WO2017154925A1 - Ion exchange membrane, method for producing same and alkali chloride electrolysis device - Google Patents

Ion exchange membrane, method for producing same and alkali chloride electrolysis device Download PDF

Info

Publication number
WO2017154925A1
WO2017154925A1 PCT/JP2017/009069 JP2017009069W WO2017154925A1 WO 2017154925 A1 WO2017154925 A1 WO 2017154925A1 JP 2017009069 W JP2017009069 W JP 2017009069W WO 2017154925 A1 WO2017154925 A1 WO 2017154925A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion exchange
exchange membrane
group
yarn
layer
Prior art date
Application number
PCT/JP2017/009069
Other languages
French (fr)
Japanese (ja)
Inventor
隆之 金子
草野 博光
泰 山木
拓久央 西尾
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201780009330.9A priority Critical patent/CN108699712A/en
Priority to JP2018504525A priority patent/JPWO2017154925A1/en
Publication of WO2017154925A1 publication Critical patent/WO2017154925A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials

Definitions

  • the present invention relates to an ion exchange membrane, a precursor membrane thereof, a production method thereof, an alkali chloride electrolysis apparatus, and a production method thereof.
  • an ion exchange membrane used in an alkali chloride electrolysis method for producing an alkali hydroxide and chlorine by electrolyzing an aqueous alkali chloride solution such as salt seawater ion exchange groups (carboxylic acid groups or carboxylate groups, and sulfonic acid groups are used.
  • an electrolyte membrane made of a fluorine-containing polymer having a sulfonate group) is known.
  • the electrolyte membrane is usually reinforced with a reinforcing material made of reinforcing yarn from the viewpoint of maintaining mechanical strength and dimensional stability.
  • Patent Document 1 As an ion exchange membrane having a reinforcing material, for example, an ion exchange membrane in which the following layers (1) to (4) are sequentially laminated is known (Patent Document 1).
  • the ion exchange membrane for alkali chloride electrolysis (hereinafter also referred to as “ion exchange membrane”) changes in dimensions depending on the operating conditions of the electrolytic cell, that is, swelling / shrinkage due to alkali chloride aqueous solution concentration, alkali hydroxide concentration, operating temperature, etc. To do. Since the ion exchange membrane is used by being fixed in the electrolysis apparatus, if the size of the ion exchange membrane changes, the membrane and the electrode rub against each other due to wrinkles on the membrane, and pinholes are generated or the membrane is pulled. In some cases, the film may be damaged due to cracks. In order to prevent these, it is necessary to suppress unexpected dimensional changes of the ion exchange membrane.
  • the dimensional change of the ion exchange membrane can be suppressed by a reinforcing material provided inside the ion exchange membrane.
  • the reinforcing material contained in the ion-exchange membrane having an ion-exchange group is an ion-exchange membrane precursor having a fluorine-containing polymer layer having a group that can be converted into an ion-exchange group and a reinforcing cloth provided inside the fluorine-containing polymer layer. It is a material derived from the reinforcing cloth contained in the membrane.
  • the reinforcing fabric is usually composed of a reinforcing yarn and a sacrificial yarn, and the sacrificial yarn is composed of a material that elutes when immersed in an alkaline aqueous solution.
  • the reinforcing yarn remains undissolved, and at least a part of the sacrificial yarn dissolves, and a reinforcing material comprising the reinforcing yarn and the sacrificial yarn is present in the ion exchange membrane. It is formed.
  • the reinforcing yarn constituting the reinforcing cloth is not dissolved. That is, the reinforcing material in the ion exchange membrane is composed of a reinforcing yarn and a sacrificial yarn that remains without being dissolved in the above process.
  • the remaining amount of the sacrificial yarn is appropriately determined depending on the strength required for the ion exchange membrane and the tolerance of dimensional change, and the above-described step, that is, the group that can be converted into the ion exchange group in the ion exchange membrane precursor membrane is ion-exchanged.
  • the conditions are controlled by selecting conditions such as the concentration, temperature, and contact time of the alkaline aqueous solution. In order to set the remaining amount of the sacrificial yarn to a predetermined value, it is necessary to strictly control these conditions.
  • the ion exchange membrane can easily control the variation in the dimensional change of the ion exchange membrane without requiring strict control of the remaining amount of the sacrificial yarn in the ion exchange membrane. It is an object of the present invention to provide an exchange membrane, a precursor film thereof, a production method thereof, an alkali chloride electrolysis apparatus, and a production method thereof.
  • an ion exchange membrane using a sacrificial yarn having an elastic modulus in a specific range as a sacrificial yarn constituting a reinforcing cloth or a reinforcing material composed of a reinforcing yarn and a sacrificial yarn is a residual amount of the sacrificial yarn. It was found that the variation of dimensional change due to the variation of was small.
  • the present invention has been completed based on the above findings. It has the following configuration.
  • An ion exchange membrane having a fluorine-containing polymer layer having ion exchange groups, and a reinforcing material comprising a reinforcing yarn and a sacrificial yarn provided inside the fluorine-containing polymer layer having ion exchange groups,
  • An ion exchange membrane characterized in that the sacrificial yarn has an average elastic modulus of 1.0 to 7.0 GPa.
  • the reinforcing yarn has a fineness of 20 to 200 denier, and the density of the reinforcing yarn in the reinforcing cloth is 10 to 40 / inch.
  • An ion exchange membrane is characterized in that the sacrificial yarn has an average elastic modulus of 1.0 to 7.0 GPa.
  • the sacrificial yarn has a fineness of 5 to 100 denier, and the number of filaments per sacrificial yarn in the reinforcing fabric is 1 to 32 monofilaments or multifilaments.
  • An alkali chloride electrolyzer comprising the ion exchange membrane according to any one of [1] to [7] as an electrolytic membrane separating a cathode chamber on the cathode side and an anode chamber on the anode side in the electrolytic cell.
  • An ion exchange membrane precursor membrane having a fluoropolymer layer having a group that can be converted into an ion exchange group, and a reinforcing cloth provided inside the fluoropolymer layer having a group that can be converted into an ion exchange group
  • the reinforcing cloth comprises a reinforcing yarn and a sacrificial yarn, and the sacrificial yarn has an average elastic modulus of 1.0 to 7.0 GPa.
  • the ion exchange membrane precursor according to [9], wherein at least a part of the fluoropolymer layer having a group that can be converted into an ion exchange group is a fluoropolymer layer having a group that can be converted into a sulfonic acid type functional group.
  • Body membrane [11] The [9] or [10], wherein at least a part of the fluoropolymer layer having a group that can be converted into an ion exchange group has a fluoropolymer layer that is a group that can be converted into a carboxylic acid type functional group. Ion exchange membrane precursor membrane.
  • the ion-exchange membrane precursor film according to any one of [9] to [11] is brought into contact with an alkaline aqueous solution to convert a group that can be converted into an ion-exchange group into an ion-exchange group,
  • a method for producing an ion exchange membrane comprising obtaining a ion exchange membrane comprising a fluorine-containing polymer layer having an ion exchange group and a reinforcing material by dissolving and removing at least a part of the sacrificial yarn in the reinforcing fabric.
  • the method for producing an ion exchange membrane according to [12] wherein a part of the sacrificial yarn in the reinforcing cloth is dissolved and removed.
  • a method for producing an alkali chloride electrolysis apparatus comprising:
  • the ion exchange membrane of the present invention is a membrane that can easily control the variation of the dimensional change of the ion exchange membrane without requiring strict control of the remaining amount of the sacrificial yarn in the reinforcing material included in the ion exchange membrane. Since the alkali chloride electrolysis apparatus of the present invention has the ion exchange membrane of the present invention, it does not require strict control of the residual amount of sacrificial yarn in the reinforcing material included in the ion exchange membrane, and the variation in the dimensional change of the ion exchange membrane Is easy to control.
  • an ion exchange membrane of the present invention it is easy to control variation in the dimensional change of the ion exchange membrane without requiring strict control of the remaining amount of the sacrificial yarn in the reinforcing material included in the ion exchange membrane.
  • An ion exchange membrane can be manufactured.
  • An alkaline electrolyzer can be manufactured.
  • the “ion exchange membrane” is a membrane used for electrolysis of an alkali chloride aqueous solution and containing a polymer having an ion exchange group.
  • the “ion exchange group” is a group that can exchange at least a part of ions contained in the group with other ions.
  • the following carboxylic acid type functional groups, sulfonic acid type functional groups and the like can be mentioned.
  • the “carboxylic acid type functional group” means a carboxylic acid group (—COOH) or a carboxylic acid group (—COOM 1 , where M 1 is an alkali metal or a quaternary ammonium base).
  • the “sulfonic acid type functional group” means a sulfonic acid group (—SO 3 H) or a sulfonic acid group (—SO 3 M 2 , where M 2 is an alkali metal or a quaternary ammonium base).
  • An “ion exchange membrane precursor membrane” is a membrane that is a precursor of an ion exchange membrane and contains a polymer having a group that can be converted into an ion exchange group.
  • the “group that can be converted into an ion exchange group” means a group that can be converted into an ion exchange group by a known treatment such as hydrolysis treatment or acidification treatment.
  • the “group that can be converted into a carboxylic acid type functional group” means a group that can be converted into a carboxylic acid type functional group by a known process such as hydrolysis or acidification.
  • the “group that can be converted into a sulfonic acid type functional group” means a group that can be converted into a sulfonic acid type functional group by a known treatment such as hydrolysis or acidification.
  • the “perfluorocarbon polymer” means a polymer in which all of hydrogen atoms bonded to carbon atoms in the polymer are substituted with fluorine atoms. Some of the fluorine atoms in the perfluorocarbon polymer may be substituted with one or both of chlorine atoms and bromine atoms.
  • the “structural unit” means a part derived from a monomer that is present in the polymer and constitutes the polymer. For example, when the structural unit is generated by addition polymerization of a monomer having a carbon-carbon unsaturated double bond, the structural unit derived from the monomer is a divalent structural unit generated by cleavage of the unsaturated double bond. is there.
  • the structural unit may be a structural unit obtained by forming a polymer having a structure of a certain structural unit and then chemically converting the structural unit.
  • a structural unit derived from an individual monomer may be described by a name in which “unit” is added to the monomer name.
  • Reinforcing material means a material used to improve the strength of an ion exchange membrane.
  • the “reinforcing cloth” means a cloth used as a raw material for a reinforcing material for improving the strength of the ion exchange membrane.
  • the “reinforcing yarn” is a yarn constituting the reinforcing fabric, and is a yarn made of a material that does not elute even when the reinforcing fabric is immersed in an alkaline aqueous solution (for example, a sodium hydroxide aqueous solution having a concentration of 32% by mass). is there.
  • the “sacrificial yarn” is a yarn constituting the reinforcing fabric, and is a yarn made of a material that elutes into the alkaline aqueous solution when the reinforcing fabric is immersed in the alkaline aqueous solution.
  • “Elution hole” means a hole formed as a result of the sacrificial yarn being eluted in an alkaline aqueous solution.
  • the ion exchange membrane of the present invention has a layer made of a fluorine-containing polymer having ion exchange groups (hereinafter also referred to as “layer (P)”), and a reinforcing material made of reinforcing yarn and sacrificial yarn is layer (P). Is provided inside.
  • the sacrificial yarn may be a sacrificial yarn partially dissolved and removed.
  • elution holes may be formed in the ion exchange membrane by dissolving and removing part of the sacrificial yarn.
  • the reinforcing fabric is usually composed of a reinforcing yarn and a sacrificial yarn, and the sacrificial yarn is composed of a material that elutes when immersed in an alkaline aqueous solution.
  • the reinforcing yarn remains undissolved, and at least a part of the sacrificial yarn dissolves, and a reinforcing material comprising the reinforcing yarn and the sacrificial yarn is present in the ion exchange membrane. It is formed.
  • the reinforcing yarn constituting the reinforcing cloth is not dissolved.
  • the reinforcing material in the ion exchange membrane is composed of a reinforcing yarn and a sacrificial yarn that remains without being dissolved in the above process.
  • the reinforcing material is made of reinforcing yarn and sacrificial yarn, and is a material that reinforces the layer (P).
  • the reinforcing material is derived from a reinforcing cloth contained in an ion-exchange membrane precursor film having a fluorine-containing polymer layer having a group that can be converted into an ion-exchange group and a reinforcing cloth provided inside the fluorine-containing polymer layer.
  • the reinforcing fabric is composed of warp and weft, and the warp and weft are preferably orthogonal.
  • Each of the warp and weft is preferably composed of both a reinforcing yarn and a sacrificial yarn. That is, it is preferable that the warp yarn in the reinforcing fabric is composed of the reinforcing yarn and the sacrificial yarn, and the weft yarn in the reinforcing fabric is composed of the reinforcing yarn and the sacrificial yarn.
  • the reinforcing yarn is a yarn made of a material that does not elute even when an ion exchange membrane precursor membrane including a reinforcing fabric (hereinafter also referred to as “ion exchange membrane precursor membrane”) is immersed in an alkaline aqueous solution.
  • ion exchange membrane precursor membrane an ion exchange membrane precursor membrane including a reinforcing fabric
  • the ion exchange membrane precursor as a yarn constituting the reinforcing material remains undissolved even after the ion exchange membrane precursor membrane including the reinforcing cloth is immersed in an alkaline aqueous solution. This contributes to the maintenance of mechanical strength and dimensional stability.
  • a yarn containing a perfluorocarbon polymer is preferable, a yarn containing polytetrafluoroethylene (hereinafter referred to as “PTFE”) is preferable, and a PTFE yarn made only of PTFE is more preferable.
  • PTFE polytetrafluoroethylene
  • the fineness of the reinforcing yarn is preferably 20 to 200 denier, more preferably 50 to 150 denier, and particularly preferably 80 to 100 denier.
  • the fineness is not less than the lower limit, the mechanical strength of the ion exchange membrane is sufficiently high. If the fineness is less than or equal to the above upper limit value, the membrane resistance of the ion exchange membrane can be kept low, and an increase in electrolytic voltage can be suppressed.
  • the density (the number of driving) of the reinforcing yarn in the reinforcing cloth for forming the reinforcing material is preferably 10 to 40 / inch, and more preferably 20 to 30 / inch.
  • the density is equal to or higher than the lower limit, the mechanical strength as a reinforcing material is sufficiently high.
  • the density is equal to or lower than the upper limit value, the membrane resistance of the ion exchange membrane can be kept low, and an increase in electrolytic voltage can be suppressed.
  • the sacrificial yarn is a yarn that elutes by immersing the ion exchange membrane precursor membrane including the reinforcing cloth in an alkaline aqueous solution.
  • the ion exchange membrane precursor membrane including the reinforcing cloth is immersed in an alkaline aqueous solution, it is preferable that a part of the sacrificial yarn is dissolved and removed, and the dissolved residue remains as a sacrificial yarn constituting the reinforcing material. .
  • at least a part of the sacrificial yarn remains as a dissolution residue, it contributes to maintaining the mechanical strength and dimensional stability of the ion exchange membrane.
  • the average elastic modulus of the sacrificial yarn constituting the reinforcing fabric or the reinforcing material is important, and the sacrificial yarn needs to have an average elastic modulus of 1.0 to 7.0 GPa. If the average elastic modulus is equal to or greater than the lower limit, yarn misalignment is less likely to occur during weaving. If the average elastic modulus is not more than the above upper limit value, the variation in dimensional change due to the remaining amount of sacrificial yarn can be kept low.
  • the average elastic modulus is preferably 2.0 to 6.0 GPa, more preferably 3.0 to 6.0 GPa, and particularly preferably 4.0 to 5.0 GPa.
  • the average elastic modulus of the yarn including the sacrificial yarn is a specific value determined by the degree of polymerization of the polymer and the polymer material. Therefore, even before the ion exchange membrane precursor membrane including the reinforcing cloth having the sacrificial yarn is immersed in the alkaline aqueous solution, or after the sacrificial yarn in the reinforcing cloth is partially dissolved, the sacrificial yarn is immersed in the alkaline aqueous solution. The modulus of elasticity does not change.
  • the method for measuring the elastic modulus of the sacrificial yarn in the present invention is determined as follows. Stress-strain (elongation) when a tensile tester (TENSILON RTC-1210A manufactured by Olintec Corporation) is attached with a sacrificial yarn before dipping in an alkaline aqueous solution at a chuck distance of 50 mm and pulled at a pulling speed of 50 mm / min. The stress at a curve strain (elongation) of 5% was measured, and the value divided by the average cross-sectional area of the sacrificial yarn before dipping in the alkaline aqueous solution was taken as the elastic modulus.
  • Stress-strain elongation
  • TENSILON RTC-1210A manufactured by Olintec Corporation
  • the elastic modulus was measured 5 times, and the average of these values was defined as the average elastic modulus.
  • the cross-sectional area of the sacrificial yarn before being immersed in the alkaline aqueous solution was observed with an optical microscope and measured using image software. The cross-sectional area is measured at 10 locations of the sacrificial yarn, and the average value of these values is taken as the average cross-sectional area of the sacrificial yarn before being immersed in the alkaline aqueous solution.
  • the average cross-sectional area of the sacrificial yarns remaining in the ion-exchange membrane is preferably 500 ⁇ 5000 ⁇ m 2 / mm, and more preferably 1000 ⁇ 4000 ⁇ m 2 / mm, more preferably 1500 ⁇ 3000 ⁇ m 2 / mm. If the average cross-sectional area of the sacrificial yarn is greater than or equal to the lower limit, bending or cracking is unlikely to occur when handling the ion exchange membrane. When the average cross-sectional area is less than or equal to the upper limit value, curling is unlikely to occur during and after the ion exchange membrane is formed.
  • the measuring method of the average cross-sectional area of the sacrificial yarn remaining on the ion exchange membrane in the present invention is as described later.
  • the cross section of the ion exchange membrane dried at 90 ° C. for 2 hours or more perpendicularly to the length direction of the sacrificial yarn is observed with an optical microscope, and the remaining sacrificial per 1 mm in the width direction of the membrane using image software Defined as the sum of the cross-sectional areas of the yarn.
  • the measurement of the cross-sectional area of the remaining sacrificial yarn is performed at 10 locations, and the average cross-sectional area of the remaining sacrificial yarn is calculated.
  • the sacrificial yarn in the reinforcing fabric may be a monofilament composed of one filament or a multifilament composed of two or more filaments.
  • the number of filaments per sacrificial yarn in the reinforcing fabric is preferably 1 to 32, more preferably 2 to 16, and 2 to 8 Is more preferable.
  • the number of filaments is equal to or greater than the lower limit, the contact surface between the sacrificial yarn and the alkaline aqueous solution is widened, and the sacrificial yarn is easily eluted into the alkaline aqueous solution.
  • the contact area between the sacrificial yarn and the alkaline aqueous solution is reduced, elution of the sacrificial yarn into the alkaline aqueous solution is suppressed, and a portion of the sacrificial yarn remains.
  • the sacrificial yarn remaining on the ion exchange membrane contributes to the mechanical strength of the ion exchange membrane.
  • the sacrificial yarn is preferably a yarn containing at least one selected from the group consisting of PET, polybutylene terephthalate (hereinafter referred to as PBT), polytrimethylene terephthalate (hereinafter referred to as PTT), rayon, and cellulose.
  • PBT polybutylene terephthalate
  • PTT polytrimethylene terephthalate
  • rayon rayon
  • cellulose cellulose
  • a PET yarn made of PET alone, a PET / PBT yarn made of a mixture of PET and PBT, a PBT yarn made of only PBT, or a PTT yarn made of only PTT is more preferable.
  • the fineness of the sacrificial yarn in the reinforcing fabric is preferably 5 to 100 denier, more preferably 9 to 60 denier, and further preferably 12 to 40 denier. If the fineness of the sacrificial yarn in the reinforcing fabric is not less than the lower limit, the mechanical strength is sufficiently high and the woven fabric property is sufficiently high.
  • the fineness of the sacrificial yarn in the reinforcing fabric is less than or equal to the above upper limit value, the elution hole formed after the sacrificial yarn is eluted does not come too close to the surface of the membrane (P), and the surface of the membrane (P) Cracks are difficult to enter, and as a result, a decrease in mechanical strength of the ion exchange membrane can be suppressed.
  • the layer (P) is a layer made of a fluorine-containing polymer having an ion exchange group.
  • the layer (P) may be a single layer or a layer formed from a plurality of layers.
  • a layer hereinafter referred to as “layer (C)” consisting of a fluorinated polymer having a carboxylic acid type functional group (hereinafter also referred to as “fluorinated polymer (C)”).
  • a layer composed of a fluorinated polymer having a sulfonic acid type functional group (hereinafter also referred to as “fluorinated polymer (S)”) (hereinafter also referred to as “layer (S)”). It is preferable to be configured.
  • the layer (P) is preferably composed of a layer (C) and a layer (S).
  • the layer (C) and the layer (S) may be a single layer or a plurality of layers.
  • the type of structural unit constituting the fluoropolymer (C) or the fluoropolymer (S) in each layer carboxylic acid
  • the proportion of structural units having a functional group or a sulfonic acid type functional group may be different.
  • At least a part of the layer (P) is preferably composed of the layer (S), and the layer (P) is more preferably composed of the layer (C) and the layer (S).
  • the reinforcing material is preferably provided in the layer (S).
  • the layer (C) may be a single layer or a layer formed from a plurality of layers.
  • a reinforcing material may be provided inside the layer (C).
  • the fluoropolymer (C) is a hydrolyzable group that can be converted to a carboxylic acid type functional group of a fluoropolymer having a group that can be converted to a carboxylic acid type functional group (hereinafter also referred to as “fluorinated polymer (C ′)”). It was obtained by decomposing and converting to a carboxylic acid type functional group.
  • fluorinated polymer (C) a fluoropolymer having a structural unit based on the following monomer (1) and a structural unit based on the following monomer (2) (hereinafter referred to as “fluorinated polymer (C′1)”).
  • fluorinated polymer (C1) a fluorine-containing polymer in which Y is converted to —COOM (wherein M is an alkali metal)
  • fluorinated polymer (C1) a fluorine-containing polymer in which Y is converted to —COOM (wherein M is an alkali metal)
  • C1 fluorinated polymer (C1)).
  • CF 2 CX 1 X 2 (1)
  • CF 2 CF- (O) p - (CF 2) q - (CF 2 CFX 3) r - (O) s - (CF 2) t - (CF 2 CFX 4) u -Y ⁇ (2)
  • X 1 and X 2 are each independently a fluorine atom, a chlorine atom, or a trifluoromethyl group, and a fluorine atom is preferred from the viewpoint of chemical durability of the ion exchange membrane.
  • X 3 and X 4 are each independently a fluorine atom or a trifluoromethyl group.
  • Y is a group that can be converted to a carboxylic acid type functional group.
  • p is 0 or 1.
  • q is an integer of 0 to 12.
  • r is an integer of 0 to 3.
  • s is 0 or 1.
  • t is an integer of 0 to 12.
  • u is an integer of 0 to 3.
  • p and s are not 0 simultaneously, and r and u are not 0 simultaneously. That is, 1 ⁇ p + s and 1 ⁇ r + u.
  • a monomer (2) may be used individually by 1 type, and may be used in combination of 2 or more type.
  • CF 2 CF—O—CF 2 CF 2 —COOCH 3
  • CF 2 CF—O—CF 2 CF 2 CF 2 —COOCH 3
  • CF 2 CF—O—CF 2 CF 2 —O—CF 2 CF 2 —COOCH 3
  • CF 2 CF—O—CF 2 CF 2 —O—CF 2 CF 2 —COOCH 3
  • CF 2 CF—O—CF 2 CF 2 —O—CF 2 CF 2 CF 2 —COOCH 3
  • CF 2 CF—O—CF 2 CF 2 —O—CF 2 CF 2 CF 2 —COOCH 3
  • CF 2 CF—O—CF 2 CF 2 —O—CF 2 CF 2 CF 2 —COOCH 3
  • CF 2 CF—O—CF 2 CF 2 —O—CF 2 CF 2
  • another monomer may be used for the production of the fluorine-containing polymer (C ′).
  • the proportion of other monomers is preferably 30% by mass or less of the total monomers (100% by mass) from the viewpoint of maintaining ion exchange performance.
  • the thickness of the layer (C) is preferably 5 to 50 ⁇ m, more preferably 10 to 35 ⁇ m. If the thickness is equal to or greater than the lower limit of the above range, the amount of chloride ions that permeate the ion exchange membrane can be suppressed, and the quality of the alkali hydroxide produced can be maintained well. If the thickness is not more than the upper limit of the above range, the membrane resistance of the ion exchange membrane can be kept low and the electrolysis voltage can be made sufficiently low.
  • the thickness of the layer of an ion exchange membrane means the thickness of each layer in the ion exchange membrane dried at 90 degreeC for 2 hours or more.
  • the layer (S) may be a single layer or a layer formed from a plurality of layers.
  • a reinforcing material may be provided inside the layer (S).
  • a reinforcing material is preferably provided inside from the viewpoint of increasing the mechanical strength of the ion exchange membrane. It is more preferable that the reinforcing material is provided in the layer (S) than in the layer (C) because the reinforcing effect can be obtained without affecting the electrolytic performance.
  • the fluoropolymer (S) is a hydrolyzate of a group that can be converted to a sulfonic acid type functional group of a fluoropolymer having a group that can be converted to a sulfonic acid type functional group (hereinafter also referred to as “fluorinated polymer (S ′)”). It is preferably obtained by decomposition treatment and conversion to a sulfonic acid type functional group.
  • the fluorine-containing polymer (S) includes a fluorine-containing polymer (hereinafter referred to as “containing a polymer”) having a structural unit based on the monomer (1) and a structural unit based on at least one of the following monomer (3) or monomer (4).
  • Fluoropolymer (S′1) ”) is hydrolyzed to convert Z into —SO 3 M (where M is an alkali metal) (hereinafter referred to as“ fluorine polymer ( S1) ”) is preferred.
  • R f3 is a perfluoroalkyl group having 1 to 20 carbon atoms, may contain an etheric oxygen atom, and may be linear or branched.
  • Z is a group that can be converted into a sulfonic acid type functional group. Specific examples include —SO 2 F, —SO 2 Cl, —SO 2 Br, and the like.
  • w is an integer of 1 to 8
  • x is an integer of 1 to 5.
  • CF 2 CF—O—CF 2 CF (CF 3 ) —O— (CF 2 ) w —SO 2 F
  • CF 2 CF— [O—CF 2 CF (CF 3 )] x —SO 2 F.
  • W in the formula is an integer of 1 to 8. CF 2 ⁇ CF— (CF 2 ) w —SO 2 F, CF 2 ⁇ CF—CF 2 —O— (CF 2 ) w —SO 2 F.
  • CF 2 CF—O—CF 2 CF 2 —SO 2 F
  • CF 2 CF—O—CF 2 CF 2 CF 2 —SO 2 F
  • CF 2 CF—O—CF 2 CF (CF 3 ) —O—CF 2 CF 2 —SO 2 F
  • CF 2 CF—O—CF 2 CF (CF 3 ) —O—CF 2 CF 2 —SO 2 F
  • CF 2 CF—O—CF 2 CF (CF 3 ) —O—CF 2 CF 2 CF 2 —SO 2 F
  • CF 2 CF—O—CF 2 CF (CF 3 ) —SO 2 F
  • CF 2 CF—O—CF 2 CF (CF 3 ) —SO 2 F
  • CF 2 CF—CF 2 CF 2 —SO 2 F
  • CF 2 CF—CF 2 CF 2 —SO 2 F
  • CF 2 CF—CF 2 CF 2 —SO 2 F
  • CF 2 CF—CF
  • the fluoropolymer (S ′) in addition to at least one of the monomer (1) and the monomer (3) or the monomer (4), another monomer may be used.
  • the proportion of other monomers is preferably 30% by mass or less of the total monomers (100% by mass) from the viewpoint of maintaining ion exchange performance.
  • the total thickness of the layer (S) is preferably 40 to 200 ⁇ m, more preferably 40 to 140 ⁇ m.
  • the thickness of the layer (S1) on the layer (C) side of the reinforcing material in the layer (S) is preferably 30 to 140 ⁇ m, more preferably 30 to 100 ⁇ m.
  • the thickness of the layer (S2) on the opposite side of the layer (C) from the reinforcing material in the layer (S) is preferably 10 to 60 ⁇ m, more preferably 10 to 40 ⁇ m. If the thickness of the layer (S1) and the layer (S2) is equal to or greater than the lower limit of the above range, a certain film thickness can be secured, and the film strength is increased.
  • each of the layer (S1) and the layer (S2) may be a single layer or a layer formed of a plurality of layers.
  • the ion exchange membrane may further include an inorganic particle layer on one or both of its outermost surfaces.
  • the inorganic particle layer is preferably provided on at least one outermost surface of the ion exchange membrane, and more preferably provided on both outermost surfaces of the ion exchange membrane.
  • the inorganic particle layer is provided to suppress adhesion of a gas (chlorine gas or hydrogen gas) generated by alkali chloride electrolysis to the surface of the ion exchange membrane, and to suppress an increase in electrolysis voltage.
  • the inorganic particle layer includes inorganic particles and a binder.
  • the inorganic particles those having excellent corrosion resistance with respect to an aqueous alkali chloride solution or an aqueous alkali hydroxide solution and having hydrophilicity are preferable.
  • at least one selected from the group consisting of oxides, nitrides and carbides of Group 4 elements or Group 14 elements is preferable, SiO 2 , SiC, ZrO 2 , or ZrC is more preferable, and ZrO 2 Is particularly preferred.
  • the average particle diameter of the inorganic particles is preferably 0.5 to 1.5 ⁇ m, more preferably 0.7 to 1.3 ⁇ m.
  • the average particle diameter here means the average particle diameter of the average secondary particle which the primary particle has aggregated, and is calculated
  • the binder those having excellent corrosion resistance with respect to an aqueous alkali chloride solution or an aqueous alkali hydroxide solution and having hydrophilicity are preferred, a fluorinated polymer having a carboxylic acid group or a sulfonic acid group is preferred, and a fluorinated polymer having a sulfonic acid group is more preferred. preferable.
  • the fluorine-containing polymer may be a homopolymer of a monomer having a carboxylic acid group or a sulfonic acid group, and is a copolymer of a monomer having a carboxylic acid group or a sulfonic acid group and a monomer copolymerizable with the monomer. Also good.
  • the binder mass ratio (hereinafter referred to as binder ratio) to the total mass of inorganic particles and binder in the inorganic particle layer is preferably 0.15 to 0.3, more preferably 0.15 to 0.25, and More preferably, it is 16 to 0.20.
  • binder ratio is equal to or higher than the lower limit, the inorganic particles are excellent in the drop-off resistance.
  • the binder ratio is not more than the upper limit, a high gas adhesion suppressing effect can be obtained.
  • the ion exchange membrane precursor membrane of the present invention has a layer made of a fluorine-containing polymer having a group that can be converted into an ion exchange group (hereinafter also referred to as “layer (P ′)”).
  • layer (P ′) The aforementioned reinforcing cloth is provided inside the layer (P ′).
  • the layer (P ′) may be a single layer or a layer formed from a plurality of layers.
  • the layer (P ′) is a single layer, a layer made of a fluoropolymer (C ′) (hereinafter also referred to as layer (C ′)) or a layer made of a fluoropolymer (S ′) (hereinafter, The layer (also referred to as a layer (S ′)) is preferable.
  • the layer (P ′) is formed of a plurality of layers, the layer (P ′) is preferably composed of a layer (C ′) and a layer (S ′). In this case, one or both of the layer (C ′) and the layer (S ′) may be a single layer or a plurality of layers.
  • the type of structural unit constituting the fluoropolymer (C ′) or the fluoropolymer (S ′) in each layer Alternatively, the proportion of structural units having a carboxylic acid type functional group or a sulfonic acid type functional group may be different.
  • At least a part of the layer (P ′) is preferably composed of the layer (S ′), and the layer (P ′) is more preferably composed of the layer (C ′) and the layer (S ′).
  • the layer (P ′) is composed of the layer (C ′) and the layer (S ′), it is preferable that the reinforcing cloth is provided in the layer (S ′).
  • Each of the layer (C ′) and the layer (S ′) may be a single layer or a layer formed of a plurality of layers.
  • the ion exchange membrane of this invention can be manufactured through the following processes (a) and (b), for example.
  • This is a step of obtaining an ion exchange membrane precursor membrane having a fluorine-containing polymer layer having a reinforcing cloth provided therein.
  • this step depending on the conditions for bringing the ion exchange membrane precursor membrane into contact with the alkaline aqueous solution, at least a part of the sacrificial yarn in the reinforcing cloth is dissolved and removed.
  • the ion exchange includes a fluoropolymer layer having an ion exchange group and a reinforcing material composed of the reinforcing yarn and the remaining sacrificial yarn. It is preferable to obtain a membrane.
  • the ratio of the cross-sectional area of the sacrificial yarn remaining after dissolution to the cross-sectional area of the sacrificial yarn before melting is preferably 1 to 70%, more preferably 5 to 55%, and more preferably 10 to 40%. Most preferred.
  • step (b) after converting a group that can be converted into an ion exchange group into an ion exchange group, if necessary, salt exchange for exchanging a counter cation of the ion exchange group may be performed.
  • salt exchange for example, the counter cation of the ion exchange group is exchanged from potassium to sodium.
  • a known method can be employed for salt exchange.
  • an ion exchange membrane precursor membrane having a layer (P ′) and a reinforcing cloth provided in the layer (P ′) is produced.
  • the ion exchange membrane precursor film is stacked by inserting a reinforcing cloth between any of the layers (C ′) and the layer (S ′).
  • an ion exchange membrane precursor membrane having a reinforcing cloth provided inside the layer (P ′) can be produced.
  • the layer (C ′) is preferably a layer comprising a fluoropolymer (C′1) (hereinafter also referred to as “layer (C′1)”), and the layer (S ′) is preferably a fluoropolymer (S ′). 1) (hereinafter also referred to as “layer (S′1)”) is preferable.
  • layer (P ′) includes the layer (C ′) and the layer (S ′), and the reinforcing cloth is provided inside the layer (S ′), the layer (C ′) and the layer (S It can manufacture by laminating
  • the layers (S ′) may be composed of the same fluoropolymer, or may be composed of different fluoropolymers. It may be a layer (S ′).
  • a group that can be converted into an ion exchange group of the ion exchange membrane precursor membrane obtained in the step (a) is hydrolyzed and converted into an ion exchange group.
  • membrane which has the group which can be converted into an ion exchange group is converted into the ion exchange membrane which has an ion exchange group.
  • the hydrolysis method for example, a method using a mixture of a water-soluble organic compound and an alkali metal hydroxide as described in Japanese Patent Application Laid-Open No. 03-6240 is preferable.
  • the removal of a part of the sacrificial yarn in the reinforcing cloth is preferably performed by elution of a part of the sacrificial yarn by the alkaline aqueous solution used during the hydrolysis described above.
  • the alkali chloride electrolysis apparatus of the present invention can employ a known embodiment except that it has the ion exchange membrane of the present invention.
  • the alkali chloride electrolysis apparatus includes an electrolysis tank provided with a cathode and an anode, an electrolysis tank so as to divide the electrolysis tank into a cathode chamber on the cathode side and an anode chamber on the anode side. And the ion exchange membrane of the present invention to be mounted on.
  • the ion exchange membrane of the present invention comprises a layer (C) and a layer (S)
  • the ion exchange membrane is disposed in the electrolytic cell so that the layer (C) is on the cathode side and the layer (S) is on the anode side.
  • the cathode may be disposed in contact with the ion exchange membrane, or may be disposed at an interval.
  • the material constituting the cathode chamber is preferably a material resistant to alkali hydroxide and hydrogen.
  • the material include stainless steel and nickel.
  • a material constituting the anode chamber a material resistant to alkali chloride and chlorine is preferable.
  • the material include titanium.
  • the cathode base material stainless steel, nickel and the like are preferable from the viewpoints of resistance to alkali hydroxide and hydrogen, workability, and the like.
  • the anode base material titanium or the like is preferable from the viewpoints of resistance to alkali chloride and chlorine, workability, and the like.
  • the surface of the electrode substrate is preferably coated with, for example, ruthenium oxide or iridium oxide.
  • the sodium chloride aqueous solution is supplied to the anode chamber of the alkali chloride electrolyzer and the cathode chamber is filled with water.
  • An aqueous sodium oxide solution is supplied, and the aqueous sodium chloride solution is electrolyzed while maintaining the concentration of the aqueous sodium hydroxide solution discharged from the cathode chamber at 18 to 36% by mass (for example, 32% by mass).
  • the reinforcing material in the ion exchange membrane has the effect of maintaining the mechanical strength of the ion exchange membrane and suppressing dimensional changes.
  • the sacrificial yarn remaining in the ion exchange membrane plays a role of maintaining the mechanical strength of the ion exchange membrane together with the reinforcing yarn. Therefore, in order to maintain a certain mechanical strength that can withstand practical use, the sacrificial yarn of the present invention An average elastic modulus equal to or higher than the lower limit of the average elastic modulus is required.
  • the present inventors also contributed to the suppression of the dimensional change due to the remaining amount of the sacrificial yarn, the dimensional change rate fluctuates when the remaining amount of the sacrificial yarn changes, and the change in the remaining amount of the sacrificial yarn. It has been found that the variation in the dimensional change rate increases as the average elastic modulus of the sacrificial yarn increases. That is, if the average elastic modulus of the sacrificial yarn is less than or equal to the upper limit value of the average elastic modulus of the sacrificial yarn in the present invention described above, the variation in the dimensional change rate due to the change in the remaining amount of the sacrificial yarn can be suppressed.
  • the cross-sectional area of the sacrificial yarn before being immersed in the alkaline aqueous solution was observed with an optical microscope and measured using image software.
  • the cross-sectional area was measured at 10 locations of the sacrificial yarn, and the average value of these values was taken as the average cross-sectional area of the sacrificial yarn before being immersed in the alkaline aqueous solution.
  • ⁇ L1 (L1 ⁇ L0) / L0 ⁇ 100 (A)
  • the cathode chamber is filled with about 30% by mass of sodium hydroxide. This evaluation simply simulates the elongation of the ion exchange membrane in a state where the ion exchange membrane is attached to the electrolytic cell and is in contact with the alkaline aqueous solution.
  • the distance L2 between the marked lines when immersed in a 125 g / L aqueous sodium chloride solution at 90 ° C. for 30 minutes is read with a telescope while immersed in the aqueous sodium chloride solution
  • the measurement was performed using a microscope (manufactured by Nihon Kogyo Seisakusho, digital cassette meter).
  • the dimensional change rate ⁇ L2 (%) was determined from the following equation (B). The measurement was performed twice, and the average of these values was defined as the average dimensional change rate ⁇ L2.
  • the cross-sectional area of the sacrificial yarn remaining in the ion-exchange membrane was determined by observing a cross-section of the ion-exchange membrane dried at 90 ° C. for 2 hours or more perpendicularly to the length direction of the sacrificial yarn with an optical microscope. The total cross-sectional area of the sacrificial yarn remaining per 1 mm in the width direction of the film was measured using The cross-sectional area was measured at 10 locations on the sacrificial yarn, and the average of these values was taken as the average cross-sectional area of the remaining sacrificial yarn.
  • Alkali chloride electrolyzer As an electrolytic cell (effective energization area: 25 cm 2 ), the supply water inlet of the cathode chamber is arranged at the lower part of the cathode chamber, the generated sodium hydroxide aqueous solution outlet is arranged at the upper part of the cathode chamber, and the sodium chloride aqueous solution inlet of the anode chamber is arranged. A sodium chloride aqueous solution outlet disposed at the lower part of the anode chamber and diluted by an electrolytic reaction was disposed at the upper part of the anode chamber.
  • a titanium punched metal (opening shape: rhombus) (minor axis: 4 mm, major axis: 8 mm) coated with a solid solution of ruthenium oxide, iridium oxide and titanium oxide was used.
  • a SUS304 punched metal (opening shape: rhombus) (short diameter: 5 mm, long diameter: 10 mm) electrodeposited with ruthenium-containing Raney nickel was used.
  • Example 1-1 A stainless steel reactor (autoclave) having an internal volume of 94 L is degassed to vacuum, and then CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 H (hereinafter also referred to as “solvent S”) is expressed by the following formula ( 26.2) 66.2 kg of a solution in which 37.4% by mass of a compound having a carboxylic acid type functional group (hereinafter also referred to as “monomer M”) represented by formula (2-1) is added, and the internal temperature of the reactor is increased. The temperature was raised to 75 ° C.
  • CF 2 CF—O—CF 2 CF 2 —CF 2 —COOCH 3 (2-1)
  • the fluorine-containing polymer (C′1-1) and the fluorine-containing polymer (S′1-1) were formed into a film by a coextrusion method, and the layer (C′a) (C′a) comprising the fluorine-containing polymer (C′1-1) ( A film A having a two-layer structure comprising a thickness (12 ⁇ m) and a layer (S′a) (thickness: 68 ⁇ m) made of a fluoropolymer (S′1-1) was obtained.
  • Fluoropolymer (S′1-1) was formed into a film by a melt extrusion method to obtain a film B having a layer (S′b) (thickness: 30 ⁇ m) made of the fluoropolymer (S′1-1).
  • a PTFE yarn obtained by slitting a stretched PTFE film to a thickness of 100 denier with a twist of 2000 times / m on a monofilament was used as a reinforcing yarn.
  • a sacrificial yarn was a PET yarn composed of 30 denier multifilaments in which six 5-denier PET filaments (elastic modulus: 4.9 GPa) were aligned. Plain weaving was performed so that one reinforcing yarn and two sacrificial yarns were alternately arranged to obtain a reinforcing fabric (reinforcing yarn density: 27 yarns / inch, sacrificial yarn density: 54 yarns / inch).
  • the film B, the reinforcing cloth, the film A, and the release PET film are stacked in this order so that the layer (C′a) of the film A is on the release PET film side. And laminated.
  • the release PET film was peeled off to obtain an ion exchange membrane precursor membrane.
  • Consists of 29.0% by mass of zirconium oxide (average particle size: 1 ⁇ m), 1.3% by mass of methylcellulose, 4.6% by mass of cyclohexanol, 1.5% by mass of cyclohexane and 63.6% by mass of water.
  • the paste was transferred to the upper layer side of the precursor film layer (S′b) by a roll press to form an inorganic particle layer.
  • the adhesion amount of zirconium oxide was 20 g / m 2 .
  • the precursor film having an inorganic particle layer formed on one side was immersed in an aqueous solution of 5% by mass of dimethyl sulfoxide and 30% by mass of potassium hydroxide at 95 ° C. for 8 minutes.
  • —COOCH 3 of the fluorine-containing polymer (C′1-1) and —SO 2 F of the fluorine-containing polymer (S′1-1) are hydrolyzed and converted into ion exchange groups, and the precursor layer ( A film having C′a) as the layer (Ca), the layer (S′a) as the layer (Sa), and the layer (S′b) as the layer (Sb) was obtained.
  • the average cross-sectional area of the sacrificial yarn remaining in the ion exchange membrane was 1800 ⁇ m 2 / mm.
  • a dispersion was prepared by dispersing zirconium oxide (average particle size: 1 ⁇ m) at a concentration of 13% by mass in an ethanol solution containing 2.5% by mass of an acid type polymer of the fluoropolymer (S′1-1). The dispersion was sprayed on the layer (Ca) side of the membrane to form a gas releasable coating layer, and an ion exchange membrane having a gas releasable coating layer formed on both sides was obtained.
  • the adhesion amount of zirconium oxide was 3 g / m 2 .
  • Example 1-2 Ion ions were formed in the same manner as in Example 1-1 except that a precursor film having an inorganic particle layer formed on one side was immersed in an aqueous solution of 5% by mass of dimethyl sulfoxide and 30% by mass of potassium hydroxide at 95 ° C. for 15 minutes. An exchange membrane was obtained. The average cross-sectional area of the sacrificial yarn remaining in the ion exchange membrane after hydrolysis was 690 ⁇ m 2 / mm.
  • Example 2-1 As the sacrificial yarn, a PET yarn composed of 20 denier multifilaments in which six 3.3 denier PET filaments (modulus of elasticity: 4.4 GPa) are aligned is used.
  • the reinforcing fabric one reinforcing yarn and the sacrificial yarn 4 are used. Ion ion was applied in the same manner as in Example 1-1 except that a plain weave was used so that the books were alternately arranged, and a reinforcing fabric with a reinforcing yarn density of 27 / inch and a sacrificial yarn density of 108 / inch was used. An exchange membrane was obtained. The average cross-sectional area of the sacrificial yarn remaining in the ion exchange membrane after hydrolysis was 983 ⁇ m 2 / mm.
  • Example 2-2 Ion ions were formed in the same manner as in Example 2-1, except that a precursor film having an inorganic particle layer formed on one side was immersed in an aqueous solution of 5% by mass of dimethyl sulfoxide and 30% by mass of potassium hydroxide at 95 ° C. for 15 minutes. An exchange membrane was obtained. No sacrificial yarn remained in the ion exchange membrane after hydrolysis.
  • Example 3-1 An ion exchange membrane was prepared in the same manner as in Example 2-1, except that a PET yarn consisting of 18 denier multifilaments in which two 9 denier PET filaments (elastic modulus: 7.2 GPa) were aligned was used as the sacrificial yarn. Obtained. The average cross-sectional area of the sacrificial yarn remaining in the ion exchange membrane after hydrolysis was 3660 ⁇ m 2 / mm.
  • Example 3-2 Ion ions were formed in the same manner as in Example 3-1, except that a precursor film having an inorganic particle layer formed on one side was immersed in an aqueous solution of 5% by mass of dimethyl sulfoxide and 30% by mass of potassium hydroxide at 95 ° C. for 15 minutes. An exchange membrane was obtained. The average cross-sectional area of the sacrificial yarn remaining in the ion exchange membrane after hydrolysis was 1711 ⁇ m 2 / mm.
  • Example 3-3 Ion ions were formed in the same manner as in Example 3-1, except that a precursor film having an inorganic particle layer formed on one side was immersed in an aqueous solution of 5% by mass of dimethyl sulfoxide and 30% by mass of potassium hydroxide at 95 ° C. for 19 minutes. An exchange membrane was obtained. The average cross-sectional area of the sacrificial yarn remaining in the ion exchange membrane after hydrolysis was 61 ⁇ m 2 / mm.
  • Example 4-1 As a sacrificial yarn, a precursor film in which an inorganic particle layer is formed on one side using a sacrificial yarn as a PBT yarn composed of 30 denier multifilaments in which six 5-denier PBT filaments (elastic modulus: 1.2 GPa) are aligned, An ion exchange membrane was obtained in the same manner as in Example 1-1 except that it was immersed in an aqueous solution of 5% by mass of dimethyl sulfoxide and 30% by mass of potassium hydroxide at 95 ° C. for 90 minutes.
  • Example 4-2 Ion ions were formed in the same manner as in Example 4-1, except that a precursor film having an inorganic particle layer formed on one side was immersed in an aqueous solution of 5% by mass of dimethyl sulfoxide and 30% by mass of potassium hydroxide at 95 ° C. for 180 minutes. An exchange membrane was obtained. The average cross-sectional area of the sacrificial yarn remaining in the ion exchange membrane after hydrolysis was 1410 ⁇ m 2 / mm.
  • Example 5 As a reinforcing yarn, a PTFE yarn obtained by rapidly stretching a PTFE film and slitting to a thickness of 100 denier and then twisting 2000 times / m of the monofilament was used.
  • a sacrificial yarn As a sacrificial yarn, a 5-denier PBT filament ( Using PBT yarns consisting of 30 denier multifilaments with 6 elastic moduli (0.6 GPa), weave plain so that one reinforcing yarn and two sacrificial yarns are arranged alternately.
  • the reinforced fabric was woven so that the density was 27 / inch and the density of the sacrificial yarn was 54 / inch, but the dimensional change before and after the woven fabric was large, and a reinforced fabric having the designed yarn density could not be obtained. .
  • Examples 3-1, 3-2, and 3-3 which show an average elastic modulus of the sacrificial yarn that is higher than the conditions of the present invention, the ion exchange membrane in 32% by mass aqueous sodium hydroxide solution at 25 ° C. It became clear that the variation in dimensional change due to the remaining amount of sacrificial yarn in the exchange membrane was large, and that the dimensional change varied greatly depending on the average cross-sectional area of the sacrificial yarn remaining in the ion exchange membrane.
  • Examples 1-1 and 1-2, Examples 2-1 and 2-2, and Examples 4-1 and 4-2 using ion exchange membranes satisfying the conditions of the present invention were used. Then, the fluctuation of the dimensional change of the ion exchange membrane in the 125 g / L sodium chloride aqueous solution at 90 ° C. due to the remaining amount of the sacrificial yarn in the ion exchange membrane is small, and the dimensional change is caused by the sacrificial yarn remaining in the ion exchange membrane. It was almost constant regardless of the average cross-sectional area.
  • Examples 3-1, 3-2 and 3-3 which show higher average elastic modulus of the sacrificial yarn than the conditions of the present invention, the ion exchange of the ion exchange membrane in an aqueous 125 g / L sodium chloride solution at 90 ° C. It has been clarified that the variation in dimensional change due to the remaining amount of sacrificial yarn in the membrane is large, and the dimensional change varies greatly depending on the average cross-sectional area of the sacrificial yarn remaining in the ion exchange membrane.
  • the average elastic modulus of the sacrificial yarn in the reinforcing material provided inside the ion exchange membrane is in the specific range of the present invention, so that even if the average cross-sectional area of the remaining sacrificial yarn changes, the ion exchange membrane There is little variation in the dimensional change. Therefore, the dimensional change rate of the ion exchange membrane can be kept within a certain range without strictly controlling the hydrolysis conditions with the alkaline aqueous solution and strictly controlling the average cross-sectional area of the remaining sacrificial yarn. Troubles such as wrinkles, pinholes and cracks in the ion exchange membrane due to dimensional changes of the outer ion exchange membrane can be reduced. This effect is particularly remarkable in a large hydrolysis tank when it is difficult to make uniform the hydrolysis conditions such as the temperature in the tank and the concentration of the alkaline aqueous solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Woven Fabrics (AREA)

Abstract

Provided are: an ion exchange membrane for alkali chloride electrolysis, which is easily controlled with respect to variation in dimensional change without requiring a strict control of the residual amount of sacrificial threads in the ion exchange membrane; an ion exchange membrane precursor membrane; and an alkali chloride electrolysis device. An ion exchange membrane for alkali chloride electrolysis, which comprises a fluorine-containing polymer layer having an ion exchange group and a reinforcing material that is composed of reinforcing threads and sacrificial threads and is provided within the fluorine-containing polymer layer having an ion exchange group, and which is characterized in that the average elastic modulus of the sacrificial threads is 1.0-7.0 GPa.

Description

イオン交換膜、その製造方法および塩化アルカリ電解装置Ion exchange membrane, method for producing the same, and alkali chloride electrolyzer
 本発明は、イオン交換膜、その前駆体膜、それらの製造方法、塩化アルカリ電解装置、およびその製造方法に関する。 The present invention relates to an ion exchange membrane, a precursor membrane thereof, a production method thereof, an alkali chloride electrolysis apparatus, and a production method thereof.
 塩海水等の塩化アルカリ水溶液を電解し、水酸化アルカリと塩素とを製造する塩化アルカリ電解法に用いられるイオン交換膜としては、イオン交換基(カルボン酸基もしくはカルボン酸塩基、および、スルホン酸基もしくはスルホン酸塩基)を有する含フッ素ポリマーからなる電解質膜が知られている。電解質膜は、機械的強度や寸法安定性を維持する点から、通常、補強糸からなる補強材で補強されている。 As an ion exchange membrane used in an alkali chloride electrolysis method for producing an alkali hydroxide and chlorine by electrolyzing an aqueous alkali chloride solution such as salt seawater, ion exchange groups (carboxylic acid groups or carboxylate groups, and sulfonic acid groups are used. Alternatively, an electrolyte membrane made of a fluorine-containing polymer having a sulfonate group) is known. The electrolyte membrane is usually reinforced with a reinforcing material made of reinforcing yarn from the viewpoint of maintaining mechanical strength and dimensional stability.
 補強材を有するイオン交換膜としては、例えば、以下の(1)~(4)の各層が順に積層されたイオン交換膜が知られている(特許文献1)。
 (1)カルボン酸型官能基を有する含フッ素ポリマーを含む、イオン交換容量が0.80mg当量/gのポリマーA層、(2)スルホン酸型官能基を有する含フッ素ポリマーを含む、イオン交換容量が0.98mg当量/gのポリマーB層、(3)補強材、(4)スルホン酸型官能基を有する含フッ素ポリマーを含む、イオン交換容量が1.05mg当量/gのポリマーC層。
As an ion exchange membrane having a reinforcing material, for example, an ion exchange membrane in which the following layers (1) to (4) are sequentially laminated is known (Patent Document 1).
(1) A polymer A layer containing a fluorinated polymer having a carboxylic acid type functional group and having an ion exchange capacity of 0.80 mg equivalent / g, (2) an ion exchange capacity comprising a fluorinated polymer having a sulfonic acid type functional group A polymer B layer having an ion exchange capacity of 1.05 mg equivalent / g, comprising a polymer B layer having a sulfonic acid type functional group.
日本特開2013-163858号公報Japanese Unexamined Patent Publication No. 2013-163858
 塩化アルカリ電解用イオン交換膜(以下、「イオン交換膜」とも記す。)は、電解槽の運転条件、すなわち塩化アルカリ水溶液濃度、水酸化アルカリ濃度、運転温度等による膨潤、収縮等によって寸法が変化する。イオン交換膜は、電解装置内に固定されて使用されるため、イオン交換膜の寸法が変化すると、膜に皺が寄ることにより膜と電極が擦れてピンホールが発生したり、膜が引っ張られてクラックが生じることで膜が破損したりすることがある。これらを防止するには、イオン交換膜の予期できない寸法変化を抑制することが必要である。イオン交換膜の寸法変化は、イオン交換膜の内部に備えられた補強材により抑制できる。 The ion exchange membrane for alkali chloride electrolysis (hereinafter also referred to as “ion exchange membrane”) changes in dimensions depending on the operating conditions of the electrolytic cell, that is, swelling / shrinkage due to alkali chloride aqueous solution concentration, alkali hydroxide concentration, operating temperature, etc. To do. Since the ion exchange membrane is used by being fixed in the electrolysis apparatus, if the size of the ion exchange membrane changes, the membrane and the electrode rub against each other due to wrinkles on the membrane, and pinholes are generated or the membrane is pulled. In some cases, the film may be damaged due to cracks. In order to prevent these, it is necessary to suppress unexpected dimensional changes of the ion exchange membrane. The dimensional change of the ion exchange membrane can be suppressed by a reinforcing material provided inside the ion exchange membrane.
 イオン交換基を有するイオン交換膜に含まれる補強材は、イオン交換基に変換できる基を有する含フッ素ポリマー層と前記含フッ素ポリマー層の内部に備えられた補強布とを有するイオン交換膜前駆体膜に含まれる補強布に由来する材料である。前記補強布は、通常、補強糸と犠牲糸とからなり、犠牲糸はアルカリ性水溶液に浸漬すると溶出する材料からなる。内部に補強布が備えられたイオン交換膜前駆体膜をアルカリ性水溶液に浸漬し、イオン交換膜前駆体膜中のイオン交換基に変換できる基を加水分解して、イオン交換基に変換する工程において、補強布を構成する補強糸と犠牲糸のうち、補強糸は溶解せず残存し、犠牲糸はその少なくとも一部が溶解し、イオン交換膜中に補強糸と犠牲糸とからなる補強材が形成される。なお、前記工程において、補強布を構成する補強糸は溶解しない。すなわち、イオン交換膜中の補強材は、補強糸と、前記工程において溶解せずに残存した犠牲糸とからなる。 The reinforcing material contained in the ion-exchange membrane having an ion-exchange group is an ion-exchange membrane precursor having a fluorine-containing polymer layer having a group that can be converted into an ion-exchange group and a reinforcing cloth provided inside the fluorine-containing polymer layer. It is a material derived from the reinforcing cloth contained in the membrane. The reinforcing fabric is usually composed of a reinforcing yarn and a sacrificial yarn, and the sacrificial yarn is composed of a material that elutes when immersed in an alkaline aqueous solution. In the step of immersing an ion exchange membrane precursor membrane having a reinforcing cloth inside in an alkaline aqueous solution to hydrolyze a group that can be converted into an ion exchange group in the ion exchange membrane precursor membrane and converting it into an ion exchange group Of the reinforcing yarn and sacrificial yarn constituting the reinforcing cloth, the reinforcing yarn remains undissolved, and at least a part of the sacrificial yarn dissolves, and a reinforcing material comprising the reinforcing yarn and the sacrificial yarn is present in the ion exchange membrane. It is formed. In the step, the reinforcing yarn constituting the reinforcing cloth is not dissolved. That is, the reinforcing material in the ion exchange membrane is composed of a reinforcing yarn and a sacrificial yarn that remains without being dissolved in the above process.
 イオン交換膜の寸法変化に対して、イオン交換膜に含まれる補強材を構成する補強糸の繊度や、補強糸の密度が影響を与えることは当業者によく知られたことである。
 本発明者らがさらに検討したところ、イオン交換膜に含まれる補強材を構成する、溶解せずに残存した犠牲糸の残存量が、イオン交換膜の寸法変化の変動に影響を与えることを見出した。犠牲糸の残存量は、イオン交換膜に要求される強度や寸法変化の許容の度合いによって適宜決定され、前記工程、即ち、イオン交換膜前駆体膜中のイオン交換基に変換できる基をイオン交換基に変換する工程において、アルカリ性水溶液の濃度、温度、接触時間等の条件を選択することにより制御される。犠牲糸の残存量を所定の値とするには、これらの条件を厳密に制御する必要がある。
 しかしながら、特に大型設備においてはイオン交換膜前駆体膜を連続的に加水分解する際、加水分解槽内のアルカリ性水溶液の濃度や温度等に不均一な分布が生じてしまい、イオン交換膜に含まれる補強材における犠牲糸の残存量を厳密に制御することは困難であった。
It is well known to those skilled in the art that the fineness of the reinforcing yarn constituting the reinforcing material included in the ion exchange membrane and the density of the reinforcing yarn affect the dimensional change of the ion exchange membrane.
Further examination by the present inventors has found that the amount of the sacrificial yarn remaining without dissolving that constitutes the reinforcing material included in the ion exchange membrane affects the variation in the dimensional change of the ion exchange membrane. It was. The remaining amount of the sacrificial yarn is appropriately determined depending on the strength required for the ion exchange membrane and the tolerance of dimensional change, and the above-described step, that is, the group that can be converted into the ion exchange group in the ion exchange membrane precursor membrane is ion-exchanged. In the step of converting to a base, the conditions are controlled by selecting conditions such as the concentration, temperature, and contact time of the alkaline aqueous solution. In order to set the remaining amount of the sacrificial yarn to a predetermined value, it is necessary to strictly control these conditions.
However, especially in large facilities, when the ion-exchange membrane precursor membrane is continuously hydrolyzed, non-uniform distribution occurs in the concentration and temperature of the alkaline aqueous solution in the hydrolysis tank, which is included in the ion-exchange membrane. It was difficult to strictly control the remaining amount of sacrificial yarn in the reinforcing material.
 本発明は、イオン交換膜を用いた塩化アルカリ電解において、イオン交換膜中の犠牲糸の残存量の厳密な制御を必要とすることなく、イオン交換膜の寸法変化の変動を制御しやすい、イオン交換膜、その前駆体膜、それらの製造方法、塩化アルカリ電解装置、およびその製造方法を提供することを課題とする。 In the alkali chloride electrolysis using an ion exchange membrane, the ion exchange membrane can easily control the variation in the dimensional change of the ion exchange membrane without requiring strict control of the remaining amount of the sacrificial yarn in the ion exchange membrane. It is an object of the present invention to provide an exchange membrane, a precursor film thereof, a production method thereof, an alkali chloride electrolysis apparatus, and a production method thereof.
 本発明者らが検討したところ、補強糸と犠牲糸からなる補強布または補強材を構成する犠牲糸として、特定範囲の弾性率を有する犠牲糸を使用するイオン交換膜は、犠牲糸の残存量の変動による寸法変化の変動が小さいことを見出した。
 本発明は上記の知見に基づき完成されたものであり。以下の構成を有する。
[1]イオン交換基を有する含フッ素ポリマー層と、前記イオン交換基を有する含フッ素ポリマー層の内部に備えられた補強糸と犠牲糸からなる補強材とを有するイオン交換膜であって、前記犠牲糸の平均弾性率が1.0~7.0GPaであることを特徴とするイオン交換膜。
[2]前記補強糸は、繊度が20~200デニールであり、補強布中の補強糸の密度が10~40本/インチである[1]イオン交換膜。
[3]前記犠牲糸は、繊度が5~100デニールであり、補強布中の犠牲糸の1本当たりのフィラメント数が1~32本のモノフィラメント又はマルチフィラメントである[1]または[2]に記載の塩化アルカリ電解用イオン交換膜。
[4]前記犠牲糸が、一部が溶解して除去されている犠牲糸である[1]~[3]のいずれか一項に記載のイオン交換膜。
[5]前記イオン交換基を有する含フッ素ポリマー層の少なくとも一部が、スルホン酸型官能基を有する含フッ素ポリマー層である[1]~[4]のいずれか一項に記載のイオン交換膜。
[6]前記イオン交換基を有する含フッ素ポリマー層の少なくとも一部が、カルボン酸型官能基を有する含フッ素ポリマー層である[1]~[4]のいずれか一項に記載のイオン交換膜。
[7]少なくとも一方の最表面に無機物粒子を含む層をさらに有する[1]~[6]のいずれか一項に記載のイオン交換膜。
[8][1]~[7]のいずれか一項に記載のイオン交換膜を、電解槽内の陰極側の陰極室と陽極側の陽極室とを区切る電解膜として備える塩化アルカリ電解装置。
[9]イオン交換基に変換できる基を有する含フッ素ポリマー層と、前記イオン交換基に変換できる基を有する含フッ素ポリマー層の内部に備えられた補強布とを有する、イオン交換膜前駆体膜であって、前記補強布は、補強糸と犠牲糸とからなり、前記犠牲糸の平均弾性率が1.0~7.0GPaであるイオン交換膜前駆体膜。
[10]前記イオン交換基に変換できる基を有する含フッ素ポリマー層の少なくとも一部が、スルホン酸型官能基に変換できる基を有する含フッ素ポリマー層である[9]に記載のイオン交換膜前駆体膜。
[11]前記イオン交換基に変換できる基を有する含フッ素ポリマー層の少なくとも一部が、カルボン酸型官能基に変換できる基である含フッ素ポリマー層を有する[9]または[10]に記載のイオン交換膜前駆体膜。
[12][9]~[11]のいずれか一項に記載のイオン交換膜前駆体膜を、アルカリ性水溶液に接触させることにより、イオン交換基に変換できる基をイオン交換基に変換するとともに、補強布中の犠牲糸の少なくとも一部を溶解して除去することにより、イオン交換基を有する含フッ素ポリマー層および補強材を含むイオン交換膜を得ることを特徴とするイオン交換膜の製造方法。
[13]補強布中の犠牲糸の一部を溶解して除去する[12]に記載のイオン交換膜の製造方法。
[14][12]または[13]に記載の製造方法によってイオン交換膜を得た後、該イオン交換膜を、電解槽内の陰極側の陰極室と陽極側の陽極室とを区切る電解膜として設けることを特徴とする塩化アルカリ電解装置の製造方法。
As a result of the study by the present inventors, an ion exchange membrane using a sacrificial yarn having an elastic modulus in a specific range as a sacrificial yarn constituting a reinforcing cloth or a reinforcing material composed of a reinforcing yarn and a sacrificial yarn is a residual amount of the sacrificial yarn. It was found that the variation of dimensional change due to the variation of was small.
The present invention has been completed based on the above findings. It has the following configuration.
[1] An ion exchange membrane having a fluorine-containing polymer layer having ion exchange groups, and a reinforcing material comprising a reinforcing yarn and a sacrificial yarn provided inside the fluorine-containing polymer layer having ion exchange groups, An ion exchange membrane characterized in that the sacrificial yarn has an average elastic modulus of 1.0 to 7.0 GPa.
[2] The reinforcing yarn has a fineness of 20 to 200 denier, and the density of the reinforcing yarn in the reinforcing cloth is 10 to 40 / inch. [1] An ion exchange membrane.
[3] In the above [1] or [2], the sacrificial yarn has a fineness of 5 to 100 denier, and the number of filaments per sacrificial yarn in the reinforcing fabric is 1 to 32 monofilaments or multifilaments. The ion exchange membrane for alkali chloride electrolysis of description.
[4] The ion exchange membrane according to any one of [1] to [3], wherein the sacrificial yarn is a sacrificial yarn partially dissolved and removed.
[5] The ion exchange membrane according to any one of [1] to [4], wherein at least a part of the fluorine-containing polymer layer having an ion exchange group is a fluorine-containing polymer layer having a sulfonic acid type functional group. .
[6] The ion exchange membrane according to any one of [1] to [4], wherein at least a part of the fluorine-containing polymer layer having an ion exchange group is a fluorine-containing polymer layer having a carboxylic acid type functional group. .
[7] The ion exchange membrane according to any one of [1] to [6], further including a layer containing inorganic particles on at least one outermost surface.
[8] An alkali chloride electrolyzer comprising the ion exchange membrane according to any one of [1] to [7] as an electrolytic membrane separating a cathode chamber on the cathode side and an anode chamber on the anode side in the electrolytic cell.
[9] An ion exchange membrane precursor membrane having a fluoropolymer layer having a group that can be converted into an ion exchange group, and a reinforcing cloth provided inside the fluoropolymer layer having a group that can be converted into an ion exchange group The reinforcing cloth comprises a reinforcing yarn and a sacrificial yarn, and the sacrificial yarn has an average elastic modulus of 1.0 to 7.0 GPa.
[10] The ion exchange membrane precursor according to [9], wherein at least a part of the fluoropolymer layer having a group that can be converted into an ion exchange group is a fluoropolymer layer having a group that can be converted into a sulfonic acid type functional group. Body membrane.
[11] The [9] or [10], wherein at least a part of the fluoropolymer layer having a group that can be converted into an ion exchange group has a fluoropolymer layer that is a group that can be converted into a carboxylic acid type functional group. Ion exchange membrane precursor membrane.
[12] The ion-exchange membrane precursor film according to any one of [9] to [11] is brought into contact with an alkaline aqueous solution to convert a group that can be converted into an ion-exchange group into an ion-exchange group, A method for producing an ion exchange membrane comprising obtaining a ion exchange membrane comprising a fluorine-containing polymer layer having an ion exchange group and a reinforcing material by dissolving and removing at least a part of the sacrificial yarn in the reinforcing fabric.
[13] The method for producing an ion exchange membrane according to [12], wherein a part of the sacrificial yarn in the reinforcing cloth is dissolved and removed.
[14] After obtaining an ion exchange membrane by the production method according to [12] or [13], the ion exchange membrane is divided into an anode chamber on the cathode side and an anode chamber on the anode side in the electrolytic cell. A method for producing an alkali chloride electrolysis apparatus, comprising:
 本発明のイオン交換膜は、イオン交換膜に含まれる補強材における犠牲糸の残存量の厳密な制御を必要とすることなく、イオン交換膜の寸法変化の変動を制御しやすい膜である。本発明の塩化アルカリ電解装置は、本発明のイオン交換膜を有するため、イオン交換膜に含まれる補強材における犠牲糸の残存量の厳密な制御を必要とせず、イオン交換膜の寸法変化の変動が制御しやすい。
 本発明のイオン交換膜の製造方法によれば、イオン交換膜に含まれる補強材における犠牲糸の残存量の厳密な制御を必要とすることなく、イオン交換膜の寸法変化の変動を制御しやすいイオン交換膜を製造できる。
 本発明の塩化アルカリ電解装置の製造方法によれば、イオン交換膜に含まれる補強材における犠牲糸の残存量の厳密な制御を必要とせず、イオン交換膜の寸法変化の変動が制御しやすい塩化アルカリ電解装置を製造できる。
The ion exchange membrane of the present invention is a membrane that can easily control the variation of the dimensional change of the ion exchange membrane without requiring strict control of the remaining amount of the sacrificial yarn in the reinforcing material included in the ion exchange membrane. Since the alkali chloride electrolysis apparatus of the present invention has the ion exchange membrane of the present invention, it does not require strict control of the residual amount of sacrificial yarn in the reinforcing material included in the ion exchange membrane, and the variation in the dimensional change of the ion exchange membrane Is easy to control.
According to the method for producing an ion exchange membrane of the present invention, it is easy to control variation in the dimensional change of the ion exchange membrane without requiring strict control of the remaining amount of the sacrificial yarn in the reinforcing material included in the ion exchange membrane. An ion exchange membrane can be manufactured.
According to the method for producing an alkaline chloride electrolysis apparatus of the present invention, chlorination that does not require strict control of the remaining amount of the sacrificial yarn in the reinforcing material included in the ion exchange membrane and can easily control the variation in the dimensional change of the ion exchange membrane. An alkaline electrolyzer can be manufactured.
 以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
 「イオン交換膜」とは、塩化アルカリ水溶液の電解に用いられる膜であって、イオン交換基を有するポリマーを含む膜である。
 「イオン交換基」とは、該基に含まれるイオンの少なくとも一部を、他のイオンに交換しうる基である。下記のカルボン酸型官能基、スルホン酸型官能基等が挙げられる。
 「カルボン酸型官能基」とは、カルボン酸基(-COOH)、またはカルボン酸塩基(-COOM。ただし、Mはアルカリ金属または第4級アンモニウム塩基である。)を意味する。
 「スルホン酸型官能基」とは、スルホン酸基(-SOH)、またはスルホン酸塩基(-SO。ただし、Mはアルカリ金属または第4級アンモニウム塩基である。)を意味する。
 「イオン交換膜前駆体膜」とは、イオン交換膜の前駆体となる膜であって、イオン交換基に変換できる基を有するポリマーを含む膜である。
 「イオン交換基に変換できる基」とは、加水分解処理、酸型化処理等の公知の処理によって、イオン交換基に変換できる基を意味する。
 「カルボン酸型官能基に変換できる基」とは、加水分解処理、酸型化処理等の公知の処理によって、カルボン酸型官能基に変換できる基を意味する。
 「スルホン酸型官能基に変換できる基」とは、加水分解処理、酸型化処理等の公知の処理によって、スルホン酸型官能基に変換できる基を意味する。
The following definitions of terms apply throughout this specification and the claims.
The “ion exchange membrane” is a membrane used for electrolysis of an alkali chloride aqueous solution and containing a polymer having an ion exchange group.
The “ion exchange group” is a group that can exchange at least a part of ions contained in the group with other ions. The following carboxylic acid type functional groups, sulfonic acid type functional groups and the like can be mentioned.
The “carboxylic acid type functional group” means a carboxylic acid group (—COOH) or a carboxylic acid group (—COOM 1 , where M 1 is an alkali metal or a quaternary ammonium base).
The “sulfonic acid type functional group” means a sulfonic acid group (—SO 3 H) or a sulfonic acid group (—SO 3 M 2 , where M 2 is an alkali metal or a quaternary ammonium base). To do.
An “ion exchange membrane precursor membrane” is a membrane that is a precursor of an ion exchange membrane and contains a polymer having a group that can be converted into an ion exchange group.
The “group that can be converted into an ion exchange group” means a group that can be converted into an ion exchange group by a known treatment such as hydrolysis treatment or acidification treatment.
The “group that can be converted into a carboxylic acid type functional group” means a group that can be converted into a carboxylic acid type functional group by a known process such as hydrolysis or acidification.
The “group that can be converted into a sulfonic acid type functional group” means a group that can be converted into a sulfonic acid type functional group by a known treatment such as hydrolysis or acidification.
 「パーフルオロカーボンポリマー」とは、ポリマー中の炭素原子に結合している水素原子の全部がフッ素原子に置換されたポリマーを意味する。パーフルオロカーボンポリマー中のフッ素原子の一部は、塩素原子および臭素原子の一方または両方で置換されていてもよい。
 「構成単位」とは、ポリマー中に存在してポリマーを構成する、モノマーに由来する部分を意味する。たとえば、構成単位が炭素-炭素不飽和二重結合を有するモノマーの付加重合により生じる場合、該モノマーに由来する構成単位は、該不飽和二重結合が開裂して生じた2価の構成単位である。また、構成単位は、ある構成単位の構造を有するポリマーを形成した後に、該構成単位を化学的に変換して得られた構成単位であってもよい。なお、以下において、場合により、個々のモノマーに由来する構成単位を、そのモノマー名に「単位」を付した名称で記載することがある。
The “perfluorocarbon polymer” means a polymer in which all of hydrogen atoms bonded to carbon atoms in the polymer are substituted with fluorine atoms. Some of the fluorine atoms in the perfluorocarbon polymer may be substituted with one or both of chlorine atoms and bromine atoms.
The “structural unit” means a part derived from a monomer that is present in the polymer and constitutes the polymer. For example, when the structural unit is generated by addition polymerization of a monomer having a carbon-carbon unsaturated double bond, the structural unit derived from the monomer is a divalent structural unit generated by cleavage of the unsaturated double bond. is there. Further, the structural unit may be a structural unit obtained by forming a polymer having a structure of a certain structural unit and then chemically converting the structural unit. In the following, in some cases, a structural unit derived from an individual monomer may be described by a name in which “unit” is added to the monomer name.
 「補強材」とは、イオン交換膜の強度を向上させるために用いられる材料を意味する。
 「補強布」とは、イオン交換膜の強度を向上させるための補強材の原料として用いられる布を意味する。
 「補強糸」とは、補強布を構成する糸であり、補強布をアルカリ性水溶液(例えば、濃度が32質量%の水酸化ナトリウム水溶液)に浸漬しても溶出することのない材料からなる糸である。
 「犠牲糸」とは、補強布を構成する糸であり、補強布をアルカリ性水溶液に浸漬したときに、アルカリ性水溶液に溶出する材料からなる糸である。
 「溶出孔」とは、犠牲糸がアルカリ性水溶液に溶出した結果、生成する孔を意味する。
“Reinforcing material” means a material used to improve the strength of an ion exchange membrane.
The “reinforcing cloth” means a cloth used as a raw material for a reinforcing material for improving the strength of the ion exchange membrane.
The “reinforcing yarn” is a yarn constituting the reinforcing fabric, and is a yarn made of a material that does not elute even when the reinforcing fabric is immersed in an alkaline aqueous solution (for example, a sodium hydroxide aqueous solution having a concentration of 32% by mass). is there.
The “sacrificial yarn” is a yarn constituting the reinforcing fabric, and is a yarn made of a material that elutes into the alkaline aqueous solution when the reinforcing fabric is immersed in the alkaline aqueous solution.
“Elution hole” means a hole formed as a result of the sacrificial yarn being eluted in an alkaline aqueous solution.
[イオン交換膜]
 本発明のイオン交換膜は、イオン交換基を有する含フッ素ポリマーからなる層(以下、「層(P)」とも記す。)を有し、補強糸と犠牲糸からなる補強材が層(P)の内部に備えられている。犠牲糸は、一部が溶解して除去されている犠牲糸であってもよい。また、イオン交換膜には、犠牲糸の一部が溶解して除去されることにより、溶出孔が形成されていてもよい。
[Ion exchange membrane]
The ion exchange membrane of the present invention has a layer made of a fluorine-containing polymer having ion exchange groups (hereinafter also referred to as “layer (P)”), and a reinforcing material made of reinforcing yarn and sacrificial yarn is layer (P). Is provided inside. The sacrificial yarn may be a sacrificial yarn partially dissolved and removed. In addition, elution holes may be formed in the ion exchange membrane by dissolving and removing part of the sacrificial yarn.
(補強材)
 前記補強布は、通常、補強糸と犠牲糸とからなり、犠牲糸はアルカリ性水溶液に浸漬すると溶出する材料からなる。内部に補強布が備えられたイオン交換膜前駆体膜をアルカリ性水溶液に浸漬し、イオン交換膜前駆体膜中のイオン交換基に変換できる基を加水分解して、イオン交換基に変換する工程において、補強布を構成する補強糸と犠牲糸のうち、補強糸は溶解せず残存し、犠牲糸はその少なくとも一部が溶解し、イオン交換膜中に補強糸と犠牲糸とからなる補強材が形成される。なお、前記工程において、補強布を構成する補強糸は溶解しない。すなわち、イオン交換膜中の補強材は、補強糸と、前記工程において溶解せずに残存した犠牲糸とからなる。
 補強材は、補強糸と犠牲糸とからなり、層(P)を補強する材料である。補強材は、イオン交換基に変換できる基を有する含フッ素ポリマー層と前記含フッ素ポリマー層の内部に備えられた補強布とを有するイオン交換膜前駆体膜に含まれる補強布に由来する。
(Reinforcing material)
The reinforcing fabric is usually composed of a reinforcing yarn and a sacrificial yarn, and the sacrificial yarn is composed of a material that elutes when immersed in an alkaline aqueous solution. In the step of immersing an ion exchange membrane precursor membrane having a reinforcing cloth inside in an alkaline aqueous solution to hydrolyze a group that can be converted into an ion exchange group in the ion exchange membrane precursor membrane and converting it into an ion exchange group Of the reinforcing yarn and sacrificial yarn constituting the reinforcing cloth, the reinforcing yarn remains undissolved, and at least a part of the sacrificial yarn dissolves, and a reinforcing material comprising the reinforcing yarn and the sacrificial yarn is present in the ion exchange membrane. It is formed. In the step, the reinforcing yarn constituting the reinforcing cloth is not dissolved. That is, the reinforcing material in the ion exchange membrane is composed of a reinforcing yarn and a sacrificial yarn that remains without being dissolved in the above process.
The reinforcing material is made of reinforcing yarn and sacrificial yarn, and is a material that reinforces the layer (P). The reinforcing material is derived from a reinforcing cloth contained in an ion-exchange membrane precursor film having a fluorine-containing polymer layer having a group that can be converted into an ion-exchange group and a reinforcing cloth provided inside the fluorine-containing polymer layer.
 補強布は、経糸と緯糸とからなり、経糸と緯糸が直交していることが好ましい。経糸および緯糸は、それぞれが補強糸と犠牲糸の両方から構成されていることが好ましい。すなわち、補強布中の経糸が補強糸と犠牲糸とからなり、補強布中の緯糸が補強糸と犠牲糸とからなることが好ましい。 The reinforcing fabric is composed of warp and weft, and the warp and weft are preferably orthogonal. Each of the warp and weft is preferably composed of both a reinforcing yarn and a sacrificial yarn. That is, it is preferable that the warp yarn in the reinforcing fabric is composed of the reinforcing yarn and the sacrificial yarn, and the weft yarn in the reinforcing fabric is composed of the reinforcing yarn and the sacrificial yarn.
 補強糸は、補強布を含むイオン交換膜前駆体膜(以下、「イオン交換膜前駆体膜」とも記す。)をアルカリ性水溶液に浸漬しても溶出することのない材料からなる糸である。後述するイオン交換膜の製造方法における製造工程において、補強布を含むイオン交換膜前駆体膜をアルカリ性水溶液に浸漬した後も溶解せずに残存し、補強材を構成する糸としてイオン交換膜の機械的強度や寸法安定性の維持に寄与する。
 補強糸としては、パーフルオロカーボンポリマーを含む糸が好ましく、ポリテトラフルオロエチレン(以下、「PTFE」と記す。)を含む糸が好ましく、PTFEのみからなるPTFE糸がさらに好ましい。
The reinforcing yarn is a yarn made of a material that does not elute even when an ion exchange membrane precursor membrane including a reinforcing fabric (hereinafter also referred to as “ion exchange membrane precursor membrane”) is immersed in an alkaline aqueous solution. In the manufacturing process of the ion exchange membrane manufacturing method to be described later, the ion exchange membrane precursor as a yarn constituting the reinforcing material remains undissolved even after the ion exchange membrane precursor membrane including the reinforcing cloth is immersed in an alkaline aqueous solution. This contributes to the maintenance of mechanical strength and dimensional stability.
As the reinforcing yarn, a yarn containing a perfluorocarbon polymer is preferable, a yarn containing polytetrafluoroethylene (hereinafter referred to as “PTFE”) is preferable, and a PTFE yarn made only of PTFE is more preferable.
 補強糸の繊度は、20~200デニールが好ましく、50~150デニールがより好ましく、80~100デニールが特に好ましい。該繊度が前記下限値以上であれば、イオン交換膜の機械的強度が充分に高くなる。該繊度が前記上限値以下であれば、イオン交換膜の膜抵抗を低く抑えることができ、電解電圧の上昇を抑制できる。 The fineness of the reinforcing yarn is preferably 20 to 200 denier, more preferably 50 to 150 denier, and particularly preferably 80 to 100 denier. When the fineness is not less than the lower limit, the mechanical strength of the ion exchange membrane is sufficiently high. If the fineness is less than or equal to the above upper limit value, the membrane resistance of the ion exchange membrane can be kept low, and an increase in electrolytic voltage can be suppressed.
 補強材を形成するための補強布中の補強糸の密度(打ち込み数)は、10~40本/インチが好ましく、20~30本/インチがより好ましい。該密度が前記下限値以上であれば、補強材としての機械的強度が充分に高くなる。該密度が前記上限値以下であれば、イオン交換膜の膜抵抗を低く抑えることができ、電解電圧の上昇を抑制できる。 The density (the number of driving) of the reinforcing yarn in the reinforcing cloth for forming the reinforcing material is preferably 10 to 40 / inch, and more preferably 20 to 30 / inch. When the density is equal to or higher than the lower limit, the mechanical strength as a reinforcing material is sufficiently high. When the density is equal to or lower than the upper limit value, the membrane resistance of the ion exchange membrane can be kept low, and an increase in electrolytic voltage can be suppressed.
 犠牲糸は、補強布を含むイオン交換膜前駆体膜をアルカリ性水溶液に浸漬することにより、溶出する糸である。補強布を含むイオン交換膜前駆体膜をアルカリ性水溶液に浸漬した場合に、犠牲糸の一部が溶解して除去されており、その溶解残りが補強材を構成する犠牲糸として残存することが好ましい。犠牲糸の少なくとも一部が溶解残りとして残存することにより、イオン交換膜の機械的強度や寸法安定性の維持に寄与する。
 なお、補強布を含むイオン交換膜前駆体膜をアルカリ性水溶液に浸漬した場合に、犠牲糸の全部が溶解し、補強材を構成する糸として犠牲糸が残存していなくてもよい。犠牲糸が残存していなくても、補強布に補強糸が含まれることにより、イオン交換膜前駆体膜の機械的強度に寄与できる。
The sacrificial yarn is a yarn that elutes by immersing the ion exchange membrane precursor membrane including the reinforcing cloth in an alkaline aqueous solution. When the ion exchange membrane precursor membrane including the reinforcing cloth is immersed in an alkaline aqueous solution, it is preferable that a part of the sacrificial yarn is dissolved and removed, and the dissolved residue remains as a sacrificial yarn constituting the reinforcing material. . When at least a part of the sacrificial yarn remains as a dissolution residue, it contributes to maintaining the mechanical strength and dimensional stability of the ion exchange membrane.
In addition, when the ion exchange membrane precursor film | membrane containing a reinforcement cloth is immersed in alkaline aqueous solution, all the sacrifice yarns melt | dissolve and a sacrifice yarn does not need to remain as a thread | yarn which comprises a reinforcement material. Even if the sacrificial yarn does not remain, inclusion of the reinforcing yarn in the reinforcing cloth can contribute to the mechanical strength of the ion exchange membrane precursor membrane.
 本発明において、補強布または補強材を構成する犠牲糸の有する平均弾性率は重要であり、犠牲糸の平均弾性率は、1.0~7.0GPaであることが必要である。該平均弾性率が前記下限値以上であれば、織布時に糸の目ずれが起きにくくなる。該平均弾性率が前記上限値以下であれば、犠牲糸の残存量による寸法変化の変動を低く抑えられる。該平均弾性率は、2.0~6.0GPaが好ましく、3.0~6.0GPaがより好ましく、4.0~5.0GPaが特に好ましい。
 犠牲糸も含めて糸の平均弾性率は、ポリマーの重合度やポリマー素材によって決まる特有な値である。したがって、犠牲糸を有する補強布を含むイオン交換膜前駆体膜をアルカリ性水溶液に浸漬する前も、あるいはアルカリ性水溶液に浸漬して、補強布中の犠牲糸の一部が溶解した後も、犠牲糸の弾性率は変化しない。
In the present invention, the average elastic modulus of the sacrificial yarn constituting the reinforcing fabric or the reinforcing material is important, and the sacrificial yarn needs to have an average elastic modulus of 1.0 to 7.0 GPa. If the average elastic modulus is equal to or greater than the lower limit, yarn misalignment is less likely to occur during weaving. If the average elastic modulus is not more than the above upper limit value, the variation in dimensional change due to the remaining amount of sacrificial yarn can be kept low. The average elastic modulus is preferably 2.0 to 6.0 GPa, more preferably 3.0 to 6.0 GPa, and particularly preferably 4.0 to 5.0 GPa.
The average elastic modulus of the yarn including the sacrificial yarn is a specific value determined by the degree of polymerization of the polymer and the polymer material. Therefore, even before the ion exchange membrane precursor membrane including the reinforcing cloth having the sacrificial yarn is immersed in the alkaline aqueous solution, or after the sacrificial yarn in the reinforcing cloth is partially dissolved, the sacrificial yarn is immersed in the alkaline aqueous solution. The modulus of elasticity does not change.
 本発明における犠牲糸の弾性率の測定方法は、以下のように求めされる。
 引張試験器(オリンテック社製 TENSILON RTC-1210A)にチャック間距離50mmでアルカリ性水溶液に浸漬する前の犠牲糸を装着して、引張速度50mm/分で引っ張った際の応力-ひずみ(伸度)曲線のひずみ(伸度)が5%での応力を測定し、アルカリ性水溶液に浸漬する前の犠牲糸の平均断面積で割った値を弾性率とした。平均弾性率は、弾性率を5回測定し、それらの値の平均値を平均弾性率とした。
 なお、アルカリ性水溶液に浸漬する前の犠牲糸の断面積は、光学顕微鏡にて観察し、画像ソフトを用いて測定した。断面積の測定を犠牲糸の10カ所について行い、これらの値の平均値をアルカリ性水溶液に浸漬する前の犠牲糸の平均断面積とする。
The method for measuring the elastic modulus of the sacrificial yarn in the present invention is determined as follows.
Stress-strain (elongation) when a tensile tester (TENSILON RTC-1210A manufactured by Olintec Corporation) is attached with a sacrificial yarn before dipping in an alkaline aqueous solution at a chuck distance of 50 mm and pulled at a pulling speed of 50 mm / min. The stress at a curve strain (elongation) of 5% was measured, and the value divided by the average cross-sectional area of the sacrificial yarn before dipping in the alkaline aqueous solution was taken as the elastic modulus. For the average elastic modulus, the elastic modulus was measured 5 times, and the average of these values was defined as the average elastic modulus.
The cross-sectional area of the sacrificial yarn before being immersed in the alkaline aqueous solution was observed with an optical microscope and measured using image software. The cross-sectional area is measured at 10 locations of the sacrificial yarn, and the average value of these values is taken as the average cross-sectional area of the sacrificial yarn before being immersed in the alkaline aqueous solution.
 本発明において、イオン交換膜に残存する犠牲糸の平均断面積は、500~5000μm/mmが好ましく、1000~4000μm/mmがより好ましく、1500~3000μm/mmがさらに好ましい。該犠牲糸の平均断面積が前記下限値以上であれば、イオン交換膜をハンドリングする際に折れ曲がりやクラックなどが発生しにくい。該平均断面積が前記上限値以下であれば、イオン交換膜の製膜中および製膜後にカールが発生しにくい。
 なお、本発明におけるイオン交換膜に残存する犠牲糸の平均断面積の測定方法は、後述するとおりである。90℃で2時間以上乾燥させたイオン交換膜の、犠牲糸の長さ方向に垂直に切断した断面を光学顕微鏡にて観察し、画像ソフトを用いて、膜の幅方向1mmあたりに残存する犠牲糸の断面積の合計値として定義される。残存する犠牲糸の断面積の測定は10カ所行い、残存する犠牲糸の平均断面積を算出する。
In the present invention, the average cross-sectional area of the sacrificial yarns remaining in the ion-exchange membrane is preferably 500 ~ 5000μm 2 / mm, and more preferably 1000 ~ 4000μm 2 / mm, more preferably 1500 ~ 3000μm 2 / mm. If the average cross-sectional area of the sacrificial yarn is greater than or equal to the lower limit, bending or cracking is unlikely to occur when handling the ion exchange membrane. When the average cross-sectional area is less than or equal to the upper limit value, curling is unlikely to occur during and after the ion exchange membrane is formed.
In addition, the measuring method of the average cross-sectional area of the sacrificial yarn remaining on the ion exchange membrane in the present invention is as described later. The cross section of the ion exchange membrane dried at 90 ° C. for 2 hours or more perpendicularly to the length direction of the sacrificial yarn is observed with an optical microscope, and the remaining sacrificial per 1 mm in the width direction of the membrane using image software Defined as the sum of the cross-sectional areas of the yarn. The measurement of the cross-sectional area of the remaining sacrificial yarn is performed at 10 locations, and the average cross-sectional area of the remaining sacrificial yarn is calculated.
 補強布中の犠牲糸は、1本のフィラメントからなるモノフィラメントであっても、2本以上のフィラメントからなるマルチフィラメントであってもよい。
 補強布中の犠牲糸がモノフィラメント又はマルチフィラメントの場合も、補強布中の犠牲糸の1本当たりのフィラメントの数は、1~32本が好ましく、2~16本がより好ましく、2~8本がさらに好ましい。フィラメントの数が前記下限値以上であれば、犠牲糸とアルカリ性水溶液との接触面接が広くなり、犠牲糸がアルカリ性水溶液へ溶出しやすくなる。フィラメントの数が前記上限値以下であれば、犠牲糸とアルカリ性水溶液との接触面積が少なくなり、アルカリ性水溶液への犠牲糸の溶出が抑制され、犠牲糸の一部が残存する。イオン交換膜に残存する犠牲糸は、イオン交換膜の機械的強度に寄与する。
The sacrificial yarn in the reinforcing fabric may be a monofilament composed of one filament or a multifilament composed of two or more filaments.
When the sacrificial yarn in the reinforcing fabric is monofilament or multifilament, the number of filaments per sacrificial yarn in the reinforcing fabric is preferably 1 to 32, more preferably 2 to 16, and 2 to 8 Is more preferable. When the number of filaments is equal to or greater than the lower limit, the contact surface between the sacrificial yarn and the alkaline aqueous solution is widened, and the sacrificial yarn is easily eluted into the alkaline aqueous solution. If the number of filaments is less than or equal to the above upper limit, the contact area between the sacrificial yarn and the alkaline aqueous solution is reduced, elution of the sacrificial yarn into the alkaline aqueous solution is suppressed, and a portion of the sacrificial yarn remains. The sacrificial yarn remaining on the ion exchange membrane contributes to the mechanical strength of the ion exchange membrane.
 犠牲糸としては、PET、ポリブチレンテレフタレート(以下、PBTと記す。)、ポリトリメチレンテレフタレート(以下、PTTと記す。)、レーヨン、及びセルロースからなる群より選ばれる少なくとも1種を含む糸が好ましい。なかでも、PETのみからなるPET糸、PETおよびPBTの混合物からなるPET/PBT糸、PBTのみからなるPBT糸、またはPTTのみからなるPTT糸がより好ましい。 The sacrificial yarn is preferably a yarn containing at least one selected from the group consisting of PET, polybutylene terephthalate (hereinafter referred to as PBT), polytrimethylene terephthalate (hereinafter referred to as PTT), rayon, and cellulose. . Among these, a PET yarn made of PET alone, a PET / PBT yarn made of a mixture of PET and PBT, a PBT yarn made of only PBT, or a PTT yarn made of only PTT is more preferable.
 補強布中の犠牲糸の繊度は、5~100デニールが好ましく、9~60デニールがより好ましく、12~40デニールがさらに好ましい。補強布中の犠牲糸の繊度が前記下限値以上であれば、機械的強度が充分高くなるとともに、織布性が充分高くなる。補強布中の犠牲糸の繊度が前記上限値以下であれば、犠牲糸が溶出した後に形成される溶出孔が、膜(P)の表面に近づきすぎることがなく、膜(P)の表面にクラックが入りにくく、その結果、イオン交換膜の機械的強度の低下が抑えられる。 The fineness of the sacrificial yarn in the reinforcing fabric is preferably 5 to 100 denier, more preferably 9 to 60 denier, and further preferably 12 to 40 denier. If the fineness of the sacrificial yarn in the reinforcing fabric is not less than the lower limit, the mechanical strength is sufficiently high and the woven fabric property is sufficiently high. If the fineness of the sacrificial yarn in the reinforcing fabric is less than or equal to the above upper limit value, the elution hole formed after the sacrificial yarn is eluted does not come too close to the surface of the membrane (P), and the surface of the membrane (P) Cracks are difficult to enter, and as a result, a decrease in mechanical strength of the ion exchange membrane can be suppressed.
(イオン交換基を有する含フッ素ポリマーからなる層(P))
 層(P)は、イオン交換基を有する含フッ素ポリマーからなる層である。層(P)は、単層であっても、複数の層から形成される層であってもよい。
 層(P)が単層である場合には、カルボン酸型官能基を有する含フッ素ポリマー(以下、「含フッ素ポリマー(C)」とも記す。)からなる層(以下、「層(C)」とも記す。)またはスルホン酸型官能基を有する含フッ素ポリマー(以下、「含フッ素ポリマー(S)」とも記す。)からなる層(以下、「層(S)」とも記す。)のいずれかにより構成されていることが好ましい。
(Layer made of fluorine-containing polymer having ion exchange groups (P))
The layer (P) is a layer made of a fluorine-containing polymer having an ion exchange group. The layer (P) may be a single layer or a layer formed from a plurality of layers.
In the case where the layer (P) is a single layer, a layer (hereinafter referred to as “layer (C)” consisting of a fluorinated polymer having a carboxylic acid type functional group (hereinafter also referred to as “fluorinated polymer (C)”). Or a layer composed of a fluorinated polymer having a sulfonic acid type functional group (hereinafter also referred to as “fluorinated polymer (S)”) (hereinafter also referred to as “layer (S)”). It is preferable to be configured.
 層(P)が複数の層から形成される場合には、層(C)および層(S)から構成されていることが好ましい。この場合、層(C)および層(S)の一方または両方は、それぞれ単層であっても、複数の層から形成されてもよい。
 層(C)および層(S)の一方または両方が複数の層から形成される場合、各層において、含フッ素ポリマー(C)または含フッ素ポリマー(S)を構成する構成単位の種類や、カルボン酸型官能基またはスルホン酸型官能基を有する構成単位の割合を異なる構成としてもよい。
 層(P)の少なくとも一部は層(S)からなることが好ましく、層(P)は層(C)および層(S)からなることがより好ましい。
 層(P)が、層(C)および層(S)からなる場合、補強材は層(S)の内部に備えられていることが好ましい。
In the case where the layer (P) is formed from a plurality of layers, the layer (P) is preferably composed of a layer (C) and a layer (S). In this case, one or both of the layer (C) and the layer (S) may be a single layer or a plurality of layers.
When one or both of the layer (C) and the layer (S) are formed from a plurality of layers, the type of structural unit constituting the fluoropolymer (C) or the fluoropolymer (S) in each layer, carboxylic acid The proportion of structural units having a functional group or a sulfonic acid type functional group may be different.
At least a part of the layer (P) is preferably composed of the layer (S), and the layer (P) is more preferably composed of the layer (C) and the layer (S).
When the layer (P) is composed of the layer (C) and the layer (S), the reinforcing material is preferably provided in the layer (S).
<カルボン酸型官能基を有する含フッ素ポリマーからなる層(C)>
 層(C)は、単層であっても複数の層から形成される層であってもよい。層(C)の内部には補強材が備えられていてもよい。層(C)としては、電解性能の点から、補強材等の含フッ素ポリマー(C)以外の材料を含まず、含フッ素ポリマー(C)のみからなる層が好ましい。
<Layer (C) made of fluorinated polymer having carboxylic acid type functional group>
The layer (C) may be a single layer or a layer formed from a plurality of layers. A reinforcing material may be provided inside the layer (C). As a layer (C), the layer which does not contain materials other than fluorine-containing polymer (C), such as a reinforcing material, and consists only of fluorine-containing polymer (C) from the point of electrolytic performance.
 含フッ素ポリマー(C)は、カルボン酸型官能基に変換できる基を有する含フッ素ポリマー(以下、「含フッ素ポリマー(C’)」とも記す。)のカルボン酸型官能基に変換できる基を加水分解処理してカルボン酸型官能基に変換することによって得られたものである。
 含フッ素ポリマー(C)としては、下記のモノマー(1)に基づく構成単位と、下記のモノマー(2)に基づく構成単位とを有する含フッ素ポリマー(以下、「含フッ素ポリマー(C’1)」とも記す。)を加水分解処理して、Yを-COOM(ただし、Mはアルカリ金属である。)に変換した含フッ素ポリマー(以下、「含フッ素ポリマー(C1)」とも記す。)が好ましい。
 CF=CX ・・・(1)
 CF=CF-(O)-(CF-(CFCFX-(O)-(CF-(CFCFX-Y ・・・(2)
The fluoropolymer (C) is a hydrolyzable group that can be converted to a carboxylic acid type functional group of a fluoropolymer having a group that can be converted to a carboxylic acid type functional group (hereinafter also referred to as “fluorinated polymer (C ′)”). It was obtained by decomposing and converting to a carboxylic acid type functional group.
As the fluoropolymer (C), a fluoropolymer having a structural unit based on the following monomer (1) and a structural unit based on the following monomer (2) (hereinafter referred to as “fluorinated polymer (C′1)”). And a fluorine-containing polymer in which Y is converted to —COOM (wherein M is an alkali metal) (hereinafter also referred to as “fluorinated polymer (C1)”).
CF 2 = CX 1 X 2 (1)
CF 2 = CF- (O) p - (CF 2) q - (CF 2 CFX 3) r - (O) s - (CF 2) t - (CF 2 CFX 4) u -Y ··· (2)
 XおよびXは、それぞれ独立にフッ素原子、塩素原子、またはトリフルオロメチル基であり、イオン交換膜の化学的耐久性の点から、フッ素原子が好ましい。 X 1 and X 2 are each independently a fluorine atom, a chlorine atom, or a trifluoromethyl group, and a fluorine atom is preferred from the viewpoint of chemical durability of the ion exchange membrane.
 モノマー(1)としては、CF=CF、CF=CFCl、CF=CFCF等が挙げられ、イオン交換膜の化学的耐久性の点から、CF=CFが好ましい。 Examples of the monomer (1) include CF 2 = CF 2 , CF 2 = CFCl, CF 2 = CFCF 3 and the like, and CF 2 = CF 2 is preferable from the viewpoint of chemical durability of the ion exchange membrane.
 XおよびXは、それぞれ独立にフッ素原子またはトリフルオロメチル基である。
 Yは、カルボン酸型官能基に変換できる基である。具体的には、-CN、-COF、-COOR(ただし、Rは炭素数1~10のアルキル基である。)、-COONR(ただし、RおよびRは、それぞれ独立に水素原子又は炭素数1~10のアルキル基である。)が挙げられる。
 pは、0または1である。qは、0~12の整数である。rは、0~3の整数である。sは、0または1である。tは、0~12の整数である。uは、0~3の整数である。ただし、pおよびsが同時に0になることはなく、rおよびuが同時に0になることはない。即ち、1≦p+sであり、1≦r+uである。特に、p=1、q=0、r=1、s=0~1、t=0~3、u=0~1である化合物が好ましい。
X 3 and X 4 are each independently a fluorine atom or a trifluoromethyl group.
Y is a group that can be converted to a carboxylic acid type functional group. Specifically, —CN, —COF, —COOR 1 (where R 1 is an alkyl group having 1 to 10 carbon atoms), —COONR 2 R 3 (where R 2 and R 3 are each independently And a hydrogen atom or an alkyl group having 1 to 10 carbon atoms).
p is 0 or 1. q is an integer of 0 to 12. r is an integer of 0 to 3. s is 0 or 1. t is an integer of 0 to 12. u is an integer of 0 to 3. However, p and s are not 0 simultaneously, and r and u are not 0 simultaneously. That is, 1 ≦ p + s and 1 ≦ r + u. Particularly preferred are compounds in which p = 1, q = 0, r = 1, s = 0 to 1, t = 0 to 3, and u = 0 to 1.
 式(2)で表される化合物の具体例としては、下記が挙げられる。なお、モノマー(2)は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 CF=CF-O-CFCF-COOCH
 CF=CF-O-CFCFCF-COOCH
 CF=CF-O-CFCFCFCF-COOCH
 CF=CF-O-CFCF-O-CFCF-COOCH
 CF=CF-O-CFCF-O-CFCFCF-COOCH
 CF=CF-O-CFCF-O-CFCFCFCF-COOCH
 CF=CF-O-CFCFCF-O-CFCF-COOCH
 CF=CF-O-CFCF(CF)-O-CFCF-COOCH
 CF=CF-O-CFCF(CF)-O-CFCFCF-COOCH
Specific examples of the compound represented by the formula (2) include the following. In addition, a monomer (2) may be used individually by 1 type, and may be used in combination of 2 or more type.
CF 2 = CF—O—CF 2 CF 2 —COOCH 3 ,
CF 2 = CF—O—CF 2 CF 2 CF 2 —COOCH 3 ,
CF 2 = CF—O—CF 2 CF 2 CF 2 CF 2 —COOCH 3 ,
CF 2 = CF—O—CF 2 CF 2 —O—CF 2 CF 2 —COOCH 3 ,
CF 2 = CF—O—CF 2 CF 2 —O—CF 2 CF 2 CF 2 —COOCH 3 ,
CF 2 = CF—O—CF 2 CF 2 —O—CF 2 CF 2 CF 2 CF 2 —COOCH 3 ,
CF 2 = CF—O—CF 2 CF 2 CF 2 —O—CF 2 CF 2 —COOCH 3 ,
CF 2 = CF—O—CF 2 CF (CF 3 ) —O—CF 2 CF 2 —COOCH 3 ,
CF 2 = CF—O—CF 2 CF (CF 3 ) —O—CF 2 CF 2 CF 2 —COOCH 3 .
 含フッ素ポリマー(C’)の製造には、モノマー(1)およびモノマー(2)に加えて、さらに他のモノマーを用いてもよい。他のモノマーとしては、CF=CFRf1(ただし、Rf1は炭素数2~10のパーフルオロアルキル基である。)、CF=CF-ORf2(ただし、Rf2は炭素数1~10のパーフルオロアルキル基である。)、CF=CFO(CFCF=CF(ただし、vは1~3の整数である。)等が挙げられる。他のモノマーを共重合させることによって、イオン交換膜の可撓性や機械的強度を上げることができる。他のモノマーの割合は、イオン交換性能の維持の点から、全モノマー(100質量%)のうち30質量%以下が好ましい。 In addition to the monomer (1) and the monomer (2), another monomer may be used for the production of the fluorine-containing polymer (C ′). Other monomers include CF 2 = CFR f1 (where R f1 is a perfluoroalkyl group having 2 to 10 carbon atoms), CF 2 = CF—OR f2 (where R f2 is 1 to 10 carbon atoms) And CF 2 ═CFO (CF 2 ) v CF═CF 2 (where v is an integer of 1 to 3). By copolymerizing other monomers, the flexibility and mechanical strength of the ion exchange membrane can be increased. The proportion of other monomers is preferably 30% by mass or less of the total monomers (100% by mass) from the viewpoint of maintaining ion exchange performance.
 層(C)の厚さは、5~50μmが好ましく、10~35μmがより好ましい。該厚さが前記範囲の下限値以上であれば、イオン交換膜を透過する塩化物イオンの量を抑制でき、生成する水酸化アルカリの品質を良好に維持できる。上記厚さが前記範囲の上限値以下であれば、イオン交換膜の膜抵抗を低く抑え、電解電圧を充分に低くできる。
 なお、本発明において、イオン交換膜の層の厚さは、90℃で2時間以上乾燥させたイオン交換膜における各層の厚さを意味する。
The thickness of the layer (C) is preferably 5 to 50 μm, more preferably 10 to 35 μm. If the thickness is equal to or greater than the lower limit of the above range, the amount of chloride ions that permeate the ion exchange membrane can be suppressed, and the quality of the alkali hydroxide produced can be maintained well. If the thickness is not more than the upper limit of the above range, the membrane resistance of the ion exchange membrane can be kept low and the electrolysis voltage can be made sufficiently low.
In addition, in this invention, the thickness of the layer of an ion exchange membrane means the thickness of each layer in the ion exchange membrane dried at 90 degreeC for 2 hours or more.
<スルホン酸型官能基を有する含フッ素ポリマーからなる層(S)>
 層(S)は、単層であっても複数の層から形成される層であってもよい。層(S)の内部には補強材が備えられていてもよい。層(S)としては、イオン交換膜の機械的強度が高まる点から、内部に補強材が備えられていることが好ましい。補強材は、層(C)の内部よりも、層(S)の内部に備えられる方が、電解性能に影響を与えることなく、補強効果を得ることができることからより好ましい。
<Layer made of fluorine-containing polymer having sulfonic acid type functional group (S)>
The layer (S) may be a single layer or a layer formed from a plurality of layers. A reinforcing material may be provided inside the layer (S). As the layer (S), a reinforcing material is preferably provided inside from the viewpoint of increasing the mechanical strength of the ion exchange membrane. It is more preferable that the reinforcing material is provided in the layer (S) than in the layer (C) because the reinforcing effect can be obtained without affecting the electrolytic performance.
 含フッ素ポリマー(S)は、スルホン酸型官能基に変換できる基を有する含フッ素ポリマー(以下、「含フッ素ポリマー(S’)」とも記す。)のスルホン酸型官能基に変換できる基を加水分解処理してスルホン酸型官能基に変換することによって得られたものであることが好ましい。
 含フッ素ポリマー(S)としては、前記のモノマー(1)に基づく構成単位と、下記のモノマー(3)またはモノマー(4)の少なくとも一方に基づく構成単位とを有する含フッ素ポリマー(以下、「含フッ素ポリマー(S’1)」とも記す。)を加水分解処理して、Zを-SOM(ただし、Mはアルカリ金属である。)に変換した含フッ素ポリマー(以下、「含フッ素ポリマー(S1)」とも記す。)が好ましい。
The fluoropolymer (S) is a hydrolyzate of a group that can be converted to a sulfonic acid type functional group of a fluoropolymer having a group that can be converted to a sulfonic acid type functional group (hereinafter also referred to as “fluorinated polymer (S ′)”). It is preferably obtained by decomposition treatment and conversion to a sulfonic acid type functional group.
The fluorine-containing polymer (S) includes a fluorine-containing polymer (hereinafter referred to as “containing a polymer”) having a structural unit based on the monomer (1) and a structural unit based on at least one of the following monomer (3) or monomer (4). Fluoropolymer (S′1) ”) is hydrolyzed to convert Z into —SO 3 M (where M is an alkali metal) (hereinafter referred to as“ fluorine polymer ( S1) ”) is preferred.
 CF=CF-O-Rf3-Z ・・・(3)
 CF=CF-Rf3-Z ・・・(4)
CF 2 = CF—O—R f3 —Z (3)
CF 2 = CF—R f3 —Z (4)
 Rf3は、炭素数1~20のパーフルオロアルキル基であり、エーテル性の酸素原子を含んでいてもよく、直鎖状または分岐状のいずれでもよい。
 Zは、スルホン酸型官能基に変換できる基である。具体的には、-SOF、-SOCl、-SOBr等が挙げられる。
R f3 is a perfluoroalkyl group having 1 to 20 carbon atoms, may contain an etheric oxygen atom, and may be linear or branched.
Z is a group that can be converted into a sulfonic acid type functional group. Specific examples include —SO 2 F, —SO 2 Cl, —SO 2 Br, and the like.
 式(3)で表される化合物の具体例としては、下記の化合物が挙げられる。式中のwは、1~8の整数であり、xは、1~5の整数である。
 CF=CF-O-(CF-SOF、
 CF=CF-O-CFCF(CF)-O-(CF-SOF、
 CF=CF-[O-CFCF(CF)]-SOF。
Specific examples of the compound represented by the formula (3) include the following compounds. In the formula, w is an integer of 1 to 8, and x is an integer of 1 to 5.
CF 2 ═CF—O— (CF 2 ) w —SO 2 F,
CF 2 = CF—O—CF 2 CF (CF 3 ) —O— (CF 2 ) w —SO 2 F,
CF 2 = CF— [O—CF 2 CF (CF 3 )] x —SO 2 F.
 式(4)で表される化合物の具体例としては、下記の化合物が挙げられる。式中のwは、1~8の整数である。
 CF=CF-(CF-SOF、
 CF=CF-CF-O-(CF-SOF。
Specific examples of the compound represented by the formula (4) include the following compounds. W in the formula is an integer of 1 to 8.
CF 2 ═CF— (CF 2 ) w —SO 2 F,
CF 2 ═CF—CF 2 —O— (CF 2 ) w —SO 2 F.
 モノマー(3)またはモノマー(4)としては、工業的な合成が容易である点から、下記の化合物が好ましい。
 CF=CF-O-CFCF-SOF、
 CF=CF-O-CFCFCF-SOF、
 CF=CF-O-CFCFCFCF-SOF、
 CF=CF-O-CFCF(CF)-O-CFCF-SOF、
 CF=CF-O-CFCF(CF)-O-CFCFCF-SOF、
 CF=CF-O-CFCF(CF)-SOF、
 CF=CF-CFCF-SOF、
 CF=CF-CFCFCF-SOF、
 CF=CF-CF-O-CFCF-SOF。
 モノマー(3)またはモノマー(4)は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
As the monomer (3) or monomer (4), the following compounds are preferred from the viewpoint of easy industrial synthesis.
CF 2 = CF—O—CF 2 CF 2 —SO 2 F,
CF 2 = CF—O—CF 2 CF 2 CF 2 —SO 2 F,
CF 2 = CF—O—CF 2 CF 2 CF 2 CF 2 —SO 2 F,
CF 2 = CF—O—CF 2 CF (CF 3 ) —O—CF 2 CF 2 —SO 2 F,
CF 2 = CF—O—CF 2 CF (CF 3 ) —O—CF 2 CF 2 CF 2 —SO 2 F,
CF 2 = CF—O—CF 2 CF (CF 3 ) —SO 2 F,
CF 2 = CF—CF 2 CF 2 —SO 2 F,
CF 2 = CF—CF 2 CF 2 CF 2 —SO 2 F,
CF 2 = CF—CF 2 —O—CF 2 CF 2 —SO 2 F.
Monomer (3) or monomer (4) may be used alone or in combination of two or more.
 含フッ素ポリマー(S’)の製造には、モノマー(1)およびモノマー(3)またはモノマー(4)の少なくとも一方に加えて、さらに他のモノマーを用いてもよい。他のモノマーとしては、CF=CFR(ただし、Rは炭素数2~10のパーフルオロアルキル基である。)、CF=CF-ORf1(ただし、Rf1は炭素数1~10のパーフルオロアルキル基である。)、CF=CFO(CFCF=CF(ただし、vは1~3の整数である。)等が挙げられる。他のモノマーを共重合させることによって、イオン交換膜の可撓性や機械的強度を上げることができる。他のモノマーの割合は、イオン交換性能の維持の点から、全モノマー(100質量%)のうち30質量%以下が好ましい。 In the production of the fluoropolymer (S ′), in addition to at least one of the monomer (1) and the monomer (3) or the monomer (4), another monomer may be used. Other monomers include CF 2 = CFR f (where R f is a perfluoroalkyl group having 2 to 10 carbon atoms), CF 2 = CF—OR f1 (where R f1 is 1 to 10 carbon atoms) And CF 2 ═CFO (CF 2 ) v CF═CF 2 (where v is an integer of 1 to 3). By copolymerizing other monomers, the flexibility and mechanical strength of the ion exchange membrane can be increased. The proportion of other monomers is preferably 30% by mass or less of the total monomers (100% by mass) from the viewpoint of maintaining ion exchange performance.
 層(S)の合計の厚さは、40~200μmが好ましく、40~140μmがより好ましい。層(S)の内部に補強材を備える場合、層(S)における補強材よりも層(C)側にある層(S1)の厚さは、30~140μmが好ましく、30~100μmがより好ましい。また、層(S)における補強材よりも層(C)の反対側にある層(S2)の厚さは、10~60μmが好ましく、10~40μmがより好ましい。層(S1)および層(S2)の厚さが前記範囲の下限値以上であれば、一定の膜厚を確保できるので膜強度が高くなる。層(S1)および層(S2)の厚さが前記範囲の上限値以下であれば、電解電圧を充分に低くできる。
 層(S1)および層(S2)はそれぞれ、単層であっても複数の層から形成される層であってもよい。
The total thickness of the layer (S) is preferably 40 to 200 μm, more preferably 40 to 140 μm. When the reinforcing material is provided inside the layer (S), the thickness of the layer (S1) on the layer (C) side of the reinforcing material in the layer (S) is preferably 30 to 140 μm, more preferably 30 to 100 μm. . Further, the thickness of the layer (S2) on the opposite side of the layer (C) from the reinforcing material in the layer (S) is preferably 10 to 60 μm, more preferably 10 to 40 μm. If the thickness of the layer (S1) and the layer (S2) is equal to or greater than the lower limit of the above range, a certain film thickness can be secured, and the film strength is increased. If the thickness of the layer (S1) and the layer (S2) is not more than the upper limit of the above range, the electrolysis voltage can be sufficiently lowered.
Each of the layer (S1) and the layer (S2) may be a single layer or a layer formed of a plurality of layers.
(無機物粒子層)
 イオン交換膜は、その最表面の一方または両方に、無機物粒子層をさらに備えていてもよい。無機物粒子層は、イオン交換膜の少なくとも一方の最表面に設けられることが好ましく、イオン交換膜の両方の最表面に設けられることがより好ましい。
 塩化アルカリ電解により生じるガスがイオン交換膜の表面に付着すると、塩化アルカリ電解の際に電解電圧が高くなる。無機物粒子層は、塩化アルカリ電解により生じるガス(塩素ガスまたは水素ガス)のイオン交換膜の表面への付着を抑制し、電解電圧の上昇を抑制するために設けられる。無機物粒子層は、無機物粒子と、バインダーとを含む。
(Inorganic particle layer)
The ion exchange membrane may further include an inorganic particle layer on one or both of its outermost surfaces. The inorganic particle layer is preferably provided on at least one outermost surface of the ion exchange membrane, and more preferably provided on both outermost surfaces of the ion exchange membrane.
When the gas generated by the alkali chloride electrolysis adheres to the surface of the ion exchange membrane, the electrolysis voltage increases during the alkali chloride electrolysis. The inorganic particle layer is provided to suppress adhesion of a gas (chlorine gas or hydrogen gas) generated by alkali chloride electrolysis to the surface of the ion exchange membrane, and to suppress an increase in electrolysis voltage. The inorganic particle layer includes inorganic particles and a binder.
 無機物粒子としては、塩化アルカリ水溶液または水酸化アルカリ水溶液に対する耐食性に優れ、親水性を有するものが好ましい。具体的には、第4族元素または第14族元素の酸化物、窒化物および炭化物からなる群から選ばれる少なくとも1種が好ましく、SiO、SiC、ZrO、またはZrCがより好ましく、ZrOが特に好ましい。 As the inorganic particles, those having excellent corrosion resistance with respect to an aqueous alkali chloride solution or an aqueous alkali hydroxide solution and having hydrophilicity are preferable. Specifically, at least one selected from the group consisting of oxides, nitrides and carbides of Group 4 elements or Group 14 elements is preferable, SiO 2 , SiC, ZrO 2 , or ZrC is more preferable, and ZrO 2 Is particularly preferred.
 無機物粒子の平均粒子径は、0.5~1.5μmが好ましく、0.7~1.3μmがより好ましい。該平均粒子径が前記下限値以上であれば、高いガス付着抑制効果が得られる。該平均粒子径が前記上限値以下であれば、無機物粒子の脱落耐性に優れる。なお、ここにおける平均粒子径は、一次粒子が凝集している平均二次粒子の平均粒子径を意味し、次のように求められる。粒子を濃度が0.01質量%以下となるようにエタノールに分散し、マイクロトラック(日機装社製UPA-150)を用いて測定を行い、得られた粒度分布の全体積を100%とした累積体積分布曲線における累積体積が50%となる点の粒子径(D50)を平均二次粒子径とした。 The average particle diameter of the inorganic particles is preferably 0.5 to 1.5 μm, more preferably 0.7 to 1.3 μm. When the average particle diameter is not less than the lower limit, a high gas adhesion suppressing effect can be obtained. When the average particle size is not more than the above upper limit value, the inorganic particles are excellent in drop-off resistance. In addition, the average particle diameter here means the average particle diameter of the average secondary particle which the primary particle has aggregated, and is calculated | required as follows. Particles are dispersed in ethanol so that the concentration is 0.01% by mass or less and measured using Microtrac (UPA-150 manufactured by Nikkiso Co., Ltd.). The particle diameter (D50) at the point where the cumulative volume in the volume distribution curve becomes 50% was taken as the average secondary particle diameter.
 バインダーとしては、塩化アルカリ水溶液または水酸化アルカリ水溶液に対する耐食性に優れ、親水性を有するものが好ましく、カルボン酸基又はスルホン酸基を有する含フッ素ポリマーが好ましく、スルホン酸基を有する含フッ素ポリマーがより好ましい。含フッ素ポリマーは、カルボン酸基又はスルホン酸基を有するモノマーのホモポリマーであってもよく、カルボン酸基又はスルホン酸基を有するモノマーと、該モノマーと共重合可能なモノマーとのコポリマーであってもよい。 As the binder, those having excellent corrosion resistance with respect to an aqueous alkali chloride solution or an aqueous alkali hydroxide solution and having hydrophilicity are preferred, a fluorinated polymer having a carboxylic acid group or a sulfonic acid group is preferred, and a fluorinated polymer having a sulfonic acid group is more preferred. preferable. The fluorine-containing polymer may be a homopolymer of a monomer having a carboxylic acid group or a sulfonic acid group, and is a copolymer of a monomer having a carboxylic acid group or a sulfonic acid group and a monomer copolymerizable with the monomer. Also good.
 無機物粒子層における無機物粒子およびバインダーの合計質量に対するバインダーの質量比(以下、バインダー比と記す。)は、0.15~0.3が好ましく、0.15~0.25がより好ましく、0.16~0.20がさらに好ましい。バインダー比が前記下限値以上であれば、無機物粒子の脱落耐性に優れる。該バインダー比が前記上限値以下であれば、高いガス付着抑制効果が得られる。 The binder mass ratio (hereinafter referred to as binder ratio) to the total mass of inorganic particles and binder in the inorganic particle layer is preferably 0.15 to 0.3, more preferably 0.15 to 0.25, and More preferably, it is 16 to 0.20. When the binder ratio is equal to or higher than the lower limit, the inorganic particles are excellent in the drop-off resistance. When the binder ratio is not more than the upper limit, a high gas adhesion suppressing effect can be obtained.
[イオン交換膜前駆体膜]
 本発明のイオン交換膜前駆体膜は、イオン交換基に変換できる基を有する含フッ素ポリマーからなる層(以下、「層(P’)」とも記す。)を有し、補強糸と犠牲糸からなる前述の補強布が層(P’)の内部に備えられている。
 層(P’)は、単層であっても、複数の層から形成される層であってもよい。
 層(P’)が単層である場合には、含フッ素ポリマー(C’)からなる層(以下、層(C’)とも記す。)または含フッ素ポリマー(S’)からなる層(以下、層(S’)とも記す。)のいずれかにより構成されていることが好ましい。
 層(P’)が複数の層から形成される場合には、層(C’)および層(S’)から構成されていることが好ましい。この場合、層(C’)および層(S’)の一方または両方は、それぞれ単層であっても、複数の層から形成されてもよい。
[Ion exchange membrane precursor membrane]
The ion exchange membrane precursor membrane of the present invention has a layer made of a fluorine-containing polymer having a group that can be converted into an ion exchange group (hereinafter also referred to as “layer (P ′)”). The aforementioned reinforcing cloth is provided inside the layer (P ′).
The layer (P ′) may be a single layer or a layer formed from a plurality of layers.
When the layer (P ′) is a single layer, a layer made of a fluoropolymer (C ′) (hereinafter also referred to as layer (C ′)) or a layer made of a fluoropolymer (S ′) (hereinafter, The layer (also referred to as a layer (S ′)) is preferable.
When the layer (P ′) is formed of a plurality of layers, the layer (P ′) is preferably composed of a layer (C ′) and a layer (S ′). In this case, one or both of the layer (C ′) and the layer (S ′) may be a single layer or a plurality of layers.
 層(C’)および層(S’)の一方または両方が複数の層から形成される場合、各層において、含フッ素ポリマー(C’)または含フッ素ポリマー(S’)を構成する構成単位の種類や、カルボン酸型官能基またはスルホン酸型官能基を有する構成単位の割合を異なる構成としてもよい。
 層(P’)の少なくとも一部は層(S’)からなることが好ましく、層(P’)は層(C’)および層(S’)からなることがより好ましい。
 層(P’)が、層(C’)および層(S’)からなる場合、補強布は層(S’)の内部に備えられていることが好ましい。
 層(C’)および層(S’)はそれぞれ、単層であっても複数の層から形成される層であってもよい。
When one or both of the layer (C ′) and the layer (S ′) are formed from a plurality of layers, the type of structural unit constituting the fluoropolymer (C ′) or the fluoropolymer (S ′) in each layer Alternatively, the proportion of structural units having a carboxylic acid type functional group or a sulfonic acid type functional group may be different.
At least a part of the layer (P ′) is preferably composed of the layer (S ′), and the layer (P ′) is more preferably composed of the layer (C ′) and the layer (S ′).
When the layer (P ′) is composed of the layer (C ′) and the layer (S ′), it is preferable that the reinforcing cloth is provided in the layer (S ′).
Each of the layer (C ′) and the layer (S ′) may be a single layer or a layer formed of a plurality of layers.
[イオン交換膜の製造方法]
 本発明のイオン交換膜は、たとえば以下の工程(a)、工程(b)を経て製造することができる。
[Production method of ion exchange membrane]
The ion exchange membrane of this invention can be manufactured through the following processes (a) and (b), for example.
 工程(a):工程(a)は、イオン交換基に変換できる基を有する含フッ素ポリマーの内部に、補強糸と犠牲糸とからなる補強布を配置して、イオン交換基に変換できる基を有する含フッ素ポリマー層と、その内部に備えられた補強布とを有するイオン交換膜前駆体膜を得る工程である。
 工程(b):工程(b)は、工程(a)で得たイオン交換膜前駆体膜をアルカリ性水溶液に接触させることによって、イオン交換基に変換できる基をイオン交換基に変換し、イオン交換基を有する含フッ素ポリマー層と、その内部に備えられた補強材を含むイオン交換膜を得る工程である。この工程においては、イオン交換膜前駆体膜をアルカリ性水溶液に接触させる条件によっては補強布中の犠牲糸の少なくとも一部が溶解して除去される。
Step (a): In the step (a), a reinforcing cloth comprising a reinforcing yarn and a sacrificial yarn is arranged inside a fluoropolymer having a group that can be converted into an ion exchange group, and a group that can be converted into an ion exchange group is formed. This is a step of obtaining an ion exchange membrane precursor membrane having a fluorine-containing polymer layer having a reinforcing cloth provided therein.
Step (b): In the step (b), the ion exchange membrane precursor film obtained in the step (a) is brought into contact with an alkaline aqueous solution to convert a group that can be converted into an ion exchange group into an ion exchange group. This is a step of obtaining an ion exchange membrane comprising a fluorine-containing polymer layer having a group and a reinforcing material provided therein. In this step, depending on the conditions for bringing the ion exchange membrane precursor membrane into contact with the alkaline aqueous solution, at least a part of the sacrificial yarn in the reinforcing cloth is dissolved and removed.
 なお、工程(b)においては、補強布の犠牲糸の一部を溶解して除去し、イオン交換基を有する含フッ素ポリマー層、および補強糸と残存する犠牲糸からなる補強材を含むイオン交換膜を得ることが好ましい。
 犠牲糸における溶解は、溶解前の犠牲糸の断面積に対して溶解後に残存する犠牲糸の断面積の比率が、1~70%が好ましく、5~55%がより好ましく、10~40%が最も好ましい。
 また、工程(b)においては、イオン交換基に変換できる基をイオン交換基に変換した後に、必要に応じて、イオン交換基の対カチオンを交換する塩交換を行ってもよい。塩交換では、たとえば、イオン交換基の対カチオンを、カリウムからナトリウムに交換する。塩交換は、公知の方法を採用できる。
In the step (b), a part of the sacrificial yarn of the reinforcing cloth is dissolved and removed, and the ion exchange includes a fluoropolymer layer having an ion exchange group and a reinforcing material composed of the reinforcing yarn and the remaining sacrificial yarn. It is preferable to obtain a membrane.
For the dissolution in the sacrificial yarn, the ratio of the cross-sectional area of the sacrificial yarn remaining after dissolution to the cross-sectional area of the sacrificial yarn before melting is preferably 1 to 70%, more preferably 5 to 55%, and more preferably 10 to 40%. Most preferred.
In step (b), after converting a group that can be converted into an ion exchange group into an ion exchange group, if necessary, salt exchange for exchanging a counter cation of the ion exchange group may be performed. In salt exchange, for example, the counter cation of the ion exchange group is exchanged from potassium to sodium. A known method can be employed for salt exchange.
(工程(a))
 工程(a)においては、層(P’)と、層(P’)の内部に備えられた補強布とを有するイオン交換膜前駆体膜を製造する。
 イオン交換膜前駆体膜は、層(P’)の構成に応じて、層(C’)および層(S’)を積層する際に、そのいずれかの層間に補強布を挿入して積層することにより、層(P’)の内部に備えられた補強布を有するイオン交換膜前駆体膜を製造することができる。層(C’)としては、含フッ素ポリマー(C’1)からなる層(以下、「層(C’1)」とも記す。)が好ましく、層(S’)としては含フッ素ポリマー(S’1)からなる層(以下、「層(S’1)」とも記す。)が好ましい。
 たとえば、層(P’)が、層(C’)と層(S’)とからなり、層(S’)の内部に補強布が備えられている場合、層(C’)、層(S’)、補強布、層(S’)の順に積層することにより製造することができる。なお、このように層(S’)が2つの層(S’)からなる構成の場合は、同一の含フッ素ポリマーからなる層(S’)であってもよいし、それぞれ異なる含フッ素ポリマーからなる層(S’)であってもよい。
(Process (a))
In the step (a), an ion exchange membrane precursor membrane having a layer (P ′) and a reinforcing cloth provided in the layer (P ′) is produced.
When the layer (C ′) and the layer (S ′) are stacked according to the configuration of the layer (P ′), the ion exchange membrane precursor film is stacked by inserting a reinforcing cloth between any of the layers (C ′) and the layer (S ′). Thus, an ion exchange membrane precursor membrane having a reinforcing cloth provided inside the layer (P ′) can be produced. The layer (C ′) is preferably a layer comprising a fluoropolymer (C′1) (hereinafter also referred to as “layer (C′1)”), and the layer (S ′) is preferably a fluoropolymer (S ′). 1) (hereinafter also referred to as “layer (S′1)”) is preferable.
For example, when the layer (P ′) includes the layer (C ′) and the layer (S ′), and the reinforcing cloth is provided inside the layer (S ′), the layer (C ′) and the layer (S It can manufacture by laminating | stacking in order of '), a reinforcement cloth, and a layer (S'). In addition, when the layer (S ′) is composed of two layers (S ′) as described above, the layers (S ′) may be composed of the same fluoropolymer, or may be composed of different fluoropolymers. It may be a layer (S ′).
(工程(b))
 工程(b)においては、工程(a)で得られたイオン交換膜前駆体膜のイオン交換基に変換できる基を、加水分解してイオン交換基に変換する。これにより、イオン交換基に変換できる基を有するイオン交換膜前駆体膜が、イオン交換基を有するイオン交換膜に変換される。
 加水分解の方法としては、たとえば、日本特開平03-6240号公報に記載されるような、水溶性有機化合物とアルカリ金属の水酸化物との混合物を用いる方法で行われることが好ましい。
 イオン交換基の変換により、層(C’)は層(C)に、層(S’)は層(S)に、それぞれ変換される。
(Process (b))
In the step (b), a group that can be converted into an ion exchange group of the ion exchange membrane precursor membrane obtained in the step (a) is hydrolyzed and converted into an ion exchange group. Thereby, the ion exchange membrane precursor film | membrane which has the group which can be converted into an ion exchange group is converted into the ion exchange membrane which has an ion exchange group.
As the hydrolysis method, for example, a method using a mixture of a water-soluble organic compound and an alkali metal hydroxide as described in Japanese Patent Application Laid-Open No. 03-6240 is preferable.
By the conversion of the ion exchange group, the layer (C ′) is converted into the layer (C), and the layer (S ′) is converted into the layer (S).
 補強布中の犠牲糸の一部の除去は、前述した加水分解時に使用するアルカリ性水溶液により犠牲糸の一部が溶出することにより行われることが好ましい。 The removal of a part of the sacrificial yarn in the reinforcing cloth is preferably performed by elution of a part of the sacrificial yarn by the alkaline aqueous solution used during the hydrolysis described above.
[塩化アルカリ電解装置]
 本発明の塩化アルカリ電解装置は、本発明のイオン交換膜を有する以外は、公知の態様を採用できる。
 本発明の塩化アルカリ電解装置の一態様として、塩化アルカリ電解装置は陰極および陽極を備える電解槽と、電解槽内を陰極側の陰極室と、陽極側の陽極室とに区切るように電解槽内に装着される本発明のイオン交換膜とを有する。
 本発明のイオン交換膜が、層(C)と層(S)とからなる場合、層(C)が陰極側、層(S)が陽極側となるように電解槽内に配置される。
 陰極は、イオン交換膜に接触させて配置してもよく、間隔をあけて配置してもよい。
[Alkali chloride electrolyzer]
The alkali chloride electrolysis apparatus of the present invention can employ a known embodiment except that it has the ion exchange membrane of the present invention.
As one aspect of the alkali chloride electrolysis apparatus of the present invention, the alkali chloride electrolysis apparatus includes an electrolysis tank provided with a cathode and an anode, an electrolysis tank so as to divide the electrolysis tank into a cathode chamber on the cathode side and an anode chamber on the anode side. And the ion exchange membrane of the present invention to be mounted on.
When the ion exchange membrane of the present invention comprises a layer (C) and a layer (S), the ion exchange membrane is disposed in the electrolytic cell so that the layer (C) is on the cathode side and the layer (S) is on the anode side.
The cathode may be disposed in contact with the ion exchange membrane, or may be disposed at an interval.
 陰極室を構成する材料としては、水酸化アルカリおよび水素に耐性がある材料が好ましい。該材料としては、ステンレス、ニッケル等が挙げられる。陽極室を構成する材料としては、塩化アルカリおよび塩素に耐性がある材料が好ましい。該材料としては、チタン等が挙げられる。 The material constituting the cathode chamber is preferably a material resistant to alkali hydroxide and hydrogen. Examples of the material include stainless steel and nickel. As a material constituting the anode chamber, a material resistant to alkali chloride and chlorine is preferable. Examples of the material include titanium.
 陰極の基材としては、水酸化アルカリおよび水素に対する耐性や、加工性等の点から、ステンレスやニッケル等が好ましい。陽極の基材としては、塩化アルカリおよび塩素に対する耐性や、加工性等の点から、チタン等が好ましい。電極基材の表面は、たとえば、酸化ルテニウム、酸化イリジウム等でコーティングされることが好ましい。 As the cathode base material, stainless steel, nickel and the like are preferable from the viewpoints of resistance to alkali hydroxide and hydrogen, workability, and the like. As the anode base material, titanium or the like is preferable from the viewpoints of resistance to alkali chloride and chlorine, workability, and the like. The surface of the electrode substrate is preferably coated with, for example, ruthenium oxide or iridium oxide.
 たとえば、本発明の塩化アルカリ電解装置を用いて塩化ナトリウム水溶液を電解して、水酸化ナトリウム水溶液を製造する場合には、塩化アルカリ電解装置の陽極室に塩化ナトリウム水溶液を供給し、陰極室に水酸化ナトリウム水溶液を供給し、陰極室から排出される水酸化ナトリウム水溶液の濃度を18~36質量%(たとえば32質量%)に保ちながら、塩化ナトリウム水溶液を電解する。 For example, when producing an aqueous sodium hydroxide solution by electrolyzing a sodium chloride aqueous solution using the alkali chloride electrolyzer of the present invention, the sodium chloride aqueous solution is supplied to the anode chamber of the alkali chloride electrolyzer and the cathode chamber is filled with water. An aqueous sodium oxide solution is supplied, and the aqueous sodium chloride solution is electrolyzed while maintaining the concentration of the aqueous sodium hydroxide solution discharged from the cathode chamber at 18 to 36% by mass (for example, 32% by mass).
 イオン交換膜中の補強材は、イオン交換膜の機械的強度を維持したり、寸法変化を抑制したりする効果がある。イオン交換膜中に残存する犠牲糸は、補強糸とともにイオン交換膜の機械的強度を維持する役割を担うため、実用に耐えうる一定の機械的強度を維持するためには本発明における犠牲糸の平均弾性率の下限値以上の平均弾性率が必要である。
 一方、本発明者らは、犠牲糸の残存量が寸法変化の抑制にも寄与し、犠牲糸の残存量が変化すると寸法変化率が変動すること、さらに、この犠牲糸の残存量の変化による寸法変化率の変動が、犠牲糸の平均弾性率が高いほど大きくなることを見いだした。すなわち、犠牲糸の平均弾性率が、前述の本発明における犠牲糸の平均弾性率の上限値以下であれば、犠牲糸の残存量の変化による寸法変化率の変動を抑制でき、その結果、電解槽の予期せぬ運転条件の変化に伴う寸法変化を抑制できる。
 このように、イオン交換膜に要求される機械的強度の維持、および寸法変化率の変動の抑制を、犠牲糸の平均弾性率を調整することによりバランスよく満たすことができ、特に、犠牲糸の平均弾性率を、前述の本発明における犠牲糸の平均弾性率の上限値以下とすることにより、寸法変化率の変動を抑制できるため、イオン交換膜に含まれる補強材における犠牲糸の残存量の厳密な制御を必要とせずにイオン交換膜の製造が可能となる。
The reinforcing material in the ion exchange membrane has the effect of maintaining the mechanical strength of the ion exchange membrane and suppressing dimensional changes. The sacrificial yarn remaining in the ion exchange membrane plays a role of maintaining the mechanical strength of the ion exchange membrane together with the reinforcing yarn. Therefore, in order to maintain a certain mechanical strength that can withstand practical use, the sacrificial yarn of the present invention An average elastic modulus equal to or higher than the lower limit of the average elastic modulus is required.
On the other hand, the present inventors also contributed to the suppression of the dimensional change due to the remaining amount of the sacrificial yarn, the dimensional change rate fluctuates when the remaining amount of the sacrificial yarn changes, and the change in the remaining amount of the sacrificial yarn. It has been found that the variation in the dimensional change rate increases as the average elastic modulus of the sacrificial yarn increases. That is, if the average elastic modulus of the sacrificial yarn is less than or equal to the upper limit value of the average elastic modulus of the sacrificial yarn in the present invention described above, the variation in the dimensional change rate due to the change in the remaining amount of the sacrificial yarn can be suppressed. It is possible to suppress dimensional changes accompanying unexpected changes in the operating conditions of the tank.
Thus, maintenance of the mechanical strength required for the ion exchange membrane and suppression of fluctuations in the dimensional change rate can be satisfied in a balanced manner by adjusting the average elastic modulus of the sacrificial yarn. By setting the average elastic modulus to be equal to or less than the upper limit value of the average elastic modulus of the sacrificial yarn in the present invention described above, fluctuations in the dimensional change rate can be suppressed, so that the remaining amount of the sacrificial yarn in the reinforcing material included in the ion exchange membrane is reduced. An ion exchange membrane can be produced without requiring strict control.
 以下、実施例によって本発明を詳細に説明するが、本発明はこれらの例によっては限定して解釈されない。 Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not construed as being limited by these examples.
[犠牲糸の平均弾性率の測定]
 引張試験器(オリンテック社製 TENSILON RTC-1210A)にチャック間距離50mmでアルカリ性水溶液に浸漬する前の犠牲糸を装着して、引張速度50mm/分で引っ張った際の応力-ひずみ(伸度)曲線のひずみ(伸度)が5%での応力を測定し、アルカリ性水溶液に浸漬する前の犠牲糸の平均断面積で割った値を弾性率とした。平均弾性率は、弾性率を5回測定し、これらの値の平均値を平均弾性率とした。
 なお、アルカリ性水溶液に浸漬する前の犠牲糸の断面積は、光学顕微鏡にて観察し、画像ソフトを用いて測定した。断面積の測定は犠牲糸の10カ所について行い、これらの値の平均値をアルカリ性水溶液に浸漬する前の犠牲糸の平均断面積とした。
[Measurement of average elastic modulus of sacrificial yarn]
Stress-strain (elongation) when a tensile tester (TENSILON RTC-1210A manufactured by Olintec Corporation) is attached with a sacrificial yarn before dipping in an alkaline aqueous solution at a chuck distance of 50 mm and pulled at a pulling speed of 50 mm / min. The stress at a curve strain (elongation) of 5% was measured, and the value divided by the average cross-sectional area of the sacrificial yarn before dipping in the alkaline aqueous solution was taken as the elastic modulus. For the average elastic modulus, the elastic modulus was measured 5 times, and the average value of these values was defined as the average elastic modulus.
The cross-sectional area of the sacrificial yarn before being immersed in the alkaline aqueous solution was observed with an optical microscope and measured using image software. The cross-sectional area was measured at 10 locations of the sacrificial yarn, and the average value of these values was taken as the average cross-sectional area of the sacrificial yarn before being immersed in the alkaline aqueous solution.
[イオン交換膜の水酸化ナトリウム水溶液中での平均寸法変化率の測定]
 イオン交換膜に2本の標線(距離:160mm)を描き、25℃の恒温室中で16時間保管した後の標線間距離L0を、デジタルノギスを用いて測定した。その後、32質量%の水酸化ナトリウム水溶液に25℃で2時間浸漬し、標線間距離L1を、デジタルノギスを用いて測定した。下式(A)から、寸法変化率ΔL1(%)を求めた。測定は2回行い、これらの値の平均値を平均寸法変化率ΔL1とした。
 ΔL1=(L1-L0)/L0×100 ・・・(A)
 電解槽にイオン交換膜を装着する際に、陰極室は約30質量%の水酸化ナトリウムで満たされる。この評価は、イオン交換膜が電解槽に装着され、アルカリ性水溶液に接触した状態におけるイオン交換膜の伸びを簡易的に模擬するものである。
[Measurement of average dimensional change rate of ion exchange membrane in aqueous sodium hydroxide solution]
Two marked lines (distance: 160 mm) were drawn on the ion exchange membrane, and the distance L0 between marked lines after being stored in a constant temperature room at 25 ° C. for 16 hours was measured using a digital caliper. Then, it immersed in 25 mass% sodium hydroxide aqueous solution at 25 degreeC for 2 hours, and measured distance L1 between marked lines using digital calipers. The dimensional change rate ΔL1 (%) was obtained from the following equation (A). The measurement was performed twice, and the average of these values was defined as the average dimensional change rate ΔL1.
ΔL1 = (L1−L0) / L0 × 100 (A)
When the ion exchange membrane is attached to the electrolytic cell, the cathode chamber is filled with about 30% by mass of sodium hydroxide. This evaluation simply simulates the elongation of the ion exchange membrane in a state where the ion exchange membrane is attached to the electrolytic cell and is in contact with the alkaline aqueous solution.
[イオン交換膜の塩化ナトリウム水溶液中での平均寸法変化率の測定]
 イオン交換膜に2本の標線(距離:160mm)を描き、25℃の恒温室中で16時間保管した後の標線間距離L0を、デジタルノギスを用いて測定した。その後、32質量%の水酸化ナトリウム水溶液に25℃で7日間浸漬させ、犠牲糸をすべて溶解させた。なお、膜断面を光学顕微鏡で観察し、犠牲糸が残存している場合は、再度32質量%の水酸化ナトリウム水溶液に25℃で浸漬させ、犠牲糸が完全に溶解するまで浸漬し続けた。水酸化ナトリウム水溶液浸漬後のイオン交換膜を水洗したのち、125g/Lの塩化ナトリウム水溶液に90℃で30分間浸漬した際の標線間距離L2を、塩化ナトリウム水溶液に浸漬した状態で望遠鏡付き読み取り顕微鏡(日本光器製作所社製、デジタル式カセットメーター)を用いて測定した。下式(B)から、寸法変化率ΔL2(%)を求めた。測定は2回行い、これらの値の平均値を平均寸法変化率ΔL2とした。
 ΔL2=(L2-L0)/L0×100 ・・・(B)
 電解槽にイオン交換膜を装着する際は犠牲糸が残存しているが、電解運転時に犠牲糸は溶解する。この評価は、イオン交換膜が電解槽に装着され、その後の運転中に犠牲糸が完全に溶解した際に、塩化ナトリウム水溶液濃度が低くなった場合のイオン交換膜の伸びを簡易的に模擬するものである。
[Measurement of average dimensional change rate of ion exchange membrane in sodium chloride solution]
Two marked lines (distance: 160 mm) were drawn on the ion exchange membrane, and the distance L0 between marked lines after being stored in a constant temperature room at 25 ° C. for 16 hours was measured using a digital caliper. Thereafter, all the sacrificial yarns were dissolved by immersing them in a 32% by mass aqueous sodium hydroxide solution at 25 ° C. for 7 days. When the sacrificial yarn remained when the film cross section was observed with an optical microscope, the sacrificial yarn was again immersed in a 32% by mass sodium hydroxide aqueous solution at 25 ° C. and continued to be immersed until the sacrificial yarn was completely dissolved. After washing the ion exchange membrane after immersion in aqueous sodium hydroxide, the distance L2 between the marked lines when immersed in a 125 g / L aqueous sodium chloride solution at 90 ° C. for 30 minutes is read with a telescope while immersed in the aqueous sodium chloride solution The measurement was performed using a microscope (manufactured by Nihon Kogyo Seisakusho, digital cassette meter). The dimensional change rate ΔL2 (%) was determined from the following equation (B). The measurement was performed twice, and the average of these values was defined as the average dimensional change rate ΔL2.
ΔL2 = (L2−L0) / L0 × 100 (B)
The sacrificial yarn remains when the ion exchange membrane is attached to the electrolytic cell, but the sacrificial yarn dissolves during the electrolysis operation. This evaluation simply simulates the elongation of the ion exchange membrane when the concentration of sodium chloride aqueous solution is low when the ion exchange membrane is attached to the electrolytic cell and the sacrificial yarn is completely dissolved during the subsequent operation. Is.
[イオン交換膜中に残存する犠牲糸の平均断面積の測定]
 イオン交換膜中に残存する犠牲糸の断面積は、90℃で2時間以上乾燥させたイオン交換膜を、犠牲糸の長さ方向に垂直に切断した断面を光学顕微鏡にて観察し、画像ソフトを用いて測定した、膜の幅方向1mmあたりに残存する犠牲糸の断面積の合計値とした。断面積の測定は犠牲糸の10カ所について行い、これらの値の平均を残存する犠牲糸の平均断面積とした。
[Measurement of average cross-sectional area of sacrificial yarn remaining in ion exchange membrane]
The cross-sectional area of the sacrificial yarn remaining in the ion-exchange membrane was determined by observing a cross-section of the ion-exchange membrane dried at 90 ° C. for 2 hours or more perpendicularly to the length direction of the sacrificial yarn with an optical microscope. The total cross-sectional area of the sacrificial yarn remaining per 1 mm in the width direction of the film was measured using The cross-sectional area was measured at 10 locations on the sacrificial yarn, and the average of these values was taken as the average cross-sectional area of the remaining sacrificial yarn.
[織布性の評価]
 補強布は補強糸と犠牲糸とから織布されるが、これらの糸の間の寸法を厳密に制御することが重要である。しかし、織布前に設計した糸間の寸法が、織布の間や織布後にずれが生じて寸法変化が起こる場合がある。通常に織布しても織布前後の寸法変化がなく、設計した糸密度を有する補強布が得られたものを「A」、織布前後の寸法変化があったが、織布時に調整することにより設計した糸密度を有する補強布が得られたものを「B」、織布前後の寸法変化が大きく、織布時に調整しても設計した糸密度を有する補強布を得られなかったものを「C」として評価した。
[Evaluation of fabric properties]
Reinforcing fabrics are woven from reinforcing yarns and sacrificial yarns, but it is important to closely control the dimensions between these yarns. However, the dimension between yarns designed before weaving may change between the weaving and after weaving, resulting in dimensional changes. Even if the fabric is woven normally, there is no change in dimensions before and after the woven fabric, and “A” indicates that the reinforced fabric having the designed yarn density was obtained. "B" for which the reinforced fabric having the designed yarn density was obtained, and the dimensional change before and after the woven fabric was large, and the reinforced fabric having the designed yarn density could not be obtained even when adjusted during woven fabric Was evaluated as “C”.
[塩化アルカリ電解装置]
 電解槽(有効通電面積:25cm)としては、陰極室の供給水入口を陰極室下部に配し、生成する水酸化ナトリウム水溶液出口を陰極室上部に配し、陽極室の塩化ナトリウム水溶液入口を陽極室下部に配し、電解反応により希釈された塩化ナトリウム水溶液出口を陽極室上部に配したものを用いた。
 陽極としては、チタンのパンチドメタル(開口形状:菱形)(短径:4mm、長径:8mm)に酸化ルテニウムと酸化イリジウムと酸化チタンとの固溶体を被覆したものを用いた。陰極としては、SUS304のパンチドメタル(開口形状:菱形)(短径:5mm、長径:10mm)にルテニウム入りラネーニッケルを電着したものを用いた。
[Alkali chloride electrolyzer]
As an electrolytic cell (effective energization area: 25 cm 2 ), the supply water inlet of the cathode chamber is arranged at the lower part of the cathode chamber, the generated sodium hydroxide aqueous solution outlet is arranged at the upper part of the cathode chamber, and the sodium chloride aqueous solution inlet of the anode chamber is arranged. A sodium chloride aqueous solution outlet disposed at the lower part of the anode chamber and diluted by an electrolytic reaction was disposed at the upper part of the anode chamber.
As the anode, a titanium punched metal (opening shape: rhombus) (minor axis: 4 mm, major axis: 8 mm) coated with a solid solution of ruthenium oxide, iridium oxide and titanium oxide was used. As the cathode, a SUS304 punched metal (opening shape: rhombus) (short diameter: 5 mm, long diameter: 10 mm) electrodeposited with ruthenium-containing Raney nickel was used.
[電流効率の測定]
 層(C)と層(S)とを有するイオン交換膜を用い、層(C)が陰極に面するように、塩化アルカリ電解装置に配置し、陰極室内の水酸化ナトリウム水溶液濃度:32質量%、陽極室内の塩化ナトリウム水溶液濃度:200g/L、温度90℃、電流密度:6kA/mの条件で塩化ナトリウム水溶液の電解を行い、運転開始から3~10日の間の電流効率の測定値の平均を平均電流効率(%)とした。
[Measurement of current efficiency]
An ion exchange membrane having a layer (C) and a layer (S) is used, placed in an alkali chloride electrolyzer so that the layer (C) faces the cathode, and a sodium hydroxide aqueous solution concentration in the cathode chamber: 32% by mass Sodium chloride aqueous solution was electrolyzed under the conditions of sodium chloride aqueous solution concentration in the anode chamber: 200 g / L, temperature 90 ° C., current density: 6 kA / m 2 , and measured current efficiency between 3 and 10 days from the start of operation. Was the average current efficiency (%).
〔例1-1〕
 内容積が94Lのステンレス鋼製反応器(オートクレーブ)を真空に脱気したあと、CFCFCFCFCFCFH(以下、「溶媒S」とも記す。)に、下式(2-1)で表されるカルボン酸型官能基を有する化合物(以下、「モノマーM」とも記す。)を37.4質量%溶解させた溶液の66.2kgを加え、反応器の内温が75℃になるまで昇温した。
 CF=CF-O-CFCF-CF-COOCH ・・・(2-1)
 CF=CFを反応器の内圧が1.116MPaGになるまで加え、さらに重合開始剤であるアゾビスイソブチロニトリルを溶媒Sに0.031質量%溶解させた溶液の4.0Lを加えて重合反応を開始させた。重合反応中は、反応器の内圧が1.116MPaG(ゲージ圧?)に保持されるように、CF=CFを連続的に添加すると同時に、CF=CF/モノマーMのモル比が6.2に相当するモノマーMを連続的に添加した。反応開始からのCF=CFの導入量が4.9kgとなった時点で反応器を40℃まで冷却し、未反応のCF=CFを系外に放出して重合を終了させた。そのあと、減圧加熱下、溶媒Sおよび液状の未反応モノマーMを留去し、0.5kPaA(絶対圧)、92℃で12時間減圧乾燥し、7.4kgの粉体状の含フッ素ポリマー(C’1-1)を得た。得られた含フッ素ポリマー(C’1-1)の官能基濃度は13.89mol%、加水分解処理後のイオン交換容量は1.08ミリ当量/g乾燥樹脂であった。
[Example 1-1]
A stainless steel reactor (autoclave) having an internal volume of 94 L is degassed to vacuum, and then CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 H (hereinafter also referred to as “solvent S”) is expressed by the following formula ( 26.2) 66.2 kg of a solution in which 37.4% by mass of a compound having a carboxylic acid type functional group (hereinafter also referred to as “monomer M”) represented by formula (2-1) is added, and the internal temperature of the reactor is increased. The temperature was raised to 75 ° C.
CF 2 = CF—O—CF 2 CF 2 —CF 2 —COOCH 3 (2-1)
CF 2 = CF 2 was added until the internal pressure of the reactor reached 1.116 MPaG, and 4.0 L of a solution obtained by dissolving 0.031% by mass of azobisisobutyronitrile as a polymerization initiator in solvent S was added. The polymerization reaction was started. During the polymerization reaction, CF 2 = CF 2 / monomer M has a molar ratio of CF 2 = CF 2 / monomer M at the same time that CF 2 = CF 2 is continuously added so that the internal pressure of the reactor is maintained at 1.116 MPaG (gauge pressure?). Monomer M corresponding to 6.2 was added continuously. When the amount of CF 2 = CF 2 introduced from the start of the reaction reached 4.9 kg, the reactor was cooled to 40 ° C., and unreacted CF 2 = CF 2 was discharged out of the system to complete the polymerization. . Thereafter, the solvent S and the liquid unreacted monomer M are distilled off under heating under reduced pressure, dried under reduced pressure at 0.5 kPaA (absolute pressure) and 92 ° C. for 12 hours, and 7.4 kg of a powdery fluoropolymer ( C′1-1) was obtained. The functional group concentration of the obtained fluoropolymer (C′1-1) was 13.89 mol%, and the ion exchange capacity after the hydrolysis treatment was 1.08 meq / g dry resin.
 前記の重合反応と同様の方法によって、CF=CFと、CF=CF-O-CFCF(CF)-O-CFCF-SOFとを共重合して、含フッ素ポリマー(S’1-1)を得した。得られた含フッ素ポリマー(S’1-1)の加水分解処理後のイオン交換容量は1.1ミリ当量/g乾燥樹脂であった。 In the same manner as in the polymerization reaction described above, CF 2 ═CF 2 and CF 2 ═CF—O—CF 2 CF (CF 3 ) —O—CF 2 CF 2 —SO 2 F were copolymerized and contained. A fluoropolymer (S′1-1) was obtained. The resulting fluorine-containing polymer (S′1-1) had an ion exchange capacity of 1.1 meq / g dry resin after hydrolysis.
 含フッ素ポリマー(C’1-1)と含フッ素ポリマー(S’1-1)とを共押し出し法により成膜し、含フッ素ポリマー(C’1-1)からなる層(C’a)(厚さ:12μm)および含フッ素ポリマー(S’1-1)からなる層(S’a)(厚さ:68μm)の二層構成のフィルムAを得た。 The fluorine-containing polymer (C′1-1) and the fluorine-containing polymer (S′1-1) were formed into a film by a coextrusion method, and the layer (C′a) (C′a) comprising the fluorine-containing polymer (C′1-1) ( A film A having a two-layer structure comprising a thickness (12 μm) and a layer (S′a) (thickness: 68 μm) made of a fluoropolymer (S′1-1) was obtained.
 含フッ素ポリマー(S’1-1)を溶融押し出し法により成膜し、含フッ素ポリマー(S’1-1)からなる層(S’b)(厚さ:30μm)のフィルムBを得た。 Fluoropolymer (S′1-1) was formed into a film by a melt extrusion method to obtain a film B having a layer (S′b) (thickness: 30 μm) made of the fluoropolymer (S′1-1).
 延伸PTFEフィルムを100デニールの太さにスリットして得たモノフィラメントに2000回/mの撚糸をかけたPTFE糸を補強糸とした。
 5デニールのPETフィラメント(弾性率:4.9GPa)を6本引き揃えた30デニールのマルチフィラメントからなるPET糸を犠牲糸とした。
 補強糸1本と犠牲糸2本とが交互に配列されるように平織りし、補強布(補強糸の密度:27本/インチ、犠牲糸の密度:54本/インチ)を得た。
A PTFE yarn obtained by slitting a stretched PTFE film to a thickness of 100 denier with a twist of 2000 times / m on a monofilament was used as a reinforcing yarn.
A sacrificial yarn was a PET yarn composed of 30 denier multifilaments in which six 5-denier PET filaments (elastic modulus: 4.9 GPa) were aligned.
Plain weaving was performed so that one reinforcing yarn and two sacrificial yarns were alternately arranged to obtain a reinforcing fabric (reinforcing yarn density: 27 yarns / inch, sacrificial yarn density: 54 yarns / inch).
 フィルムB、補強布、フィルムA、離型用PETフィルム(厚さ:100μm)の順に、かつ、フィルムAの層(C’a)が離型用PETフィルム側となるように重ね、ロールを用いて積層した。離型用PETフィルムを剥がし、イオン交換膜前駆体膜を得た。 Using a roll, the film B, the reinforcing cloth, the film A, and the release PET film (thickness: 100 μm) are stacked in this order so that the layer (C′a) of the film A is on the release PET film side. And laminated. The release PET film was peeled off to obtain an ion exchange membrane precursor membrane.
 酸化ジルコニウム(平均粒子径:1μm)の29.0質量%、メチルセルロースの1.3質量%、シクロヘキサノールの4.6質量%、シクロヘキサンの1.5質量%および水の63.6質量%からなるペーストを、前駆体膜の層(S’b)の上層側にロールプレスにより転写し、無機物粒子層を形成した。酸化ジルコニウムの付着量は、20g/mとした。 Consists of 29.0% by mass of zirconium oxide (average particle size: 1 μm), 1.3% by mass of methylcellulose, 4.6% by mass of cyclohexanol, 1.5% by mass of cyclohexane and 63.6% by mass of water. The paste was transferred to the upper layer side of the precursor film layer (S′b) by a roll press to form an inorganic particle layer. The adhesion amount of zirconium oxide was 20 g / m 2 .
 片面に無機物粒子層を形成した前駆体膜を、5質量%のジメチルスルホキシドおよび30質量%の水酸化カリウムの水溶液に95℃で8分間浸漬した。これにより、含フッ素ポリマー(C’1-1)の-COOCH、ならびに含フッ素ポリマー(S’1-1)の-SOFを加水分解してイオン交換基に転換し、前駆体層(C’a)を層(Ca)に、層(S’a)を層(Sa)に、層(S’b)を層(Sb)とした膜を得た。
 この際、イオン交換膜中に残存する犠牲糸の平均断面積は、1800μm/mmであった。
The precursor film having an inorganic particle layer formed on one side was immersed in an aqueous solution of 5% by mass of dimethyl sulfoxide and 30% by mass of potassium hydroxide at 95 ° C. for 8 minutes. As a result, —COOCH 3 of the fluorine-containing polymer (C′1-1) and —SO 2 F of the fluorine-containing polymer (S′1-1) are hydrolyzed and converted into ion exchange groups, and the precursor layer ( A film having C′a) as the layer (Ca), the layer (S′a) as the layer (Sa), and the layer (S′b) as the layer (Sb) was obtained.
At this time, the average cross-sectional area of the sacrificial yarn remaining in the ion exchange membrane was 1800 μm 2 / mm.
 含フッ素ポリマー(S’1-1)の酸型ポリマーを2.5質量%含むエタノール溶液に、酸化ジルコニウム(平均粒子径:1μm)を13質量%の濃度で分散させた分散液を調製した。該分散液を、前記膜の層(Ca)側に噴霧し、ガス開放性被覆層を形成し、両面にガス開放性被覆層が形成されたイオン交換膜を得た。酸化ジルコニウムの付着量は、3g/mとした。 A dispersion was prepared by dispersing zirconium oxide (average particle size: 1 μm) at a concentration of 13% by mass in an ethanol solution containing 2.5% by mass of an acid type polymer of the fluoropolymer (S′1-1). The dispersion was sprayed on the layer (Ca) side of the membrane to form a gas releasable coating layer, and an ion exchange membrane having a gas releasable coating layer formed on both sides was obtained. The adhesion amount of zirconium oxide was 3 g / m 2 .
〔例1-2〕
 片面に無機物粒子層を形成した前駆体膜を、5質量%のジメチルスルホキシドおよび30質量%の水酸化カリウムの水溶液に95℃で15分間浸漬した以外は、例1-1と同様にして、イオン交換膜を得た。加水分解後のイオン交換膜中に残存する犠牲糸の平均断面積は、690μm/mmであった。
[Example 1-2]
Ion ions were formed in the same manner as in Example 1-1 except that a precursor film having an inorganic particle layer formed on one side was immersed in an aqueous solution of 5% by mass of dimethyl sulfoxide and 30% by mass of potassium hydroxide at 95 ° C. for 15 minutes. An exchange membrane was obtained. The average cross-sectional area of the sacrificial yarn remaining in the ion exchange membrane after hydrolysis was 690 μm 2 / mm.
〔例2-1〕
 犠牲糸として、3.3デニールのPETフィラメント(弾性率:4.4GPa)を6本引き揃えた20デニールのマルチフィラメントからなるPET糸を使用し、補強布として、補強糸1本と犠牲糸4本とが交互に配列されるように平織し、補強糸の密度が27本/インチ、犠牲糸の密度が108本/インチの補強布を使用した以外は、例1-1と同様にしてイオン交換膜を得た。加水分解後のイオン交換膜中に残存する犠牲糸の平均断面積は、983μm/mmであった。
[Example 2-1]
As the sacrificial yarn, a PET yarn composed of 20 denier multifilaments in which six 3.3 denier PET filaments (modulus of elasticity: 4.4 GPa) are aligned is used. As the reinforcing fabric, one reinforcing yarn and the sacrificial yarn 4 are used. Ion ion was applied in the same manner as in Example 1-1 except that a plain weave was used so that the books were alternately arranged, and a reinforcing fabric with a reinforcing yarn density of 27 / inch and a sacrificial yarn density of 108 / inch was used. An exchange membrane was obtained. The average cross-sectional area of the sacrificial yarn remaining in the ion exchange membrane after hydrolysis was 983 μm 2 / mm.
〔例2-2〕
 片面に無機物粒子層を形成した前駆体膜を、5質量%のジメチルスルホキシドおよび30質量%の水酸化カリウムの水溶液に95℃で15分間浸漬した以外は、例2-1と同様にして、イオン交換膜を得た。加水分解後のイオン交換膜中には、犠牲糸は残存しなかった。
[Example 2-2]
Ion ions were formed in the same manner as in Example 2-1, except that a precursor film having an inorganic particle layer formed on one side was immersed in an aqueous solution of 5% by mass of dimethyl sulfoxide and 30% by mass of potassium hydroxide at 95 ° C. for 15 minutes. An exchange membrane was obtained. No sacrificial yarn remained in the ion exchange membrane after hydrolysis.
〔例3-1〕
 犠牲糸として、9デニールのPETフィラメント(弾性率:7.2GPa)を2本引き揃えた18デニールのマルチフィラメントからなるPET糸を使用した以外は例2-1と同様にして、イオン交換膜を得た。加水分解後のイオン交換膜中に残存する犠牲糸の平均断面積は、3660μm/mmであった。
[Example 3-1]
An ion exchange membrane was prepared in the same manner as in Example 2-1, except that a PET yarn consisting of 18 denier multifilaments in which two 9 denier PET filaments (elastic modulus: 7.2 GPa) were aligned was used as the sacrificial yarn. Obtained. The average cross-sectional area of the sacrificial yarn remaining in the ion exchange membrane after hydrolysis was 3660 μm 2 / mm.
〔例3-2〕
 片面に無機物粒子層を形成した前駆体膜を、5質量%のジメチルスルホキシドおよび30質量%の水酸化カリウムの水溶液に95℃で15分間浸漬した以外は、例3-1と同様にして、イオン交換膜を得た。加水分解後のイオン交換膜中に残存する犠牲糸の平均断面積は、1711μm/mmであった。
[Example 3-2]
Ion ions were formed in the same manner as in Example 3-1, except that a precursor film having an inorganic particle layer formed on one side was immersed in an aqueous solution of 5% by mass of dimethyl sulfoxide and 30% by mass of potassium hydroxide at 95 ° C. for 15 minutes. An exchange membrane was obtained. The average cross-sectional area of the sacrificial yarn remaining in the ion exchange membrane after hydrolysis was 1711 μm 2 / mm.
〔例3-3〕
 片面に無機物粒子層を形成した前駆体膜を、5質量%のジメチルスルホキシドおよび30質量%の水酸化カリウムの水溶液に95℃で19分間浸漬した以外は、例3-1と同様にして、イオン交換膜を得た。加水分解後のイオン交換膜中に残存する犠牲糸の平均断面積は、61μm/mmであった。
[Example 3-3]
Ion ions were formed in the same manner as in Example 3-1, except that a precursor film having an inorganic particle layer formed on one side was immersed in an aqueous solution of 5% by mass of dimethyl sulfoxide and 30% by mass of potassium hydroxide at 95 ° C. for 19 minutes. An exchange membrane was obtained. The average cross-sectional area of the sacrificial yarn remaining in the ion exchange membrane after hydrolysis was 61 μm 2 / mm.
〔例4-1〕
 犠牲糸として、5デニールのPBTフィラメント(弾性率:1.2GPa)を6本引き揃えた30デニールのマルチフィラメントからなるPBT糸を犠牲糸とし、片面に無機物粒子層を形成した前駆体膜を、5質量%のジメチルスルホキシドおよび30質量%の水酸化カリウムの水溶液に95℃で90分間浸漬した以外は、例1-1と同様にして、イオン交換膜を得た。
 なお、本例の補強布の織布においては、織布前後において寸法変化が生じたため、織布時に設計の糸密度になるように調整が必要であった。加水分解後のイオン交換膜中に残存する犠牲糸の平均断面積は、3010μm/mmであった。
[Example 4-1]
As a sacrificial yarn, a precursor film in which an inorganic particle layer is formed on one side using a sacrificial yarn as a PBT yarn composed of 30 denier multifilaments in which six 5-denier PBT filaments (elastic modulus: 1.2 GPa) are aligned, An ion exchange membrane was obtained in the same manner as in Example 1-1 except that it was immersed in an aqueous solution of 5% by mass of dimethyl sulfoxide and 30% by mass of potassium hydroxide at 95 ° C. for 90 minutes.
In the woven fabric of the reinforcing fabric of this example, since a dimensional change occurred before and after the woven fabric, it was necessary to adjust the yarn density to the design when woven. The average cross-sectional area of the sacrificial yarn remaining in the ion exchange membrane after hydrolysis was 3010 μm 2 / mm.
〔例4-2〕
 片面に無機物粒子層を形成した前駆体膜を、5質量%のジメチルスルホキシドおよび30質量%の水酸化カリウムの水溶液に95℃で180分間浸漬した以外は、例4-1と同様にして、イオン交換膜を得た。加水分解後のイオン交換膜中に残存する犠牲糸の平均断面積は、1410μm/mmであった。
[Example 4-2]
Ion ions were formed in the same manner as in Example 4-1, except that a precursor film having an inorganic particle layer formed on one side was immersed in an aqueous solution of 5% by mass of dimethyl sulfoxide and 30% by mass of potassium hydroxide at 95 ° C. for 180 minutes. An exchange membrane was obtained. The average cross-sectional area of the sacrificial yarn remaining in the ion exchange membrane after hydrolysis was 1410 μm 2 / mm.
〔例5〕
 補強糸として、PTFEフィルムを急速延伸した後、100デニールの太さにスリットして得たモノフィラメントに2000回/mの撚糸をかけたPTFE糸を使用し、犠牲糸として、5デニールのPBTフィラメント(弾性率:0.6GPa)を6本引き揃えた30デニールのマルチフィラメントからなるPBT糸を使用し、補強糸1本と犠牲糸2本とが交互に配列されるように平織りし、補強糸の密度が27本/インチ、犠牲糸の密度が54本/インチとなるように補強布を織布したが、織布前後の寸法変化が大きく、設計した糸密度を有する補強布は得られなかった。
[Example 5]
As a reinforcing yarn, a PTFE yarn obtained by rapidly stretching a PTFE film and slitting to a thickness of 100 denier and then twisting 2000 times / m of the monofilament was used. As a sacrificial yarn, a 5-denier PBT filament ( Using PBT yarns consisting of 30 denier multifilaments with 6 elastic moduli (0.6 GPa), weave plain so that one reinforcing yarn and two sacrificial yarns are arranged alternately. The reinforced fabric was woven so that the density was 27 / inch and the density of the sacrificial yarn was 54 / inch, but the dimensional change before and after the woven fabric was large, and a reinforced fabric having the designed yarn density could not be obtained. .
 設計した糸密度を有する補強布が得られず測定できなかった例5を除く各例における、25℃における32質量%水酸化ナトリウム水溶液中および90℃における125g/L塩化ナトリウム水溶液中でのイオン交換膜の寸法変化率を表1に示す。また、電流効率は設計した糸密度を有する補強布が得られず測定できなかった例5を除く、全ての例において96%以上であった。 Ion exchange in 32% by weight sodium hydroxide aqueous solution at 25 ° C. and 125 g / L sodium chloride aqueous solution at 90 ° C. in each example except Example 5 in which a reinforcing fabric having the designed yarn density was not obtained and could not be measured The dimensional change rate of the film is shown in Table 1. The current efficiency was 96% or more in all examples except Example 5 in which a reinforcing fabric having the designed yarn density was not obtained and could not be measured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本発明の条件を満たすイオン交換膜を用いた、例1-1と例1-2、例2-1と例2-2、および例4-1と例4-2では、25℃における32質量%水酸化ナトリウム水溶液におけるイオン交換膜中の犠牲糸の残存量による寸法変化の変動が小さく、寸法変化はイオン交換膜中に残存する犠牲糸の平均断面積によらず、ほぼ一定であった。
 本発明の条件より高い犠牲糸の平均弾性率を示す、例3-1と例3-2と例3-3では、25℃における32質量%水酸化ナトリウム水溶液中でのイオン交換膜の、イオン交換膜中の犠牲糸の残存量による寸法変化の変動が大きく、イオン交換膜中に残存する犠牲糸の平均断面積によって寸法変化が大きく変動することが明らかとなった。
As shown in Table 1, Examples 1-1 and 1-2, Examples 2-1 and 2-2, and Examples 4-1 and 4-2 using ion exchange membranes satisfying the conditions of the present invention were used. Therefore, the variation in the dimensional change due to the residual amount of the sacrificial yarn in the ion exchange membrane in the 32 mass% sodium hydroxide aqueous solution at 25 ° C. is small, and the dimensional change does not depend on the average cross-sectional area of the sacrificial yarn remaining in the ion exchange membrane. Was almost constant.
In Examples 3-1, 3-2, and 3-3, which show an average elastic modulus of the sacrificial yarn that is higher than the conditions of the present invention, the ion exchange membrane in 32% by mass aqueous sodium hydroxide solution at 25 ° C. It became clear that the variation in dimensional change due to the remaining amount of sacrificial yarn in the exchange membrane was large, and that the dimensional change varied greatly depending on the average cross-sectional area of the sacrificial yarn remaining in the ion exchange membrane.
 表1に示すように、本発明の条件を満たすイオン交換膜を用いた、例1-1と例1-2、例2-1と例2-2、および例4-1と例4-2では、90℃における125g/L塩化ナトリウム水溶液中でのイオン交換膜の、イオン交換膜中の犠牲糸の残存量による寸法変化の変動が小さく、寸法変化はイオン交換膜中に残存する犠牲糸の平均断面積によらず、ほぼ一定であった。
 本発明の条件より高い犠牲糸の平均弾性率を示す、例3-1と例3-2と例3-3では、90℃における125g/L塩化ナトリウム水溶液中でのイオン交換膜の、イオン交換膜中の犠牲糸の残存量による寸法変化の変動が大きく、イオン交換膜中に残存する犠牲糸の平均断面積によって寸法変化が大きく変動することが明らかとなった。
As shown in Table 1, Examples 1-1 and 1-2, Examples 2-1 and 2-2, and Examples 4-1 and 4-2 using ion exchange membranes satisfying the conditions of the present invention were used. Then, the fluctuation of the dimensional change of the ion exchange membrane in the 125 g / L sodium chloride aqueous solution at 90 ° C. due to the remaining amount of the sacrificial yarn in the ion exchange membrane is small, and the dimensional change is caused by the sacrificial yarn remaining in the ion exchange membrane. It was almost constant regardless of the average cross-sectional area.
In Examples 3-1, 3-2 and 3-3, which show higher average elastic modulus of the sacrificial yarn than the conditions of the present invention, the ion exchange of the ion exchange membrane in an aqueous 125 g / L sodium chloride solution at 90 ° C. It has been clarified that the variation in dimensional change due to the remaining amount of sacrificial yarn in the membrane is large, and the dimensional change varies greatly depending on the average cross-sectional area of the sacrificial yarn remaining in the ion exchange membrane.
 以上の結果から、犠牲糸の平均弾性率が特定の範囲にある本発明のイオン交換膜においては、イオン交換膜中に残存する犠牲糸の平均断面積によらず、寸法変化の変動がほぼ一定であり、寸法変化を制御しやすいことが明らかとなった。
 その一方、犠牲糸の平均弾性率が本発明の条件より高いイオン交換膜は、イオン交換膜中に残存する犠牲糸の平均断面積によって寸法変化が大きく変動することが明らかとなった。すなわち、イオン交換膜の内部に備えられた補強材における犠牲糸の平均弾性率が、本発明の特定の範囲にあることにより、残存する犠牲糸の平均断面積が変化しても、イオン交換膜の寸法変化の変動は少ない。よって、アルカリ性水溶液による加水分解条件を厳密に制御して残存する犠牲糸の平均断面積を厳密に制御しなくても、イオン交換膜の寸法変化率を一定の範囲内とすることができ、想定外のイオン交換膜の寸法変化によるイオン交換膜の皺、ピンホール、クラック等のトラブルを低減できる。この効果は、特に大型の加水分解槽において、槽内の温度、アルカリ性水溶液の濃度などの加水分解条件の均一化が難しい場合において顕著である。
From the above results, in the ion exchange membrane of the present invention in which the average elastic modulus of the sacrificial yarn is in a specific range, the variation in dimensional change is almost constant regardless of the average cross-sectional area of the sacrificial yarn remaining in the ion exchange membrane. It was clear that the dimensional change was easy to control.
On the other hand, it became clear that the dimensional change of the ion exchange membrane in which the average elastic modulus of the sacrificial yarn is higher than the conditions of the present invention varies greatly depending on the average cross-sectional area of the sacrificial yarn remaining in the ion exchange membrane. That is, the average elastic modulus of the sacrificial yarn in the reinforcing material provided inside the ion exchange membrane is in the specific range of the present invention, so that even if the average cross-sectional area of the remaining sacrificial yarn changes, the ion exchange membrane There is little variation in the dimensional change. Therefore, the dimensional change rate of the ion exchange membrane can be kept within a certain range without strictly controlling the hydrolysis conditions with the alkaline aqueous solution and strictly controlling the average cross-sectional area of the remaining sacrificial yarn. Troubles such as wrinkles, pinholes and cracks in the ion exchange membrane due to dimensional changes of the outer ion exchange membrane can be reduced. This effect is particularly remarkable in a large hydrolysis tank when it is difficult to make uniform the hydrolysis conditions such as the temperature in the tank and the concentration of the alkaline aqueous solution.
 なお、2016年3月8日に出願された日本特許出願2016-44534号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 The entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2016-44534 filed on March 8, 2016 are incorporated herein as the disclosure of the specification of the present invention. Is.

Claims (14)

  1.  イオン交換基を有する含フッ素ポリマー層と、前記イオン交換基を有する含フッ素ポリマー層の内部に備えられた補強糸と犠牲糸からなる補強材とを有する塩化アルカリ電解用イオン交換膜であって、
     前記犠牲糸の平均弾性率が1.0~7.0GPaであることを特徴とする塩化アルカリ電解用イオン交換膜。
    An ion exchange membrane for alkaline chloride electrolysis comprising a fluorine-containing polymer layer having an ion exchange group, and a reinforcing material comprising a reinforcing yarn and a sacrificial yarn provided inside the fluorine-containing polymer layer having the ion exchange group,
    An ion exchange membrane for alkaline chloride electrolysis, wherein the sacrificial yarn has an average elastic modulus of 1.0 to 7.0 GPa.
  2.  前記補強糸は、繊度が20~200デニールであり、かつ布中の補強糸の密度が10~40本/インチである請求項1に記載の塩化アルカリ電解用イオン交換膜。 2. The ion exchange membrane for alkaline chloride electrolysis according to claim 1, wherein the reinforcing yarn has a fineness of 20 to 200 denier and a density of the reinforcing yarn in the cloth is 10 to 40 yarns / inch.
  3.  前記犠牲糸は、繊度が5~100デニールであり、かつ布中の犠牲糸の1本当たりのフィラメント数が1~32本のモノフィラメント又はマルチフィラメントである請求項1または2に記載の塩化アルカリ電解用イオン交換膜。 3. The alkali chloride electrolysis according to claim 1, wherein the sacrificial yarn is a monofilament or a multifilament having a fineness of 5 to 100 denier and a filament number of 1 to 32 per sacrificial yarn in the cloth. Ion exchange membrane.
  4.  前記犠牲糸が、一部が溶解して除去されている犠牲糸である請求項1~3いずれか一項に記載の塩化アルカリ電解用イオン交換膜。 The ion exchange membrane for alkali chloride electrolysis according to any one of claims 1 to 3, wherein the sacrificial yarn is a sacrificial yarn partially dissolved and removed.
  5.  前記イオン交換基を有する含フッ素ポリマー層の少なくとも一部が、スルホン酸型官能基を有する含フッ素ポリマー層である請求項1~4のいずれか一項に記載の塩化アルカリ電解用イオン交換膜。 The ion exchange membrane for alkali chloride electrolysis according to any one of claims 1 to 4, wherein at least a part of the fluorine-containing polymer layer having an ion exchange group is a fluorine-containing polymer layer having a sulfonic acid type functional group.
  6.  前記イオン交換基を有する含フッ素ポリマー層の少なくとも一部が、カルボン酸型官能基を有する含フッ素ポリマー層である請求項1~5のいずれか一項に記載の塩化アルカリ電解用イオン交換膜。 The ion exchange membrane for alkali chloride electrolysis according to any one of claims 1 to 5, wherein at least a part of the fluorine-containing polymer layer having an ion exchange group is a fluorine-containing polymer layer having a carboxylic acid type functional group.
  7.  少なくとも一方の最表面に、無機物粒子を含む層をさらに有する請求項1~6のいずれか一項に記載の塩化アルカリ電解用イオン交換膜。 The ion exchange membrane for alkaline chloride electrolysis according to any one of claims 1 to 6, further comprising a layer containing inorganic particles on at least one outermost surface.
  8.  請求項1~7のいずれか一項に記載塩化アルカリ電解用のイオン交換膜を、電解槽内の陰極側の陰極室と陽極側の陽極室とを区切る電解膜として備える塩化アルカリ電解装置。 An alkali chloride electrolysis apparatus comprising the ion exchange membrane for alkaline chloride electrolysis according to any one of claims 1 to 7 as an electrolyte membrane separating a cathode chamber on the cathode side and an anode chamber on the anode side in the electrolytic cell.
  9.  イオン交換基に変換できる基を有する含フッ素ポリマー層と、前記イオン交換基に変換できる基を有する含フッ素ポリマー層の内部に備えられた補強布とを有する、塩化アルカリ電解用イオン交換膜前駆体膜であって、
     前記補強布は、補強糸と犠牲糸とからなり、前記犠牲糸の平均弾性率が1.0~7.0GPaであることを特徴とする塩化アルカリ電解用イオン交換膜前駆体膜。
    An ion exchange membrane precursor for alkaline chloride electrolysis, comprising: a fluorine-containing polymer layer having a group that can be converted into an ion-exchange group; and a reinforcing cloth provided inside the fluorine-containing polymer layer having a group that can be converted into an ion-exchange group A membrane,
    The ion-exchange membrane precursor membrane for alkaline chloride electrolysis, wherein the reinforcing fabric comprises reinforcing yarns and sacrificial yarns, and the sacrificial yarns have an average elastic modulus of 1.0 to 7.0 GPa.
  10.  前記イオン交換基に変換できる基を有する含フッ素ポリマー層の少なくとも一部が、スルホン酸型官能基に変換できる基を有する含フッ素ポリマー層である請求項9に記載の塩化アルカリ電解用イオン交換膜前駆体膜。 The ion exchange membrane for alkali chloride electrolysis according to claim 9, wherein at least a part of the fluorine-containing polymer layer having a group that can be converted into an ion-exchange group is a fluorine-containing polymer layer having a group that can be converted into a sulfonic acid type functional group. Precursor film.
  11.  前記イオン交換基に変換できる基を有する含フッ素ポリマー層の少なくとも一部が、カルボン酸型官能基に変換できる基を有する含フッ素ポリマー層である請求項9または10に記載の塩化アルカリ電解用イオン交換膜前駆体膜。 The ion for alkali chloride electrolysis according to claim 9 or 10, wherein at least a part of the fluorine-containing polymer layer having a group that can be converted into an ion exchange group is a fluorine-containing polymer layer having a group that can be converted into a carboxylic acid type functional group. Exchange membrane precursor membrane.
  12.  請求項9~11のいずれか一項に記載のイオン交換膜前駆体膜を、アルカリ性水溶液に接触させることにより、イオン交換基に変換できる基をイオン交換基に変換するとともに、補強布中の犠牲糸の少なくとも一部を溶解して除去することにより、イオン交換基を有する含フッ素ポリマー層および補強材を含むイオン交換膜を得ることを特徴とする塩化アルカリ電解用イオン交換膜の製造方法。 The ion-exchange membrane precursor film according to any one of claims 9 to 11 is brought into contact with an alkaline aqueous solution to convert a group that can be converted into an ion-exchange group into an ion-exchange group, and at the same time, a sacrifice in a reinforcing cloth A method for producing an ion exchange membrane for alkaline chloride electrolysis, comprising obtaining a ion exchange membrane comprising a fluorine-containing polymer layer having an ion exchange group and a reinforcing material by dissolving and removing at least a part of the yarn.
  13.  補強布中の犠牲糸の一部を溶解して除去する請求項10に記載の塩化アルカリ電解用イオン交換膜の製造方法。 The method for producing an ion exchange membrane for alkaline chloride electrolysis according to claim 10, wherein a part of the sacrificial yarn in the reinforcing cloth is dissolved and removed.
  14.  請求項12または13に記載の製造方法によって塩化アルカリ電解用イオン交換膜を得た後、該イオン交換膜を、電解槽内の陰極側の陰極室と陽極側の陽極室とを区切る電解膜として設けることを特徴とする塩化アルカリ電解装置の製造方法。 After obtaining the ion exchange membrane for alkali chloride electrolysis by the production method according to claim 12 or 13, the ion exchange membrane is used as an electrolyte membrane that separates the cathode chamber on the cathode side and the anode chamber on the anode side in the electrolytic cell. A method for producing an alkali chloride electrolytic device, comprising:
PCT/JP2017/009069 2016-03-08 2017-03-07 Ion exchange membrane, method for producing same and alkali chloride electrolysis device WO2017154925A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780009330.9A CN108699712A (en) 2016-03-08 2017-03-07 Amberplex, its manufacturing method and alkali chloride electrolysis device
JP2018504525A JPWO2017154925A1 (en) 2016-03-08 2017-03-07 Ion exchange membrane, method for producing the same, and alkali chloride electrolyzer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016044534 2016-03-08
JP2016-044534 2016-03-08

Publications (1)

Publication Number Publication Date
WO2017154925A1 true WO2017154925A1 (en) 2017-09-14

Family

ID=59789553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009069 WO2017154925A1 (en) 2016-03-08 2017-03-07 Ion exchange membrane, method for producing same and alkali chloride electrolysis device

Country Status (3)

Country Link
JP (1) JPWO2017154925A1 (en)
CN (1) CN108699712A (en)
WO (1) WO2017154925A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059623A1 (en) * 2018-09-21 2020-03-26 旭化成株式会社 Method for manufacturing electrolytic cell, laminate, electrolytic cell, and method for operating electrolytic cell
CN112689554A (en) * 2018-09-14 2021-04-20 Agc株式会社 Method for producing pellet, and ion exchange membrane

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027862A1 (en) * 2014-08-20 2016-02-25 旭硝子株式会社 Ion exchange membrane for alkali chloride electrolysis, and alkali chloride electrolysis apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4552631A (en) * 1983-03-10 1985-11-12 E. I. Du Pont De Nemours And Company Reinforced membrane, electrochemical cell and electrolysis process
JP3075580B2 (en) * 1991-04-05 2000-08-14 旭硝子株式会社 Fluorine-containing cation exchange membrane for electrolysis
JP4368509B2 (en) * 2000-09-11 2009-11-18 旭化成ケミカルズ株式会社 Method for producing reinforced cation exchange membrane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027862A1 (en) * 2014-08-20 2016-02-25 旭硝子株式会社 Ion exchange membrane for alkali chloride electrolysis, and alkali chloride electrolysis apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112689554A (en) * 2018-09-14 2021-04-20 Agc株式会社 Method for producing pellet, and ion exchange membrane
WO2020059623A1 (en) * 2018-09-21 2020-03-26 旭化成株式会社 Method for manufacturing electrolytic cell, laminate, electrolytic cell, and method for operating electrolytic cell
CN112601845A (en) * 2018-09-21 2021-04-02 旭化成株式会社 Method for manufacturing electrolytic cell, laminate, electrolytic cell, and method for operating electrolytic cell
KR20210044859A (en) * 2018-09-21 2021-04-23 아사히 가세이 가부시키가이샤 Electrolyzer manufacturing method, laminate, electrolyzer, and operation method of electrolyzer
JPWO2020059623A1 (en) * 2018-09-21 2021-09-09 旭化成株式会社 Method of manufacturing electrolytic cell, laminate, electrolytic cell, and method of operating electrolytic cell
EP3854914A4 (en) * 2018-09-21 2021-11-17 Asahi Kasei Kabushiki Kaisha Method for manufacturing electrolytic cell, laminate, electrolytic cell, and method for operating electrolytic cell
JP7320520B2 (en) 2018-09-21 2023-08-03 旭化成株式会社 Method for manufacturing electrolytic cell, laminate, electrolytic cell, and method for operating electrolytic cell
KR20230154087A (en) * 2018-09-21 2023-11-07 아사히 가세이 가부시키가이샤 Method for manufacturing electrolytic cell, laminate, electrolytic cell, and method for operating electrolytic cell
KR102614977B1 (en) * 2018-09-21 2023-12-15 아사히 가세이 가부시키가이샤 Method of manufacturing electrolyzer, laminate, electrolyzer, and operating method of electrolyzer
CN112601845B (en) * 2018-09-21 2024-03-08 旭化成株式会社 Method for manufacturing electrolytic cell, laminate, electrolytic cell, and method for operating electrolytic cell
KR102653282B1 (en) * 2018-09-21 2024-03-29 아사히 가세이 가부시키가이샤 Method for manufacturing electrolytic cell, laminate, electrolytic cell, and method for operating electrolytic cell

Also Published As

Publication number Publication date
CN108699712A (en) 2018-10-23
JPWO2017154925A1 (en) 2019-01-10

Similar Documents

Publication Publication Date Title
JP6270714B2 (en) Reinforced electrolyte membrane and method for producing the same
JP6766813B2 (en) Method for manufacturing ion exchange membrane for alkali chloride electrolysis and method for manufacturing alkali chloride electrolyzer
US11066751B2 (en) Ion exchange membrane for alkali chloride electrolysis, method for its production and alkali chloride electrolysis apparatus
JP6612410B2 (en) Ion exchange membrane
US11020734B2 (en) Ion exchange membrane for alkali chloride electrolysis, production method, and alkali chloride electrolysis apparatus
US10926253B2 (en) Process for producing ion exchange membrane for electrolysis, and ion exchange membrane for electrolysis
US10865489B2 (en) Ion exchange membrane for alkali chloride electrolysis, and alkali chloride electrolysis apparatus
JP6766814B2 (en) Method for manufacturing ion exchange membrane for alkali chloride electrolysis and method for manufacturing alkali chloride electrolyzer
KR101967087B1 (en) Ion exchange membrane
WO2017154925A1 (en) Ion exchange membrane, method for producing same and alkali chloride electrolysis device
KR101950130B1 (en) Ion exchange membrane
JP6927191B2 (en) Manufacture method of ion exchange membrane for alkali chloride electrolysis, ion exchange membrane for alkali chloride electrolysis and alkali chloride electrolyzer
US11434337B2 (en) Ion exchange membrane for alkali chloride electrolysis, and alkali chloride electrolysis apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018504525

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763265

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17763265

Country of ref document: EP

Kind code of ref document: A1