 and 214 are non-slip, soft and comfortable straps, which are configured to secure the leg of a user to the system 200. In some embodiments, the selectively couplable straps may be made from a rubber (synthetic or natural) such as a neoprene material or the like. The straps are easily adjusted based on the size of thighs and upper calves of users. The straps include a selectably fixation mechanism or reclo sable fastener for securing around the leg of a user and coupling to itself or to the system. In some embodiments, the removably fixable straps can be neoprene wraps with a fixation mechanism such as Velcro. In other embodiments, the fixation mechanism of the removably fixable straps can be a hook and loop fastener. In other embodiments, the fixation mechanism can be a magnetic fastener or other suitable fastening system, configuration or device.
[00043] The selectively couplable straps 212 and 214 are disposed on, or coupled to, the portions 220 and 230, respectively. The portions 220 and 230 can be upper and lower leg contacting portions configured to contact, and generally couple adjacent, generally the backs of the legs of a user.
[00044] Portions 220 and 230 are rotationally coupled to each other at hinge portions 244. In one embodiment, the hinge not on the side of the resistance assembly 240 may be eliminated to further simplify the system and make the system more user-friendly.
[00045] The portions 220 and 230 are made of a lightweight durable material that has sufficient rigidity to resist bending during operation of the performance system 200, and withstand torsional forces and cold weather. In some embodiments, the leg contacting portions 220 and 230 can be made from a lightweight glass filled high impact resistant plastic that is good for very cold temperatures, a lightweight ceramic (e.g. graphite or the like), a plastic or polymer material, a composite material, metal, or combinations thereof, or any other suitable material known to one of skill in the art. Portions 220 and 230 may have openings, as shown, for aesthetics, or to reduce heat build up and user sweating in the areas covered by the portions 220 and 230.
[00046] The leg coupling portions 220 and 230 can be coupled to the resistance assembly 240, at various locations on shock coupling portion 222 and 232 of the leg coupling portions 220 and 230. Shock coupling portion 222 and 232 may be notches, orifices, or other design or configuration for an end of the shock 242 to be configured to selectively couple to.
[00047] As illustrated in Figs. 6 and 7, the resistance assembly 240 includes a shock absorber 242 and may couple to the leg coupling portions 220 and 230 at various locations. This allows the use of a fixed pressure gas spring as a shock absorber 242. Resistance or force may be varied by changing the location of coupling to the leg contacting portions 220 and 230, or may be varied via the shock absorber.
[00048] There may be two or more sized of leg contacting portions 220 and 230 to fit various weight and height users. There may be a way to disengage the shock absorber by the user when getting on and off a ski lift. Furthermore, there may be a way to compress or decompress the shock absorber 242 by the user to make it more easy to get on and off a lift, or to walk, etc.
J00049] The resistance assembly 240 absorbs part of the weight of the user as the user bends the knees through each turn and transfers the absorbed force down through the lower shaft 230 and the boot attachment 250 into the boots and skis (or snowboard) of the user. The shock absorber 242 can also comprise a resistance spring or compression spring. In some embodiments, the shock absorber 242 can be a helical spring that is designed for compression and tension, or other type of force or shock absorber. [00050] FIG. 7 shows another view of an example stabilization system 200. System includes leg contacting portions 220 and 230, coupling portions 212 and 214, shock absorbing system 240, shock absorber 242, and boot contacting portion 250. Portions 220 and 230 may include portion that rotatably couple to each other to form hinges 244a and 244b. In one embodiment, hinge 244a may be eliminated to simplify the system 200, and to enhance user experience.
[00051] FIG. 8 shows an embodiment of a system coupling portion 270, coupled to a ski boot 400. Portion 270 may couple to the boot 400 via a clip, clamp, screw, or other attachment system or method, or may be integral with the boot 400. Portion 270 may also be configured to receive, or generally selectably, releasably couple, to the boot coupling portion 250. This may be via a clip, spring loaded tab, or other suitable releasably attachable/detachable mechanism such that they will not inadvertently become uncoupled in use. The portions 250, 270 must also be easily detachable such that a user can easily detach them, such as when the user is wearing ski gloves.
[00052] The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the described embodiments. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the described embodiments. Thus, the foregoing descriptions of the specific embodiments described herein are presented for purposes of illustration and description. They are not target to be exhaustive or to limit the embodiments to the precise forms disclosed. It will be apparent to one of ordinary skill in the art that many modifications and variations are possible in view of the above teachings.

Claims

What is claimed is:
1. A leg stabilization system, comprising:
an upper leg shaft and lower leg shaft, rotatably coupled together at one or more hinges configured to receive upper and lower portions of the leg of a user, respectively; one or more selectively couplable straps coupled to the upper leg shaft and the lower leg shaft, configured to secure a leg of a user between the upper leg shaft and the lower leg shaft and the one or more selectively couplable straps; a resistance assembly comprising a shock absorber configured to selectively couple to a shock coupling portion of the upper leg shaft and the lower leg shaft; and
a system coupling portion configured to couple to a boot, and to selectably, releasably couple, to the boot coupling portion wherein the lower leg shaft comprises a boot coupling portion, configured to couple adjacent the boot.
2. The system of claim 1, wherein the upper leg shaft is configured to selectably couple and decouple generally to a thigh area of a user.
3. The system of claim 1 , wherein the lower leg shaft is configured to selectably couple and decouple generally to a calf area of a user.
4. The system of claim 1 , wherein the one or more selectively couplable straps comprise a hook and loop type fastener.
5. The system of claim 1, wherein the shock absorber is selectively couplable to the shock coupling portion of the upper leg shaft or the lower leg shaft to vary force exerted on the system by the shock absorber.
6. The system of claim 1 , wherein the upper leg shaft or the lower leg shaft comprises glass filled high impact resistant plastic, polymer material, a composite material, metal, or combinations thereof.
7. The system of claim 1, wherein the shock absorber comprises a spring, gas spring, or helical spring.
8. The system of claim 1 , wherein the shock coupling portion of the upper leg shaft and the lower leg shaft are configured to receive and secure an end of the shock absorber.
9. A leg stabilization system, comprising: an upper leg shaft and lower leg contacting portion, rotatably coupled together at one or more hinges configured to generally respectively receive upper and lower portions of the leg of a user; one or more selectively couplable straps coupled to the upper leg contacting portion and the lower leg contacting portion, configured to secure a leg of a user between the upper leg contacting portion and the lower leg contacting portion and the one or more selectively couplable straps; a resistance assembly comprising a shock absorber configured to selectively couple to a shock coupling portion of the upper leg contacting portion and the lower leg contacting portion; wherein the lower leg contacting portion comprises a boot coupling portion, configured to couple adjacent a boot.
10. The system of claim 9, further comprising a system coupling portion configured to couple to a boot, and to selectably, releasably couple, to the boot coupling portion.
1 1. The system of claim 9, wherein the upper leg contacting portion is configured to selectably couple and decouple generally to a thigh area of a user.
12. The system of claim 9, wherein the lower leg contacting portion is configured to selectably couple and decouple generally to a calf area or lower leg of a user.
13. The system of claim 9, wherein the one or more selectively couplable straps comprise a hook and loop type fastener.
14. The system of claim 9, wherein the shock absorber is selectively couplable to the shock coupling portion of the upper leg contacting portion or the lower leg coupling contacting to vary force exerted on the system by the shock absorber.
15. The system of claim 9, wherein the upper leg contacting portion or the lower leg co contacting upling portion comprises glass filled high impact resistant plastic, polymer material, a composite material, metal, or combinations thereof.
16. The system of claim 9, wherein the shock absorber comprises a spring, gas spring, or helical spring.
17. The system of claim 9, wherein the shock coupling portion of the upper leg contacting portion and the lower leg contacting portion are configured to receive and secure an end of the shock absorber.
18. A method of reducing forces on the leg of a skier, comprising: providing a leg stabilization system comprising a selectively couplable shock absorber coupled to an upper leg contacting portion and a lower leg contacting portion of the leg stabilization system, wherein the upper leg contacting portion and the lower leg contacting portion rotatably couple together at one or more hinges; selectively coupling the leg stabilization system to the leg of a user, and adjacent a ski boot of the user; and selectively coupling the shock absorber to vary the resistance of the shock absorber with respect to the leg stabilization system.
19. The method of claim 18, further comprising decoupling the shock absorber from the upper leg coupling portion or the lower leg coupling portion to relieve the resistance on the leg stabilization system.
20. The method of claim 18, further comprising varying the resistance on the shock absorber or the leg stabilization system.
PCT/US2017/021944 2016-03-10 2017-03-10 Performance system for skiers or the like WO2017156478A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662306476P 2016-03-10 2016-03-10
US62/306,476 2016-03-10
US15/455,850 US20170259157A1 (en) 2016-03-10 2017-03-10 Performance system for skiers or the like
US15/455,850 2017-03-10

Publications (1)

Publication Number Publication Date
WO2017156478A1 true WO2017156478A1 (en) 2017-09-14

Family

ID=59788359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2017/021944 WO2017156478A1 (en) 2016-03-10 2017-03-10 Performance system for skiers or the like

Country Status (2)

Country Link
US (1) US20170259157A1 (en)
WO (1) WO2017156478A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015116149A1 (en) * 2015-09-24 2017-03-30 Otto Bock Healthcare Gmbh Orthopedic joint device
US11617670B2 (en) * 2018-01-10 2023-04-04 Grd Innovations, Llc Variable radius spring assembly
ES2799478A1 (en) * 2019-06-13 2020-12-17 Levier Exo S L Device to facilitate sports practice (Machine-translation by Google Translate, not legally binding)
USD950078S1 (en) * 2019-09-26 2022-04-26 Beijing Jinwei Kangda Medical Instrument Ltd. Adjustable knee brace

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4450832A (en) * 1982-08-25 1984-05-29 Waddell Thomas P Body weight support system
US4617920A (en) * 1984-02-10 1986-10-21 Charles Carsalade Device for facilitating the practice of downhill skiing
US20020110793A1 (en) * 1999-07-03 2002-08-15 Owen Eastwood Body weight supports and teaching aid
US20120056391A1 (en) * 2009-02-27 2012-03-08 Hubert Fievet Ski boot that can support at least part of a skier's weight and associated ski boot/ski assembly

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6409693B1 (en) * 2001-01-22 2002-06-25 Robert J. Brannigan Leg support device
US20070232972A1 (en) * 2006-03-30 2007-10-04 Kelvin Martinez Agachaflex

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4450832A (en) * 1982-08-25 1984-05-29 Waddell Thomas P Body weight support system
US4617920A (en) * 1984-02-10 1986-10-21 Charles Carsalade Device for facilitating the practice of downhill skiing
US20020110793A1 (en) * 1999-07-03 2002-08-15 Owen Eastwood Body weight supports and teaching aid
US20120056391A1 (en) * 2009-02-27 2012-03-08 Hubert Fievet Ski boot that can support at least part of a skier's weight and associated ski boot/ski assembly

Also Published As

Publication number Publication date
US20170259157A1 (en) 2017-09-14

Similar Documents

Publication Publication Date Title
US20170259157A1 (en) Performance system for skiers or the like
US5873130A (en) Wrist guard for snowboarding
US7927299B2 (en) Knee brace
US4473235A (en) Apparatus for improved control of skis
US6219843B1 (en) Protective device, specifically adapted to skating
US5778449A (en) Wrist guard
US20060240953A1 (en) Human lower limb performance enhancement outfit
US4643176A (en) Athletic knee protector with bowed leaf spring structure
JP2002543902A (en) Sport shoes, especially alpine skiing, mountain skiing, Nordic skiing, snow surfing, roller skating or ice skating
US6345396B1 (en) Buttocks and tail bone protector
US5538015A (en) Shoulder motion controlling harness
US10441870B2 (en) Protective articles and methods thereof
US6154882A (en) Protection device preferably for use in a glove
CA2566218A1 (en) Weighted footwear
US7473236B1 (en) Variably adjustable bi-directional derotation bracing system
US7757303B2 (en) Forelimb brace device
US20140208490A1 (en) Self-adjusting system for joint protection
US4781179A (en) Athletic leg brace apparatus
US20160143764A1 (en) Patella cup
US5898936A (en) Protective wrist guard assembly
US4757555A (en) Ski racing glove
AU2023203686A1 (en) Protective articles and methods thereof
US5685013A (en) Hand, wrist, and forearm protective device
US20110065553A1 (en) Body Mounted Muscular Brace
US20060240954A1 (en) Human lower limb performance enhancement outfit systems

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17764245

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17764245

Country of ref document: EP

Kind code of ref document: A1