WO2017155185A1 - Method for manufacturing coated porous material, coated porous material and electrode comprising coated porous material - Google Patents

Method for manufacturing coated porous material, coated porous material and electrode comprising coated porous material Download PDF

Info

Publication number
WO2017155185A1
WO2017155185A1 PCT/KR2016/014214 KR2016014214W WO2017155185A1 WO 2017155185 A1 WO2017155185 A1 WO 2017155185A1 KR 2016014214 W KR2016014214 W KR 2016014214W WO 2017155185 A1 WO2017155185 A1 WO 2017155185A1
Authority
WO
WIPO (PCT)
Prior art keywords
coated
porous material
carbon
coated porous
porous substrate
Prior art date
Application number
PCT/KR2016/014214
Other languages
French (fr)
Korean (ko)
Inventor
홍순형
류호진
케밥사렘야
이빈
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2017155185A1 publication Critical patent/WO2017155185A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material

Definitions

  • the present invention relates to a method of making a coated porous material, a coated porous material and an electrode comprising the coated porous material.
  • supercapacitors have high power density, fast charging and discharging speed, and long life, which are essential technologies for the development of the electronics industry.
  • Supercapacitors are mainly divided into pseudocapacitors that use carbon-based materials and exhibit high energy density using electrical double layer capacitors (EDLC) and metal oxide materials using high specific surface areas thereof.
  • EDLC electrical double layer capacitors
  • hybrid supercapacitors combining the advantages of the two supercapacitors has been extensively conducted, but it is limited to the direction of maximizing the physical properties using carbon-based nanomaterials and nanometal oxides. There is a bunch.
  • Supercapacitors are expanding into areas such as communication equipment, automotive navigation systems, black box memory backup, solar street lights, wind power generation, emergency lights and hybrid electric vehicles, but the capacity per unit weight of electrodes using activated carbon is still Is a key challenge to be addressed in the future, which is significantly lower than that of conventional metal oxides and conductive polymers. Accordingly, by producing a porous material containing a large amount of mesopores in which activated carbon is easy to penetrate the electrolyte, it is possible to further improve the performance of the field being applied, inexpensive to maintain a wide range of use, and maintain high performance It is necessary to develop supercapacitor technology.
  • the present invention is to solve the above-mentioned problems, an object of the present invention, a method for producing a coated porous material that can be produced in a simple and environmentally friendly method of electrode material maintaining high capacitance and cycle stability, coated It is to provide an electrode comprising a porous material and a coated porous material.
  • a method of manufacturing a porous substrate And coating at least one material selected from the group consisting of a metal, a metal oxide, a ceramic polymer, and a carbon material on the porous substrate, wherein the porous substrate includes a crystalline polymer and an amorphous polymer.
  • a method of manufacturing a porous substrate And coating at least one material selected from the group consisting of a metal, a metal oxide, a ceramic polymer, and a carbon material on the porous substrate, wherein the porous substrate includes a crystalline polymer and an amorphous polymer.
  • the step of preparing the porous substrate according to one side preparing a composite solution containing a polymer precursor; Forming the porous substrate using the composite solution; And heat treating the porous substrate.
  • the complex solution according to one side may be to include at least one of starch and organic acid.
  • the viscosity of the composite solution may be 50 cp to 1,000 cp.
  • a porous substrate comprising a crystalline polymer and an amorphous polymer; And at least one material selected from the group consisting of metals, metal oxides, ceramic polymers, and carbon materials, coated on the porous substrate.
  • the porous substrate according to one side may be at least any one selected from the group consisting of fibers, thin films or bulk structures.
  • the carbon material according to one side includes at least one selected from the group consisting of graphite, graphene, graphene oxide, graphite, carbon nanorods, carbon fibers, carbon nanotubes, carbon black, activated carbon and fullerene,
  • the at least one coated material may be at least one selected from the group consisting of particles, fibers, and flakes.
  • the specific surface area of the porous substrate according to one side may be 100 m 2 / g to 2,000 m 2 / g, and the pore volume per unit mass of the porous substrate may be 0.01 cm 3 / g to 5 cm 3 / g.
  • the pore size of the coated porous material according to one side may be from 0.1 nm to 10,000 nm.
  • the coated material of the coated porous material according to one side may be from 0.01% to 30% by weight.
  • an electrode comprising the coated porous material according to the second aspect.
  • a method of manufacturing a coated porous material, an electrode including a coated porous material, and a coated porous material may prepare an environmentally friendly coated porous material that is environmentally friendly and contains a large amount of mesopores. have.
  • the specific surface area is large, so that penetration of the electrolyte is easy, and the storage capacity can be improved.
  • 1 is a flow chart showing the manufacturing process of the coated porous material according to an embodiment of the present invention.
  • FIG. 2 is a flow chart showing the step of preparing the porous substrate of FIG.
  • FIG. 3 is a flow chart showing the detailed steps of the material coating step on the porous substrate of FIG.
  • FIG. 4 shows a coated porous material according to one embodiment of the invention.
  • FIG. 5 is a microstructure image of a porous carbon fiber according to an embodiment of the present invention (a is a carbon fiber whole image, b is an enlarged view of a, c is an enlarged view of b, d is an image after heat treatment).
  • FIG. 6 is a scanning electron micrograph of the metal oxide coated porous carbon fiber according to the immersion coating concentration according to an embodiment of the present invention.
  • FIG. 7 is a scanning electron microscope image after heat treatment of the metal oxide coated porous carbon fiber according to the immersion coating time according to an embodiment of the present invention.
  • FIG. 8 is a photograph showing the production of a three-electrode system electrochemical cell according to an embodiment of the present invention.
  • FIG. 9 is a graph showing the supercapacitor characteristics of the metal oxide coated porous carbon fiber according to the immersion coating time according to an embodiment of the present invention.
  • FIG. 10 is a graph showing the cycle stability results of the hybrid supercapacitor according to the embodiment of the present invention.
  • polymer means a large molecule having a molecular weight of 10,000 or more, and means a form in which the same unit is repeatedly repeated mainly by chemical bonding.
  • electrospinning refers to a method of extracting nano or micro fibers by applying a high voltage electric field to a polymer material.
  • the term "dip coating” refers to a coating method in which a coating material is dipped in a paint and then dried, and in the present invention, a porous substrate is composed of a metal, a metal oxide, a ceramic polymer, and a carbon material. It means a method of dipping for a predetermined time in a solution in which the precursor of at least one material selected from the dissolved.
  • a method of manufacturing a porous substrate And coating at least one material selected from the group consisting of a metal, a metal oxide, a ceramic polymer, and a carbon material on the porous substrate, wherein the porous substrate includes a crystalline polymer and an amorphous polymer.
  • a method of manufacturing a porous substrate And coating at least one material selected from the group consisting of a metal, a metal oxide, a ceramic polymer, and a carbon material on the porous substrate, wherein the porous substrate includes a crystalline polymer and an amorphous polymer.
  • Method for producing a coated porous material can produce an environmentally friendly coated porous material that is environmentally friendly and contains a large amount of mesopores.
  • the specific surface area is large, so that penetration of the electrolyte is easy, and the storage capacity can be improved.
  • FIG. 1 is a flow chart showing the manufacturing process of the coated porous material according to an embodiment of the present invention.
  • the method for producing a coated porous material according to an embodiment of the present invention the step of preparing a porous substrate (S100) and the porous substrate, metal, metal oxide, ceramic polymer and carbon material It may include the step (S200) of coating at least one material selected from the group consisting of.
  • FIG. 2 is a flowchart showing detailed steps of manufacturing the porous substrate of FIG. 1.
  • the detailed step of preparing a porous substrate according to an embodiment of the present invention preparing a composite solution containing a polymer precursor (S110); Forming a porous substrate using the composite solution (S120); And heat treating the porous substrate (S130).
  • the preparing of the composite solution containing the polymer precursor (S110) may be to prepare a composite solution including at least one selected from the group consisting of starch and organic acids in a solvent.
  • the porous substrate may include a crystalline polymer and an amorphous polymer.
  • the crystalline polymer and the amorphous polymer may include starch.
  • the complex solution may include at least one of starch and an organic acid.
  • it may be prepared by adding an organic acid to a starch solution prepared by dissolving starch in a solvent.
  • Starch a natural polymer, has a crystalline and amorphous structure alternately stacked in nano size. In order to contain a large amount of mesopores in the carbon fiber after electrospinning and finally carbonized such starch, a gelatinization process of starch is required. Therefore, the starch may be a gelled starch solution which is subjected to gelation while heating at a temperature of 60 ° C. to 150 ° C. and cooling to room temperature.
  • the solvent may be used without limitation as long as the solvent can dissolve the crystalline polymer and the amorphous polymer, and the solvent may include an organic solvent or an inorganic solvent.
  • the solvent is chloroform (CHCl 3 ), chlorobenzene, water, acetic acid, acetone, acetonitrile, aniline, benzene, benzonitrile, benzyl alcohol, bromobenzene, bromoform, 1-butanol, 2- Butanol, carbon disulfide, carbon tetrachloride, chlorobenzene, chloroform, cyclohexane, cyclohexanol, decalin, dibromethane, diethylene glycol, diethylene glycol ether, diethyl ether, diglyme, dimethoxymethine, N, N-dimethylformamide, ethanol, ethylamine, ethylbenzene, ethylene glycol ether, ethylene glycol, ethylene oxide,
  • starch as a biodegradable polymer raw material has been highlighted because of its excellent biodegradability, low price compared to other raw materials, abundant resources and easy supply.
  • Starch has a big advantage in that it is a non-toxic natural raw material that can be supplied indefinitely as long as there is a green plant on the earth, compared to petroleum resources which are in danger of being depleted.
  • Starch is insoluble in water and has a property of precipitation, but soluble starch can be prepared by steaming at high pressure or treating with dilute acid to cause some hydrolysis.
  • the starch may include a polysaccharide to which a large amount of D-glucose (glucose) is condensed and connected.
  • the starch may be amylose, amylopectin, fructan, gellan, glucan, glycogen, pullulan, dextran, cellulose, met, xylan, lignin, araban, galactan, galacturonan, alginate-based Compounds, chitin, chitosan, glucurono xylan, arabinoxylan, xyloglucan, glucomannan, pectic acid, pectin, arabinogalactan, carrageenan, agar, glycosaminoglycan, gum arabic, traga It may include, but is not limited to, at least one polysaccharide selected from the group consisting of gacant gum, gati gum, karaya gum, locust bean gum, and galactomannan. Even
  • Starches that can be used in the present invention are, for example, seeds, roots, stems, plants, including potatoes, sweet potatoes, corn, wheat, rice, cassava, tapioca, barley, sorghum, peas, meaning mixtures of amylose and amylopectin.
  • the fruit may also mean an extractable polymer, but may not be limited thereto.
  • the polysaccharides are chemically modified, in particular by urea or urethane groups, or by hydrolysis, oxidation, esterification, etherification, sulphation, phosphate, amination, amidation or alkylation, or by some of these modifications. It can be chemically modified.
  • the starch may be from 0.01% to 50% by weight of the starch composite solution.
  • the starch is less than 0.01% by weight of the starch composite solution, the surface uniformity is lowered when the carbon fiber is formed, and electrical conductivity and ion conductivity are lowered.
  • the starch is more than 50% by weight, the energy density as an electrode may be reduced. .
  • the method of dissolving the starch may be used without limitation as long as the starch may be uniformly dispersed in the solvent.
  • the starch may be performed by ultrasonication or stirring.
  • Viscosity enhancing polymers added to add viscosity include, for example, polyviniyl alcohol, collagen, gelatin, chitosan, alginate, hyaluronic acid, Dextran, poly (lactic acid), polyglycolic acid (poly (glycolic acid): PGA), poly (lactic-co-glycolic acid): poly (lactic-co-glycolic acid): PLGA ], Poly- ⁇ - (caprolactone) [poly ( ⁇ -carprolactone)], polyanhydride [poly (anhydrides)], polyorthoesters, polyethylene glycol [poly (ethyleneglycol)], polyurethane ), Polyacrylic acid, cellulose acetate, cellulose nitrate, regenerated cellulose, regernerated, perfluorosulfonic acid polymer, polyacrylonitrile, Polyetherimides,
  • the viscosity improving polymer may be from 0.01% by weight to 50% by weight in the starch composite solution. If the viscosity-improving polymer is less than 0.01% by weight of the starch composite solution, the viscosity may be low, so that starch fibers may not be formed by the electrospinning method, and if it is more than 50% by weight, electrospinning may not be performed well.
  • the starch and the viscosity-improving polymer may be used by mixing in a ratio of 5: 5 to 8: 2.
  • the method of dissolving the viscosity improving polymer may be used without limitation as long as the viscosity improving polymer is uniformly dispersed in the solution.
  • the viscosity improving polymer may be performed by ultrasonication or stirring. Can be.
  • the organic acid may be added to favor heat resistance and porosity for high temperature heat treatment, and may improve the rate of carbonization.
  • the organic acid may be P-toluenesulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, alkylbenzenesulfonic acid, and P-aminobenzenesulfonic acid. It may include at least any one selected from the group consisting of (P-aminobenzenesulfonic acid).
  • the organic acid may be from 0.01% to 20% by weight of the starch composite solution.
  • the organic acid is less than 0.01% by weight of the starch composite solution, it is difficult to porous the carbon fiber, and when the organic acid is more than 20% by weight, the carbon fiber may be cut and formed, thereby lowering the yield of carbon fiber.
  • Forming a porous substrate using the composite solution (S120) may be by electrospinning.
  • the composite solution containing starch may be put in a syringe to apply a high voltage to spin through a spinning nozzle to produce felt in the form of microfibers.
  • the viscosity of the complex solution may be from 50 cp to 1,000 cp. If the viscosity of the complex solution is less than 50 cp starch fiber is difficult to spin, if more than 1,000 cp it is difficult to form a porous substrate.
  • the electrospinning 1 kV to 100 kV, 1 kV to 90 kV, 1 kV to 80 kV, 1 kV to 70 kV, 1 kV to 60 kV, 1 kV to 50 kV, 1 kV to 40 kV, 1 kV to 30 kV, 1 kV to 20 kV, 1 kV to 15 kV, 5 kV to 100 kV, 5 kV to 90 kV, 5 kV to 80 kV, 5 kV to 70 kV, 5 kV to 60 kV, 5 kV to 50 kV , 5 kV to 40 kV, 5 kV to 30 kV, 5 kV to 25 kV, 5 kV to 20 kV, 5 kV to 15 kV, 5 kV to 10 kV, or 10 kV to 15 kV have.
  • Removing the solvent may be performed by evaporation, vacuum, and heat treatment.
  • Heat-treating the porous substrate (S130) may be performed for 5 seconds to 48 hours at a temperature of 200 °C to 1,800 °C.
  • the porous substrate may be incompletely carbonized when the heat treatment temperature is less than 200 ° C. and the heat treatment time is less than 5 seconds, and the porous substrate may be deformed when the heat treatment temperature is greater than 1800 ° C. and the heat treatment time is more than 48 hours.
  • the heat treatment condition may include one selected from the group consisting of air, vacuum, nitrogen, argon, hydrogen, hydrogen dioxide, methane, ethylene, butane, propane, and combinations thereof.
  • the prepared porous substrate may be heat treated under an oxygen atmosphere and carbonized with vacuum or an inert gas at a temperature range of 200 ° C.
  • starch by the gelatinization process of the starch may be electrospun and electrospun to finally convert the amorphous structure in the starch into mesopores through a carbonization process to form a large amount of mesopores in the carbon fiber. .
  • FIG. 3 is a flow chart showing the detailed steps of the material coating step on the porous substrate of FIG.
  • Forming a coating solution by dissolving a precursor of a material in a solvent (S210), dissolving the precursor by dissolving the precursor of at least one material selected from the group consisting of metals, metal oxides, ceramic polymers and carbon materials in a solvent.
  • a solvent S210
  • dissolving the precursor by dissolving the precursor of at least one material selected from the group consisting of metals, metal oxides, ceramic polymers and carbon materials in a solvent.
  • the solvent may be used without limitation as long as it is a solvent capable of dissolving the metal oxide precursor, and may include an organic solvent or an inorganic solvent.
  • the solvent is chloroform (CHCl 3 ), chlorobenzene, water, acetic acid, acetone, acetonitrile, aniline, benzene, benzonitrile, benzyl alcohol, bromobenzene, bromoform, 1-butanol, 2- Butanol, carbon disulfide, carbon tetrachloride, chlorobenzene, chloroform, cyclohexane, cyclohexanol, decalin, dibromethane, diethylene glycol, diethylene glycol ether, diethyl ether, diglyme, dimethoxymethine, N, N-dimethylformamide, ethanol, ethylamine, ethylbenzene, ethylene glycol ether, ethylene glycol, ethylene oxide, formaldehyde
  • the metal may be any material as long as it has an electrical conductivity. For example, at least one selected from the group consisting of gold, silver, copper, nickel, palladium, platinum, iron, tungsten, molybdenum, zinc, and aluminum.
  • the metal oxide precursor may include a precursor of a metal oxide for manufacturing a pseudocapacitor.
  • the metal oxide precursor in the group consisting of MnO 2 , Fe 3 O 4 , Fe 2 O 3 , SnO 2 , RuO 2 , V 2 O 5 , NiO, IrO 2 , Co 2 O 3 , Co 3 O 4 and CoO It may include at least any one selected from the group consisting of chlorides, nitrates, sulfates, hydroxides, acetates and isoprooxide of at least one metal oxide selected.
  • precursors include FeCl 2 , FeCl 3 , FeCl 3 6H 2 O, FeCl 2 4H 2 O, Fe (ClO 4 ) 3 H 2 O, Fe (NO 3) 3, Fe (NO 3 ) 3 9H 2 O, Fe 2 (SO 4) 3, FeSO 4, FeSO 4 7H 2 O, (NH 4) 2Fe (SO 4) 2 6H 2 O, NH 4 Fe (SO 4 ) 2 12H 2 O, FeOOH, Fe (CO 2 CH 3 ) 2 And may include, but are not limited to.
  • the ceramic polymer may be a ceramic embedded in the polymer.
  • the polymer used may be a thermoplastic polymer having a property of softening when heat is applied. It may be a surface-part embedded ceramic polymer of a ceramic crystal in which only a part of ceramic is embedded in the polymer surface portion, or may be a ceramic crystal internally uniformly embedded ceramic polymer having a ceramic crystal coating surface layer.
  • the carbon material may include at least one selected from the group consisting of graphite, graphene, graphene oxide, graphite, carbon nanorods, carbon fibers, carbon nanotubes, carbon black, activated carbon, and fullerenes.
  • Dissolution method of the precursor of at least one material selected from the group consisting of the metal, metal oxide, ceramic polymer and carbon material at least one selected from the group consisting of the metal, metal oxide, ceramic polymer and carbon material.
  • the precursor of the material can be uniformly dispersed in the solvent, it can be used without limitation, for example, may be performed by ultrasonication or stirring.
  • the concentration of the coating solution may include up to 0.001 M saturated state, for example, may be from 0.01 M to 2 M. As the concentration of the coating solution approaches the saturation state, the porosity of the substrate may be accelerated. It can be maintained in a stable state up to a high concentration through the diversification of at least one material selected from the group consisting of metals, metal oxides, ceramic polymers and carbon materials.
  • Forming a coated porous material by coating a material on the porous substrate using a coating liquid (S220) is immersed in the coating liquid to the porous substrate is selected from the group consisting of the metal, metal oxide, ceramic polymer and carbon material Coating at least one material to form a coated porous material.
  • the coating may include, for example, doping, immersion coating and deposition.
  • the deposition may, for example, include sputtering.
  • Coating the porous substrate on the coating solution may be performed for 1 second to 48 hours.
  • the coating time is less than 1 second, the precursor of at least one material selected from the group consisting of metals, metal oxides, ceramic polymers, and carbon materials is not sufficiently coated on the porous substrate, and when the coating time is more than 48 hours, By blocking the structure, at least one material selected from the group consisting of metals, metal oxides, ceramic polymers, and carbon materials may interfere with the movement of the electrolyte and cause cutting of the porous material.
  • Heat-treating the coated porous material (S230), the precursor of at least one material selected from the group consisting of metal, metal oxide, ceramic polymer and carbon material coated on the porous material is a metal, metal oxide, ceramic Phase change to polymer and carbon material.
  • the heat treatment may be performed for 5 seconds to 48 hours at a temperature of 200 °C to 1,800 °C.
  • the heat treatment condition may include one selected from the group consisting of air, vacuum, nitrogen, argon, hydrogen, hydrogen dioxide, methane, ethylene, butane, propane, and combinations thereof.
  • At least one material selected from the group consisting of the metal, the metal oxide, the ceramic polymer and the carbon material may be uniformly included in the porous substrate through a simple immersion coating method to be combined with the porous substrate. Accordingly, at least one material selected from the group consisting of metals, metal oxides, ceramic polymers, and carbon materials is coated on a porous substrate having a large specific surface area with a large amount of mesopores, thereby having a larger specific surface area. By forming more micropores on the surface of the porous substrate in the process of phase change through, it is possible to produce a coated porous material having a very large specific surface area.
  • a porous substrate comprising a crystalline polymer and an amorphous polymer; And at least one material selected from the group consisting of metals, metal oxides, ceramic polymers, and carbon materials, coated on the porous substrate.
  • the coated porous material according to an embodiment of the present invention is environmentally friendly and carbon fiber through electrospinning at least one material selected from the group consisting of metals, metal oxides, ceramic polymers and carbon materials and controlling the carbonization process At least one material selected from the group consisting of metals, metal oxides, ceramic polymers and carbon materials is coated on the porous material containing a large amount of average mesopores on the surface of the film to provide excellent electrochemical properties with high specific surface area and high storage capacity.
  • the coated porous material 100 is a metal, metal on the surface of the porous substrate 110, the plurality of pores 112 formed on the surface and the inside of the porous substrate 110 At least one material 120 selected from the group consisting of an oxide, a ceramic polymer, and a carbon material is coated.
  • the plurality of pores 112 allows easy penetration of oxygen and electrolyte.
  • the material 120 is uniformly included in the porous substrate 110 through the immersion coating method according to the manufacturing method is coupled to the porous substrate 110.
  • the porous substrate 110 may include at least one selected from the group consisting of fibers, thin films, or bulk structures.
  • the carbon material includes at least one selected from the group consisting of graphite, graphene, graphene oxide, graphite, carbon nanorods, carbon fibers, carbon nanotubes, carbon black, activated carbon, and fullerene, and the coated At least one of the materials may be at least one selected from the group consisting of particles, fibers, and flakes.
  • the specific surface area of the porous substrate 110 may be 100 m 2 / g to 2,000 m 2 / g.
  • the coated porous substrate precursor of at least one material selected from the group consisting of metals, metal oxides, ceramic polymers and carbon materials by the manufacturing method more fine on the surface of the porous substrate
  • the porous substrate 110 may be, for example, starch fiber. Electrospinning and carbonizing starch fibers can produce a porous carbon fiber containing a large amount of mesopores.
  • the pore 120 of the porous substrate 100 may have a size of 0.1 nm to 10,000 nm, and the pore volume per unit mass of the coated porous substrate 100 may be 0.01 cm 3 / g to 5 cm 3 / g. Can be.
  • Such pores are, for example, pores produced when carbonized starch fibers, and can maintain the shape of the porous carbon fibers stably in the meso pore size range and pore volume range, and increase the specific surface area. It is possible to increase the adsorption of at least one material selected from the group consisting of metal oxides, ceramic polymers and carbon materials.
  • At least one material 120 selected from the group consisting of the metal, the metal oxide, the ceramic polymer, and the carbon material in the coated porous material 100 may include 0.01 wt% to 30 wt%. If the material is less than 0.01% by weight does not affect the performance of the porous material, the energy density as an electrode is reduced, if more than 30% by weight may not only decrease the mechanical properties of the porous material but also open the porous material Metal oxides can interfere with the transport of the electrolyte by blocking the structure.
  • the metal oxide coated porous carbon fiber of the present invention may be prepared by a method of manufacturing a coated porous material according to an embodiment of the present invention.
  • an electrode comprising the coated porous carbon fiber according to the second aspect.
  • the electrode according to an embodiment of the present invention may include at least one selected from the group consisting of an electrode for a hybrid supercapacitor, a secondary battery anode material, a fuel cell electrode, and a catalyst carrier.
  • an electrode for a hybrid supercapacitor can exhibit a complex function of a pseudo capacitor and an electric double layer capacitor, and has both an energy density and a high power density suitable for application to a high capacity hybrid energy storage device. It has high specific surface area, high conductivity, and can be used as a high energy electrode material such as supercapacitor.
  • the electrode for a hybrid supercapacitor when coated with Co 3 O 4 as a metal oxide, and has an aqueous solution of 1 MH 2 SO 4 electrolyte, it may have a capacity of 130 F / g or more, and the initial charge and discharge efficiency is 90%. After the 5,000 charge and discharge cycles, the discharge capacity retention rate can be maintained at 90% or more.
  • a metal oxide having high performance such as RuO 2 , the storage capacity can be further improved.
  • porous material of the present invention can be applied not only to electrode materials but also to various filter materials, and thus has great industrial applicability.
  • the electrospinning voltage was set to 18 kV and a 15 cm diameter drum collector was rotated at 500 rpm to collect starch fibers.
  • the distance from the drum collector to the electrospinning tip was 15 cm and the solution was set to be fed at a rate of 5 ⁇ l / min.
  • the starch fibers produced through the 48-hour electrospinning process were subjected to 250 ° C. 3 hours (stabilization heat treatment) in air, 1500 ° C. 1 hour (carbon heat treatment) in vacuum, 800 ° C. 30 minutes (activation heat treatment) in a CO 2 atmosphere, and Porous carbon fibers were prepared by sequentially performing heat treatment at 250 ° C. for 1 hour (functionalized heat treatment) in air.
  • 5 is a microstructure image of a porous carbon fiber according to an embodiment of the present invention (a is a carbon fiber whole image, b is an enlarged view of a, c is an enlarged view of b, d is an image after heat treatment).
  • Cobalt (II) acetate tetrahydrate Cobalt (II) acetate tetrahydrate (Co (C 2 H 4 O 2 ) 2 )
  • the immersion coating solution was 0.025 M, 0.1 M, 0.2, respectively.
  • FIG. 6 is a scanning electron micrograph of the metal oxide coated porous carbon fiber according to the immersion coating concentration according to an embodiment of the present invention. As shown in Figure 6, as the concentration of the immersion coating solution thickened from 0.025 M to 0.4 M, it can be seen that the fiber tends to change to porous. Through the scanning electron microscope is Co 3 O can determine the coating whether or not 4 but, microstructure analyzed by Co 3 O 4 coated with a pseudo capacitor (Co 3 O in conventional electrical double-layer supercapacitor (porous carbon fiber) of In addition to adding the function of 4 ), it was confirmed that it affects the formation of porous fibers.
  • a pseudo capacitor Co 3 O in conventional electrical double-layer supercapacitor (porous carbon fiber)
  • the concentration of the immersion coating solution is fixed to 0.2 M, and the porous carbon fibers are immersed for 5 minutes, 20 minutes, 1 hour and 2 hours, respectively, and then vacuumed as above.
  • the solvent was removed at 80 ° C. for 8 hours, and the microstructure was observed after phase change of the cobalt oxide precursor to cobalt oxide at 450 ° C. for 2 hours.
  • FIG. 7 is a scanning electron microscope image after heat treatment of the metal oxide coated porous carbon fiber according to the immersion coating time according to an embodiment of the present invention. Referring to FIG. 7, as in the case where the concentration of the immersion solution was diversified, the tendency of porosity tended to increase with time, and the microstructures were observed to be thinner and cut during 2 hours of immersion.
  • Table 1 summarizes the specific surface area and the pure carbon nanofibers (comparative example) after the heat treatment according to the immersion time in the immersion coating solution of the present invention.
  • the metal oxide-coated porous carbon fiber produced by the electrospinning method can be seen that it can be used as an electrode of the hybrid supercapacitor independently without adding a conductive material and a binder.
  • 8 is a photograph showing the production of a three-electrode system electrochemical cell according to an embodiment of the present invention.
  • a three-electrode electrochemical cell was prepared in the same manner as in FIG. 8 using the metal oxide-coated porous carbon fiber prepared above.
  • Graphite rods (carbon rods) were used as counter electrodes, Ag / AgCl standard electrodes were used as reference electrodes, and measurement was performed using an aqueous electrolyte of 1 MH 2 SO 4 .
  • FIG. 9 is a graph showing the supercapacitor characteristics of the metal oxide coated porous carbon fiber according to the immersion coating time according to an embodiment of the present invention. It is a graph measuring the specific capacitance of the electrode using a galvanostatic charge and discharge method.
  • the pure carbon nanofibers before the immersion coating showed a specific capacity of 35 F / g
  • the embodiment of the present invention which was immersed in a 0.2 M solution for 1 hour, performed 137 F / g.
  • FIG. 10 is a graph showing the cycle stability results of the hybrid supercapacitor according to the embodiment of the present invention.
  • the cycle stability of the hybrid supercapacitor manufactured through FIG. 10 was evaluated, and it was confirmed that the performance of 91% was maintained after 5,000 cycles. This is a high periodic stability that can not be seen in the pseudo capacitor, the hybrid supercapacitor manufactured through this result confirmed that the high periodic stability of the electric double layer supercapacitor and the high specific surface area of the pseudo capacitor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

The present invention relates to a method for manufacturing a coated porous material, a coated porous material, and an electrode comprising the coated porous material. The method for manufacturing a coated porous material according to an embodiment of the present invention includes: a step of preparing a porous substrate; and a step of coating, on the porous substrate, at least one material selected from the group consisting of a metal, a metal oxide, a ceramic polymer, and a carbon material, wherein the porous substrate includes a crystalline polymer and an amorphous polymer.

Description

코팅된 다공성 재료의 제조방법, 코팅된 다공성 재료 및 코팅된 다공성 재료를 포함하는 전극Process for preparing coated porous material, electrode comprising coated porous material and coated porous material
본 발명은 코팅된 다공성 재료의 제조방법, 코팅된 다공성 재료 및 코팅된 다공성 재료를 포함하는 전극에 관한 것이다.The present invention relates to a method of making a coated porous material, a coated porous material and an electrode comprising the coated porous material.
전기장치 수요의 증가 및 성능의 향상을 통해 배터리, 전지, 커패시터 등 에너지 저장장치에 대한 연구가 활발히 진행되고 있다. 이 중 슈퍼커패시터는 높은 출력 밀도와 빠른 충방전속도 및 긴 수명을 가지고 있어 전자기기 산업의 발달에 필수적인 기술이다. 슈퍼커패시터는 주로 탄소계 재료를 이용하고, 이의 높은 비표면적을 이용하는 전기이중충 커패시터(electrical double layer capacitor; EDLC) 및 금속 산화물 재료를 이용하여 높은 에너지밀도를 보이는 의사커패시터(pseudocapacitor)로 나뉜다. 또한, 두 슈퍼커패시터의 장점을 합친 하이브리드 슈퍼커패시터에 대한 연구가 광범위하게 진행되고 있으나, 이는 탄소계 나노소재 및 나노 금속 산화물을 이용하여 그 물성치를 최대화하는 방향에만 국한되어 있어, 실제 산업에 적용하는 데에는 무리가 있다. 슈퍼커패시터는 통신장비, 자동차용 네비게이션 시스템, 블랙박스의 메모리 백업, 태양광 가로등, 풍력 발전, 비상등, 하이브리드 전기 자동차 등으로 그 영역을 확장하고 있지만, 아직까지 활성탄소를 이용한 전극의 단위 무게당 용량은 기존의 금속 산화물과 전도성 폴리머의 값에 비해 상당히 낮은 수준으로 이를 향상시키는 것이 앞으로 해결해야 할 핵심적 과제이다. 이에 따라, 활성탄소가 전해질이 침투하기 용이한 메조포어를 다량으로 함유하는 다공성 재료를 제조하여, 응용되고 있는 분야의 성능을 더욱 향상시키고, 사용 영역의 확대를 위해 저렴하고, 고성능을 유지할 수 있는 슈퍼커패시터 기술 개발이 필요한 상황이다.Research on energy storage devices such as batteries, batteries, and capacitors is being actively conducted by increasing demand for electrical devices and improving performance. Among them, supercapacitors have high power density, fast charging and discharging speed, and long life, which are essential technologies for the development of the electronics industry. Supercapacitors are mainly divided into pseudocapacitors that use carbon-based materials and exhibit high energy density using electrical double layer capacitors (EDLC) and metal oxide materials using high specific surface areas thereof. In addition, research on hybrid supercapacitors combining the advantages of the two supercapacitors has been extensively conducted, but it is limited to the direction of maximizing the physical properties using carbon-based nanomaterials and nanometal oxides. There is a bunch. Supercapacitors are expanding into areas such as communication equipment, automotive navigation systems, black box memory backup, solar street lights, wind power generation, emergency lights and hybrid electric vehicles, but the capacity per unit weight of electrodes using activated carbon is still Is a key challenge to be addressed in the future, which is significantly lower than that of conventional metal oxides and conductive polymers. Accordingly, by producing a porous material containing a large amount of mesopores in which activated carbon is easy to penetrate the electrolyte, it is possible to further improve the performance of the field being applied, inexpensive to maintain a wide range of use, and maintain high performance It is necessary to develop supercapacitor technology.
본 발명은 상술한 문제점을 해결하기 위한 것으로, 본 발명의 목적은, 높은 축전용량과 주기 안정성을 유지하는 전극 소재를 간단하고 친환경적인 방법으로 제조할 수 있는 코팅된 다공성 재료의 제조방법, 코팅된 다공성 재료 및 코팅된 다공성 재료를 포함하는 전극을 제공하는 것이다.The present invention is to solve the above-mentioned problems, an object of the present invention, a method for producing a coated porous material that can be produced in a simple and environmentally friendly method of electrode material maintaining high capacitance and cycle stability, coated It is to provide an electrode comprising a porous material and a coated porous material.
그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.However, the problem to be solved by the present invention is not limited to the above-mentioned problem, another task that is not mentioned will be clearly understood by those skilled in the art from the following description.
제1 측면에 따르면, 다공성 기재를 제조하는 단계; 및 상기 다공성 기재에, 금속, 금속 산화물, 세라믹 고분자 및 탄소물질로 이루어진 군에서 선택되는 적어도 어느 하나의 물질을 코팅하는 단계;를 포함하고, 상기 다공성 기재는, 결정질 고분자 및 비정질 고분자를 포함하는 것인, 코팅된 다공성 재료의 제조방법을 제공한다.According to a first aspect, a method of manufacturing a porous substrate; And coating at least one material selected from the group consisting of a metal, a metal oxide, a ceramic polymer, and a carbon material on the porous substrate, wherein the porous substrate includes a crystalline polymer and an amorphous polymer. Provided are methods for preparing phosphorus, coated porous materials.
일측에 따른 상기 다공성 기재를 제조하는 단계는, 고분자 전구체를 포함하는 복합용액을 제조하는 단계; 상기 복합용액을 이용하여 상기 다공성 기재를 형성하는 단계; 및 상기 다공성 기재를 열처리하는 단계;를 포함할 수 있다.The step of preparing the porous substrate according to one side, preparing a composite solution containing a polymer precursor; Forming the porous substrate using the composite solution; And heat treating the porous substrate.
일측에 따른 상기 복합용액은, 녹말 및 유기산 중 적어도 어느 하나를 포함하는 것일 수 있다.The complex solution according to one side may be to include at least one of starch and organic acid.
일측에 따른 상기 복합용액을 이용하여 상기 다공성 기재를 형성하는 단계는 전기방사에 의하는 것이고, 상기 복합용액의 점도는 50 cp 내지 1,000 cp인 것일 수 있다.Forming the porous substrate using the composite solution according to one side is by electrospinning, the viscosity of the composite solution may be 50 cp to 1,000 cp.
일측에 따른 상기 다공성 기재 상에, 금속, 금속 산화물, 세라믹 고분자 및 탄소물질로 이루어진 군에서 선택되는 적어도 어느 하나의 물질을 코팅하는 단계는, 용매에, 금속, 금속 산화물, 세라믹 고분자 및 탄소물질로 이루어진 군에서 선택되는 적어도 어느 하나의 물질의 전구체를 용해시켜 코팅액을 형성하는 단계; 상기 코팅액을 이용하여 상기 다공성 기재 상에, 금속, 금속 산화물, 세라믹 고분자 및 탄소물질로 이루어진 군에서 선택되는 적어도 어느 하나의 물질을 코팅하여 코팅된 다공성 재료를 형성하는 단계; 및 상기 코팅된 다공성 재료를 열처리하는 단계;를 포함할 수 있다.Coating the at least one material selected from the group consisting of metals, metal oxides, ceramic polymers and carbon materials on the porous substrate according to one side, the solvent, metal, metal oxides, ceramic polymers and carbon materials Dissolving the precursor of at least one material selected from the group consisting of to form a coating solution; Coating at least one material selected from the group consisting of metals, metal oxides, ceramic polymers, and carbon materials using the coating solution to form a coated porous material; And heat treating the coated porous material.
제2 측면에 따르면, 결정질 고분자 및 비정질 고분자를 포함하는 다공성 기재; 및 상기 다공성 기재 상에 코팅된, 금속, 금속 산화물, 세라믹 고분자 및 탄소물질로 이루어진 군에서 선택되는 적어도 어느 하나의 물질을 포함하는, 코팅된 다공성 재료를 제공한다.According to a second aspect, a porous substrate comprising a crystalline polymer and an amorphous polymer; And at least one material selected from the group consisting of metals, metal oxides, ceramic polymers, and carbon materials, coated on the porous substrate.
일측에 따른 상기 다공성 기재는, 섬유, 박막 또는 벌크구조로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.The porous substrate according to one side may be at least any one selected from the group consisting of fibers, thin films or bulk structures.
일측에 따른 상기 탄소물질은, 흑연, 그래핀, 그래핀 산화물, 그래파이트, 탄소나노로드, 탄소섬유, 탄소나노튜브, 카본블랙, 활성탄소 및 풀러렌으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하고, 상기 코팅된 적어도 어느 하나의 물질은, 입자, 섬유 및 플레이크로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.The carbon material according to one side includes at least one selected from the group consisting of graphite, graphene, graphene oxide, graphite, carbon nanorods, carbon fibers, carbon nanotubes, carbon black, activated carbon and fullerene, The at least one coated material may be at least one selected from the group consisting of particles, fibers, and flakes.
일측에 따른 상기 다공성 기재의 비표면적은, 100 m2/g 내지 2,000 m2/g이고, 상기 다공성 기재의 단위 질량 당 기공부피는 0.01 cm3/g 내지 5 cm3/g인 것일 수 있다.The specific surface area of the porous substrate according to one side may be 100 m 2 / g to 2,000 m 2 / g, and the pore volume per unit mass of the porous substrate may be 0.01 cm 3 / g to 5 cm 3 / g.
일측에 따른 상기 코팅된 다공성 재료의 기공크기는 0.1 nm 내지 10,000 nm인 것일 수 있다.The pore size of the coated porous material according to one side may be from 0.1 nm to 10,000 nm.
일측에 따른 상기 코팅된 다공성 재료 중 상기 코팅된 물질은 0.01 중량% 내지 30 중량% 인 것일 수 있다.The coated material of the coated porous material according to one side may be from 0.01% to 30% by weight.
제3 측면에 따르면, 제2 측면에 따른 코팅된 다공성 재료를 포함하는 전극을 제공한다.According to a third aspect, there is provided an electrode comprising the coated porous material according to the second aspect.
본 발명의 일 실시예에 따른 코팅된 다공성 재료의 제조방법, 코팅된 다공성 재료 및 코팅된 다공성 재료를 포함하는 전극은, 환경 친화적이고 메조기공을 다량 함유하고 있는 친환경 코팅된 다공성 재료를 제조할 수 있다. 이는 전극 소재로 이용할 때 비표면적이 커서 전해질의 침투가 용이하고, 축전용량을 향상시킬 수 있다.According to an embodiment of the present invention, a method of manufacturing a coated porous material, an electrode including a coated porous material, and a coated porous material may prepare an environmentally friendly coated porous material that is environmentally friendly and contains a large amount of mesopores. have. When used as an electrode material, the specific surface area is large, so that penetration of the electrolyte is easy, and the storage capacity can be improved.
도 1은 본 발명의 일 실시예에 따른 코팅된 다공성 재료의 제조 과정을 나타내는 순서도이다.1 is a flow chart showing the manufacturing process of the coated porous material according to an embodiment of the present invention.
도 2는 도 1의 다공성 기재를 제조하는 단계를 나타내는 순서도이다.FIG. 2 is a flow chart showing the step of preparing the porous substrate of FIG.
도 3은 도 1의 다공성 기재 상에 물질 코팅 단계의 세부 단계를 나타내는 순서도이다.3 is a flow chart showing the detailed steps of the material coating step on the porous substrate of FIG.
도 4는 본 발명의 일 실시예에 따른 코팅된 다공성 재료를 나타내는 도면이다.4 shows a coated porous material according to one embodiment of the invention.
도 5는 본 발명의 실시예에 따른 다공성 탄소섬유의 미세조직 이미지이다 (a는 탄소섬유 전체 이미지, b는 a의 확대도, c는 b의 확대도, d는 열처리 후 이미지).5 is a microstructure image of a porous carbon fiber according to an embodiment of the present invention (a is a carbon fiber whole image, b is an enlarged view of a, c is an enlarged view of b, d is an image after heat treatment).
도 6은 본 발명의 실시예에 따른 침지코팅 농도에 따른 금속산화물 코팅된 다공성 탄소섬유의 주사전자현미경 사진이다.6 is a scanning electron micrograph of the metal oxide coated porous carbon fiber according to the immersion coating concentration according to an embodiment of the present invention.
도 7은 본 발명의 실시예에 따른 침지코팅 시간에 따른 금속산화물 코팅된 다공성 탄소섬유의 열처리 후의 주사전자현미경 이미지이다.7 is a scanning electron microscope image after heat treatment of the metal oxide coated porous carbon fiber according to the immersion coating time according to an embodiment of the present invention.
도 8은 본 발명의 실시예에 따른 3전극 시스템 전기화학셀의 제조를 나타낸 사진이다.8 is a photograph showing the production of a three-electrode system electrochemical cell according to an embodiment of the present invention.
도 9는 본 발명의 실시예에 따른 침지코팅 시간에 따른 금속 산화물 코팅 다공성 탄소섬유의 슈퍼커패시터 특성을 나타낸 그래프이다.9 is a graph showing the supercapacitor characteristics of the metal oxide coated porous carbon fiber according to the immersion coating time according to an embodiment of the present invention.
도 10은 본 발명의 실시예에 따른 하이브리드 슈퍼커패시터의 주기안정성 결과를 나타낸 그래프이다.10 is a graph showing the cycle stability results of the hybrid supercapacitor according to the embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다. 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 또한, 본 명세서에서 사용되는 용어들은 본 발명의 바람직한 실시예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.Hereinafter, with reference to the accompanying drawings will be described embodiments of the present invention; In describing the present invention, when it is determined that detailed descriptions of related known functions or configurations may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. In addition, terms used in the present specification are terms used to properly express preferred embodiments of the present invention, which may vary according to user's or operator's intention or customs in the field to which the present invention belongs. Therefore, the definitions of the terms should be made based on the contents throughout the specification. Like reference numerals in the drawings denote like elements.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding other components unless specifically stated otherwise.
명세서 전체에서 사용되는 용어 "고분자"는 분자량이 1만 이상인 큰 분자를 의미하며, 주로 화학적 결합에 의하여 동일한 단위체가 계속 반복된 형태를 의미한다.As used throughout the specification, the term "polymer" means a large molecule having a molecular weight of 10,000 or more, and means a form in which the same unit is repeatedly repeated mainly by chemical bonding.
명세서 전체에서 사용되는 용어 "전기방사(Electrospinning)"는 고분자 물질에 고전압 전기장을 걸어 뽑아내는 방식으로 나노 또는 마이크로 단위의 섬유를 뽑아내는 방식을 의미한다.As used throughout the specification, the term "electrospinning" refers to a method of extracting nano or micro fibers by applying a high voltage electric field to a polymer material.
명세서 전체에서 사용되는 용어 "침지코팅(dip coating)"은 피도장물을 도료 안에 담그었다가 빼서 건조시키는 코팅법으로, 본 발명에서는 다공성 기재를 금속, 금속 산화물, 세라믹 고분자 및 탄소물질로 이루어진 군에서 선택되는 적어도 어느 하나의 물질의 전구체가 용해된 용액에 일정 시간 담그었다가 꺼내는 방식을 의미한다.As used throughout the specification, the term "dip coating" refers to a coating method in which a coating material is dipped in a paint and then dried, and in the present invention, a porous substrate is composed of a metal, a metal oxide, a ceramic polymer, and a carbon material. It means a method of dipping for a predetermined time in a solution in which the precursor of at least one material selected from the dissolved.
이하, 본 발명의 코팅된 다공성 재료의 제조방법, 코팅된 다공성 재료 및 코팅된 다공성 재료를 포함하는 전극에 대하여 실시예 및 도면을 참조하여 구체적으로 설명하도록 한다. 그러나, 본 발명이 이러한 실시예 및 도면에 제한되는 것은 아니다.Hereinafter, a method of manufacturing a coated porous material of the present invention, a coated porous material, and an electrode including the coated porous material will be described in detail with reference to Examples and drawings. However, the present invention is not limited to these embodiments and drawings.
제1 측면에 따르면, 다공성 기재를 제조하는 단계; 및 상기 다공성 기재에, 금속, 금속 산화물, 세라믹 고분자 및 탄소물질로 이루어진 군에서 선택되는 적어도 어느 하나의 물질을 코팅하는 단계;를 포함하고, 상기 다공성 기재는, 결정질 고분자 및 비정질 고분자를 포함하는 것인, 코팅된 다공성 재료의 제조방법을 제공한다.According to a first aspect, a method of manufacturing a porous substrate; And coating at least one material selected from the group consisting of a metal, a metal oxide, a ceramic polymer, and a carbon material on the porous substrate, wherein the porous substrate includes a crystalline polymer and an amorphous polymer. Provided are methods for preparing phosphorus, coated porous materials.
본 발명의 일 실시예에 따른 코팅된 다공성 재료의 제조방법은 환경 친화적이고 메조기공을 다량 함유하고 있는 친환경 코팅된 다공성 재료를 제조할 수 있다. 이는 전극 소재로 이용할 때 비표면적이 커서 전해질의 침투가 용이하고, 축전용량을 향상시킬 수 있다.Method for producing a coated porous material according to an embodiment of the present invention can produce an environmentally friendly coated porous material that is environmentally friendly and contains a large amount of mesopores. When used as an electrode material, the specific surface area is large, so that penetration of the electrolyte is easy, and the storage capacity can be improved.
도 1은 본 발명의 일 실시예에 따른 코팅된 다공성 재료의 제조 과정을 나타내는 순서도이다. 도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 코팅된 다공성 재료의 제조방법은, 다공성 기재를 제조하는 단계(S100) 및 다공성 기재에, 금속, 금속 산화물, 세라믹 고분자 및 탄소물질로 이루어진 군에서 선택되는 적어도 어느 하나의 물질을 코팅하는 단계(S200)를 포함할 수 있다.1 is a flow chart showing the manufacturing process of the coated porous material according to an embodiment of the present invention. As shown in Figure 1, the method for producing a coated porous material according to an embodiment of the present invention, the step of preparing a porous substrate (S100) and the porous substrate, metal, metal oxide, ceramic polymer and carbon material It may include the step (S200) of coating at least one material selected from the group consisting of.
도 2는 도 1의 다공성 기재를 제조하는 단계의 세부 단계를 나타내는 순서도이다. 도 2를 참조하면, 본 발명의 일 실시예에 따른 다공성 기재를 제조하는 단계의 세부 단계는, 고분자 전구체를 포함하는 복합용액을 제조하는 단계(S110); 복합용액을 이용하여 다공성 기재를 형성하는 단계(S120); 및 다공성 기재를 열처리하는 단계(S130);를 포함할 수 있다.FIG. 2 is a flowchart showing detailed steps of manufacturing the porous substrate of FIG. 1. Referring to Figure 2, the detailed step of preparing a porous substrate according to an embodiment of the present invention, preparing a composite solution containing a polymer precursor (S110); Forming a porous substrate using the composite solution (S120); And heat treating the porous substrate (S130).
고분자 전구체를 포함하는 복합용액을 제조하는 단계(S110)는, 용매에 녹말 및 유기산으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 복합용액을 제조하는 것일 수 있다.The preparing of the composite solution containing the polymer precursor (S110) may be to prepare a composite solution including at least one selected from the group consisting of starch and organic acids in a solvent.
상기 다공성 기재는, 결정질 고분자 및 비정질 고분자를 포함하는 것일 수 있다. 상기 결정질 고분자 및 비정질 고분자는, 녹말을 포함하는 것일 수 있다.The porous substrate may include a crystalline polymer and an amorphous polymer. The crystalline polymer and the amorphous polymer may include starch.
상기 복합용액은, 녹말 및 유기산 중 적어도 어느 하나를 포함하는 것일 수 있다. 예를 들어, 용매에 녹말을 용해시켜 제조한 녹말 용액에 유기산을 첨가하여 제조하는 것일 수 있다.The complex solution may include at least one of starch and an organic acid. For example, it may be prepared by adding an organic acid to a starch solution prepared by dissolving starch in a solvent.
천연고분자인 녹말은 결정질과 비정질의 구조가 나노크기로 교대로 적층되어 있다. 이러한 녹말을 전기방사하고 최종적으로 탄화시킨 후 탄소섬유 내에 메조기공을 다량으로 함유시키기 위해서는 녹말의 젤라틴화(gelatization) 공정이 필요하다. 따라서, 상기 녹말을 60℃ 내지 150℃ 온도에서 가열하고 상온으로 냉각시키면서 겔(gel)화를 진행시킨 겔화된 녹말 용액을 사용하는 것일 수 있다.Starch, a natural polymer, has a crystalline and amorphous structure alternately stacked in nano size. In order to contain a large amount of mesopores in the carbon fiber after electrospinning and finally carbonized such starch, a gelatinization process of starch is required. Therefore, the starch may be a gelled starch solution which is subjected to gelation while heating at a temperature of 60 ° C. to 150 ° C. and cooling to room temperature.
상기 용매는 상기 결정질 고분자 및 비정질 고분자를 용해시킬 수 있는 용매라면 제한 없이 사용할 수 있으며, 상기 용매는 유기용매 또는 무기용매를 포함하는 것일 수 있다. 예를 들어, 상기 용매는, 클로로포름(CHCl3), 클로로벤젠, 물, 아세트산, 아세톤, 아세토니트릴, 아닐린, 벤젠, 벤조니트릴, 벤질 알코올, 브로모벤젠, 브로모포름, 1-부탄올, 2-부탄올, 카본 디설파이드, 카본 테트라클로라이드, 클로로벤젠, 클로로포름, 사이클로헥산, 사이클로헥사놀, 데칼린, 디브로메탄, 디에틸렌글리콜, 디에틸렌글리콜에테르, 디에틸에테르, 디글라임(diglyme), 디메톡시메틴, N,N-디메틸포름아미드, 에탄올, 에틸아민, 에틸벤젠, 에틸렌글리콜에테르, 에틸렌글리콜, 에틸렌옥사이드, 포름알데히드, 포름산, 글리세롤, 헵탄, 헥산, 아이오도벤젠, 메시틸렌, 메탄올, 메톡시벤젠, 메틸아민, 메틸렌 브로마이드, 메틸렌 클로라이드, 메틸피리딘, 모르플린, 나프탈렌, 니트로벤젠, 니트로메탄, 옥탄, 펜탄, 펜딜 알콜, 페놀, 1-프로판올, 2-프로판올, 피리딘, 피롤, 피롤리딘, 퀴놀린, 1,1,2,2-테트라클롤에탄, 테트라클로로에틸렌, 테트라하이드로퓨란, 테트라하이드로피란, 테트랄린, 테트라메틸에틸렌 디아민, 티오펜, 톨루엔, 1,2,4-트리클로로벤젠, 1,1,1-트리클로로에탄, 1,1,2-트리클로로에탄, 트리클로로에틸렌, 트리에틸아민, 트리에틸렌클리롤에테르, 1,3,5-트리메틸벤젠, m-크실렌, o-크실렌, p-크실렌, 1,2-디클로로벤젠, 1,3-디클로로벤젠 및 1,4-디클로로벤젠으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.The solvent may be used without limitation as long as the solvent can dissolve the crystalline polymer and the amorphous polymer, and the solvent may include an organic solvent or an inorganic solvent. For example, the solvent is chloroform (CHCl 3 ), chlorobenzene, water, acetic acid, acetone, acetonitrile, aniline, benzene, benzonitrile, benzyl alcohol, bromobenzene, bromoform, 1-butanol, 2- Butanol, carbon disulfide, carbon tetrachloride, chlorobenzene, chloroform, cyclohexane, cyclohexanol, decalin, dibromethane, diethylene glycol, diethylene glycol ether, diethyl ether, diglyme, dimethoxymethine, N, N-dimethylformamide, ethanol, ethylamine, ethylbenzene, ethylene glycol ether, ethylene glycol, ethylene oxide, formaldehyde, formic acid, glycerol, heptane, hexane, iodobenzene, mesitylene, methanol, methoxybenzene, Methylamine, methylene bromide, methylene chloride, methylpyridine, morpholine, naphthalene, nitrobenzene, nitromethane, octane, pentane, pentyl alcohol, phenol, 1-propanol, 2-propanol , Pyridine, pyrrole, pyrrolidine, quinoline, 1,1,2,2-tetrachlorethane, tetrachloroethylene, tetrahydrofuran, tetrahydropyran, tetralin, tetramethylethylene diamine, thiophene, toluene, 1 , 2,4-trichlorobenzene, 1,1,1-trichloroethane, 1,1,2-trichloroethane, trichloroethylene, triethylamine, triethylene chloride ether, 1,3,5-trimethyl It may be one containing at least one selected from the group consisting of benzene, m-xylene, o-xylene, p-xylene, 1,2-dichlorobenzene, 1,3-dichlorobenzene and 1,4-dichlorobenzene.
예를 들어, 생분해성 고분자 원료로서 전분은 우수한 생분해성과, 가격이 타 원료에 비하여 저렴하고, 자원이 풍부하며 공급이 용이하다는 점 때문에 부각되고 있다. 전분은 고갈 위기에 처해 있는 석유 자원에 비해 지구상에서 녹색 식물이 존재하는 한 무한하게 공급될 수 있는 무독성의 천연 원료라는 점에서 큰 장점이 있다. 전분은 물에 녹지 않고, 침전하는 성질이 있으나, 이를 고압으로 찌거나 묽은 산으로 처리하여 약간의 가수분해가 일어나도록 한 가용 녹말이 제조될 수 있다.For example, starch as a biodegradable polymer raw material has been highlighted because of its excellent biodegradability, low price compared to other raw materials, abundant resources and easy supply. Starch has a big advantage in that it is a non-toxic natural raw material that can be supplied indefinitely as long as there is a green plant on the earth, compared to petroleum resources which are in danger of being depleted. Starch is insoluble in water and has a property of precipitation, but soluble starch can be prepared by steaming at high pressure or treating with dilute acid to cause some hydrolysis.
예를 들어, 상기 녹말은 다량의 D-글루코스(포도당)가 축합반응을 일으키며 연결된 다당류를 포함할 수 있다. 예를 들어, 상기 녹말은, 아밀로오스, 아밀로펙틴, 프룩탄, 겔란, 글루칸, 글리코겐, 풀루란, 덱스트란, 셀룰로오스, 만난, 자일란, 리그닌, 아라반, 갈락탄, 갈락투로난, 알기네이트-기재 화합물, 키틴, 키토산, 글루쿠로노자일란, 아라비노자일란, 자일로글루칸, 글루코만난, 펙트산, 펙틴, 아라비노갈락탄, 카라기난, 아가(agar), 글리코사미노글리칸, 검 아라빅, 트라가칸트 검, 가티 검, 카라야 검, 로커스트 빈 검 및 갈락토만난으로 이루어진 군에서 선택되는 적어도 어느 하나의 다당류를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 언급된 녹말이 아니더라도 결정질과 비정질 구조로 적층되어 있는 구조의 고분자라면 본 발명에 적용이 가능하다.For example, the starch may include a polysaccharide to which a large amount of D-glucose (glucose) is condensed and connected. For example, the starch may be amylose, amylopectin, fructan, gellan, glucan, glycogen, pullulan, dextran, cellulose, met, xylan, lignin, araban, galactan, galacturonan, alginate-based Compounds, chitin, chitosan, glucurono xylan, arabinoxylan, xyloglucan, glucomannan, pectic acid, pectin, arabinogalactan, carrageenan, agar, glycosaminoglycan, gum arabic, traga It may include, but is not limited to, at least one polysaccharide selected from the group consisting of gacant gum, gati gum, karaya gum, locust bean gum, and galactomannan. Even if the starch is not mentioned, any polymer having a structure laminated in a crystalline and amorphous structure is applicable to the present invention.
본 발명에서 사용될 수 있는 녹말은, 예를 들어, 아밀로오스 및 아밀로펙틴의 혼합물을 의미하는 감자, 고구마, 옥수수, 밀, 쌀, 카사바, 타피오카, 보리, 수수, 완두를 비롯한 식물의 씨, 뿌리, 줄기, 열매 등에서도 추출이 가능한 고분자를 의미할 수 있으나, 이에 제한되지 않을 수 있다.Starches that can be used in the present invention are, for example, seeds, roots, stems, plants, including potatoes, sweet potatoes, corn, wheat, rice, cassava, tapioca, barley, sorghum, peas, meaning mixtures of amylose and amylopectin. The fruit may also mean an extractable polymer, but may not be limited thereto.
상기 다당류는 화학적으로 개질, 특히 우레아 또는 우레탄기로, 또는 가수분해, 산화, 에스테르화, 에테르화, 술페이트화, 포스페이트화, 아미노화, 아미드화 또는 알킬화 반응에 의해, 또는 몇몇의 이들 개질에 의해 화학적으로 개질될 수 있다.The polysaccharides are chemically modified, in particular by urea or urethane groups, or by hydrolysis, oxidation, esterification, etherification, sulphation, phosphate, amination, amidation or alkylation, or by some of these modifications. It can be chemically modified.
상기 녹말은 상기 녹말 복합용액 중 0.01 중량% 내지 50 중량%인 것일 수 있다. 상기 녹말이 상기 녹말 복합용액 중 0.01 중량% 미만인 경우 탄소섬유를 형성할 때 표면 균일성이 저하되어 전기전도성 및 이온전도성이 저하되고, 50 중량% 초과인 경우 전극으로서의 에너지 밀도가 감소하게 될 수 있다.The starch may be from 0.01% to 50% by weight of the starch composite solution. When the starch is less than 0.01% by weight of the starch composite solution, the surface uniformity is lowered when the carbon fiber is formed, and electrical conductivity and ion conductivity are lowered. When the starch is more than 50% by weight, the energy density as an electrode may be reduced. .
상기 녹말의 용해 방법은, 상기 녹말이 상기 용매에 균일하게 분산될 수 있는 방법이면 제한 없이 사용할 수 있으며, 예를 들어, 초음파처리(ultrasonication) 또는 교반(stirring)에 의해 수행되는 것일 수 있다.The method of dissolving the starch may be used without limitation as long as the starch may be uniformly dispersed in the solvent. For example, the starch may be performed by ultrasonication or stirring.
상기 녹말을 용해시킨 용액에 점성을 가하기 위해 점성 향상 고분자를 더 첨가하는 것일 수 있다. 점성을 가하기 위해 추가되는 점성 향상 고분자는, 예를 들어, 폴리비닐알콜(polyviniyl alcohol), 콜라겐(collagen), 젤라틴(gelatin), 키토산(chitosan), 알지네이트(Alginate), 히알루론산(hyaluronic acid), 덱스트란(dextran), 폴리락트산[poly(lactic acid)], 폴리글리콜산[poly(glycolic acid): PGA], 폴리(락트산-co-글리콜산)[poly(lactic-co-glycolic acid): PLGA], 폴리-ε-(카프로락톤)[poly(ε-carprolactone)], 폴리안하이드리드[poly(anhydrides)], 폴리오르토에스테르(polyorthoesters), 폴리에틸렌글리콜[poly(ethyleneglycol)], 폴리우레탄(polyurethane), 폴리아크릴산(polyacrylic acid), 셀룰로오즈 아세테이트(cellulose acetate), 셀룰로오즈 니트레이트(cellulose nitrate), 재생 셀룰로오즈(cellulose, regernerated), 과불화 술폰산 고분자(perfluorosulfonic acid polymer), 폴리아크릴로니트릴(polyacrylonitrile), 폴리에테르이미드(polyetherimides), 폴리에테르설폰(polyethersulfones), 폴리에틸렌테레프탈레이트(polyethylene terephthalate), 폴리에테르(polyether), 폴리에틸렌(polyethylene), 폴리이미드(polyimides), 폴리프로필렌(polypropylene), 폴리실록산(polysiloxanes), 폴리설폰(polysulfones), 폴리비닐화 불소(polyvinylidenefluoride) 및 폴리-N-이소프로필아크릴아마이드[poly(N-isopropyl acrylamide)]으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.In order to add viscosity to the solution in which the starch is dissolved, the viscosity improving polymer may be further added. Viscosity enhancing polymers added to add viscosity include, for example, polyviniyl alcohol, collagen, gelatin, chitosan, alginate, hyaluronic acid, Dextran, poly (lactic acid), polyglycolic acid (poly (glycolic acid): PGA), poly (lactic-co-glycolic acid): poly (lactic-co-glycolic acid): PLGA ], Poly-ε- (caprolactone) [poly (ε-carprolactone)], polyanhydride [poly (anhydrides)], polyorthoesters, polyethylene glycol [poly (ethyleneglycol)], polyurethane ), Polyacrylic acid, cellulose acetate, cellulose nitrate, regenerated cellulose, regernerated, perfluorosulfonic acid polymer, polyacrylonitrile, Polyetherimides, poly Polyethersulfones, polyethylene terephthalate, polyether, polyethylene, polyimides, polypropylene, polysiloxanes, polysulfones, polyvinylated It may include at least one selected from the group consisting of fluorine (polyvinylidenefluoride) and poly-N-isopropyl acrylamide (poly (N-isopropyl acrylamide)).
상기 점성 향상 고분자는, 상기 녹말 복합용액 중 0.01 중량% 내지 50 중량%인 것일 수 있다. 상기 점성 향상 고분자가 상기 녹말 복합용액 중 0.01 중량% 미만인 경우 점도가 낮아 전기방사법에 의한 녹말섬유가 잘 형성되지 않을 수 있고, 50 중량% 초과인 경우 전기방사가 잘 이루어지지 않는 문제가 있다.The viscosity improving polymer may be from 0.01% by weight to 50% by weight in the starch composite solution. If the viscosity-improving polymer is less than 0.01% by weight of the starch composite solution, the viscosity may be low, so that starch fibers may not be formed by the electrospinning method, and if it is more than 50% by weight, electrospinning may not be performed well.
상기 녹말 및 상기 점성 향상 고분자를 5 : 5 내지 8 : 2의 비율로 혼합하여 사용하는 것일 수 있다.The starch and the viscosity-improving polymer may be used by mixing in a ratio of 5: 5 to 8: 2.
상기 점성 향상 고분자의 용해 방법은, 상기 점성 향상 고분자가 상기 용액에 균일하게 분산될 수 있는 방법이면 제한 없이 사용할 수 있으며, 예를 들어, 초음파처리(ultrasonication) 또는 교반(stirring)에 의해 수행되는 것일 수 있다.The method of dissolving the viscosity improving polymer may be used without limitation as long as the viscosity improving polymer is uniformly dispersed in the solution. For example, the viscosity improving polymer may be performed by ultrasonication or stirring. Can be.
상기 유기산은, 고온 열처리에 대한 내열성 및 다공성화를 유리하게 하기 위하여 첨가되는 것일 수 있으며, 탄소화의 속도를 향상시킬 수 있다. 상기 유기산은, P-톨루엔설포닉산(P-toluenesulfonic acid), 메탄설포닉산(Methanesulfonic acid), 트리플루오로메탄설포닉산(Trifluoromethanesulfonic acid), 알킬벤젠설포닉산(alkylbenzenesulfonic acid) 및 P-아미노벤젠설포닉산(P-aminobenzenesulfonic acid)으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.The organic acid may be added to favor heat resistance and porosity for high temperature heat treatment, and may improve the rate of carbonization. The organic acid may be P-toluenesulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, alkylbenzenesulfonic acid, and P-aminobenzenesulfonic acid. It may include at least any one selected from the group consisting of (P-aminobenzenesulfonic acid).
상기 유기산은 상기 녹말 복합용액 중 0.01 중량% 내지 20 중량%인 것일 수 있다. 상기 유기산이 상기 녹말 복합용액 중 0.01 중량% 미만인 경우 탄소섬유의 다공성화가 어렵고, 20 중량% 초과인 경우 탄소섬유가 절단되어 형성될 수 있고, 탄소섬유의 수율을 떨어뜨릴 수 있다.The organic acid may be from 0.01% to 20% by weight of the starch composite solution. When the organic acid is less than 0.01% by weight of the starch composite solution, it is difficult to porous the carbon fiber, and when the organic acid is more than 20% by weight, the carbon fiber may be cut and formed, thereby lowering the yield of carbon fiber.
복합용액을 이용하여 다공성 기재를 형성하는 단계(S120)는, 전기방사에 의하는 것일 수 있다. 예를 들어, 녹말이 함유된 복합용액을 주사기 내에 넣고 고전압을 가하여 방사노즐을 통해 방사시켜 극세의 녹말섬유 형태의 펠트를 제조하는 것일 수 있다.Forming a porous substrate using the composite solution (S120) may be by electrospinning. For example, the composite solution containing starch may be put in a syringe to apply a high voltage to spin through a spinning nozzle to produce felt in the form of microfibers.
상기 복합용액의 점도는 50 cp 내지 1,000 cp인 것일 수 있다. 상기 복합용액의 점도가 50 cp 미만인 경우 녹말섬유가 방사되기 어렵고, 1,000 cp 초과인 경우 다공성의 기재를 형성하기 어렵다.The viscosity of the complex solution may be from 50 cp to 1,000 cp. If the viscosity of the complex solution is less than 50 cp starch fiber is difficult to spin, if more than 1,000 cp it is difficult to form a porous substrate.
상기 전기방사는, 1 kV 내지 100 kV, 1 kV 내지 90 kV, 1 kV 내지 80 kV, 1 kV 내지 70 kV, 1 kV 내지 60 kV, 1 kV 내지 50 kV, 1 kV 내지 40 kV, 1 kV 내지 30 kV, 1 kV 내지 20 kV, 1 kV 내지 15 kV, 5 kV 내지 100 kV, 5 kV 내지 90 kV, 5 kV 내지 80 kV, 5 kV 내지 70 kV, 5 kV 내지 60 kV, 5 kV 내지 50 kV, 5 kV 내지 40 kV, 5 kV 내지 30 kV, 5 kV 내지 25 kV, 5 kV 내지 20 kV, 5 kV 내지 15 kV, 5 kV 내지 10 kV, 또는 10 kV 내지 15 kV의 전압에서 수행되는 것일 수 있다. 또한, 상기 전기방사에서 전기방사 팁과 타겟까지의 거리는 5 cm 내지 100 cm인 것일 수 있다.The electrospinning, 1 kV to 100 kV, 1 kV to 90 kV, 1 kV to 80 kV, 1 kV to 70 kV, 1 kV to 60 kV, 1 kV to 50 kV, 1 kV to 40 kV, 1 kV to 30 kV, 1 kV to 20 kV, 1 kV to 15 kV, 5 kV to 100 kV, 5 kV to 90 kV, 5 kV to 80 kV, 5 kV to 70 kV, 5 kV to 60 kV, 5 kV to 50 kV , 5 kV to 40 kV, 5 kV to 30 kV, 5 kV to 25 kV, 5 kV to 20 kV, 5 kV to 15 kV, 5 kV to 10 kV, or 10 kV to 15 kV have. In addition, the distance between the electrospinning tip and the target in the electrospinning may be 5 cm to 100 cm.
추가적으로, 상기 전기방사 공정을 진행한 후 상기 용매를 제거하는 단계(미도시)를 수행할 수 있다. 상기 용매를 제거하는 단계는 증발, 진공, 열처리에 의해 수행되는 것일 수 있다.In addition, after the electrospinning process may be carried out to remove the solvent (not shown). Removing the solvent may be performed by evaporation, vacuum, and heat treatment.
다공성 기재를 열처리하는 단계(S130)는, 200℃ 내지 1,800℃의 온도에서 5 초 내지 48 시간 동안 수행되는 것일 수 있다. 상기 열처리 온도가 200℃ 미만이고, 열처리 시간이 5 초 미만인 경우 다공성 기재가 불완전하게 탄화될 수 있고, 상기 열처리 온도가 1800℃ 초과이고 열처리 시간이 48 시간 초과인 경우 다공성 기재가 변형이 될 수 있다. 상기 열처리 조건은 공기, 진공, 질소, 아르곤, 수소, 이산화수소, 메탄, 에틸렌, 부탄, 프로판 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함하는 것일 수 있다. 예를 들어, 제조된 다공성 기재를 산소분위기 하에서 열처리 하고 200℃ 내지 1,400℃의 온도범위에서 진공 또는 불활성 가스로 탄화시켜 최종적으로 다공성 재료를 제조하는 것일 수 있다. 예를 들어, 녹말의 젤라틴화(gelatization) 공정에 의한 녹말을 유기산 처리하여 전기방사하여 최종적으로 탄화공정을 통해 녹말 내의 비정질 구조를 메조기공으로 변환시켜 탄소섬유 내에 메조기공이 다량으로 형성될 수 있다.Heat-treating the porous substrate (S130) may be performed for 5 seconds to 48 hours at a temperature of 200 ℃ to 1,800 ℃. The porous substrate may be incompletely carbonized when the heat treatment temperature is less than 200 ° C. and the heat treatment time is less than 5 seconds, and the porous substrate may be deformed when the heat treatment temperature is greater than 1800 ° C. and the heat treatment time is more than 48 hours. . The heat treatment condition may include one selected from the group consisting of air, vacuum, nitrogen, argon, hydrogen, hydrogen dioxide, methane, ethylene, butane, propane, and combinations thereof. For example, the prepared porous substrate may be heat treated under an oxygen atmosphere and carbonized with vacuum or an inert gas at a temperature range of 200 ° C. to 1,400 ° C. to finally prepare a porous material. For example, starch by the gelatinization process of the starch may be electrospun and electrospun to finally convert the amorphous structure in the starch into mesopores through a carbonization process to form a large amount of mesopores in the carbon fiber. .
도 3은 도 1의 다공성 기재에 물질 코팅 단계의 세부 단계를 나타내는 순서도이다. 도 3을 참조하면, 본 발명의 일 실시예에 따른 다공성 기재에 물질 코팅 단계(S200)의 세부 단계는 용매에 물질의 전구체를 용해시켜 코팅액을 형성하는 단계(S210); 코팅액을 이용하여 다공성 기재 상에 물질을 코팅하여 코팅된 다공성 재료를 형성하는 단계(S220); 및 코팅된 다공성 재료를 열처리하는 단계(S230);를 포함할 수 있다.3 is a flow chart showing the detailed steps of the material coating step on the porous substrate of FIG. Referring to Figure 3, the detailed step of the material coating step (S200) on the porous substrate according to an embodiment of the present invention to form a coating solution by dissolving the precursor of the material in a solvent (S210); Forming a coated porous material by coating a material on the porous substrate using the coating solution (S220); And heat treating the coated porous material (S230).
용매에, 물질의 전구체를 용해시켜 코팅액을 형성하는 단계(S210)는, 용매에 금속, 금속 산화물, 세라믹 고분자 및 탄소물질로 이루어진 군에서 선택되는 적어도 어느 하나의 물질의 전구체를 용해시켜 전구체를 용해시켜 침지코팅액을 형성하는 것이다.Forming a coating solution by dissolving a precursor of a material in a solvent (S210), dissolving the precursor by dissolving the precursor of at least one material selected from the group consisting of metals, metal oxides, ceramic polymers and carbon materials in a solvent. To form an immersion coating solution.
상기 용매는 상기 금속 산화물 전구체를 용해시킬 수 있는 용매라면 제한 없이 사용할 수 있으며, 유기 용매 또는 무기 용매를 포함하는 것일 수 있다. 예를 들어, 상기 용매는, 클로로포름(CHCl3), 클로로벤젠, 물, 아세트산, 아세톤, 아세토니트릴, 아닐린, 벤젠, 벤조니트릴, 벤질 알코올, 브로모벤젠, 브로모포름, 1-부탄올, 2-부탄올, 카본 디설파이드, 카본 테트라클로라이드, 클로로벤젠, 클로로포름, 사이클로헥산, 사이클로헥사놀, 데칼린, 디브로메탄, 디에틸렌글리콜, 디에틸렌글리콜에테르, 디에틸에테르, 디글라임(diglyme), 디메톡시메틴, N,N-디메틸포름아미드, 에탄올, 에틸아민, 에틸벤젠, 에틸렌글리콜에테르, 에틸렌글리콜, 에틸렌옥사이드, 포름알데히드, 포름산, 글리세롤, 헵탄, 헥산, 아이오도벤젠, 메시틸렌, 메탄올, 메톡시벤젠, 메틸아민, 메틸렌 브로마이드, 메틸렌 클로라이드, 메틸피리딘, 모르플린, 나프탈렌, 니트로벤젠, 니트로메탄, 옥탄, 펜탄, 펜딜 알콜, 페놀, 1-프로판올, 2-프로판올, 피리딘, 피롤, 피롤리딘, 퀴놀린, 1,1,2,2-테트라클롤에탄, 테트라클로로에틸렌, 테트라하이드로퓨란, 테트라하이드로피란, 테트랄린, 테트라메틸에틸렌 디아민, 티오펜, 톨루엔, 1,2,4-트리클로로벤젠, 1,1,1-트리클로로에탄, 1,1,2-트리클로로에탄, 트리클로로에틸렌, 트리에틸아민, 트리에틸렌클리롤에테르, 1,3,5-트리메틸벤젠, m-크실렌, o-크실렌, p-크실렌, 1,2-디클로로벤젠, 1,3-디클로로벤젠 및 1,4-디클로로벤젠으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.The solvent may be used without limitation as long as it is a solvent capable of dissolving the metal oxide precursor, and may include an organic solvent or an inorganic solvent. For example, the solvent is chloroform (CHCl 3 ), chlorobenzene, water, acetic acid, acetone, acetonitrile, aniline, benzene, benzonitrile, benzyl alcohol, bromobenzene, bromoform, 1-butanol, 2- Butanol, carbon disulfide, carbon tetrachloride, chlorobenzene, chloroform, cyclohexane, cyclohexanol, decalin, dibromethane, diethylene glycol, diethylene glycol ether, diethyl ether, diglyme, dimethoxymethine, N, N-dimethylformamide, ethanol, ethylamine, ethylbenzene, ethylene glycol ether, ethylene glycol, ethylene oxide, formaldehyde, formic acid, glycerol, heptane, hexane, iodobenzene, mesitylene, methanol, methoxybenzene, Methylamine, methylene bromide, methylene chloride, methylpyridine, morpholine, naphthalene, nitrobenzene, nitromethane, octane, pentane, pentyl alcohol, phenol, 1-propanol, 2-propanol , Pyridine, pyrrole, pyrrolidine, quinoline, 1,1,2,2-tetrachlorethane, tetrachloroethylene, tetrahydrofuran, tetrahydropyran, tetralin, tetramethylethylene diamine, thiophene, toluene, 1 , 2,4-trichlorobenzene, 1,1,1-trichloroethane, 1,1,2-trichloroethane, trichloroethylene, triethylamine, triethylene chloride ether, 1,3,5-trimethyl It may be one containing at least one selected from the group consisting of benzene, m-xylene, o-xylene, p-xylene, 1,2-dichlorobenzene, 1,3-dichlorobenzene and 1,4-dichlorobenzene.
상기 금속은, 전기 전도성을 갖는 물질이라면 어느 것이나 사용할 수 있으며, 예를 들어, 금, 은, 구리, 니켈, 팔라듐, 백금, 철, 텅스텐, 몰리브덴, 아연 및 알루미늄으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.상기 금속 산화물 전구체는 의사커패시터의 제조를 위한 금속 산화물의 전구체를 포함하는 것일 수 있다. 상기 금속 산화물 전구체는, MnO2, Fe3O4, Fe2O3, SnO2, RuO2, V2O5, NiO, IrO2, Co2O3, Co3O4 및 CoO로 이루어진 군에서 선택되는 적어도 어느 하나의 금속 산화물의 염화물, 질산화염, 황산화염, 수산화염, 아세트산염 및 이소프록사이드로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다. 예를 들어, Fe3O4를 금속 산화물로 이용하는 경우, 전구체로는, FeCl2, FeCl3, FeCl3 6H2O, FeCl2 4H2O, Fe(ClO4)3 H2O, Fe(NO3)3, Fe(NO3)3 9H2O, Fe2(SO4)3, FeSO4, FeSO4 7H2O, (NH4)2Fe(SO4)2 6H2O, NH4Fe(SO4)2 12H2O, FeOOH, Fe(CO2CH3)2 등을 포함할 수 있으나, 이에 제한되는 것은 아니다.The metal may be any material as long as it has an electrical conductivity. For example, at least one selected from the group consisting of gold, silver, copper, nickel, palladium, platinum, iron, tungsten, molybdenum, zinc, and aluminum. The metal oxide precursor may include a precursor of a metal oxide for manufacturing a pseudocapacitor. The metal oxide precursor, in the group consisting of MnO 2 , Fe 3 O 4 , Fe 2 O 3 , SnO 2 , RuO 2 , V 2 O 5 , NiO, IrO 2 , Co 2 O 3 , Co 3 O 4 and CoO It may include at least any one selected from the group consisting of chlorides, nitrates, sulfates, hydroxides, acetates and isoprooxide of at least one metal oxide selected. For example, when Fe 3 O 4 is used as the metal oxide, precursors include FeCl 2 , FeCl 3 , FeCl 3 6H 2 O, FeCl 2 4H 2 O, Fe (ClO 4 ) 3 H 2 O, Fe (NO 3) 3, Fe (NO 3 ) 3 9H 2 O, Fe 2 (SO 4) 3, FeSO 4, FeSO 4 7H 2 O, (NH 4) 2Fe (SO 4) 2 6H 2 O, NH 4 Fe (SO 4 ) 2 12H 2 O, FeOOH, Fe (CO 2 CH 3 ) 2 And may include, but are not limited to.
상기 세라믹 고분자는, 고분자에 세라믹이 함입된 것일 수 있다. 이 때 사용되는 고분자는 열을 가하였을 때 연화되는 성질을 갖는 열가소성 고분자일 수 있다. 고분자 표면부에 세라믹이 일부만 함입된 세라믹 결정의 표면 부분 함입형 세라믹 고분자일 수 있고, 세라믹 결정 코팅 표면층을 갖는 세라믹 결정 내부 균일 함입형 세라믹 고분자일 수도 있다.The ceramic polymer may be a ceramic embedded in the polymer. In this case, the polymer used may be a thermoplastic polymer having a property of softening when heat is applied. It may be a surface-part embedded ceramic polymer of a ceramic crystal in which only a part of ceramic is embedded in the polymer surface portion, or may be a ceramic crystal internally uniformly embedded ceramic polymer having a ceramic crystal coating surface layer.
상기 탄소물질은, 흑연, 그래핀, 그래핀 산화물, 그래파이트, 탄소나노로드, 탄소섬유, 탄소나노튜브, 카본블랙, 활성탄소 및 풀러렌으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.The carbon material may include at least one selected from the group consisting of graphite, graphene, graphene oxide, graphite, carbon nanorods, carbon fibers, carbon nanotubes, carbon black, activated carbon, and fullerenes.
상기 금속, 금속 산화물, 세라믹 고분자 및 탄소물질로 이루어진 군에서 선택되는 적어도 어느 하나의 물질의 전구체의 용해 방법은, 상기 금속, 금속 산화물, 세라믹 고분자 및 탄소물질로 이루어진 군에서 선택되는 적어도 어느 하나의 물질의 전구체가 상기 용매에 균일하게 분산될 수 있는 방법이면 제한 없이 사용할 수 있으며, 예를 들어, 초음파처리(ultrasonication) 또는 교반(stirring)에 의해 수행되는 것일 수 있다.Dissolution method of the precursor of at least one material selected from the group consisting of the metal, metal oxide, ceramic polymer and carbon material, at least one selected from the group consisting of the metal, metal oxide, ceramic polymer and carbon material. As long as the precursor of the material can be uniformly dispersed in the solvent, it can be used without limitation, for example, may be performed by ultrasonication or stirring.
상기 코팅액의 농도는 0.001 M에서 포화상태까지를 포함할 수 있으며, 예를 들어, 0.01 M 내지 2 M인 것일 수 있다. 상기 코팅액의 농도가 포화상태에 가까워질수록 기재의 다공성화가 가속되는 것일 수 있다. 금속, 금속 산화물, 세라믹 고분자 및 탄소물질로 이루어진 군에서 선택되는 적어도 어느 하나의 물질의 다변화를 통하여 높은 농도까지 안정한 상태로 유지될 수 있다.The concentration of the coating solution may include up to 0.001 M saturated state, for example, may be from 0.01 M to 2 M. As the concentration of the coating solution approaches the saturation state, the porosity of the substrate may be accelerated. It can be maintained in a stable state up to a high concentration through the diversification of at least one material selected from the group consisting of metals, metal oxides, ceramic polymers and carbon materials.
코팅액을 이용하여 다공성 기재 상에 물질을 코팅하여 코팅된 다공성 재료를 형성하는 단계(S220)는 상기 코팅액에 상기 다공성 기재를 침지시켜 상기 금속, 금속 산화물, 세라믹 고분자 및 탄소물질로 이루어진 군에서 선택되는 적어도 어느 하나의 물질을 코팅하여 코팅된 다공성 재료를 형성하는 단계이다.Forming a coated porous material by coating a material on the porous substrate using a coating liquid (S220) is immersed in the coating liquid to the porous substrate is selected from the group consisting of the metal, metal oxide, ceramic polymer and carbon material Coating at least one material to form a coated porous material.
상기 코팅은, 예를 들어, 도핑, 침지코팅 및 증착을 포함하는 것일 수 있다. 상기 증착은, 예를 들어, 스퍼터링을 포함하는 것일 수 있다.The coating may include, for example, doping, immersion coating and deposition. The deposition may, for example, include sputtering.
상기 코팅액에 상기 다공성 기재를 코팅하는 것은, 1 초 내지 48 시간 동안 수행하는 것일 수 있다. 상기 코팅 시간이 1 초 미만인 경우 금속, 금속 산화물, 세라믹 고분자 및 탄소물질로 이루어진 군에서 선택되는 적어도 어느 하나의 물질의 전구체가 다공성 기재에 충분히 코팅되지 못하고, 48 시간 초과인 경우 다공성 기재의 개방된 구조를 막아 금속, 금속 산화물, 세라믹 고분자 및 탄소물질로 이루어진 군에서 선택되는 적어도 어느 하나의 물질이 전해질의 이동을 방해할 수 있고, 다공성 재료의 절단을 야기할 수도 있다.Coating the porous substrate on the coating solution may be performed for 1 second to 48 hours. When the coating time is less than 1 second, the precursor of at least one material selected from the group consisting of metals, metal oxides, ceramic polymers, and carbon materials is not sufficiently coated on the porous substrate, and when the coating time is more than 48 hours, By blocking the structure, at least one material selected from the group consisting of metals, metal oxides, ceramic polymers, and carbon materials may interfere with the movement of the electrolyte and cause cutting of the porous material.
코팅된 다공성 재료를 열처리하는 단계(S230)는, 상기 다공성 재료에 코팅되어 있는 금속, 금속 산화물, 세라믹 고분자 및 탄소물질로 이루어진 군에서 선택되는 적어도 어느 하나의 물질의 전구체를 금속, 금속 산화물, 세라믹 고분자 및 탄소물질로 상변화시키는 단계이다. 상기 열처리는, 200℃ 내지 1,800℃의 온도에서 5 초 내지 48 시간 동안 수행되는 것일 수 있다. 상기 열처리 조건은 공기, 진공, 질소, 아르곤, 수소, 이산화수소, 메탄, 에틸렌, 부탄, 프로판 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함하는 것일 수 있다.Heat-treating the coated porous material (S230), the precursor of at least one material selected from the group consisting of metal, metal oxide, ceramic polymer and carbon material coated on the porous material is a metal, metal oxide, ceramic Phase change to polymer and carbon material. The heat treatment may be performed for 5 seconds to 48 hours at a temperature of 200 ℃ to 1,800 ℃. The heat treatment condition may include one selected from the group consisting of air, vacuum, nitrogen, argon, hydrogen, hydrogen dioxide, methane, ethylene, butane, propane, and combinations thereof.
상기 금속, 금속 산화물, 세라믹 고분자 및 탄소물질로 이루어진 군에서 선택되는 적어도 어느 하나의 물질은 간단한 침지코팅법을 통해 다공성 기재에 균일하게 포함되어 상기 다공성 기재와 결합되는 것일 수 있다. 이에 따라, 메조기공을 다량으로 함유하고 있어 비표면적이 큰 다공성 기재에 금속, 금속 산화물, 세라믹 고분자 및 탄소물질로 이루어진 군에서 선택되는 적어도 어느 하나의 물질이 코팅되어 더 큰 비표면적을 가지고, 열처리를 통하여 상변화하는 과정에서 다공성 기재 표면에 더 많은 미세기공을 형성하여 매우 큰 비표면적을 가지는 코팅된 다공성 재료를 제조할 수 있다.At least one material selected from the group consisting of the metal, the metal oxide, the ceramic polymer and the carbon material may be uniformly included in the porous substrate through a simple immersion coating method to be combined with the porous substrate. Accordingly, at least one material selected from the group consisting of metals, metal oxides, ceramic polymers, and carbon materials is coated on a porous substrate having a large specific surface area with a large amount of mesopores, thereby having a larger specific surface area. By forming more micropores on the surface of the porous substrate in the process of phase change through, it is possible to produce a coated porous material having a very large specific surface area.
제2 측면에 따르면, 결정질 고분자 및 비정질 고분자를 포함하는 다공성 기재; 및 상기 다공성 기재 상에 코팅된, 금속, 금속 산화물, 세라믹 고분자 및 탄소물질로 이루어진 군에서 선택되는 적어도 어느 하나의 물질을 포함하는, 코팅된 다공성 재료를 제공한다.According to a second aspect, a porous substrate comprising a crystalline polymer and an amorphous polymer; And at least one material selected from the group consisting of metals, metal oxides, ceramic polymers, and carbon materials, coated on the porous substrate.
본 발명의 일 실시예에 따른 코팅된 다공성 재료는 환경친화적이며 금속, 금속 산화물, 세라믹 고분자 및 탄소물질로 이루어진 군에서 선택되는 적어도 어느 하나의 물질을 전기방사하고 탄화공정의 공정제어를 통해 탄소섬유의 표면에 평균 메조기공을 다량으로 함유하는 다공성 재료에 금속, 금속 산화물, 세라믹 고분자 및 탄소물질로 이루어진 군에서 선택되는 적어도 어느 하나의 물질이 코팅되어 고비표면적 및 고축전용량의 우수한 전기화학적 성질을 갖고, 종래의 전해질이 침투하기 어려운 구조인 마이크로기공을 다량으로 함유하고 있는 활성탄소섬유의 한계를 극복할 수 있다.The coated porous material according to an embodiment of the present invention is environmentally friendly and carbon fiber through electrospinning at least one material selected from the group consisting of metals, metal oxides, ceramic polymers and carbon materials and controlling the carbonization process At least one material selected from the group consisting of metals, metal oxides, ceramic polymers and carbon materials is coated on the porous material containing a large amount of average mesopores on the surface of the film to provide excellent electrochemical properties with high specific surface area and high storage capacity. In addition, it is possible to overcome the limitations of the activated carbon fiber containing a large amount of micropores, which is a structure that is difficult to penetrate the conventional electrolyte.
도 4는 본 발명의 일 실시예에 따른 코팅된 다공성 재료를 나타내는 개략도이다. 도 4를 참조하면, 본 발명의 일 실시예에 따른 코팅된 다공성 재료(100)는 다공성 기재(110)의 표면 및 내부에 다수개의 기공(112)이 형성된 다공성 기재(110) 표면에 금속, 금속 산화물, 세라믹 고분자 및 탄소물질로 이루어진 군에서 선택되는 적어도 어느 하나의 물질(120)이 코팅되어 있다. 다수개의 기공(112)에 의해 산소와 전해질의 용이한 침투가 가능하다. 상기 물질(120)은 상기 제조방법에 의한 침지코팅법을 통해 다공성 기재(110)에 균일하게 포함되어 다공성 기재(110)와 결합되어 있다.4 is a schematic diagram illustrating a coated porous material according to one embodiment of the present invention. Referring to Figure 4, the coated porous material 100 according to an embodiment of the present invention is a metal, metal on the surface of the porous substrate 110, the plurality of pores 112 formed on the surface and the inside of the porous substrate 110 At least one material 120 selected from the group consisting of an oxide, a ceramic polymer, and a carbon material is coated. The plurality of pores 112 allows easy penetration of oxygen and electrolyte. The material 120 is uniformly included in the porous substrate 110 through the immersion coating method according to the manufacturing method is coupled to the porous substrate 110.
다공성 기재(110)는, 섬유, 박막 또는 벌크구조로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.The porous substrate 110 may include at least one selected from the group consisting of fibers, thin films, or bulk structures.
상기 탄소물질은, 흑연, 그래핀, 그래핀 산화물, 그래파이트, 탄소나노로드, 탄소섬유, 탄소나노튜브, 카본블랙, 활성탄소 및 풀러렌으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하고, 상기 코팅된 적어도 어느 하나의 물질은, 입자, 섬유 및 플레이크로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.The carbon material includes at least one selected from the group consisting of graphite, graphene, graphene oxide, graphite, carbon nanorods, carbon fibers, carbon nanotubes, carbon black, activated carbon, and fullerene, and the coated At least one of the materials may be at least one selected from the group consisting of particles, fibers, and flakes.
다공성 기재(110)의 비표면적은, 100 m2/g 내지 2,000 m2/g인 것일 수 있다. 상기 제조방법에 의해 금속, 금속 산화물, 세라믹 고분자 및 탄소물질로 이루어진 군에서 선택되는 적어도 어느 하나의 물질의 전구체가 코팅된 다공성 기재의 열처리를 통해 상변화하는 과정에서 다공성 기재의 표면에 더욱 많은 미세기공을 형성하고, 높은 비표면적에 의해 금속, 금속 산화물, 세라믹 고분자 및 탄소물질로 이루어진 군에서 선택되는 적어도 어느 하나의 물질의 흡착을 증가시켜 하이브리드 슈퍼커패시터에 사용 시 효율을 높일 수 있다.The specific surface area of the porous substrate 110 may be 100 m 2 / g to 2,000 m 2 / g. In the process of the phase change through the heat treatment of the coated porous substrate precursor of at least one material selected from the group consisting of metals, metal oxides, ceramic polymers and carbon materials by the manufacturing method more fine on the surface of the porous substrate By forming pores and increasing the adsorption of at least one material selected from the group consisting of metals, metal oxides, ceramic polymers, and carbon materials by high specific surface area, it is possible to increase efficiency when used in hybrid supercapacitors.
다공성 기재(110)는, 예를 들어, 녹말섬유인 것일 수 있다. 녹말섬유를 전기방사하고 탄화시켜 다량의 메조기공을 포함하는 다공성의 탄소섬유가 제조될 수 있다.The porous substrate 110 may be, for example, starch fiber. Electrospinning and carbonizing starch fibers can produce a porous carbon fiber containing a large amount of mesopores.
다공성 기재(100)의 기공(120)의 크기는 0.1 nm 내지 10,000 nm인 것일 수 있고, 코팅된 다공성 기재(100)의 단위 질량 당 기공부피는 0.01 cm3/g 내지 5 cm3/g 인 것일 수 있다. 이러한 기공은, 예를 들어, 녹말섬유가 탄화될 때 생긴 기공으로서, 이러한 메조 기공크기 범위 및 기공부피의 범위를 가질 때 다공성의 탄소섬유의 형상을 안정적으로 유지할 수 있고, 비표면적을 증가시킴으로써 금속, 금속 산화물, 세라믹 고분자 및 탄소물질로 이루어진 군에서 선택되는 적어도 어느 하나의 물질의 흡착을 증가시킬 수 있다.The pore 120 of the porous substrate 100 may have a size of 0.1 nm to 10,000 nm, and the pore volume per unit mass of the coated porous substrate 100 may be 0.01 cm 3 / g to 5 cm 3 / g. Can be. Such pores are, for example, pores produced when carbonized starch fibers, and can maintain the shape of the porous carbon fibers stably in the meso pore size range and pore volume range, and increase the specific surface area. It is possible to increase the adsorption of at least one material selected from the group consisting of metal oxides, ceramic polymers and carbon materials.
코팅된 다공성 재료(100) 중 상기 금속, 금속 산화물, 세라믹 고분자 및 탄소물질로 이루어진 군에서 선택되는 적어도 어느 하나의 물질(120)은 0.01 중량% 내지 30 중량% 포함하는 것일 수 있다. 상기 물질이 0.01 중량% 미만인 경우 다공성 재료의 성능 향상에 영향을 미치지 못해 전극으로서의 에너지 밀도가 감소하게 되고, 30 중량% 초과인 경우 다공성 재료의 기계적 물성이 저하될 수 있을 뿐만 아니라 다공성 재료의 개방된 구조를 막아 금속 산화물이 전해질의 이동을 방해할 수 있다.At least one material 120 selected from the group consisting of the metal, the metal oxide, the ceramic polymer, and the carbon material in the coated porous material 100 may include 0.01 wt% to 30 wt%. If the material is less than 0.01% by weight does not affect the performance of the porous material, the energy density as an electrode is reduced, if more than 30% by weight may not only decrease the mechanical properties of the porous material but also open the porous material Metal oxides can interfere with the transport of the electrolyte by blocking the structure.
본 발명의 금속산화물 코팅된 다공성 탄소섬유는, 본 발명의 일 실시예에 따른 코팅된 다공성 재료의 제조방법에 의해 제조된 것일 수 있다.The metal oxide coated porous carbon fiber of the present invention may be prepared by a method of manufacturing a coated porous material according to an embodiment of the present invention.
제3 측면에 따르면, 제2 측면에 따른 코팅된 다공성 탄소섬유를 포함하는 전극을 제공한다.According to a third aspect, there is provided an electrode comprising the coated porous carbon fiber according to the second aspect.
본 발명의 일 실시예에 따른 전극은, 하이브리드 슈퍼커패시터용 전극, 이차전지 음극 재료, 연료전지 전극 및 촉매담지체로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함할 수 있다.The electrode according to an embodiment of the present invention may include at least one selected from the group consisting of an electrode for a hybrid supercapacitor, a secondary battery anode material, a fuel cell electrode, and a catalyst carrier.
예를 들어, 하이브리드 슈퍼커패시터용 전극은, 의사캐패시터(pseudo capacitor)와 전기이중층 캐패시터의 복합적인 기능을 발휘할 수 있어 고용량 하이브리드 에너지저장장치용 소재로 적용되기에 적합한 에너지 밀도와 높은 동력 밀도를 동시에 가지고, 고비표면적, 고전기전도도의 특성을 가져 슈퍼캐패시터와 같은 고 에너지 전극소재로 사용될 수 있다.For example, an electrode for a hybrid supercapacitor can exhibit a complex function of a pseudo capacitor and an electric double layer capacitor, and has both an energy density and a high power density suitable for application to a high capacity hybrid energy storage device. It has high specific surface area, high conductivity, and can be used as a high energy electrode material such as supercapacitor.
예를 들어, 하이브리드 슈퍼캐패시터용 전극이 금속 산화물로서 Co3O4이 코팅되고, 1 M H2SO4 전해질 수용액일 때 130 F/g의 이상의 축전용량을 가질 수 있고, 초기 충방전 효율이 90% 이상이며 5,000회 충방전 사이클 진행 후 방전용량 유지율이 90% 이상을 유지할 수 있다. RuO2 와 같이 높은 성능을 가지는 금속 산화물을 이용하면 축전용량을 더욱 향상시킬 수 있다.For example, when the electrode for a hybrid supercapacitor is coated with Co 3 O 4 as a metal oxide, and has an aqueous solution of 1 MH 2 SO 4 electrolyte, it may have a capacity of 130 F / g or more, and the initial charge and discharge efficiency is 90%. After the 5,000 charge and discharge cycles, the discharge capacity retention rate can be maintained at 90% or more. By using a metal oxide having high performance such as RuO 2 , the storage capacity can be further improved.
또한, 본 발명의 다공성 재료는 전극 재료뿐만 아니라, 각종 필터재료로의 응용이 가능하여 산업상 이용가능성이 크다.In addition, the porous material of the present invention can be applied not only to electrode materials but also to various filter materials, and thus has great industrial applicability.
이하, 하기 실시예를 참조하여 본 발명을 상세하게 설명하기로 한다. 그러나, 본 발명의 기술적 사상이 그에 의해 제한되거나 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the following examples. However, the technical spirit of the present invention is not limited or limited thereto.
[[ 실시예Example ]]
<전기방사법 및 열처리 공정을 이용한 다공성 <Porosity using electrospinning method and heat treatment process 탄소섬유의Carbon fiber 제조> Manufacture
옥수수 전분 2 g을 물 40 ml에 넣고 핫플레이트 위에서 80℃의 온도로 자력 교반하여 용해시켰다. 2 시간 후 위 용액에 3.5 g의 폴리비닐알코올(poly vinylalcohol; PVA)을 첨가하고 120℃의 온도에서 2 시간 더 용해시켰다. 여기에 0.19 g의 톨루엔설포닉산(toluenesulfonic acid)을 첨가하여 추후 열처리공정에서의 탄화공정을 가속화하고, 다공성 구조 형성을 유리하게 하였다. 용해가 완료된 용액의 점도는 580 cP를 나타내었다. 상기 용액을 녹말섬유로 제조하기 위해 전기방사법을 이용하였다. 전기방사의 전압은 18 kV로 설정하였으며, 15 cm 지름의 드럼 컬렉터를 500 rpm으로 회전시켜 녹말 섬유를 수집하도록 하였다. 드럼 컬렉터와 전기방사 팁까지의 거리는 15 cm이었으며, 용액은 5 ㎕/min의 속도로 공급되도록 설정하였다. 48 시간에 걸친 전기방사 공정을 통해 제조된 녹말 섬유는 공기 중에서 250℃ 3 시간(안정화 열처리), 진공에서 1500℃ 1 시간(탄화 열처리), CO2 분위기에서 800℃ 30 분 (활성화 열처리), 및 공기 중에서 250℃ 1 시간 (기능기화 열처리)의 열처리를 차례로 거쳐 다공성 탄소섬유를 제조하였다. 도 5는 본 발명의 실시예에 따른 다공성 탄소섬유의 미세조직 이미지이다 (a는 탄소섬유 전체 이미지, b는 a의 확대도, c는 b의 확대도, d는 열처리 후 이미지).2 g of corn starch was added to 40 ml of water and dissolved by magnetic stirring at a temperature of 80 ° C. on a hotplate. After 2 hours, 3.5 g of polyvinyl alcohol (PVA) was added to the above solution and further dissolved at a temperature of 120 ° C. for 2 hours. To this, 0.19 g of toluenesulfonic acid was added to accelerate the carbonization process in the later heat treatment process, and to facilitate the formation of a porous structure. The viscosity of the solution after completion of dissolution showed 580 cP. Electrospinning was used to prepare the solution into starch fibers. The electrospinning voltage was set to 18 kV and a 15 cm diameter drum collector was rotated at 500 rpm to collect starch fibers. The distance from the drum collector to the electrospinning tip was 15 cm and the solution was set to be fed at a rate of 5 μl / min. The starch fibers produced through the 48-hour electrospinning process were subjected to 250 ° C. 3 hours (stabilization heat treatment) in air, 1500 ° C. 1 hour (carbon heat treatment) in vacuum, 800 ° C. 30 minutes (activation heat treatment) in a CO 2 atmosphere, and Porous carbon fibers were prepared by sequentially performing heat treatment at 250 ° C. for 1 hour (functionalized heat treatment) in air. 5 is a microstructure image of a porous carbon fiber according to an embodiment of the present invention (a is a carbon fiber whole image, b is an enlarged view of a, c is an enlarged view of b, d is an image after heat treatment).
<< 침지코팅법을Immersion coating method 통한 코발트 산화물 코팅 다공성  Cobalt Oxide Coating Porous Through 탄소섬유의Carbon fiber 제조> Manufacture
상기에서 제조된 다공성 탄소섬유에 코발트 산화물을 코팅하기 위해 침지코팅법을 실시하였다. 본 실시예에서는 코발트(Ⅱ) 아세테이트 테트라하이드레이트(cobalt(Ⅱ) acetate tetrahydrate(Co(C2H4O2)2))를 코발트 산화물 전구체로서 사용하였고, 침지코팅액은 각각 0.025 M, 0.1 M, 0.2 M 및 0.4 M 농도로 제조하였다. 해당 침지 조건에서 각각 5 분을 침지하였다. 이후, 진공 80℃에서 8 시간 동안 용매를 제거하고, 450℃에서 2 시간 동안 코발트 산화물 전구체를 코발트 산화물로 상변화시킨 후 미세조직을 관찰하였다.Immersion coating was performed to coat the cobalt oxide on the porous carbon fiber prepared above. In this example, cobalt (II) acetate tetrahydrate (Cobalt (II) acetate tetrahydrate (Co (C 2 H 4 O 2 ) 2 )) was used as the cobalt oxide precursor, and the immersion coating solution was 0.025 M, 0.1 M, 0.2, respectively. Prepared at M and 0.4 M concentration. 5 minutes were immersed in each immersion condition. Thereafter, the solvent was removed at 80 ° C. for 8 hours, and the cobalt oxide precursor was phase-changed to cobalt oxide at 450 ° C. for 2 hours, and then the microstructure was observed.
도 6은 본 발명의 실시예에 따른 침지코팅 농도에 따른 금속산화물 코팅된 다공성 탄소섬유의 주사전자현미경 사진이다. 도 6에 도시된 바와 같이, 침지코팅액의 농도가 0.025 M에서 0.4 M로 짙어질수록, 섬유가 다공성으로 변하는 경향을 띠는 것을 확인할 수 있다. 주사전자현미경 사진을 통해서는 Co3O4의 코팅 여부를 판단할 수는 없으나, 미세조직 분석을 통해 Co3O4의 코팅이 기존 전기이중층 슈퍼커패시터(다공성 탄소섬유)에 의사커패시터(Co3O4)의 기능을 추가하는 것뿐만 아니라, 다공성 섬유 형성에도 영향을 미치는 것을 확인할 수 있었다.6 is a scanning electron micrograph of the metal oxide coated porous carbon fiber according to the immersion coating concentration according to an embodiment of the present invention. As shown in Figure 6, as the concentration of the immersion coating solution thickened from 0.025 M to 0.4 M, it can be seen that the fiber tends to change to porous. Through the scanning electron microscope is Co 3 O can determine the coating whether or not 4 but, microstructure analyzed by Co 3 O 4 coated with a pseudo capacitor (Co 3 O in conventional electrical double-layer supercapacitor (porous carbon fiber) of In addition to adding the function of 4 ), it was confirmed that it affects the formation of porous fibers.
또한, 침지코팅 시간에 따른 섬유의 미세조직 변화를 관찰하기 위하여 침지코팅액의 농도를 0.2 M로 고정시키고, 각각 5 분, 20 분, 1 시간 및 2 시간 동안 다공성 탄소섬유를 침지시킨 후 위와 마찬가지로 진공 80℃에서 8 시간 동안 용매를 제거하고, 450℃에서 2 시간 동안 코발트 산화물 전구체를 코발트 산화물로 상변화시킨 후 미세조직을 관찰하였다.In addition, in order to observe the microstructure change of the fiber according to the immersion coating time, the concentration of the immersion coating solution is fixed to 0.2 M, and the porous carbon fibers are immersed for 5 minutes, 20 minutes, 1 hour and 2 hours, respectively, and then vacuumed as above. The solvent was removed at 80 ° C. for 8 hours, and the microstructure was observed after phase change of the cobalt oxide precursor to cobalt oxide at 450 ° C. for 2 hours.
도 7은 본 발명의 실시예에 따른 침지코팅 시간에 따른 금속산화물 코팅된 다공성 탄소섬유의 열처리 후의 주사전자현미경 이미지이다. 도 7을 살펴보면, 앞서 침지용액의 농도를 다변화 했을 때와 마찬가지로 시간이 증가할수록 다공성화 되는 경향을 보였고, 2 시간의 침지 시에는 섬유가 가늘어지고, 절단되는 미세조직을 관찰하였다.7 is a scanning electron microscope image after heat treatment of the metal oxide coated porous carbon fiber according to the immersion coating time according to an embodiment of the present invention. Referring to FIG. 7, as in the case where the concentration of the immersion solution was diversified, the tendency of porosity tended to increase with time, and the microstructures were observed to be thinner and cut during 2 hours of immersion.
하기 표 1은 본 발명의 실시예의 침지코팅액에의 침지 시간에 따른 열처리 후의 비표면적과 순수 탄소나노섬유(비교예)를 측정하여 정리한 것이다.Table 1 below summarizes the specific surface area and the pure carbon nanofibers (comparative example) after the heat treatment according to the immersion time in the immersion coating solution of the present invention.
Figure PCTKR2016014214-appb-I000001
Figure PCTKR2016014214-appb-I000001
표 1을 참조하면, 미세조직을 통해 예상했던 바와 같이, 코발트 산화물의 코팅을 통해 코팅되지 않은 다공성 탄소섬유에 비해 비표면적이 크게 향상됨을 확인할 수 있다. 이는 코발트 전구체가 표면에 코팅되고, 열처리를 통해 상변화하는 과정에서, 다공성 탄소 섬유 표면에 더욱 많은 미세기공을 형성하기 때문으로 판단되며, 이는 전극 성능 향상에 지대한 역할을 할 수 있을 것으로 판단된다.Referring to Table 1, as expected through the microstructure, it can be seen that the specific surface area is significantly improved compared to the uncoated porous carbon fiber through the coating of cobalt oxide. This is because the cobalt precursor is coated on the surface, and in the process of phase change through heat treatment, more micropores are formed on the surface of the porous carbon fiber, which may play a significant role in improving electrode performance.
<분석><Analysis>
전기방사법을 통해 제조된 상기 금속 산화물 코팅 다공성 탄소섬유는 도전재와 바인더 등을 첨가하지 않고 자립적으로 하이브리드 슈퍼커패시터의 전극으로 사용이 가능한 것을 알 수 있다. 도 8은 본 발명의 실시예에 따른 3전극 시스템 전기화학셀의 제조를 나타낸 사진이다. 상기에서 제조된 금속 산화물 코팅 다공성 탄소섬유를 도 8과 같은 방식으로 3전극 전기화학셀을 제조하였다. 상대전극으로는 그래파이트 로드(탄소봉)를 사용하였고, 기준전극으로는 Ag/AgCl 표준전극을 사용하고, 1 M H2SO4 의 수용성 전해질을 이용해 측정을 진행하였다.The metal oxide-coated porous carbon fiber produced by the electrospinning method can be seen that it can be used as an electrode of the hybrid supercapacitor independently without adding a conductive material and a binder. 8 is a photograph showing the production of a three-electrode system electrochemical cell according to an embodiment of the present invention. A three-electrode electrochemical cell was prepared in the same manner as in FIG. 8 using the metal oxide-coated porous carbon fiber prepared above. Graphite rods (carbon rods) were used as counter electrodes, Ag / AgCl standard electrodes were used as reference electrodes, and measurement was performed using an aqueous electrolyte of 1 MH 2 SO 4 .
도 9는 본 발명의 실시예에 따른 침지코팅 시간에 따른 금속 산화물 코팅 다공성 탄소섬유의 슈퍼커패시터 특성을 나타낸 그래프이다. 일정전류(galvanostatic) 충방전법을 이용하여 전극의 비축전용량을 측정한 그래프이다. 도 9를 참조하면, 침지코팅 전의 순수 탄소나노섬유의 경우 35 F/g의 비축전용량을 나타내는 반면, 0.2 M 농도의 용액에서 1 시간 침지를 진행한 본 발명의 실시예는 137 F/g을 나타내어 약 4배로 향상된 비축전용량을 얻을 수 있었다. 이 결과는 산화 코발트로 인한 의사커패시터의 효과뿐만 아니라, 산화 코발트 전구체가 산화 코발트로 상변화하는 과정에서 생성하는 기공의 증가로 인한 시너지 효과인 것으로 예상할 수 있다. 제조된 산화 코발트 코팅 다공성 탄소섬유는 하이브리드 슈퍼커패시터의 성능을 나타내는 것을 확인하였다.9 is a graph showing the supercapacitor characteristics of the metal oxide coated porous carbon fiber according to the immersion coating time according to an embodiment of the present invention. It is a graph measuring the specific capacitance of the electrode using a galvanostatic charge and discharge method. Referring to FIG. 9, the pure carbon nanofibers before the immersion coating showed a specific capacity of 35 F / g, whereas the embodiment of the present invention, which was immersed in a 0.2 M solution for 1 hour, performed 137 F / g. In addition, it was possible to obtain a specific storage capacity improved by about four times. This result can be expected to be not only the effect of the pseudocapacitor due to cobalt oxide, but also a synergistic effect due to the increase of pores generated during the phase change of the cobalt oxide precursor to cobalt oxide. The prepared cobalt oxide coated porous carbon fiber was confirmed to exhibit the performance of the hybrid supercapacitor.
도 10은 본 발명의 실시예에 따른 하이브리드 슈퍼커패시터의 주기안정성 결과를 나타낸 그래프이다. 도 10을 통해 제조된 하이브리드 슈퍼커패시터의 주기안정성을 평가하였고, 5,000회 수행 시 91%의 성능을 유지함을 확인하였다. 이는, 의사커패시터에서는 나타날 수 없는 높은 주기안정성으로서, 본 결과를 통해 제조된 하이브리드 슈퍼커패시터는 전기이중층 슈퍼커패시터의 높은 주기안정성과, 의사커패시터의 높은 비표면적을 동시에 가지고 있는 것을 확인하였다.10 is a graph showing the cycle stability results of the hybrid supercapacitor according to the embodiment of the present invention. The cycle stability of the hybrid supercapacitor manufactured through FIG. 10 was evaluated, and it was confirmed that the performance of 91% was maintained after 5,000 cycles. This is a high periodic stability that can not be seen in the pseudo capacitor, the hybrid supercapacitor manufactured through this result confirmed that the high periodic stability of the electric double layer supercapacitor and the high specific surface area of the pseudo capacitor.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 그러므로, 본 발명의 범위는 설명된 실시예에 제한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.As described above, the present invention has been described by way of limited embodiments and drawings, but the present invention is not limited to the above embodiments, and those skilled in the art to which the present invention pertains various modifications and variations from such descriptions. This is possible. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be determined not only by the claims below but also by the equivalents of the claims.

Claims (17)

  1. 다공성 기재를 제조하는 단계; 및Preparing a porous substrate; And
    상기 다공성 기재에, 금속, 금속 산화물, 세라믹 고분자 및 탄소물질로 이루어진 군에서 선택되는 적어도 어느 하나의 물질을 코팅하는 단계;Coating at least one material selected from the group consisting of a metal, a metal oxide, a ceramic polymer, and a carbon material on the porous substrate;
    를 포함하고,Including,
    상기 다공성 기재는, 결정질 고분자 및 비정질 고분자를 포함하는 것인, 코팅된 다공성 재료의 제조방법.Wherein said porous substrate comprises a crystalline polymer and an amorphous polymer.
  2. 제1항에 있어서,The method of claim 1,
    상기 다공성 기재를 제조하는 단계는, Preparing the porous substrate,
    고분자 전구체를 포함하는 복합용액을 제조하는 단계;Preparing a composite solution containing a polymer precursor;
    상기 복합용액을 이용하여 상기 다공성 기재를 형성하는 단계; 및Forming the porous substrate using the composite solution; And
    상기 다공성 기재를 열처리하는 단계;Heat-treating the porous substrate;
    를 포함하는, 코팅된 다공성 재료의 제조방법.Including, a method of producing a coated porous material.
  3. 제2항에 있어서,The method of claim 2,
    상기 복합용액은, 녹말 및 유기산 중 적어도 어느 하나를 포함하는 것인, 코팅된 다공성 재료의 제조방법.The composite solution, at least any one of starch and organic acid, method of producing a coated porous material.
  4. 제2항에 있어서,The method of claim 2,
    상기 복합용액을 이용하여 상기 다공성 기재를 형성하는 단계는 전기방사에 의하는 것이고, 상기 복합용액의 점도는 50 cp 내지 1,000 cp인 것인, 코팅된 다공성 재료의 제조방법.Forming the porous substrate using the composite solution is by electrospinning, the viscosity of the composite solution is 50 cp to 1,000 cp, the method of producing a coated porous material.
  5. 제1항에 있어서,The method of claim 1,
    상기 다공성 기재 상에, 금속, 금속 산화물, 세라믹 고분자 및 탄소물질로 이루어진 군에서 선택되는 적어도 어느 하나의 물질을 코팅하는 단계는,Coating at least one material selected from the group consisting of metals, metal oxides, ceramic polymers and carbon materials on the porous substrate,
    용매에, 금속, 금속 산화물, 세라믹 고분자 및 탄소물질로 이루어진 군에서 선택되는 적어도 어느 하나의 물질의 전구체를 용해시켜 코팅액을 형성하는 단계;Dissolving a precursor of at least one material selected from the group consisting of a metal, a metal oxide, a ceramic polymer, and a carbon material in a solvent to form a coating solution;
    상기 코팅액을 이용하여 상기 다공성 기재 상에, 금속, 금속 산화물, 세라믹 고분자 및 탄소물질로 이루어진 군에서 선택되는 적어도 어느 하나의 물질을 코팅하여 코팅된 다공성 재료를 형성하는 단계; 및Coating at least one material selected from the group consisting of metals, metal oxides, ceramic polymers, and carbon materials using the coating solution to form a coated porous material; And
    상기 코팅된 다공성 재료를 열처리하는 단계;Heat treating the coated porous material;
    를 포함하는, 코팅된 다공성 재료의 제조방법.Including, a method of producing a coated porous material.
  6. 결정질 고분자 및 비정질 고분자를 포함하는 다공성 기재; 및A porous substrate including a crystalline polymer and an amorphous polymer; And
    상기 다공성 기재 상에 코팅된, 금속, 금속 산화물, 세라믹 고분자 및 탄소물질로 이루어진 군에서 선택되는 적어도 어느 하나의 물질을 포함하는, 코팅된 다공성 재료.A coated porous material comprising at least one material selected from the group consisting of metals, metal oxides, ceramic polymers and carbon materials, coated on the porous substrate.
  7. 제6항에 있어서,The method of claim 6,
    상기 다공성 기재는, 섬유, 박막 또는 벌크구조로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것인, 코팅된 다공성 재료.The porous substrate is coated, porous material comprising at least any one selected from the group consisting of fibers, thin films or bulk structures.
  8. 제6항에 있어서,The method of claim 6,
    상기 탄소물질은, 흑연, 그래핀, 그래핀 산화물, 그래파이트, 탄소나노로드, 탄소섬유, 탄소나노튜브, 카본블랙, 활성탄소 및 풀러렌으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하고,The carbon material includes at least one selected from the group consisting of graphite, graphene, graphene oxide, graphite, carbon nanorods, carbon fibers, carbon nanotubes, carbon black, activated carbon, and fullerenes,
    상기 코팅된 적어도 어느 하나의 물질은, 입자, 섬유 및 플레이크로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것인, 코팅된 다공성 재료.Wherein the coated at least one material comprises at least one selected from the group consisting of particles, fibers and flakes.
  9. 제6항에 있어서,The method of claim 6,
    상기 다공성 기재의 비표면적은, 100 m2/g 내지 2,000 m2/g이고, The specific surface area of the porous substrate is 100 m 2 / g to 2,000 m 2 / g,
    상기 다공성 기재의 단위 질량 당 기공부피는 0.01 cm3/g 내지 5 cm3/g인 것인, 코팅된 다공성 재료.The pore volume per unit mass of the porous substrate is 0.01 cm 3 / g to 5 cm 3 / g, coated porous material.
  10. 제6항에 있어서,The method of claim 6,
    상기 코팅된 다공성 재료의 기공크기는 0.1 nm 내지 10,000 nm인 것인, 코팅된 다공성 재료.The pore size of the coated porous material is 0.1 nm to 10,000 nm, the coated porous material.
  11. 제6항에 있어서,The method of claim 6,
    상기 코팅된 다공성 재료 중 상기 코팅된 물질은 0.01 중량% 내지 30 중량% 인 것인, 코팅된 다공성 재료.The coated porous material of the coated porous material is 0.01% to 30% by weight.
  12. 제6항의 코팅된 다공성 재료를 포함하는 전극.An electrode comprising the coated porous material of claim 6.
  13. 제7항의 코팅된 다공성 재료를 포함하는 전극.An electrode comprising the coated porous material of claim 7.
  14. 제8항의 코팅된 다공성 재료를 포함하는 전극.An electrode comprising the coated porous material of claim 8.
  15. 제9항의 코팅된 다공성 재료를 포함하는 전극.An electrode comprising the coated porous material of claim 9.
  16. 제10항의 코팅된 다공성 재료를 포함하는 전극.An electrode comprising the coated porous material of claim 10.
  17. 제11항의 코팅된 다공성 재료를 포함하는 전극.An electrode comprising the coated porous material of claim 11.
PCT/KR2016/014214 2016-03-08 2016-12-06 Method for manufacturing coated porous material, coated porous material and electrode comprising coated porous material WO2017155185A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0027676 2016-03-08
KR1020160027676A KR101794440B1 (en) 2016-03-08 2016-03-08 Method of manufacturing coated porous material, coated porous material and electrode comprising the coated porous material

Publications (1)

Publication Number Publication Date
WO2017155185A1 true WO2017155185A1 (en) 2017-09-14

Family

ID=59790803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014214 WO2017155185A1 (en) 2016-03-08 2016-12-06 Method for manufacturing coated porous material, coated porous material and electrode comprising coated porous material

Country Status (2)

Country Link
KR (1) KR101794440B1 (en)
WO (1) WO2017155185A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102031824B1 (en) * 2017-09-21 2019-10-21 한국과학기술원 3-dimensional polymer-ceramic nano composite having high strength and method for manufacturing the same
KR102219873B1 (en) * 2019-05-07 2021-02-25 광주과학기술원 Manufacturing Method of Graphene Coated Carbon Ultra-Thin Film and Graphene Coated Carbon Ultra-Thin film by same the method
CN113736133A (en) * 2021-09-24 2021-12-03 北京美斯顿科技开发有限公司 Graphene-based sponge and preparation method and application thereof
KR102641427B1 (en) * 2021-10-29 2024-02-27 고려대학교 산학협력단 Evaluation method of porous carbon derived from waste plastic and method of manufacturing porous carbon for CO2 capture

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070118496A (en) * 2006-06-12 2007-12-17 한국생산기술연구원 Super capacitor using graphite type material comprising nano sized activated carbon fiber
KR20100036768A (en) * 2008-09-30 2010-04-08 한국과학기술원 Fabrication method of porous carbon fibers reinforced with carbon nanotubes using starch and use for electrochemical electrode
KR20110033733A (en) * 2009-09-25 2011-03-31 전남대학교산학협력단 Method for producing complex of manganese dioxide and carbon nanofiber and pseudo capacitor including the complex
KR101118475B1 (en) * 2010-01-22 2012-03-12 (주)바이오니아 Hydrophilic modified nanoporous films and method of manufacturing composite porous films
KR20130085555A (en) * 2011-12-21 2013-07-30 비나텍주식회사 Structure of current collector and electrode including the same and, lithium ion capacitor comprising the same
KR101523665B1 (en) * 2013-12-17 2015-05-28 한양대학교 산학협력단 Flexible Yarned Structure for Supercapacitor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070118496A (en) * 2006-06-12 2007-12-17 한국생산기술연구원 Super capacitor using graphite type material comprising nano sized activated carbon fiber
KR20100036768A (en) * 2008-09-30 2010-04-08 한국과학기술원 Fabrication method of porous carbon fibers reinforced with carbon nanotubes using starch and use for electrochemical electrode
KR20110033733A (en) * 2009-09-25 2011-03-31 전남대학교산학협력단 Method for producing complex of manganese dioxide and carbon nanofiber and pseudo capacitor including the complex
KR101118475B1 (en) * 2010-01-22 2012-03-12 (주)바이오니아 Hydrophilic modified nanoporous films and method of manufacturing composite porous films
KR20130085555A (en) * 2011-12-21 2013-07-30 비나텍주식회사 Structure of current collector and electrode including the same and, lithium ion capacitor comprising the same
KR101523665B1 (en) * 2013-12-17 2015-05-28 한양대학교 산학협력단 Flexible Yarned Structure for Supercapacitor

Also Published As

Publication number Publication date
KR101794440B1 (en) 2017-11-07
KR20170104807A (en) 2017-09-18

Similar Documents

Publication Publication Date Title
Ma et al. Bacterial cellulose: an encouraging eco-friendly nano-candidate for energy storage and energy conversion
Ni et al. Nitrogen-doped asphaltene-based porous carbon fibers as supercapacitor electrode material with high specific capacitance
CN108315834B (en) Preparation method of array type magnetic reduced graphene oxide-carbon nanofiber
Zuo et al. Bacterial cellulose-based sheet-like carbon aerogels for the in situ growth of nickel sulfide as high performance electrode materials for asymmetric supercapacitors
Tebyetekerwa et al. Unveiling polyindole: freestanding As-electrospun polyindole nanofibers and polyindole/carbon nanotubes composites as enhanced electrodes for flexible all-solid-state supercapacitors
Zhang et al. Immobilization of NiS nanoparticles on N-doped carbon fiber aerogels as advanced electrode materials for supercapacitors
Mao et al. A review of electrospun carbon fibers as electrode materials for energy storage
WO2017190677A1 (en) Method for preparing boron-doped porous carbon sphere
WO2017155185A1 (en) Method for manufacturing coated porous material, coated porous material and electrode comprising coated porous material
Yang et al. Electrochemically polymerized vine-like nanostructured polyaniline on activated carbon nanofibers for supercapacitor
CN108103616B (en) Preparation method of nitrogen-doped lignin-based carbon fiber composite material
Qiu et al. High rate integrated quasi-solid state supercapacitors based on nitrogen-enriched active carbon fiber/reduced graphene oxide nanocomposite
Chhetri et al. A review on nanofiber reinforced aerogels for energy storage and conversion applications
Zhao et al. Solution blown silicon carbide porous nanofiber membrane as electrode materials for supercapacitors
KR20080093309A (en) Electrode for supercapacitor having metal oxide deposited onto ultrafine carbon fiber and the fabrication method thereof
Zhang et al. Preparation of inflorescence-like ACNF/PANI/NiO composite with three-dimension nanostructure for high performance supercapacitors
Huang et al. High-performance flexible supercapacitors based on mesoporous carbon nanofibers/Co 3 O 4/MnO 2 hybrid electrodes
CN105761950A (en) Preparation method of porous nitrogen-rich carbon fiber electrode
KR101742593B1 (en) Manufacturing method of crumpled graphene-carbon nanotube-polymer composite, the composite manufactured thereby and supercapacitor containing the composite
Zuo et al. N-doped mesoporous thin carbon tubes obtained by exhaust directional deposition for supercapacitor
Lu et al. Enhanced electrochemical charge storage performance by doping of copper phthalocyanine-3, 4′, 4 ″, 4‴-tetrasulfonic acid tetrasodium salt into polypyrrole/multi-walled carbon nanotubes 3D-nanostructured electrodes
KR20090055299A (en) Carbonaceous material and method of preparing same
CN111180727A (en) Preparation method and application of flexible compact carbon nanofiber membrane
Sun et al. Rational construction of hierarchical nanocomposites by growing dense polyaniline nanoarrays on carbon black-functionalized carbon nanofiber backbone for freestanding supercapacitor electrodes
CN113690057B (en) Phytic acid electrochemical oxidation-polypyrrole/carbon fiber composite material and preparation method and application thereof

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893699

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16893699

Country of ref document: EP

Kind code of ref document: A1