WO2017155173A1 - Method for preparing highly absorbent resin, and highly absorbent resin - Google Patents

Method for preparing highly absorbent resin, and highly absorbent resin Download PDF

Info

Publication number
WO2017155173A1
WO2017155173A1 PCT/KR2016/010375 KR2016010375W WO2017155173A1 WO 2017155173 A1 WO2017155173 A1 WO 2017155173A1 KR 2016010375 W KR2016010375 W KR 2016010375W WO 2017155173 A1 WO2017155173 A1 WO 2017155173A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine powder
polymer
weight
super absorbent
aqueous solution
Prior art date
Application number
PCT/KR2016/010375
Other languages
French (fr)
Korean (ko)
Inventor
임종두
김영삼
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160101900A external-priority patent/KR101853401B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP16893687.0A priority Critical patent/EP3333198B1/en
Priority to US15/765,092 priority patent/US10920023B2/en
Priority to CN201680057846.6A priority patent/CN108137725B/en
Publication of WO2017155173A1 publication Critical patent/WO2017155173A1/en
Priority to US17/126,816 priority patent/US11492451B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • C08F20/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds

Definitions

  • the present invention relates to a super absorbent polymer and a method for preparing the same. More specifically, the present invention relates to a superabsorbent polymer and a method for preparing the finely divided powder assembly having improved granular strength and exhibiting excellent absorption properties.
  • Super Absorbent Polymer is from 500 to 500
  • the absorption mechanism of the superabsorbent polymer is an interaction between the penetration pressure due to the difference in electrical attraction force of the charge of the polymer electrolyte, the affinity between water and the polymer electrolyte, the expansion of the molecule due to the repulsive force between the polymer electrolyte ions, and the expansion inhibition due to crosslinking. Is ruled by That is, the absorbency of the absorbent polymer depends on the affinity and molecular expansion described above, and the rate of absorption depends largely on the penetration pressure of the absorbent polymer itself.
  • Korean Patent Publication No. 2014-0063457 discloses a step of preparing a fine powder reassembly using only fine powder and base resin without additives.
  • a method of preparing a superabsorbent polymer including the polymer is disclosed, there is a problem in that the physical properties of the finely divided reassembly are lower than that of the base resin and the process is complicated and the efficiency is lowered.
  • the fine powder that is inevitably generated in the manufacturing process of the super absorbent polymer has a method of adding a fine powder during the polymerization in order to solve this as a factor of lowering the physical properties of the product, but this method induces non-uniform polymerization or by scattering light There is a problem that interferes with the physical properties. Therefore, a method of reassembling fine powder using a separate reassembler has been developed. This method is a method of mixing fine powder and water at a predetermined ratio to make large particles.
  • the problem with this technique is that due to the small particle size of the fine powder, the absorption rate is increased and the water is unevenly mixed, resulting in non-uniformity of the entire reassembly, thereby producing a non-uniform size and strength reassembly, while incomplete drying of hard particles. Due to the damage to the device during the crushing and the weakly reassembled particles had a problem of reducing the performance of the reassembly because it is easily crushed and returned to the fine powder.
  • the present invention is to solve the problems of the prior art as described above, the superabsorbent polymer comprising a fine powder reassembly having excellent assembly strength but does not cause a drop in physical properties such as water retention capacity (CRC) or pressure absorption capacity (AUP) And to provide a method for producing the same.
  • CRC water retention capacity
  • AUP pressure absorption capacity
  • It provides a method for producing a super absorbent polymer comprising the step of mixing the fine powder aqueous solution and the coarsely pulverized hydrogel polymer to prepare a fine powder reassembly.
  • Superabsorbent polymer comprising surface-crosslinked finely divided powder reassembled by mixing sodium hydroxide with respect to fine powder having an acidic group and polymerizing a water-soluble ethylenically unsaturated monomer in which at least part of the acidic group is neutralized and having a particle size of less than 150.
  • the water holding capacity (CRC) measured according to the EDANA method WSP 241.3 is 33.0 to 39.0 g / g;
  • AUP Absorption Capacity
  • a superabsorbent polymer having a water absorption rate of 100 seconds or less by Vortex is provided.
  • the fine powder content is regrinded by using an additive during fine powder reassembly to improve the assembly strength. Can be reduced.
  • the reassembly process is carried out by mixing fine powder in the hydrous gel phase polymer, so the process step is relatively simple, so the efficiency is high, and the absorption rate is High reassembly can be obtained.
  • Method for producing a super absorbent polymer the step of thermally polymerizing or photopolymerizing a monomer composition comprising a water-soluble ethylenically unsaturated monomer and a polymerization initiator to obtain a hydrogel polymer; Coarsely pulverizing the hydrogel polymer; Drying and grinding the coarsely pulverized hydrogel polymer to classify it into fine powder having a particle size of less than 150 and normal particles having a particle size of 150 to 850; Preparing a fine powder aqueous solution by mixing the fine powder, water, and additives; And mixing the finely divided aqueous solution with the coarsely pulverized hydrogel polymer to produce a finely divided reassembly.
  • polymer or “polymer” means that the water-soluble ethylenically unsaturated monomer is in a polymerized state and may cover all water content ranges, all particle size ranges, all surface crosslinking states, or processing states. Number have.
  • the water content (moisture content) of about 40 parts by weight 0 / I to the drying condition after the polymerization. May refer to one polymer functions as a gel-like polymer.
  • the polymer whose particle diameter is less than 150 can be called "fine powder".
  • Superabsorbent polymer also means, according to the context, the polymer itself »or in a state suitable for commercialization by further processing such as surface crosslinking, fine powder reassembly, drying, grinding, classification, etc., for the polymer. It is used to encompass everything.
  • a hydrogel or photopolymerization is performed on a monomer composition including a water-soluble ethylenically unsaturated monomer and a polymerization initiator to form a hydrogel polymer.
  • the monomer composition which is a raw material of the super absorbent polymer includes a water-soluble ethylenically unsaturated monomer and a polymerization initiator.
  • the water-soluble ethylene-based unsaturated monomer can be used without any limitation any monomers commonly used in the production of superabsorbent polymer. Any one or more monomers selected from the group consisting of anionic monomers and salts thereof, nonionic hydrophilic-containing monomers and amino group-containing unsaturated monomers and quaternized compounds thereof can be used.
  • acrylic acid may be neutralized with a basic compound such as caustic soda (NaOH).
  • the concentration of the water-soluble ethylenically unsaturated monomers, said high from about 20 to about 60 weight 0/0, preferably for a monomer composition containing a source material and a solvent of the water-absorbent resin is about 40 to about 50 weight 0/0 It may be made to an appropriate concentration in consideration of the polymerization time and reaction conditions. However, when the concentration of the monomer is too low, the yield of the superabsorbent polymer may be low and there may be a problem in economics. On the contrary, when the concentration is too high, some of the monomer may be precipitated or the grinding efficiency of the polymerized hydrogel polymer may be low. Etc. may cause problems in the process and may decrease the physical properties of the super absorbent polymer.
  • the polymerization initiator used in the polymerization in the method for producing a super absorbent polymer of the present invention is not particularly limited as long as it is generally used for producing the super absorbent polymer.
  • the polymerization initiator may use a thermal polymerization initiator or a photopolymerization initiator according to UV irradiation depending on the polymerization method.
  • a thermal polymerization initiator since a certain amount of heat is generated by irradiation such as ultraviolet irradiation, and a certain amount of heat is generated in accordance with the progress of the polymerization reaction, which is an exothermic reaction, it may further include a thermal polymerization initiator.
  • the photopolymerization initiator may be used without any limitation as long as it is a compound capable of forming radicals by light such as ultraviolet rays.
  • photopolymerization initiator examples include benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, and benzyl dimethyl ketal. ketal), acyl phosphine and alpha-aminoketone may be used.
  • acylphosphine commercially available lucirin TPO, that is, 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide can be used. .
  • photoinitiators see Rein old Schwalm, "UV Coatings: Basics, Recent Developments and New.” Application (Elsevier 2007) "pi 15, and is not limited to the above example.
  • the photopolymerization initiator may be included in a concentration of about 0.01 to about 1.0 wt% based on the monomer composition. If the concentration of the photopolymerization initiator is too low, the polymerization rate may be slow. If the concentration of the photopolymerization initiator is too high, the molecular weight of the superabsorbent polymer may be low and the physical properties may be uneven.
  • the thermal polymerization initiator may be used at least one selected from the group consisting of persulfate initiator, azo initiator, hydrogen peroxide and ascorbic acid.
  • persulfate-based initiators include sodium persulfate (Na 2 S 2 O s ), potassium persulfate (K 2 S 2 0 8 ), and ammonium persulfate (NH 4 ).
  • examples of the azo (Azo) initiator include 2, 2-azobis- (2-amidinopropane) dihydrochloride (2, 2- azobis (2-amidinopropane) dihydrochloride), 2 2,2-azobis- (N, N-dimethylene) isobutyramidine dihydrochloride), 2-azobis- (N, N-dimethylene) isobutyramidine dihydrochloride
  • the thermal polymerization initiator may be included in a concentration of about 0.001 to about 0.5% by weight based on the monomer composition.
  • concentration of the thermal polymerization initiator is too low, additional thermal polymerization hardly occurs, and the effect of the addition of the thermal polymerization initiator may be insignificant.
  • concentration of the thermal polymerization initiator is too high, the molecular weight of the superabsorbent polymer may be low and the physical properties may be uneven. have.
  • the monomer composition may further include an internal crosslinking agent as a raw material of the super absorbent polymer.
  • the crosslinking agent include at least one functional group capable of reacting with the water-soluble substituent of the water-soluble ethylenically unsaturated monomer and having at least one ethylenically unsaturated group; Or the crosslinking agent which has 2 or more functional groups which can react with the water-soluble substituent of the said monomer, and / or the water-soluble substituent formed by hydrolysis of the monomer can be used.
  • the internal crosslinking agent examples include bisacrylamide having 8 to 12 carbon atoms, bismethacrylamide, poly (meth) acrylates having 2 to 10 carbon atoms, or poly (meth) allyl ether having a polyol having 2 to 10 carbon atoms. These etc.
  • acrylate, glycerin triacrylate, trimethol triacrylate, triallylamine, triarylcyanurate, triallyl isocyanate, polyethylene glycol, diethylene glycol and propylene glycol can be used.
  • Such an internal crosslinking agent may be included at a concentration of about 0.01 to about 0.5 weight 0 / ° based on the monomer composition to crosslink the polymerized polymer.
  • the monomer composition of the super absorbent polymer may further include additives such as thickeners, plasticizers, storage stabilizers, antioxidants, and the like, as necessary.
  • Raw materials such as the above-mentioned water-soluble ethylenically unsaturated monomers, photopolymerization initiators, thermal polymerization initiators, internal crosslinking agents and additives may be prepared in the form of a monomer composition solution dissolved in a solvent.
  • the solvent that can be used at this time can be used without limitation in the composition as long as it can dissolve the above-described components, for example, water, ethanol ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanediol propylene glycol Ethylene glycol monobutyl ether propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate methyl ethyl ketone, acetone, methyl amyl ketone, cyclonucleanone, cyclopentanone diethylene glycol monomethyl ether, diethylene glycol ethyl ether, toluene , Xylene Butyllactone, carby, methyl cellosolve acetate, and one or more selected from ⁇ , ⁇ -dimethylacetamide and the like can be used in combination.
  • the solvent may be included in the remaining amount except for the above-described components with respect to the total content of the monomer composition.
  • the polymerization method is largely divided into thermal polymerization and photopolymerization according to the polymerization energy source, and when the thermal polymerization is usually carried out, the polymerization method may be performed in a reactor having a stirring shaft such as a kneader. Although it can be carried out in a semi-unggi equipped with a conveyor belt, the above-described polymerization method is an example, the present invention is not limited to the above-described polymerization method.
  • the hydrogel polymer obtained by thermal polymerization by supplying hot air or by heating the reaction machine may have a half-stirrer such as a kneader having a stirring shaft.
  • the hydrogel polymer discharged to the mandrel outlet may be in the form of several centimeters to several millimeters.
  • the size of the water-containing gel polymer obtained may vary depending on the concentration and the injection speed of the monomer composition to be injected, the water-containing gel polymer having a weight average particle diameter of 2 to 50 mm can be obtained.
  • the form of the hydrogel polymer generally obtained may be a hydrogel gel polymer on a sheet having a width of the belt.
  • the thickness of the polymer sheet depends on the concentration and the injection speed of the monomer composition to be injected, but it is usually preferable to supply the monomer composition so that a polymer on the sheet having a thickness of about 0.5 to about 5 cm can be obtained.
  • the normal water content of the hydrogel polymer obtained by the above method is about 40 to about 80 weight percent.
  • water content throughout the present specification is the amount of water to account for the total weight of the hydrous gel phase polymer dried at the weight of the hydrogel polymer. It means the value obtained by subtracting the weight of the polymer in the state. Specifically, it is defined as a value calculated by measuring the weight loss due to moisture evaporation in the polymer in the process of drying the temperature of the polymer through infrared heating. At this time, the drying conditions are raised to a temperature of about 180 ° C at room temperature and then maintained at 180 ° C. The total drying time is set to 20 minutes, including 5 minutes of temperature rise step, the moisture content is measured.
  • the hydrogel polymer is coarsely ground.
  • the pulverizer used is not limited in configuration, specifically, a vertical pulverizer, a turbo cutter, a turbo grinder, a rotary cutter mill, a cutting machine Includes any one selected from the group of grinding machines consisting of cutter mills, disc mills, shred crushers, crushers, choppers and disc cutters Although it is possible, it is not limited to the above-mentioned example.
  • the coarse grinding step may be pulverized so that the particle size of the hydrogel polymer is about 2 to about 20mm.
  • Coarse pulverization of less than 2 mm in particle size is not technically easy due to the high water content of the hydrogel polymer, and may also cause agglomeration of pulverized particles with each other.
  • coarsely pulverizing more than 20mm the effect of increasing the efficiency of the subsequent drying step may be insignificant.
  • the drying temperature of the drying step may be about 150 to about 250 ° C. If the drying temperature is less than 150 ° C., the drying time is too long and there is a risk that the physical properties of the superabsorbent polymer to be formed is lowered, if the drying temperature exceeds 250 ° C, only the polymer surface is dried too much, Fine powder may occur in the grinding process, and there is a fear that the physical properties of the superabsorbent polymer to be finally formed decrease.
  • the drying is at a temperature of about 150 to about 200 ° C., Preferably at a temperature of about 160 to about 180 ° C.
  • drying time in consideration of the process efficiency, etc., it may proceed for about 20 to about 90 minutes, but is not limited thereto.
  • the drying method of the drying step is also commonly used as a drying step of the hydrogel polymer, it can be selected and used without limitation of the configuration. Specifically, the drying step may be performed by a method such as hot air supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation.
  • the water content of the polymer after such a drying step may be about 0.1 to about 10% by weight.
  • the polymer powder obtained after the grinding step may have a particle diameter of about 150 to about 850! M. Mills used to grind to such particle diameters are specifically pin mills, hammer mills, screw mills, mills, disc mills or jogs. Although a jog mill or the like may be used, the present invention is not limited to the above-described example.
  • the polymer powder obtained after grinding is generally classified according to the particle size.
  • the particles are classified into particles having a particle size of less than about 150, particles of about 150 to about 850, and particles having a particle size of more than 850 mm 3.
  • finely divided particles having a particle size of less than a certain particle size, that is, less than about 150 / m are referred to as superabsorbent polymer fine powder, SAP fine powder or fine powder (fines, fine powder), having a particle diameter of about 150 to about 850 Particles that are / m are called normal particles.
  • the fine powder may be generated during a polymerization process, a drying process, or a pulverization step of a dried polymer.
  • the fine powder is difficult to handle and exhibits a gel blocking phenomenon. It is desirable to exclude them from inclusion or to reuse them to be normal particles.
  • the fine powder may be subjected to a reassembly process in which the fine particles are formed to have a normal particle size.
  • a reassembly process is performed in which the fine particles are coarse in a wet state in order to increase the coarse strength.
  • the reassembly process may cause too large reassembly lumps, which may cause problems during the operation of the process. It is often broken into fine powder again.
  • the fine powder reassembly thus obtained has lower physical properties such as water-retaining capacity (CRC) and pressure-absorbing capacity (AUP) than normal particles, resulting in deterioration of the quality of the super absorbent polymer.
  • CRC water-retaining capacity
  • AUP pressure-absorbing capacity
  • a fine powder reassembly is prepared by mixing a finely divided hydrogel polymer having a particle size of less than 150 to prepare a fine powder reassembly.
  • the fine powder, water, and additives are mixed to prepare a fine powder aqueous solution, and thus the fine powder aqueous solution and the coarsely pulverized hydrogel polymer are mixed to prepare a fine powder reassembly.
  • the additives included in the fine powder solution include sodium hydroxide, a crosslinking agent, and a thermal polymerization initiator.
  • the sodium hydroxide (NaOH) may be included as about 1 to about 10 parts by weight 0/0, preferably about 2 to about 8 parts by weight 0/0, preferably about 2 to about 6% by weight relative to the differential solution and the differential member assembly May contribute to the improvement of water retention (CRC).
  • the crosslinking agent forms a crosslinked structure between the fine particles and serves to improve granulation strength.
  • Crosslinking agents that can be used include polyethylene glycol diacrylate (PEGDA), nucleic acid-1,6-di diacrylate (hexane-l, 6-diol diacrylate, HDD A), and ethoxylated trimethyl propane.
  • PEGDA polyethylene glycol diacrylate
  • nucleic acid-1,6-di diacrylate hexane-l, 6-diol diacrylate, HDD A
  • ethoxylated trimethyl propane ethoxylated trimethyl propane.
  • Acrylate ethoxylated trimethylolpropane triacrylate, ETTA
  • EC ethylene carbonate
  • the crosslinking agent may be included in an amount of about 1 to about 0.5 parts by weight, preferably about 0.2 to about 0.4 parts by weight, based on 100 parts by weight of the fine powder. When the crosslinking agent is included in the above weight part range, it may exhibit high assembly strength and physical properties.
  • the thermal polymerization initiator is assembled by inducing further polymerization of the fine powder It serves to improve strength.
  • thermal polymerization initiators that can be used include sodium persulfate, potassium persulfate, and the like, and preferably sodium persulfate.
  • the thermal polymerization initiator may include about 0.1 to about 0.5 parts by weight, preferably about 0.1 to about 0.3 parts by weight, based on 100 parts by weight of the fine powder. When the thermal polymerization initiator is included in the above weight part range, high assembly strength and physical properties may be exhibited.
  • the fine powder aqueous solution includes water so that the fine powder can be reassembled in a wet state, wherein the amount of water included is about 100 to about 300 parts by weight, preferably about 100 to about 200 parts by weight based on 100 parts by weight of the fine powder. Can be added.
  • the fine powder aqueous solution may further include porous particles.
  • the porous particles may be silica particles having a BET specific surface area of about 300 to about 1500 m 2 / g and a porosity of about 50% or more, for example, about 50 to about 98%. have.
  • the porous particles may have a superhydrophobicity with a contact angle with respect to water of 125 ° or more, preferably 140 ° or more, more preferably 145 ° or more.
  • the fine powder aqueous solution may further include a porous particle as described above, thereby further performing fine powder reassembly, thereby further improving permeability and pore strength of the fine powder reassembled product.
  • the porous particles may include about 0.01 to about 0.4 parts by weight, preferably about 0.05 to about 2 parts by weight, based on 100 parts by weight of the fine powder. When the porous particles are included in the weight part range, it may exhibit high assembly strength and improved permeability.
  • the above-mentioned additives and optionally porous particles are added to the fine powder to prepare a fine powder aqueous solution.
  • the heated additive can be manufactured by mixing fine powder with aqueous solution. By mixing the fine powder in the heated additive aqueous solution as described above it can exhibit a more improved foam strength.
  • a fine powder reassembly is prepared by mixing the prepared fine powder aqueous solution and the coarsely pulverized hydrogel polymer.
  • the coarsely pulverized hydrogel polymer means that the hydrous gel polymer obtained by thermal polymerization or photopolymerization of the monomer composition described above is first ground in a form of lumps having a large particle size before drying.
  • the particle size of the milled crude function polymer gel is from about 2 to may be about 20mm, before drying because the water content is from about 40 to about 80 weight 0/0 of the hydrogel state.
  • a finely divided aqueous solution is mixed with the coarsely pulverized hydrogel polymer to form a fine powder reassembly, and thus the finely divided reassembly is maintained at a similar level with the high physical strength of the original hydrogel polymer.
  • High quality fine powder reassembly can be obtained.
  • the coarsely pulverized hydrogel polymer may be mixed in an amount of about 50 to about 500 parts by weight, preferably about 50 to about 300 parts by weight, based on 100 parts by weight of fine powder contained in the fine powder solution. have.
  • the coarsely pulverized hydrogel polymer may exhibit high assembly strength and improved physical properties.
  • the method for adding the finely divided aqueous solution to the coarsely pulverized hydrogel polymer is not limited in its configuration.
  • the finely divided aqueous solution and the coarsely pulverized hydrous gel polymer are mixed in a semi-aperture, or the finely divided aqueous solution and the coarsely pulverized hydrous gel polymer are mixed in a semi-permanent mixture such as a mixer.
  • the method of supplying continuously and mixing etc. can be used.
  • the obtained fine powder reassembly may further comprise the step of drying, grinding and classifying.
  • Drying the fine powder reassembly may be performed for 20 to 90 minutes at a temperature of 150 to 250 ° C.
  • a temperature raising means for drying in the above there is no limitation in the structure.
  • supply the heat medium or electricity Although it can heat directly by means, etc., this invention is not limited to the above-mentioned example.
  • Specific heat sources that may be used include steam, electricity, ultraviolet rays, infrared rays, and the like, and a heated thermal fluid may be used.
  • the dried fine powder reassembly may be ground to have a particle size of about 150 to about 850.
  • Mills used to grind to such particle diameters are specifically pin mills, hammer mills, screw mills, mills, disc mills or jogs. Although a jog mill or the like may be used, the present invention is not limited to the above-described example.
  • the fine powder reassembly obtained according to the production method of the present invention has a high foaming strength with a low ratio of re-crushing into fine powder after the reassembly and drying and grinding step as described above.
  • the reassembled polymer obtained according to the preparation method of the present invention has a weight ratio of fine powder having a particle size of 150 m or less after grinding, for example, less than about 15% by weight of the total fine powder reassembly, preferably about 10 Less than%, more preferably less than about 7%.
  • the finely divided reassembly obtained after grinding may be classified into particles having a particle size of less than about 150, particles of about 150 to about 850 ⁇ , and particles having a particle size of more than 850 depending on the particle size.
  • the classified fine powder reassembly may be performed alone or in combination with other normal particles to perform a surface crosslinking process.
  • Surface crosslinking is the step of increasing the crosslink density near the surface of the superabsorbent polymer particles with respect to the crosslink density inside the particles.
  • the surface crosslinking agent is applied to the surface of the super absorbent polymer particles.
  • this reaction occurs on the surface of the superabsorbent resin particles, which improves the crosslinkability on the surface of the particles without substantially affecting the interior of the particles.
  • the surface crosslinked superabsorbent resin particles thus have a higher degree of crosslinking in the vicinity of the surface than in the interior.
  • the surface crosslinking agent is not limited as long as it is a compound capable of reacting with the functional group of the polymer.
  • Polyhydric alcohol compounds as the surface crosslinking agent; Epoxy compounds; Polyamine compounds; Haloepoxy compound; Condensation products of haloepoxy compounds; Oxazoline compounds; Mono-, di- or polyoxazolidinone compounds; Cyclic urea compounds; Polyvalent metal salts; And it may be used one or more selected from the group consisting of alkylene carbonate compounds.
  • examples of the polyhydric alcohol compound include mono-, di-, tri-, tetra- or polyethylene glycol, monopropylene glycol, 1,3-propanediol, dipropylene glycol, 2,3,4-trimethyl-1,3 -Pentanediol, polypropylene glycol, glycerol, polyglycerol, 2-butene-1,4-diol, 1,4-butanediol, 1,3-butanediol, 1,5-pentanediol, 1,6- nucleic acid diol And 1, 1 or more selected from the group consisting of 1,2-cyclonucleodimethane can be used.
  • ethylene glycol diglycidyl ether and glycidol may be used as the epoxy compound, and as polyamine compounds, ethylene diamine, diethylene triamine, triethylene tetraamine, tetraethylenepentamine, pentaethylene nucleoamine , At least one selected from the group consisting of polyethyleneimine and polyamide polyamine can be used.
  • epichlorohydrin epichlorohydrin, epibromohydrin and ⁇ -methyl epichlorohydrin can be used.
  • a mono-, di-, or a polyoxazolidinone compound 2-oxazolidinone etc. can be used, for example.
  • alkylene carbonate compound ethylene carbonate etc. can be used. These may be used alone or in combination with each other.
  • the amount of the surface crosslinking agent to be added may be appropriately selected depending on the kind of the surface crosslinking agent to be added or the reaction conditions, but it is usually from about ⁇ to about 5 parts by weight, preferably about 0.01 to about 1 part by weight of the polymer loo. 3 parts by weight, more preferably from about 0.05 to about 2 parts by weight can be used have.
  • the content of the surface crosslinking agent is too small, the surface crosslinking reaction hardly occurs, and when 100 parts by weight of the polymer is more than 5 parts by weight, the excessive absorption of the surface crosslinking reaction may result in deterioration of absorbing ability and physical properties. .
  • the surface crosslinking reaction and drying can occur simultaneously by heating the polymer particles to which the surface crosslinking agent is added.
  • the temperature raising means for surface crosslinking reaction is not specifically limited. It can be heated by supplying a heat medium or by directly supplying a heat source.
  • a heated fluid such as steam, hot air, and hot oil may be used, but the present invention is not limited thereto, and the temperature of the heat medium to be supplied is a means of heating medium, a temperature increase rate, and a temperature increase. It may be appropriately selected in consideration of the target temperature.
  • the heat source directly supplied may be a heating method through electricity, a heating method through a gas, but the present invention is not limited to the above examples.
  • the superabsorbent polymer prepared by the above-described method is prepared by mixing sodium hydroxide with respect to fine powder having a particle size of less than 150 in a polymer including an acidic group and polymerizing a water-soluble ethylenically unsaturated monomer in which at least a part of the acidic group is neutralized.
  • a superabsorbent polymer having surface-crosslinked finely divided reassembly, the water-retaining capacity (CRC) measured according to EDANA method WSP 241.3 is 33.0 to 39.0 g / g; EDANA Law WSP
  • the polymer comprises an acidic group and polymerized a water-soluble ethylene-based unsaturated monomer in which at least a portion of the acidic group is neutralized. The same as exemplarily described in the method for preparing a gel polymer.
  • the fine powder refers to particles having a particle diameter of less than 150 / zm in the polymer, regardless of the step or surface crosslinking occurs the fine powder, all of the superabsorbent resin
  • the process for example, a polymerization process, a drying process, the pulverization process of the dried polymer, the surface crosslinking process, etc. can include all.
  • the fine powder reassembly may be reassembled by mixing sodium hydroxide with respect to fine powder, or may be reassembled by adding more crosslinking agent, thermal polymerization initiation, or porous particles in addition to sodium hydroxide. More detailed description of the crosslinking agent, thermal polymerization initiation, or porous particles is as described above in the method for preparing a super absorbent polymer.
  • the sodium hydroxide may be included in an amount of about 0.1 to about 20 parts by weight, or about 1 to about 15 parts by weight, or about 1 to 10 parts by weight, based on 100 parts by weight of the fine powder. When the sodium hydroxide is included in the weight range, it may contribute to high assembly strength, improved permeability and water retention.
  • the fine powder may be reassembled by mixing the coarsely pulverized hydrogel polymer. More detailed description of the mixing with the coarsely pulverized hydrogel polymer is as described above in the preparation method of the super absorbent polymer.
  • the superabsorbent polymer surface-crosslinked with the reassembled finely divided granules has a water retention (CRC) of about 33.0 to about 39.0 g / g, or about 34.0 to about 38.0 g / g, measured according to EDANA WSP 241.3. Can be.
  • the 0.7 psi pressurized absorbent capacity (AUP) measured according to the EDANA method WSP 241.3 may be from about 20.0 to about 25.0 g / g, or from about 21.0 to about 25.0 g / g.
  • the superabsorbent polymer may have an absorption rate of about 100 seconds or less, or about 95 seconds or less based on a vortex method.
  • a vortex method 50 ml saline was added to a 100 ml beaker with a magnetic stir bar, the stirring speed of the magnetic stir bar was set at 600 rpm using a stirrer, and 2.0 g of superabsorbent polymer was added to the stirred saline.
  • the lower limit of the absorption rate is not particularly limited but may be about 20 seconds or more, or about 30 seconds or more.
  • the monomer mixture was placed on a continuously moving conveyor belt, and irradiated with ultraviolet light (irradiation amount: 2 mW / cm 2 ) to undergo UV polymerization for 2 minutes to obtain a hydrous gel polymer.
  • ultraviolet light irradiation amount: 2 mW / cm 2
  • the hydrogel polymer was pulverized with a meat chopper (hole size 8 mm) to obtain a coarsely pulverized hydrogel polymer. It was dried for 2 hours in a hot air dryer at 170 ° C, crushed by a pin mill grinder and classified into a standard mesh of ASTM standard.
  • An additive aqueous solution comprising 1,500 ppm of sodium persulfate (SPS), 3,000 ppm of polyethylene glycol diacrylate (PEGDA), 1,000 ppm of silica aerogel (Silica Aerogel, AeroZelTM, JIOS) and 3% by weight of sodium hydroxide was prepared.
  • the additive aqueous solution was heated to 8 (rc.
  • a super absorbent polymer was prepared in the same manner as in Example 1, except that 250 g of fine powder and 750 g of a coarsely pulverized hydrogel polymer were used. Comparative Example 1
  • Surface crosslinking comprising 100 g of particles having a classified particle diameter of 150 ⁇ or more and less than 850 // m, containing 0.2 g of poly (ethylene glycol) diglycidyl ether, 3 g of methane, 5 g of water, and silica aerogel (AeroZelTM, JIOS) O.Olg After mixing with the solution, a surface crosslinking reaction was performed for 50 minutes at a temperature of 180 ° C to obtain a final superabsorbent polymer.
  • the absorbency under pressure was measured for each of the superabsorbent polymers prepared in Examples 1 to 2 and Comparative Example 1.
  • the measurement of the absorbency under pressure was based on the EDANA method WSP 241.3. 0.9 g of the particle size 300 to 600 / ⁇ sample of the prepared superabsorbent polymer was put in a cylinder defined by EDANA, and a pressure of 0.7 psi was applied to the piston and weight. After that, the amount of 0.9% saline solution absorbed for 60 minutes was measured.

Abstract

The present invention relates to a highly absorbent resin and a method for preparing same. More particularly, the present invention relates to a method for preparing a highly absorbent resin capable of producing reassembled fine particles that maintain excellent physical properties.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
고흡수성 수지의 제조 방법, 및 고흡수성 수지 【기술분야】  Method for producing superabsorbent polymer, and superabsorbent polymer
관련출원 (들ᅵ과의 상호 인용  Reciprocal Citation with Related Application (s)
본 출원은 2016년 3월 11일자 한국 특허 출원 제 10-2016-0029840호 및 2016년 8월 10일자 한국 특허 출원 제 10-2016-0101900호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2016-0029840 dated March 11, 2016 and Korean Patent Application No. 10-2016-0101900 dated August 10, 2016. All content disclosed in the literature is included as part of this specification.
본 발명은 고흡수성 수지 및 이의 제조방법에 관한 것이다. 보다 자세하게는 향상된 조립 강도를 가지면서도 우수한 흡수 특성을 나타내는 미분 재조립체를 제조할 수 있는 고흡수성 수지 및 이의 제조 방법에 관한 것이다.  The present invention relates to a super absorbent polymer and a method for preparing the same. More specifically, the present invention relates to a superabsorbent polymer and a method for preparing the finely divided powder assembly having improved granular strength and exhibiting excellent absorption properties.
【발명의 배경이 되는 기술】 [Technique to become background of invention]
고흡수성 수지 (Super Absorbent Polymer, SAP)란 자체 무게의 5백 내지 Super Absorbent Polymer (SAP) is from 500 to 500
1천 배 정도의 수분을 흡수할 수 있는 기능을 가진 합성 고분자 물질로, 생리용구로 실용화되기 시작해서, 현재는 어린이용 종이 기저귀 등 위생용품 외에 원예용 토양보수제, 토목, 건축용 지수재, 육묘용 시트, 식품 유통분야에서의 신선도 유지제, 및 찜질용 등의 재료로 널리 사용되고 있다. 이러한 고흡수성 수지의 흡수 메카니즘은 고분자 전해질의 전하가 나타내는 전기적 흡인력의 차이에 의한 침투압, 물과 고분자 전해질 사이의 친화력, 고분자 전해질 이온 사이의 반발력에 의한 분자 팽창 및 가교 결합으로 인한 팽창 억제의 상호 작용에 의하여 지배된다. 즉, 흡수성 수지의 흡수성은 전술한 친화력과 분자 팽창에 의존하며, 흡수 속도는 흡수성 고분자 자체의 침투압에 크게 좌우되는 것이다. It is a synthetic polymer material capable of absorbing water up to 1,000 times. It has been put into practical use as a sanitary appliance, and is currently used for gardening, soil repair, civil engineering, building index, and seedling. It is widely used as a material for sheets, freshness retainers in food distribution, and for steaming. The absorption mechanism of the superabsorbent polymer is an interaction between the penetration pressure due to the difference in electrical attraction force of the charge of the polymer electrolyte, the affinity between water and the polymer electrolyte, the expansion of the molecule due to the repulsive force between the polymer electrolyte ions, and the expansion inhibition due to crosslinking. Is ruled by That is, the absorbency of the absorbent polymer depends on the affinity and molecular expansion described above, and the rate of absorption depends largely on the penetration pressure of the absorbent polymer itself.
이러한 고흡수성 수지의 흡수 속도를 향상시키기 위하여 많은 연구가 진행되고 있다. 예를 들어 대한민국 공개특허 제 2014-0063457호에는 첨가제 없이 미분과 베이스 수지만을 사용하여 미분 재조립체를 제조하는 단계를 포함하는 고흡수성 수지의 제조 방법이 기재되어 있으나, 미분 재조립체의 물성이 베이스 수지보다 하락하고 공정이 복잡하여 효율성이 떨어지는 문제점이 있었다. In order to improve the absorption rate of such superabsorbent polymers, many studies have been conducted. For example, Korean Patent Publication No. 2014-0063457 discloses a step of preparing a fine powder reassembly using only fine powder and base resin without additives. Although a method of preparing a superabsorbent polymer including the polymer is disclosed, there is a problem in that the physical properties of the finely divided reassembly are lower than that of the base resin and the process is complicated and the efficiency is lowered.
또한, 고흡수성 수지의 제조 공정에서 필연적으로 발생하는 미분은 제품의 물성 저하의 요인으로 이를 해결하기 위하여 중합 시에 미분을 첨가하는 방법이 있으나 이 방법은 불균일한 중합을 유도하거나 빛을 산란시켜 중합을 방해, 물성 저하를 일으키는 문제점이 있었다. 이에 미분을 별도의 재조립기를 사용하여 재조립하는 방법이 개발되었는데, 이 방법은 미분과 물을 일정 비율로 흔합하여 큰 입자로 만드는 방법이다. 상기 기술의 문제점은 미분의 작은 입자 크기로 인해 흡수 속도가 빨라져 수분이 불균일하게 흔합되기 때문에 전체 재조립체에 불균일성이 발생하여 불균일한 크기 및 강도의 재조립체가 제조되었고, 한편 단단한 입자의 경우 불완전한 건조로 인해 분쇄 시에 기기에 데미지를 주며 약하게 재조립된 입자의 경우 쉽게 파쇄되어 미분으로 돌아가기 때문에 재조립체의 성능을 저하시키는 문제점이 있었다.  In addition, the fine powder that is inevitably generated in the manufacturing process of the super absorbent polymer has a method of adding a fine powder during the polymerization in order to solve this as a factor of lowering the physical properties of the product, but this method induces non-uniform polymerization or by scattering light There is a problem that interferes with the physical properties. Therefore, a method of reassembling fine powder using a separate reassembler has been developed. This method is a method of mixing fine powder and water at a predetermined ratio to make large particles. The problem with this technique is that due to the small particle size of the fine powder, the absorption rate is increased and the water is unevenly mixed, resulting in non-uniformity of the entire reassembly, thereby producing a non-uniform size and strength reassembly, while incomplete drying of hard particles. Due to the damage to the device during the crushing and the weakly reassembled particles had a problem of reducing the performance of the reassembly because it is easily crushed and returned to the fine powder.
【발명의 내용】 [Content of invention]
【해결하고자 하는 과제】  Problem to be solved
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위한 것으로, 조립 강도가 우수하면서도 보수능 (CRC)나 가압흡수능 (AUP)과 같은 물성의 하락을 초래하지 않는 미분 재조립체를 포함하는 고흡수성 수지 및 이의 제조방법을 제공하기 위한 것이다.  The present invention is to solve the problems of the prior art as described above, the superabsorbent polymer comprising a fine powder reassembly having excellent assembly strength but does not cause a drop in physical properties such as water retention capacity (CRC) or pressure absorption capacity (AUP) And to provide a method for producing the same.
【과제의 해결 수단] [Measures of problem]
상기 목적을 달성하기 위하여 본 발명은,  The present invention to achieve the above object,
수용성 에틸렌계 불포화 단량체 및 증합개시제를 포함하는 모노머 조성물에 열중합 또는 광중합을 진행하여 함수겔상 중합체를 수득하는 단계; 상기 함수겔상 중합체를 조분쇄하는 단계;  Thermally polymerizing or photopolymerizing a monomer composition comprising a water-soluble ethylenically unsaturated monomer and a polymerization initiator to obtain a hydrogel polymer; Coarsely pulverizing the hydrogel polymer;
조분쇄된 함수겔상 중합체를 건조 및 분쇄하여 150 미만의 입경을 갖는 미분 및 150 내지 850 의 입경을 갖는 정상 입자로 분급하는 단계; 상기 미분, 물, 및 첨가제를 흔합하여 미분 수용액을 제조하는 단계; 및 Drying and grinding the coarsely pulverized hydrogel polymer to classify it into fine powder having a particle size of less than 150 and normal particles having a particle size of 150 to 850; Preparing a fine powder aqueous solution by mixing the fine powder, water, and additives; And
상기 미분 수용액과 상기 조분쇄된 함수겔상 중합체를 흔합하여 미분 재조립체를 제조하는 단계를 포함하는 고흡수성 수지의 제조 방법을 제공한다.  It provides a method for producing a super absorbent polymer comprising the step of mixing the fine powder aqueous solution and the coarsely pulverized hydrogel polymer to prepare a fine powder reassembly.
또한, 본 발명은,  In addition, the present invention,
산성기를 포함하고 상기 산성기의 적어도 일부가 중화된 수용성 에틸렌계 불포화 단량체를 중합시킨 증합체 중 입경이 150 미만인 미분에 대해, 수산화나트륨을 흔합하여 재조립된 미분 재조립체를 표면 가교시킨 고흡수성 수지로, ' Superabsorbent polymer comprising surface-crosslinked finely divided powder reassembled by mixing sodium hydroxide with respect to fine powder having an acidic group and polymerizing a water-soluble ethylenically unsaturated monomer in which at least part of the acidic group is neutralized and having a particle size of less than 150. to '
EDANA 법 WSP 241.3에 따라 측정한 보수능 (CRC)이 33.0 내지 39.0 g/g이고;  The water holding capacity (CRC) measured according to the EDANA method WSP 241.3 is 33.0 to 39.0 g / g;
EDANA 법 WSP 241.3에 따라 측정한 0.7 psi 가압 흡수능 (AUP)이 20.0 내지 25.0 g/g이고;  0.7 psi Pressurized Absorption Capacity (AUP), measured according to EDANA method WSP 241.3, is from 20.0 to 25.0 g / g;
볼텍스 법 (Vortex)에 의한 흡수 속도가 100초 이하인, 고흡수성 수지를 제공한다.  A superabsorbent polymer having a water absorption rate of 100 seconds or less by Vortex is provided.
【발명의 효과】 【Effects of the Invention】
본 발명에 따른 고흡수성 수지 및 이의 제조방법에 의하면, 종래의 미분 재조립 공정에 의한 미분 재조립체와 비교할 때, 미분 재조립시에 첨가제를 사용하여 조립 강도를 향상시켜 재파쇄되는 미분의 함량을 줄일 수 있다.  According to the superabsorbent polymer according to the present invention and a method for manufacturing the same, compared to the fine powder reassembly by the conventional fine powder reassembly process, the fine powder content is regrinded by using an additive during fine powder reassembly to improve the assembly strength. Can be reduced.
또한, 미분을 함수겔상 중합체와 흔합하여 재조립함으로써 미분 재조립체가 함수겔상 중합체와 유사한 정도의 보수능 (CRC)나 가압흡수능 (AUP) 물성을 나타내는 미분 재조립체를 수득할 수 있다. 따라서, 본 발명에 따라 제조된 미분 재조립체를 정상 입경의 고흡수성 수지와 흔합하여 재순환하여도 전체 수지의 물성이 저하되지 않아 고품질의 고흡수성 수지를 제공할 수 있다.  In addition, by mixing and reassembling the fine powder with the hydrogel polymer, it is possible to obtain a fine powder reassembly having a water retention (CRC) or pressure-absorbing capacity (AUP) properties similar to the hydrogel polymer. Accordingly, even when the fine powder reassembly prepared according to the present invention is mixed with the superabsorbent polymer having a normal particle size and recycled, the physical properties of the entire resin are not lowered, thereby providing a high quality superabsorbent resin.
더하여, 함수겔상 중합체에 미분을 흔합하여 재조립 공정을 진행하므로 공정 단계가 비교적 간단하여 효율성이 높으며, 흡수 속도가 높은 재조립체를 수득할 수 있다. In addition, the reassembly process is carried out by mixing fine powder in the hydrous gel phase polymer, so the process step is relatively simple, so the efficiency is high, and the absorption rate is High reassembly can be obtained.
【발명을 실시하기 위한 구체적인 내용】 [Specific contents to carry out invention]
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.  The terminology used herein is for the purpose of describing exemplary embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. As used herein, the terms "comprise", "comprise" or "have" are intended to indicate that there is a feature, step, component, or combination thereof, that includes one or more other features or steps, It is to be understood that the present invention does not exclude the possibility of adding or presenting elements, or a combination thereof.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.  As the invention allows for various changes and numerous modifications, particular embodiments will be illustrated and described in detail below. However, this is not intended to limit the present invention to a specific disclosed form, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
이하, 발명의 구체적인 구현예에 따라 고흡수성 수지 및 이의 제조 방법에 대해 보다 상세히 설명하기로 한다. 본 발명의 일 구현예에 따른 고흡수성 수지의 제조 방법은, 수용성 에틸렌계 불포화 단량체 및 중합개시제를 포함하는 모노머 조성물에 열중합 또는 광중합을 진행하여 함수겔상 중합체를 수득하는 단계; 상기 함수겔상 중합체를 조분쇄하는 단계; 조분쇄된 함수겔상 중합체를 건조 및 분쇄하여 150 미만의 입경을 갖는 미분 및 150 내지 850 의 입경을 갖는 정상 입자로 분급하는 단계; 상기 미분, 물, 및 첨가제를 흔합하여 미분 수용액을 제조하는 단계; 및 상기 미분 수용액과 상기 조분쇄된 함수겔상 중합체를 흔합하여 미분 재조립체를 제조하는 단계를 포함한다.  Hereinafter, a super absorbent polymer and a method for preparing the same according to specific embodiments of the present invention will be described in detail. Method for producing a super absorbent polymer according to an embodiment of the present invention, the step of thermally polymerizing or photopolymerizing a monomer composition comprising a water-soluble ethylenically unsaturated monomer and a polymerization initiator to obtain a hydrogel polymer; Coarsely pulverizing the hydrogel polymer; Drying and grinding the coarsely pulverized hydrogel polymer to classify it into fine powder having a particle size of less than 150 and normal particles having a particle size of 150 to 850; Preparing a fine powder aqueous solution by mixing the fine powder, water, and additives; And mixing the finely divided aqueous solution with the coarsely pulverized hydrogel polymer to produce a finely divided reassembly.
참고로, 본 발명의 명세서에서 "중합체", 또는 "고분자"는 수용성 에틸렌계 불포화 단량체가 중합된 상태인 것을 의미하며, 모든 수분 함량 범위, 모든 입경 범위, 모든 표면 가교 상태 또는 가공 상태를 포괄할 수 있다. 상기 중합체 중, 중합 후 건조 전 상태의 것으로 함수율 (수분 함량)이 약 40 중량0 /。 이상의 중합체를 함수겔상 중합체로 지칭할 수 있다. 또한, 상기 중합체 중, 입경이 150 미만인 중합체를 "미분 "으로 지칭할 수 있다. 또한 "고흡수성 수지"는 문맥에 따라 상기 중합체 자체 » 의미하거나, 또는 상기 중합체에 대해 추가의 공정, 예를 들어 표면 가교, 미분 재조립, 건조, 분쇄, 분급 등을 거쳐 제품화에 적합한 상태로 한 것을 모두 포괄하는 것으로 사용된다. For reference, in the specification of the present invention, "polymer", or "polymer" means that the water-soluble ethylenically unsaturated monomer is in a polymerized state and may cover all water content ranges, all particle size ranges, all surface crosslinking states, or processing states. Number have. Of the polymer, the water content (moisture content) of about 40 parts by weight 0 / I to the drying condition after the polymerization. May refer to one polymer functions as a gel-like polymer. In addition, among the said polymers, the polymer whose particle diameter is less than 150 can be called "fine powder". "Superabsorbent polymer" also means, according to the context, the polymer itself »or in a state suitable for commercialization by further processing such as surface crosslinking, fine powder reassembly, drying, grinding, classification, etc., for the polymer. It is used to encompass everything.
본 발명의 고흡수성 수지의 제조 방법에서, 먼저 수용성 에틸렌계 불포화 단량체 및 중합개시제를 포함하는 모노머 조성물에 열중합 또는 광중합을 진행하여 함수겔상 중합체를 형성한다.  In the method for preparing a super absorbent polymer of the present invention, first, a hydrogel or photopolymerization is performed on a monomer composition including a water-soluble ethylenically unsaturated monomer and a polymerization initiator to form a hydrogel polymer.
상기 고흡수성 수지의 원료 물질인 모노머 조성물은 수용성 에틸렌계 불포화 단량체 및 중합 개시제를 포함한다.  The monomer composition which is a raw material of the super absorbent polymer includes a water-soluble ethylenically unsaturated monomer and a polymerization initiator.
상기 수용성 에틸렌계 블포화 단량체는 고흡수성 수지의 제조에 통상 사용되는 임의의 단량체를 별다른 제한없이 사용할 수 있다. 여기에는 음이온성 단량체와 그 염, 비이온계 친수성 함유 단량체 및 아미노기 함유 불포화 단량체 및 그의 4급화물로 이루어진 군에서 선택되는 어느 하나 이상의 단량체를 사용할 수 있다.  The water-soluble ethylene-based unsaturated monomer can be used without any limitation any monomers commonly used in the production of superabsorbent polymer. Any one or more monomers selected from the group consisting of anionic monomers and salts thereof, nonionic hydrophilic-containing monomers and amino group-containing unsaturated monomers and quaternized compounds thereof can be used.
구체적으로는 (메타)아크릴산, 무수말레인산, 푸말산, 크로톤산, 이타콘산, 2-아크릴로일에탄 술폰산, 2-메타아크릴로일에탄술폰산, 2- (메타)아크릴로일프로판술폰산 또는 2- (메타)아크릴아미드 -2-메틸 프로판 술폰산의 음이온성 단량체와 그 염; (메타)아크릴아미드, N- 치환 (메타)아크릴레이트, 2-히드록시에틸 (메타)아크릴레이트, 2- 히드록시프로필 (메타)아크릴레이트,  Specifically, (meth) acrylic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethane sulfonic acid, 2-methacryloylethanesulfonic acid, 2- (meth) acryloylpropanesulfonic acid or 2- Anionic monomers of (meth) acrylamide-2-methyl propane sulfonic acid and salts thereof; (Meth) acrylamide, N-substituted (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate,
메톡시폴리에틸렌글리콜 (메타)아크릴레이트 또는 폴리에틸렌 글리콜 (메타)아크릴레이트의 비이온계 친수성 함유 단량체; 및 (Ν,Ν)- 디메틸아미노에틸 (메타) 아크릴레이트 또는 (Ν,Ν)- 디메틸아미노프로필 (메타)아크릴아미드의 아미노기 함유 불포화 단량체 및 그의 4급화물로 이루어진 군에서 선택된 어느 하나 이상을 사용할 수 있다. 더욱 바람직하게는 아크릴산 또는 그 염, 예를 들어, 아크릴산 또는 그 나트륨염 등의 알칼리 금속염을 사용할 수 있는데, 이러한 단량체를 사용하여 보다 우수한 물성을 갖는 고흡수성 수지의 제조가 가능해 진다. 상기 아크릴산의 알칼리 금속염을 단량체로 사용하는 경우, 아크릴산을 가성소다 (NaOH)와 같은 염기성 화합물로 중화시켜 사용할 수 있다. Nonionic hydrophilic-containing monomers of methoxy polyethylene glycol (meth) acrylate or polyethylene glycol (meth) acrylate; And amino group-containing unsaturated monomers of (Ν, Ν) -dimethylaminoethyl (meth) acrylate or (Ν, Ν) -dimethylaminopropyl (meth) acrylamide and quaternized compounds thereof. Can be. More preferably, an alkali metal salt such as acrylic acid or a salt thereof, for example acrylic acid or a sodium salt thereof, may be used. It is possible to produce a super absorbent polymer having better physical properties. When the alkali metal salt of acrylic acid is used as a monomer, acrylic acid may be neutralized with a basic compound such as caustic soda (NaOH).
상기 수용성 에틸렌계 불포화 단량체의 농도는, 상기 고흡수성 수지의 원료 물질 및 용매를 포함하는 단량체 조성물에 대해 약 20 내지 약 60 중량0 /0, 바람직하게는 약 40 내지 약 50 중량0 /0로 될 수 있으며 , 중합 시간 및 반웅 조건 등을 고려해 적절한 농도로 될 수 있다. 다만, 상기 단량체의 농도가 지나치게 낮아지면 고흡수성 수지의 수율이 낮고 경제성에 문제가 생길 수 있고, 반대로 농도가 지나치게 높아지면 단량체의 일부가 석출되거나 중합된 함수겔상 중합체의 분쇄 시 분쇄 효율이 낮게 나타나는 등 공정상 문제가 생길 수 있으며 고흡수성 수지의 물성이 저하될 수 있다. 본 발명의 고흡수성 수지 제조 방법에서 중합시 사용되는 중합 개시제는 고흡수성 수지의 제조에 일반적으로 사용되는 것이면 특별히 한정되지 않는다. The concentration of the water-soluble ethylenically unsaturated monomers, said high from about 20 to about 60 weight 0/0, preferably for a monomer composition containing a source material and a solvent of the water-absorbent resin is about 40 to about 50 weight 0/0 It may be made to an appropriate concentration in consideration of the polymerization time and reaction conditions. However, when the concentration of the monomer is too low, the yield of the superabsorbent polymer may be low and there may be a problem in economics. On the contrary, when the concentration is too high, some of the monomer may be precipitated or the grinding efficiency of the polymerized hydrogel polymer may be low. Etc. may cause problems in the process and may decrease the physical properties of the super absorbent polymer. The polymerization initiator used in the polymerization in the method for producing a super absorbent polymer of the present invention is not particularly limited as long as it is generally used for producing the super absorbent polymer.
구체적으로, 상기 중합 개시제는 중합 방법에 따라 열중합 개시제 또는 UV 조사에 따른 광중합 개시제를 사용할 수 있다. 다만 광중합 방법에 의하더라도, 자외선 조사 등의 조사에 의해 일정량의 열이 발생하고, 또한 발열 반웅인 중합 반웅의 진행에 따라 어느 정도의 열이 발생하므로, 추가적으로 열중합 개시제를 포함할 수도 있다.  Specifically, the polymerization initiator may use a thermal polymerization initiator or a photopolymerization initiator according to UV irradiation depending on the polymerization method. However, even with the photopolymerization method, since a certain amount of heat is generated by irradiation such as ultraviolet irradiation, and a certain amount of heat is generated in accordance with the progress of the polymerization reaction, which is an exothermic reaction, it may further include a thermal polymerization initiator.
상기 광중합 개시제는 자외선과 같은 광에 의해 라디칼을 형성할 수 있는 화합물이면 그 구성의 한정이 없이 사용될 수 있다.  The photopolymerization initiator may be used without any limitation as long as it is a compound capable of forming radicals by light such as ultraviolet rays.
상기 광중합 개시제로는 예를 들어, 벤조인 에테르 (benzoin ether), 디알킬아세토페논 (dialkyl acetophenone), 하이드록실 알킬케톤 (hydroxyl alkylketone), 페닐글리옥실레이트 (phenyl glyoxylate), 벤질디메틸케탈 (Benzyl dimethyl ketal), 아실포스핀 (acyl phosphine) 및 알파 -아미노케톤 (α- aminoketone)으로 이루어진 군에서 선택되는 하나 이상을 사용할 수 있다. 한편, 아실포스핀의 구체예로, 상용하는 lucirin TPO, 즉, 2,4,6-트리메틸- 벤조일-트리메틸 포스핀 옥사이드 (2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide)를 사용할 수 있다. 보다 다양한 광개시제에 대해서는 Rein old Schwalm 저서인 "UV Coatings: Basics, Recent Developments and New Application(Elsevier 2007년)" pi 15에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다. Examples of the photopolymerization initiator include benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, and benzyl dimethyl ketal. ketal), acyl phosphine and alpha-aminoketone may be used. Meanwhile, as an example of acylphosphine, commercially available lucirin TPO, that is, 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide can be used. . For more photoinitiators, see Rein old Schwalm, "UV Coatings: Basics, Recent Developments and New." Application (Elsevier 2007) "pi 15, and is not limited to the above example.
상기 광중합 개시제는 상기 모노머 조성물에 대하여 약 0.01 내지 약 1.0 중량 %의 농도로 포함될 수 있다. 이러한 광중합 개시제의 농도가 지나치게 낮을 경우 중합 속도가 느려질 수 있고, 광중합 개시제의 농도가 지나치게 높으면 고흡수성 수지의 분자량이 작고 물성이 불균일해질 수 있다.  The photopolymerization initiator may be included in a concentration of about 0.01 to about 1.0 wt% based on the monomer composition. If the concentration of the photopolymerization initiator is too low, the polymerization rate may be slow. If the concentration of the photopolymerization initiator is too high, the molecular weight of the superabsorbent polymer may be low and the physical properties may be uneven.
또한, 상기 열중합 개시제로는 과황산염계 개시제, 아조계 개시계, 과산화수소 및 아스코르빈산으로 이루어진 개시제 군에서 선택되는 하나 이상을 사용할 수 있다. 구체적으로, 과황산염계 개시제의 예로는 과황산나트륨 (Sodium persulfate; Na2S2Os), 과황산칼륨 (Potassium persulfate; K2S208), 과황산암모늄 (Ammonium persulfate;(NH4)2S208) 등이 있으며, 아조 (Azo)계 개시제의 예로는 2, 2-아조비스 -(2-아미디노프로판)이염산염 (2, 2- azobis(2-amidinopropane) dihydrochloride), 2, 2-아조비스 -(N, N- 디메틸렌)이소부티라마이딘 디하이드로클로라이드 (2,2-azobis-(N, N- dimethylene)isobutyramidine dihydrochloride), 2-In addition, the thermal polymerization initiator may be used at least one selected from the group consisting of persulfate initiator, azo initiator, hydrogen peroxide and ascorbic acid. Specifically, examples of persulfate-based initiators include sodium persulfate (Na 2 S 2 O s ), potassium persulfate (K 2 S 2 0 8 ), and ammonium persulfate (NH 4 ). 2 S 2 0 8 ), and examples of the azo (Azo) initiator include 2, 2-azobis- (2-amidinopropane) dihydrochloride (2, 2- azobis (2-amidinopropane) dihydrochloride), 2 2,2-azobis- (N, N-dimethylene) isobutyramidine dihydrochloride), 2-azobis- (N, N-dimethylene) isobutyramidine dihydrochloride
(카바모일아조)이소부티로니트릴 (2-(carbamoylazo)isobutylonitril), 2, 2- 아조비스 [2-(2-이미다졸린 -2-일)프로판] 디하이드로클로라이드 (2,2-azobis[2-(2- imidazolin-2-yl)propane] dihydrochloride), 4,4-아조비스 -(4-시아노발레릭 산) (4,4- azobis-(4-cyanovaleric acid)) 등이 있다. 보다 다양한 열증합 개시제에 대해서는 Odian 저서인 'Principle of Polymerization(Wiley, 1981)', p203에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다. (Carbamoyl azo) isobutyronitrile ( 2- (carbamoylazo) isobutylonitril), 2, 2- azobis [2- (2-imidazoline-2-yl) propane] dihydrochloride (2,2-azobis [ 2- (2-imidazolin-2-yl) propane] dihydrochloride), 4,4-azobis- (4-cyanovaleric acid) (4,4- azobis- (4-cyanovaleric acid)), and the like. More various thermal polymerization initiators are well specified in Odian's Principle of Polymerization (Wiley, 1981), p 2 03, and are not limited to the examples described above.
상기 열중합 개시제는 상기 모노머 조성물에 대하여 약 0.001 내지 약 0.5 중량%의 농도로 포함될 수 있다. 이러한 열 중합 개시제의 농도가 지나치게 낮을 경우 추가적인 열중합이 거의 일어나지 않아 열중합 개시제의 추가에 따른 효과가 미미할 수 있고, 열중합 개시제의 농도가 지나치게 높으면 고흡수성 수지의 분자량이 작고 물성이 불균일해질 수 있다.  The thermal polymerization initiator may be included in a concentration of about 0.001 to about 0.5% by weight based on the monomer composition. When the concentration of the thermal polymerization initiator is too low, additional thermal polymerization hardly occurs, and the effect of the addition of the thermal polymerization initiator may be insignificant. When the concentration of the thermal polymerization initiator is too high, the molecular weight of the superabsorbent polymer may be low and the physical properties may be uneven. have.
본 발명의 일 실시예에 따르면, 상기 모노머 조성물은 고흡수성 수지의 원료 물질로서 내부 가교제를 더 포함할 수 있다. 상기 내부 가교제로는 상기 수용성 에틸렌계 불포화 단량체의 수용성 치환기와 반응할 수 있는 관능기를 1개 이상 가지면서, 에틸렌성 불포화기를 1개 이상 갖는 가교제; 혹은 상기 단량체의 수용성 치환기 및 /또는 단량체의 가수분해에 의해 형성된 수용성 치환기와 반응할 수 있는 관능기를 2개 이상 갖는 가교제를 사용할 수 있다. According to an embodiment of the present invention, the monomer composition may further include an internal crosslinking agent as a raw material of the super absorbent polymer. Inside the above Examples of the crosslinking agent include at least one functional group capable of reacting with the water-soluble substituent of the water-soluble ethylenically unsaturated monomer and having at least one ethylenically unsaturated group; Or the crosslinking agent which has 2 or more functional groups which can react with the water-soluble substituent of the said monomer, and / or the water-soluble substituent formed by hydrolysis of the monomer can be used.
상기 내부 가교제의 구체적인 예로는, 탄소수 8 내지 12의 비스아크릴아미드, 비스메타아크릴아미드, 탄소수 2 내지 10의 폴리을의 폴리 (메타)아크릴레아트 또는 탄소수 2 내지 10의 폴리올의 폴리 (메타)알릴에테르 등을 들 수 있고, 보다 구체적으로, Ν,Ν'- 메틸렌비스 (메타)아크릴레이트, 에틸렌옥시 (메타)아크릴레이트, 폴리에틸렌옥시 (메타)아크릴레이트, 프로필렌옥시 (메타)아크릴레이트, 글리세린 디아크릴레이트, 글리세린 트리아크릴레이트, 트리메티롤 트리아크릴레이트, 트리알릴아민, 트리아릴시아누레이트, 트리알릴이소시아네이트, 폴리에틸렌글리콜, 디에틸렌글리콜 및 프로필렌글리콜로 이루어진 군에서 선택된 하나 이상을 사용할 수 있다. 이러한 내부 가교제는 상기 모노머 조성물에 대하여 약 0.01 내지 약 0.5 중량0 /。의 농도로 포함되어, 중합된 고분자를 가교시킬 수 있다. Specific examples of the internal crosslinking agent include bisacrylamide having 8 to 12 carbon atoms, bismethacrylamide, poly (meth) acrylates having 2 to 10 carbon atoms, or poly (meth) allyl ether having a polyol having 2 to 10 carbon atoms. These etc. are mentioned, More specifically, Ν, Ν'- methylenebis (meth) acrylate, ethyleneoxy (meth) acrylate, polyethyleneoxy (meth) acrylate, propyleneoxy (meth) acrylate, glycerin diacryl One or more selected from the group consisting of acrylate, glycerin triacrylate, trimethol triacrylate, triallylamine, triarylcyanurate, triallyl isocyanate, polyethylene glycol, diethylene glycol and propylene glycol can be used. Such an internal crosslinking agent may be included at a concentration of about 0.01 to about 0.5 weight 0 / ° based on the monomer composition to crosslink the polymerized polymer.
본 발명의 제조방법에서, 고흡수성 수지의 상기 모노머 조성물은 필요에 따라 증점게 (thickener), 가소제, 보존안정제, 산화방지제 등의 첨가제를 더 포함할 수 있다.  In the production method of the present invention, the monomer composition of the super absorbent polymer may further include additives such as thickeners, plasticizers, storage stabilizers, antioxidants, and the like, as necessary.
상술한 수용성 에틸렌계 불포화 단량체, 광중합 개시제, 열중합 개시제, 내부 가교제 및 첨가제와 같은 원료 물질은 용매에 용해된 모노머 조성물 용액의 형태로 준비될 수 있다.  Raw materials such as the above-mentioned water-soluble ethylenically unsaturated monomers, photopolymerization initiators, thermal polymerization initiators, internal crosslinking agents and additives may be prepared in the form of a monomer composition solution dissolved in a solvent.
이 때 사용할 수 있는 상기 용매는 상술한 성분들을 용해할 수 있으면 그 구성의 한정이 없이 사용될 수 있으며, 예를 들어 물, 에탄올 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1 ,4-부탄디올 프로필렌글리콜, 에틸렌글리콜모노부틸에테르 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르아세테이트 메틸에틸케톤, 아세톤, 메틸아밀케톤, 시클로핵사논, 시클로펜타논 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜에틸에테르, 를루엔, 크실렌 부틸로락톤, 카르비를, 메틸셀로솔브아세테이트 및 Ν,Ν-디메틸아세트아미드 등에서 선택된 1종 이상을 조합하여 사용할 수 있다. The solvent that can be used at this time can be used without limitation in the composition as long as it can dissolve the above-described components, for example, water, ethanol ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanediol propylene glycol Ethylene glycol monobutyl ether propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate methyl ethyl ketone, acetone, methyl amyl ketone, cyclonucleanone, cyclopentanone diethylene glycol monomethyl ether, diethylene glycol ethyl ether, toluene , Xylene Butyllactone, carby, methyl cellosolve acetate, and one or more selected from Ν, Ν-dimethylacetamide and the like can be used in combination.
상기 용매는 모노머 조성물의 총 함량에 대하여 상술한 성분을 제외한 잔량으로 포함될 수 있다.  The solvent may be included in the remaining amount except for the above-described components with respect to the total content of the monomer composition.
한편, 이와 같은 모노머 조성물을 열중합 또는 광중합하여 함수겔상 중합체를 형성하는 방법 또한 통상 사용되는 중합 방법이면, 특별히 구성의 한정이 없다.  On the other hand, if the method of forming a hydrogel polymer by thermally polymerizing or photopolymerizing such a monomer composition is also the polymerization method normally used, there will be no restriction | limiting in particular in a structure.
구체적으로, 중합 방법은 중합 에너지원에 따라 크게 열중합 및 광중합으로 나뉘며, 통상 열중합을 진행하는 경우, 니더 (kneader)와 같은 교반축을 가진 반응기에서 진행될 수 있으며, 광중합을 진행하는 경우, 이동 가능한 컨베이어 벨트를 구비한 반웅기에서 진행될 수 있으나, 상술한 중합 방법은 일 예이며, 본 발명은 상술한 중합 방법에 한정되지는 않는다.  Specifically, the polymerization method is largely divided into thermal polymerization and photopolymerization according to the polymerization energy source, and when the thermal polymerization is usually carried out, the polymerization method may be performed in a reactor having a stirring shaft such as a kneader. Although it can be carried out in a semi-unggi equipped with a conveyor belt, the above-described polymerization method is an example, the present invention is not limited to the above-described polymerization method.
일 예로, 상술한 바와 같이 교반축을 구비한 니더 (kneader)와 같은 반웅기에, 열풍을 공급하거나 반웅기를 가열하여 열중합을 하여 얻어진 함수겔상 중합체는 반웅기에 구비된 교반축의 형태에 따라, 반웅기 배출구로 배출되는 함수겔상 중합체는 수 센티미터 내지 수 밀리미터 형태일 수 있다. 구체적으로, 얻어지는 함수겔상 중합체의 크기는 주입되는 모노머 조성물의 농도 및 주입속도 등에 따라 다양하게 나타날 수 있는데, 통상 중량 평균 입경이 2 내지 50 mm인 함수겔상 중합체가 얻어질 수 있다.  For example, as described above, the hydrogel polymer obtained by thermal polymerization by supplying hot air or by heating the reaction machine may have a half-stirrer such as a kneader having a stirring shaft. The hydrogel polymer discharged to the mandrel outlet may be in the form of several centimeters to several millimeters. Specifically, the size of the water-containing gel polymer obtained may vary depending on the concentration and the injection speed of the monomer composition to be injected, the water-containing gel polymer having a weight average particle diameter of 2 to 50 mm can be obtained.
또한, 상술한 바와 같이 이동 가능한 컨베이어 벨트를 구비한 반웅기에서 광중합을 진행하는 경우, 통상 얻어지는 함수겔상 중합체의 형태는 벨트의 너비를 가진 시트 상의 함수겔상 중합체일 수 있다. 이 때, 중합체 시트의 두께는 주입되는 단량체 조성물의 농도 및 주입속도에 따라 달라지나, 통상 약 0.5 내지 약 5cm의 두께를 가진 시트 상의 중합체가 얻어질 수 있도록 단량체 조성물을 공급하는 것이 바람직하다. 시트 상의 중합체의 두께가 지나치게 얇을 정도로 단량체 조성물을 공급하는 경우, 생산 효율이 낮아 바람직하지 않으며, 시트 상의 중합체 두께가 5cm를 초과하는 경우에는 지나치게 두꺼운 두께로 인해, 중합 반웅이 전 두께에 걸쳐 고르게 일어나지 않을 수가 있다.  In addition, when photopolymerization is carried out in a semi-unggi equipped with a movable conveyor belt as described above, the form of the hydrogel polymer generally obtained may be a hydrogel gel polymer on a sheet having a width of the belt. At this time, the thickness of the polymer sheet depends on the concentration and the injection speed of the monomer composition to be injected, but it is usually preferable to supply the monomer composition so that a polymer on the sheet having a thickness of about 0.5 to about 5 cm can be obtained. In the case of supplying the monomer composition to such an extent that the thickness of the polymer on the sheet is too thin, it is not preferable because the production efficiency is low, and when the polymer thickness on the sheet exceeds 5 cm, the polymerization reaction does not occur evenly over the entire thickness. You may not.
이때 이와 같은 방법으로 얻어진 함수겔상 중합체의 통상 함수율은 약 40 내지 약 80 중량%일 수 있다. 한편, 본 명세서 전체에서 "함수율"은 전체 함수겔상 중합체 중량에 대해 차지하는 수분의 함량으로 함수겔상 중합체의 중량에서 건조. 상태의 중합체의 중량을 뺀 값을 의미한다. 구체적으로는, 적외선 가열을 통해 중합체의 온도를 을려 건조하는 과정에서 중합체 중의 수분증발에 따른 무게감소분을 측정하여 계산된 값으로 정의한다. 이때, 건조 조건은 상온에서 약 180°C까지 온도를 상승시킨 뒤 180°C에서 유지하는 방식으로 총 건조시간은 온도상승단계 5분을 포함하여 20분으로 설정하여, 함수율을 측정한다. In this case, the normal water content of the hydrogel polymer obtained by the above method is About 40 to about 80 weight percent. On the other hand, "water content" throughout the present specification is the amount of water to account for the total weight of the hydrous gel phase polymer dried at the weight of the hydrogel polymer. It means the value obtained by subtracting the weight of the polymer in the state. Specifically, it is defined as a value calculated by measuring the weight loss due to moisture evaporation in the polymer in the process of drying the temperature of the polymer through infrared heating. At this time, the drying conditions are raised to a temperature of about 180 ° C at room temperature and then maintained at 180 ° C. The total drying time is set to 20 minutes, including 5 minutes of temperature rise step, the moisture content is measured.
다음에, 상기 함수겔상 중합체를 조분쇄한다.  Next, the hydrogel polymer is coarsely ground.
이때, 사용되는 분쇄기는 구성의 한정은 없으나, 구체적으로, 수직형 절단기 (Vertical pulverizer), 터보 커터 (Turbo cutter), 터보 글라인더 (Turbo grinder), 회전 절단식 분쇄기 (Rotary cutter mill), 절단식 분쇄기 (Cutter mill), 원판 분쇄기 (Disc mill), 조각 파쇄기 (Shred crusher), 파쇄기 (Crusher), 초퍼 (chopper) 및 원판식 절단기 (Disc cutter)로 이루어진 분쇄 기기 군에서 선택되는 어느 하나를 포함할 수 있으나, 상술한 예에 한정되지는 않는다. 이때 조분쇄 단계는 함수겔상 중합체의 입경이 약 2 내지 약 20mm가 되도록 분쇄할 수 있다.  At this time, the pulverizer used is not limited in configuration, specifically, a vertical pulverizer, a turbo cutter, a turbo grinder, a rotary cutter mill, a cutting machine Includes any one selected from the group of grinding machines consisting of cutter mills, disc mills, shred crushers, crushers, choppers and disc cutters Although it is possible, it is not limited to the above-mentioned example. At this time, the coarse grinding step may be pulverized so that the particle size of the hydrogel polymer is about 2 to about 20mm.
입경이 2mm 미만으로 조분쇄하는 것은 함수겔상 중합체의 높은 함수율로 인해 기술적으로 용이하지 않으며, 또한 분쇄된 입자 간에 서로 응집되는 현상이 나타날 수도 있다. 한편, 입경이 20mm 초과로 조분쇄하는 경우, 추후 이루어지는 건조 단계의 효율 증대 효과가 미미할 수 있다.  Coarse pulverization of less than 2 mm in particle size is not technically easy due to the high water content of the hydrogel polymer, and may also cause agglomeration of pulverized particles with each other. On the other hand, in the case of coarsely pulverizing more than 20mm, the effect of increasing the efficiency of the subsequent drying step may be insignificant.
다음에, 얻어진 함수겔상 중합체를 건조한다.  Next, the hydrous gel polymer obtained is dried.
상기와 같이 조분쇄되거나, 혹은 조분쇄 단계를 거치지 않은 중합 직후의 함수겔상 중합체에 대해 건조를 수행한다. 이때 상기 건조 단계의 건조 온도는 약 150 내지 약 250 °C일 수 있다. 건조 온도가 150°C 미만인 경우, 건조 시간이 지나치게 길어지고 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있고, 건조 온도가 250°C를 초과하는 경우, 지나치게 중합체 표면만 건조되어, 추후 이루어지는 분쇄 공정에서 미분이 발생할 수도 있고, 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있다. 따라서 바람직하게 상기 건조는 약 150 내지 약 200°C의 은도에서, 더욱 바람직하게는 약 160 내지 약 180°C의 온도에서 진행될 수 있다. As described above, drying is performed on the hydrous gel polymer immediately after polymerization, which is coarsely pulverized or not subjected to the coarsely pulverized step. At this time, the drying temperature of the drying step may be about 150 to about 250 ° C. If the drying temperature is less than 150 ° C., the drying time is too long and there is a risk that the physical properties of the superabsorbent polymer to be formed is lowered, if the drying temperature exceeds 250 ° C, only the polymer surface is dried too much, Fine powder may occur in the grinding process, and there is a fear that the physical properties of the superabsorbent polymer to be finally formed decrease. Preferably, therefore, the drying is at a temperature of about 150 to about 200 ° C., Preferably at a temperature of about 160 to about 180 ° C.
한편, 건조 시간의 경우에는 공정 효율 등을 고려하여, 약 20 내지 약 90분 동안 진행될 수 있으나, 이에 한정되지는 않는다.  On the other hand, in the case of drying time, in consideration of the process efficiency, etc., it may proceed for about 20 to about 90 minutes, but is not limited thereto.
상기 건조 단계의 건조 방법 역시 함수겔상 중합체의 건조 공정으로 통상 사용되는 것이면, 그 구성의 한정이 없이 선택되어 사용될 수 있다. 구체적으로, 열풍 공급, 적외선 조사, 극초단파 조사, 또는 자외선 조사 등의 방법으로 건조 단계를 진행할 수 있다. 이와 같은 건조 단계 진행 후의 중합체의 함수율은 약 0.1 내지 약 10 중량 %일 수 있다.  If the drying method of the drying step is also commonly used as a drying step of the hydrogel polymer, it can be selected and used without limitation of the configuration. Specifically, the drying step may be performed by a method such as hot air supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation. The water content of the polymer after such a drying step may be about 0.1 to about 10% by weight.
다음에, 이와 같은 건조 단계를 거쳐 얻어진 건조된 중합체를 분쇄한다.  Next, the dried polymer obtained through this drying step is pulverized.
분쇄 단계 후 얻어지는 중합체 분말은 입경이 약 150 내지 약 850 !M 일 수 있다. 이와 같은 입경으로 분쇄하기 위해 사용되는 분쇄기는 구체적으로, 핀 밀 (pin mill), 해머 밀 (hammer mill), 스크류 밀 (screw mill), 를 밀 (roll mill), 디스크 밀 (disc mill) 또는 조그 밀 (jog mill) 등을 사용할 수 있으나, 상술한 예에 본 발명이 한정되는 것은 아니다.  The polymer powder obtained after the grinding step may have a particle diameter of about 150 to about 850! M. Mills used to grind to such particle diameters are specifically pin mills, hammer mills, screw mills, mills, disc mills or jogs. Although a jog mill or the like may be used, the present invention is not limited to the above-described example.
이와 같은 분쇄 단계 이후 최종 제품화되는 고흡수성 수지 분말의 물성을 관리하기 위해, 일반적으로 분쇄 후 얻어지는 중합체 분말을 입경에 따라 분급한다. 바람직하게는 입경이 약 150 미만인 입자, 약 150 내지 약 850 인 입자, 입경이 850卿를 초과하는 입자로 분급하는 단계를 거친다. 본 발명의 명세서에서는 일정 입자 크기 미만, 즉 약 150/ m 미만의 입자 크기를 갖는 미분 입자를 고흡수성 중합체 미분, SAP 미분 또는 미분 (fines, fine powder)으로 지칭하며, 입경이 약 150 내지 약 850 /m인 입자를 정상 입자로 지칭한다. 상기 미분은 중합 공정, 건조 공정 또는 건조된 중합체의 분쇄 단계 동안 발생될 수 있는데, 최종 제품에 미분이 포함될 경우 취급이 어렵고 겔 블로킹 (g l blocking) 현상을 나타내는 등 물성을 저하시키기 때문에 최종 수지 제품에 포함되지 않도록 배제하거나 정상 입자가 되도록 재사용하는 것이 바람직하다.  In order to manage the physical properties of the super absorbent polymer powder to be finalized after such a grinding step, the polymer powder obtained after grinding is generally classified according to the particle size. Preferably, the particles are classified into particles having a particle size of less than about 150, particles of about 150 to about 850, and particles having a particle size of more than 850 mm 3. In the context of the present invention, finely divided particles having a particle size of less than a certain particle size, that is, less than about 150 / m, are referred to as superabsorbent polymer fine powder, SAP fine powder or fine powder (fines, fine powder), having a particle diameter of about 150 to about 850 Particles that are / m are called normal particles. The fine powder may be generated during a polymerization process, a drying process, or a pulverization step of a dried polymer. When the fine product is included in the final product, the fine powder is difficult to handle and exhibits a gel blocking phenomenon. It is desirable to exclude them from inclusion or to reuse them to be normal particles.
한 예로, 상기 미분들을 정상 입자 크기가 되도록 웅집시키는 재조립 과정을 거칠 수 있다. 재조립 과정에서 일반적으로 웅집 강도를 높이기 위해 미분 입자들을 습윤 상태에서 웅집시키는 재조립 공정을 진행한다. 이때 미분의 함수율이 높올수록 미분의 웅집 강도가 높아지나 재조립 공정시 너무 큰 재조립체 덩어리가 생겨 공정 운전시 문제가 생길 수 있고, 함수율이 낮으면 재조립 공정은 용이하나 웅집강도가 낮아 재조립 이후 다시 미분으로 파쇄되는 경우가 많다. 또한, 이렇게 얻어진 미분 재조립체는 정상 입자보다 보수능 (CRC)이나 가압흡수능 (AUP)과 같은 물성이 저하되어 고흡수성 수지의 품질 하락을 가져오기도 한다. As an example, the fine powder may be subjected to a reassembly process in which the fine particles are formed to have a normal particle size. In the reassembly process, generally, a reassembly process is performed in which the fine particles are coarse in a wet state in order to increase the coarse strength. At this time The higher the moisture content of the fine powder, the higher the coarse strength of the fine powder. However, the reassembly process may cause too large reassembly lumps, which may cause problems during the operation of the process. It is often broken into fine powder again. In addition, the fine powder reassembly thus obtained has lower physical properties such as water-retaining capacity (CRC) and pressure-absorbing capacity (AUP) than normal particles, resulting in deterioration of the quality of the super absorbent polymer.
이에, 본 발명의 제조 방법에 따르면, 상기 150 미만의 입경을 갖는 미분을 조분쇄된 함수겔상 중합체를 흔합하여 미분 재조립체를 제조함으로써 미분 재조립체를 제조한다.  Thus, according to the production method of the present invention, a fine powder reassembly is prepared by mixing a finely divided hydrogel polymer having a particle size of less than 150 to prepare a fine powder reassembly.
보다 구체적으로, 상기 미분, 물, 및 첨가제를 흔합하여 미분 수용액을 제조하고, 이렇게 제조된 미분 수용액과 조분쇄된 함수겔상 중합체를 흔합하여 미분 재조립체를 제조하게 된다.  More specifically, the fine powder, water, and additives are mixed to prepare a fine powder aqueous solution, and thus the fine powder aqueous solution and the coarsely pulverized hydrogel polymer are mixed to prepare a fine powder reassembly.
이때 상기 미분 수용액에 포함되는 첨가제는 수산화나트륨, 가교제, 및 열중합 개시제를 포함한다.  At this time, the additives included in the fine powder solution include sodium hydroxide, a crosslinking agent, and a thermal polymerization initiator.
상기 수산화나트륨 (NaOH)은 상기 미분 수용액에 대하여 약 1 내지 약 10 중량0 /0, 또는 약 2 내지 약 8 중량0 /0, 또는 약 2 내지 약 6 중량 %로 포함될 수 있으며, 상기 미분 재조립체의 보수능 (CRC) 향상에 기여할 수 있다. The sodium hydroxide (NaOH) may be included as about 1 to about 10 parts by weight 0/0, preferably about 2 to about 8 parts by weight 0/0, preferably about 2 to about 6% by weight relative to the differential solution and the differential member assembly May contribute to the improvement of water retention (CRC).
상기 가교제는 상기 미분 입자들끼리 가교 구조를 형성하여 조립 강도를 향상시키는 역할을 한다. 사용가능한 가교제로는 폴리에틸렌글리콜 디아크릴레이트 (polyethylene glycol diacrylate, PEGDA), 핵산 -1,6-디을 디아크릴레이트 (hexane-l,6-diol diacrylate, HDD A), 에톡실레이티드 트리메틸을프로판 트리아크릴레이트 (ethoxylated trimethylolpropane triacrylate, ETTA), 또는 에틸렌 카보네이트 (ethylene carbonate, EC) 등이 있으며, 바람직하게는 폴리에틸렌글리콜 디아크릴레이트를 사용할 수 있다.  The crosslinking agent forms a crosslinked structure between the fine particles and serves to improve granulation strength. Crosslinking agents that can be used include polyethylene glycol diacrylate (PEGDA), nucleic acid-1,6-di diacrylate (hexane-l, 6-diol diacrylate, HDD A), and ethoxylated trimethyl propane. Acrylate (ethoxylated trimethylolpropane triacrylate, ETTA), or ethylene carbonate (EC), and the like, and preferably polyethylene glycol diacrylate.
상기 가교제는 상기 미분 100 중량부에 대하여, 약 으1 내지 약 0.5 중량부, 바람직하게는 약 0.2 내지 약 0.4 중량부로 포함할 수 있다. 가교제가 상기 중량부 범위로 포함될 때, 높은 조립 강도와 물성을 나타낼 수 있다.  The crosslinking agent may be included in an amount of about 1 to about 0.5 parts by weight, preferably about 0.2 to about 0.4 parts by weight, based on 100 parts by weight of the fine powder. When the crosslinking agent is included in the above weight part range, it may exhibit high assembly strength and physical properties.
상기 열중합 개시제는 미분에 대해 추가 중합을 유도하여 조립 강도를 향상시키는 역할을 한다. 사용가능한 열중합 개시제로는 과황산나트륨 (Sodium persulfate), 또는 과황산칼륨 (potassium persulfate) 등이 있으며, 바람직하게는 과황산나트륨을 사용할 수 있다. The thermal polymerization initiator is assembled by inducing further polymerization of the fine powder It serves to improve strength. Examples of thermal polymerization initiators that can be used include sodium persulfate, potassium persulfate, and the like, and preferably sodium persulfate.
상기 열중합 개시제는 상기 미분 100 중량부에 대하여, 약 0.1 내지 약 0.5 중량부, 바람직하게는 약 0.1 내지 약 0.3 중량부로 포함할 수 있다. 열중합 개시제가 상기 중량부 범위로 포함될 때, 높은 조립 강도와 물성을 나타낼 수 있다.  The thermal polymerization initiator may include about 0.1 to about 0.5 parts by weight, preferably about 0.1 to about 0.3 parts by weight, based on 100 parts by weight of the fine powder. When the thermal polymerization initiator is included in the above weight part range, high assembly strength and physical properties may be exhibited.
상기 미분 수용액은 미분이 습윤 상태에서 재조립될 수 있도록 물을 포함하며, 이때 포함되는 물의 함량은 상기 미분 100 중량부에 대하여, 약 100 내지 약 300 중량부, 바람직하게는 약 100 내지 약 200 중량부가 될 수 있다.  The fine powder aqueous solution includes water so that the fine powder can be reassembled in a wet state, wherein the amount of water included is about 100 to about 300 parts by weight, preferably about 100 to about 200 parts by weight based on 100 parts by weight of the fine powder. Can be added.
본 발명의 일 실시예에 따르면, 상기 미분 수용액은 다공성 입자를 더 포함할 수 있다.  According to an embodiment of the present invention, the fine powder aqueous solution may further include porous particles.
이때 상기 다공성 입자는, 약 300 내지 약 1500 m2/g의 BET 비표면적 (specific surface area) 및 약 50% 이상, 예를 들어 약 50 내지 약 98%의 공극률 (porosity)을 갖는 실리카 입자일 수 있다. 또한 상기 다공성 입자는 물에 대한 접촉각이 125° 이상, 바람직하게는 140° 이상, 보다 바람직하게는 145° 이상으로 초소수성을 가질 수 있다. The porous particles may be silica particles having a BET specific surface area of about 300 to about 1500 m 2 / g and a porosity of about 50% or more, for example, about 50 to about 98%. have. In addition, the porous particles may have a superhydrophobicity with a contact angle with respect to water of 125 ° or more, preferably 140 ° or more, more preferably 145 ° or more.
상기 미분 수용액이 상기와 같은 다공성 입자를 더 포함하여 미분 재조립 공정올 수행함으로써 미분 재조립체의 투과도와 웅집 강도를 보다 향상시킬 수 있다.  The fine powder aqueous solution may further include a porous particle as described above, thereby further performing fine powder reassembly, thereby further improving permeability and pore strength of the fine powder reassembled product.
상기 다공성 입자는 상기 미분 100 중량부에 대하여, 약 0.01 내지 약 0.4 중량부, 바람직하게는 약 0.05 내지 약 으2 중량부로 포함할 수 있다. 상기 다공성 입자가 상기 중량부 범위로 포함될 때, 높은 조립 강도와 향상된 투과도를 나타낼 수 있다.  The porous particles may include about 0.01 to about 0.4 parts by weight, preferably about 0.05 to about 2 parts by weight, based on 100 parts by weight of the fine powder. When the porous particles are included in the weight part range, it may exhibit high assembly strength and improved permeability.
상술한 첨가제와 선택적으로 다공성 입자를 미분에 첨가하여 미분 수용액을 제조한다.  The above-mentioned additives and optionally porous particles are added to the fine powder to prepare a fine powder aqueous solution.
본 발명의 일 실시예에 따르면, 물 및 첨가제를 흔합하여 첨가제 수용액을 제조하고, 상기 첨가제 수용액을 약 40 내지 약 80 °C , 바람직하게는 약 60 내지 약 80 °C의 온도로 가열한 후, 상기 가열된 첨가제 수용액에 미분을 흔합하여 미분 수용액을 제조할 수 있다. 상기와 같이 가열된 첨가제 수용액에 미분을 흔합함으로써 보다 향상된 웅집 강도를 나타낼 수 있다. According to one embodiment of the present invention, after mixing the water and the additive to prepare an aqueous solution of the additive, and after heating the aqueous solution of the additive to a temperature of about 40 to about 80 ° C, preferably about 60 to about 80 ° C, The heated additive A fine powder aqueous solution can be manufactured by mixing fine powder with aqueous solution. By mixing the fine powder in the heated additive aqueous solution as described above it can exhibit a more improved foam strength.
다음에, 상기 준비된 미분 수용액과 조분쇄된 함수겔상 중합체를 흔합하여 미분 재조립체를 제조한다.  Next, a fine powder reassembly is prepared by mixing the prepared fine powder aqueous solution and the coarsely pulverized hydrogel polymer.
상기 조분쇄된 함수겔상 중합체는 앞서 설명한 모노머 조성물을 열중합 또는 광중합하여 얻은 함수겔상 중합체를 건조하기 전에 큰 입경을 갖는 덩어리 (crumbs) 형태로 1차 분쇄한 것을 의미한다. 이때 상기 조분쇄된 함수겔상 중합체의 입경은 약 2 내지 약 20mm가 될 수 있으며, 건조 전이므로 함수율이 약 40 내지 약 80 중량0 /0인 하이드로겔 상태이다. The coarsely pulverized hydrogel polymer means that the hydrous gel polymer obtained by thermal polymerization or photopolymerization of the monomer composition described above is first ground in a form of lumps having a large particle size before drying. At this time, the particle size of the milled crude function polymer gel is from about 2 to may be about 20mm, before drying because the water content is from about 40 to about 80 weight 0/0 of the hydrogel state.
본 발명에 따르면, 미분 수용액을 상기 조분쇄된 함수겔상 중합체와 흔합하여 미분 재조립체를 형성하며, 이렇게 얻어진 미분 재조립체는 높은 조립 강도와 함께, 원래의 함수겔상 중합체의 물성이 유사한 수준으로 유지되어 고품질의 미분 재조립체를 수득할 수 있게 된다.  According to the present invention, a finely divided aqueous solution is mixed with the coarsely pulverized hydrogel polymer to form a fine powder reassembly, and thus the finely divided reassembly is maintained at a similar level with the high physical strength of the original hydrogel polymer. High quality fine powder reassembly can be obtained.
본 발명의 일 실시예에 따르면, 상기 미분 수용액에 포함된 미분 100 중량부에 대하여 상기 조분쇄된 함수겔상 중합체를 약 50 내지 약 500 중량부, 바람직하게는 약 50 내지 약 300 중량부로 혼합할 수 있다. 상기 조분쇄된 함수겔상 중합체가 상기 중량부 범위로 포함될 때, 높은 조립 강도와 향상된 물성을 나타낼 수 있다. According to an embodiment of the present invention, the coarsely pulverized hydrogel polymer may be mixed in an amount of about 50 to about 500 parts by weight, preferably about 50 to about 300 parts by weight, based on 100 parts by weight of fine powder contained in the fine powder solution. have. When the coarsely pulverized hydrogel polymer is included in the weight range, it may exhibit high assembly strength and improved physical properties.
상기 미분 수용액을 조분쇄된 함수겔상 중합체에 첨가하는 방법은 그 구성의 한정은 없다. 예를 들어, 미분 수용액과 조분쇄된 함수겔상 중합체를 반웅조에 넣고 흔합하거나, 함수겔상 중합체에 미분 수용액을 분사하는 방법, 연속적으로 운전되는 믹서와 같은 반웅조에 미분 수용액과 조분쇄된 함수겔상 중합체를 연속적으로 공급하여 흔합하는 방법 등을 사용할 수 있다.  The method for adding the finely divided aqueous solution to the coarsely pulverized hydrogel polymer is not limited in its configuration. For example, the finely divided aqueous solution and the coarsely pulverized hydrous gel polymer are mixed in a semi-aperture, or the finely divided aqueous solution and the coarsely pulverized hydrous gel polymer are mixed in a semi-permanent mixture such as a mixer. The method of supplying continuously and mixing etc. can be used.
본 발명의 일 실시예에 따르면, 수득된 상기 미분 재조립체를 건조, 분쇄 및 분급하는 단계를 추가로 포함할 수 있다.  According to one embodiment of the present invention, the obtained fine powder reassembly may further comprise the step of drying, grinding and classifying.
상기 미분 재조립체를 건조하는 단계는 150 내지 250 °C의 온도에서, 20 분 내지 90 분 동안 진행할 수 있다. 그리고, 상기에서 건조를 위한 승온 수단으로는, 그 구성의 한정이 없다. 구체적으로, 열매체를 공급하거나, 전기 등의 수단으로 직접 가열할 수 있으나, 본 발명이 상술한 예에 한정되는 것은 아니다. 구체적으로 사용될 수 있는 열원으로는 스팀, 전기, 자외선, 적외선 등이 있으며, 가열된 열유체 등을 사용할 수도 있다. Drying the fine powder reassembly may be performed for 20 to 90 minutes at a temperature of 150 to 250 ° C. In addition, as a temperature raising means for drying in the above, there is no limitation in the structure. Specifically, supply the heat medium or electricity Although it can heat directly by means, etc., this invention is not limited to the above-mentioned example. Specific heat sources that may be used include steam, electricity, ultraviolet rays, infrared rays, and the like, and a heated thermal fluid may be used.
다음에, 상기 건조된 미분 재조립체를 입경이 약 150 내지 약 850 가 되도록 분쇄할 수 있다. 이와 같은 입경으로 분쇄하기 위해 사용되는 분쇄기는 구체적으로, 핀 밀 (pin mill), 해머 밀 (hammer mill), 스크류 밀 (screw mill), 를 밀 (roll mill), 디스크 밀 (disc mill) 또는 조그 밀 (jog mill) 등을 사용할 수 있으나, 상술한 예에 본 발명이 한정되는 것은 아니다.  Next, the dried fine powder reassembly may be ground to have a particle size of about 150 to about 850. Mills used to grind to such particle diameters are specifically pin mills, hammer mills, screw mills, mills, disc mills or jogs. Although a jog mill or the like may be used, the present invention is not limited to the above-described example.
본 발명의 제조 방법에 따라 수득되는 미분 재조립체는 상기와 같이 재조립 후 건조, 및 분쇄 단계를 거친 후 다시 미분으로 재파쇄되는 비율이 비율이 낮아 높은 웅집강도를 가진다.  The fine powder reassembly obtained according to the production method of the present invention has a high foaming strength with a low ratio of re-crushing into fine powder after the reassembly and drying and grinding step as described above.
본 발명의 제조방법에 따라 수득된 재조립 중합체는, 예를 들면 분쇄 후, 입경이 150 m 이하인 미분이 생성된 중량 비율이 전체 미분 재조립체의 중량에 대하여 약 15% 미만, 바람직하게는 약 10% 미만, 보다 바람직하게는 약 7% 미만일 수 있다.  The reassembled polymer obtained according to the preparation method of the present invention has a weight ratio of fine powder having a particle size of 150 m or less after grinding, for example, less than about 15% by weight of the total fine powder reassembly, preferably about 10 Less than%, more preferably less than about 7%.
추가적으로, 분쇄 후 얻어지는 미분 재조립체를 입경에 따라 입경이 약 150 미만인 입자, 약 150 내지 약 850 ΛΠ인 입자, 입경이 850 를 초과하는 입자로 분급할 수 있다.  In addition, the finely divided reassembly obtained after grinding may be classified into particles having a particle size of less than about 150, particles of about 150 to about 850 Λπ, and particles having a particle size of more than 850 depending on the particle size.
상기 분급된 미분 재조립체는 단독으로 또는 다른 정상 입자와 흔합하여 표면 가교 공정을 수행할 수 있다.  The classified fine powder reassembly may be performed alone or in combination with other normal particles to perform a surface crosslinking process.
표면 가교는 입자 내부의 가교결합 밀도와 관련하여 고흡수성 고분자 입자 표면 근처의 가교결합 밀도를 증가시키는 단계이다. 일반적으로, 표면 가교 제는 고흡수성 수지 입자의 표면에 도포된다. 따라서, 이 반웅은 고흡수성 수지 입자의 표면 상에서 일어나며, 이는 입자 내부에는 실질적으로 영향을 미치지 않으면서 입자의 표면 상에서의 가교 결합성은 개선시킨다. 따라서 표면 가교 결합된 고흡수성 수지 입자는 내부에서보다 표면 부근에서 더 높은 가교 결합도를 갖는다.  Surface crosslinking is the step of increasing the crosslink density near the surface of the superabsorbent polymer particles with respect to the crosslink density inside the particles. Generally, the surface crosslinking agent is applied to the surface of the super absorbent polymer particles. Thus, this reaction occurs on the surface of the superabsorbent resin particles, which improves the crosslinkability on the surface of the particles without substantially affecting the interior of the particles. The surface crosslinked superabsorbent resin particles thus have a higher degree of crosslinking in the vicinity of the surface than in the interior.
이때 상기 표면 가교제로는 중합체가 갖는 관능기와 반웅 가능한 화합물이라면 그 구성의 한정이 없다.  In this case, the surface crosslinking agent is not limited as long as it is a compound capable of reacting with the functional group of the polymer.
바람직하게는 생성되는 고흡수성 수지의 특성을 향상시키기 위해, 상기 표면 가교제로 다가 알콜 화합물; 에폭시 화합물; 폴리아민 화합물; 할로에폭시 화합물; 할로에폭시 화합물의 축합 산물; 옥사졸린 화합물류; 모노-,디- 또는 폴리옥사졸리디논 화합물; 환상 우레아 화합물; 다가 금속염; 및 알킬렌 카보네이트 화합물로 이루어진 군에서 선택되는 1 종 이상을 사용할 수 있다. Preferably in order to improve the properties of the resulting super absorbent polymer, Polyhydric alcohol compounds as the surface crosslinking agent; Epoxy compounds; Polyamine compounds; Haloepoxy compound; Condensation products of haloepoxy compounds; Oxazoline compounds; Mono-, di- or polyoxazolidinone compounds; Cyclic urea compounds; Polyvalent metal salts; And it may be used one or more selected from the group consisting of alkylene carbonate compounds.
구체적으로, 다가 알콜 화합물의 예로는 모노-, 디-, 트리-, 테트라- 또는 폴리에틸렌 글리콜, 모노프로필렌 글리콜, 1,3-프로판디올, 디프로필렌 글리콜, 2,3,4-트리메틸 -1,3-펜탄디올, 폴리프로필렌 글리콜, 글리세를, 폴리글리세를, 2-부텐 -1,4-디올, 1,4-부탄디올, 1,3-부탄디올, 1,5-펜탄디을, 1,6- 핵산디올, 및 1,2-사이클로핵산디메탄을로 이루어진 군에서 선택되는 1 종 이상을 사용할 수 있다.  Specifically, examples of the polyhydric alcohol compound include mono-, di-, tri-, tetra- or polyethylene glycol, monopropylene glycol, 1,3-propanediol, dipropylene glycol, 2,3,4-trimethyl-1,3 -Pentanediol, polypropylene glycol, glycerol, polyglycerol, 2-butene-1,4-diol, 1,4-butanediol, 1,3-butanediol, 1,5-pentanediol, 1,6- nucleic acid diol And 1, 1 or more selected from the group consisting of 1,2-cyclonucleodimethane can be used.
또한, 에폭시 화합물로는 에틸렌 글리콜 디글리시딜 에테르 및 글리시돌 등을 사용할 수 있으며 , 폴리아민 화합물류로는 에틸렌디아민, 디에틸렌트리아민, 트리에틸렌테트라아민, 테트라에틸렌펜타민, 펜타에틸렌핵사민, 폴리에틸렌이민 및 폴리아미드폴리아민로 이루어진 군에서 선택되는 1 종 이상을 사용할 수 있다.  In addition, ethylene glycol diglycidyl ether and glycidol may be used as the epoxy compound, and as polyamine compounds, ethylene diamine, diethylene triamine, triethylene tetraamine, tetraethylenepentamine, pentaethylene nucleoamine , At least one selected from the group consisting of polyethyleneimine and polyamide polyamine can be used.
그리고 할로에폭시 화합물로는 에피클로로히드린, 에피브로모히드린 및 α-메틸에피클로로히드린을 사용할 수 있다. 한편, 모노-, 디- 또는 폴리옥사졸리디논 화합물로는 예를 들어 2-옥사졸리디논 등을 사용할 수 있다. As the haloepoxy compound, epichlorohydrin, epibromohydrin and α -methyl epichlorohydrin can be used. In addition, as a mono-, di-, or a polyoxazolidinone compound, 2-oxazolidinone etc. can be used, for example.
그리고, 알킬렌 카보네이트 화합물로는 에틸렌 카보네이트 등을 사용할 수 있다. 이들을 각각 단독으로 사용하거나 서로 조합하여 사용할 수도 있다. 한편, 표면 가교 공정의 효율을 높이기 위해, 이들 표면 가교제 중에서 1 종 이상의 다가 알코을 화합물을 포함하여 사용하는 것이 바람직하며, 더욱 바람직하게는 탄소수 2 내지 10의 다가 알코올 화합물류를 사용할 수 있다.  And as an alkylene carbonate compound, ethylene carbonate etc. can be used. These may be used alone or in combination with each other. On the other hand, in order to improve the efficiency of a surface crosslinking process, it is preferable to use at least 1 type of polyhydric alcohol among these surface crosslinking agents, and more preferably, C2-C10 polyhydric alcohol compounds can be used.
상기 첨가되는 표면 가교제의 함량은 구체적으로 추가되는 표면 가교제의 종류나 반웅 조건에 따라 적절히 선택될 수 있지만, 통상 중합체 loo 중량부에 대해, 약 αοοι 내지 약 5 중량부, 바람직하게는 약 0.01 내지 약 3 중량부, 더욱 바람직하게는 약 0.05 내지 약 2 중량부를 사용할 수 있다. The amount of the surface crosslinking agent to be added may be appropriately selected depending on the kind of the surface crosslinking agent to be added or the reaction conditions, but it is usually from about αοοι to about 5 parts by weight, preferably about 0.01 to about 1 part by weight of the polymer loo. 3 parts by weight, more preferably from about 0.05 to about 2 parts by weight can be used have.
표면 가교제의 함량이 지나치게 적으면, 표면 가교 반웅이 거의 일어나지 않으며, 중합체 100 중량부에 대해, 5 중량부를 초과하는 경우, 과도한 표면 가교 반웅의 진행으로 인해 흡수능력 및 물성의 저하 현상이 발생할 수 있다.  When the content of the surface crosslinking agent is too small, the surface crosslinking reaction hardly occurs, and when 100 parts by weight of the polymer is more than 5 parts by weight, the excessive absorption of the surface crosslinking reaction may result in deterioration of absorbing ability and physical properties. .
표면 가교제가 첨가된 중합체 입자에 대해 가열시킴으로써 표면 가교 결합 반응 및 건조가 동시에 이루어질 수 있다.  The surface crosslinking reaction and drying can occur simultaneously by heating the polymer particles to which the surface crosslinking agent is added.
표면 가교 반웅을 위한 승온 수단은 특별히 한정되지 않는다. 열매체를 공급하거나, 열원을 직접 공급하여 가열할 수 있다. 이때, 사용 가능한 열매체의 종류로는 스팀, 열풍, 뜨거운 기름과 같은 승온한 유체 등을 사용할 수 있으나, 본 발명이 이에 한정되는 것은 아니며, 또한 공급되는 열매체의 온도는 열매체의 수단, 승온 속도 및 승온 목표 온도를 고려하여 적절히 선택할 수 있다. 한편, 직접 공급되는 열원으로는 전기를 통한 가열, 가스를 통한 가열 방법을 들 수 있으나, 상술한 예에 본 발명이 한정되는 것은 아니다.  The temperature raising means for surface crosslinking reaction is not specifically limited. It can be heated by supplying a heat medium or by directly supplying a heat source. In this case, as the type of heat medium that can be used, a heated fluid such as steam, hot air, and hot oil may be used, but the present invention is not limited thereto, and the temperature of the heat medium to be supplied is a means of heating medium, a temperature increase rate, and a temperature increase. It may be appropriately selected in consideration of the target temperature. On the other hand, the heat source directly supplied may be a heating method through electricity, a heating method through a gas, but the present invention is not limited to the above examples.
상술한 방법으로 제조된 고흡수성 수지는, 산성기를 포함하고 상기 산성기의 적어도 일부가 중화된 수용성 에틸렌계 불포화 단량체를 중합시킨 중합체 중 입경이 150 미만인 미분에 대해, 수산화나트륨을 흔합하여 재조립된 미분 재조립체를 표면 가교시킨 고흡수성 수지로, EDANA 법 WSP 241.3에 따라 측정한 보수능 (CRC)이 33.0 내지 39.0 g/g이고; EDANA 법 WSP The superabsorbent polymer prepared by the above-described method is prepared by mixing sodium hydroxide with respect to fine powder having a particle size of less than 150 in a polymer including an acidic group and polymerizing a water-soluble ethylenically unsaturated monomer in which at least a part of the acidic group is neutralized. A superabsorbent polymer having surface-crosslinked finely divided reassembly, the water-retaining capacity (CRC) measured according to EDANA method WSP 241.3 is 33.0 to 39.0 g / g; EDANA Law WSP
241.3에 따라 측정한 0.7 psi 가압 흡수능 (AUP)이 20.0 내지 25.0 g/g이고; 볼텍스 법 (Vortex)에 의한 흡수 속도가 100초 이하인 것을 특징으로 한다. 일 구현예의 고흡수성 수지에 있어, 상기 중합체는 산성기를 포함하고 상기 산성기의 적어도 일부가 중화된 수용성 에틸렌계 블포화 단량체를 중합시킨 것으로, 이에 사용되는 구체적인 물질 및 제조방법의 구체적인 설명은 앞서 함수겔상 중합체의 제조방법에서 예시적 로 설명한 바와 동일하다. 0.7 psi Pressurized Absorption Capacity (AUP), measured according to 241.3, is between 20.0 and 25.0 g / g; The absorption rate by the vortex method is 100 seconds or less. In one embodiment of the superabsorbent polymer, the polymer comprises an acidic group and polymerized a water-soluble ethylene-based unsaturated monomer in which at least a portion of the acidic group is neutralized. The same as exemplarily described in the method for preparing a gel polymer.
또한 본 발명의 일 구현예의 고흡수성 수지에 있어, 상기 미분은 상기 중합체 중 입경이 150/zm 미만인 입자를 지칭하며, 상기 미분이 발생되는 단계 또는 표면 가교 여부 등에 상관없이, 고흡수성 수지의 모든 공정, 예를 들어, 중합 공정, 건조 공정, 건조된 중합체의 분쇄 공정, 또는 표면 가교 공정 등에서 발생한 것을 모두 포괄할 수 있다. In addition, in the super absorbent polymer of one embodiment of the present invention, the fine powder refers to particles having a particle diameter of less than 150 / zm in the polymer, regardless of the step or surface crosslinking occurs the fine powder, all of the superabsorbent resin The process, for example, a polymerization process, a drying process, the pulverization process of the dried polymer, the surface crosslinking process, etc. can include all.
상기 미분 재조립체는 미분에 대해, 수산화나트륨을 흔합하여 재조립되거나, 수산화나트륨에 더하여, 가교제, 열중합 개시, 또는 다공성 입자를 더 흔합하여 재조립된 것일 수 있다. 상기 가교제, 열중합 개시, 또는 다공성 입자에 대한 보다 자세한 설명은 앞서 고흡수성 수지의 제조방법에서 설명한 바와 같다.  The fine powder reassembly may be reassembled by mixing sodium hydroxide with respect to fine powder, or may be reassembled by adding more crosslinking agent, thermal polymerization initiation, or porous particles in addition to sodium hydroxide. More detailed description of the crosslinking agent, thermal polymerization initiation, or porous particles is as described above in the method for preparing a super absorbent polymer.
상기 수산화나트륨은 상기 미분 100 중량부에 대하여, 약 0.1 내지 약 20 중량부, 또는 약 1 내지 약 15 중량부, 또는 약 1 내지 10 중량부로 포함될 수 있다. 상기 수산화나트륨이 상기 중량부 범위로 포함될 때, 높은 조립 강도, 향상된 투과도 및 보수능 향상에 기여할 수 있다.  The sodium hydroxide may be included in an amount of about 0.1 to about 20 parts by weight, or about 1 to about 15 parts by weight, or about 1 to 10 parts by weight, based on 100 parts by weight of the fine powder. When the sodium hydroxide is included in the weight range, it may contribute to high assembly strength, improved permeability and water retention.
또한, 상기 미분은 조분쇄된 함수겔상 중합체를 흔합하여 재조립된 것일 수 있다. 상기 조분쇄된 함수겔상 중합체와의 흔합에 대한 보다 자세한 설명은 앞서 고흡수성 수지의 제조방법에서 설명한 바와 같다.  In addition, the fine powder may be reassembled by mixing the coarsely pulverized hydrogel polymer. More detailed description of the mixing with the coarsely pulverized hydrogel polymer is as described above in the preparation method of the super absorbent polymer.
상기와 같이 재조립된 미분 재조립체를 표면 가교시킨 고흡수성 수지는 EDANA 법 WSP 241.3에 따라 측정한 보수능 (CRC)이 약 33.0 내지 약 39.0 g/g, 또는 약 34.0 내지 약 38.0 g/g일 수 있다. 또한, EDANA 법 WSP 241.3에 따라 측정한 0.7 psi 가압 흡수능 (AUP)이 약 20.0 내지 약 25.0 g/g, 또는 약 21.0 내지 약 25.0 g/g일 수 있다.  The superabsorbent polymer surface-crosslinked with the reassembled finely divided granules has a water retention (CRC) of about 33.0 to about 39.0 g / g, or about 34.0 to about 38.0 g / g, measured according to EDANA WSP 241.3. Can be. In addition, the 0.7 psi pressurized absorbent capacity (AUP) measured according to the EDANA method WSP 241.3 may be from about 20.0 to about 25.0 g / g, or from about 21.0 to about 25.0 g / g.
또한, 상기 고흡수성 수지는 볼텍스 법 (Vortex)에 의한 흡수 속도가 약 100초 이하, 또는 약 95초 이하일 수 있다. 상기 볼텍스 법에 의한 측정은, 100 ml 비커에 50 ml 식염수를 마그네틱 교반 바와 함께 넣고, 교반기를 사용하여 마그네틱 교반 바의 교반 속도를 600 rpm으로 지정한 후 교반되고 있는 식염수에 2.0 g의 고흡수성 수지를 넣는 동시에 시간을 측정하여 비커 안에 소용돌이가 없어지는 시점까지 걸린 시간 (단위: 초)을 볼텍스 시간으로 하여 측정한다. 상기 흡수 속도의 하한값은 특별한 제한은 없으나 약 20초 이상, 또는 약 30초 이상일 수 있다.  In addition, the superabsorbent polymer may have an absorption rate of about 100 seconds or less, or about 95 seconds or less based on a vortex method. In the vortex method, 50 ml saline was added to a 100 ml beaker with a magnetic stir bar, the stirring speed of the magnetic stir bar was set at 600 rpm using a stirrer, and 2.0 g of superabsorbent polymer was added to the stirred saline. At the same time, measure the time and measure the time (in seconds) until the vortex disappears from the beaker as the vortex time. The lower limit of the absorption rate is not particularly limited but may be about 20 seconds or more, or about 30 seconds or more.
이하 본 발명을 실시예에 기초하여 더욱 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다. 또한, 이하의 실시예, 비교예에서 함유량을 나타내는 "%" 및 "부"는 특별히 언급하지 않는 한 질량 기준이다. <실시예 > Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited by the following examples. Further, in the following examples and comparative examples "%" And "part" which represent content are mass references | standards unless there is particular notice. <Example>
고흡수성 수지 입자의 제조  Preparation of Super Absorbent Resin Particles
제조예 1  Preparation Example 1
아크릴산 100 g, 가교제로 폴리에틸렌글리콜 디아크릴레이트 0.3 g, 개시제 로 디페닐 (2,4,6-트리메틸벤조일) -포스핀 옥시드 0.033 g, 가성소다 (NaOH) 38.9 g, 및 물 103.9 g의 비율로 흔합하여, 단량체 농도가 50 중량%인 단량체 흔합물을 준 비하였다.  100 g of acrylic acid, 0.3 g of polyethylene glycol diacrylate as crosslinking agent, 0.033 g of diphenyl (2,4,6-trimethylbenzoyl) -phosphine oxide as initiator, 38.9 g of caustic soda (NaOH), and 103.9 g of water To prepare a monomer mixture having a monomer concentration of 50% by weight.
이후, 상기 단량체 흔합물을 연속 이동하는 콘베이어 벨트상에 투입하고 자외선을 조사 (조사량: 2mW/cm2)하여 2분 동안 UV 중합을 진행하여 함수겔상 중합체를 얻었다. Thereafter, the monomer mixture was placed on a continuously moving conveyor belt, and irradiated with ultraviolet light (irradiation amount: 2 mW / cm 2 ) to undergo UV polymerization for 2 minutes to obtain a hydrous gel polymer.
상기 함수겔상 중합체를 미트 쵸퍼 (홀 크기 8mm)로 분쇄하여 조분쇄 함수겔상 중합체를 얻었다. 이를 170 °C 온도의 열풍 건조기에서 2시간 동안 건조하고, 핀밀 분쇄기로 분쇄한 후 ASTM 규격의 표준 망체로 분급하여The hydrogel polymer was pulverized with a meat chopper (hole size 8 mm) to obtain a coarsely pulverized hydrogel polymer. It was dried for 2 hours in a hot air dryer at 170 ° C, crushed by a pin mill grinder and classified into a standard mesh of ASTM standard.
150 ai 내지 850 의 입자 크기를 갖는 정상 입자와, 150/mi 미만의 입경을 갖는 미분 입자를 수득하였다. 미분 재조립체의 제조실시예 Normal particles having a particle size of 150 ai to 850 and fine particles having a particle size of less than 150 / mi were obtained. Preparation Example of Fine Powder Reassembly
실시예 1  Example 1
과황산나트륨 (SPS) 1,500 ppm, 폴리에틸렌글리콜 디아크릴레이트 (PEGDA) 3,000 ppm, 실리카 에어로겔 (Silica Aerogel, AeroZelTM, JIOS 사) 1 ,000 ppm, 수산화나트륨 3 중량 %를 포함하는 첨가제 수용액을 준비하고, 이 첨가제 수용액을 8(rc로 가열하였다.  An additive aqueous solution comprising 1,500 ppm of sodium persulfate (SPS), 3,000 ppm of polyethylene glycol diacrylate (PEGDA), 1,000 ppm of silica aerogel (Silica Aerogel, AeroZelTM, JIOS) and 3% by weight of sodium hydroxide was prepared. The additive aqueous solution was heated to 8 (rc.
가열된 첨가제 수용액 750g과, 제조예 1에서 수득된 입경 150 미만의 미분 500g을 planetary mixer를 이용하여 1분 동안 흔합하였다. 이 흔합물에, 제조예 1에서 수득된 조분쇄 함수겔상 중합체 500g을 투입하고 1분 동안 추가로 흔합하여 미분 재조립체를 제조하였다.  750 g of the heated additive aqueous solution and 500 g of fine powder having a particle size of less than 150 obtained in Preparation Example 1 were mixed for 1 minute using a planetary mixer. 500 g of the coarsely pulverized hydrogel polymer obtained in Preparation Example 1 was added to the mixture and further mixed for 1 minute to prepare a fine powder reassembled product.
이렇게 만들어진 재조립체를 미트 쵸퍼를 통해 분쇄하였다. 이후 180°C의 온도에서 30분간 열풍 건조기를 통하여 건조한 뒤, 회전식 믹서를 이용하여 재분쇄하고 ASTM 규격의 표준 망체로 분급하여 입경이 150 zm 미만인 입자와, 입경이 입경 150皿 이상 850 이하인 입자로 분급하였다. 분급된 입경 150 이상 850 미만인 입자 100g에 폴리 (에틸렌글리콜)디글리시딜에테르 0.2g, 메탄올 3g, 물 5g, 실리카 에어로겔 (AeroZelTM, JIOS 사) O.Olg을 포함하는 표면 가교 용액과 흔합한 후 180°C의 온도에서 50분간 표면 가교 반응을 수행하여 최종 고흡수성 수지를 얻었다. 실시예 2 The reassembled thus was ground through a meat chopper. After drying for 30 minutes in a hot air dryer at a temperature of 180 ° C, the rotary mixer The particles were regrind and classified into a standard mesh of ASTM standard, and classified into particles having a particle size of less than 150 zm and particles having a particle size of 150 Pa or more and 850 or less. 100 g of particles having a particle size of 150 or more and less than 850 were mixed with a surface crosslinking solution containing 0.2 g of poly (ethylene glycol) diglycidyl ether, 3 g of methanol, 5 g of water, and silica aerogel (AeroZelTM, JIOS) O.Olg. The surface crosslinking reaction was performed for 50 minutes at a temperature of 180 ° C to obtain a final superabsorbent resin. Example 2
미분을 250g으로, 조분쇄 함수겔상 중합체를 750g으로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. 비교예 1  A super absorbent polymer was prepared in the same manner as in Example 1, except that 250 g of fine powder and 750 g of a coarsely pulverized hydrogel polymer were used. Comparative Example 1
제조예 1에서 수득된 조분쇄 함수겔상 중합체 l,000g을 180°C의 온도에서 30분간 열풍 건조기를 통하여 건조한 뒤, 회전식 믹서를 이용하여 재분쇄하고 ASTM 규격의 표준 망체로 분급하여 입경이 150 미만인 입자와, 입경이 입경 150卿 이상 850 이하인 입자로 분급하였다. 1,000 g of coarsely pulverized hydrogel polymer obtained in Preparation Example 1 was dried in a hot air dryer for 30 minutes at a temperature of 180 ° C. The particles were classified into particles having a particle diameter of 150 Pa or more and 850 or less.
분급된 입경 150 ιη 이상 850//m 미만인 입자 100g에 폴리 (에틸렌글리콜)디글리시딜에테르 0.2g, 메탄을 3g, 물 5g, 실리카 에어로겔 (AeroZelTM, JIOS 사) O.Olg을 포함하는표면 가교 용액과 흔합한 후 180°C의 온도에서 50분간 표면 가교 반웅을 수행하여 최종 고흡수성 수지를 얻었다. Surface crosslinking comprising 100 g of particles having a classified particle diameter of 150 η or more and less than 850 // m, containing 0.2 g of poly (ethylene glycol) diglycidyl ether, 3 g of methane, 5 g of water, and silica aerogel (AeroZelTM, JIOS) O.Olg After mixing with the solution, a surface crosslinking reaction was performed for 50 minutes at a temperature of 180 ° C to obtain a final superabsorbent polymer.
<실험예 > Experimental Example
미분 재조립체의 물성을 평가하기 위해 상기 비교예 1 및 실시예 1 내지 실시예 2에 따른 방법으로 제조된 고흡수성 수지 (표면 가교 전의 수지 및 표면 가교 후의 수지)에 대하여 하기 방법으로 물성을 측정하였고, 그 결과를 표 1에 나타내었다.  In order to evaluate the physical properties of the fine powder reassembly, the physical properties of the superabsorbent polymers (resin before surface crosslinking and resin after surface crosslinking) prepared by the method according to Comparative Example 1 and Examples 1 to 2 were measured by the following method. The results are shown in Table 1.
(1) 보수능 (CRC, Centrif igal Retention Capacity) 상기 실시예 1 내지 2 및 비교예 1에 의해 제조한 고흡수성 수지 각각에 대해 표면 가교 반응 이전과 이후에 각각 보수능을 측정하였다. 보수능의 측정은 EDANA 법 WSP 241.3을 기준으로 하였다. 준비된 고흡수성 수지 중 입경 300 내지 600 m 시료 0.2 g을 티백에 넣고 0.9 % 염수 용액에 30분간 침전한다. 이후 250G (gravity)의 원심력으로 3분간 탈수한 후 염수 용액이 흡수된 양을 측정하였다. (1) Centrifugal Retention Capacity (CRC) For each of the superabsorbent polymers prepared in Examples 1 and 2 and Comparative Example 1, the water holding capacity was measured before and after the surface crosslinking reaction. The measurement of water retention capacity was based on the EDANA method WSP 241.3. 0.2 g of a 300 to 600 m particle size sample was put into a tea bag and precipitated in a 0.9% saline solution for 30 minutes. After dehydration for 3 minutes with a centrifugal force of 250G (gravity) was measured the amount of saline solution absorbed.
(2) 가압 흡수능 (AUP, Absorption Under Pressure) (2) Absorption Under Pressure (AUP)
상기 실시예 1 내지 2 및 비교예 1에 의해 제조한 고흡수성 수지 각각에 대해 가압 흡수능을 측정하였다. 가압 흡수능의 측정은 EDANA 법 WSP 241.3을 기준으로 하였다. 준비된 고흡수성 수지 중 입경 300 내지 600/ΛΙΙ 시료 0.9 g을 EDANA에서 규정하는 실린더에 넣고 피스톤과 추로 0.7 psi의 압력을 가한다. 후에 0.9 % 염수 용액을 60분간 흡수한 양을 측정하였다.  The absorbency under pressure was measured for each of the superabsorbent polymers prepared in Examples 1 to 2 and Comparative Example 1. The measurement of the absorbency under pressure was based on the EDANA method WSP 241.3. 0.9 g of the particle size 300 to 600 / ΛΙΙ sample of the prepared superabsorbent polymer was put in a cylinder defined by EDANA, and a pressure of 0.7 psi was applied to the piston and weight. After that, the amount of 0.9% saline solution absorbed for 60 minutes was measured.
(3) 흡수 속도 (Vortex) (3) Absorption Rate (Vortex)
상기 실시예 1 내지 2 및 비교예 1에 의해 제조한 고흡수성 수지 각각에 대해 흡수 속도를 측정하였다. 흡수 속도의 측정은 50 ml ^염수를Absorption rates were measured for each of the superabsorbent polymers prepared in Examples 1 and 2 and Comparative Example 1. Measurement of absorption rate 50 ml ^ saline
100 ml 비커에 마그네틱 바와 함께 넣었다. 교반기를 사용하여 교반 속도를 600 rpm으로 지정하였다. 교반되고 있는 ^염수에 2.0 g의 고흡수성 수지를 넣는 동시에 시간을 측정하였다. 비커 안에 소용돌이가 없어지는 시점에 시간 측정을 종료하였다. Placed in a 100 ml beaker with a magnetic bar. The stirring speed was specified at 600 rpm using a stirrer. The time was measured while putting 2.0 g of superabsorbent polymer in the stirred brine. The time measurement was terminated when the swirl disappeared in the beaker.
(4) 투과도 (Permeability) (4) Permeability
상기 실시예 1 내지 2 및 비교예 1에 의해 제조한 고흡수성 수지 각각에 대해 투과도를 측정하였다.  Permeability was measured for each of the superabsorbent polymers prepared in Examples 1 and 2 and Comparative Example 1.
크로마토그래피 관 하부 글래스 필터 (Glass Filter)와 콕크 사이에 기포가 생기지 않도록 역으로 물을 투입하여 약 10 mL 채우고 염수로 2~3회 세척하고 40mL 이상까지 으9 % 염수로 채웠다. 크로마토그래피 관에 피스톤을 넣고 하부의 벨브를 연 후 액면이 40 mL 표시선에서 20 mL 표시선이 될 때까지의 시간을 기록 (B: sec)하여 Blank 실험을 실시하였다. 준비된 고흡수성. 수지 중 입경 300 내지 600i/m 시료 0.2 g을 넣은 다음 염수를 가하여 염수 총량이 50 mL가 되도록 하였다. 고흡수성 수지가 충분히 팽윤되도록 30분간 방치하였다. 크로마토그래피 관 내에 추가 달린 피스톤 (0.3 psi)을 넣고 1분간 방치하였다. 크로마토그래피 관 하부에 있는 마개를 연, 액면이 40 mL 표시선에서 20 mL 표시선이 될 때까지의 시간 (T1 : sec)을 기록하였다. 투과도는 아래의 식으로 나타내었다. In order to prevent bubbles from forming between the glass tube and the bottom of the chromatography tube, water was added in the reverse direction, filled with about 10 mL, washed 2-3 times with brine, and filled with 9% brine to 40mL or more. Insert the piston into the chromatography tube, open the lower valve, and the liquid level is 20 mL at the 40 mL mark. Blank experiment was performed by recording the time until the display line (B: sec). Prepared super absorbency. 0.2 g of a particle size of 300 to 600 i / m of the resin was added thereto, and then brine was added so that the total amount of saline was 50 mL. The superabsorbent polymer was allowed to stand for 30 minutes to sufficiently swell. An additional piston (0.3 psi) was placed in the chromatography tube and allowed to stand for 1 minute. Open the stopper at the bottom of the chromatography tube and record the time (T1: sec) from the 40 mL mark to the 20 mL mark. The transmittance is represented by the following equation.
투과도 = T1 - B  Permeability = T1-B
[표 1]  TABLE 1
Figure imgf000023_0001
상기 표 1을 참조하면, 본 발명의 제조방법에 따라 미분 재조립 공정을 수행한 고흡수성 수지의 경우, 보수능, 가압흡수능, 흡수속도, 투과도 등의 물성이 미분 재조립을 하기 전보다 향상되거나 동등한 수준을 보였다.
Figure imgf000023_0001
Referring to Table 1, in the case of the super absorbent polymer which has been subjected to the fine powder reassembly process according to the manufacturing method of the present invention, physical properties such as water retention, pressure absorbing ability, absorption rate, and permeability are improved or equivalent to those before fine powder reassembly. Level was shown.

Claims

【특허청구범위】 [Patent Claims]
【청구항 1】  [Claim 1]
수용성 에틸렌계 불포화 단량체 및 중합개시제를 포함하는 모노머 조성물에 열중합 또는 광중합을 진행하여 함수겔상 중합체를 수득하는 단계; 상기 함수겔상 증합체를 조분쇄하는 단계;  Thermally polymerizing or photopolymerizing a monomer composition including a water-soluble ethylenically unsaturated monomer and a polymerization initiator to obtain a hydrogel polymer; Coarsely pulverizing the hydrogel polymer;
조분쇄된 함수겔상 중합체를 건조 및 분쇄하여 150卿 미만의 입경을 갖는 미분 및 150 내지 850 의 입경을 갖는 정상 입자로 분급하는 단계; 상기 미분, 물, 및 첨가제를 흔합하여 미분 수용액을 제조하는 단계; 상기 미분 수용액과 상기 조분쇄된 함수겔상 중합체를 흔합하여 미분 재조립체를 제조하는 단계를 포함하는 고흡수성 수지의 제조 방법.  Drying and pulverizing the coarsely pulverized hydrogel polymer to classify it into fine particles having a particle size of less than 150 mm 3 and normal particles having a particle size of 150 to 850; Preparing a fine powder aqueous solution by mixing the fine powder, water, and additives; And mixing the finely divided aqueous solution and the coarsely pulverized hydrogel polymer to produce a finely divided reassembled product.
【청구항 2】 [Claim 2]
거 U항에 있어서,  In U,
상기 첨가제는 수산화나트륨, 가교제, 및 열중합 개시제를 포함하는, 고흡수성 수지의 제조 방법.  The additive includes a sodium hydroxide, a crosslinking agent, and a thermal polymerization initiator, a method for producing a super absorbent polymer.
【청구항 3】 [Claim 3]
게 1항에 있어서,  According to claim 1,
상기 미분 수용액은 다공성 입자를 더 포함하는, 고흡수성 수지의 제조 방법.  The fine aqueous solution further comprises a porous particle, a method for producing a super absorbent polymer.
【청구항 4】 [Claim 4]
제 3항에 있어서,  The method of claim 3,
상기 다공성 입자는, 300 내지 1500 m2/g의 BET 비표면적 (specific surface area) 및 50% 이상의 공극를 (porosity)을 갖는 실리카 입자인, 고흡수성 수지의 제조 방법. The porous particles are silica particles having a BET specific surface area of 300-1500 m 2 / g and a porosity of 50% or more.
【청구항 5] [Claim 5]
제 3항에 있어서, 상기 미분 수용액은 상기 미분 100 중량부에 대하여, 상기 다공성 입자를 0.01 내지 0.4 중량부로 포함하는, 고흡수성 수지의 제조 방법. The method of claim 3, wherein The finely divided aqueous solution comprises 0.01 to 0.4 parts by weight of the porous particles with respect to 100 parts by weight of the fine powder, a method for producing a super absorbent polymer.
【청구항 6】 [Claim 6]
제 2항에 있어서,  The method of claim 2,
상기 가교제는 폴리에틸렌글리콜 디아크릴레이트 (polyethylene glycol diacrylate, PEGDA), 핵산 -1,6-디올 디아크릴레이트 (hexane-l,6-diol diacrylate, HDD A), 에록실레이티드 트리메틸올프로판 트리아크릴레이트 (ethoxylated trimethylolpropane triacrylate, ETTA), 및 에틸렌 카보네이트 (ethylene carbonate, EC)로 이루어진 군으로부터 선택되는 1종 이상을 포함하는, 고흡수성 수지의 제조 방법. The crosslinking agent is polyethylene glycol diacrylate (PEGDA), nucleic acid-1,6-diol diacrylate (hexane-l, 6- diol diacrylate, HDD A), and an oxylated trimethylolpropane triacrylate. (ethoxylated trimethylolpropane triacrylate, ETTA), and ethylene carbonate (ethylene carbonate, EC) comprising at least one member selected from the group consisting of.
【청구항 7] [Claim 7]
제 2항에 있어서,  The method of claim 2,
상기 미분 수용액은 상기 미분 100 중량부에 대하여, 상기 가교제를 The fine powder aqueous solution is based on 100 parts by weight of the fine powder, the crosslinking agent
0.1 내지 0.5 중량부로 포함하는, 고흡수성 수지의 제조 방법. 0.1 to 0.5 parts by weight, the method of producing a super absorbent polymer.
【청구항 8] [Claim 8]
제 2항에 있어서,  The method of claim 2,
상기 열중합 개시제는 과황산나트륨 (sodium persulfate) 또는 과황산칼륨 (potassium persulfate)을 포함하는, 고흡수성 수지의 제조 방법.  The thermal polymerization initiator comprises sodium persulfate or potassium persulfate, a method for producing a super absorbent polymer.
【청구항 9] [Claim 9]
게 2항에 있어서,  According to claim 2,
상기 미분 수용액은 상기 미분 100 중량부에 대하여, 상기 열중합 개시제를 으1 내지 0.5 중량부로 포함하는, 고흡수성 수지의 제조 방법.  The said fine powder aqueous solution contains the said thermal-polymerization initiator in 1 thru | or 0.5 weight part with respect to 100 weight part of said fine powders, The manufacturing method of the super absorbent polymer.
【청구항 10] [Claim 10]
제 1항에 있어서,  The method of claim 1,
상기 미분 수용액은 상기 미분 100 중량부에 대하여, 물을 100 내지 300 중량부로 포함하는, 고흡수성 수지의 제조 방법. The fine powder aqueous solution is water from 100 to 100 parts by weight of the fine powder; It contains 300 weight part, The manufacturing method of a super absorbent polymer.
【청구항 11 ] 【Claim 11】
제 1항에 있어서,  The method of claim 1,
상기 미분 수용액에 포함된 미분 100 중량부에 대하여 상기 조분쇄된 함수겔상 중합체를 50 내지 500 중량부로 흔합하는, 고흡수성 수지의 제조 방법.  A method for producing a super absorbent polymer, comprising mixing 50 to 500 parts by weight of the coarsely pulverized hydrogel polymer with respect to 100 parts by weight of fine powder contained in the fine aqueous solution.
【청구항 12】 [Claim 12]
게 1항에 있어서,  According to claim 1,
조분쇄된 함수겔상 중합체의 입경은 2 내지 20mm인, 고흡수성 수지의 제조 방법.  The particle size of the coarsely pulverized hydrogel polymer is 2 to 20 mm, a method for producing a super absorbent polymer.
【청구항 13] [Claim 13]
제 1항에 있어서,  The method of claim 1,
상기 미분 수용액을 제조하는 단계는,  Preparing the differential aqueous solution,
물 및 첨가제를 혼합하여 첨가제 수용액을 제조하는 단계;  Mixing the water and the additive to prepare an additive aqueous solution;
상기 첨가제 수용액을 40 내지 80 °C로 가열하는 단계; 및 Heating the additive aqueous solution to 40 to 80 ° C .; And
상기 가열된 첨가제 수용액에 미분을 흔합하는 단계를 포함하는, 고흡수성 수지의 제조 방법.  Mixing the fine powder in the heated additive aqueous solution, a method for producing a super absorbent polymer.
【청구항 14] [Claim 14]
게 1항에 있어서,  According to claim 1,
상기 미분 재조립체를 건조하는 단계를 더 포함하는 고흡수성 수지의 제조방법.  Method for producing a super absorbent polymer further comprising the step of drying the fine powder reassembly.
【청구항 15】 [Claim 15]
제 14항에 있어서,  The method of claim 14,
상기 건조된 미분 재조립체를 분쇄 및 분급하는 단계를 더 포함하는 고흡수성 수지의 제조방법. The method of manufacturing a super absorbent polymer further comprising the step of pulverizing and classifying the dried fine powder reassembly.
【청구항 16] [Claim 16]
제 15항에 있어서,  The method of claim 15,
상기 분쇄 및 분급한 미분 재조립체를 표면 가교하는 단계를 더 포함하는 고흡수성 수지의 제조방법.  The method of producing a super absorbent polymer further comprising the step of surface crosslinking the pulverized and classified fine powder reassembly.
【청구항 17] [Claim 17]
산성기를 포함하고 상기 산성기의 적어도 일부가 중화된 수용성 에틸렌계 블포화 단량체를 중합시킨 고흡수성 중합체 중 입경이 150 미만인 미분에 대해, 수산화나트륨을 흔합하여 재조립된 미분 재조립체를 표면 가교시킨 고흡수성 수지로,  In the superabsorbent polymer containing an acidic group and polymerizing a water-soluble ethylene-based unsaturated monomer in which at least a portion of the acidic group is neutralized, the finely divided finely reassembled finely divided powder reassembled by mixing sodium hydroxide As absorbent resin ,
EDANA 법 WSP 241.3에 따라 측정한 보수능 (CRC)이 33.0 내지 39.0 g/g이고;  The water holding capacity (CRC) measured according to the EDANA method WSP 241.3 is 33.0 to 39.0 g / g;
EDANA 법 WSP 241.3에 따라 측정한 0.7 psi 가압 흡수능 (AUP)이 20.0 내지 25.0 g/g이고;  0.7 psi Pressurized Absorption Capacity (AUP), measured according to EDANA method WSP 241.3, is from 20.0 to 25.0 g / g;
볼텍스 법 (Vortex)에 의한 흡수 속도가 100초 이하인,  The absorption rate by the vortex method is 100 seconds or less ,
고흡수성 수지.  Superabsorbent polymer.
[청구항 18】 [Claim 18]
제 17항에 있어서,  The method of claim 17,
상기 미분 100 중량부에 대하여 상기 수산화나트륨을 0.1 내지 20 중량부로 흔합하는, 고흡수성 수지.  A super absorbent polymer, wherein the sodium hydroxide is mixed at 0.1 to 20 parts by weight based on 100 parts by weight of the fine powder.
PCT/KR2016/010375 2016-03-11 2016-09-13 Method for preparing highly absorbent resin, and highly absorbent resin WO2017155173A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16893687.0A EP3333198B1 (en) 2016-03-11 2016-09-13 Method for preparing highly absorbent resin
US15/765,092 US10920023B2 (en) 2016-03-11 2016-09-13 Manufacturing method of super absorbent polymer and super absorbent polymer
CN201680057846.6A CN108137725B (en) 2016-03-11 2016-09-13 Method for producing superabsorbent polymer and superabsorbent polymer
US17/126,816 US11492451B2 (en) 2016-03-11 2020-12-18 Manufacturing method of super absorbent polymer and super absorbent polymer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0029840 2016-03-11
KR20160029840 2016-03-11
KR10-2016-0101900 2016-08-10
KR1020160101900A KR101853401B1 (en) 2016-03-11 2016-08-10 Method for Preparing Super Absorbent Polymer, and Super Absorbent Polymer

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/765,092 A-371-Of-International US10920023B2 (en) 2016-03-11 2016-09-13 Manufacturing method of super absorbent polymer and super absorbent polymer
US17/126,816 Division US11492451B2 (en) 2016-03-11 2020-12-18 Manufacturing method of super absorbent polymer and super absorbent polymer

Publications (1)

Publication Number Publication Date
WO2017155173A1 true WO2017155173A1 (en) 2017-09-14

Family

ID=59790468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010375 WO2017155173A1 (en) 2016-03-11 2016-09-13 Method for preparing highly absorbent resin, and highly absorbent resin

Country Status (1)

Country Link
WO (1) WO2017155173A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112839993A (en) * 2019-09-18 2021-05-25 株式会社Lg化学 Method for preparing superabsorbent polymer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040015077A (en) * 2001-06-29 2004-02-18 다우 글로벌 테크놀로지스 인크. Water-absorbent carboxyl-containing polymers with low monomer content
JP2013034942A (en) * 2011-08-08 2013-02-21 Nippon Shokubai Co Ltd Method for producing granular water absorbent
KR20140063457A (en) * 2012-11-15 2014-05-27 주식회사 엘지화학 Preparation method for super absorbent polymer and super absorbent polymer prepared therefrom
KR20150061270A (en) * 2013-11-27 2015-06-04 주식회사 엘지화학 Super Absorbent Polymer Resin And Method for Preparing The Same
KR20150082123A (en) * 2014-01-06 2015-07-15 한화케미칼 주식회사 Method for preparing super absorbent polymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040015077A (en) * 2001-06-29 2004-02-18 다우 글로벌 테크놀로지스 인크. Water-absorbent carboxyl-containing polymers with low monomer content
JP2013034942A (en) * 2011-08-08 2013-02-21 Nippon Shokubai Co Ltd Method for producing granular water absorbent
KR20140063457A (en) * 2012-11-15 2014-05-27 주식회사 엘지화학 Preparation method for super absorbent polymer and super absorbent polymer prepared therefrom
KR20150061270A (en) * 2013-11-27 2015-06-04 주식회사 엘지화학 Super Absorbent Polymer Resin And Method for Preparing The Same
KR20150082123A (en) * 2014-01-06 2015-07-15 한화케미칼 주식회사 Method for preparing super absorbent polymer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3333198A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112839993A (en) * 2019-09-18 2021-05-25 株式会社Lg化学 Method for preparing superabsorbent polymer
CN112839993B (en) * 2019-09-18 2023-04-11 株式会社Lg化学 Method for preparing superabsorbent polymer

Similar Documents

Publication Publication Date Title
KR101855353B1 (en) Preparation method for super absorbent polymer and super absorbent polymer prepared therefrom
JP6700190B2 (en) Super absorbent polymer and method for producing the same
US11492451B2 (en) Manufacturing method of super absorbent polymer and super absorbent polymer
KR101918647B1 (en) Super absorbent polymer
JP6449902B2 (en) Method for producing superabsorbent resin
WO2014077612A1 (en) Method for preparing super absorbent resin, and super absorbent resin prepared by same
JP6473162B2 (en) Superabsorbent resin and method for producing the same
WO2017159903A1 (en) Method for preparing superabsorbent resin
JP6277282B2 (en) Method for producing superabsorbent resin
KR101960043B1 (en) Preparation method of super absorbent polymer
KR101960041B1 (en) a Method for Preparing of the Superabsorbent Polymer (SAP) Resin
KR101584719B1 (en) Preparation method for super absorbent polymer
JP6814885B2 (en) Manufacturing method of highly water-absorbent resin
JP6667439B2 (en) Method for producing superabsorbent resin
WO2018004161A1 (en) Method for preparing superabsorbent resin, and superabsorbent resin
WO2015047029A1 (en) Method for preparing super absorbent resin
KR20190115661A (en) Method for Preparing Super Absorbent Polymer
WO2014112722A1 (en) Method for preparing super absorbent polymer
KR20140036866A (en) Preparation method for super absorbent polymer
CN114174389B (en) Process for the preparation of superabsorbent polymers
JP7039108B2 (en) High water absorption resin manufacturing method and high water absorption resin
KR102518937B1 (en) Method for Preparing Super Absorbent Polymer
WO2017155173A1 (en) Method for preparing highly absorbent resin, and highly absorbent resin
KR102541494B1 (en) Preparation method of super absorbent polymer
WO2018135928A9 (en) Super absorbent polymer and preparation method therefor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2016893687

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15765092

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE