WO2017155379A1 - New multilayer microstrip antenna for x-band satellite television - Google Patents

New multilayer microstrip antenna for x-band satellite television Download PDF

Info

Publication number
WO2017155379A1
WO2017155379A1 PCT/MA2017/000006 MA2017000006W WO2017155379A1 WO 2017155379 A1 WO2017155379 A1 WO 2017155379A1 MA 2017000006 W MA2017000006 W MA 2017000006W WO 2017155379 A1 WO2017155379 A1 WO 2017155379A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
band
area
satellite television
multilayer
Prior art date
Application number
PCT/MA2017/000006
Other languages
French (fr)
Inventor
Hassan AMMOR
Soufian LAKRIT
Original Assignee
Université Mohammed V De Rabat
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Université Mohammed V De Rabat filed Critical Université Mohammed V De Rabat
Publication of WO2017155379A1 publication Critical patent/WO2017155379A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line

Definitions

  • the present invention relates to an original miniature printed multilayer antenna dedicated to satellite communications in the X-band.
  • Our antenna has good characteristics in bandwidth, reflection coefficient, standing wave ratio and omnidirectional radiation.
  • VSAT Very Small Aperture Terminal
  • DVB-S Digital Video Broadcast Satellite
  • DVB-RCS Digital Video Sroadcast-return Channel via Satellite
  • UDLR Unidirectional Link Routing
  • Micro-ribbon antennas are the first options of this high frequency band, because of their low costs, light weight and robustness.
  • Micro-ribbon antennas are the most commonly used antennas due to many advantages such as lightness, planar configuration and the ability to be integrated into microwave circuit boards. Thus, these antennas are very suitable for various applications such as wireless communication systems, cell phones, satellite communications systems and radar systems.
  • the frequency bands that are suitable for this purpose include the frequency range between 8GHz and 12GHz. These include the X band used for communication and very high frequency (UHF) purposes.
  • the present invention of antenna is intended for space telecommunications applications and mainly satellites for television broadcasting operating in the X band and to overcome drawbacks on current transmitters by allowing to replace the existing antennas by other of small size, low weight and minimum cost while maintaining their use in the frequency band and satisfying the requirements of the standards in terms of adaptation, bandwidth, gain and finally radiation openings.
  • Figure 2 shows the simulation result for the reflection coefficient S if of the multilayer antenna.
  • FIG. 3 shows the simulation result for the TOS (Stationary Wave Ratio) of the multilayer antenna.
  • Figure 5 illustrates the 2D and 3D radiation pattern results of the multilayer antenna.
  • Figure 7 shows the type of connector used, for example a coaxial SMA connector.
  • the antenna is made on four substrates of different nature. having successively the following dielectric permittivities
  • the antenna is composed a rectangular patch having optimal characteristics and reduced dimensions as shown in the diagram of Figure 1.
  • the permittivity ⁇ r is chosen in such a way that it gives us a better efficiency and a greater width of the frequency band.
  • a coaxial SMA connector is used for power supply and to aid adaptation.
  • This antenna is suitable for satellite television applications and mainly in the X band.
  • the patch shape is similar to a rectangle.
  • the different parameters such as the reflection coefficient, the TOS, the gain, the 2D and 3D radiation pattern, the field distributions are simulated and presented.
  • the design of the antenna requires the basic calculations for the detraining. the choice of structure and simulation that allows us to optimize the chosen structure. The goal is essentially to design a broadband antenna for X-band applications.
  • Figure 2 shows the variation of the reflection coefficient S 11 of the proposed antenna.
  • the bandwidth spreading from 8.05GHz to 12.01GHz is allocated to the X band having a width of 3.96GHz and four resonant frequencies at 8.38GHz, at 9.91GHz, at 11.03GHz and 1 1.74GHz, which is widely used in satellite television and other applications of satellites and radars.
  • the feature of the ultra wide band allowed us to cover applications in X band, and. more precisely our goal which is the broadcast of television through a satellite dish.
  • Figure 3 shows the variation of the TOS as a function of frequency.
  • the value of the TOS is less than the value 2 along the frequency band, which justifies the good adaptation of our antenna.
  • the allocated X band is an innovative feature of this antenna because existing micro-tape patch antennas have very narrow bandwidths.
  • FIG. 5 illustrates the distribution of fields in various points at the level of
  • Figure 6 illustrates the radiation patterns of the Muitieouche antenna at frequencies

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Waveguide Aerials (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

Disclosed is an ultra-wide band (UWB) antenna for satellite television, mainly in the x-band range, said antenna being supplied with power through a slot in the ground plane. The invention relates to a new rectangular antenna composed of rectangular substrates and two rectangular patches. Said antenna is an electromagnetic transceiver device that makes it possible to emit in the UWB range using an SMA connector, thus resulting in greater gain, a large bandwidth, a reduced size of 21.25mm x 22.25mm, good suitability for the x-band frequency range, and low production costs. The antenna consists of a single rectangular patch connected to the output by means of an SMA connector. The antenna is powered using electromagnetic coupling. The power supply point is connected to an SMA connector (figure 7) which is inserted into the microstrip line, thus making it possible to increase gain, directivity and the bandwidth. The device of the invention is particularly suitable for satellite television applications in the x-band range.

Description

Titre : Originale antenne micro-ruban multicouche pour les télévisions par satellites dans la bande X  Title: Original multilayer micro-ribbon antenna for X-band satellite TVs
DESCRIPTION DE L'INVENTION DESCRIPTION OF THE INVENTION
La présente invention concerne une antenne multicouche imprimée originale miniature et dédiée aux communications par satellites dans la bande X. Notre antenne présente de bonnes caractéristiques en ternies de bande passante, de coefficient de réflexion, de rapport d'ondes stationnaires et de rayonnement omnidirectionnel.  The present invention relates to an original miniature printed multilayer antenna dedicated to satellite communications in the X-band. Our antenna has good characteristics in bandwidth, reflection coefficient, standing wave ratio and omnidirectional radiation.
Parmi les ariennes développées au cours de ces dernières années et qui ont fait l'objet de nombreuses recherches et développements, nous pouvons citer les antennes micro-rubans multicouche dont, la forme et les dimensions leurs permettent d'être intégrées dans les modules d'émission et de réception sur le même substrat. Among the Arianes developed in recent years and which have been the subject of many research and developments, we can mention multilayer micro-ribbons antennas whose shape and dimensions allow them to be integrated into the modules of emission and reception on the same substrate.
Les différents systèmes satellitaires, tels que le satellite VSAT (Very Small aperture terminal) pour la télécommunication spatiale, les satellites géostaiionnaires, DVB-S (Digital Video Broadcast Satellite), DVB-RCS {Digital Video Sroadcast-return Channel via Satellite), UDLR (Unidirectional Link Routing) et d'autres systèmes de communication sans fil fonctionnant dans la bande X, Les antennes micro-rubans sont les premières options de cette bande de fréquence élevée, en raison de leurs faibles coûts, leurs poids légers et leurs robustesses. The different satellite systems, such as the Very Small Aperture Terminal (VSAT) satellite for space telecommunication, geostationary satellites, Digital Video Broadcast Satellite (DVB-S), DVB-RCS (Digital Video Sroadcast-return Channel via Satellite), UDLR (Unidirectional Link Routing) and other wireless communication systems operating in the X band, Micro-ribbon antennas are the first options of this high frequency band, because of their low costs, light weight and robustness.
Les antennes micro-rubans sont les antennes les plus couramment utilisées en raison de nombreux avantages tels que la légèreté, la configuration plane et la capacité d'être intégrer dans les circuits imprimés micro-ondes. Ainsi, ces antennes sont très appropriées pour diverses applications telles que les systèmes de communication sans fil, les téléphones cellulaires, les systèmes de communications par satellite et les systèmes radars. Micro-ribbon antennas are the most commonly used antennas due to many advantages such as lightness, planar configuration and the ability to be integrated into microwave circuit boards. Thus, these antennas are very suitable for various applications such as wireless communication systems, cell phones, satellite communications systems and radar systems.
Afin d'établir la liaison de communication entre une station terrestre et le satellite de télécommunication, seules les fréquences sélectionnées peuvent être utilisées. En général, les bandes de fréquences qui conviennent à cette fin comprennent la gamme de fréquences comprise entre 8GHz et 12GHz. Celles-ci comprennent la bande X utilisées à des fins de communication et à très haute fréquence ( UHF) . In order to establish the communication link between a terrestrial station and the telecommunication satellite, only the selected frequencies can be used. In general, the frequency bands that are suitable for this purpose include the frequency range between 8GHz and 12GHz. These include the X band used for communication and very high frequency (UHF) purposes.
Dans cet objectif, une nouvelle antenne rectangulaire multicouche originale simple et miniaturisée destinée à des applications aux systèmes de télévision par satellites est conçue et proposée. Notre cahier de charges de la réalisation a été basé sur les exigences des systèmes UHF qui présente de bonnes performances sur la bande de fréquence allouée à l'UHF par la commission IEEE. For this purpose, a new simple and miniaturized original multilayered rectangular antenna for applications in satellite television systems is designed and proposed. Our specifications of the realization was based on the requirements of the UHF systems which presents good performances on the band of frequency allocated to the UHF by the IEEE commission.
Les antennes existantes sont faites par des structures planaires qui sont difficiles à mettre en œuvre et présentent un encombrement et des problèmes de réalisation. Par conséquent, ces antennes sont de grandes tailles, de grands poids et d'un coût de réalisation important. Existing antennas are made by planar structures that are difficult to implement and have a size and problems of implementation. Therefore, these antennas are large sizes, large weights and a significant cost of implementation.
La présente invention d'antenne a pour but les applications de télécommunications spatiales et principalement les satellites pour la diffusion de télévision opérant dans la bande X. et de remédier à des inconvénients sur les émetteurs actuels en permettant de remplacer les antennes existantes par d'autres de faible taille, de faible poids et pour un coût minimum tout en conservant leur utilisation dans la bande de fréquences et en satisfaisant les exigences des nonnes en terme d'adaptation, de bande passante, du gain et finalement des ouvertures de rayonnement. The present invention of antenna is intended for space telecommunications applications and mainly satellites for television broadcasting operating in the X band and to overcome drawbacks on current transmitters by allowing to replace the existing antennas by other of small size, low weight and minimum cost while maintaining their use in the frequency band and satisfying the requirements of the standards in terms of adaptation, bandwidth, gain and finally radiation openings.
L'objectif, les caractéristiques et les avantages de notre invention ressortiront de la description qui va suivre, donné à titre d'exemple non limitatif, en référence aux illustrations indexées dans lesquels : The objective, the characteristics and the advantages of our invention will emerge from the description which follows, given by way of non-limiting example, with reference to the indexed illustrations in which:
• La figure 1 illustre la structure de l'antenne multicouche ; • Figure 1 illustrates the structure of the multilayer antenna;
a) Face supérieure b) Face de côté  a) Upper side b) Side view
• La figure 2 représente le résultat de simulation pour le coefficient de réflexion Si f de l 'antenne multicouche. • Figure 2 shows the simulation result for the reflection coefficient S if of the multilayer antenna.
• La figure 3 représente le résultat de simulation pour le TOS (Taux d'Onde Stationnaire) de l'antenne multicouche.  • Figure 3 shows the simulation result for the TOS (Stationary Wave Ratio) of the multilayer antenna.
• La figure 4 représente le résultat de simulation pour le gain de l'antenne multicouche. • Figure 4 shows the simulation result for the gain of the multilayer antenna.
• La figure 5 illustre les résultats de diagramme de rayonnement 2D et 3D de l'antenne multicouche. • Figure 5 illustrates the 2D and 3D radiation pattern results of the multilayer antenna.
• La figure 6 illustre les résultats de la distribution des champs de l'antenne
Figure imgf000004_0001
• Figure 6 illustrates the results of the distribution of the antenna fields
Figure imgf000004_0001
multicouche.  multilayer.
a) Champ
Figure imgf000004_0002
b) Champ
Figure imgf000004_0003
a) Field
Figure imgf000004_0002
b) Field
Figure imgf000004_0003
• La figure 7 représente le type de connecteur utilisé, à titre d'exemple un connecteur SMA coaxîale.  • Figure 7 shows the type of connector used, for example a coaxial SMA connector.
En référence à la figure L l'antenne est réalisée sur quatre substrats de nature différentes
Figure imgf000004_0004
ayant successivement les permittivités diélectriques suivantes L'antenne se compose
Figure imgf000004_0005
d'un patch rectangulaire ayant des caractéristiques optimales et des dimensions réduites comme indiqué sur le schéma de la figure 1.
With reference to FIG. 4, the antenna is made on four substrates of different nature.
Figure imgf000004_0004
having successively the following dielectric permittivities The antenna is composed
Figure imgf000004_0005
a rectangular patch having optimal characteristics and reduced dimensions as shown in the diagram of Figure 1.
La permittivité εr est choisie de telle sorte qu'elle nous donne, un meilleur rendement et une grande largeur de la bande de fréquence. Un connecteur SMA coaxiale est utilisé pour l'alimentation et pour assvirer l'adaptation. The permittivity ε r is chosen in such a way that it gives us a better efficiency and a greater width of the frequency band. A coaxial SMA connector is used for power supply and to aid adaptation.
Cette antenne est adaptée aux applications de télévision par satellites et principalement dans- la bande X. This antenna is suitable for satellite television applications and mainly in the X band.
La forme de patch est similaire à un rectangle. Les différents paramètres tels que le coefficient de réflexion, le TOS, le gain, le diagramme de rayonnement en 2D et 3D, les distributions des champs
Figure imgf000005_0003
sont simulés et présentés.
The patch shape is similar to a rectangle. The different parameters such as the reflection coefficient, the TOS, the gain, the 2D and 3D radiation pattern, the field distributions
Figure imgf000005_0003
are simulated and presented.
La conception de l'antenne nécessite les calculs de base pour le dmienstoimement. le choix de la structure et la simulation qui nous permet d'avantage d'optimiser la structure choisie. L'objectif consiste essentiellement à concevoir une antenne large bande pour les applications dans la bande X. The design of the antenna requires the basic calculations for the detraining. the choice of structure and simulation that allows us to optimize the chosen structure. The goal is essentially to design a broadband antenna for X-band applications.
Nous avons effectué la simulation avec le logiciel H.FSS (High Frequeney Structure Simulator). Nous avons choisi des substrats, calculé la largeur, la. longueur, la constante diélectrique effective, ce qui nous a permis d'avoir la structure proposée ci-dessus dans la figure 1. Les résultats des différents paramètres de l'antenne sont présentés dans les figures ei-dessous. We performed the simulation with the H.FSS software (High Frequeney Structure Simulator). We chose substrates, calculated the width, the. length, the effective dielectric constant, which allowed us to have the structure proposed above in Figure 1. The results of the various parameters of the antenna are shown in the figures below.
La figure 2 montre la variation du coefficient de réflexion S11 de l'antenne proposée. Nous notons que pour
Figure imgf000005_0001
l'antenne large bande avec quatre fréquences de résonance, la bande passante qui s'étale de 8.05GHz a 12.01GHz est allouée à la bande X présentant une largeur de 3.96GHz et quatre fréquences de résonance à 8.38GHz, à 9.91GHz, à 11.03GHz et à 1 1.74GHz, qui est très utilisée dans la télévision par satellites et d'autres applications des satellites et des radars. En effet, la caractéristique de la bande ultra large nous a permis de couvrir les applications en bande X, et. plus précisément notre objectif qui est la diffusion de télévision à travers une antenne satellite.
Figure 2 shows the variation of the reflection coefficient S 11 of the proposed antenna. We note that for
Figure imgf000005_0001
broadband antenna with four resonant frequencies, the bandwidth spreading from 8.05GHz to 12.01GHz is allocated to the X band having a width of 3.96GHz and four resonant frequencies at 8.38GHz, at 9.91GHz, at 11.03GHz and 1 1.74GHz, which is widely used in satellite television and other applications of satellites and radars. Indeed, the feature of the ultra wide band allowed us to cover applications in X band, and. more precisely our goal which is the broadcast of television through a satellite dish.
La figure 3 présente la variation du TOS en fonction de la fréquence. La valeur du TOS est inférieure à la valeur 2 le long de la bande de fréquence, ce qui justifie la bonne adaptation de notre antenne. Figure 3 shows the variation of the TOS as a function of frequency. The value of the TOS is less than the value 2 along the frequency band, which justifies the good adaptation of our antenna.
Sur la figure 4, la variation du gain en fonction de la fréquence est illustrée. Les bonnes valeurs obtenues sur toute la bande de fréquence qui nous intéresse, qui est sont très
Figure imgf000005_0002
In FIG. 4, the variation of the gain as a function of the frequency is illustrated. The good values obtained on the whole frequency band which interests us, which is are very
Figure imgf000005_0002
satisfaisantes pour l'application en question. La bande X allouée est une caractéristique innovante de cette antenne car les antennes patchs micro-rubans existantes présentent des bandes passantes très étroites. satisfactory for the application in question. The allocated X band is an innovative feature of this antenna because existing micro-tape patch antennas have very narrow bandwidths.
La figure 5 illustre la distribution des champs dans des divers points au niveau de
Figure imgf000006_0001
Figure 5 illustrates the distribution of fields in various points at the level of
Figure imgf000006_0001
l'élément de rayonnement. the radiation element.
La figure 6 illustre les diagrammes de rayonnement de l'antenne muitieouche aux fréquencesFigure 6 illustrates the radiation patterns of the Muitieouche antenna at frequencies
8.38GHz, 9.91GHz, 11.03GHz et 11.74GHz dans les deux plans Le rayonnement est
Figure imgf000006_0002
8.38GHz, 9.91GHz, 11.03GHz and 11.74GHz in both planes The radiation is
Figure imgf000006_0002
relativement stable sur toute la bande de fréquence. Nous remarquons un comportement omnidirectionnel dans un sens et directive dans l'autre sens presque stable sur la bande de fréquence étudiée. Un comportement directive dans un plan principal et omnidirectionnel dans l'autre, voir directive, ce qui aurait pour conséquence une bonne couverture. relatively stable over the entire frequency band. We notice an omnidirectional behavior in one direction and direction in the other almost stable direction over the studied frequency band. Directive behavior in one main plane and omnidirectional in the other, see directive, which would result in good coverage.

Claims

REVENDICATIONS
1. Une antenne microruban multicouche réalisée avec des fentes composée de 4 diélectriques : RT/Duroid 5880, Mousse, Ultralarn 2000, FR4 époxy, dédiée pour les télévisions par satellites et principalement dans la bande X avec : 1. A multilayer microstrip antenna made with slots composed of 4 dielectrics: RT / Duroid 5880, Foam, Ultralarn 2000, FR4 epoxy, dedicated for satellite TVs and mainly in the X band with:
• Une géométrie comme suit :  • Geometry as follows:
- Une zone (1) constituée d'un substrat RT/Duroid®5880 de permittivité
Figure imgf000007_0004
contenant sur la surface supérieure un patch rectangulaire
- An area (1) consisting of a substrate RT / Duroid® 5880 of permittivity
Figure imgf000007_0004
containing on the upper surface a rectangular patch
- Une zone (2) constituée d'un substrat Mousse (Rohacelle®51 ) de permittivité
Figure imgf000007_0001
7 et contenant sur la surface supérieure un patch rectangulaire
- An area (2) consisting of a substrate Mousse (Rohacelle®51) permittivity
Figure imgf000007_0001
7 and containing on the upper surface a rectangular patch
Une zone (3) présente un plan de masse complet avec une fente rectangulaire au milieu. An area (3) has a complete ground plane with a rectangular slot in the middle.
- Une zone (4) constituée d'un substrat Ultralam®2000 de permittivité
Figure imgf000007_0002
- An area (4) consisting of an Ultralam® 2000 permittivity substrate
Figure imgf000007_0002
Une zone (5) constituée d'un substrat FR4_epoxy de permittivité An area (5) consisting of a substrate FR4_epoxy of permittivity
Figure imgf000007_0003
contenant une ligne nucroruban.
Figure imgf000007_0003
containing a nucroruban line.
• Les permittivités εr sont choisies de telle sorte qu'elle nous donne un meilleur rendement et une grande largeur de la bande de fréquence.  • The εr permittivities are chosen in such a way that it gives us a better efficiency and a greater width of the frequency band.
• Une alimentation avec une ligne microruban et un seul accès via un connecteur SMA coaxial.  • A power supply with a microstrip line and a single access via a coaxial SMA connector.
• Une dimension de surface 21.25x22.25mm2. • A surface dimension of 21.25x22.25mm 2 .
2. Une antenne mieroruban multicouche selon la revendication 1 caractérisée, en ce qu'elle présente un coefficient de réflexion de 8,06GHZ à 11,95GHz nécessaire à son fonctionnement dans la bande X utilisée pour les télévisions par satellite. 2. A multilayer microprobe antenna according to claim 1, characterized in that it has a reflection coefficient of 8.06GHZ at 11.95GHz necessary for its operation in the X-band used for satellite television.
3. Une antenne rnicroruban multicouche selon les revendications 1 et 2, caractérisée en ce qu'elle un gain qui atteint 5dB. une bonne adaptation d'entrée pour la bande de fréquence de taux d'onde stationnaire inférieure à 2. 3. A multilayer microrubar antenna according to claims 1 and 2, characterized in that it has a gain of 5 dB. good input matching for the stationary waveband frequency band less than 2.
4. Une antenne microruban multicouche selon les revendications 1 et 2, caractérisée en ce qu'elle a des ouvertures du rayonnement qui convergent avec les exigences des normes internationales IEEE pour les télévisions par satellites dans la bande X. A multilayer microstrip antenna according to claims 1 and 2, characterized in that it has radiation apertures which converge with the requirements of the IEEE international standards for X-band satellite television.
PCT/MA2017/000006 2016-03-07 2017-03-07 New multilayer microstrip antenna for x-band satellite television WO2017155379A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MA38890 2016-03-07
MA38890A MA38890B1 (en) 2016-03-07 2016-03-07 Original multilayer micro-ribbon antenna for x-ray satellite TVs

Publications (1)

Publication Number Publication Date
WO2017155379A1 true WO2017155379A1 (en) 2017-09-14

Family

ID=59363196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MA2017/000006 WO2017155379A1 (en) 2016-03-07 2017-03-07 New multilayer microstrip antenna for x-band satellite television

Country Status (2)

Country Link
MA (1) MA38890B1 (en)
WO (1) WO2017155379A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109244654A (en) * 2018-08-20 2019-01-18 中国电力科学研究院有限公司 A kind of TV interference measurement paster antenna, TV interference measuring device and method
CN111200182A (en) * 2018-11-20 2020-05-26 诺基亚技术有限公司 Electrochromic reflective array antenna
CN113764877A (en) * 2020-06-04 2021-12-07 Tdk株式会社 Antenna device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2482383A2 (en) * 2011-04-19 2012-08-01 Huawei Technologies Co., Ltd. Microstrip antenna

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2482383A2 (en) * 2011-04-19 2012-08-01 Huawei Technologies Co., Ltd. Microstrip antenna

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ROWE W S T ET AL: "REDUCTION OF BACKWARD RADIATION FOR CPW FED APERTURE STACKED PATCH ANTENNAS ON SMALL GROUND PLANES", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 51, no. 6, 1 June 2003 (2003-06-01), pages 1411 - 1413, XP001166464, ISSN: 0018-926X, DOI: 10.1109/TAP.2003.812250 *
SOUFIAN LAKRIT ET AL: "Engineering Science and Technology Review Design on X-band Wideband and High-gain Multi-layer Microstrip Antenna", JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY REVIEW, 1 January 2014 (2014-01-01), pages 176 - 179, XP055395977, Retrieved from the Internet <URL:https://pdfs.semanticscholar.org/e4d2/8605ed2db6858511029f64f930d4bc50f625.pdf> *
SUHONG KWON ET AL: "Compact size dual-polarized diversity microstrip antenna for IMT-2000 base-station", IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM. 2001 DIGEST. APS. BOSTON, MA, JULY 8 - 13, 2001; [IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM], NEW YORK, NY : IEEE, US, 8 July 2001 (2001-07-08), pages 38 - 41vol.2, XP032404541, ISBN: 978-0-7803-7070-8, DOI: 10.1109/APS.2001.959616 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109244654A (en) * 2018-08-20 2019-01-18 中国电力科学研究院有限公司 A kind of TV interference measurement paster antenna, TV interference measuring device and method
CN109244654B (en) * 2018-08-20 2022-09-27 中国电力科学研究院有限公司 Patch antenna for television interference measurement, television interference measurement device and method
CN111200182A (en) * 2018-11-20 2020-05-26 诺基亚技术有限公司 Electrochromic reflective array antenna
CN111200182B (en) * 2018-11-20 2023-09-19 诺基亚技术有限公司 Electrochromic reflective array antenna
CN113764877A (en) * 2020-06-04 2021-12-07 Tdk株式会社 Antenna device
CN113764877B (en) * 2020-06-04 2024-03-08 Tdk株式会社 Antenna device

Also Published As

Publication number Publication date
MA38890B1 (en) 2018-05-31
MA38890A1 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
US8466846B1 (en) Ultra wide band balanced antipodal tapered slot antenna and array with edge treatment
Ojaroudiparchin et al. 8× 8 planar phased array antenna with high efficiency and insensitivity properties for 5G mobile base stations
Sun et al. Dual-polarized multi-resonance antennas with broad bandwidths and compact sizes for base station applications
KR20110042031A (en) Wideband high gain dielectric notch radiator antenna
Peng et al. High performance 5G millimeter-wave antenna array for 37–40 GHz mobile application
Prasad et al. Design of compact Ku band microstrip antenna for satellite communication
EP3843202B1 (en) Horn for ka dual-band satellite antenna with circular polarisation
WO2017155379A1 (en) New multilayer microstrip antenna for x-band satellite television
Ojaroudiparchin et al. Low-cost planar mm-Wave phased array antenna for use in mobile satellite (MSAT) platforms
Chiau et al. A compact four‐element diversity‐antenna array for PDA terminals in a MIMO system
Syrytsin et al. Circularly polarized planar helix phased antenna array for 5G mobile terminals
Mall et al. Millimeter-wave proximity-coupled microstrip antenna on an extended hemispherical dielectric lens
KR100669262B1 (en) Ultra-Wide Band CPW Antenna Using a Coplanar Waveguide Impedance Transformer
Honari et al. Aperture-coupled multi-layer broadband ring-patch antenna array
WO2017171532A2 (en) Original multilayer microstrip antenna for x-band satellite televisions
Elsheakh et al. Ultra-wide-bandwidth (UWB) microstrip monopole antenna using split ring resonator (SRR) structure
Rahman et al. A tuning fork-shaped microstrip patch antenna for X-band satellite and radar applications
Moghaddam et al. Ultra-wideband millimeter-wave bowtie antenna
EP1188202A1 (en) Device for transmitting and/or receiving signals
Ghaffarian et al. A quadrifilar helix antenna using low cost planar feeding circuit
WO2017155378A1 (en) New 5-point-star antenna with two simultaneous or alternate operating modes in the x-band and ku-band ranges for preventive purposes in road traffic
Madiawati et al. Design and implementation of mobile antenna VSAT with microstrip array based at Ku Band Frequency
Dastkhosh et al. K/Ka slotted stacked patch antenna and active array antenna design for a 5G/6G satellite mobile communication system
Wang et al. Planar high-gain antipodal linearly tapered slot antenna for passive millimeter-wave focal plane array imaging
Dhakad et al. Design of a miniaturized microstrip patch antenna for triple-band operation in X, Ku and K band with band-notch characteristics

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17740494

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17740494

Country of ref document: EP

Kind code of ref document: A1