WO2017155012A1 - Solid-state battery positive electrode material, production method for solid-state battery positive electrode material, all-solid-state lithium-sulfur battery using solid-state battery positive electrode material, and production method for all-solid-state lithium-sulfur battery using solid-state battery positive electrode material - Google Patents

Solid-state battery positive electrode material, production method for solid-state battery positive electrode material, all-solid-state lithium-sulfur battery using solid-state battery positive electrode material, and production method for all-solid-state lithium-sulfur battery using solid-state battery positive electrode material Download PDF

Info

Publication number
WO2017155012A1
WO2017155012A1 PCT/JP2017/009359 JP2017009359W WO2017155012A1 WO 2017155012 A1 WO2017155012 A1 WO 2017155012A1 JP 2017009359 W JP2017009359 W JP 2017009359W WO 2017155012 A1 WO2017155012 A1 WO 2017155012A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium
sulfur
solid
electrode material
Prior art date
Application number
PCT/JP2017/009359
Other languages
French (fr)
Japanese (ja)
Inventor
日出夫 道畑
聖志 金村
Original Assignee
東京電力ホールディングス株式会社
公立大学法人首都大学東京
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017034653A external-priority patent/JP6385486B2/en
Application filed by 東京電力ホールディングス株式会社, 公立大学法人首都大学東京 filed Critical 東京電力ホールディングス株式会社
Priority to KR1020187026059A priority Critical patent/KR101939959B1/en
Priority to CN201780016376.3A priority patent/CN108780880B/en
Priority to US16/082,413 priority patent/US10686186B2/en
Publication of WO2017155012A1 publication Critical patent/WO2017155012A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode material for a solid battery and a manufacturing method thereof, and an all-solid lithium-sulfur battery using the positive electrode material for a solid battery and a manufacturing method thereof.
  • an electrolyte is generally used as an electrolyte, and the organic solvent constituting these electrolytes is flammable and there is a risk of ignition, so there is a problem in safety.
  • sulfur has a very high theoretical capacity density of 1675 mAh / g and is expected as a battery material having a high energy density
  • a lithium sulfur battery using sulfur as a positive electrode active material and lithium metal as a negative electrode Is under consideration.
  • reaction intermediates such as lithium polysulfide
  • sulfur molecules and lithium ions produced by the reaction of sulfur molecules and lithium ions with sulfur during charge and discharge Dissolves in the electrolyte solution and diffuses to cause self-discharge and deterioration of the negative electrode.
  • an ionic liquid as the electrolyte, the risk of fire can be avoided, but since it is impossible to prevent the sulfur molecules and polysulfide ions from dissolving, the battery performance may also deteriorate.
  • Patent Document 1 as a method for manufacturing a battery electrode, a method of forming an active material layer by heating a mixture containing an electrode active material and an ambient temperature molten salt and applying a reduced pressure paste to a current collector.
  • Room temperature molten salt is composed of cation components such as imidazolium cations such as ethylmethylimidazolium tetrafluoroborate, ammonium cations such as diethylmethylpropylammonium trifluoromethanesulfonylimide, pyridinium cations such as ethylpyridinium tetrafluoroborate, and boron tetrafluoride.
  • a powder of lithium cobalt oxide, lithium nickel oxide, lithium nickel cobalt oxide, lithium manganese oxide or the like is mixed as a positive electrode active material in a liquid electrolyte obtained by adding a supporting salt (lithium salt) to this room temperature molten salt. ing.
  • the object of the present invention is to reduce the interfacial resistance between the solid electrolyte and the electrode, thereby solving the problems derived from the solid electrolyte, and to obtain a lithium-sulfur solid battery having both safety and battery performance.
  • a positive electrode material, an all-solid-state lithium-sulfur battery using the positive electrode material, and a method for producing the same are provided.
  • the present inventors have conducted intensive studies. As a result, by including an ionic liquid or a solvated ionic liquid in the positive electrode material for a lithium-sulfur solid battery, it becomes possible to reduce the interface resistance between the solid electrolyte and the electrode, and the charge / discharge capacity of the lithium-sulfur solid battery I got new knowledge that improved.
  • a positive electrode slurry containing sulfur, a carbon material, a binder (binder) and an ionic liquid or a solvated ionic liquid is applied to a predetermined position of the solid electrolyte molded body and dried to remove the solvent to obtain a positive electrode material.
  • adhered by forming was acquired.
  • the present invention is as follows.
  • a positive electrode material for a lithium-sulfur solid battery comprising sulfur, a conductive material, a binder, and an ionic liquid or a solvated ionic liquid.
  • the lithium salt is at least one selected from lithium-bis (fluorosulfonyl) imide and lithium-bis (trifluoromethanesulfonyl) imide, and the glyme is at least one selected from triglyme and tetraglyme.
  • the binder is polyvinylidene fluoride.
  • the ratio of each component in the positive electrode material is 45-60 mass%, 20-35 mass%, 0.1-10 mass% for sulfur, conductive material, binder and ionic liquid or solvated ionic liquid, respectively.
  • a method for producing a positive electrode material for a lithium-sulfur solid battery containing sulfur, a conductive material, a binder and an ionic liquid or a solvated ionic liquid A step of applying a masking tape on one side of the oxide-based solid electrolyte molded body, leaving a portion for forming a positive electrode; Applying a positive electrode slurry containing sulfur, a conductive material, a binder and an ionic liquid or a solvated ionic liquid to a portion of the oxide-based solid electrolyte molded body forming the positive electrode, and uniformly spreading the step; After the positive electrode slurry is vacuum dried and solidified, the masking tape is removed and a positive electrode is formed on the oxide-based solid electrolyte formed body; and The manufacturing method of the positive electrode material for lithium sulfur solid batteries characterized by including.
  • the solvated ionic liquid comprising at least one selected from lithium-bis (fluorosulfonyl) imide and lithium-bis (trifluoromethanesulfonyl) imide, and at least one selected from triglyme and tetraglyme.
  • a positive electrode made of a positive electrode material for a lithium-sulfur solid battery produced by the method according to any one of (8) to (15), a negative electrode containing lithium metal, and interposed between the positive electrode and the negative electrode An all-solid-state lithium-sulfur battery having an oxide-based solid electrolyte layer.
  • a power storage system in which power is supplied from the all-solid-state lithium-sulfur battery according to any one of (16) to (20) to a power network, or power is supplied to the all-solid-state lithium-sulfur battery from the power network.
  • (23) A step of bonding a negative electrode metal to one surface of the oxide-based solid electrolyte molded body and heat-treating the negative electrode metal; Applying a masking tape to the surface opposite to the surface on which the negative electrode of the oxide-based solid electrolyte formed body is formed, leaving a portion for forming the positive electrode; Applying a positive electrode slurry containing sulfur, a conductive material, a binder and an ionic liquid or a solvated ionic liquid to a portion of the oxide-based solid electrolyte molded body forming the positive electrode, and uniformly spreading the step; After the positive electrode slurry is vacuum dried and solidified, the masking tape is removed and a positive electrode is formed on the oxide-based solid electrolyte formed body;
  • the positive electrode material for a lithium-sulfur solid battery of the present invention contains a liquid but non-volatile, non-combustible ionic liquid or solvated ionic liquid. Further, according to the method for producing a positive electrode material for a lithium-sulfur solid battery of the present invention, since the positive electrode material is formed in close contact with the surface of the solid electrolyte, a liquid ionic liquid or solvent is present at the interface between the solid electrolyte and the positive electrode. As a result of the presence of the ionic liquid, the contact area between the solid electrolyte and the positive electrode can be increased.
  • the ionic liquid or solvated ionic liquid has lithium ion conductivity, the interfacial resistance between the solid electrolyte and the positive electrode is reduced, and it is possible to obtain a lithium-sulfur solid battery with little performance degradation even after repeated charge / discharge cycles It becomes.
  • the electrolyte layer becomes a solid electrolyte, it is possible to prevent a decrease in battery performance due to the dissolution and diffusion of sulfur and polysulfides in the electrolytic solution, and the operating temperature is 110 ° C. or less, so there is also a risk of fire It is possible to provide a safe and all-solid lithium-sulfur battery.
  • 3 is a graph showing the results of a charge / discharge cycle test (1 to 3 cycles) of a coin-type battery using a positive electrode material of the present invention containing an ionic liquid or a solvated ionic liquid.
  • 6 is a graph showing the results of a charge / discharge cycle test (4 to 6 cycles) of a coin-type battery using the positive electrode material of the present invention containing an ionic liquid or a solvated ionic liquid. It is a graph which shows the result of the charging / discharging cycle test of the coin-type battery using the positive electrode material of the comparative example which does not contain an ionic liquid or a solvated ionic liquid.
  • the positive electrode material for a lithium-sulfur solid battery of the present invention must contain an ionic liquid or a solvated ionic liquid.
  • a binder such as sulfur, a conductive material, or polyvinylidene fluoride, and an ionic liquid or solvate. Consists of ionic liquids.
  • the ionic liquid or solvated ionic liquid used in the present invention is liquid when it is about 150 ° C. or lower, and is a non-volatile, non-flammable liquid having ionic conductivity.
  • ionic liquids examples include 1-ethyl-3-methylimidazolium-bis (trifluorosulfonyl) imide, 1-ethyl-3-methylimidazolium tetrafluoroborate, trimethylpropylammonium-bistrifluoromethylsulfonylimide, ethylpyridinium Examples thereof include tetrafluoroborate.
  • An ionic liquid may be used independently and may be used in combination of 2 or more type.
  • lithium tetrafluoroborate LiBF 4
  • lithium perchlorate LiClO 4
  • lithium trifluoromethylsulfonate Li (CF 3 SO 3 )
  • lithium-bis ( Trifluoromethanesulfonyl) imide LiN (CF 3 SO 2 ) 2
  • lithium-bis (pentafluoroethanesulfonyl) imide LiN (C 2 F 5 SO 2 ) 2
  • lithium hexafluorophosphate LiPF 6
  • a supporting salt may be used independently and may be used in combination of 2 or more type.
  • the mixing ratio (molar ratio) between the ionic liquid and the supporting salt is preferably 1: 0.1 to 2, and more preferably 1: 0.8 to 1.2. Particularly preferred is 1: 1.
  • the solvated ionic liquid is a mixture of lithium salt and glyme. Different combinations of lithium salt and glyme produce products having different thermal decomposition temperatures. It is preferable to select a solvated ionic liquid that does not thermally decompose at about 100 ° C.
  • lithium salt examples include lithium-bis (fluorosulfonyl) imide (LiN (SO 2 F) 2 ), lithium-bis (trifluoromethanesulfonyl) imide (LiN (CF 3 SO 2 ) 2 ), lithium-bis (penta Fluoroethanesulfonyl) imide LiN (C 2 F 5 SO 2 ) 2 ) and the like.
  • a lithium salt may be used independently and may be used in combination of 2 or more type.
  • both ends may be the same alkyl group or different alkyl groups, for example, triglyme such as triethylene glycol dimethyl ether, triethylene glycol diethyl ether, trimethylene glycol methyl ethyl ether, tetraethylene glycol dimethyl ether, Examples include tetraglyme such as tetraethylene glycol diethyl ether and tetraethylene glycol methyl ethyl ether.
  • the alkyl group may be substituted with fluorine.
  • lithium salts lithium-bis (fluorosulfonyl) imide and lithium-bis (trifluoromethanesulfonyl) imide are preferable.
  • a glyme may be used independently and may be used in combination of 2 or more type.
  • solvated ionic liquids are preferred because they are excellent in lithium ion conductivity and are difficult to elute sulfur and polysulfides.
  • LiFSI lithium ion conductivity
  • triethylene glycol dimethyl ether or tetraethylene glycol dimethyl ether are preferred.
  • the positive electrode material of the present invention uses sulfur as an active material.
  • sulfur itself has a problem of poor electrical conductivity, it is necessary to use a conductive material in combination.
  • the conductive material include carbon blacks such as acetylene black, ketjen black, channel black, and furnace black, graphites such as natural graphite such as flake graphite and artificial graphite, conductive fibers such as carbon fiber and metal fiber, Metal powders such as copper and silver, organic conductive materials such as polyphenylene compounds, carbon nanotubes, and the like can be used.
  • carbon blacks are preferable because they are porous and exhibit an effect as a binder by incorporating sulfur, an ionic liquid or a solvated ionic liquid into the pores.
  • Conductive carbon black having a hollow shell structure such as is preferable.
  • the conductive carbon black preferably has a BET specific surface area by a nitrogen gas adsorption method of 500 m 2 / g or more, more preferably 750 m 2 / g or more, and still more preferably 1000 m 2 / g or more.
  • binder in combination with the positive electrode material of the present invention.
  • the binder include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, vinylidene fluoride-pentafluoropropylene copolymer, and vinylidene fluoride.
  • -Perfluoromethyl vinyl ether-tetrafluoroethylene copolymer vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer (ETFE), propylene-tetrafluoroethylene copolymer, polyvinyl Pyrrolidone, polyethylene oxide, polyvinyl alcohol, polyacrylonitrile, polymethyl methacrylate, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), etc. But are lower, polyvinylidene fluoride is preferably used. These binders may be used alone or in combination of two or more.
  • the method for adding these binders is not particularly limited.
  • it can be used as a powder, or can be used as a solution dissolved in an organic solvent or an emulsion using water as a solvent.
  • organic solvent N-methyl-2-pyrrolidone is preferable.
  • the content of sulfur in the positive electrode material of the present invention composed of sulfur, a conductive material, a binder and an ionic liquid or a solvated ionic liquid is preferably 45 to 60% by mass, more preferably 50 to 55% by mass. is there. If sulfur is 45 mass% or more, it becomes possible to ensure a high theoretical energy density as a battery. On the other hand, if the sulfur is 60% by mass or less, it is possible to sufficiently ensure the content of a conductive material, an ionic liquid, or a solvated ionic liquid, so that necessary conductivity can be imparted to the positive electrode material, The interface resistance between the positive electrode material and the solid electrolyte can be reduced.
  • the content of the conductive material is preferably 20 to 35% by mass, more preferably 20 to 30% by mass. When the conductive material is 20% by mass or more, sufficient conductivity can be imparted to the positive electrode. On the other hand, if the conductive material is 35% by mass or less, the content of sulfur, ionic liquid or solvated ionic liquid can be sufficiently ensured, so that the energy density of the battery can be improved, and the positive electrode material and The interface resistance between the solid electrolytes can be reduced.
  • the content of the binder is preferably 0.1 to 10% by mass, more preferably 5 to 10% by mass, and still more preferably 7 to 9% by mass.
  • the binder is 0.1% by mass or more, the retention of sulfur or ionic liquid or solvated ionic liquid in the pores of the conductive material such as ketjen black and the fixing of the conductive material to the solid electrolyte are more effectively enhanced. be able to.
  • it is 10 mass% or less, the fall of the electroconductivity of the positive electrode material derived from the binder itself being an insulator can be avoided.
  • the content of the ionic liquid or solvated ionic liquid is preferably 10 to 20% by mass, more preferably 12 to 18% by mass.
  • the ionic liquid or solvated ionic liquid is 10% by mass or more, the interface resistance between the positive electrode material and the solid electrolyte can be effectively reduced.
  • it is 20% by mass or less, it is possible to avoid the uneconomical use of waste even though the effect of reducing the interface resistance is no longer improved.
  • the method for producing a positive electrode material of the present invention aims to reduce the interfacial resistance between the positive electrode material and the solid electrolyte by forming the positive electrode material so as to be as close as possible to the surface of the solid electrolyte.
  • lithium composite oxides and lithium-containing sulfides can be used in lithium ion batteries, but lithium-containing sulfides may react with moisture and oxygen in the atmosphere to generate toxic gases. Therefore, an oxide-based solid electrolyte is preferable, and it is more preferable to use a lithium composite oxide.
  • lithium composite oxide examples include lithium-lanthanum-zirconium composite oxide, lithium-lanthanum-titanium composite oxide, lithium-niobium composite oxide, lithium-niobium-zirconium composite oxide, and lithium-lanthanum-zirconium-tantalum.
  • the composite oxide examples include lithium-lanthanum-zirconium composite oxide (hereinafter referred to as “LLZ”).
  • LLZ lithium-lanthanum-zirconium composite oxide
  • a well-known method can be used for the manufacturing method of LLZ.
  • LLZ is a composite oxide composed of lithium, lanthanum and zirconium whose basic composition is Li 7 La 3 Zr 2 O 12 , and, if necessary, one or more selected from aluminum, tantalum, niobium and bismuth. It may contain an element.
  • the positive electrode material of the present invention is exemplified by the case where a coin-type battery is assembled using LLZ as the solid electrolyte. The details of the all-solid-state lithium-sulfur battery using the same, and the production method thereof will be described.
  • an LLZ molded body having a diameter of about 12 mm and a thickness of about 0.5 mm can be used as the oxide-based solid electrolyte molded body.
  • the LLZ molded body can be produced by a known method, and for example, a method disclosed in JP-A-2015-146299 can be used.
  • a stoichiometric amount of a lanthanum compound powder and a zirconium compound powder are mixed while being pulverized, formed into a predetermined shape with a press, and then fired in an electric furnace, preferably at 1300 to 1700 ° C.
  • a zirconium oxide compact is obtained.
  • This molded body preferably has a porosity of 75% or more, more preferably 80 to 90%. When the porosity is 75% or more, the lithium compound is easily impregnated. On the other hand, if the porosity is 90% or less, the strength of the molded product can be maintained.
  • the porosity is a value calculated from the total pore volume (cm 3 / g) according to the mercury intrusion method (based on JIS R 1655) and the apparent density (g / cm 3 ) measured by the Archimedes method.
  • the porosity can be adjusted by the firing temperature or the like.
  • the lanthanum compound is not particularly limited.
  • lanthanum hydroxide, lanthanum oxide, lanthanum chloride, lanthanum nitrate, or the like can be used.
  • Lanthanum hydroxide that generates less harmful gas during firing is preferable.
  • the zirconium compound is not particularly limited.
  • zirconium oxide, zirconium chloride, zirconium nitrate, zirconium acetate or the like can be used.
  • Zirconium oxide, which generates little toxic gas during firing, is preferred.
  • an aqueous solution in which a stoichiometric amount of a lithium compound is dissolved in the lanthanum-zirconium oxide molded body is added, and the pores of the molded body are impregnated with the lithium compound, and then, preferably, using a microwave firing furnace or the like. Is fired at 200 to 500 ° C., more preferably 300 to 450 ° C. There is an advantage that a dense LLZ sintered body can be obtained by using a microwave as a heating source.
  • the microwave is irradiated with a microwave having a frequency of 1 to 300 GHz, usually 2.45 GHz.
  • the microwave output is preferably adjusted in the range of 1.5 to 9.5 kW, and after reaching a predetermined firing temperature, the temperature is preferably maintained by controlling the microwave irradiation by PID control or the like.
  • the lithium compound impregnated in the molded body is preferably used so that the molar ratio of lithium, lanthanum, and zirconium is 7: 3: 2 according to the basic composition of LLZ.
  • the lithium compound is not particularly limited.
  • lithium hydroxide, lithium oxide, lithium chloride, lithium nitrate, lithium sulfate, lithium acetate, or the like can be used.
  • lithium hydroxide (LiOH) or lithium oxide (Li 2 O) that dissolves in water to become lithium hydroxide is preferable because of its high solubility in water and low generation of toxic gas during firing.
  • the method for impregnating the lanthanum-zirconium oxide compact with lithium is not particularly limited as long as it is a method capable of impregnating a stoichiometric amount of lithium.
  • the following methods can be mentioned.
  • (1) A lanthanum-zirconium oxide molded body is impregnated with a part of a solution obtained by dissolving a required amount of a lithium compound in a solvent, and then the molded body is dried to remove the solvent. Again, a part of the solution is impregnated into the molded body, and then dried to remove the solvent. Then, impregnation and drying are repeated until the prepared solution disappears.
  • a lanthanum-zirconium oxide molded body is impregnated with a slurry in which a required amount of lithium hydroxide or the like is dispersed in a small amount of water.
  • the lithium hydroxide it is preferable to use fine particles that can easily enter the pores (voids) of the molded body.
  • a highly soluble Li salt for example, LiCl
  • the lanthanum-zirconium oxide compact is impregnated with the aqueous solution.
  • Powdered LiOH is added to the lanthanum-zirconium oxide compact and impregnated with LiOH by heat melting.
  • the melting temperature is preferably equal to or higher than the melting point of LiOH (462 ° C.).
  • the shape and size of the lanthanum-zirconium oxide molded body and LLZ are not particularly limited. Depending on the structure of the battery, for example, it may be formed into a plate shape, a sheet shape, a cylindrical shape, or the like.
  • a thin gold film is formed by sputtering on the surface on the negative electrode side of the molded body, that is, the surface opposite to the surface on which the positive electrode material is formed. It is preferable to form it in advance. Thereafter, when assembling the battery cell, the gold thin film and the metal lithium as the negative electrode are bonded together, and preferably heated at 60 to 170 ° C., more preferably 100 to 140 ° C., so that the metal lithium and gold are alloyed, and the negative electrode And the interface resistance between the solid electrolyte can be reduced.
  • metal lithium such as a lithium foil is attached to the negative electrode side surface of the oxide-based solid electrolyte molded body without gold sputtering, and then the metal lithium is heated and pressed if necessary. .
  • the contact property (adhesion) between the negative electrode and the solid electrolyte is improved, and the interface resistance can be reduced.
  • it is preferable to perform heat treatment by attaching a lithium foil to the surface of the oxide-based solid electrolyte molded body on the side opposite to the positive electrode.
  • the positive electrode can be formed on the surface opposite to the surface on which the lithium foil of the oxide solid electrolyte is attached.
  • the heat treatment temperature is not particularly limited as long as the lithium foil is softened. The temperature is preferably 60 to 170 ° C, more preferably 100 to 140 ° C.
  • a polyimide tape from which the positive electrode forming part has been cut out is attached to the opposite surface as a masking tape.
  • the masking tape should just be a polymer which is insoluble in a slurry solvent, and does not melt
  • the shape and size of the positive electrode forming part of the masking tape is such that the LLZ surface of at least about 2 mm in width remains around the positive electrode so that the formed positive electrode does not protrude around the solid electrolyte and short circuit occurs. It is good to make it.
  • a polyimide tape having a circular positive electrode forming portion having a diameter of about 8 mm may be used as a masking tape.
  • an appropriate amount of the positive electrode slurry is placed on the positive electrode forming portion of the polyimide tape, and is spread using a spatula or glass plate so that it is flattened, and then the solvent in the positive electrode slurry is removed by vacuum drying. Remove. After removing the solvent, the polyimide tape is peeled off and the positive electrode material in a state of being in close contact with the LLZ compact can be produced.
  • the weight or thickness of the positive electrode material to be formed can be adjusted by changing the thickness of the polyimide tape to be used.
  • the conditions for vacuum drying are not particularly limited, but if the solvent in the positive electrode slurry is rapidly evaporated, the close adhesion of the positive electrode material to the surface of the LLZ compact may be hindered.
  • the temperature is preferably about 70 to 90 ° C.
  • the time is about 10 to 15 hours.
  • the positive electrode slurry can be prepared by a known method.
  • a predetermined amount of sulfur and a predetermined amount of conductive material such as conductive carbon black are mixed while being pulverized, and then a predetermined amount of binder powder such as polyvinylidene fluoride.
  • a solution and a predetermined amount of ionic liquid or solvated ionic liquid can be added, and the mixture can be slurried by gradually adding the solvent.
  • a known solvent for lithium ion batteries can be used.
  • amide solvents such as N-methyl-2-pyrrolidone and dimethylacetamide
  • amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine
  • ketone solvents such as methyl ethyl ketone
  • ester solvents such as acetate ester
  • tetrahydrofuran And ether solvents such as toluene, hydrocarbon solvents such as toluene, xylene, n-hexane and cyclohexane.
  • the amount of these solvents used is not particularly limited. If the positive electrode slurry has such a fluidity that it can be transferred to the positive electrode forming portion of the LLZ compact using a glass rod or the like, and an amount showing a viscosity that does not flow and spread after being transferred to the positive electrode forming portion is used. good.
  • a lithium foil as a negative electrode is placed on the lower lid of the cell container, and the LLZ molded body is aligned with the surface opposite to the positive electrode forming part with respect to the lithium foil. Is placed.
  • a battery cell is assembled by placing a metal foil such as a stainless steel foil or an aluminum foil as a positive electrode current collector on the positive electrode of the LLZ molded body, and a battery container is completed by covering the upper lid of the cell container.
  • the solid electrolyte layer is interposed between the positive electrode and the negative electrode.
  • the negative electrode is not particularly limited as long as it contains a material that absorbs and releases lithium ions as a negative electrode active material.
  • a lithium metal such as a lithium foil, a lithium alloy that is an alloy of lithium and aluminum, silicon, tin, magnesium, or the like, a metal oxide that can occlude and release lithium ions, a metal sulfide, a carbon material, and the like can be given.
  • lithium metal is preferable because it has a high theoretical capacity density, is easy to handle, and is easy to assemble a battery cell.
  • the current collector for example, a metal such as copper, aluminum, nickel, and stainless steel can be used.
  • stainless steel foil or aluminum foil is preferable because it is inexpensive.
  • the all-solid-state lithium-sulfur battery may have a separator in addition to the positive electrode material, the positive electrode current collector, the solid electrolyte, the negative electrode material, and the negative electrode current collector described above.
  • the shape of the all-solid-state lithium-sulfur battery is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, and a square type.
  • the operating temperature is 110 ° C. or lower. is there. Since the operating temperature is 110 ° C. or lower, the ionic liquid and the solvated ionic liquid do not evaporate. Ionic liquids and solvated ionic liquids are nonflammable electrolytes and are not flammable. As described above, since the operating temperature is low, it is easy to keep the battery warm when not in use, and the charge / discharge efficiency as the final battery system is improved.
  • the conventional sodium-sulfur battery has a high operating temperature, and the higher the operating temperature, the more heat energy is required to keep the battery warm, and the total efficiency decreases. There is very little danger and it is excellent in safety, and durability, battery safety and cycle safety are improved.
  • the use of the all solid lithium lithium battery of the present invention is not particularly limited. For example, it can be suitably used for hybrid vehicles, electric vehicles, power storage, and the like.
  • a power system is constructed in which power is supplied from the all-solid-state lithium-sulfur battery to the power grid.
  • a power system that supplies power to the all-solid-state lithium-sulfur battery from a power network that uses natural energy power generation such as solar power generation and wind power generation as a power source.
  • Example 1 Using one of the plate-like LLZ compacts produced in Production Example 1, gold was sputtered on the negative electrode side, and then the positive electrode material was formed on the opposite side.
  • the positive electrode material was formed as follows.
  • Example 2 The following coin-type battery was assembled using the positive electrode material prepared in Example 1. Using a commercially available coin-type battery cell container, fit a ring-shaped gasket on the lower lid, place a washer (material is stainless steel) on the lower lid, and a spacer (material stainless steel, outer diameter 15 mm, thickness) as a negative electrode current collector And a lithium foil (diameter 8 mm, thickness 600 ⁇ m) as a negative electrode was placed on the spacer, and then a LLZ molded body was placed so that the sputtered gold layer was superimposed on the lithium foil. Then, it heated at 120 degreeC and the lithium foil was stuck to the LLZ molded object. A stainless steel foil (diameter 8 mm, thickness 20 ⁇ m) was placed on the positive electrode material of the LLZ compact as a positive electrode current collector, and the upper lid was closed to assemble a battery cell.
  • a washer material is stainless steel
  • spacer material stainless steel, outer diameter 15 mm, thickness
  • the battery cell was stored at 100 ° C. for 12 hours, and then a charge / discharge test was performed.
  • the conditions of the charge / discharge test were as follows: the voltage was 1.0 V to 3.5 V, 10 ⁇ A (1/30 C) up to 3 cycles, and 2 ⁇ A (1/150 c) after 4 cycles of charge and discharge up to 6 cycles. .
  • the results up to 3 cycles are shown in FIG. 1, and the results of 4 to 6 cycles are shown in FIG.
  • Comparative Example 2 Using the positive electrode material of Comparative Example 1, a coin-type battery was assembled in the same manner as in Example 2, and a charge / discharge test was performed. The results are shown in FIG.
  • the coin type battery using the positive electrode material of the comparative example without adding [Li (G4)] [FSI] shows an initial discharge capacity of about 250 mAh / g, but the voltage at the initial discharge is not constant. It can be said that a stable discharge state is not shown because a flat discharge curve is not shown.
  • the coin-type battery using the positive electrode material of the present invention has a charge / discharge capacity of about 400 mAh / g, and does not add [Li (G4)] [FSI] to the positive electrode material. It can be seen that it has a larger capacity than the coin type battery.
  • the coin-type battery using the positive electrode material of the present invention exhibits a charge / discharge capacity of about 400 mAh / g up to the sixth cycle, and in any charge / discharge cycle, the voltage The charge / discharge plateau area
  • the present invention it is possible to provide a lithium-sulfur solid state battery excellent in safety and cycle characteristics and having a high energy density because a decrease in battery performance due to repeated charge and discharge is suppressed.

Abstract

[Problem] To provide: a positive electrode material for producing a lithium-sulfur solid-state battery that does not experience degradation of battery performance from charging/discharging cycling, does not present the fire risk of liquid electrolytes, and thereby makes battery performance compatible with safety; an all-solid-state lithium-sulfur battery that uses the positive electrode material; and a production method. [Solution] A lithium-sulfur solid-state battery positive electrode material that contains: sulfur; a conductive material; a binder; and an ionic liquid or a solvate ionic liquid. An all-solid-state lithium-sulfur battery that includes: a positive electrode that comprises the positive electrode material; a negative electrode; and an oxide solid electrolyte. The positive electrode material is manufactured by means of a method wherein a slurry obtained by adding an organic solvent to the sulfur, the conductive material, the binder, and the ionic liquid or solvate ionic liquid is applied to one surface of an oxide solid electrolyte formation body and dried to remove the organic solvent. Said method makes it possible to manufacture a positive electrode material that is adhered to a solid electrolyte and to reduce interface resistance between a positive electrode and a solid electrolyte and improve battery function.

Description

固体電池用正極材およびその製造方法、ならびに、固体電池用正極材を用いた全固体リチウム硫黄電池およびその製造方法POSITIVE MATERIAL FOR SOLID BATTERY AND METHOD FOR MANUFACTURING THE SAME
 本発明は、固体電池用正極材およびその製造方法、ならびに、固体電池用正極材を用いた全固体リチウム硫黄電池およびその製造方法に関する。 The present invention relates to a positive electrode material for a solid battery and a manufacturing method thereof, and an all-solid lithium-sulfur battery using the positive electrode material for a solid battery and a manufacturing method thereof.
 近年、AV機器、パソコンなどの電子機器や通信機器などのポータブル化、コードレス化が急速に進展している。これらの電子機器や通信機器の電源として、エネルギー密度が高く負荷特性の優れた二次電池が要望されており、高電圧、高エネルギー密度でサイクル特性にも優れるリチウム二次電池の利用が拡大している。 In recent years, portable and cordless electronic devices such as AV devices and personal computers and communication devices have been rapidly developed. Secondary batteries with high energy density and excellent load characteristics are demanded as power sources for these electronic and communication devices, and the use of lithium secondary batteries with high voltage, high energy density and excellent cycle characteristics has expanded. ing.
 しかしながら、従来のリチウム二次電池は、電解質として一般に電解液が用いられており、これらの電解液を構成する有機溶媒は可燃性で発火の危険性があるため、安全性に課題がある。 However, in the conventional lithium secondary battery, an electrolyte is generally used as an electrolyte, and the organic solvent constituting these electrolytes is flammable and there is a risk of ignition, so there is a problem in safety.
 電解質として固体電解質を用いる、いわゆる固体電池は、可燃性の電解液を用いないため、安全性が高く、また理論的に高いエネルギー密度を達成できる可能性もある。多くの大学や企業で研究が進められている。 Since a so-called solid battery using a solid electrolyte as an electrolyte does not use a flammable electrolyte, it is highly safe and may have a theoretically high energy density. Research is being carried out at many universities and companies.
 しかしながら、固体電池は、電極のみならず電解質も固体となるため、電極を構成する粒子と電解質を構成する粒子の界面での接触部分が小さくなり、電解質として電解液を用いる場合に比べてリチウムイオンや電子の移動が困難となる。そして、界面抵抗が大きくなる結果、エネルギー密度などの電池特性は低い傾向にある。 However, in a solid battery, not only the electrode but also the electrolyte is solid. Therefore, the contact portion at the interface between the particles constituting the electrode and the particles constituting the electrolyte is reduced, and lithium ions are compared with the case where an electrolyte is used as the electrolyte. And movement of electrons becomes difficult. As a result of the increase in interface resistance, battery characteristics such as energy density tend to be low.
 固体電解質と電極の界面抵抗を抑制する方法として、電解質粒子と電極粒子の混合物からなる界面層を電解質と電極の間に挟む方法、あるいは、電解質粒子や電極粒子の表面を導電性被膜でコートする方法などが検討されているが、界面抵抗の大幅な低減には至っていない。 As a method of suppressing the interface resistance between the solid electrolyte and the electrode, a method in which an interface layer composed of a mixture of the electrolyte particles and the electrode particles is sandwiched between the electrolyte and the electrodes, or the surfaces of the electrolyte particles and the electrode particles are coated with a conductive film. Although methods have been studied, interface resistance has not been significantly reduced.
 一方、硫黄は1675mAh/gと極めて高い理論容量密度を有しており、高エネルギー密度の電池材料として期待されることから、硫黄を正極活物質として用い、リチウム金属を負極として用いたリチウム硫黄電池の検討が進められている。 On the other hand, since sulfur has a very high theoretical capacity density of 1675 mAh / g and is expected as a battery material having a high energy density, a lithium sulfur battery using sulfur as a positive electrode active material and lithium metal as a negative electrode. Is under consideration.
 ところが、リチウム硫黄電池の場合も、電解質として、固体電解質を用いた場合には、上記したように、電解質と電極の界面で生じる界面抵抗のために電池のエネルギー密度が期待されるほど高くならないという問題点がある。 However, even in the case of a lithium-sulfur battery, when a solid electrolyte is used as the electrolyte, as described above, the energy density of the battery is not so high as expected due to the interface resistance generated at the interface between the electrolyte and the electrode. There is a problem.
 また、有機溶媒を含有する電解質を用いた場合には、火災の危険性に加えて、充放電の際に硫黄分子やリチウムイオンと硫黄との反応により生成した反応中間体(多硫化リチウムなど)が電解質溶液中に溶け出し拡散することで、自己放電の発生や負極の劣化を惹き起こすという問題点がある。イオン液体を電解質として用いることで、火災の危険性は避けられるが、硫黄分子や多硫化物イオンが溶け出すことは防げないため、やはり電池性能が低下する場合がある。 In addition, when an electrolyte containing an organic solvent is used, in addition to the risk of fire, reaction intermediates (such as lithium polysulfide) produced by the reaction of sulfur molecules and lithium ions with sulfur during charge and discharge Dissolves in the electrolyte solution and diffuses to cause self-discharge and deterioration of the negative electrode. By using an ionic liquid as the electrolyte, the risk of fire can be avoided, but since it is impossible to prevent the sulfur molecules and polysulfide ions from dissolving, the battery performance may also deteriorate.
 特許文献1には、電池用電極の製造方法として、電極活物質と常温溶融塩を含む混合物を加熱し減圧処理を施したペーストを集電体に付着させることにより、活物質層を形成する方法が提案されている。常温溶融塩は、エチルメチルイミダゾリウムテトラフルオロボレート等のイミダゾリウムカチオン、ジエチルメチルプロピルアンモニウムトリフルオロメタンスルホニルイミドなどのアンモニウムカチオン、エチルピリジニウムテトラフルオロボレートなどのピリジニウムカチオンなどのカチオン成分と、4フッ化ホウ素アニオン(BF )、6フッ化リンアニオン(PF )、トリフルオロスルホニルアニオン((CFSO)、ビス(トリフルオロスルホニル)イミドアニオン((CSO)などのアニオン成分とを組合せたものである。この常温溶融塩に、支持塩(リチウム塩)を添加した液状電解質に、正極活物質として、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムニッケルコバルト酸化物、リチウムマンガン酸化物などの粉末を混合している。 In Patent Document 1, as a method for manufacturing a battery electrode, a method of forming an active material layer by heating a mixture containing an electrode active material and an ambient temperature molten salt and applying a reduced pressure paste to a current collector. Has been proposed. Room temperature molten salt is composed of cation components such as imidazolium cations such as ethylmethylimidazolium tetrafluoroborate, ammonium cations such as diethylmethylpropylammonium trifluoromethanesulfonylimide, pyridinium cations such as ethylpyridinium tetrafluoroborate, and boron tetrafluoride. Anion (BF 4 ), phosphorus hexafluoride anion (PF 6 ), trifluorosulfonyl anion ((CF 3 SO 2 ) 2 N ), bis (trifluorosulfonyl) imide anion ((C 2 F 5 SO 2 ) A combination with an anionic component such as 2 N ). A powder of lithium cobalt oxide, lithium nickel oxide, lithium nickel cobalt oxide, lithium manganese oxide or the like is mixed as a positive electrode active material in a liquid electrolyte obtained by adding a supporting salt (lithium salt) to this room temperature molten salt. ing.
 しかしながら、特許文献1に記載されたリチウムイオン二次電池では、セパレータを挟んで、正極活物質層と負極活物質層とが対向するように積層配置したものに、常温溶融塩電解質を含浸させてコイン型リチウムイオン二次電池を作製している。従って、電解質として固体電解質を用いる全固体型のリチウム二次電池ではない。 However, in the lithium ion secondary battery described in Patent Document 1, a room-temperature molten salt electrolyte is impregnated into a layered structure in which a positive electrode active material layer and a negative electrode active material layer face each other with a separator interposed therebetween. A coin-type lithium ion secondary battery is manufactured. Therefore, it is not an all-solid-type lithium secondary battery using a solid electrolyte as an electrolyte.
特開2004-022294号公報JP 2004-022294 A
 本発明の目的は、固体電解質と電極間の界面抵抗を低減することで、固体電解質に由来する問題点を解決すること、そして、安全性と電池性能が両立するリチウム硫黄固体電池を得るための正極材、および前記正極材を用いた全固体リチウム硫黄電池、ならびにこれらの製造方法を提供することである。 The object of the present invention is to reduce the interfacial resistance between the solid electrolyte and the electrode, thereby solving the problems derived from the solid electrolyte, and to obtain a lithium-sulfur solid battery having both safety and battery performance. A positive electrode material, an all-solid-state lithium-sulfur battery using the positive electrode material, and a method for producing the same are provided.
 上記課題を解決するため、本発明者等は鋭意検討した。その結果、リチウム硫黄固体電池用正極材中に、イオン液体もしくは溶媒和イオン液体を含有させることにより、固体電解質と電極間の界面抵抗を低減させることが可能となり、リチウム硫黄固体電池の充放電容量が向上するとの新たな知見を得た。
 また、硫黄、炭素材、バインダー(結着剤)およびイオン液体もしくは溶媒和イオン液体を含有する正極スラリーを、固体電解質成形体の所定の位置に塗布、乾燥して溶媒を除去して正極材を形成することにより、固体電解質と正極材を密着させることができるとの新たな知見を得た。
In order to solve the above problems, the present inventors have conducted intensive studies. As a result, by including an ionic liquid or a solvated ionic liquid in the positive electrode material for a lithium-sulfur solid battery, it becomes possible to reduce the interface resistance between the solid electrolyte and the electrode, and the charge / discharge capacity of the lithium-sulfur solid battery I got new knowledge that improved.
In addition, a positive electrode slurry containing sulfur, a carbon material, a binder (binder) and an ionic liquid or a solvated ionic liquid is applied to a predetermined position of the solid electrolyte molded body and dried to remove the solvent to obtain a positive electrode material. The new knowledge that a solid electrolyte and a positive electrode material can be closely_contact | adhered by forming was acquired.
 すなわち、本発明は以下のとおりである。 That is, the present invention is as follows.
(1)硫黄、導電材、バインダーおよびイオン液体もしくは溶媒和イオン液体を含有することを特徴とするリチウム硫黄固体電池用正極材。
(2)前記イオン液体がリチウム塩を含有する前記(1)に記載のリチウム硫黄固体電池用正極材。
(3)前記溶媒和イオン液体が、リチウム塩とグライムとからなる前記(1)に記載のリチウム硫黄固体電池用正極材。
(4)前記リチウム塩が、リチウム-ビス(フルオロスルホニル)イミド及びリチウム-ビス(トリフルオロメタンスルホニル)イミドから選ばれる少なくとも1種であり、前記グライムがトリグライムおよびテトラグライムから選ばれる少なくとも1種である前記(3)に記載のリチウム硫黄固体電池用正極材。
(5)前記導電材が、導電性カーボンブラックである前記(1)~(4)のいずれかに記載のリチウム硫黄固体電池用正極材。
(6)前記バインダーが、ポリフッ化ビニリデンである前記(1)~(5)のいずれかに記載のリチウム硫黄固体電池用正極材。
(7)前記正極材における各成分の比率は、硫黄、導電材、バインダーおよびイオン液体もしくは溶媒和イオン液体が、それぞれ、45~60質量%、20~35質量%、0.1~10質量%、10~20質量%である前記(1)~(6)のいずれかに記載のリチウム硫黄固体電池用正極材。
(1) A positive electrode material for a lithium-sulfur solid battery, comprising sulfur, a conductive material, a binder, and an ionic liquid or a solvated ionic liquid.
(2) The positive electrode material for a lithium-sulfur solid battery according to (1), wherein the ionic liquid contains a lithium salt.
(3) The positive electrode material for a lithium-sulfur solid battery according to (1), wherein the solvated ionic liquid comprises a lithium salt and glyme.
(4) The lithium salt is at least one selected from lithium-bis (fluorosulfonyl) imide and lithium-bis (trifluoromethanesulfonyl) imide, and the glyme is at least one selected from triglyme and tetraglyme. The positive electrode material for a lithium-sulfur solid battery according to (3) above.
(5) The positive electrode material for a lithium-sulfur solid battery according to any one of (1) to (4), wherein the conductive material is conductive carbon black.
(6) The positive electrode material for a lithium-sulfur solid battery according to any one of (1) to (5), wherein the binder is polyvinylidene fluoride.
(7) The ratio of each component in the positive electrode material is 45-60 mass%, 20-35 mass%, 0.1-10 mass% for sulfur, conductive material, binder and ionic liquid or solvated ionic liquid, respectively. The positive electrode material for a lithium-sulfur solid battery according to any one of (1) to (6), which is 10 to 20% by mass.
(8)硫黄、導電材、バインダーおよびイオン液体もしくは溶媒和イオン液体を含有するリチウム硫黄固体電池用正極材の製造方法であって、
 酸化物系固体電解質成形体の片面に、正極を形成する部分を残してマスキングテープを貼付するステップと、
 前記酸化物系固体電解質成形体の正極を形成する部分に、硫黄、導電材、バインダーおよびイオン液体もしくは溶媒和イオン液体を含有する正極スラリーを塗布し、均一に押し広げるステップと、
 前記正極スラリーを真空乾燥して固化させた後、マスキングテープを取り除いて、酸化物系固体電解質成形体上に正極を形成するステップと、
を含むことを特徴とするリチウム硫黄固体電池用正極材の製造方法。
(9)前記正極スラリーが、硫黄と導電材を粉砕混合した後、バインダー溶液およびイオン液体もしくは溶媒和イオン液体を加え、さらに溶媒を添加してスラリー化したものである前記(8)に記載のリチウム硫黄固体電池用正極材の製造方法。
(10)前記正極スラリーの前記溶媒を除く不揮発分が、硫黄:45~60質量%、導電材:20~35質量%、バインダー:0.1~10質量%、イオン液体もしくは溶媒和イオン液体:10~20質量%で構成される前記(8)または(9)に記載のリチウム硫黄固体電池用正極材の製造方法。
(11)前記イオン液体がリチウム塩を含有する前記(8)~(10)のいずれかに記載のリチウム硫黄固体電池用正極材の製造方法。
(12)前記溶媒和イオン液体が、リチウム-ビス(フルオロスルホニル)イミドおよびリチウム-ビス(トリフルオロメタンスルホニル)イミドから選ばれる少なくとも1種と、トリグライムおよびテトラグライムから選ばれる少なくとも1種とからなる前記(8)~(10)のいずれかに記載のリチウム硫黄固体電池用正極材の製造方法。
(13)前記導電材が、導電性カーボンブラックである前記(8)~(12)のいずれかに記載のリチウム硫黄固体電池用正極材の製造方法。
(14)前記バインダーが、ポリフッ化ビニリデンである前記(8)~(13)のいずれかに記載のリチウム硫黄固体電池用正極材の製造方法。
(15)前記酸化物系固体電解質が、リチウム-ランタン-ジルコニウム複合酸化物からなる前記(8)~(14)のいずれかに記載のリチウム硫黄固体電池用正極材の製造方法。
(8) A method for producing a positive electrode material for a lithium-sulfur solid battery containing sulfur, a conductive material, a binder and an ionic liquid or a solvated ionic liquid,
A step of applying a masking tape on one side of the oxide-based solid electrolyte molded body, leaving a portion for forming a positive electrode;
Applying a positive electrode slurry containing sulfur, a conductive material, a binder and an ionic liquid or a solvated ionic liquid to a portion of the oxide-based solid electrolyte molded body forming the positive electrode, and uniformly spreading the step;
After the positive electrode slurry is vacuum dried and solidified, the masking tape is removed and a positive electrode is formed on the oxide-based solid electrolyte formed body; and
The manufacturing method of the positive electrode material for lithium sulfur solid batteries characterized by including.
(9) The positive electrode slurry according to (8), wherein sulfur and a conductive material are pulverized and mixed, and then a binder solution and an ionic liquid or a solvated ionic liquid are added and further a solvent is added to form a slurry. A method for producing a positive electrode material for a lithium-sulfur solid battery.
(10) Nonvolatile content of the positive electrode slurry excluding the solvent is sulfur: 45 to 60% by mass, conductive material: 20 to 35% by mass, binder: 0.1 to 10% by mass, ionic liquid or solvated ionic liquid: The method for producing a positive electrode material for a lithium-sulfur solid battery according to (8) or (9), comprising 10 to 20% by mass.
(11) The method for producing a positive electrode material for a lithium-sulfur solid battery according to any one of (8) to (10), wherein the ionic liquid contains a lithium salt.
(12) The solvated ionic liquid comprising at least one selected from lithium-bis (fluorosulfonyl) imide and lithium-bis (trifluoromethanesulfonyl) imide, and at least one selected from triglyme and tetraglyme. (8) The method for producing a positive electrode material for a lithium-sulfur solid battery according to any one of (10) to (10).
(13) The method for producing a positive electrode material for a lithium-sulfur solid battery according to any one of (8) to (12), wherein the conductive material is conductive carbon black.
(14) The method for producing a positive electrode material for a lithium-sulfur solid battery according to any one of (8) to (13), wherein the binder is polyvinylidene fluoride.
(15) The method for producing a positive electrode material for a lithium-sulfur solid battery according to any one of (8) to (14), wherein the oxide-based solid electrolyte comprises a lithium-lanthanum-zirconium composite oxide.
(16)前記(1)~(7)のいずれかに記載の正極材からなる正極と、リチウム金属を含有する負極と、正極と負極の間に介在する酸化物系固体電解質の層とを有する全固体リチウム硫黄電池。
(17)酸化物系固体電解質が、リチウム-ランタン-ジルコニウム複合酸化物である前記(16)に記載の全固体リチウム硫黄電池。
(18)リチウム-ランタン-ジルコニウム複合酸化物が、さらにアルミニウム、タンタル、ニオブおよびビスマスから選ばれる1種以上の元素を含有する複合酸化物である前記(17)に記載の全固体リチウム硫黄電池。
(19)作動温度が110℃以下である前記(16)~(18)のいずれかに記載の全固体リチウム硫黄電池。
(20)前記(8)~(15)のいずれかに記載の方法により製造されたリチウム硫黄固体電池用正極材からなる正極と、リチウム金属を含有する負極と、正極と負極の間に介在する酸化物系固体電解質の層とを有する全固体リチウム硫黄電池。
(21)前記(16)~(20)のいずれかに記載の全固体リチウム硫黄電池を搭載した自動車。
(22)前記(16)~(20)のいずれかに記載の全固体リチウム硫黄電池から電力網に電力が供給され、または、前記全固体リチウム硫黄電池に電力網から電力が供給される電力貯蔵システム。
(23)酸化物系固体電解質成形体の片面に負極金属を貼り合わせ加熱処理するステップと、
 前記酸化物系固体電解質成形体の負極を形成した面と反対側の面に、正極を形成する部分を残してマスキングテープを貼付するステップと、
 前記酸化物系固体電解質成形体の正極を形成する部分に、硫黄、導電材、バインダーおよびイオン液体もしくは溶媒和イオン液体を含有する正極スラリーを塗布し、均一に押し広げるステップと、
 前記正極スラリーを真空乾燥して固化させた後、マスキングテープを取り除いて、酸化物系固体電解質成形体上に正極を形成するステップと、
を含むことを特徴とするリチウム硫黄固体電池の製造方法。
(16) having a positive electrode made of the positive electrode material according to any one of (1) to (7), a negative electrode containing lithium metal, and a layer of an oxide-based solid electrolyte interposed between the positive electrode and the negative electrode All solid lithium sulfur battery.
(17) The all solid lithium-sulfur battery according to (16), wherein the oxide-based solid electrolyte is a lithium-lanthanum-zirconium composite oxide.
(18) The all-solid-state lithium-sulfur battery according to (17), wherein the lithium-lanthanum-zirconium composite oxide is a composite oxide further containing one or more elements selected from aluminum, tantalum, niobium and bismuth.
(19) The all-solid-state lithium-sulfur battery according to any one of (16) to (18), wherein the operating temperature is 110 ° C. or lower.
(20) A positive electrode made of a positive electrode material for a lithium-sulfur solid battery produced by the method according to any one of (8) to (15), a negative electrode containing lithium metal, and interposed between the positive electrode and the negative electrode An all-solid-state lithium-sulfur battery having an oxide-based solid electrolyte layer.
(21) An automobile equipped with the all-solid-state lithium-sulfur battery according to any one of (16) to (20).
(22) A power storage system in which power is supplied from the all-solid-state lithium-sulfur battery according to any one of (16) to (20) to a power network, or power is supplied to the all-solid-state lithium-sulfur battery from the power network.
(23) A step of bonding a negative electrode metal to one surface of the oxide-based solid electrolyte molded body and heat-treating the negative electrode metal;
Applying a masking tape to the surface opposite to the surface on which the negative electrode of the oxide-based solid electrolyte formed body is formed, leaving a portion for forming the positive electrode;
Applying a positive electrode slurry containing sulfur, a conductive material, a binder and an ionic liquid or a solvated ionic liquid to a portion of the oxide-based solid electrolyte molded body forming the positive electrode, and uniformly spreading the step;
After the positive electrode slurry is vacuum dried and solidified, the masking tape is removed and a positive electrode is formed on the oxide-based solid electrolyte formed body; and
A method for producing a lithium-sulfur solid state battery comprising:
 本発明のリチウム硫黄固体電池用正極材は、液状であるが不揮発性、不燃性のイオン液体もしくは溶媒和イオン液体を含有している。また、本発明のリチウム硫黄固体電池用正極材の製造方法によれば、正極材は固体電解質の表面に密着した状態で形成されているため、固体電解質と正極の界面に液状のイオン液体もしくは溶媒和イオン液体が介在する結果、固体電解質と正極の接触面積を増大させることができる。そして、イオン液体もしくは溶媒和イオン液体はリチウムイオン伝導性を有するので、固体電解質と正極間の界面抵抗が低減され、充放電サイクルを繰り返しても性能低下の少ないリチウム硫黄固体電池を得ることが可能となる。 The positive electrode material for a lithium-sulfur solid battery of the present invention contains a liquid but non-volatile, non-combustible ionic liquid or solvated ionic liquid. Further, according to the method for producing a positive electrode material for a lithium-sulfur solid battery of the present invention, since the positive electrode material is formed in close contact with the surface of the solid electrolyte, a liquid ionic liquid or solvent is present at the interface between the solid electrolyte and the positive electrode. As a result of the presence of the ionic liquid, the contact area between the solid electrolyte and the positive electrode can be increased. And since the ionic liquid or solvated ionic liquid has lithium ion conductivity, the interfacial resistance between the solid electrolyte and the positive electrode is reduced, and it is possible to obtain a lithium-sulfur solid battery with little performance degradation even after repeated charge / discharge cycles It becomes.
 また、電解質層が固体電解質となるので、硫黄や多硫化物が電解液中に溶解、拡散することによる電池性能の低下を防げるとともに、作動温度が110℃以下であるため、火災の危険も極めて少ない安全な全固体リチウム硫黄電池とすることが可能となる。 In addition, since the electrolyte layer becomes a solid electrolyte, it is possible to prevent a decrease in battery performance due to the dissolution and diffusion of sulfur and polysulfides in the electrolytic solution, and the operating temperature is 110 ° C. or less, so there is also a risk of fire It is possible to provide a safe and all-solid lithium-sulfur battery.
イオン液体もしくは溶媒和イオン液体を含有する本発明の正極材を用いたコイン型電池の充放電サイクル試験(1~3サイクル)の結果を示すグラフである。3 is a graph showing the results of a charge / discharge cycle test (1 to 3 cycles) of a coin-type battery using a positive electrode material of the present invention containing an ionic liquid or a solvated ionic liquid. イオン液体もしくは溶媒和イオン液体を含有する本発明の正極材を用いたコイン型電池の充放電サイクル試験(4~6サイクル)の結果を示すグラフである。6 is a graph showing the results of a charge / discharge cycle test (4 to 6 cycles) of a coin-type battery using the positive electrode material of the present invention containing an ionic liquid or a solvated ionic liquid. イオン液体もしくは溶媒和イオン液体を含まない比較例の正極材を用いたコイン型電池の充放電サイクル試験の結果を示すグラフである。It is a graph which shows the result of the charging / discharging cycle test of the coin-type battery using the positive electrode material of the comparative example which does not contain an ionic liquid or a solvated ionic liquid.
 本発明のリチウム硫黄固体電池用正極材は、イオン液体もしくは溶媒和イオン液体を含有することが必須であり、基本的には、硫黄、導電材、ポリフッ化ビニリデンなどのバインダーおよびイオン液体もしくは溶媒和イオン液体から構成される。 The positive electrode material for a lithium-sulfur solid battery of the present invention must contain an ionic liquid or a solvated ionic liquid. Basically, a binder such as sulfur, a conductive material, or polyvinylidene fluoride, and an ionic liquid or solvate. Consists of ionic liquids.
 本発明で用いられるイオン液体もしくは溶媒和イオン液体は、150℃程度以下であれば液状を呈し、不揮発性、不燃性で、イオン伝導性を有する液体である。 The ionic liquid or solvated ionic liquid used in the present invention is liquid when it is about 150 ° C. or lower, and is a non-volatile, non-flammable liquid having ionic conductivity.
 イオン液体としては、例えば、1-エチル-3-メチルイミダゾリウム-ビス(トリフルオロスルホニル)イミド、1-エチル-3-メチルイミダゾリウムテトラフルオロボレート、トリメチルプロピルアンモニウム-ビストリフルオロメチルスルホニルイミド、エチルピリジニウムテトラフルオロボレートなどが挙げられる。イオン液体は、単独で用いても良いし、2種以上を組み合わせて用いても良い。 Examples of ionic liquids include 1-ethyl-3-methylimidazolium-bis (trifluorosulfonyl) imide, 1-ethyl-3-methylimidazolium tetrafluoroborate, trimethylpropylammonium-bistrifluoromethylsulfonylimide, ethylpyridinium Examples thereof include tetrafluoroborate. An ionic liquid may be used independently and may be used in combination of 2 or more type.
 前記イオン液体には、支持塩として、4フッ化ホウ酸リチウム(LiBF)、過塩素酸リチウム(LiClO)、トリフルオロメチルスルホン酸リチウム(Li(CFSO))、リチウム-ビス(トリフルオロメタンスルホニル)イミド(LiN(CFSO)、リチウム-ビス(ペンタフルオロエタンスルホニル)イミド(LiN(CSO)、6フッ化リン酸リチウム(LiPF)などの公知のリチウム塩を混合して用いることができる。支持塩は、単独で用いても良いし、2種以上を組み合せて用いても良い。 In the ionic liquid, as a supporting salt, lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium trifluoromethylsulfonate (Li (CF 3 SO 3 )), lithium-bis ( Trifluoromethanesulfonyl) imide (LiN (CF 3 SO 2 ) 2 ), lithium-bis (pentafluoroethanesulfonyl) imide (LiN (C 2 F 5 SO 2 ) 2 ), lithium hexafluorophosphate (LiPF 6 ), etc. These known lithium salts can be mixed and used. A supporting salt may be used independently and may be used in combination of 2 or more type.
 イオン液体と支持塩の混合比(モル比)は、1:0.1~2であることが好ましく、1:0.8~1.2であることがより好ましい。特に好ましくは1:1である。 The mixing ratio (molar ratio) between the ionic liquid and the supporting salt is preferably 1: 0.1 to 2, and more preferably 1: 0.8 to 1.2. Particularly preferred is 1: 1.
 溶媒和イオン液体は、リチウム塩とグライムの混合物が用いられる。リチウム塩とグライムの組合せにより、熱分解温度の異なるものが作製される。溶媒和イオン液体は、100℃程度で熱分解しないものを選択するのが良い。 The solvated ionic liquid is a mixture of lithium salt and glyme. Different combinations of lithium salt and glyme produce products having different thermal decomposition temperatures. It is preferable to select a solvated ionic liquid that does not thermally decompose at about 100 ° C.
 リチウム塩としては、例えば、リチウム-ビス(フルオロスルホニル)イミド(LiN(SOF))、リチウム-ビス(トリフルオロメタンスルホニル)イミド(LiN(CFSO)、リチウム-ビス(ペンタフルオロエタンスルホニル)イミドLiN(CSO)などが挙げられる。リチウム塩は、単独で用いても良いし、2種以上を組み合せて用いても良い。 Examples of the lithium salt include lithium-bis (fluorosulfonyl) imide (LiN (SO 2 F) 2 ), lithium-bis (trifluoromethanesulfonyl) imide (LiN (CF 3 SO 2 ) 2 ), lithium-bis (penta Fluoroethanesulfonyl) imide LiN (C 2 F 5 SO 2 ) 2 ) and the like. A lithium salt may be used independently and may be used in combination of 2 or more type.
 グライムとしては、両末端が同じアルキル基でも、異なるアルキル基であってもよく、例えば、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリメチレングリコルメチルエチルエーテルなどのトリグライム、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、テトラエチレングリコールメチルエチルエーテルなどのテトラグライムが挙げられる。また、アルキル基はフッ素で置換されていても良い。これらのリチウム塩の中でも、リチウム-ビス(フルオロスルホニル)イミド、リチウム-ビス(トリフルオロメタンスルホニル)イミドが好ましい。グライムは、単独で用いても良いし、2種以上を組み合せて用いても良い。 As the glyme, both ends may be the same alkyl group or different alkyl groups, for example, triglyme such as triethylene glycol dimethyl ether, triethylene glycol diethyl ether, trimethylene glycol methyl ethyl ether, tetraethylene glycol dimethyl ether, Examples include tetraglyme such as tetraethylene glycol diethyl ether and tetraethylene glycol methyl ethyl ether. The alkyl group may be substituted with fluorine. Among these lithium salts, lithium-bis (fluorosulfonyl) imide and lithium-bis (trifluoromethanesulfonyl) imide are preferable. A glyme may be used independently and may be used in combination of 2 or more type.
 上記のイオン液体もしくは溶媒和イオン液体のうち、リチウムイオン伝導性に優れるとともに、硫黄や多硫化物が溶出し難いことから、溶媒和イオン液体が好ましく、特にリチウム-ビス(フルオロスルホニル)イミド(以下、LiFSIと称する。)と、トリエチレングリコールジメチルエーテルあるいはテトラエチレングリコールジメチルエーテルとの混合物が好ましい。 Of the above ionic liquids or solvated ionic liquids, solvated ionic liquids are preferred because they are excellent in lithium ion conductivity and are difficult to elute sulfur and polysulfides. , LiFSI) and triethylene glycol dimethyl ether or tetraethylene glycol dimethyl ether are preferred.
 リチウム塩とグライムの混合比(モル比)は、リチウム塩:グライム=40:60~60:40であることが好ましく、45:55~55:45であることがより好ましい。特に好ましくは50:50である。 The mixing ratio (molar ratio) of lithium salt and glyme is preferably lithium salt: glyme = 40: 60 to 60:40, and more preferably 45:55 to 55:45. Particularly preferred is 50:50.
 本発明の正極材は、活物質として硫黄を用いるが、硫黄自体は電気伝導性が乏しいという問題点があるので、導電材を併用する必要がある。導電材としては、例えば、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラックなどのカーボンブラック類、鱗片黒鉛などの天然黒鉛や人造黒鉛などのグラファイト類、炭素繊維や金属繊維などの導電性繊維、銅や銀などの金属粉末、ポリフェニレン化合物などの有機導電材、カーボンナノチューブなどを用いることができる。 The positive electrode material of the present invention uses sulfur as an active material. However, since sulfur itself has a problem of poor electrical conductivity, it is necessary to use a conductive material in combination. Examples of the conductive material include carbon blacks such as acetylene black, ketjen black, channel black, and furnace black, graphites such as natural graphite such as flake graphite and artificial graphite, conductive fibers such as carbon fiber and metal fiber, Metal powders such as copper and silver, organic conductive materials such as polyphenylene compounds, carbon nanotubes, and the like can be used.
 導電材の中でも、多孔性でその気孔内に硫黄やイオン液体もしくは溶媒和イオン液体を取り込むことでバインダーとしての効果を発揮するとともに、導電性が高いことからカーボンブラック類が好ましく、特にケッチェンブラックなどの中空シェル構造を有する導電性カーボンブラックが好ましい。 Among the conductive materials, carbon blacks are preferable because they are porous and exhibit an effect as a binder by incorporating sulfur, an ionic liquid or a solvated ionic liquid into the pores. Conductive carbon black having a hollow shell structure such as is preferable.
 導電性カーボンブラックは、窒素ガス吸着法によるBET比表面積が500m/g以上であることが好ましく、より好ましくは750m/g以上、さらに好ましくは1000m/g以上である。 The conductive carbon black preferably has a BET specific surface area by a nitrogen gas adsorption method of 500 m 2 / g or more, more preferably 750 m 2 / g or more, and still more preferably 1000 m 2 / g or more.
 さらに、本発明の正極材には、バインダーを併用することが好ましい。バインダーとしては、例えば、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-クロロトリフルオロエチレン共重合体、フッ化ビニリデン-ペンタフルオロプロピレン共重合体、フッ化ビニリデン-パーフルオロメチルビニルエーテル-テトラフルオロエチレン共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体(ETFE)、プロピレン-テトラフルオロエチレン共重合体、ポリビニルピロリドン、ポリエチレンオキシド、ポリビニルアルコール、ポリアクリロニトリル、ポリメチルメタクリレート、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)などが挙げられるが、ポリフッ化ビニリデンが好ましく用いられる。これらのバインダーは、単独で用いても良いし、2種以上を組み合せて用いても良い。 Furthermore, it is preferable to use a binder in combination with the positive electrode material of the present invention. Examples of the binder include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, vinylidene fluoride-pentafluoropropylene copolymer, and vinylidene fluoride. -Perfluoromethyl vinyl ether-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer (ETFE), propylene-tetrafluoroethylene copolymer, polyvinyl Pyrrolidone, polyethylene oxide, polyvinyl alcohol, polyacrylonitrile, polymethyl methacrylate, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), etc. But are lower, polyvinylidene fluoride is preferably used. These binders may be used alone or in combination of two or more.
 これらのバインダーの添加方法は、特に限定されない。例えば、粉末で用いることもできるし、有機溶媒に溶解した溶液あるいは水を溶媒とするエマルジョンで用いることもできる。有機溶媒としては、N-メチル-2-ピロリドンが好ましい。 The method for adding these binders is not particularly limited. For example, it can be used as a powder, or can be used as a solution dissolved in an organic solvent or an emulsion using water as a solvent. As the organic solvent, N-methyl-2-pyrrolidone is preferable.
 硫黄、導電材、バインダーおよびイオン液体もしくは溶媒和イオン液体から構成される本発明の正極材中の硫黄の含有量は45~60質量%であることが好ましく、より好ましくは50~55質量%である。硫黄が45質量%以上であれば、電池として高い理論エネルギー密度を確保することが可能となる。一方、硫黄が60質量%以下であれば、導電材やイオン液体もしくは溶媒和イオン液体などの含有量を十分確保することができるので、正極材に必要な導電性の付与が可能になるとともに、正極材と固体電解質間の界面抵抗の低減が可能となる。 The content of sulfur in the positive electrode material of the present invention composed of sulfur, a conductive material, a binder and an ionic liquid or a solvated ionic liquid is preferably 45 to 60% by mass, more preferably 50 to 55% by mass. is there. If sulfur is 45 mass% or more, it becomes possible to ensure a high theoretical energy density as a battery. On the other hand, if the sulfur is 60% by mass or less, it is possible to sufficiently ensure the content of a conductive material, an ionic liquid, or a solvated ionic liquid, so that necessary conductivity can be imparted to the positive electrode material, The interface resistance between the positive electrode material and the solid electrolyte can be reduced.
 導電材の含有量は20~35質量%であることが好ましく、より好ましくは20~30質量%である。導電材が20質量%以上であれば、正極に十分な導電性を付与することができる。一方、導電材が35質量%以下であれば、硫黄やイオン液体もしくは溶媒和イオン液体などの含有量を十分確保することができるので、電池のエネルギー密度の向上が可能になるとともに、正極材と固体電解質間の界面抵抗の低減が可能となる。 The content of the conductive material is preferably 20 to 35% by mass, more preferably 20 to 30% by mass. When the conductive material is 20% by mass or more, sufficient conductivity can be imparted to the positive electrode. On the other hand, if the conductive material is 35% by mass or less, the content of sulfur, ionic liquid or solvated ionic liquid can be sufficiently ensured, so that the energy density of the battery can be improved, and the positive electrode material and The interface resistance between the solid electrolytes can be reduced.
 バインダーの含有量は0.1~10質量%であることが好ましく、より好ましくは5~10質量%、さらに好ましくは7~9質量%である。バインダーが0.1質量%以上であれば、ケッチェンブラックなどの導電材の気孔中への硫黄あるいはイオン液体もしくは溶媒和イオン液体の保持や導電材の固体電解質への固着をより効果的に高めることができる。一方、10質量%以下であれば、バインダー自体が絶縁体であることに由来する正極材の導電性の低下を避けることができる。  The content of the binder is preferably 0.1 to 10% by mass, more preferably 5 to 10% by mass, and still more preferably 7 to 9% by mass. When the binder is 0.1% by mass or more, the retention of sulfur or ionic liquid or solvated ionic liquid in the pores of the conductive material such as ketjen black and the fixing of the conductive material to the solid electrolyte are more effectively enhanced. be able to. On the other hand, if it is 10 mass% or less, the fall of the electroconductivity of the positive electrode material derived from the binder itself being an insulator can be avoided. *
 イオン液体もしくは溶媒和イオン液体の含有量は10~20質量%であることが好ましく、より好ましくは12~18質量%である。イオン液体もしくは溶媒和イオン液体が10質量%以上であれば、正極材と固体電解質間の界面抵抗を効果的に低減することができる。一方、20質量%以下であれば、界面抵抗の低減効果が最早向上しないにもかかわらず無駄に用いるという不経済を避けることができる。 The content of the ionic liquid or solvated ionic liquid is preferably 10 to 20% by mass, more preferably 12 to 18% by mass. When the ionic liquid or solvated ionic liquid is 10% by mass or more, the interface resistance between the positive electrode material and the solid electrolyte can be effectively reduced. On the other hand, if it is 20% by mass or less, it is possible to avoid the uneconomical use of waste even though the effect of reducing the interface resistance is no longer improved.
 次に、本発明の正極材の製造方法について説明する。 Next, a method for producing the positive electrode material of the present invention will be described.
 本発明の正極材の製造方法は、固体電解質の表面にできるだけ密着するように正極材を形成することで、正極材と固体電解質間の界面抵抗を低減することを狙いとしている。 The method for producing a positive electrode material of the present invention aims to reduce the interfacial resistance between the positive electrode material and the solid electrolyte by forming the positive electrode material so as to be as close as possible to the surface of the solid electrolyte.
 固体電解質としては、リチウムイオン電池で公知のリチウム複合酸化物やリチウム含有硫化物などを用いることができるが、リチウム含有硫化物は大気中の水分や酸素と反応して有毒ガスを発生する場合があるので、酸化物系固体電解質が好ましく、リチウム複合酸化物を用いるのがより好ましい。 As the solid electrolyte, known lithium composite oxides and lithium-containing sulfides can be used in lithium ion batteries, but lithium-containing sulfides may react with moisture and oxygen in the atmosphere to generate toxic gases. Therefore, an oxide-based solid electrolyte is preferable, and it is more preferable to use a lithium composite oxide.
 リチウム複合酸化物としては、例えば、リチウムン-ランタン-ジルコニウム複合酸化物、リチウム-ランタン-チタン複合酸化物、リチウム-ニオブ複合酸化物、リチウム-ニオブ-ジルコニウム複合酸化物、リチウム-ランタン-ジルコニウム-タンタル複合酸化物などが挙げられるが、リチウム-ランタン-ジルコニウム複合酸化物(以下、「LLZ」と称する。)が好ましい。LLZの製造方法は、公知の方法を用いることができる。LLZは、その基本組成を、LiLaZr12とするリチウム、ランタンおよびジルコニウムからなる複合酸化物であり、必要に応じて、アルミニウム、タンタル、ニオブおよびビスマスから選ばれる1種以上の元素を含有していても良い。 Examples of the lithium composite oxide include lithium-lanthanum-zirconium composite oxide, lithium-lanthanum-titanium composite oxide, lithium-niobium composite oxide, lithium-niobium-zirconium composite oxide, and lithium-lanthanum-zirconium-tantalum. Examples of the composite oxide include lithium-lanthanum-zirconium composite oxide (hereinafter referred to as “LLZ”). A well-known method can be used for the manufacturing method of LLZ. LLZ is a composite oxide composed of lithium, lanthanum and zirconium whose basic composition is Li 7 La 3 Zr 2 O 12 , and, if necessary, one or more selected from aluminum, tantalum, niobium and bismuth. It may contain an element.
 最終的に組み立てる電池の形状や大きさによって、正極材を形成する固体電解質の形状や大きさが異なるので、固体電解質としてLLZを用い、コイン型電池を組み立てる場合を例として、本発明の正極材、およびそれを用いた全固体リチウム硫黄電池、ならびにそれらの製造方法の詳細を説明する。 Since the shape and size of the solid electrolyte forming the positive electrode material differ depending on the shape and size of the battery to be finally assembled, the positive electrode material of the present invention is exemplified by the case where a coin-type battery is assembled using LLZ as the solid electrolyte. The details of the all-solid-state lithium-sulfur battery using the same, and the production method thereof will be described.
 酸化物系固体電解質成形体としては、例えば、直径が約12mm、厚さが約0.5mmのLLZ成形体を使用することができる。当該LLZ成形体は、公知の方法で作製することができ、例えば、特開2015-146299号公報に開示された方法などを用いることができる。 As the oxide-based solid electrolyte molded body, for example, an LLZ molded body having a diameter of about 12 mm and a thickness of about 0.5 mm can be used. The LLZ molded body can be produced by a known method, and for example, a method disclosed in JP-A-2015-146299 can be used.
 すなわち、化学量論量のランタン化合物の粉末とジルコニウム化合物の粉末を粉砕しながら混合し、プレス機で所定の形状に成形した後、電気炉にて好ましくは1300~1700℃で焼成して、ランタン-ジルコニウム酸化物成形体を得る。この成形体は、気孔率が75%以上であることが好ましく、より好ましくは80~90%である。気孔率が75%以上であると、リチウム化合物が含浸されやすくなる。一方、気孔率が90%以下であれば、成形体の強度を維持することができる。気孔率は、水銀圧入法(JIS R 1655準拠)による全細孔容積(cm/g)とアルキメデス法により測定した見掛け密度(g/cm)から算出した値である。気孔率は、焼成温度などにより調整することができる。 That is, a stoichiometric amount of a lanthanum compound powder and a zirconium compound powder are mixed while being pulverized, formed into a predetermined shape with a press, and then fired in an electric furnace, preferably at 1300 to 1700 ° C. A zirconium oxide compact is obtained. This molded body preferably has a porosity of 75% or more, more preferably 80 to 90%. When the porosity is 75% or more, the lithium compound is easily impregnated. On the other hand, if the porosity is 90% or less, the strength of the molded product can be maintained. The porosity is a value calculated from the total pore volume (cm 3 / g) according to the mercury intrusion method (based on JIS R 1655) and the apparent density (g / cm 3 ) measured by the Archimedes method. The porosity can be adjusted by the firing temperature or the like.
 ランタン化合物としては、特に限定されない。例えば、水酸化ランタン、酸化ランタン、塩化ランタン、硝酸ランタンなどを用いることができる。焼成時に有害ガスの発生が少ない水酸化ランタンが好ましい。 The lanthanum compound is not particularly limited. For example, lanthanum hydroxide, lanthanum oxide, lanthanum chloride, lanthanum nitrate, or the like can be used. Lanthanum hydroxide that generates less harmful gas during firing is preferable.
 ジルコニウム化合物としては、特に限定されない。例えば、酸化ジルコニウム、塩化ジルコニウム、硝酸ジルコニウム、酢酸ジルコニウムなどを用いることができる。焼成時の有毒ガスの発生が少ない酸化ジルコニウムが好ましい。 The zirconium compound is not particularly limited. For example, zirconium oxide, zirconium chloride, zirconium nitrate, zirconium acetate or the like can be used. Zirconium oxide, which generates little toxic gas during firing, is preferred.
 次いで、ランタン-ジルコニウム酸化物成形体に化学量論量のリチウム化合物を溶解した水溶液を添加し、成形体の気孔の内部にリチウム化合物を含浸させた後、マイクロ波焼成炉などを用いて、好ましくは200~500℃、より好ましくは300~450℃で焼成する。加熱源としてマイクロ波を用いることにより、緻密なLLZ焼結体を得ることができる利点がある。加熱源として熱風や赤外線を利用した場合は、加熱部分でリチウム化合物が反応するため、成形体の表面でのみ反応が進行し、LiLaZr12構造の緻密な成形体を得ることが困難となることがある。マイクロ波は、周波数が1~300GHz、通常は2.45GHzのマイクロ波を照射する。マイクロ波の出力は、1.5~9.5kWの範囲で調整し、所定の焼成温度に達した後は、マイクロ波照射をPID制御などにより制御して温度を維持する方法が好ましい。 Next, an aqueous solution in which a stoichiometric amount of a lithium compound is dissolved in the lanthanum-zirconium oxide molded body is added, and the pores of the molded body are impregnated with the lithium compound, and then, preferably, using a microwave firing furnace or the like. Is fired at 200 to 500 ° C., more preferably 300 to 450 ° C. There is an advantage that a dense LLZ sintered body can be obtained by using a microwave as a heating source. When hot air or infrared rays are used as a heating source, the lithium compound reacts at the heated portion, so that the reaction proceeds only on the surface of the molded body, and a dense molded body having a Li 7 La 3 Zr 2 O 12 structure is obtained. May be difficult. The microwave is irradiated with a microwave having a frequency of 1 to 300 GHz, usually 2.45 GHz. The microwave output is preferably adjusted in the range of 1.5 to 9.5 kW, and after reaching a predetermined firing temperature, the temperature is preferably maintained by controlling the microwave irradiation by PID control or the like.
 成形体に含浸させるリチウム化合物は、LLZの基本組成にしたがって、リチウム、ランタン、ジルコニウムのモル比が7:3:2になるように使用するのが良い。 The lithium compound impregnated in the molded body is preferably used so that the molar ratio of lithium, lanthanum, and zirconium is 7: 3: 2 according to the basic composition of LLZ.
 リチウム化合物としては、特に限定されない。例えば、水酸化リチウム、酸化リチウム、塩化リチウム、硝酸リチウム、硫酸リチウム、酢酸リチウムなどを用いることができる。その中でも、水への溶解度が高く、焼成時の有毒ガスの発生が少ないことから水酸化リチウム(LiOH)、または、水に溶解して水酸化リチウムになる酸化リチウム(LiO)が好ましい。 The lithium compound is not particularly limited. For example, lithium hydroxide, lithium oxide, lithium chloride, lithium nitrate, lithium sulfate, lithium acetate, or the like can be used. Among them, lithium hydroxide (LiOH) or lithium oxide (Li 2 O) that dissolves in water to become lithium hydroxide is preferable because of its high solubility in water and low generation of toxic gas during firing.
 ランタン-ジルコニウム酸化物成形体にリチウムを含浸させる方法としては、化学量論量のリチウムを含浸させることが可能な方法であれば特に限定されない。例えば、以下の方法を挙げることができる。
(1)必要量のリチウム化合物を溶媒に溶解した溶液の一部をランタン-ジルコニウム酸化物成形体に含浸させた後、該成形体を乾燥して溶媒を除去する。再度、上記の溶液の一部を上記の成形体に含浸させた後、乾燥して溶媒を除去する。そして、用意した溶液が無くなるまで、含浸と乾燥を繰り返す。
(2)少量の水に、必要量の水酸化リチウム等を分散させたスラリーを、ランタン-ジルコニウム酸化物成形体に含浸させる。この場合、水酸化リチウムとしては、成形体の気孔(空隙)に入り込むことが容易な、微粒子状のものを使用することが好ましい。
(3)溶解度の大きいLi塩(例えば、LiCl)を水に溶解して高濃度のLiCl水溶液を調製し、該水溶液をランタン-ジルコニウム酸化物成形体に含浸させる。
(4)ランタン-ジルコニウム酸化物成形体に、粉末状のLiOHを添加し、熱溶融によりLiOHを含浸させる。この場合、溶融温度は、LiOHの融点(462℃)以上とすることが好ましい。
The method for impregnating the lanthanum-zirconium oxide compact with lithium is not particularly limited as long as it is a method capable of impregnating a stoichiometric amount of lithium. For example, the following methods can be mentioned.
(1) A lanthanum-zirconium oxide molded body is impregnated with a part of a solution obtained by dissolving a required amount of a lithium compound in a solvent, and then the molded body is dried to remove the solvent. Again, a part of the solution is impregnated into the molded body, and then dried to remove the solvent. Then, impregnation and drying are repeated until the prepared solution disappears.
(2) A lanthanum-zirconium oxide molded body is impregnated with a slurry in which a required amount of lithium hydroxide or the like is dispersed in a small amount of water. In this case, as the lithium hydroxide, it is preferable to use fine particles that can easily enter the pores (voids) of the molded body.
(3) A highly soluble Li salt (for example, LiCl) is dissolved in water to prepare a highly concentrated LiCl aqueous solution, and the lanthanum-zirconium oxide compact is impregnated with the aqueous solution.
(4) Powdered LiOH is added to the lanthanum-zirconium oxide compact and impregnated with LiOH by heat melting. In this case, the melting temperature is preferably equal to or higher than the melting point of LiOH (462 ° C.).
 ランタン-ジルコニウム酸化物成形体およびLLZの形状や大きさは、特に限定されない。電池の構造に応じて、例えば、板状、シート状、円筒状などに成形すれば良い。 The shape and size of the lanthanum-zirconium oxide molded body and LLZ are not particularly limited. Depending on the structure of the battery, for example, it may be formed into a plate shape, a sheet shape, a cylindrical shape, or the like.
 本発明では、酸化物系固体電解質成形体の表面に正極材を形成する前に、当該成形体の負極側の面、すなわち正極材を形成する面の反対側の面にスパッタリングにより金の薄膜を予め形成しておくことが好ましい。その後に、電池セルを組み立てる際に金薄膜と負極である金属リチウムを貼り合わせ、好ましくは60~170℃、より好ましくは100~140℃で加熱することにより、金属リチウムと金が合金化し、負極と固体電解質間の界面抵抗を低減することができる。 In the present invention, before forming the positive electrode material on the surface of the oxide-based solid electrolyte molded body, a thin gold film is formed by sputtering on the surface on the negative electrode side of the molded body, that is, the surface opposite to the surface on which the positive electrode material is formed. It is preferable to form it in advance. Thereafter, when assembling the battery cell, the gold thin film and the metal lithium as the negative electrode are bonded together, and preferably heated at 60 to 170 ° C., more preferably 100 to 140 ° C., so that the metal lithium and gold are alloyed, and the negative electrode And the interface resistance between the solid electrolyte can be reduced.
 実用上は、金のスパッタを行わずに、酸化物系固体電解質成形体の負極側の面にリチウム箔などの金属リチウムを貼り付け、その後に金属リチウムを加熱し、必要により押圧する方法が好ましい。これにより負極と固体電解質間の接触性(密着性)が向上し、界面抵抗を低減することができる。
 上記の場合、酸化物系固体電解質成形体上に正極を形成した後に、酸化物系固体電解質成形体の正極とは反対側の面にリチウム箔を貼り付け加熱処理を行うことが好ましい。あるいは、酸化物系固体電解質にリチウム箔を貼り付け加熱処理を行った後に、酸化物固体電解質のリチウム箔を貼り付けた面と反対側の面上に正極を形成することもできる。加熱処理温度は、リチウム箔が軟化する温度であれば特に限定されない。好ましくは60~170℃、より好ましくは100~140℃である。
Practically, a method is preferred in which metal lithium such as a lithium foil is attached to the negative electrode side surface of the oxide-based solid electrolyte molded body without gold sputtering, and then the metal lithium is heated and pressed if necessary. . Thereby, the contact property (adhesion) between the negative electrode and the solid electrolyte is improved, and the interface resistance can be reduced.
In the above case, after forming the positive electrode on the oxide-based solid electrolyte molded body, it is preferable to perform heat treatment by attaching a lithium foil to the surface of the oxide-based solid electrolyte molded body on the side opposite to the positive electrode. Alternatively, after the lithium foil is attached to the oxide solid electrolyte and heat treatment is performed, the positive electrode can be formed on the surface opposite to the surface on which the lithium foil of the oxide solid electrolyte is attached. The heat treatment temperature is not particularly limited as long as the lithium foil is softened. The temperature is preferably 60 to 170 ° C, more preferably 100 to 140 ° C.
 固体電解質の負極側に金をスパッタリングした後、反対側の面に、正極形成部分を切り抜いたポリイミドテープをマスキングテープとして貼付する。尚、マスキングテープは、スラリー溶媒に不溶で、後記の真空乾燥時に溶融しないポリマーであればよく、ポリイミドに限定されるものではない。 After sputtering gold on the negative electrode side of the solid electrolyte, a polyimide tape from which the positive electrode forming part has been cut out is attached to the opposite surface as a masking tape. In addition, the masking tape should just be a polymer which is insoluble in a slurry solvent, and does not melt | dissolve at the time of the vacuum drying mentioned later, and is not limited to a polyimide.
 マスキングテープの正極形成部分の形状や大きさは、形成後の正極が固体電解質の周囲にはみ出して短絡が生じないように、正極の周囲に少なくとも幅2mm程度のLLZ表面が残るような形状や大きさにするのが良い。例えば、直径が12mmのLLZの成形体であれば、直径8mm程度の円形の正極形成部分を有するポリイミドテープをマスキングテープとして用いるのが良い。 The shape and size of the positive electrode forming part of the masking tape is such that the LLZ surface of at least about 2 mm in width remains around the positive electrode so that the formed positive electrode does not protrude around the solid electrolyte and short circuit occurs. It is good to make it. For example, in the case of an LLZ molded body having a diameter of 12 mm, a polyimide tape having a circular positive electrode forming portion having a diameter of about 8 mm may be used as a masking tape.
 次いで、ポリイミドテープの正極形成部分に、適当量の正極スラリーを載置し、ヘラやガラス板等を用いて摺り切りして平らになるように広げた後、真空乾燥により正極スラリー中の溶媒を除去する。溶媒を除去後、ポリイミドテープを剥がして取り除き、LLZ成形体上に密着した状態の正極材を作製することができる。 Next, an appropriate amount of the positive electrode slurry is placed on the positive electrode forming portion of the polyimide tape, and is spread using a spatula or glass plate so that it is flattened, and then the solvent in the positive electrode slurry is removed by vacuum drying. Remove. After removing the solvent, the polyimide tape is peeled off and the positive electrode material in a state of being in close contact with the LLZ compact can be produced.
 塗布する正極スラリーの厚さは、ポリイミドテープの厚みと同じになるので、形成する正極材の重さあるいは厚みは、用いるポリイミドテープの厚みを変えることで調整することができる。 Since the thickness of the positive electrode slurry to be applied is the same as the thickness of the polyimide tape, the weight or thickness of the positive electrode material to be formed can be adjusted by changing the thickness of the polyimide tape to be used.
 真空乾燥の条件は、特に限定されないが、正極スラリー中の溶媒を急激に蒸発させるとLLZ成形体の表面への正極材の緊密な接着を阻害する恐れがある。70~90℃程度の温度で行うのが良い。時間は10~15時間程度である。 The conditions for vacuum drying are not particularly limited, but if the solvent in the positive electrode slurry is rapidly evaporated, the close adhesion of the positive electrode material to the surface of the LLZ compact may be hindered. The temperature is preferably about 70 to 90 ° C. The time is about 10 to 15 hours.
 正極スラリーの調整方法は、公知の方法で行うことができ、所定量の硫黄と所定量の導電性カーボンブラックなどの導電材を粉砕しながら混合した後、所定量のポリフッ化ビニリデンなどのバインダー粉末もしくは溶液、ならびに所定量のイオン液体もしくは溶媒和イオン液体を加え、溶媒を徐々に加えながら掻き混ぜることでスラリー化することができる。 The positive electrode slurry can be prepared by a known method. A predetermined amount of sulfur and a predetermined amount of conductive material such as conductive carbon black are mixed while being pulverized, and then a predetermined amount of binder powder such as polyvinylidene fluoride. Alternatively, a solution and a predetermined amount of ionic liquid or solvated ionic liquid can be added, and the mixture can be slurried by gradually adding the solvent.
 溶媒としては、リチウムイオン電池用の公知の溶媒を用いることができる。例えば、N-メチル-2-ピロリドン、ジメチルアセトアミドなどのアミド系溶媒、N,N-ジメチルアミノプロピルアミン、ジエチレントリアミンなどのアミン系溶媒、メチルエチルケトンなどのケトン系溶媒、酢酸エステルなどのエステル系溶媒、テトラヒドロフランなどのエーテル系溶媒、トルエン、キシレン、n-ヘキサン、シクロヘキサンなどの炭化水素系溶媒などが挙げられる。 As the solvent, a known solvent for lithium ion batteries can be used. For example, amide solvents such as N-methyl-2-pyrrolidone and dimethylacetamide, amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine, ketone solvents such as methyl ethyl ketone, ester solvents such as acetate ester, tetrahydrofuran And ether solvents such as toluene, hydrocarbon solvents such as toluene, xylene, n-hexane and cyclohexane.
 これらの溶媒の使用量は特に限定されない。正極スラリーが、ガラス棒などを用いてLLZ成形体の正極形成部分に移せる程度の流動性を有し、かつ正極形成部分に移した後流れて広がることなく留まる程度の粘度を示す量を用いれば良い。 The amount of these solvents used is not particularly limited. If the positive electrode slurry has such a fluidity that it can be transferred to the positive electrode forming portion of the LLZ compact using a glass rod or the like, and an amount showing a viscosity that does not flow and spread after being transferred to the positive electrode forming portion is used. good.
 市販のコイン型の電池セル容器などを用いて、セル容器の下蓋の上に負極となるリチウム箔を置き、リチウム箔に対して、正極形成部分と反対側の面を合せるようにLLZ成形体を載置する。次いで、LLZ成形体の正極の上に、正極集電体となるステンレス箔やアルミ箔などの金属箔を載置することで電池セルを組み立て、セル容器の上蓋を被せて電池を完成させる。 Using a commercially available coin-type battery cell container or the like, a lithium foil as a negative electrode is placed on the lower lid of the cell container, and the LLZ molded body is aligned with the surface opposite to the positive electrode forming part with respect to the lithium foil. Is placed. Next, a battery cell is assembled by placing a metal foil such as a stainless steel foil or an aluminum foil as a positive electrode current collector on the positive electrode of the LLZ molded body, and a battery container is completed by covering the upper lid of the cell container.
 本発明の全固体リチウム硫黄電池では、上記の正極と負極の間に、上記の固体電解質の層が介在する。
 負極としては、リチウムイオンを吸蔵放出する材料を負極活物質として含有するものであれば特に限定されない。例えば、リチウム箔などのリチウム金属、リチウムとアルミニウムやシリコン、スズ、マグネシウムなどとの合金であるリチウム合金の他、リチウムイオンを吸蔵放出できる金属酸化物、金属硫化物、炭素材料などが挙げられる。その中でも、理論容量密度が高く、取り扱いが容易で電池セルを組み立て易いことからリチウム金属が好ましい。
 集電体としては、例えば、銅、アルミニウム、ニッケル、ステンレスなどの金属を用いることができる。負極集電体および正極集電体としては、安価であることから、ステンレス箔やアルミニウム箔などが好ましい。
In the all solid lithium-sulfur battery of the present invention, the solid electrolyte layer is interposed between the positive electrode and the negative electrode.
The negative electrode is not particularly limited as long as it contains a material that absorbs and releases lithium ions as a negative electrode active material. For example, a lithium metal such as a lithium foil, a lithium alloy that is an alloy of lithium and aluminum, silicon, tin, magnesium, or the like, a metal oxide that can occlude and release lithium ions, a metal sulfide, a carbon material, and the like can be given. Among them, lithium metal is preferable because it has a high theoretical capacity density, is easy to handle, and is easy to assemble a battery cell.
As the current collector, for example, a metal such as copper, aluminum, nickel, and stainless steel can be used. As the negative electrode current collector and the positive electrode current collector, stainless steel foil or aluminum foil is preferable because it is inexpensive.
 上記全固体リチウム硫黄電池は、上述した正極材、正極集電体、固体電解質、負極材、負極集電体のほか、セパレータなどを有していても良い。全固体リチウム硫黄電池の形状は特に限定されるものではなく、例えば、コイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型などが挙げられる。 The all-solid-state lithium-sulfur battery may have a separator in addition to the positive electrode material, the positive electrode current collector, the solid electrolyte, the negative electrode material, and the negative electrode current collector described above. The shape of the all-solid-state lithium-sulfur battery is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, and a square type.
 本発明の全固体リチウム硫黄電池は、正極材がイオン液体もしくは溶媒和イオン液体を含有し、前記イオン液体もしくは溶媒和イオン液体が良好なリチウムイオン伝導性を有するため、作動温度が110℃以下である。作動温度が110℃以下のため、イオン液体や溶媒和イオン液体が蒸発することがない。イオン液体や溶媒和イオン液体は、燃えない電解液であり引火性もない。このように、作動温度が低いことにより、未使用時の電池保温が容易になり、最終的な電池システムとしての充放電効率が向上する。従来のナトリウム硫黄電池は、作動温度が高く、作動温度が高くなるほど電池保温のための熱エネルギーが必要になり、トータル効率が低下するのに対し、本発明の全固体リチウム硫黄電池は、火災の危険も極めて少なく安全性に優れ、耐久性、電池の安全性、サイクル安全性が向上する。 In the all-solid-state lithium-sulfur battery of the present invention, since the positive electrode material contains an ionic liquid or a solvated ionic liquid and the ionic liquid or solvated ionic liquid has good lithium ion conductivity, the operating temperature is 110 ° C. or lower. is there. Since the operating temperature is 110 ° C. or lower, the ionic liquid and the solvated ionic liquid do not evaporate. Ionic liquids and solvated ionic liquids are nonflammable electrolytes and are not flammable. As described above, since the operating temperature is low, it is easy to keep the battery warm when not in use, and the charge / discharge efficiency as the final battery system is improved. The conventional sodium-sulfur battery has a high operating temperature, and the higher the operating temperature, the more heat energy is required to keep the battery warm, and the total efficiency decreases. There is very little danger and it is excellent in safety, and durability, battery safety and cycle safety are improved.
 本発明の全固体リチウム硫黄電池は、その用途は特に限定されない。例えば、ハイブリッド自動車、電気自動車、電力貯蔵などに好適に用いることができる。
 本発明の全固体リチウム硫黄電池を用いて電力を貯蔵することにより、前記全固体リチウム硫黄電池から電力網に電力が供給される電力システムが構築される。あるいは、火力発電、水力発電、揚水発電、原子力発電の他、太陽光発電や風力発電などの自然エネルギー発電を電力源とする電力網から、前記全固体リチウム硫黄電池に電力が供給される電力システムが構築される。
The use of the all solid lithium lithium battery of the present invention is not particularly limited. For example, it can be suitably used for hybrid vehicles, electric vehicles, power storage, and the like.
By storing power using the all-solid-state lithium-sulfur battery of the present invention, a power system is constructed in which power is supplied from the all-solid-state lithium-sulfur battery to the power grid. Or, in addition to thermal power generation, hydroelectric power generation, pumped-storage power generation, nuclear power generation, a power system that supplies power to the all-solid-state lithium-sulfur battery from a power network that uses natural energy power generation such as solar power generation and wind power generation as a power source. Built.
 以下、本発明を実施例により具体的に説明するが、本発明は以下の実施例のみに限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to the following examples.
(製造例1)
 水酸化ランタン(純度99.9%、信越化学工業製)33.9gおよび酸化ジルコニウム(東ソー製)14.7gを秤量し、ボールミルで1時間粉砕しながら混合した。得られた粉体0.26gを秤り取り、所定の大きさの金型ダイスに投入し、一軸プレス機で成形して、直径13mm、厚さ1mmの板状成形体を10個作製した。作製した10個の板状成形体を、それぞれ焼成用セラミック容器に移し、電気炉を用いて1500℃で36時間焼成した後自然放冷し、板状のランタン-ジルコニウム酸化物成形体を得た。
 別途、水酸化リチウム(関東化学製)2.8gを30mlの水に溶解してリチウム水溶液を調製しておき、調製したリチウム水溶液の1.0mlを秤り取り、板状のランタン-ジルコニウム酸化物の入った焼成用セラミック容器のそれぞれに添加した。
 次いで焼成用セラミック容器をマイクロ波焼成炉に移し、マイクロ波を照射して炉内温度400℃で36時間焼成し、直径12mm、厚さ約0.5mmの板状リチウム-ランタン-ジルコニウム複合酸化物成形体(LLZ成形体)を得た。
(Production Example 1)
33.9 g of lanthanum hydroxide (purity 99.9%, manufactured by Shin-Etsu Chemical Co., Ltd.) and 14.7 g of zirconium oxide (manufactured by Tosoh Corp.) were weighed and mixed while pulverizing with a ball mill for 1 hour. 0.26 g of the obtained powder was weighed, put into a die having a predetermined size, and molded by a single screw press machine to produce 10 plate-shaped compacts having a diameter of 13 mm and a thickness of 1 mm. The produced 10 plate-like molded bodies were each transferred to a firing ceramic container, fired at 1500 ° C. for 36 hours using an electric furnace, and then allowed to cool naturally to obtain a plate-like lanthanum-zirconium oxide molded body. .
Separately, 2.8 g of lithium hydroxide (manufactured by Kanto Kagaku) was dissolved in 30 ml of water to prepare a lithium aqueous solution, 1.0 ml of the prepared lithium aqueous solution was weighed, and a plate-like lanthanum-zirconium oxide was obtained. Was added to each of the firing ceramic containers.
Next, the ceramic container for firing is transferred to a microwave firing furnace, irradiated with microwaves and fired at a furnace temperature of 400 ° C. for 36 hours, and a plate-like lithium-lanthanum-zirconium composite oxide having a diameter of 12 mm and a thickness of about 0.5 mm. A molded body (LLZ molded body) was obtained.
(実施例1)
 製造例1で作製した板状LLZ成形体の1つを用いて、負極側とする面に金をスパッタリングした後、反対側の面に正極材を形成した。正極材の形成は以下のようにして実施した。
Example 1
Using one of the plate-like LLZ compacts produced in Production Example 1, gold was sputtered on the negative electrode side, and then the positive electrode material was formed on the opposite side. The positive electrode material was formed as follows.
 ポリイミドテープ(厚さ0.09mm)の中心部を同心円状に直径8mmの円形に切り取ったマスキングテープを作成し、LLZ成形体の正極側となる面に貼り付け、マスキングテープで囲まれた直径8mmの円形部分を正極形成部とした。 Make a masking tape by concentrically cutting the center part of polyimide tape (thickness 0.09mm) into a circle with a diameter of 8mm, and sticking it on the positive electrode side of the LLZ molded body. The circular part was used as a positive electrode forming part.
 一方、硫黄1.00gをメノウ乳鉢に秤り取り粉砕した。次いで、ケッチェンブラック(比表面積1270m/g、ライオン株式会社製、EC-600JD)0.50gを秤り取って添加し、30分間混合した後、155℃で6時間乾燥して、硫黄とケッチェンブラックの混合物を得た。その0.180gをメノウ乳鉢に秤り取り、グローブボックス内に搬入し、KFポリマー(12質量%のポリフッ化ピニリデンを含有するN-メチル-2-ピロリドン溶液、クレハ社製)0.167g、および[Li(G4)][FSI](テトラグライム(キシダ化学社製)に等モルのリチウム-ビス(フルオロスルホニル)イミド(LiFSI)(キシダ化学社製)を溶かした液)0.030gを加えた後、マイクロピペットを用いてN-メチル-2-ピロリドンを少しずつ加えながら混合し、スラリーを調製した。添加したN-メチル-2-ピロリドンの合計量は1.0mlであった。 On the other hand, 1.00 g of sulfur was weighed in an agate mortar and ground. Next, 0.50 g of ketjen black (specific surface area 1270 m 2 / g, manufactured by Lion Corporation, EC-600JD) was weighed and added, mixed for 30 minutes, dried at 155 ° C. for 6 hours, A mixture of ketjen black was obtained. 0.180 g of this was weighed into an agate mortar, carried into a glove box, 0.167 g of KF polymer (N-methyl-2-pyrrolidone solution containing 12% by mass of polyvinylidene fluoride, manufactured by Kureha), and [Li (G4)] [FSI] (a solution obtained by dissolving equimolar lithium-bis (fluorosulfonyl) imide (LiFSI) (manufactured by Kishida Chemical Co.) in tetraglyme (manufactured by Kishida Chemical Co.) was added. Then, N-methyl-2-pyrrolidone was added little by little using a micropipette and mixed to prepare a slurry. The total amount of N-methyl-2-pyrrolidone added was 1.0 ml.
 調製したスラリーをガラス棒の先に取り、LLZ成形体の正極形成部の中央部に塗布し、スライドガラスの端面でスラリーを摺り切りながら2、3度往復させて、スラリーが正極形成部全体に平らでかつ均等に行き渡るように押し広げた。次いで、真空乾燥機を用いて80℃で一昼夜乾燥してN-メチル-2-ピロリドンならびにKFポリマーに含まれる溶媒N-メチル-2-ピロリドンを完全に除去した後、マスキングテープを剥がし、LLZ成形体上に正極材を作製した。正極材形成前後のLLZ成形体の質量差から求めた正極材の量は、0.00075gであった。 Take the prepared slurry at the tip of a glass rod, apply it to the center of the positive electrode forming part of the LLZ compact, and reciprocate it two or three times while scraping the slurry on the end face of the slide glass. It was spread out evenly and evenly. Next, it was dried overnight at 80 ° C. using a vacuum dryer to completely remove N-methyl-2-pyrrolidone and the solvent N-methyl-2-pyrrolidone contained in the KF polymer, and then the masking tape was peeled off to form LLZ. A positive electrode material was produced on the body. The amount of the positive electrode material determined from the mass difference between the LLZ compacts before and after the formation of the positive electrode material was 0.00075 g.
(実施例2)
 実施例1で作成した正極材を用いて以下のコイン型電池を組み立てた。
 市販のコイン型電池セル容器を用いて、下蓋にリング状のガスケットをはめ込み、下蓋の上にワッシャー(材質はステンレス)を置き、負極集電体としてスペーサー(材質ステンレス、外径15mm、厚さ0.3mmの円盤状)を載せ、スペーサー上に負極としてリチウム箔(直径8mm、厚さ600μm)を載置、次いで金のスパッタ層がリチウム箔上に重なるようにLLZ成形体を載置した後、120℃で加熱してリチウム箔をLLZ成形体に密着させた。LLZ成形体の正極材の上に、正極集電体としてステンレス箔(直径8mm、厚さ20μm)を載せ、上蓋を閉じて電池セルを組み立てた。
(Example 2)
The following coin-type battery was assembled using the positive electrode material prepared in Example 1.
Using a commercially available coin-type battery cell container, fit a ring-shaped gasket on the lower lid, place a washer (material is stainless steel) on the lower lid, and a spacer (material stainless steel, outer diameter 15 mm, thickness) as a negative electrode current collector And a lithium foil (diameter 8 mm, thickness 600 μm) as a negative electrode was placed on the spacer, and then a LLZ molded body was placed so that the sputtered gold layer was superimposed on the lithium foil. Then, it heated at 120 degreeC and the lithium foil was stuck to the LLZ molded object. A stainless steel foil (diameter 8 mm, thickness 20 μm) was placed on the positive electrode material of the LLZ compact as a positive electrode current collector, and the upper lid was closed to assemble a battery cell.
 当該電池セルを100℃で12時間保管した後、充放電試験を実施した。充放電試験の条件は、電圧は1.0V~3.5Vとし、3サイクルまでは10μA(1/30C)で、充放電4サイクル以降は2μA(1/150c)で6サイクルまで試験を実施した。3サイクルまでの結果を図1に、4~6サイクルの結果を図2示す。 The battery cell was stored at 100 ° C. for 12 hours, and then a charge / discharge test was performed. The conditions of the charge / discharge test were as follows: the voltage was 1.0 V to 3.5 V, 10 μA (1/30 C) up to 3 cycles, and 2 μA (1/150 c) after 4 cycles of charge and discharge up to 6 cycles. . The results up to 3 cycles are shown in FIG. 1, and the results of 4 to 6 cycles are shown in FIG.
(比較例1)
 [Li(G4)][FSI]を用いないこと以外は実施例1と同様にして、LLZ成形体上に正極材を作製した。
(Comparative Example 1)
A positive electrode material was produced on the LLZ molded body in the same manner as in Example 1 except that [Li (G4)] [FSI] was not used.
(比較例2)
 比較例1の正極材を用いて、実施例2と同様にしてコイン型電池を組み立て、充放電試験を実施した。結果を図3に示す。
(Comparative Example 2)
Using the positive electrode material of Comparative Example 1, a coin-type battery was assembled in the same manner as in Example 2, and a charge / discharge test was performed. The results are shown in FIG.
 図3より、[Li(G4)][FSI]を加えない比較例の正極材を用いたコイン型電池は、初期放電容量は250mAh/g程度を示すが、初期放電時の電圧は一定せず、平坦な放電曲線を示さないため、安定な放電状態を示さないと言える。 From FIG. 3, the coin type battery using the positive electrode material of the comparative example without adding [Li (G4)] [FSI] shows an initial discharge capacity of about 250 mAh / g, but the voltage at the initial discharge is not constant. It can be said that a stable discharge state is not shown because a flat discharge curve is not shown.
 これに対して、本発明の正極材を用いたコイン型電池は、400mAh/g程度の充放電容量を有しており、正極材中に[Li(G4)][FSI]を加えない比較例のコイン型電池より大きな容量を有することが判る。 On the other hand, the coin-type battery using the positive electrode material of the present invention has a charge / discharge capacity of about 400 mAh / g, and does not add [Li (G4)] [FSI] to the positive electrode material. It can be seen that it has a larger capacity than the coin type battery.
 そして、図1および図2に示すように、本発明の正極材を用いたコイン型電池は、6サイクル目まで略400mAh/g程度の充放電容量を示すとともに、いずれの充放電サイクルでも、電圧が変化せず安定な充放電状態であることを示す充放電プラトー領域が認められ、良好な充放電サイクル特性を有することが判る。この放電容量増加と放電電位の安定は、溶媒和イオン液体の効果であると言える。 As shown in FIGS. 1 and 2, the coin-type battery using the positive electrode material of the present invention exhibits a charge / discharge capacity of about 400 mAh / g up to the sixth cycle, and in any charge / discharge cycle, the voltage The charge / discharge plateau area | region which shows that it is a stable charging / discharging state is recognized without changing, and it turns out that it has favorable charging / discharging cycling characteristics. It can be said that the increase in the discharge capacity and the stability of the discharge potential are the effects of the solvated ionic liquid.
 本発明によれば、充放電を繰り返すことによる電池性能の低下が抑えられるため、安全性、サイクル特性に優れ、かつエネルギー密度の高いリチウム硫黄固体電池を提供することが可能になる。 According to the present invention, it is possible to provide a lithium-sulfur solid state battery excellent in safety and cycle characteristics and having a high energy density because a decrease in battery performance due to repeated charge and discharge is suppressed.

Claims (23)

  1.  硫黄、導電材、バインダーおよびイオン液体もしくは溶媒和イオン液体を含有することを特徴とするリチウム硫黄固体電池用正極材。 A positive electrode material for a lithium-sulfur solid battery comprising sulfur, a conductive material, a binder, and an ionic liquid or a solvated ionic liquid.
  2.  前記イオン液体がリチウム塩を含有する請求項1に記載のリチウム硫黄固体電池用正極材。 The positive electrode material for a lithium-sulfur solid battery according to claim 1, wherein the ionic liquid contains a lithium salt.
  3.  前記溶媒和イオン液体が、リチウム塩とグライムとからなる請求項1に記載のリチウム硫黄固体電池用正極材。 The positive electrode material for a lithium-sulfur solid battery according to claim 1, wherein the solvated ionic liquid comprises a lithium salt and glyme.
  4.  前記リチウム塩が、リチウム-ビス(フルオロスルホニル)イミドおよびリチウム-ビス(トリフルオロメタンスルホニル)イミドから選ばれる少なくとも1種であり、前記グライムがトリグライムおよびテトラグライムから選ばれる少なくとも1種である請求項3に記載のリチウム硫黄固体電池用正極材。 4. The lithium salt is at least one selected from lithium-bis (fluorosulfonyl) imide and lithium-bis (trifluoromethanesulfonyl) imide, and the glyme is at least one selected from triglyme and tetraglyme. The positive electrode material for lithium-sulfur solid batteries described in 1.
  5.  前記導電材が、導電性カーボンブラックである請求項1~4のいずれかに記載のリチウム硫黄固体電池用正極材。 The positive electrode material for a lithium-sulfur solid battery according to any one of claims 1 to 4, wherein the conductive material is conductive carbon black.
  6.  前記バインダーが、ポリフッ化ビニリデンである請求項1~5のいずれかに記載のリチウム硫黄固体電池用正極材。 The positive electrode material for a lithium-sulfur solid battery according to any one of claims 1 to 5, wherein the binder is polyvinylidene fluoride.
  7.  前記正極材における各成分の比率は、硫黄、導電材、バインダーおよびイオン液体もしくは溶媒和イオン液体が、それぞれ、45~60質量%、20~35質量%、0.1~10質量%、10~20質量%である請求項1~6のいずれかに記載のリチウム硫黄固体電池用正極材。  The ratio of each component in the positive electrode material is 45 to 60 mass%, 20 to 35 mass%, 0.1 to 10 mass%, 10 to 10 mass% for sulfur, conductive material, binder and ionic liquid or solvated ionic liquid, respectively. The positive electrode material for a lithium-sulfur solid battery according to any one of claims 1 to 6, which is 20 mass%. *
  8.  硫黄、導電材、バインダーおよびイオン液体もしくは溶媒和イオン液体を含有するリチウム硫黄固体電池用正極材の製造方法であって、
     酸化物系固体電解質成形体の片面に、正極を形成する部分を残してマスキングテープを貼付するステップと、
     前記酸化物系固体電解質成形体の正極を形成する部分に、硫黄、導電材、バインダーおよびイオン液体もしくは溶媒和イオン液体を含有する正極スラリーを塗布し、均一に押し広げるステップと、
     前記正極スラリーを真空乾燥して固化させた後、マスキングテープを取り除いて、酸化物系固体電解質成形体上に正極を形成するステップと、
    を含むことを特徴とするリチウム硫黄固体電池用正極材の製造方法。
    A method for producing a positive electrode material for a lithium-sulfur solid battery containing sulfur, a conductive material, a binder and an ionic liquid or a solvated ionic liquid,
    A step of applying a masking tape on one side of the oxide-based solid electrolyte molded body, leaving a portion for forming a positive electrode;
    Applying a positive electrode slurry containing sulfur, a conductive material, a binder and an ionic liquid or a solvated ionic liquid to a portion of the oxide-based solid electrolyte molded body forming the positive electrode, and uniformly spreading the step;
    After the positive electrode slurry is vacuum dried and solidified, the masking tape is removed and a positive electrode is formed on the oxide-based solid electrolyte formed body; and
    The manufacturing method of the positive electrode material for lithium sulfur solid batteries characterized by including.
  9.  前記正極スラリーが、硫黄と導電材を粉砕混合した後、バインダー溶液およびイオン液体もしくは溶媒和イオン液体を加え、さらに溶媒を添加してスラリー化したものである請求項8に記載のリチウム硫黄固体電池用正極材の製造方法。 The lithium-sulfur solid battery according to claim 8, wherein the positive electrode slurry is obtained by pulverizing and mixing sulfur and a conductive material, and then adding a binder solution and an ionic liquid or a solvated ionic liquid, and further adding a solvent to form a slurry. Method for manufacturing positive electrode material.
  10.  前記正極スラリーの前記溶媒を除く不揮発分が、硫黄:45~60質量%、導電材:20~35質量%、バインダー:0.1~10質量%、イオン液体もしくは溶媒和イオン液体:10~20質量%で構成される請求項8または9に記載のリチウム硫黄固体電池用正極材の製造方法。 Nonvolatile content of the positive electrode slurry excluding the solvent is sulfur: 45 to 60% by mass, conductive material: 20 to 35% by mass, binder: 0.1 to 10% by mass, ionic liquid or solvated ionic liquid: 10 to 20 The manufacturing method of the positive electrode material for lithium sulfur solid batteries of Claim 8 or 9 comprised by the mass%.
  11.  前記イオン液体がリチウム塩を含有する請求項8~10のいずれかに記載のリチウム硫黄固体電池用正極材の製造方法。 The method for producing a positive electrode material for a lithium-sulfur solid battery according to any one of claims 8 to 10, wherein the ionic liquid contains a lithium salt.
  12.  前記溶媒和イオン液体が、リチウム-ビス(フルオロスルホニル)イミドおよびリチウム-ビス(トリフルオロメタンスルホニル)イミドから選ばれる少なくとも1種と、トリグライムおよびテトラグライムから選ばれる少なくとも1種とからなる請求項8~10のいずれかに記載のリチウム硫黄固体電池用正極材の製造方法。 The solvated ionic liquid comprises at least one selected from lithium-bis (fluorosulfonyl) imide and lithium-bis (trifluoromethanesulfonyl) imide, and at least one selected from triglyme and tetraglyme. The manufacturing method of the positive electrode material for lithium sulfur solid batteries in any one of 10.
  13.  前記導電材が、導電性カーボンブラックである請求項8~12のいずれかに記載のリチウム硫黄固体電池用正極材の製造方法。 The method for producing a positive electrode material for a lithium-sulfur solid battery according to any one of claims 8 to 12, wherein the conductive material is conductive carbon black.
  14.  前記バインダーが、ポリフッ化ビニリデンである請求項8~13のいずれかに記載のリチウム硫黄固体電池用正極材の製造方法。 The method for producing a positive electrode material for a lithium-sulfur solid battery according to any one of claims 8 to 13, wherein the binder is polyvinylidene fluoride.
  15.  前記酸化物系固体電解質が、リチウム-ランタン-ジルコニウム複合酸化物からなる請求項8~14のいずれかに記載のリチウム硫黄固体電池用正極材の製造方法。 The method for producing a positive electrode material for a lithium-sulfur solid battery according to any one of claims 8 to 14, wherein the oxide-based solid electrolyte comprises a lithium-lanthanum-zirconium composite oxide.
  16.  請求項1~7のいずれかに記載の正極材からなる正極と、リチウム金属を含有する負極と、正極と負極の間に介在する酸化物系固体電解質の層とを有する全固体リチウム硫黄電池。 An all-solid lithium-sulfur battery comprising a positive electrode comprising the positive electrode material according to any one of claims 1 to 7, a negative electrode containing lithium metal, and an oxide-based solid electrolyte layer interposed between the positive electrode and the negative electrode.
  17.  酸化物系固体電解質が、リチウム-ランタン-ジルコニウム複合酸化物である請求項16に記載の全固体リチウム硫黄電池。 The all-solid-state lithium-sulfur battery according to claim 16, wherein the oxide-based solid electrolyte is a lithium-lanthanum-zirconium composite oxide.
  18.  リチウム-ランタン-ジルコニウム複合酸化物が、さらにアルミニウム、タンタル、ニオブおよびビスマスから選ばれる1種以上の元素を含有する複合酸化物である請求項17に記載の全固体リチウム硫黄電池。 The all-solid-state lithium-sulfur battery according to claim 17, wherein the lithium-lanthanum-zirconium composite oxide is a composite oxide further containing one or more elements selected from aluminum, tantalum, niobium and bismuth.
  19.  作動温度が110℃以下である請求項16~18のいずれかに記載の全固体リチウム硫黄電池。 The all-solid-state lithium-sulfur battery according to any one of claims 16 to 18, wherein the operating temperature is 110 ° C or lower.
  20.  請求項8~15のいずれかに記載の方法により製造されたリチウム硫黄固体電池用正極材からなる正極と、リチウム金属を含有する負極と、正極と負極の間に介在する酸化物系固体電解質の層とを有する全固体リチウム硫黄電池。 A positive electrode comprising a positive electrode material for a lithium-sulfur solid battery produced by the method according to any one of claims 8 to 15, a negative electrode containing lithium metal, and an oxide-based solid electrolyte interposed between the positive electrode and the negative electrode. And an all solid lithium sulfur battery.
  21.  請求項16~20のいずれかに記載の全固体リチウム硫黄電池を搭載した自動車。 An automobile equipped with the all-solid-state lithium-sulfur battery according to any one of claims 16 to 20.
  22.  請求項16~20のいずれかに記載の全固体リチウム硫黄電池から電力網に電力が供給され、または、前記全固体リチウム硫黄電池に電力網から電力が供給される電力貯蔵システム。 21. A power storage system in which power is supplied from the all-solid-state lithium-sulfur battery according to claim 16 to a power network, or power is supplied to the all-solid-state lithium-sulfur battery from the power network.
  23.  酸化物系固体電解質成形体の片面に負極金属を貼り合わせ加熱処理するステップと、
     前記酸化物系固体電解質成形体の負極を形成した面と反対側の面に、正極を形成する部分を残してマスキングテープを貼付するステップと、
     前記酸化物系固体電解質成形体の正極を形成する部分に、硫黄、導電材、バインダーおよびイオン液体もしくは溶媒和イオン液体を含有する正極スラリーを塗布し、均一に押し広げるステップと、
     前記正極スラリーを真空乾燥して固化させた後、マスキングテープを取り除いて、酸化物系固体電解質成形体上に正極を形成するステップと、
    を含むことを特徴とするリチウム硫黄固体電池の製造方法。
     
    Bonding a negative electrode metal to one side of the oxide-based solid electrolyte molded body and heat-treating;
    Applying a masking tape to the surface opposite to the surface on which the negative electrode of the oxide-based solid electrolyte formed body is formed, leaving a portion for forming the positive electrode;
    Applying a positive electrode slurry containing sulfur, a conductive material, a binder and an ionic liquid or a solvated ionic liquid to a portion of the oxide-based solid electrolyte molded body forming the positive electrode, and uniformly spreading the step;
    After the positive electrode slurry is vacuum dried and solidified, the masking tape is removed and a positive electrode is formed on the oxide-based solid electrolyte formed body; and
    A method for producing a lithium-sulfur solid state battery comprising:
PCT/JP2017/009359 2016-03-11 2017-03-09 Solid-state battery positive electrode material, production method for solid-state battery positive electrode material, all-solid-state lithium-sulfur battery using solid-state battery positive electrode material, and production method for all-solid-state lithium-sulfur battery using solid-state battery positive electrode material WO2017155012A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187026059A KR101939959B1 (en) 2016-03-11 2017-03-09 CELLULAR MATERIAL FOR SOLID BATTERY, PROCESS FOR PRODUCING THE SAME, AND ALL SOLID LITHIUM SULFATE BATTERY USING THE CELLULAR MATERIAL FOR SOLID CELL
CN201780016376.3A CN108780880B (en) 2016-03-11 2017-03-09 Positive electrode material for lithium-sulfur solid-state battery and manufacturing method thereof
US16/082,413 US10686186B2 (en) 2016-03-11 2017-03-09 Solid-state battery positive electrode material, production method for solid-state battery positive electrode material, all-solid-state lithium-sulfur battery using solid-state battery positive electrode material, and production method for all-solid-state lithium-sulfur battery using solid-state battery positive electrode material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-048272 2016-03-11
JP2016048272 2016-03-11
JP2017-034653 2017-02-27
JP2017034653A JP6385486B2 (en) 2016-03-11 2017-02-27 POSITIVE MATERIAL FOR SOLID BATTERY AND METHOD FOR MANUFACTURING THE SAME

Publications (1)

Publication Number Publication Date
WO2017155012A1 true WO2017155012A1 (en) 2017-09-14

Family

ID=59789597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009359 WO2017155012A1 (en) 2016-03-11 2017-03-09 Solid-state battery positive electrode material, production method for solid-state battery positive electrode material, all-solid-state lithium-sulfur battery using solid-state battery positive electrode material, and production method for all-solid-state lithium-sulfur battery using solid-state battery positive electrode material

Country Status (1)

Country Link
WO (1) WO2017155012A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139580A1 (en) * 2017-01-30 2018-08-02 公立大学法人首都大学東京 Electrode composition, electrode, production method for said electrode, and battery
CN109921090A (en) * 2019-03-08 2019-06-21 山东大学 A kind of all solid state full battery of lithium ion and preparation method thereof
JP2020038771A (en) * 2018-09-03 2020-03-12 トヨタ自動車株式会社 Positive electrode active material layer for solid-state battery
CN111781253A (en) * 2020-06-19 2020-10-16 国联汽车动力电池研究院有限责任公司 Device and method for measuring desolvation activation energy of lithium ions in electrolyte
CN113488691A (en) * 2021-06-01 2021-10-08 北京科技大学 Method for improving interface between solid-state lithium battery anode material and solid-state electrolyte
CN113991073A (en) * 2021-09-27 2022-01-28 杭州电子科技大学 Preparation method of lithium sulfide electrode material
CN114270559A (en) * 2019-08-22 2022-04-01 日本特殊陶业株式会社 Electrode for electricity storage device and electricity storage device
CN114843615A (en) * 2022-05-13 2022-08-02 电子科技大学 All-solid-state thick film lithium battery with alloy interface layer and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007520032A (en) * 2003-12-30 2007-07-19 エルジー・ケム・リミテッド Positive electrode modified with ionic liquid and electrochemical device including the same
JP2007294429A (en) * 2006-03-30 2007-11-08 Ohara Inc Lithium ion conductive solid electrolyte and its manufacturing method
WO2008056585A1 (en) * 2006-11-07 2008-05-15 Sumitomo Bakelite Co., Ltd. Slurry for secondary battery electrode, secondary battery electrode, method for manufacturing secondary battery electrode, and secondary battery
JP2008218385A (en) * 2006-09-19 2008-09-18 Sony Corp Electrode, method for manufacturing the electrode, and battery
JP2009231829A (en) * 2008-02-29 2009-10-08 Sumitomo Chemical Co Ltd Ionic liquid-containing electrode membrane and electrode, process for producing them, and electric storage device
JP2011051855A (en) * 2009-09-03 2011-03-17 Ngk Insulators Ltd Method for producing ceramic material
US20130149585A1 (en) * 2011-12-09 2013-06-13 Nokia Corporation Mixture, a Slurry for an Electrode, a Battery Electrode, a Battery and Associated Methods
JP2013191547A (en) * 2012-02-14 2013-09-26 Nippon Shokubai Co Ltd Positive electrode mixture composition
JP2015011823A (en) * 2013-06-27 2015-01-19 住友電気工業株式会社 Lithium battery
JP2015146299A (en) * 2014-02-04 2015-08-13 東京電力株式会社 Method for producing solid electrolyte

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007520032A (en) * 2003-12-30 2007-07-19 エルジー・ケム・リミテッド Positive electrode modified with ionic liquid and electrochemical device including the same
JP2007294429A (en) * 2006-03-30 2007-11-08 Ohara Inc Lithium ion conductive solid electrolyte and its manufacturing method
JP2008218385A (en) * 2006-09-19 2008-09-18 Sony Corp Electrode, method for manufacturing the electrode, and battery
WO2008056585A1 (en) * 2006-11-07 2008-05-15 Sumitomo Bakelite Co., Ltd. Slurry for secondary battery electrode, secondary battery electrode, method for manufacturing secondary battery electrode, and secondary battery
JP2009231829A (en) * 2008-02-29 2009-10-08 Sumitomo Chemical Co Ltd Ionic liquid-containing electrode membrane and electrode, process for producing them, and electric storage device
JP2011051855A (en) * 2009-09-03 2011-03-17 Ngk Insulators Ltd Method for producing ceramic material
US20130149585A1 (en) * 2011-12-09 2013-06-13 Nokia Corporation Mixture, a Slurry for an Electrode, a Battery Electrode, a Battery and Associated Methods
JP2013191547A (en) * 2012-02-14 2013-09-26 Nippon Shokubai Co Ltd Positive electrode mixture composition
JP2015011823A (en) * 2013-06-27 2015-01-19 住友電気工業株式会社 Lithium battery
JP2015146299A (en) * 2014-02-04 2015-08-13 東京電力株式会社 Method for producing solid electrolyte

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAOKI TACHIKAWA ET AL.: "Charge-dscharge properties of lithium anode in Li [N (CF3SO2) 2] - glyme solvate ionic liquid electrolytes", ABSTRACTS, BATTERY SYMPOSIUM IN JAPAN DAI 55 KAI, YOSHIHARU UCHIMOTO (KOSHA) THE COMMITTEE OF BATTERY TECHNOLOGY, 2014, pages 373 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139580A1 (en) * 2017-01-30 2018-08-02 公立大学法人首都大学東京 Electrode composition, electrode, production method for said electrode, and battery
JP2020038771A (en) * 2018-09-03 2020-03-12 トヨタ自動車株式会社 Positive electrode active material layer for solid-state battery
CN109921090A (en) * 2019-03-08 2019-06-21 山东大学 A kind of all solid state full battery of lithium ion and preparation method thereof
CN114270559A (en) * 2019-08-22 2022-04-01 日本特殊陶业株式会社 Electrode for electricity storage device and electricity storage device
CN111781253A (en) * 2020-06-19 2020-10-16 国联汽车动力电池研究院有限责任公司 Device and method for measuring desolvation activation energy of lithium ions in electrolyte
CN113488691A (en) * 2021-06-01 2021-10-08 北京科技大学 Method for improving interface between solid-state lithium battery anode material and solid-state electrolyte
CN113991073A (en) * 2021-09-27 2022-01-28 杭州电子科技大学 Preparation method of lithium sulfide electrode material
CN113991073B (en) * 2021-09-27 2023-08-11 杭州电子科技大学 Preparation method of lithium sulfide electrode material
CN114843615A (en) * 2022-05-13 2022-08-02 电子科技大学 All-solid-state thick film lithium battery with alloy interface layer and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6385486B2 (en) POSITIVE MATERIAL FOR SOLID BATTERY AND METHOD FOR MANUFACTURING THE SAME
WO2017155012A1 (en) Solid-state battery positive electrode material, production method for solid-state battery positive electrode material, all-solid-state lithium-sulfur battery using solid-state battery positive electrode material, and production method for all-solid-state lithium-sulfur battery using solid-state battery positive electrode material
US10862160B2 (en) All-solid-state lithium-sulfur battery and production method for same
CN110498611B (en) Sulfide-based solid electrolyte, method for producing sulfide-based solid electrolyte, and method for producing all-solid-state battery
Zhao et al. Lithium/sulfur secondary batteries: a review
KR101673724B1 (en) A cathode of wholly solid lithium battery and a secondary battery comprising thereof
JP6278385B2 (en) Non-aqueous secondary battery pre-doping method and battery obtained by the pre-doping method
US11539071B2 (en) Sulfide-impregnated solid-state battery
US20150280227A1 (en) Predoping method for an electrode active material in an energy storage device, and energy storage devices
JP2015088437A5 (en)
US11626591B2 (en) Silicon-containing electrochemical cells and methods of making the same
CN112310465A (en) Method for manufacturing sulfide-impregnated solid-state battery
KR20090084712A (en) Non-aqueous electrolyte battery and positive electrode, and method for manufacturing the same
JP2022552085A (en) lithium sulfur battery
CN101494303B (en) Non-aqueous electrolyte battery and electrode, and method for manufacturing the same
Ud Din et al. Advances in electrolytes for high capacity rechargeable lithium-sulphur batteries
JP6102615B2 (en) Negative electrode active material and secondary battery using the same
JP2013114920A (en) Lithium sulfur battery
US20160344039A1 (en) Lithium primary battery
WO2014073217A1 (en) Method for manufacturing nonaqueous electrolyte battery, and nonaqueous electrolyte battery
WO2017155011A1 (en) All-solid-state lithium-sulfur battery and production method for same
JP2011249152A (en) Lithium battery electrode active material composition and lithium battery
JP2020194739A (en) Lithium ion secondary battery and manufacturing method thereof
US20200381733A1 (en) Titanium-based positive electrode materials for rechargeable calcium batteries and cell comprising the same
US20220223900A1 (en) Multilayer electrode-electrolyte components and their production methods

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187026059

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187026059

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763352

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17763352

Country of ref document: EP

Kind code of ref document: A1