WO2017154680A1 - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
WO2017154680A1
WO2017154680A1 PCT/JP2017/007898 JP2017007898W WO2017154680A1 WO 2017154680 A1 WO2017154680 A1 WO 2017154680A1 JP 2017007898 W JP2017007898 W JP 2017007898W WO 2017154680 A1 WO2017154680 A1 WO 2017154680A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal layer
electrode
display device
substrate
Prior art date
Application number
PCT/JP2017/007898
Other languages
French (fr)
Japanese (ja)
Inventor
裕一 喜夛
佐々木 貴啓
伊織 青山
花岡 一孝
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2017154680A1 publication Critical patent/WO2017154680A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent

Definitions

  • the present invention relates to a liquid crystal display device.
  • see-through displays have attracted attention as display devices for information displays and digital signage.
  • the background the back side of the display panel
  • the see-through display is excellent in appealing effect and eye catching effect. It has also been proposed to use a see-through display for a showcase or a show window.
  • liquid crystal display device When a liquid crystal display device is used as a see-through display, its light utilization efficiency is low.
  • the low light use efficiency of the liquid crystal display device is caused by a color filter or a polarizing plate provided in a general liquid crystal display device.
  • the color filter and the polarizing plate absorb light in a specific wavelength range and light in a specific polarization direction.
  • a field sequential type liquid crystal display device In the field sequential method, color display is performed by switching the color of light emitted from the illumination element to the liquid crystal display panel in a time-sharing manner. This eliminates the need for a color filter and improves the light utilization efficiency. However, in the field sequential method, high-speed response is required for the liquid crystal display device.
  • Patent Documents 1 and 2 disclose liquid crystal display devices having improved response characteristics by providing an electrode structure that can be generated by switching a vertical electric field and a horizontal electric field in a liquid crystal layer.
  • a vertical electric field is generated in the liquid crystal layer, and on the other hand, a horizontal electric field (fringe field) is generated in the liquid crystal layer. Therefore, the dielectric torque due to voltage application acts on the liquid crystal molecules both at the rising edge and the falling edge, so that excellent response characteristics can be obtained.
  • Patent Document 3 proposes a liquid crystal display device that realizes high-speed response by applying an alignment regulating force due to an electric field to liquid crystal molecules at both rising and falling.
  • a display mode realized by an electrode structure that can be generated by switching a vertical electric field and a horizontal electric field in a liquid crystal layer as disclosed in Patent Documents 1, 2, and 3, is referred to as an “on / on mode”. Call it.
  • Each pixel of the liquid crystal display device disclosed in Patent Document 4 has a black display state in which black display is performed in a state in which a vertical electric field is generated in the liquid crystal layer, and a white display in a state in which a horizontal electric field is generated in the liquid crystal layer. It is possible to switch and present the white display state in which is performed.
  • Each pixel can also exhibit a transparent display state in which the back side of the liquid crystal display panel can be seen through when no voltage is applied to the liquid crystal layer, thereby blurring the background (recognized twice). The occurrence of the problem is prevented.
  • Patent Document 4 discloses a configuration in which liquid crystal molecules have homogeneous alignment and a configuration in which twist alignment is performed in a state where a horizontal electric field is generated in the liquid crystal layer (white display state). According to the inventor's study, in the latter configuration, as will be described in detail later, there is room for further improvement in response characteristics, but in that case, since the response characteristics and the contrast ratio are in a trade-off relationship, It was found that it is difficult to achieve both a further improvement in response characteristics and a high contrast ratio.
  • the present invention has been made in view of the above problems, and an object thereof is to achieve both excellent response characteristics and a high contrast ratio in an on / on mode liquid crystal display device in which liquid crystal molecules can take twist alignment. It is in.
  • a liquid crystal display device includes a liquid crystal display panel having a first substrate and a second substrate facing each other, and a liquid crystal layer provided between the first substrate and the second substrate, and a matrix.
  • a liquid crystal display device having a plurality of pixels arranged in a shape, wherein the first substrate has a first electrode provided in each of the plurality of pixels, and a horizontal electric field applied to the liquid crystal layer together with the first electrode.
  • the second substrate is provided so as to face the first electrode and the second electrode, and applies a vertical electric field to the liquid crystal layer together with the first electrode and the second electrode.
  • the liquid crystal molecules of the liquid crystal layer have a twist alignment, and the thickness d of the liquid crystal layer and the natural chirality of the liquid crystal layer
  • the pitch p is 1 ⁇ p Satisfy the relation d ⁇ 3
  • dielectric anisotropy ⁇ of the liquid crystal material included in the liquid crystal layer is 16 to 25.
  • the thickness d of the liquid crystal layer is 2.5 ⁇ m or more and 4.0 ⁇ m or less.
  • the first substrate has a first alignment film on the surface on the liquid crystal layer side
  • the second substrate has a second alignment film on the surface on the liquid crystal layer side
  • the second substrate The substrate has a dielectric layer between the third electrode and the second alignment film.
  • the first substrate has a first alignment film on the surface on the liquid crystal layer side
  • the second substrate has a second alignment film on the surface on the liquid crystal layer side
  • the second substrate The substrate does not have a dielectric layer between the third electrode and the second alignment film.
  • each of the plurality of pixels has a black display state in which black display is performed in a state in which a vertical electric field is generated in the liquid crystal layer and a white display in a state in which a horizontal electric field is generated in the liquid crystal layer.
  • a white display state to be performed and a transparent display state in which the back side of the liquid crystal display panel can be seen through when no voltage is applied to the liquid crystal layer can be switched and presented.
  • the first electrode is provided on the second electrode through an insulating layer.
  • the first electrode has at least one slit extending in a predetermined direction, and a liquid crystal molecule near the center in the thickness direction of the liquid crystal layer in a state where a lateral electric field is generated in the liquid crystal layer.
  • a liquid crystal molecule near the center in the thickness direction of the liquid crystal layer in a state where a lateral electric field is generated in the liquid crystal layer.
  • the liquid crystal display device further includes an illumination element capable of switching and irradiating the liquid crystal display panel with a plurality of color lights including red light, green light, and blue light.
  • the liquid crystal display device according to the present invention performs color display in a field sequential manner.
  • the liquid crystal display panel does not have a color filter.
  • FIG. 1 is a plan view schematically showing a liquid crystal display device 100 according to an embodiment of the present invention.
  • 4 is a plan view showing an example of a specific wiring structure on the back substrate 10 of the liquid crystal display device 100.
  • FIG. (A) And (b) is sectional drawing and the top view which show the orientation state of the liquid crystal molecule 31 in the black display state of the liquid crystal display device 100.
  • FIG. (A) And (b) is sectional drawing and the top view which show the orientation state of the liquid crystal molecule 31 in the white display state of the liquid crystal display device 100.
  • FIG. 3 is a cross-sectional view showing an alignment state of liquid crystal molecules 31 in a halftone display state of the liquid crystal display device 100.
  • FIG. It is sectional drawing which shows typically the liquid crystal display device 800 of a comparative example, (a) shows the state which is performing black display, (b) shows the state which is performing white display. It is a figure which shows typically a mode that double blur has generate
  • (A) And (b) is a graph which shows the result of having calculated the orientation state of the liquid crystal molecule 31 in a black display state by simulation, and shows the case where the natural chiral pitch p of the liquid crystal layer 30 is 45 ⁇ m and 5 ⁇ m, respectively. ing. When the natural chiral pitch p is changed to 45 ⁇ m, 30 ⁇ m, 15 ⁇ m, 10 ⁇ m, 9 ⁇ m, and 7.5 ⁇ m with the thickness d of the liquid crystal layer 30 being 3 ⁇ m (that is, p / d is 15, 10, 5, 3.3). It is a graph which shows the result of having calculated the response characteristic of a bag by simulation (when changing with 3, 2.5).
  • (A) And (b) is a figure which shows the result of having calculated the orientation state of the liquid crystal molecule 31 at the time of black display by simulation, and shows the case where the dielectric anisotropy (DELTA) epsilon of a liquid crystal material is 15 and 16, respectively. ing. It is a graph which shows contrast ratio about the case where the overcoat layer is not provided, and the case where the overcoat layer is provided. It is a graph which shows the result of having calculated the response characteristic when changing a pixel from a white display state to a black display state by simulation, and the dielectric anisotropy ⁇ of the liquid crystal material is 10, 15, 16, 18, 20, and 25 Is shown.
  • DELTA dielectric anisotropy
  • FIG. 1 is a cross-sectional view schematically showing the liquid crystal display device 100
  • FIG. 2 is a plan view schematically showing the liquid crystal display device 100.
  • the liquid crystal display device 100 includes a liquid crystal display panel 1 and an illumination element 2 as shown in FIG.
  • the liquid crystal display device 100 has a plurality of pixels arranged in a matrix. As will be described later, the liquid crystal display device 100 performs color display in a field sequential manner.
  • the liquid crystal display panel 1 includes a first substrate 10 and a second substrate 20 facing each other, and a liquid crystal layer 30 provided between the first substrate 10 and the second substrate 20.
  • first substrate 10 and the second substrate 20 the first substrate 10 that is relatively located on the back side is referred to as a “back substrate”, and the second substrate that is relatively located on the front side (observer side).
  • the substrate 20 is referred to as a “front substrate”.
  • the back substrate 10 includes a first electrode 11 provided in each of a plurality of pixels, and a second electrode 12 that generates a lateral electric field in the liquid crystal layer 30 together with the first electrode 11.
  • the first electrode 11 is provided on the second electrode 12 with the insulating layer 13 interposed therebetween.
  • the second electrode 12 is provided below the first electrode 11 with the insulating layer 13 interposed therebetween.
  • the first electrode 11 positioned on the relatively upper side is referred to as “upper layer electrode”
  • the second electrode 12 positioned on the lower side is referred to as “lower layer electrode”.
  • the lower layer electrode 12, the insulating layer 13, and the upper layer electrode 11 are supported by an insulating transparent substrate (for example, a glass substrate) 10a.
  • the upper layer electrode 11 includes a plurality of branch portions (comb teeth) 11b extending in a predetermined direction D and two branch portions adjacent to each other among the plurality of branch portions 11b. And at least one slit 11a located between 11b. Since at least one slit 11a extends in the direction D in which the plurality of branch portions 11b extend, the direction D is also referred to as “slit direction” below. Note that the numbers of the slits 11a and the branch portions 11b are not limited to the examples shown in FIGS.
  • the width L of the branch portion 11b may be equal to or greater than the width S of the slit 11a (L ⁇ S), or may be smaller than the width S of the slit 11a (L ⁇ S).
  • the upper electrode 11 is made of a transparent conductive material (for example, ITO).
  • the lower layer electrode 12 does not have a slit. That is, the lower layer electrode 12 is a so-called solid electrode.
  • the lower layer electrode 12 is made of a transparent conductive material (for example, ITO).
  • the material of the insulating layer 13 there are no particular restrictions on the material of the insulating layer 13.
  • a material of the insulating layer 13 for example, an inorganic material such as silicon oxide (SiO 2 ) and silicon nitride (SiN x ) or an organic material such as a photosensitive resin can be used.
  • the front substrate 20 has a third electrode (hereinafter referred to as “counter electrode”) 21 provided to face the upper layer electrode (first electrode) 11 and the lower layer electrode (second electrode) 12.
  • the counter electrode 21 is supported by an insulating transparent substrate (for example, a glass substrate) 20a.
  • the counter electrode 21 generates a vertical electric field in the liquid crystal layer 30 together with the upper layer electrode 11 and the lower layer electrode 12.
  • the counter electrode 21 is made of a transparent conductive material (for example, ITO).
  • a dielectric layer (overcoat layer) 22 is formed on the counter electrode 21 (between the counter electrode 21 and a second horizontal alignment film 24 described later).
  • the overcoat layer 22 is provided to weaken a vertical electric field that is inevitably generated when a horizontal electric field is generated.
  • an inorganic material such as silicon oxide (SiO 2 ) or silicon nitride (SiN x ) or an organic material such as a photosensitive resin can be used.
  • the liquid crystal material contained in the liquid crystal layer 30 has positive dielectric anisotropy. That is, the liquid crystal layer 30 is formed from a positive liquid crystal material. Further, the liquid crystal material forming the liquid crystal layer 30 contains a chiral agent. 1 and 2 show the alignment direction of the liquid crystal molecules 31 of the liquid crystal layer 30. FIG. The alignment direction shown in FIGS. 1 and 2 is the alignment direction in a state where no voltage is applied to the liquid crystal layer 30.
  • the liquid crystal display panel 1 further includes a pair of horizontal alignment films 14 and 24 provided so as to face each other with the liquid crystal layer 30 interposed therebetween.
  • One of the pair of horizontal alignment films 14 and 24 (hereinafter also referred to as “first horizontal alignment film”) 14 is formed on the surface of the back substrate 10 on the liquid crystal layer 30 side.
  • the other of the pair of horizontal alignment films 14 and 24 (hereinafter also referred to as “second horizontal alignment film”) 24 is formed on the surface of the front substrate 20 on the liquid crystal layer 30 side.
  • Each of the first horizontal alignment film 14 and the second horizontal alignment film 24 is subjected to an alignment process, and alignment regulation for aligning the liquid crystal molecules 31 of the liquid crystal layer 30 in a predetermined direction (referred to as a “pretilt direction”).
  • a predetermined direction referred to as a “pretilt direction”.
  • the alignment process for example, a rubbing process or an optical alignment process is performed.
  • the liquid crystal molecules 31 are twisted in a state where no voltage is applied to the liquid crystal layer 30 (a state where no electric field is generated). Is set to take. Specifically, the pretilt direction defined by each of the first horizontal alignment film 14 and the second horizontal alignment film 24 forms an angle of about 45 ° with respect to the slit direction D. Further, the pretilt direction defined by the second horizontal alignment film 24 forms an angle of 90 ° with respect to the pretilt direction defined by the first horizontal alignment film 14. Therefore, in a state where no voltage is applied to the liquid crystal layer 30, the liquid crystal molecules 31 have 90 ° twist alignment.
  • the liquid crystal display panel 1 further includes a pair of polarizing plates 15 and 25 provided to face each other with the liquid crystal layer 30 interposed therebetween.
  • a transmission axis (polarization axis) 15a of one of the pair of polarizing plates 15 and 25 (hereinafter also referred to as “first polarizing plate”) and a transmission axis of the other (hereinafter also referred to as “second polarizing plate”) 25 As shown in FIG. 2, it is substantially orthogonal to the (polarization axis) 25a. That is, the first polarizing plate 15 and the second polarizing plate 25 are arranged in crossed Nicols.
  • the transmission axes 15a and 25a of the first polarizing plate 15 and the second polarizing plate 25 are substantially parallel to or substantially parallel to the pretilt direction defined by the first horizontal alignment film 14 and the second horizontal alignment film 24, respectively. Orthogonal. Accordingly, the transmission axes 15 a and 25 a of the first polarizing plate 15 and the second polarizing plate 25 form an angle of about 45 ° with respect to the slit direction D.
  • the illumination element (sometimes called “backlight”) 2 is arranged on the back side of the liquid crystal display panel 1.
  • the illumination element 2 can switch and irradiate the liquid crystal display panel 1 with a plurality of color lights including red light, green light, and blue light.
  • the edge-light type backlight 2 includes a light source unit 2a and a light guide plate 2b.
  • the light source unit 2a can emit a plurality of color lights including red light, green light, and blue light.
  • the light source unit 2a includes, for example, a red LED, a green LED, and a blue LED as light sources.
  • the light guide plate 2b guides the color light emitted from the light source unit 2a to the liquid crystal display panel 1.
  • the liquid crystal display device 100 performs color display by a field sequential method. Therefore, the liquid crystal display panel 1 does not have a color filter.
  • a horizontal electric field is generated in the liquid crystal layer 30.
  • the “lateral electric field” is an electric field including a component substantially parallel to the substrate surface.
  • the direction of the transverse electric field generated by the upper layer electrode 11 and the lower layer electrode 12 is substantially orthogonal to the slit direction D.
  • the “longitudinal electric field” is an electric field whose direction is substantially parallel to the normal direction of the substrate surface.
  • the liquid crystal display device 100 has a configuration capable of controlling the strength of the horizontal electric field and the vertical electric field for each pixel.
  • the liquid crystal display device 100 has a configuration capable of supplying different voltages for each pixel for each of the upper layer electrode 11 and the lower layer electrode 12.
  • both the upper layer electrode 11 and the lower layer electrode 12 are formed separately for each pixel, and each pixel includes a switching element (for example, a thin film transistor; not shown) electrically connected to the upper layer electrode 11.
  • a switching element for example, a thin film transistor; not shown
  • a predetermined voltage is supplied to the upper layer electrode 11 and the lower layer electrode 12 via corresponding switching elements.
  • the counter electrode 21 is formed as a single conductive film that is continuous over all the pixels. Accordingly, a common potential is applied to the counter electrode 21 in all the pixels.
  • FIG. 3 shows an example of a specific wiring structure on the back substrate 10.
  • each pixel is provided with a first TFT 16 ⁇ / b> A corresponding to the upper layer electrode 11 and a second TFT 16 ⁇ / b> B corresponding to the lower layer electrode 12.
  • the gate electrodes 16g of the first TFT 16A and the second TFT 16B are electrically connected to a gate bus line (scanning wiring) 17.
  • the portion of the gate bus line 17 that overlaps the channel regions of the first TFT 16A and the second TFT 16B functions as the gate electrode 16g.
  • the source electrodes 16s of the first TFT 16A and the second TFT 16B are electrically connected to a source bus line (signal wiring) 18.
  • a portion branched from the source bus line 18 functions as the source electrode 16s.
  • the drain electrode 16d of the first TFT 16A is electrically connected to the upper layer electrode 11.
  • the drain electrode 16d of the second TFT 16B is electrically connected to the lower layer electrode 12.
  • the wiring structure of the back substrate 10 is not limited to that illustrated in FIG.
  • each of the plurality of pixels generates a “black display state” in which black display is performed in a state where a vertical electric field is generated in the liquid crystal layer 30, and a horizontal electric field is generated in the liquid crystal layer 30.
  • a “black display state” in which black display is performed in a state where a vertical electric field is generated in the liquid crystal layer 30, and a horizontal electric field is generated in the liquid crystal layer 30.
  • Switching between the “white display state” in which white display is performed and the “transparent display state” in which the back side (that is, the background) of the liquid crystal display panel 1 can be seen through when no voltage is applied to the liquid crystal layer 30 Can be presented.
  • FIG. 4 (a) and 4 (b) show the alignment state of the liquid crystal molecules 31 in the black display state.
  • a predetermined voltage is applied between the counter electrode 21, the upper layer electrode 11, and the lower layer electrode 12, and a vertical electric field is generated in the liquid crystal layer 30.
  • FIG. 4A the electric lines of force at this time are schematically shown by broken lines.
  • the liquid crystal molecules 31 of the liquid crystal layer 30 are substantially perpendicular to the substrate surfaces (the surfaces of the rear substrate 10 and the front substrate 20) (that is, the liquid crystal molecules as shown in FIGS. 4A and 4B). Oriented (substantially parallel to the layer normal direction of layer 30). Note that the liquid crystal molecules 31 in the immediate vicinity of the first horizontal alignment film 14 and the second horizontal alignment film 24 are strongly affected by the alignment regulating force of the first horizontal alignment film 14 and the second horizontal alignment film 24, so that the substrate surface However, since these liquid crystal molecules 31 are substantially parallel or substantially orthogonal to the transmission axis 15 a of the first polarizing plate 15, they pass through the first polarizing plate 15. Almost no phase difference is given to the light incident on the liquid crystal layer 30, and the contrast ratio is hardly lowered.
  • FIG. 5A and 5B show the alignment state of the liquid crystal molecules 31 in the white display state.
  • a predetermined voltage is applied between the upper layer electrode 11 and the lower layer electrode 12, and a horizontal electric field (fringe field) is generated in the liquid crystal layer 30.
  • a horizontal electric field is generated in the liquid crystal layer 30.
  • FIG. 5A the electric lines of force at this time are schematically shown by broken lines.
  • the liquid crystal molecules 31 of the liquid crystal layer 30 are substantially parallel to the substrate surface (that is, substantially perpendicular to the layer normal direction of the liquid crystal layer 30). ) Orient. More specifically, the liquid crystal molecules 31 in the vicinity of the first horizontal alignment film 14 and the liquid crystal molecules 31 in the vicinity of the second horizontal alignment film 24 are aligned so as to form an angle of about 90 °, and as a result, the liquid crystal layer 30 The liquid crystal molecules 31 in the vicinity of the center in the thickness direction are aligned so as to be substantially orthogonal to the extending direction (slit direction) D of the slit 11 a of the upper electrode 11.
  • the average alignment direction of the liquid crystal molecules 31 in the liquid crystal layer 30 is substantially orthogonal to the slit direction D (that is, approximately 45 with respect to the transmission axes 15a and 25a of the first polarizing plate 15 and the second polarizing plate 25). Make a corner of °).
  • FIGS. 6A and 6B show the alignment state of the liquid crystal molecules 31 in the transparent display state.
  • no voltage is applied to the liquid crystal layer 30, and neither a vertical electric field nor a horizontal electric field is generated in the liquid crystal layer 30.
  • the liquid crystal molecules 31 of the liquid crystal layer 30 are twisted as shown in FIGS. 6 (a) and 6 (b). That is, the liquid crystal molecules 31 are aligned substantially parallel to the substrate surface (that is, substantially perpendicular to the layer normal direction of the liquid crystal layer 30).
  • the liquid crystal molecules 31 in the vicinity of the first horizontal alignment film 14 and the liquid crystal molecules 31 in the vicinity of the second horizontal alignment film 24 are aligned so as to form an angle of about 90 °, and as a result, the liquid crystal layer 30 is centered in the thickness direction.
  • the nearby liquid crystal molecules 31 are aligned so as to be substantially orthogonal to the slit direction D.
  • the average alignment direction of the liquid crystal molecules 31 in the liquid crystal layer 30 is substantially orthogonal to the slit direction D (that is, approximately 45 with respect to the transmission axes 15a and 25a of the first polarizing plate 15 and the second polarizing plate 25). Make a corner of °).
  • Each pixel of the liquid crystal display device 100 has the highest light transmittance in this transparent display state (that is, in any of the black display state and the white display state).
  • each of the plurality of pixels of the liquid crystal display device 100 has a “halftone display” indicating luminance corresponding to a halftone as shown in FIG. 7 in addition to the above-described black display state, white display state, and transparent display state.
  • a “state” may also be exhibited.
  • a desired transmittance can be realized by adjusting the strength of the lateral electric field (fringe field) generated in the liquid crystal layer 30.
  • the pixel in the display area where the information is to be displayed has a black display state, a white display. A state or a halftone display state is exhibited, and pixels in other portions exhibit a transparent display state.
  • a typical driving circuit for a liquid crystal display device includes an 8-bit driver IC and generates an output voltage for 256 gradations (0 to 255 gradations).
  • 0 gradation is assigned to a black display state
  • 1 to 254 gradations are assigned to a halftone display state
  • 255 gradations are assigned to a white display state.
  • 0 gradation is assigned to the black display state
  • 1 to 253 gradation is assigned to the halftone display state
  • 254 gradations are assigned to the white display state
  • 255 gradations are assigned to the transparent display state.
  • the transparent display state does not necessarily have to be assigned to 255 gradations, and any gradation may be assigned to the transparent display state.
  • a specific gradation may be assigned to the transparent display state.
  • the liquid crystal display device 100 since the liquid crystal display device 100 according to the present embodiment performs color display by the field sequential method, the liquid crystal display panel 1 does not need a color filter. Therefore, the light use efficiency is improved.
  • a vertical electric field is generated in the liquid crystal layer 30 in the black display state, and a horizontal electric field is generated in the liquid crystal layer 30 in the white display state.
  • a rise transition from the black display state to the white display state
  • the dielectric torque due to voltage application can be applied to the liquid crystal molecules 31. Therefore, excellent response characteristics can be obtained.
  • each pixel can exhibit not only a black display state and a white display state but also a transparent display state in which no voltage is applied to the liquid crystal layer 30.
  • a transparent display state By performing the background display in this transparent display state, it is possible to prevent the occurrence of the problem that the background is blurred (recognized twice). The reason why this problem (double blur) occurs in the liquid crystal display devices of Patent Documents 1 to 3 will be described below with reference to a liquid crystal display device of a comparative example.
  • FIGS. 8A and 8B show a state in which black display and a white display are performed in the liquid crystal display device 800 of the comparative example, respectively.
  • the liquid crystal display device 800 of the comparative example has the same configuration as the liquid crystal display device shown in FIGS.
  • the liquid crystal display device 800 includes an array substrate 810 and a counter substrate 820, and a liquid crystal layer 830 provided therebetween.
  • the array substrate 810 includes a glass substrate 810a, a lower layer electrode 812, an insulating layer 813, and a pair of comb electrodes (upper layer electrodes) 817 and 818 stacked in this order on the glass substrate 810a.
  • the counter substrate 820 includes a glass substrate 820a and a counter electrode 821 formed on the glass substrate 820a.
  • the liquid crystal layer 830 includes liquid crystal molecules 831 having positive dielectric anisotropy.
  • the liquid crystal molecules 831 of the liquid crystal layer 830 are in a vertical alignment state when no voltage is applied.
  • liquid crystal display device 800 of the comparative example when black display is performed, a predetermined voltage is applied between the counter electrode 821, the lower layer electrode 812, and the upper layer electrode (a pair of comb electrodes) 817 and 818 (for example, A potential of 7 V is applied to the counter electrode 821 and a potential of 14 V is applied to the lower layer electrode 812 and the upper layer electrodes 817 and 818), and a vertical electric field is generated in the liquid crystal layer 830.
  • the liquid crystal molecules 831 are aligned substantially perpendicular to the substrate surface as shown in FIG.
  • liquid crystal display device 800 of the comparative example when white display is performed, a predetermined voltage is applied between the pair of comb electrodes 817 and 818 (for example, a potential of 0 V is applied to one comb electrode 817, A potential of 14V is applied to the other comb electrode 818), and a horizontal electric field is generated in the liquid crystal layer 830. Thereby, as shown in FIG. 8B, the liquid crystal molecules 831 are aligned with respect to the normal direction of the substrate surface.
  • the liquid crystal display device 800 of the comparative example when performing a see-through display, that is, a display in which the background can be seen through, white display in which the light transmittance of the pixel is high. Will be done in the state.
  • the state for performing white display is a state in which the liquid crystal molecules 830 are aligned by applying a voltage to the liquid crystal layer 830, the refractive index is distributed within the pixel. Therefore, the light L from the back side is scattered due to this refractive index distribution (that is, the traveling direction of the light L changes; see FIG. 8B), and the background is blurred.
  • the background is visually recognized by the observer V who observes the background BG via the see-through display STDP.
  • the liquid crystal display device of Patent Document 4 discloses a configuration in which liquid crystal molecules are twisted in a state where a horizontal electric field is generated in the liquid crystal layer, and this configuration further improves response characteristics. There is room for it. However, in that case, since the response characteristic and the contrast ratio are in a trade-off relationship, it is difficult to achieve a further improvement in the response characteristic and a high contrast ratio.
  • the liquid crystal display device 100 of the present embodiment is excellent in both response characteristics and contrast ratio by having the configuration described below. A more specific description will be given below.
  • the inventor of the present application studied to further improve the response characteristics by reducing the ratio p / d of the natural chiral pitch p of the liquid crystal layer 30 to the thickness d of the liquid crystal layer 30. As a result, it was found that when p / d is reduced, the response characteristic is improved, but the contrast ratio is lowered.
  • 10A and 10B show the cases where the natural chiral pitch p of the liquid crystal layer 30 is 45 ⁇ m and 5 ⁇ m (in each case, the dielectric anisotropy ⁇ of the liquid crystal material is 4.9).
  • the result of having calculated the orientation state of the liquid crystal molecule 31 in the black display state (that is, the state in which the vertical electric field is generated in the liquid crystal layer 30) by simulation is shown.
  • the horizontal axis indicates the position of the liquid crystal molecule 31 in the thickness direction of the liquid crystal layer 30, and the vertical axis indicates the magnitude of the azimuth angle and polar angle in the alignment direction of the liquid crystal molecule 31. It is the graph which took (angle).
  • the position of 0 ⁇ m on the horizontal axis corresponds to the interface between the back substrate 10 and the liquid crystal layer 30, and the position of 3.2 ⁇ m corresponds to the interface between the front substrate 20 and the liquid crystal layer 30 (that is, the thickness of the liquid crystal layer 30). Is 3.2 ⁇ m).
  • the angle in the 3 o'clock direction when the display surface is regarded as a clock face is 0 °, and the counterclockwise direction is the positive direction.
  • the orientation angle of the liquid crystal molecules 31 is 45 °.
  • the liquid crystal molecules 31 are aligned substantially parallel to the absorption axis (substantially orthogonal to the transmission axis 15a) of the polarizing plate 15 on the back substrate 10 side. This is because the liquid crystal molecules 31 are strongly subjected to the alignment regulating force of the first horizontal alignment film 14.
  • the azimuth angle of the alignment direction of the liquid crystal molecules 31 is ⁇ 45 °, and the liquid crystal molecules 31 are the polarizing plate 25 on the front substrate 20 side. Oriented substantially parallel to the absorption axis (substantially orthogonal to the transmission axis 25a). This is because the liquid crystal molecules 31 are strongly subjected to the alignment regulating force of the second horizontal alignment film 24.
  • the azimuth angle in the alignment direction of the liquid crystal molecules 31 is 0 °, and the liquid crystal molecules 31 are approximately the absorption axes of the polarizing plates 15 and 25. It is oriented in a direction that forms an angle of 45 °.
  • the alignment direction of the liquid crystal molecules 31 is increased.
  • the polar angle is 90 °, and the liquid crystal molecules 31 are aligned substantially perpendicular to the substrate surfaces of the back substrate 10 and the front substrate 20. This is because the liquid crystal molecules 31 are subjected to the alignment regulating force by the vertical electric field.
  • the polar angle of the alignment direction of the liquid crystal molecules 31 is substantially 0 ° at the interface between the back substrate 10 and the liquid crystal layer 30 and the interface between the front substrate 20 and the liquid crystal layer 30. This is because the liquid crystal molecules 31 are strongly subjected to the alignment regulating force of the first horizontal alignment film 14 and the second horizontal alignment film 24.
  • the azimuth angle starts from 45 ° or ⁇ 45 °. Start to change. That is, in the region where the polar angle of the alignment direction of the liquid crystal molecules 31 is small (near the interface between the back substrate 10 and the liquid crystal layer 30 and near the interface between the front substrate 20 and the liquid crystal layer 30), the liquid crystal molecules 31 Oriented substantially parallel to the absorption axes of 15 and 25. Therefore, light leakage due to the liquid crystal molecules 31 in the vicinity of the back substrate 10 and the front substrate 20 does not occur, and good (that is, sufficiently low brightness) black display can be performed.
  • the azimuth is 45 ° before the polar angle in the alignment direction of the liquid crystal molecules 30 becomes sufficiently large as shown in FIG. It starts to change from -45 °. That is, in the region where the polar angle of the alignment direction of the liquid crystal molecules 31 is small (near the interface between the back substrate 10 and the liquid crystal layer 30 and near the interface between the front substrate 20 and the liquid crystal layer 30), the liquid crystal molecules 31 are polarized.
  • the plates 15 and 25 are oriented in a direction shifted from the absorption axis.
  • the ratio p / d of the natural chiral pitch p of the liquid crystal layer 30 to the thickness d of the liquid crystal layer 30 is 1 or more and 3 or less. That is, the thickness d of the liquid crystal layer 30 and the natural chiral pitch p of the liquid crystal layer 30 satisfy the relationship 1 ⁇ p / d ⁇ 3.
  • p / d is preferably 1 or more.
  • the dielectric anisotropy ⁇ (@ 20 ° C., 1 kHz) of the liquid crystal material included in the liquid crystal layer 30 is 16 or more.
  • the dielectric anisotropy ⁇ increases, the dielectric torque due to the electric field acting on the liquid crystal molecules 31 increases. That is, the alignment regulating force by the electric field is strengthened.
  • the dielectric anisotropy ⁇ of the liquid crystal material is 16 or more, in the black display state, in the vicinity of the back substrate 10 and the counter substrate 20 (however, the first horizontal alignment film 14 and the second horizontal alignment film).
  • the polar angle in the alignment direction of the liquid crystal molecules 31 (except in the vicinity of the alignment film 24) can be sufficiently increased. Therefore, when the dielectric anisotropy ⁇ of the liquid crystal material is 16 or more, the occurrence of light leakage at the time of black display can be suppressed, and a high contrast ratio can be realized. Further, since the dielectric anisotropy ⁇ of the liquid crystal material is 16 or more, an effect of further improving the response speed when the pixel is changed from the black display state to the white display state can be obtained.
  • the dielectric anisotropy ⁇ of the liquid crystal material is preferably 25 or less.
  • the thickness d of the liquid crystal layer 30 is not limited, but the response speed improves as the thickness d of the liquid crystal layer 30 decreases. From the viewpoint of response speed, the thickness d of the liquid crystal layer 30 is preferably 4.0 ⁇ m or less. If the thickness d of the liquid crystal layer 30 is too small, the yield of the liquid crystal display panel 1 may be reduced. From the viewpoint of yield, the thickness d of the liquid crystal layer 30 is preferably 2.5 ⁇ m or more.
  • a liquid crystal material having a dielectric anisotropy ⁇ of 16 or more is used.
  • a cyclohexanedimethyl derivative (represented by the following formula (1)) disclosed in JP-A-7-126205 is added to a nematic liquid crystal material.
  • the liquid crystal material can be used.
  • R 1 represents an alkyl group having 1 to 12 carbon atoms
  • X 1 and X 3 represent a hydrogen atom or a halogen atom
  • X2 represents a halogen atom or a cyano group.
  • the entire disclosure of Japanese Patent Laid-Open No. 7-126205 is incorporated herein by reference.
  • materials other than the liquid crystal materials illustrated here may be used.
  • FIG. 12 is a cross-sectional view schematically showing the liquid crystal display device 200.
  • the liquid crystal display device 200 will be described focusing on differences from the liquid crystal display device 100 according to the first embodiment.
  • the liquid crystal display device 200 is implemented in that the front substrate (second substrate) 20 does not have a dielectric layer (overcoat layer) between the counter electrode (third electrode) 21 and the second horizontal alignment film 24. This is different from the liquid crystal display device 100 of the first embodiment. That is, the liquid crystal display device 200 has a configuration in which the overcoat layer 22 in the liquid crystal display device 100 of Embodiment 1 is omitted.
  • the ratio p / d of the natural chiral pitch p of the liquid crystal layer 30 to the thickness d of the liquid crystal layer 30 is 1 or more and 3 or less. That is, the thickness d of the liquid crystal layer 30 and the natural chiral pitch p of the liquid crystal layer 30 satisfy the relationship of 1 ⁇ p / d ⁇ 3.
  • the response speed when the pixel is changed from the black display state to the white display state (that is, when the voltage applied to the liquid crystal layer 30 is switched from the vertical electric field to the horizontal electric field) is sufficiently high. Can improve.
  • FIG. 13 when the natural chiral pitch p is changed to 45 ⁇ m, 15 ⁇ m, and 7.5 ⁇ m with the thickness d of the liquid crystal layer 30 being 3 ⁇ m (that is, p / d is changed to 15, 5, and 2.5).
  • Response characteristics (relationship between time and normalized luminance) by simulation.
  • FIG. 13 also shows response characteristics when the natural chiral pitch p is 45 ⁇ m and an overcoat layer is provided.
  • the simulation conditions are as shown in Table 2 below.
  • p / d is preferably 1 or more.
  • the dielectric anisotropy ⁇ of the liquid crystal material included in the liquid crystal layer 30 is 16 or more, the liquid crystal molecules 31 in the vicinity of the back substrate 10 and the counter substrate 20 in the black display state.
  • the polar angle in the orientation direction can be made sufficiently large.
  • 14A and 14B show a black display state (that is, the natural chiral pitch p of the liquid crystal layer 30 is 5 ⁇ m in each case) when the dielectric anisotropy ⁇ of the liquid crystal material is 5 and 18.
  • the result of having calculated the orientation state of the liquid crystal molecule 31 in the state where the vertical electric field is generated in the liquid crystal layer 30 by simulation is shown.
  • the horizontal axis indicates the position of the liquid crystal molecules 31 in the thickness direction of the liquid crystal layer 30, and the vertical axis indicates the magnitudes of the azimuth and polar angles in the alignment direction of the liquid crystal molecules 31. It is the graph which took (angle).
  • the position of 0 ⁇ m on the horizontal axis corresponds to the interface between the back substrate 10 and the liquid crystal layer 30, and the position of 3.2 ⁇ m corresponds to the interface between the front substrate 20 and the liquid crystal layer 30 (that is, the thickness of the liquid crystal layer 30).
  • d is 3.2 ⁇ m).
  • the angle in the 3 o'clock direction when the display surface is regarded as a clock face is 0 °, and the counterclockwise direction is the positive direction.
  • the azimuth angle is changed from 45 ° or ⁇ 45 ° before the polar angle in the alignment direction of the liquid crystal molecules 31 becomes sufficiently large. It starts to change. That is, in the region where the polar angle of the alignment direction of the liquid crystal molecules 31 is small (near the interface between the back substrate 10 and the liquid crystal layer 30 and near the interface between the front substrate 20 and the liquid crystal layer 30), the liquid crystal molecules 31 are polarized. The plates 15 and 25 are oriented in a direction shifted from the absorption axis. For this reason, light leaks due to the liquid crystal molecules 31 in the vicinity of the rear substrate 10 and the front substrate 20, and the luminance in the black display state is increased. Accordingly, the contrast ratio is lowered.
  • the azimuth is 45 ° after the polar angle in the alignment direction of the liquid crystal molecules 31 becomes sufficiently large. It begins to change from -45 °. That is, in the region where the polar angle of the alignment direction of the liquid crystal molecules 31 is small (near the interface between the back substrate 10 and the liquid crystal layer 30 and near the interface between the front substrate 20 and the liquid crystal layer 30), the liquid crystal molecules 31 Oriented substantially parallel to the absorption axes of 15 and 25. Therefore, light leakage by the liquid crystal molecules 31 in the vicinity of the back substrate 810 and the front substrate 20 does not occur, and good (that is, luminance is sufficiently low) black display can be performed.
  • FIGS. 15A and 15B show the results of calculating the alignment state of the liquid crystal molecules 31 during black display by simulation for the cases where the dielectric anisotropy ⁇ of the liquid crystal material is 15 and 16.
  • the dielectric anisotropy ⁇ of the liquid crystal material is 16 or more, the occurrence of disclination is suppressed, which also contributes to the realization of a high contrast ratio.
  • the dielectric anisotropy ⁇ of the liquid crystal material is preferably 25 or less.
  • the front substrate 20 does not have an overcoat layer between the counter electrode 21 and the second horizontal alignment film 24.
  • the overcoat layer 22 is provided as in the liquid crystal display device 100 of Embodiment 1, the vertical electric field that is inevitably generated when the horizontal electric field is generated can be weakened. Can be strengthened.
  • the overcoat layer 22 is provided, the action of the vertical electric field is weakened. Therefore, the vertical electric field cannot be sufficiently applied to the liquid crystal layer 30 during black display, and the luminance in the black display state cannot be sufficiently lowered.
  • no overcoat layer is provided between the counter electrode 21 and the second horizontal alignment film 24, a vertical electric field is sufficiently applied to the liquid crystal layer 30 during black display. Therefore, the contrast ratio can be further improved.
  • FIG. 16 shows contrast ratios when the overcoat layer is not provided and when the overcoat layer is provided.
  • FIG. 16 is a graph in which the horizontal axis represents the natural chiral pitch p of the liquid crystal layer 30 and the vertical axis represents the contrast ratio.
  • the thickness d of the liquid crystal layer 30 is 3.2 ⁇ m.
  • FIG. 16 shows that the contrast ratio is remarkably increased by omitting the overcoat layer.
  • FIG. 17 shows the result of calculating the response characteristics (relationship between time and normalized luminance) when the pixel is changed from the white display state to the black display state by simulation.
  • FIG. 17 shows the case where the dielectric anisotropy ⁇ of the liquid crystal material is 10, 15, 16, 18, 20, and 25.
  • the simulation conditions are as shown in Table 3 below.
  • the overcoat layer by omitting the overcoat layer, it is possible to further improve the contrast ratio and to improve the response characteristics when the pixel is changed from the white display state to the black display state.
  • an overcoat layer if an overcoat layer is provided, there is a possibility that image sticking due to the accumulation of electric charge in the overcoat layer may occur, but the occurrence of such image burn-in can be prevented by omitting the overcoat layer. This improves reliability.
  • the overcoat layer is omitted, the pixel is changed from the black display state to the white display state. Since the response characteristics at the time of transition are too low, the overcoat layer could not be omitted.
  • the overcoat layer is omitted by adopting a configuration in which the natural chiral pitch p of the liquid crystal layer 30 is small (specifically, a configuration in which p / d is 3 or less) as in the present embodiment. And the effects described above can be obtained.
  • the thickness d of the liquid crystal layer 30 is not limited, but the response speed improves as the thickness d of the liquid crystal layer 30 decreases. From the viewpoint of response speed, the thickness d of the liquid crystal layer 30 is preferably 4.0 ⁇ m or less. If the thickness d of the liquid crystal layer 30 is too small, the yield of the liquid crystal display panel 1 may be reduced. From the viewpoint of yield, the thickness d of the liquid crystal layer 30 is preferably 2.5 ⁇ m or more.
  • a see-through display that performs color display by a field sequential method is exemplified, but the embodiment of the present invention is not necessarily limited to this.
  • Embodiments of the present invention can be widely used in an on / on mode liquid crystal display device in which liquid crystal molecules can have twist alignment.
  • the liquid crystal display device according to the embodiment of the present invention is suitably used as a see-through display.
  • SYMBOLS 1 Liquid crystal display panel 2 Illumination element 2a Light source unit 2b
  • Light guide plate 10 1st board

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

This liquid crystal display device (100) is provided with a liquid crystal display panel (1) that comprises a first substrate (10), a second substrate (20) and a liquid crystal layer (30). The first substrate comprises a first electrode (11), which is provided in each pixel, and a second electrode (12) that generates, together with the first electrode, a transverse electric field in the liquid crystal layer. The second substrate comprises a third electrode (21) which generates, together with the first electrode and the second electrode, a vertical electric field in the liquid crystal layer. In a state where a transverse electric field is generated in the liquid crystal layer, liquid crystal molecules (31) in the liquid crystal layer are twist-aligned. The thickness d of the liquid crystal layer and the natural chiral pitch p of the liquid crystal layer satisfy the relational expression 1 ≤ p/d ≤ 3. The dielectric anisotropy ∆ε of a liquid crystal material contained in the liquid crystal layer is from 16 to 25 (inclusive).

Description

液晶表示装置Liquid crystal display
 本発明は、液晶表示装置に関する。 The present invention relates to a liquid crystal display device.
 近年、インフォーメーションディスプレイ用やデジタルサイネージ用の表示装置として、シースルーディスプレイが注目を集めている。シースルーディスプレイでは、背景(表示パネルの背面側)が透けて見えるので、表示パネルに表示される情報と、背景とを重ね合せた表示が可能である。そのため、シースルーディスプレイは、訴求効果およびアイキャッチ効果に優れる。また、シースルーディスプレイを、ショーケースやショーウィンドウに用いることも提案されている。 In recent years, see-through displays have attracted attention as display devices for information displays and digital signage. In the see-through display, the background (the back side of the display panel) can be seen through, so that the information displayed on the display panel and the background can be superimposed. Therefore, the see-through display is excellent in appealing effect and eye catching effect. It has also been proposed to use a see-through display for a showcase or a show window.
 シースルーディスプレイとして液晶表示装置を用いる場合、その光利用効率が低いことがネックとなる。液晶表示装置の光利用効率が低いのは、一般的な液晶表示装置に設けられるカラーフィルタや偏光板に起因している。カラーフィルタおよび偏光板は、特定の波長域の光や、特定の偏光方向の光を吸収する。 When a liquid crystal display device is used as a see-through display, its light utilization efficiency is low. The low light use efficiency of the liquid crystal display device is caused by a color filter or a polarizing plate provided in a general liquid crystal display device. The color filter and the polarizing plate absorb light in a specific wavelength range and light in a specific polarization direction.
 そこで、フィールドシーケンシャル方式の液晶表示装置を用いることが考えられる。フィールドシーケンシャル方式では、照明素子から液晶表示パネルに照射される光の色が時分割で切り替えられることによってカラー表示が行われる。そのため、カラーフィルタが不要となり、光利用効率が向上する。ただし、フィールドシーケンシャル方式では、液晶表示装置に高速応答性が要求される。 Therefore, it is conceivable to use a field sequential type liquid crystal display device. In the field sequential method, color display is performed by switching the color of light emitted from the illumination element to the liquid crystal display panel in a time-sharing manner. This eliminates the need for a color filter and improves the light utilization efficiency. However, in the field sequential method, high-speed response is required for the liquid crystal display device.
 特許文献1および2には、液晶層に縦電界および横電界を切り替えて生成し得る電極構造が設けられることによって応答特性が向上した液晶表示装置が開示されている。特許文献1および2に開示されている液晶表示装置では、黒表示状態から白表示状態への遷移(立ち上がり)、および、白表示状態から黒表示状態への遷移(立ち下がり)の一方においては、液晶層に縦電界が生成され、他方においては、液晶層に横電界(フリンジ電界)が生成される。そのため、立ち上がりおよび立ち下がりの両方において、電圧印加による誘電的トルクが液晶分子に作用するので、優れた応答特性が得られる。 Patent Documents 1 and 2 disclose liquid crystal display devices having improved response characteristics by providing an electrode structure that can be generated by switching a vertical electric field and a horizontal electric field in a liquid crystal layer. In the liquid crystal display devices disclosed in Patent Documents 1 and 2, in one of the transition from the black display state to the white display state (rise) and the transition from the white display state to the black display state (fall), A vertical electric field is generated in the liquid crystal layer, and on the other hand, a horizontal electric field (fringe field) is generated in the liquid crystal layer. Therefore, the dielectric torque due to voltage application acts on the liquid crystal molecules both at the rising edge and the falling edge, so that excellent response characteristics can be obtained.
 また、特許文献3にも、立ち上がりおよび立ち下がりの両方において電界による配向規制力を液晶分子に作用させることによって高速応答性を実現させた液晶表示装置が提案されている。本願明細書では、特許文献1、2および3に開示されているような、液晶層に縦電界および横電界を切り替えて生成し得る電極構造によって実現される表示モードを、「オン・オンモード」と呼ぶ。 Also, Patent Document 3 proposes a liquid crystal display device that realizes high-speed response by applying an alignment regulating force due to an electric field to liquid crystal molecules at both rising and falling. In the present specification, a display mode realized by an electrode structure that can be generated by switching a vertical electric field and a horizontal electric field in a liquid crystal layer as disclosed in Patent Documents 1, 2, and 3, is referred to as an “on / on mode”. Call it.
 しかしながら、本願出願人の検討によれば、オン・オンモードの液晶表示装置をシースルーディスプレイに用いると、背景がぼける(二重に視認される)という問題が発生し、表示品位が低下してしまうことがわかった。 However, according to the examination by the applicant of the present application, when an on / on mode liquid crystal display device is used for a see-through display, a problem of blurred background (double visibility) occurs and display quality deteriorates. I understood it.
 そこで、本願出願人は、特許文献4に、このような問題の発生を防止できる液晶表示装置を提案している。特許文献4に開示されている液晶表示装置の各画素は、液晶層に縦電界が生成された状態で黒表示が行われる黒表示状態と、液晶層に横電界が生成された状態で白表示が行われる白表示状態とを切り替えて呈することができる。また、各画素は、液晶層に電圧が印加されていない状態で液晶表示パネルの背面側が透けて見える透明表示状態を呈することもでき、そのことにより、背景がぼける(二重に視認される)という問題の発生が防止される。 Therefore, the present applicant has proposed a liquid crystal display device capable of preventing the occurrence of such a problem in Patent Document 4. Each pixel of the liquid crystal display device disclosed in Patent Document 4 has a black display state in which black display is performed in a state in which a vertical electric field is generated in the liquid crystal layer, and a white display in a state in which a horizontal electric field is generated in the liquid crystal layer. It is possible to switch and present the white display state in which is performed. Each pixel can also exhibit a transparent display state in which the back side of the liquid crystal display panel can be seen through when no voltage is applied to the liquid crystal layer, thereby blurring the background (recognized twice). The occurrence of the problem is prevented.
特表2006-523850号公報JP 2006-523850 A 特開2002-365657号公報JP 2002-365657 A 国際公開第2013/001979号International Publication No. 2013/001979 国際公開第2014/136586号International Publication No. 2014/136586
 特許文献4には、液晶層に横電界が生成された状態(白表示状態)において、液晶分子がホモジニアス配向をとる構成とツイスト配向をとる構成とが開示されている。本願発明者の検討によれば、後者の構成において、後に詳述するように、さらに応答特性を向上できる余地があるものの、その場合、応答特性とコントラスト比とがトレードオフの関係になるので、応答特性のいっそうの向上と高いコントラスト比との両立が難しいことがわかった。 Patent Document 4 discloses a configuration in which liquid crystal molecules have homogeneous alignment and a configuration in which twist alignment is performed in a state where a horizontal electric field is generated in the liquid crystal layer (white display state). According to the inventor's study, in the latter configuration, as will be described in detail later, there is room for further improvement in response characteristics, but in that case, since the response characteristics and the contrast ratio are in a trade-off relationship, It was found that it is difficult to achieve both a further improvement in response characteristics and a high contrast ratio.
 本発明は、上記問題に鑑みてなされたものであり、その目的は、液晶分子がツイスト配向をとり得るオン・オンモードの液晶表示装置において、優れた応答特性と高いコントラスト比とを両立することにある。 The present invention has been made in view of the above problems, and an object thereof is to achieve both excellent response characteristics and a high contrast ratio in an on / on mode liquid crystal display device in which liquid crystal molecules can take twist alignment. It is in.
 本発明の実施形態による液晶表示装置は、互いに対向する第1基板および第2基板と、前記第1基板および前記第2基板の間に設けられた液晶層とを有する液晶表示パネルを備え、マトリクス状に配列された複数の画素を有する液晶表示装置であって、前記第1基板は、前記複数の画素のそれぞれに設けられた第1電極と、前記第1電極とともに前記液晶層に横電界を生成する第2電極とを有し、前記第2基板は、前記第1電極および前記第2電極に対向するように設けられ、前記第1電極および前記第2電極とともに前記液晶層に縦電界を生成する第3電極を有し、前記液晶層に横電界が生成された状態において、前記液晶層の液晶分子は、ツイスト配向をとり、前記液晶層の厚さdと、前記液晶層の自然カイラルピッチpとが、1≦p/d≦3の関係を満足し、前記液晶層に含まれる液晶材料の誘電異方性Δεは、16以上25以下である。 A liquid crystal display device according to an embodiment of the present invention includes a liquid crystal display panel having a first substrate and a second substrate facing each other, and a liquid crystal layer provided between the first substrate and the second substrate, and a matrix. A liquid crystal display device having a plurality of pixels arranged in a shape, wherein the first substrate has a first electrode provided in each of the plurality of pixels, and a horizontal electric field applied to the liquid crystal layer together with the first electrode. And the second substrate is provided so as to face the first electrode and the second electrode, and applies a vertical electric field to the liquid crystal layer together with the first electrode and the second electrode. In a state where a third electric field is generated and a lateral electric field is generated in the liquid crystal layer, the liquid crystal molecules of the liquid crystal layer have a twist alignment, and the thickness d of the liquid crystal layer and the natural chirality of the liquid crystal layer The pitch p is 1 ≦ p Satisfy the relation d ≦ 3, dielectric anisotropy Δε of the liquid crystal material included in the liquid crystal layer is 16 to 25.
 ある実施形態において、前記液晶層の厚さdは、2.5μm以上4.0μm以下である。 In one embodiment, the thickness d of the liquid crystal layer is 2.5 μm or more and 4.0 μm or less.
 ある実施形態において、前記第1基板は、前記液晶層側の表面に第1配向膜を有し、前記第2基板は、前記液晶層側の表面に第2配向膜を有し、前記第2基板は、前記第3電極と前記第2配向膜との間に誘電体層を有する。 In one embodiment, the first substrate has a first alignment film on the surface on the liquid crystal layer side, the second substrate has a second alignment film on the surface on the liquid crystal layer side, and the second substrate The substrate has a dielectric layer between the third electrode and the second alignment film.
 ある実施形態において、前記第1基板は、前記液晶層側の表面に第1配向膜を有し、前記第2基板は、前記液晶層側の表面に第2配向膜を有し、前記第2基板は、前記第3電極と前記第2配向膜との間に誘電体層を有しない。 In one embodiment, the first substrate has a first alignment film on the surface on the liquid crystal layer side, the second substrate has a second alignment film on the surface on the liquid crystal layer side, and the second substrate The substrate does not have a dielectric layer between the third electrode and the second alignment film.
 ある実施形態において、前記複数の画素のそれぞれは、前記液晶層に縦電界が生成された状態で黒表示が行われる黒表示状態と、前記液晶層に横電界が生成された状態で白表示が行われる白表示状態と、前記液晶層に電圧が印加されていない状態で前記液晶表示パネルの背面側が透けて見える透明表示状態と、を切り替えて呈することができる。 In one embodiment, each of the plurality of pixels has a black display state in which black display is performed in a state in which a vertical electric field is generated in the liquid crystal layer and a white display in a state in which a horizontal electric field is generated in the liquid crystal layer. A white display state to be performed and a transparent display state in which the back side of the liquid crystal display panel can be seen through when no voltage is applied to the liquid crystal layer can be switched and presented.
 ある実施形態において、前記第1電極は、絶縁層を介して前記第2電極上に位置するように設けられている。 In one embodiment, the first electrode is provided on the second electrode through an insulating layer.
 ある実施形態において、前記第1電極は、所定の方向に延びる少なくとも1つのスリットを有し、前記液晶層に横電界が生成された状態において、前記液晶層の厚さ方向における中央付近の液晶分子は、前記所定の方向に略平行であるか、または、略直交するように配向する。 In one embodiment, the first electrode has at least one slit extending in a predetermined direction, and a liquid crystal molecule near the center in the thickness direction of the liquid crystal layer in a state where a lateral electric field is generated in the liquid crystal layer. Are oriented so as to be substantially parallel to or substantially orthogonal to the predetermined direction.
 ある実施形態において、本発明による液晶表示装置は、前記液晶表示パネルに、赤色光、緑色光および青色光を含む複数の色光を切り替えて照射し得る照明素子をさらに備える。 In one embodiment, the liquid crystal display device according to the present invention further includes an illumination element capable of switching and irradiating the liquid crystal display panel with a plurality of color lights including red light, green light, and blue light.
 ある実施形態において、本発明による液晶表示装置は、フィールドシーケンシャル方式でカラー表示を行う。 In one embodiment, the liquid crystal display device according to the present invention performs color display in a field sequential manner.
 ある実施形態において、前記液晶表示パネルは、カラーフィルタを有していない。 In one embodiment, the liquid crystal display panel does not have a color filter.
 本発明の実施形態によると、液晶分子がツイスト配向をとり得るオン・オンモードの液晶表示装置において、優れた応答特性と高いコントラスト比とを両立することができる。 According to the embodiment of the present invention, it is possible to achieve both excellent response characteristics and a high contrast ratio in an on / on mode liquid crystal display device in which liquid crystal molecules can be twisted.
本発明の実施形態による液晶表示装置100を模式的に示す断面図である。It is sectional drawing which shows typically the liquid crystal display device 100 by embodiment of this invention. 本発明の実施形態による液晶表示装置100を模式的に示す平面図である。1 is a plan view schematically showing a liquid crystal display device 100 according to an embodiment of the present invention. 液晶表示装置100の背面基板10における具体的な配線構造の一例を示す平面図である。4 is a plan view showing an example of a specific wiring structure on the back substrate 10 of the liquid crystal display device 100. FIG. (a)および(b)は、液晶表示装置100の黒表示状態における液晶分子31の配向状態を示す断面図および平面図である。(A) And (b) is sectional drawing and the top view which show the orientation state of the liquid crystal molecule 31 in the black display state of the liquid crystal display device 100. FIG. (a)および(b)は、液晶表示装置100の白表示状態における液晶分子31の配向状態を示す断面図および平面図である。(A) And (b) is sectional drawing and the top view which show the orientation state of the liquid crystal molecule 31 in the white display state of the liquid crystal display device 100. FIG. (a)および(b)は、液晶表示装置100の透明表示状態における液晶分子31の配向状態を示す断面図および平面図である。(A) And (b) is sectional drawing and the top view which show the orientation state of the liquid crystal molecule 31 in the transparent display state of the liquid crystal display device 100. FIG. 液晶表示装置100の中間調表示状態における液晶分子31の配向状態を示す断面図である。3 is a cross-sectional view showing an alignment state of liquid crystal molecules 31 in a halftone display state of the liquid crystal display device 100. FIG. 比較例の液晶表示装置800を模式的に示す断面図であり、(a)は黒表示を行っている状態を示し、(b)は白表示を行っている状態を示す。It is sectional drawing which shows typically the liquid crystal display device 800 of a comparative example, (a) shows the state which is performing black display, (b) shows the state which is performing white display. 二重ぼけが発生している様子を模式的に示す図である。It is a figure which shows typically a mode that double blur has generate | occur | produced. (a)および(b)は、黒表示状態における液晶分子31の配向状態をシミュレーションによって計算した結果を示すグラフであり、それぞれ液晶層30の自然カイラルピッチpが45μmの場合および5μmの場合を示している。(A) And (b) is a graph which shows the result of having calculated the orientation state of the liquid crystal molecule 31 in a black display state by simulation, and shows the case where the natural chiral pitch p of the liquid crystal layer 30 is 45 μm and 5 μm, respectively. ing. 液晶層30の厚さdを3μmのまま、自然カイラルピッチpを45μm、30μm、15μm、10μm、9μm、7.5μmと変化させたとき(つまりp/dを15、10、5、3.3、3、2.5と変化させたとき) の応答特性をシミュレーションにより計算した結果を示すグラフである。When the natural chiral pitch p is changed to 45 μm, 30 μm, 15 μm, 10 μm, 9 μm, and 7.5 μm with the thickness d of the liquid crystal layer 30 being 3 μm (that is, p / d is 15, 10, 5, 3.3). It is a graph which shows the result of having calculated the response characteristic of a bag by simulation (when changing with 3, 2.5). 本発明の実施形態による液晶表示装置200を模式的に示す断面図である。It is sectional drawing which shows typically the liquid crystal display device 200 by embodiment of this invention. 液晶層30の厚さdを3μmのまま、自然カイラルピッチpを45μm、15μm、7.5μmと変化させたとき(つまりp/dを15、5、2.5と変化させたとき)の応答特性をシミュレーションにより計算した結果を示すグラフである。Response when the natural chiral pitch p is changed to 45 μm, 15 μm, and 7.5 μm with the thickness d of the liquid crystal layer 30 being 3 μm (that is, when p / d is changed to 15, 5, and 2.5). It is a graph which shows the result of having calculated the characteristic by simulation. (a)および(b)は、黒表示状態における液晶分子31の配向状態をシミュレーションによって計算した結果を示すグラフであり、それぞれ液晶材料の誘電異方性Δεが5の場合および18の場合を示している。(A) And (b) is a graph which shows the result of having calculated the orientation state of the liquid crystal molecule 31 in a black display state by simulation, and shows the cases where the dielectric anisotropy Δε of the liquid crystal material is 5 and 18, respectively. ing. (a)および(b)は、黒表示時の液晶分子31の配向状態をシミュレーションにより計算した結果を示す図であり、それぞれ液晶材料の誘電異方性Δεが15の場合および16の場合を示している。(A) And (b) is a figure which shows the result of having calculated the orientation state of the liquid crystal molecule 31 at the time of black display by simulation, and shows the case where the dielectric anisotropy (DELTA) epsilon of a liquid crystal material is 15 and 16, respectively. ing. オーバーコート層が設けられていない場合と、オーバーコート層が設けられている場合とについて、コントラスト比を示すグラフである。It is a graph which shows contrast ratio about the case where the overcoat layer is not provided, and the case where the overcoat layer is provided. 画素を白表示状態から黒表示状態へ遷移させるときの応答特性をシミュレーションにより計算した結果を示すグラフであり、液晶材料の誘電異方性Δεが10、15、16、18、20および25の場合を示している。It is a graph which shows the result of having calculated the response characteristic when changing a pixel from a white display state to a black display state by simulation, and the dielectric anisotropy Δε of the liquid crystal material is 10, 15, 16, 18, 20, and 25 Is shown.
 以下、図面を参照しながら本発明の実施形態を説明する。なお、本発明は以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment.
 (実施形態1)
 図1および図2を参照しながら、本実施形態における液晶表示装置100を説明する。図1は、液晶表示装置100を模式的に示す断面図であり、図2は、液晶表示装置100を模式的に示す平面図である。
(Embodiment 1)
A liquid crystal display device 100 according to the present embodiment will be described with reference to FIGS. FIG. 1 is a cross-sectional view schematically showing the liquid crystal display device 100, and FIG. 2 is a plan view schematically showing the liquid crystal display device 100.
 液晶表示装置100は、図1に示すように、液晶表示パネル1と、照明素子2とを備える。また、液晶表示装置100は、マトリクス状に配列された複数の画素を有する。液晶表示装置100は、後述するように、フィールドシーケンシャル方式でカラー表示を行う。 The liquid crystal display device 100 includes a liquid crystal display panel 1 and an illumination element 2 as shown in FIG. The liquid crystal display device 100 has a plurality of pixels arranged in a matrix. As will be described later, the liquid crystal display device 100 performs color display in a field sequential manner.
 液晶表示パネル1は、互いに対向する第1基板10および第2基板20と、第1基板10および第2基板20の間に設けられた液晶層30とを有する。以下では、第1基板10および第2基板20のうち、相対的に背面側に位置する第1基板10を「背面基板」と呼び、相対的に前面側(観察者側)に位置する第2基板20を「前面基板」と呼ぶ。 The liquid crystal display panel 1 includes a first substrate 10 and a second substrate 20 facing each other, and a liquid crystal layer 30 provided between the first substrate 10 and the second substrate 20. Hereinafter, of the first substrate 10 and the second substrate 20, the first substrate 10 that is relatively located on the back side is referred to as a “back substrate”, and the second substrate that is relatively located on the front side (observer side). The substrate 20 is referred to as a “front substrate”.
 背面基板10は、複数の画素のそれぞれに設けられた第1電極11と、第1電極11とともに液晶層30に横電界を生成する第2電極12とを有する。第1電極11は、絶縁層13を介して第2電極12上に位置するように設けられている。言い換えると、第2電極12は、絶縁層13を介して第1電極11の下に位置するように設けられている。以下では、第1電極11および第2電極12のうち、相対的に上側に位置する第1電極11を「上層電極」と呼び、相対的に下側に位置する第2電極12を「下層電極」と呼ぶ。下層電極12、絶縁層13および上層電極11は、絶縁性を有する透明基板(例えばガラス基板)10aによって支持されている。 The back substrate 10 includes a first electrode 11 provided in each of a plurality of pixels, and a second electrode 12 that generates a lateral electric field in the liquid crystal layer 30 together with the first electrode 11. The first electrode 11 is provided on the second electrode 12 with the insulating layer 13 interposed therebetween. In other words, the second electrode 12 is provided below the first electrode 11 with the insulating layer 13 interposed therebetween. Hereinafter, of the first electrode 11 and the second electrode 12, the first electrode 11 positioned on the relatively upper side is referred to as “upper layer electrode”, and the second electrode 12 positioned on the lower side is referred to as “lower layer electrode”. " The lower layer electrode 12, the insulating layer 13, and the upper layer electrode 11 are supported by an insulating transparent substrate (for example, a glass substrate) 10a.
 上層電極11は、図1および図2に示すように、所定の方向Dに延びる複数の枝状部(櫛歯)11bと、複数の枝状部11bのうちの互いに隣接する2つの枝状部11b間に位置する少なくとも1つのスリット11aとを有する。少なくとも1つのスリット11aは、複数の枝状部11bの延びる方向Dに延びているので、以下では方向Dを「スリット方向」とも呼ぶ。なお、スリット11aおよび枝状部11bの本数は、図1および図2に示している例に限定されるものではない。枝状部11bの幅Lは、スリット11aの幅S以上であってもよいし(L≧S)、スリット11aの幅Sよりも小さくてもよい(L<S)。上層電極11は、透明な導電材料(例えばITO)から形成されている。 As shown in FIGS. 1 and 2, the upper layer electrode 11 includes a plurality of branch portions (comb teeth) 11b extending in a predetermined direction D and two branch portions adjacent to each other among the plurality of branch portions 11b. And at least one slit 11a located between 11b. Since at least one slit 11a extends in the direction D in which the plurality of branch portions 11b extend, the direction D is also referred to as “slit direction” below. Note that the numbers of the slits 11a and the branch portions 11b are not limited to the examples shown in FIGS. The width L of the branch portion 11b may be equal to or greater than the width S of the slit 11a (L ≧ S), or may be smaller than the width S of the slit 11a (L <S). The upper electrode 11 is made of a transparent conductive material (for example, ITO).
 下層電極12は、スリットを有していない。つまり、下層電極12は、いわゆるべた電極である。下層電極12は、透明な導電材料(例えばITO)から形成されている。 The lower layer electrode 12 does not have a slit. That is, the lower layer electrode 12 is a so-called solid electrode. The lower layer electrode 12 is made of a transparent conductive material (for example, ITO).
 絶縁層13の材料に特に制限はない。絶縁層13の材料としては、例えば、酸化シリコン(SiO2)および窒化シリコン(SiNX)のような無機材料や、感光性樹脂のような有機材料を用いることができる。 There are no particular restrictions on the material of the insulating layer 13. As a material of the insulating layer 13, for example, an inorganic material such as silicon oxide (SiO 2 ) and silicon nitride (SiN x ) or an organic material such as a photosensitive resin can be used.
 前面基板20は、上層電極(第1電極)11および下層電極(第2電極)12に対向するように設けられた第3電極(以下では「対向電極」と呼ぶ)21を有する。対向電極21は、絶縁性を有する透明基板(例えばガラス基板)20aによって支持されている。 The front substrate 20 has a third electrode (hereinafter referred to as “counter electrode”) 21 provided to face the upper layer electrode (first electrode) 11 and the lower layer electrode (second electrode) 12. The counter electrode 21 is supported by an insulating transparent substrate (for example, a glass substrate) 20a.
 対向電極21は、上層電極11および下層電極12とともに液晶層30に縦電界を生成する。対向電極21は、透明な導電材料(例えばITO)から形成されている。 The counter electrode 21 generates a vertical electric field in the liquid crystal layer 30 together with the upper layer electrode 11 and the lower layer electrode 12. The counter electrode 21 is made of a transparent conductive material (for example, ITO).
 対向電極21上(対向電極21と後述する第2水平配向膜24との間)には、誘電体層(オーバーコート層)22が形成されている。オーバーコート層22は、横電界が生成されたときに不可避的に生成されてしまう縦電界を弱めるために設けられる。オーバーコート層22の材料としては、酸化シリコン(SiO2)や窒化シリコン(SiNX)のような無機材料や、感光性樹脂のような有機材料を用いることができる。 A dielectric layer (overcoat layer) 22 is formed on the counter electrode 21 (between the counter electrode 21 and a second horizontal alignment film 24 described later). The overcoat layer 22 is provided to weaken a vertical electric field that is inevitably generated when a horizontal electric field is generated. As the material of the overcoat layer 22, an inorganic material such as silicon oxide (SiO 2 ) or silicon nitride (SiN x ) or an organic material such as a photosensitive resin can be used.
 液晶層30に含まれる液晶材料は、正の誘電異方性を有する。つまり、液晶層30は、ポジ型の液晶材料から形成されている。また、液晶層30を形成する液晶材料は、カイラル剤を含んでいる。なお、図1および図2には、液晶層30の液晶分子31の配向方向を示している。図1および図2に示されている配向方向は、液晶層30に電圧が印加されていない状態における配向方向である。 The liquid crystal material contained in the liquid crystal layer 30 has positive dielectric anisotropy. That is, the liquid crystal layer 30 is formed from a positive liquid crystal material. Further, the liquid crystal material forming the liquid crystal layer 30 contains a chiral agent. 1 and 2 show the alignment direction of the liquid crystal molecules 31 of the liquid crystal layer 30. FIG. The alignment direction shown in FIGS. 1 and 2 is the alignment direction in a state where no voltage is applied to the liquid crystal layer 30.
 液晶表示パネル1は、液晶層30を介して互いに対向するように設けられた一対の水平配向膜14および24をさらに有する。一対の水平配向膜14および24の一方(以下では「第1水平配向膜」と呼ぶこともある)14は、背面基板10の液晶層30側の表面に形成されている。また、一対の水平配向膜14および24の他方(以下では「第2水平配向膜」と呼ぶこともある)24は、前面基板20の液晶層30側の表面に形成されている。 The liquid crystal display panel 1 further includes a pair of horizontal alignment films 14 and 24 provided so as to face each other with the liquid crystal layer 30 interposed therebetween. One of the pair of horizontal alignment films 14 and 24 (hereinafter also referred to as “first horizontal alignment film”) 14 is formed on the surface of the back substrate 10 on the liquid crystal layer 30 side. The other of the pair of horizontal alignment films 14 and 24 (hereinafter also referred to as “second horizontal alignment film”) 24 is formed on the surface of the front substrate 20 on the liquid crystal layer 30 side.
 第1水平配向膜14および第2水平配向膜24のそれぞれには、配向処理が施されており、液晶層30の液晶分子31を所定の方向(「プレチルト方向」と呼ばれる)に配向させる配向規制力を有する。配向処理としては、例えば、ラビング処理や光配向処理が行われる。 Each of the first horizontal alignment film 14 and the second horizontal alignment film 24 is subjected to an alignment process, and alignment regulation for aligning the liquid crystal molecules 31 of the liquid crystal layer 30 in a predetermined direction (referred to as a “pretilt direction”). Have power. As the alignment process, for example, a rubbing process or an optical alignment process is performed.
 第1水平配向膜14および第2水平配向膜24のそれぞれによって規定されるプレチルト方向は、液晶層30に電圧が印加されていない状態(電界が生成されていない状態)において液晶分子31がツイスト配向をとるように設定されている。具体的には、第1水平配向膜14および第2水平配向膜24のそれぞれによって規定されるプレチルト方向は、スリット方向Dに対して略45°の角をなしている。また、第2水平配向膜24によって規定されるプレチルト方向は、第1水平配向膜14によって規定されるプレチルト方向に対して90°の角をなす。従って、液晶層30に電圧が印加されていない状態において、液晶分子31は、90°ツイスト配向をとる。 In the pretilt direction defined by each of the first horizontal alignment film 14 and the second horizontal alignment film 24, the liquid crystal molecules 31 are twisted in a state where no voltage is applied to the liquid crystal layer 30 (a state where no electric field is generated). Is set to take. Specifically, the pretilt direction defined by each of the first horizontal alignment film 14 and the second horizontal alignment film 24 forms an angle of about 45 ° with respect to the slit direction D. Further, the pretilt direction defined by the second horizontal alignment film 24 forms an angle of 90 ° with respect to the pretilt direction defined by the first horizontal alignment film 14. Therefore, in a state where no voltage is applied to the liquid crystal layer 30, the liquid crystal molecules 31 have 90 ° twist alignment.
 また、液晶表示パネル1は、液晶層30を介して互いに対向するように設けられた一対の偏光板15および25をさらに有する。一対の偏光板15および25の一方(以下では「第1偏光板」とも呼ぶ)15の透過軸(偏光軸)15aと、他方(以下では「第2偏光板」とも呼ぶ)25の透過軸(偏光軸)25aとは、図2に示すように、略直交している。つまり、第1偏光板15および第2偏光板25は、クロスニコルに配置されている。第1偏光板15および第2偏光板25のそれぞれの透過軸15aおよび25aは、第1水平配向膜14および第2水平配向膜24のそれぞれによって規定されるプレチルト方向に対して略平行かまたは略直交する。従って、第1偏光板15および第2偏光板25のそれぞれの透過軸15aおよび25aは、スリット方向Dに対して略45°の角をなす。 The liquid crystal display panel 1 further includes a pair of polarizing plates 15 and 25 provided to face each other with the liquid crystal layer 30 interposed therebetween. A transmission axis (polarization axis) 15a of one of the pair of polarizing plates 15 and 25 (hereinafter also referred to as “first polarizing plate”) and a transmission axis of the other (hereinafter also referred to as “second polarizing plate”) 25 ( As shown in FIG. 2, it is substantially orthogonal to the (polarization axis) 25a. That is, the first polarizing plate 15 and the second polarizing plate 25 are arranged in crossed Nicols. The transmission axes 15a and 25a of the first polarizing plate 15 and the second polarizing plate 25 are substantially parallel to or substantially parallel to the pretilt direction defined by the first horizontal alignment film 14 and the second horizontal alignment film 24, respectively. Orthogonal. Accordingly, the transmission axes 15 a and 25 a of the first polarizing plate 15 and the second polarizing plate 25 form an angle of about 45 ° with respect to the slit direction D.
 照明素子(「バックライト」と呼ばれることもある)2は、液晶表示パネル1の背面側に配置されている。照明素子2は、液晶表示パネル1に、赤色光、緑色光および青色光を含む複数の色光を切り替えて照射することができる。 The illumination element (sometimes called “backlight”) 2 is arranged on the back side of the liquid crystal display panel 1. The illumination element 2 can switch and irradiate the liquid crystal display panel 1 with a plurality of color lights including red light, green light, and blue light.
 照明素子2としては、例えば、図1に示されているような、エッジライト方式のバックライトを用いることができる。エッジライト方式のバックライト2は、光源ユニット2aと、導光板2bとを有する。光源ユニット2aは、赤色光、緑色光および青色光を含む複数の色光を発し得る。光源ユニット2aは、光源として、例えば、赤色LED、緑色LEDおよび青色LEDを含む。導光板2bは、光源ユニット2aから発せられた色光を、液晶表示パネル1に導く。 As the lighting element 2, for example, an edge light type backlight as shown in FIG. 1 can be used. The edge-light type backlight 2 includes a light source unit 2a and a light guide plate 2b. The light source unit 2a can emit a plurality of color lights including red light, green light, and blue light. The light source unit 2a includes, for example, a red LED, a green LED, and a blue LED as light sources. The light guide plate 2b guides the color light emitted from the light source unit 2a to the liquid crystal display panel 1.
 液晶表示装置100は、フィールドシーケンシャル方式でカラー表示を行う。そのため、液晶表示パネル1は、カラーフィルタを有していない。 The liquid crystal display device 100 performs color display by a field sequential method. Therefore, the liquid crystal display panel 1 does not have a color filter.
 上層電極11と下層電極12との間に所定の電圧が印加されると(つまり所定の電位差が与えられると)、液晶層30に横電界(フリンジ電界)が生成される。「横電界」は、基板面に略平行な成分を含む電界である。上層電極11および下層電極12によって生成される横電界の向きは、スリット方向Dに対して略直交する。 When a predetermined voltage is applied between the upper layer electrode 11 and the lower layer electrode 12 (that is, when a predetermined potential difference is given), a horizontal electric field (fringe field) is generated in the liquid crystal layer 30. The “lateral electric field” is an electric field including a component substantially parallel to the substrate surface. The direction of the transverse electric field generated by the upper layer electrode 11 and the lower layer electrode 12 is substantially orthogonal to the slit direction D.
 これに対し、対向電極21と、上層電極11および下層電極12との間に所定の電圧が印加されると(つまり所定の電位差が与えられると)、縦電界が生成される。「縦電界」は、その向きが基板面法線方向に略平行な電界である。 On the other hand, when a predetermined voltage is applied between the counter electrode 21 and the upper layer electrode 11 and the lower layer electrode 12 (that is, when a predetermined potential difference is given), a vertical electric field is generated. The “longitudinal electric field” is an electric field whose direction is substantially parallel to the normal direction of the substrate surface.
 液晶表示装置100は、横電界および縦電界の強さを画素ごとに制御し得る構成を有している。典型的には、液晶表示装置100は、上層電極11および下層電極12のそれぞれについて、画素ごとに異なる電圧を供給し得る構成を有する。具体的には、上層電極11および下層電極12の両方が画素ごとに分離して形成されており、各画素に、上層電極11に電気的に接続されたスイッチング素子(例えば薄膜トランジスタ;不図示)と、下層電極12に電気的に接続されたスイッチング素子(例えば薄膜トランジスタ;不図示)とが設けられている。上層電極11および下層電極12には、対応するスイッチング素子を介してそれぞれ所定の電圧が供給される。また、対向電極21は、すべての画素にわたって連続した単一の導電膜として形成されている。従って、対向電極21には、すべての画素において共通の電位が与えられる。 The liquid crystal display device 100 has a configuration capable of controlling the strength of the horizontal electric field and the vertical electric field for each pixel. Typically, the liquid crystal display device 100 has a configuration capable of supplying different voltages for each pixel for each of the upper layer electrode 11 and the lower layer electrode 12. Specifically, both the upper layer electrode 11 and the lower layer electrode 12 are formed separately for each pixel, and each pixel includes a switching element (for example, a thin film transistor; not shown) electrically connected to the upper layer electrode 11. A switching element (for example, a thin film transistor; not shown) electrically connected to the lower layer electrode 12 is provided. A predetermined voltage is supplied to the upper layer electrode 11 and the lower layer electrode 12 via corresponding switching elements. The counter electrode 21 is formed as a single conductive film that is continuous over all the pixels. Accordingly, a common potential is applied to the counter electrode 21 in all the pixels.
 図3に、背面基板10における具体的な配線構造の一例を示す。図3に示す構成では、各画素には、上層電極11に対応する第1TFT16Aと、下層電極12に対応する第2TFT16Bとが設けられている。 FIG. 3 shows an example of a specific wiring structure on the back substrate 10. In the configuration shown in FIG. 3, each pixel is provided with a first TFT 16 </ b> A corresponding to the upper layer electrode 11 and a second TFT 16 </ b> B corresponding to the lower layer electrode 12.
 第1TFT16Aおよび第2TFT16Bのそれぞれのゲート電極16gは、ゲートバスライン(走査配線)17に電気的に接続されている。ここでは、ゲートバスライン17の、第1TFT16Aおよび第2TFT16Bのチャネル領域に重なる部分がゲート電極16gとして機能する。第1TFT16Aおよび第2TFT16Bのそれぞれのソース電極16sは、ソースバスライン(信号配線)18に電気的に接続されている。ここでは、ソースバスライン18から分岐した部分がソース電極16sとして機能する。第1TFT16Aのドレイン電極16dは、上層電極11に電気的に接続されている。これに対し、第2TFT16Bのドレイン電極16dは、下層電極12に電気的に接続されている。なお、背面基板10の配線構造は、図3に例示したものに限定されない。 The gate electrodes 16g of the first TFT 16A and the second TFT 16B are electrically connected to a gate bus line (scanning wiring) 17. Here, the portion of the gate bus line 17 that overlaps the channel regions of the first TFT 16A and the second TFT 16B functions as the gate electrode 16g. The source electrodes 16s of the first TFT 16A and the second TFT 16B are electrically connected to a source bus line (signal wiring) 18. Here, a portion branched from the source bus line 18 functions as the source electrode 16s. The drain electrode 16d of the first TFT 16A is electrically connected to the upper layer electrode 11. On the other hand, the drain electrode 16d of the second TFT 16B is electrically connected to the lower layer electrode 12. The wiring structure of the back substrate 10 is not limited to that illustrated in FIG.
 本実施形態における液晶表示装置100では、複数の画素のそれぞれは、液晶層30に縦電界が生成された状態で黒表示が行われる「黒表示状態」と、液晶層30に横電界が生成された状態で白表示が行われる「白表示状態」と、液晶層30に電圧が印加されていない状態で液晶表示パネル1の背面側(つまり背景)が透けて見える「透明表示状態」とを切り替えて呈し得る。 In the liquid crystal display device 100 according to the present embodiment, each of the plurality of pixels generates a “black display state” in which black display is performed in a state where a vertical electric field is generated in the liquid crystal layer 30, and a horizontal electric field is generated in the liquid crystal layer 30. Switching between the “white display state” in which white display is performed and the “transparent display state” in which the back side (that is, the background) of the liquid crystal display panel 1 can be seen through when no voltage is applied to the liquid crystal layer 30 Can be presented.
 以下、図4、図5および図6を参照しながら、黒表示状態、白表示状態および透明表示状態をより詳しく説明する。 Hereinafter, the black display state, the white display state, and the transparent display state will be described in more detail with reference to FIGS. 4, 5, and 6.
 図4(a)および(b)は、黒表示状態における液晶分子31の配向状態を示している。黒表示状態では、対向電極21と、上層電極11および下層電極12との間に所定の電圧が印加されており、液晶層30には縦電界が生成されている。図4(a)には、このときの電気力線が破線で模式的に示されている。 4 (a) and 4 (b) show the alignment state of the liquid crystal molecules 31 in the black display state. In the black display state, a predetermined voltage is applied between the counter electrode 21, the upper layer electrode 11, and the lower layer electrode 12, and a vertical electric field is generated in the liquid crystal layer 30. In FIG. 4A, the electric lines of force at this time are schematically shown by broken lines.
 この黒表示状態においては、液晶層30の液晶分子31は、図4(a)および(b)に示すように、基板面(背面基板10および前面基板20の表面)に略垂直に(つまり液晶層30の層法線方向に略平行に)配向する。なお、第1水平配向膜14および第2水平配向膜24のごく近傍の液晶分子31は、第1水平配向膜14および第2水平配向膜24の配向規制力の影響を強く受けるので、基板面に略平行に配向したままであるが、これらの液晶分子31は、第1偏光板15の透過軸15aに対して略平行かまたは略直交しているので、第1偏光板15を通過して液晶層30に入射した光に対してほとんど位相差を与えず、コントラスト比をほとんど低下させない。 In this black display state, the liquid crystal molecules 31 of the liquid crystal layer 30 are substantially perpendicular to the substrate surfaces (the surfaces of the rear substrate 10 and the front substrate 20) (that is, the liquid crystal molecules as shown in FIGS. 4A and 4B). Oriented (substantially parallel to the layer normal direction of layer 30). Note that the liquid crystal molecules 31 in the immediate vicinity of the first horizontal alignment film 14 and the second horizontal alignment film 24 are strongly affected by the alignment regulating force of the first horizontal alignment film 14 and the second horizontal alignment film 24, so that the substrate surface However, since these liquid crystal molecules 31 are substantially parallel or substantially orthogonal to the transmission axis 15 a of the first polarizing plate 15, they pass through the first polarizing plate 15. Almost no phase difference is given to the light incident on the liquid crystal layer 30, and the contrast ratio is hardly lowered.
 図5(a)および(b)は、白表示状態における液晶分子31の配向状態を示している。白表示状態では、上層電極11と下層電極12との間に所定の電圧が印加されており、液晶層30には横電界(フリンジ電界)が生成されている。図5(a)には、このときの電気力線が破線で模式的に示されている。 5A and 5B show the alignment state of the liquid crystal molecules 31 in the white display state. In the white display state, a predetermined voltage is applied between the upper layer electrode 11 and the lower layer electrode 12, and a horizontal electric field (fringe field) is generated in the liquid crystal layer 30. In FIG. 5A, the electric lines of force at this time are schematically shown by broken lines.
 この白表示状態においては、液晶層30の液晶分子31は、図5(a)および(b)に示すように、基板面に略平行に(つまり液晶層30の層法線方向に略垂直に)配向する。より具体的には、第1水平配向膜14近傍の液晶分子31と、第2水平配向膜24近傍の液晶分子31とが略90°の角をなすように配向し、その結果、液晶層30の厚さ方向における中央付近の液晶分子31は、上層電極11のスリット11aの延びる方向(スリット方向)Dに略直交するように配向する。そのため、液晶層30における液晶分子31の平均的な配向方向は、スリット方向Dに略直交する(つまり第1偏光板15および第2偏光板25のそれぞれの透過軸15aおよび25aに対して略45°の角をなす)。 In this white display state, as shown in FIGS. 5A and 5B, the liquid crystal molecules 31 of the liquid crystal layer 30 are substantially parallel to the substrate surface (that is, substantially perpendicular to the layer normal direction of the liquid crystal layer 30). ) Orient. More specifically, the liquid crystal molecules 31 in the vicinity of the first horizontal alignment film 14 and the liquid crystal molecules 31 in the vicinity of the second horizontal alignment film 24 are aligned so as to form an angle of about 90 °, and as a result, the liquid crystal layer 30 The liquid crystal molecules 31 in the vicinity of the center in the thickness direction are aligned so as to be substantially orthogonal to the extending direction (slit direction) D of the slit 11 a of the upper electrode 11. Therefore, the average alignment direction of the liquid crystal molecules 31 in the liquid crystal layer 30 is substantially orthogonal to the slit direction D (that is, approximately 45 with respect to the transmission axes 15a and 25a of the first polarizing plate 15 and the second polarizing plate 25). Make a corner of °).
 図6(a)および(b)は、透明表示状態における液晶分子31の配向状態を示している。透明表示状態では、液晶層30には電圧が印加されておらず、液晶層30には縦電界および横電界のいずれも生成されていない。 6A and 6B show the alignment state of the liquid crystal molecules 31 in the transparent display state. In the transparent display state, no voltage is applied to the liquid crystal layer 30, and neither a vertical electric field nor a horizontal electric field is generated in the liquid crystal layer 30.
 この透明表示状態においては、液晶層30の液晶分子31は、図6(a)および(b)に示すように、ツイスト配向をとる。つまり、液晶分子31は、基板面に略平行に(つまり液晶層30の層法線方向に略垂直に)配向する。第1水平配向膜14近傍の液晶分子31と、第2水平配向膜24近傍の液晶分子31とは略90°の角をなすように配向し、その結果、液晶層30の厚さ方向における中央付近の液晶分子31は、スリット方向Dに略直交するように配向する。そのため、液晶層30における液晶分子31の平均的な配向方向は、スリット方向Dに略直交する(つまり第1偏光板15および第2偏光板25のそれぞれの透過軸15aおよび25aに対して略45°の角をなす)。液晶表示装置100の各画素は、この透明表示状態において、もっとも(つまり黒表示状態および白表示状態のいずれにおいてよりも)光透過率が高くなる。 In this transparent display state, the liquid crystal molecules 31 of the liquid crystal layer 30 are twisted as shown in FIGS. 6 (a) and 6 (b). That is, the liquid crystal molecules 31 are aligned substantially parallel to the substrate surface (that is, substantially perpendicular to the layer normal direction of the liquid crystal layer 30). The liquid crystal molecules 31 in the vicinity of the first horizontal alignment film 14 and the liquid crystal molecules 31 in the vicinity of the second horizontal alignment film 24 are aligned so as to form an angle of about 90 °, and as a result, the liquid crystal layer 30 is centered in the thickness direction. The nearby liquid crystal molecules 31 are aligned so as to be substantially orthogonal to the slit direction D. Therefore, the average alignment direction of the liquid crystal molecules 31 in the liquid crystal layer 30 is substantially orthogonal to the slit direction D (that is, approximately 45 with respect to the transmission axes 15a and 25a of the first polarizing plate 15 and the second polarizing plate 25). Make a corner of °). Each pixel of the liquid crystal display device 100 has the highest light transmittance in this transparent display state (that is, in any of the black display state and the white display state).
 なお、液晶表示装置100の複数の画素のそれぞれは、上述した黒表示状態、白表示状態および透明表示状態に加えて、図7に示すような、中間調に対応した輝度を示す「中間調表示状態」も呈し得る。中間調表示状態においては、液晶層30に生成される横電界(フリンジ電界)の強さを調節することにより、所望の透過率を実現することができる。 It should be noted that each of the plurality of pixels of the liquid crystal display device 100 has a “halftone display” indicating luminance corresponding to a halftone as shown in FIG. 7 in addition to the above-described black display state, white display state, and transparent display state. A “state” may also be exhibited. In the halftone display state, a desired transmittance can be realized by adjusting the strength of the lateral electric field (fringe field) generated in the liquid crystal layer 30.
 このように、液晶表示装置100では、液晶表示パネル1に表示される情報と背景とを重ねあわせた表示を行う場合、表示領域のうち情報を表示したい部分の画素は、黒表示状態、白表示状態または中間調表示状態を呈し、それ以外の部分の画素は透明表示状態を呈する。これらの表示状態の切り替えは、例えば、以下のようにして行うことができる。 As described above, in the liquid crystal display device 100, when the information displayed on the liquid crystal display panel 1 and the background are overlapped, the pixel in the display area where the information is to be displayed has a black display state, a white display. A state or a halftone display state is exhibited, and pixels in other portions exhibit a transparent display state. These display states can be switched as follows, for example.
 一般的な液晶表示装置用の駆動回路は、8ビットのドライバICを備えており、256階調(0~255階調)分の出力電圧を発生させる。一般的な液晶表示装置では、0階調が黒表示状態、1~254階調が中間調表示状態、255階調が白表示状態に割り当てられる。 A typical driving circuit for a liquid crystal display device includes an 8-bit driver IC and generates an output voltage for 256 gradations (0 to 255 gradations). In a general liquid crystal display device, 0 gradation is assigned to a black display state, 1 to 254 gradations are assigned to a halftone display state, and 255 gradations are assigned to a white display state.
 本実施形態の液晶表示装置100では、例えば、0階調を黒表示状態、1~253階調を中間調表示状態に割り当てるとともに、254階調を白表示状態、255階調を透明表示状態に割り当てることにより、黒表示状態、中間調表示状態、白表示状態および透明表示状態の切り替えを実現することができる。なお、透明表示状態を必ずしも255階調に割り当てる必要はなく、どの階調を透明表示状態に割り当ててもよい。また、例示した256階調表示以外の場合も同様に、特定の階調を透明表示状態に割り当てればよい。 In the liquid crystal display device 100 of this embodiment, for example, 0 gradation is assigned to the black display state, 1 to 253 gradation is assigned to the halftone display state, 254 gradations are assigned to the white display state, and 255 gradations are assigned to the transparent display state. By assigning, switching between the black display state, the halftone display state, the white display state, and the transparent display state can be realized. Note that the transparent display state does not necessarily have to be assigned to 255 gradations, and any gradation may be assigned to the transparent display state. Similarly, in a case other than the exemplified 256 gradation display, a specific gradation may be assigned to the transparent display state.
 上述したように、本実施形態における液晶表示装置100では、フィールドシーケンシャル方式でカラー表示を行うので、液晶表示パネル1にはカラーフィルタが不要である。そのため、光利用効率が向上する。また、液晶表示装置100では、黒表示状態においては液晶層30に縦電界が生成され、白表示状態においては液晶層30に横電界が生成されるので、立ち下がり(白表示状態から黒表示状態への遷移)および立ち上がり(黒表示状態から白表示状態への遷移)の両方において、電圧印加による誘電的トルクを液晶分子31に作用させることができる。そのため、優れた応答特性が得られる。 As described above, since the liquid crystal display device 100 according to the present embodiment performs color display by the field sequential method, the liquid crystal display panel 1 does not need a color filter. Therefore, the light use efficiency is improved. In the liquid crystal display device 100, a vertical electric field is generated in the liquid crystal layer 30 in the black display state, and a horizontal electric field is generated in the liquid crystal layer 30 in the white display state. ) And a rise (transition from the black display state to the white display state), the dielectric torque due to voltage application can be applied to the liquid crystal molecules 31. Therefore, excellent response characteristics can be obtained.
 さらに、本実施形態における液晶表示装置100では、各画素は、黒表示状態および白表示状態だけでなく、液晶層30に電圧が印加されていない状態である透明表示状態も呈し得る。この透明表示状態で背景表示を行うことにより、背景がぼける(二重に視認される)という問題の発生を防止することができる。以下、特許文献1~3の液晶表示装置においてこの問題(二重ぼけ)が発生する理由を、比較例の液晶表示装置を参照しながら説明する。 Furthermore, in the liquid crystal display device 100 according to the present embodiment, each pixel can exhibit not only a black display state and a white display state but also a transparent display state in which no voltage is applied to the liquid crystal layer 30. By performing the background display in this transparent display state, it is possible to prevent the occurrence of the problem that the background is blurred (recognized twice). The reason why this problem (double blur) occurs in the liquid crystal display devices of Patent Documents 1 to 3 will be described below with reference to a liquid crystal display device of a comparative example.
 図8(a)および(b)は、比較例の液晶表示装置800において黒表示を行っている状態および白表示を行っている状態をそれぞれ示している。比較例の液晶表示装置800は、特許文献3の図1および図2に示されている液晶表示装置と同じ構成を有する。 FIGS. 8A and 8B show a state in which black display and a white display are performed in the liquid crystal display device 800 of the comparative example, respectively. The liquid crystal display device 800 of the comparative example has the same configuration as the liquid crystal display device shown in FIGS.
 液晶表示装置800は、アレイ基板810および対向基板820と、これらの間に設けられた液晶層830とを有する。アレイ基板810は、ガラス基板810aと、ガラス基板810a上にこの順で積層された下層電極812、絶縁層813および一対の櫛歯電極(上層電極)817、818を有する。一方、対向基板820は、ガラス基板820aと、ガラス基板820a上に形成された対向電極821とを有する。 The liquid crystal display device 800 includes an array substrate 810 and a counter substrate 820, and a liquid crystal layer 830 provided therebetween. The array substrate 810 includes a glass substrate 810a, a lower layer electrode 812, an insulating layer 813, and a pair of comb electrodes (upper layer electrodes) 817 and 818 stacked in this order on the glass substrate 810a. On the other hand, the counter substrate 820 includes a glass substrate 820a and a counter electrode 821 formed on the glass substrate 820a.
 液晶層830は、正の誘電異方性を有する液晶分子831を含む。液晶表示装置800では、液晶層830の液晶分子831は、電圧無印加状態において垂直配向状態をとる。 The liquid crystal layer 830 includes liquid crystal molecules 831 having positive dielectric anisotropy. In the liquid crystal display device 800, the liquid crystal molecules 831 of the liquid crystal layer 830 are in a vertical alignment state when no voltage is applied.
 比較例の液晶表示装置800では、黒表示を行う際には、対向電極821と、下層電極812および上層電極(一対の櫛歯電極)817、818との間に所定の電圧を印加し(例えば対向電極821に7Vの電位を与え、下層電極812および上層電極817、818に14Vの電位を与える)、液晶層830に縦電界を生成する。これにより、液晶分子831は、図8(a)に示すように、基板面に略垂直に配向する。 In the liquid crystal display device 800 of the comparative example, when black display is performed, a predetermined voltage is applied between the counter electrode 821, the lower layer electrode 812, and the upper layer electrode (a pair of comb electrodes) 817 and 818 (for example, A potential of 7 V is applied to the counter electrode 821 and a potential of 14 V is applied to the lower layer electrode 812 and the upper layer electrodes 817 and 818), and a vertical electric field is generated in the liquid crystal layer 830. As a result, the liquid crystal molecules 831 are aligned substantially perpendicular to the substrate surface as shown in FIG.
 また、比較例の液晶表示装置800では、白表示を行う際には、一対の櫛歯電極817および818間に所定の電圧を印加し(例えば一方の櫛歯電極817に0Vの電位を与え、他方の櫛歯電極818に14Vの電位を与える)、液晶層830に横電界を生成する。これにより、液晶分子831は、図8(b)に示すように、基板面法線方向に対して傾斜した配向状態をとる。 In the liquid crystal display device 800 of the comparative example, when white display is performed, a predetermined voltage is applied between the pair of comb electrodes 817 and 818 (for example, a potential of 0 V is applied to one comb electrode 817, A potential of 14V is applied to the other comb electrode 818), and a horizontal electric field is generated in the liquid crystal layer 830. Thereby, as shown in FIG. 8B, the liquid crystal molecules 831 are aligned with respect to the normal direction of the substrate surface.
 比較例の液晶表示装置800を、単純にシースルーディスプレイに用いる場合、シースルー表示を行う、つまり、背景が透けて見えるような表示を行う際には、画素の光透過率が高い状態である白表示状態で行うことになる。しかしながら、白表示を行うための状態は、液晶層830に電圧を印加することによって液晶分子830を配向させた状態であるので、画素内で屈折率に分布が生じてしまう。そのため、この屈折率分布に起因して背面側からの光Lが散乱され(つまり光Lの進行方向が変わり;図8(b)参照)、背景がぼけてしまう。その結果、図9に示すように、シースルーディスプレイSTDPを介して背景BGを観察する観察者Vには、背景が二重に視認されてしまう。 When the liquid crystal display device 800 of the comparative example is simply used for a see-through display, when performing a see-through display, that is, a display in which the background can be seen through, white display in which the light transmittance of the pixel is high. Will be done in the state. However, since the state for performing white display is a state in which the liquid crystal molecules 830 are aligned by applying a voltage to the liquid crystal layer 830, the refractive index is distributed within the pixel. Therefore, the light L from the back side is scattered due to this refractive index distribution (that is, the traveling direction of the light L changes; see FIG. 8B), and the background is blurred. As a result, as shown in FIG. 9, the background is visually recognized by the observer V who observes the background BG via the see-through display STDP.
 このように、液晶層に電圧が印加された状態である白表示状態でシースルー表示を行うと、二重ぼけが発生してしまう。これに対し、本実施形態における液晶表示装置100では、液晶層30に電圧が印加されていない状態(透明表示状態)の画素で背景表示(シースルー表示)を行うので、液晶表示装置100を介して背景を観察する観察者には、背景が鮮明に視認される。そのため、二重ぼけの発生が防止され、シースルー表示の品位が向上する。 Thus, when see-through display is performed in a white display state in which a voltage is applied to the liquid crystal layer, double blurring occurs. On the other hand, in the liquid crystal display device 100 according to the present embodiment, background display (see-through display) is performed with pixels in a state where no voltage is applied to the liquid crystal layer 30 (transparent display state). An observer who observes the background sees the background clearly. Therefore, occurrence of double blurring is prevented and the quality of the see-through display is improved.
 既に説明したように、特許文献4の液晶表示装置には、液晶層に横電界が生成された状態において液晶分子がツイスト配向をとる構成が開示されており、この構成では、応答特性をさらに向上できる余地がある。しかしながら、その場合、応答特性とコントラスト比とがトレードオフの関係になるので、応答特性のいっそうの向上と高いコントラスト比との両立は難しい。 As already described, the liquid crystal display device of Patent Document 4 discloses a configuration in which liquid crystal molecules are twisted in a state where a horizontal electric field is generated in the liquid crystal layer, and this configuration further improves response characteristics. There is room for it. However, in that case, since the response characteristic and the contrast ratio are in a trade-off relationship, it is difficult to achieve a further improvement in the response characteristic and a high contrast ratio.
 これに対し、本実施形態の液晶表示装置100は、以下に説明する構成を有していることにより、応答特性とコントラスト比の両方に優れる。以下、より具体的に説明を行う。 On the other hand, the liquid crystal display device 100 of the present embodiment is excellent in both response characteristics and contrast ratio by having the configuration described below. A more specific description will be given below.
 まず、本願発明者は、液晶層30の厚さdに対する、液晶層30の自然カイラルピッチpの比p/dを小さくすることによって、応答特性をさらに向上させることを検討した。その結果、p/dを小さくすると、応答特性は向上するものの、コントラスト比が低下することがわかった。 First, the inventor of the present application studied to further improve the response characteristics by reducing the ratio p / d of the natural chiral pitch p of the liquid crystal layer 30 to the thickness d of the liquid crystal layer 30. As a result, it was found that when p / d is reduced, the response characteristic is improved, but the contrast ratio is lowered.
 図10(a)および図10(b)に、液晶層30の自然カイラルピッチpが45μmの場合および5μmの場合(いずれの場合も液晶材料の誘電異方性Δεは4.9である)の、黒表示状態(つまり液晶層30に縦電界が生成された状態)における液晶分子31の配向状態をシミュレーションによって計算した結果を示す。図10(a)および(b)は、横軸に、液晶層30の厚さ方向における液晶分子31の位置をとり、縦軸に、液晶分子31の配向方向の方位角および極角の大きさ(角度)をとったグラフである。横軸の0μmの位置が、背面基板10と液晶層30との界面に相当し、3.2μmの位置が、前面基板20と液晶層30との界面に相当する(つまり液晶層30の厚さは3.2μmである)。また、方位角については、表示面を時計の文字盤に見立てたときの3時方向の角度を0°とし、反時計回りが正方向である。 10A and 10B show the cases where the natural chiral pitch p of the liquid crystal layer 30 is 45 μm and 5 μm (in each case, the dielectric anisotropy Δε of the liquid crystal material is 4.9). The result of having calculated the orientation state of the liquid crystal molecule 31 in the black display state (that is, the state in which the vertical electric field is generated in the liquid crystal layer 30) by simulation is shown. 10A and 10B, the horizontal axis indicates the position of the liquid crystal molecule 31 in the thickness direction of the liquid crystal layer 30, and the vertical axis indicates the magnitude of the azimuth angle and polar angle in the alignment direction of the liquid crystal molecule 31. It is the graph which took (angle). The position of 0 μm on the horizontal axis corresponds to the interface between the back substrate 10 and the liquid crystal layer 30, and the position of 3.2 μm corresponds to the interface between the front substrate 20 and the liquid crystal layer 30 (that is, the thickness of the liquid crystal layer 30). Is 3.2 μm). As for the azimuth, the angle in the 3 o'clock direction when the display surface is regarded as a clock face is 0 °, and the counterclockwise direction is the positive direction.
 まず、方位角に注目する。図10(a)および(b)に示すように、いずれの場合についても、背面基板10と液晶層30との界面(0μmの位置)では、液晶分子31の配向方向の方位角は45°であり、液晶分子31は、背面基板10側の偏光板15の吸収軸(透過軸15aに略直交する)に略平行に配向している。これは、液晶分子31が、第1水平配向膜14の配向規制力を強く受けているからである。また、前面基板20と液晶層30との界面(3.2μmの位置)では、液晶分子31の配向方向の方位角はー45°であり、液晶分子31は、前面基板20側の偏光板25の吸収軸(透過軸25aに略直交する)に略平行に配向している。これは、液晶分子31が、第2水平配向膜24の配向規制力を強く受けているからである。さらに、液晶層30の厚さ方向における中央(1.6μmの位置)では、液晶分子31の配向方向の方位角は0°であり、液晶分子31は、偏光板15および25の吸収軸と略45°の角をなす方向に配向している。 First, pay attention to the azimuth. As shown in FIGS. 10A and 10B, in any case, at the interface between the back substrate 10 and the liquid crystal layer 30 (0 μm position), the orientation angle of the liquid crystal molecules 31 is 45 °. The liquid crystal molecules 31 are aligned substantially parallel to the absorption axis (substantially orthogonal to the transmission axis 15a) of the polarizing plate 15 on the back substrate 10 side. This is because the liquid crystal molecules 31 are strongly subjected to the alignment regulating force of the first horizontal alignment film 14. Further, at the interface between the front substrate 20 and the liquid crystal layer 30 (at a position of 3.2 μm), the azimuth angle of the alignment direction of the liquid crystal molecules 31 is −45 °, and the liquid crystal molecules 31 are the polarizing plate 25 on the front substrate 20 side. Oriented substantially parallel to the absorption axis (substantially orthogonal to the transmission axis 25a). This is because the liquid crystal molecules 31 are strongly subjected to the alignment regulating force of the second horizontal alignment film 24. Furthermore, at the center (position of 1.6 μm) in the thickness direction of the liquid crystal layer 30, the azimuth angle in the alignment direction of the liquid crystal molecules 31 is 0 °, and the liquid crystal molecules 31 are approximately the absorption axes of the polarizing plates 15 and 25. It is oriented in a direction that forms an angle of 45 °.
 次に、極角に注目する。図10(a)および(b)に示すように、いずれの場合についても、液晶層30の厚さ方向における中央付近(1.0μm~2.2μmの位置)では、液晶分子31の配向方向の極角は90°であり、液晶分子31は、背面基板10および前面基板20の基板面に略垂直に配向している。これは、液晶分子31が縦電界による配向規制力を受けているからである。ただし、いずれの場合についても、背面基板10と液晶層30との界面、および、前面基板20と液晶層30との界面では、液晶分子31の配向方向の極角はほぼ0°である。これは、液晶分子31が、第1水平配向膜14および第2水平配向膜24の配向規制力を強く受けているからである。 Next, pay attention to the polar angle. As shown in FIGS. 10A and 10B, in any case, in the vicinity of the center in the thickness direction of the liquid crystal layer 30 (position of 1.0 μm to 2.2 μm), the alignment direction of the liquid crystal molecules 31 is increased. The polar angle is 90 °, and the liquid crystal molecules 31 are aligned substantially perpendicular to the substrate surfaces of the back substrate 10 and the front substrate 20. This is because the liquid crystal molecules 31 are subjected to the alignment regulating force by the vertical electric field. However, in any case, the polar angle of the alignment direction of the liquid crystal molecules 31 is substantially 0 ° at the interface between the back substrate 10 and the liquid crystal layer 30 and the interface between the front substrate 20 and the liquid crystal layer 30. This is because the liquid crystal molecules 31 are strongly subjected to the alignment regulating force of the first horizontal alignment film 14 and the second horizontal alignment film 24.
 続いて、液晶層30の厚さ方向に沿った(背面基板10側から液晶層30の厚さ方向における中央に向かう場合、または、前面基板20側から液晶層30の厚さ方向における中央に向かう場合の)配向方向の変化に注目する。 Subsequently, along the thickness direction of the liquid crystal layer 30 (from the back substrate 10 side toward the center in the thickness direction of the liquid crystal layer 30 or from the front substrate 20 side toward the center in the thickness direction of the liquid crystal layer 30. Note the change in orientation direction.
 液晶層30の自然カイラルピッチpが45μmの場合、図10(a)に示すように、液晶分子31の配向方向の極角が十分に大きくなってから、方位角が45°または-45°から変化し始める。つまり、液晶分子31の配向方向の極角が小さい領域(背面基板10と液晶層30との界面近傍、および、前面基板20と液晶層30との界面近傍)では、液晶分子31は、偏光板15および25の吸収軸に略平行に配向している。そのため、背面基板10近傍および前面基板20近傍の液晶分子31による光漏れは発生せず、良好な(つまり輝度が十分に低い)黒表示を行うことができる。 When the natural chiral pitch p of the liquid crystal layer 30 is 45 μm, as shown in FIG. 10A, after the polar angle in the alignment direction of the liquid crystal molecules 31 becomes sufficiently large, the azimuth angle starts from 45 ° or −45 °. Start to change. That is, in the region where the polar angle of the alignment direction of the liquid crystal molecules 31 is small (near the interface between the back substrate 10 and the liquid crystal layer 30 and near the interface between the front substrate 20 and the liquid crystal layer 30), the liquid crystal molecules 31 Oriented substantially parallel to the absorption axes of 15 and 25. Therefore, light leakage due to the liquid crystal molecules 31 in the vicinity of the back substrate 10 and the front substrate 20 does not occur, and good (that is, sufficiently low brightness) black display can be performed.
 これに対し、液晶層30の自然カイラルピッチpが5μmの場合、図10(b)に示すように、液晶分子30の配向方向の極角が十分に大きくなる前に、方位角が45°または-45°から変化し始めてしまう。つまり、液晶分子31の配向方向の極角が小さい領域(背面基板10と液晶層30との界面近傍、および、前面基板20と液晶層30との界面近傍)においても、液晶分子31は、偏光板15および25の吸収軸からずれた方向に配向してしまう。これは、自然カイラルピッチpが5μmの場合には、自然カイラルピッチpが45μmの場合よりも、カイラル剤の添加量が多いことに起因していると考えられる。そのため、背面基板10近傍および前面基板20近傍の液晶分子31による光漏れが発生し、黒表示状態における輝度が高くなってしまう。従って、コントラスト比が低下する。 On the other hand, when the natural chiral pitch p of the liquid crystal layer 30 is 5 μm, the azimuth is 45 ° before the polar angle in the alignment direction of the liquid crystal molecules 30 becomes sufficiently large as shown in FIG. It starts to change from -45 °. That is, in the region where the polar angle of the alignment direction of the liquid crystal molecules 31 is small (near the interface between the back substrate 10 and the liquid crystal layer 30 and near the interface between the front substrate 20 and the liquid crystal layer 30), the liquid crystal molecules 31 are polarized. The plates 15 and 25 are oriented in a direction shifted from the absorption axis. This is presumably because the amount of the chiral agent added is larger when the natural chiral pitch p is 5 μm than when the natural chiral pitch p is 45 μm. For this reason, light leaks due to the liquid crystal molecules 31 in the vicinity of the rear substrate 10 and the front substrate 20, and the luminance in the black display state is increased. Accordingly, the contrast ratio is lowered.
 このように、自然カイラルピッチpを小さくすると、つまり、p/dを小さくすると、コントラスト比が低下する。 Thus, when the natural chiral pitch p is reduced, that is, when p / d is reduced, the contrast ratio is lowered.
 本実施形態の液晶表示装置100では、液晶層30の厚さdに対する、液晶層30の自然カイラルピッチpの比p/dが、1以上3以下である。つまり、液晶層30の厚さdと、液晶層30の自然カイラルピッチpとが、1≦p/d≦3の関係を満足する。 In the liquid crystal display device 100 of the present embodiment, the ratio p / d of the natural chiral pitch p of the liquid crystal layer 30 to the thickness d of the liquid crystal layer 30 is 1 or more and 3 or less. That is, the thickness d of the liquid crystal layer 30 and the natural chiral pitch p of the liquid crystal layer 30 satisfy the relationship 1 ≦ p / d ≦ 3.
 本願発明者の検討によれば、p/dが3以下であると、画素を黒表示状態から白表示状態へ遷移させるとき(つまり液晶層30への印加電圧を縦電界から横電界に切り替えたとき)の応答速度を十分に改善できることがわかった。 According to the study of the present inventor, when p / d is 3 or less, when the pixel is changed from the black display state to the white display state (that is, the voltage applied to the liquid crystal layer 30 is switched from the vertical electric field to the horizontal electric field). It was found that the response speed can be improved sufficiently.
 図11に、液晶層30の厚さdを3μmのまま、自然カイラルピッチpを45μm、30μm、15μm、10μm、9μm、7.5μmと変化させたとき(つまりp/dを15、10、5、3.3、3、2.5と変化させたとき)の応答特性(時間と規格化輝度との関係)をシミュレーションにより計算した結果を示す。シミュレーションの条件は、下記表1に示す通りである。 In FIG. 11, when the natural chiral pitch p is changed to 45 μm, 30 μm, 15 μm, 10 μm, 9 μm, and 7.5 μm with the thickness d of the liquid crystal layer 30 being 3 μm (that is, p / d is 15, 10, 5). 3 shows a result of calculating response characteristics (relationship between time and normalized luminance) by simulation. The simulation conditions are as shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図11から、自然カイラルピッチpが小さくなるほど、つまり、p/dが小さくなるほど、応答速度が改善している(応答特性が向上している)ことがわかり、p/dが3以下となることにより、十分に高い応答特性が得られることがわかる。 From FIG. 11, it can be seen that the smaller the natural chiral pitch p, that is, the smaller the p / d, the more the response speed is improved (the response characteristic is improved), and the p / d is 3 or less. It can be seen that sufficiently high response characteristics can be obtained.
 なお、p/dを小さくしすぎると、白表示時の液晶分子31のツイスト角度が90°を超えるおそれがあり、透過率低下の原因となることがある。そのような透過率低下を抑制する観点からは、p/dは1以上であることが好ましい。 If p / d is too small, the twist angle of the liquid crystal molecules 31 during white display may exceed 90 °, which may cause a decrease in transmittance. From the viewpoint of suppressing such a decrease in transmittance, p / d is preferably 1 or more.
 また、本実施形態の液晶表示装置100では、液晶層30に含まれる液晶材料の誘電異方性Δε(@20℃、1kHz)が16以上である。一般に、誘電異方性Δεが大きくなるほど、液晶分子31に作用する電界による誘電的トルクが大きくなる。つまり、電界による配向規制力が強くなる。本願発明者の検討によれば、液晶材料の誘電異方性Δεが16以上であることにより、黒表示状態において背面基板10近傍および対向基板20近傍(ただし第1水平配向膜14および第2水平配向膜24のごく近傍は除く)の液晶分子31の配向方向の極角を十分に大きくできることがわかった。そのため、液晶材料の誘電異方性Δεが16以上であることにより、黒表示時の光漏れの発生を抑制することができ、高いコントラスト比を実現することができる。また、液晶材料の誘電異方性Δεが16以上であることにより、画素を黒表示状態から白表示状態へ遷移させるときの応答速度をいっそう改善する効果も得られる。 Further, in the liquid crystal display device 100 of this embodiment, the dielectric anisotropy Δε (@ 20 ° C., 1 kHz) of the liquid crystal material included in the liquid crystal layer 30 is 16 or more. Generally, as the dielectric anisotropy Δε increases, the dielectric torque due to the electric field acting on the liquid crystal molecules 31 increases. That is, the alignment regulating force by the electric field is strengthened. According to the study of the inventor of the present application, when the dielectric anisotropy Δε of the liquid crystal material is 16 or more, in the black display state, in the vicinity of the back substrate 10 and the counter substrate 20 (however, the first horizontal alignment film 14 and the second horizontal alignment film). It was found that the polar angle in the alignment direction of the liquid crystal molecules 31 (except in the vicinity of the alignment film 24) can be sufficiently increased. Therefore, when the dielectric anisotropy Δε of the liquid crystal material is 16 or more, the occurrence of light leakage at the time of black display can be suppressed, and a high contrast ratio can be realized. Further, since the dielectric anisotropy Δε of the liquid crystal material is 16 or more, an effect of further improving the response speed when the pixel is changed from the black display state to the white display state can be obtained.
 なお、液晶材料の誘電異方性Δεが大きすぎると、回転粘性係数γが大きくなってかえって応答速度が低下するおそれがある。そのため、液晶材料の誘電異方性Δεは、25以下であることが好ましい。 Note that if the dielectric anisotropy Δε of the liquid crystal material is too large, the rotational viscosity coefficient γ may increase and the response speed may decrease. Therefore, the dielectric anisotropy Δε of the liquid crystal material is preferably 25 or less.
 液晶層30の厚さdに制限はないが、液晶層30の厚さdが小さくなるほど、応答速度が向上する。応答速度の観点からは、液晶層30の厚さdは、4.0μm以下であることが好ましい。また、液晶層30の厚さdが小さすぎると、液晶表示パネル1の歩留まりが低下することがある。歩留りの観点からは、液晶層30の厚さdは、2.5μm以上であることが好ましい。 The thickness d of the liquid crystal layer 30 is not limited, but the response speed improves as the thickness d of the liquid crystal layer 30 decreases. From the viewpoint of response speed, the thickness d of the liquid crystal layer 30 is preferably 4.0 μm or less. If the thickness d of the liquid crystal layer 30 is too small, the yield of the liquid crystal display panel 1 may be reduced. From the viewpoint of yield, the thickness d of the liquid crystal layer 30 is preferably 2.5 μm or more.
 既に説明したように、本実施形態の液晶表示装置100では、誘電異方性Δεが16以上の液晶材料が用いられる。このような高い誘電異方性Δεを有する液晶材料としては、例えば、ネマチック液晶材料に、特開平7-126205号公報に開示されているシクロヘキサンジメチル誘導体(下記式(1)で表わされる)を添加した液晶材料を用いることができる。式(1)中、R1は、炭素原子数が1~12のアルキル基を表し、X1およびX3は、水素原子またはハロゲン原子を表し、X2は、ハロゲン原子またはシアノ基を表す。参考のために、特開平7-126205号公報の開示内容の全てを本明細書に援用する。勿論、ここで例示している液晶材料以外のものを用いてもよい。 As already described, in the liquid crystal display device 100 of the present embodiment, a liquid crystal material having a dielectric anisotropy Δε of 16 or more is used. As the liquid crystal material having such a high dielectric anisotropy Δε, for example, a cyclohexanedimethyl derivative (represented by the following formula (1)) disclosed in JP-A-7-126205 is added to a nematic liquid crystal material. The liquid crystal material can be used. In the formula (1), R 1 represents an alkyl group having 1 to 12 carbon atoms, X 1 and X 3 represent a hydrogen atom or a halogen atom, and X2 represents a halogen atom or a cyano group. For reference, the entire disclosure of Japanese Patent Laid-Open No. 7-126205 is incorporated herein by reference. Of course, materials other than the liquid crystal materials illustrated here may be used.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 (実施形態2)
 図12を参照しながら、本実施形態における液晶表示装置200を説明する。図12は、液晶表示装置200を模式的に示す断面図である。以下では、液晶表示装置200が、実施形態1における液晶表示装置100と異なる点を中心として説明を行う。
(Embodiment 2)
A liquid crystal display device 200 according to the present embodiment will be described with reference to FIG. FIG. 12 is a cross-sectional view schematically showing the liquid crystal display device 200. Hereinafter, the liquid crystal display device 200 will be described focusing on differences from the liquid crystal display device 100 according to the first embodiment.
 液晶表示装置200は、前面基板(第2基板)20が、対向電極(第3電極)21と第2水平配向膜24との間に誘電体層(オーバーコート層)を有しない点において、実施形態1の液晶表示装置100と異なっている。つまり、液晶表示装置200は、実施形態1の液晶表示装置100におけるオーバーコート層22が省略された構成を有する。 The liquid crystal display device 200 is implemented in that the front substrate (second substrate) 20 does not have a dielectric layer (overcoat layer) between the counter electrode (third electrode) 21 and the second horizontal alignment film 24. This is different from the liquid crystal display device 100 of the first embodiment. That is, the liquid crystal display device 200 has a configuration in which the overcoat layer 22 in the liquid crystal display device 100 of Embodiment 1 is omitted.
 また、本実施形態の液晶表示装置200においても、液晶層30の厚さdに対する、液晶層30の自然カイラルピッチpの比p/dは、1以上3以下である。つまり、液晶層30の厚さdと、液晶層30の自然カイラルピッチpとは、1≦p/d≦3の関係を満足する。 Also in the liquid crystal display device 200 of the present embodiment, the ratio p / d of the natural chiral pitch p of the liquid crystal layer 30 to the thickness d of the liquid crystal layer 30 is 1 or more and 3 or less. That is, the thickness d of the liquid crystal layer 30 and the natural chiral pitch p of the liquid crystal layer 30 satisfy the relationship of 1 ≦ p / d ≦ 3.
 p/dが3以下であることにより、画素を黒表示状態から白表示状態へ遷移させるとき(つまり液晶層30への印加電圧を縦電界から横電界に切り替えたとき)の応答速度を十分に改善できる。 When p / d is 3 or less, the response speed when the pixel is changed from the black display state to the white display state (that is, when the voltage applied to the liquid crystal layer 30 is switched from the vertical electric field to the horizontal electric field) is sufficiently high. Can improve.
 図13に、液晶層30の厚さdを3μmのまま、自然カイラルピッチpを45μm、15μm、7.5μmと変化させたとき(つまりp/dを15、5、2.5と変化させたとき)の応答特性(時間と規格化輝度との関係)をシミュレーションにより計算した結果を示す。なお、図13には、参考のために、自然カイラルピッチpが45μmで、オーバーコート層が設けられている場合の応答特性を併せて示している。シミュレーションの条件は、下記表2に示す通りである。 In FIG. 13, when the natural chiral pitch p is changed to 45 μm, 15 μm, and 7.5 μm with the thickness d of the liquid crystal layer 30 being 3 μm (that is, p / d is changed to 15, 5, and 2.5). ) Response characteristics (relationship between time and normalized luminance) by simulation. For reference, FIG. 13 also shows response characteristics when the natural chiral pitch p is 45 μm and an overcoat layer is provided. The simulation conditions are as shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 図13から、自然カイラルピッチpが小さくなるほど(つまりp/dが小さくなるほど)、応答速度が改善している(応答特性が向上している)ことがわかり、p/dが3以下となることにより、十分に高い応答特性が得られることがわかる。 From FIG. 13, it can be seen that as the natural chiral pitch p becomes smaller (that is, as p / d becomes smaller), the response speed improves (response characteristics improve), and p / d becomes 3 or less. It can be seen that sufficiently high response characteristics can be obtained.
 なお、p/dを小さくしすぎると、白表示時の液晶分子31のツイスト角度が90°を超えるおそれがあり、透過率低下の原因となることがある。そのような透過率低下を抑制する観点からは、p/dは1以上であることが好ましい。 If p / d is too small, the twist angle of the liquid crystal molecules 31 during white display may exceed 90 °, which may cause a decrease in transmittance. From the viewpoint of suppressing such a decrease in transmittance, p / d is preferably 1 or more.
 また、本実施形態の液晶表示装置200では、液晶層30に含まれる液晶材料の誘電異方性Δεが16以上であるので、黒表示状態において背面基板10近傍および対向基板20近傍の液晶分子31の配向方向の極角を十分に大きくできる。 Further, in the liquid crystal display device 200 of the present embodiment, since the dielectric anisotropy Δε of the liquid crystal material included in the liquid crystal layer 30 is 16 or more, the liquid crystal molecules 31 in the vicinity of the back substrate 10 and the counter substrate 20 in the black display state. The polar angle in the orientation direction can be made sufficiently large.
 図14(a)および(b)に、液晶材料の誘電異方性Δεが5および18の場合の場合(いずれの場合も液晶層30の自然カイラルピッチpは5μm)の、黒表示状態(つまり液晶層30に縦電界が生成された状態)における液晶分子31の配向状態をシミュレーションによって計算した結果を示す。図14(a)および(b)は、横軸に、液晶層30の厚さ方向における液晶分子31の位置をとり、縦軸に、液晶分子31の配向方向の方位角および極角の大きさ(角度)をとったグラフである。横軸の0μmの位置が、背面基板10と液晶層30との界面に相当し、3.2μmの位置が、前面基板20と液晶層30との界面に相当する(つまり液晶層30の厚さdは3.2μmである)。また、方位角については、表示面を時計の文字盤に見立てたときの3時方向の角度を0°とし、反時計回りが正方向である。 14A and 14B show a black display state (that is, the natural chiral pitch p of the liquid crystal layer 30 is 5 μm in each case) when the dielectric anisotropy Δε of the liquid crystal material is 5 and 18. The result of having calculated the orientation state of the liquid crystal molecule 31 in the state where the vertical electric field is generated in the liquid crystal layer 30 by simulation is shown. 14A and 14B, the horizontal axis indicates the position of the liquid crystal molecules 31 in the thickness direction of the liquid crystal layer 30, and the vertical axis indicates the magnitudes of the azimuth and polar angles in the alignment direction of the liquid crystal molecules 31. It is the graph which took (angle). The position of 0 μm on the horizontal axis corresponds to the interface between the back substrate 10 and the liquid crystal layer 30, and the position of 3.2 μm corresponds to the interface between the front substrate 20 and the liquid crystal layer 30 (that is, the thickness of the liquid crystal layer 30). d is 3.2 μm). As for the azimuth, the angle in the 3 o'clock direction when the display surface is regarded as a clock face is 0 °, and the counterclockwise direction is the positive direction.
 液晶材料の誘電異方性Δεが5の場合、図14(a)に示すように、液晶分子31の配向方向の極角が十分に大きくなる前に、方位角が45°または-45°から変化し始めてしまう。つまり、液晶分子31の配向方向の極角が小さい領域(背面基板10と液晶層30との界面近傍、および、前面基板20と液晶層30との界面近傍)においても、液晶分子31は、偏光板15および25の吸収軸からずれた方向に配向してしまう。そのため、背面基板10近傍および前面基板20近傍の液晶分子31による光漏れが発生し、黒表示状態における輝度が高くなってしまう。従って、コントラスト比が低下する。 When the dielectric anisotropy Δε of the liquid crystal material is 5, as shown in FIG. 14A, the azimuth angle is changed from 45 ° or −45 ° before the polar angle in the alignment direction of the liquid crystal molecules 31 becomes sufficiently large. It starts to change. That is, in the region where the polar angle of the alignment direction of the liquid crystal molecules 31 is small (near the interface between the back substrate 10 and the liquid crystal layer 30 and near the interface between the front substrate 20 and the liquid crystal layer 30), the liquid crystal molecules 31 are polarized. The plates 15 and 25 are oriented in a direction shifted from the absorption axis. For this reason, light leaks due to the liquid crystal molecules 31 in the vicinity of the rear substrate 10 and the front substrate 20, and the luminance in the black display state is increased. Accordingly, the contrast ratio is lowered.
 これに対し、液晶材料の誘電異方性Δεが18の場合、図14(b)に示すように、液晶分子31の配向方向の極角が十分に大きくなってから、方位角が45°または-45°から変化し始める。つまり、液晶分子31の配向方向の極角が小さい領域(背面基板10と液晶層30との界面近傍、および、前面基板20と液晶層30との界面近傍)では、液晶分子31は、偏光板15および25の吸収軸に略平行に配向している。そのため、背面基板810近傍および前面基板20近傍の液晶分子31による光漏れは発生せず、良好な(つまり輝度が十分に低い)黒表示を行うことができる。 On the other hand, when the dielectric anisotropy Δε of the liquid crystal material is 18, as shown in FIG. 14B, the azimuth is 45 ° after the polar angle in the alignment direction of the liquid crystal molecules 31 becomes sufficiently large. It begins to change from -45 °. That is, in the region where the polar angle of the alignment direction of the liquid crystal molecules 31 is small (near the interface between the back substrate 10 and the liquid crystal layer 30 and near the interface between the front substrate 20 and the liquid crystal layer 30), the liquid crystal molecules 31 Oriented substantially parallel to the absorption axes of 15 and 25. Therefore, light leakage by the liquid crystal molecules 31 in the vicinity of the back substrate 810 and the front substrate 20 does not occur, and good (that is, luminance is sufficiently low) black display can be performed.
 このように、液晶材料の誘電異方性Δεが16以上であることにより、黒表示時の光漏れの発生を抑制することができ、高いコントラスト比を実現することができる。また、本願発明者の検討によれば、液晶材料の誘電異方性Δεが16未満の場合、黒表示時にディスクリネーションが発生することがあり、ディスクリネーションに起因する光漏れが発生し得ることがわかった。図15(a)および(b)に、液晶材料の誘電異方性Δεが15の場合と16の場合とについて、黒表示時の液晶分子31の配向状態をシミュレーションにより計算した結果を示す。 Thus, when the dielectric anisotropy Δε of the liquid crystal material is 16 or more, the occurrence of light leakage during black display can be suppressed, and a high contrast ratio can be realized. Further, according to the study of the present inventor, when the dielectric anisotropy Δε of the liquid crystal material is less than 16, disclination may occur during black display, and light leakage due to disclination may occur. I understood it. FIGS. 15A and 15B show the results of calculating the alignment state of the liquid crystal molecules 31 during black display by simulation for the cases where the dielectric anisotropy Δε of the liquid crystal material is 15 and 16. FIG.
 液晶材料の誘電異方性Δεが15の場合、図15(a)に示すように、液晶分子31が他の領域の液晶分子31の配向と整合しないように配向している領域が存在しており、ディスクリネーションが発生する。これに対し、液晶材料の誘電異方性Δεが16の場合、図15(b)に示すように、ディスクリネーションは発生しておらず、液晶分子31は一様に配向している。 When the dielectric anisotropy Δε of the liquid crystal material is 15, as shown in FIG. 15A, there is a region where the liquid crystal molecules 31 are aligned so as not to match the alignment of the liquid crystal molecules 31 in other regions. And disclination occurs. On the other hand, when the dielectric anisotropy Δε of the liquid crystal material is 16, as shown in FIG. 15B, no disclination occurs and the liquid crystal molecules 31 are uniformly aligned.
 このように、液晶材料の誘電異方性Δεが16以上であると、ディスクリネーションの発生も抑制されるので、そのことも高いコントラスト比の実現に寄与する。 Thus, when the dielectric anisotropy Δε of the liquid crystal material is 16 or more, the occurrence of disclination is suppressed, which also contributes to the realization of a high contrast ratio.
 なお、液晶材料の誘電異方性Δεが大きすぎると、回転粘性係数γが大きくなってかえって応答速度が低下するおそれがある。そのため、液晶材料の誘電異方性Δεは、25以下であることが好ましい。 Note that if the dielectric anisotropy Δε of the liquid crystal material is too large, the rotational viscosity coefficient γ may increase and the response speed may decrease. Therefore, the dielectric anisotropy Δε of the liquid crystal material is preferably 25 or less.
 また、本実施形態の液晶表示装置200では、前面基板20は、対向電極21と第2水平配向膜24との間にオーバーコート層を有していない。実施形態1の液晶表示装置100のようにオーバーコート層22が設けられていると、横電界が生成されたときに不可避的に生成されてしまう縦電界を弱めることができるので、横電界の作用を強くすることができる。ただし、オーバーコート層22が設けられていることにより、縦電界の作用は弱くなる。そのため、黒表示時に液晶層30に十分に縦電界を作用させることができず、黒表示状態の輝度を十分に低くできないことがある。これに対し、本実施形態のように、対向電極21と第2水平配向膜24との間にオーバーコート層が設けられていないことにより、黒表示時に液晶層30に縦電界を十分に作用させることが容易となるので、コントラスト比のいっそうの向上を実現することができる。 Further, in the liquid crystal display device 200 of the present embodiment, the front substrate 20 does not have an overcoat layer between the counter electrode 21 and the second horizontal alignment film 24. When the overcoat layer 22 is provided as in the liquid crystal display device 100 of Embodiment 1, the vertical electric field that is inevitably generated when the horizontal electric field is generated can be weakened. Can be strengthened. However, since the overcoat layer 22 is provided, the action of the vertical electric field is weakened. Therefore, the vertical electric field cannot be sufficiently applied to the liquid crystal layer 30 during black display, and the luminance in the black display state cannot be sufficiently lowered. On the other hand, as in the present embodiment, since no overcoat layer is provided between the counter electrode 21 and the second horizontal alignment film 24, a vertical electric field is sufficiently applied to the liquid crystal layer 30 during black display. Therefore, the contrast ratio can be further improved.
 図16に、オーバーコート層が設けられていない場合と、オーバーコート層が設けられている場合とについて、コントラスト比を示す。図16は、横軸に液晶層30の自然カイラルピッチpをとり、縦軸にコントラスト比をとったグラフである。なお、ここでは、液晶層30の厚さdは、3.2μmである。 FIG. 16 shows contrast ratios when the overcoat layer is not provided and when the overcoat layer is provided. FIG. 16 is a graph in which the horizontal axis represents the natural chiral pitch p of the liquid crystal layer 30 and the vertical axis represents the contrast ratio. Here, the thickness d of the liquid crystal layer 30 is 3.2 μm.
 図16から、オーバーコート層を省略することにより、コントラスト比が格段に高くなることがわかる。 FIG. 16 shows that the contrast ratio is remarkably increased by omitting the overcoat layer.
 また、オーバーコート層を省略することにより、黒表示時に液晶層30に縦電界を十分に作用させることができるので、画素を白表示状態から黒表示状態へ遷移させるとき(つまり液晶層30への印加電圧を横電界から縦電界に切り替えたとき)の応答速度も改善される。図17に、画素を白表示状態から黒表示状態へ遷移させるときの応答特性(時間と規格化輝度との関係)をシミュレーションにより計算した結果を示す。図17には、液晶材料の誘電異方性Δεが10、15、16、18、20および25の場合を示している。シミュレーションの条件は、下記表3に示す通りである。 Further, by omitting the overcoat layer, a vertical electric field can be sufficiently applied to the liquid crystal layer 30 during black display. Therefore, when the pixel is changed from the white display state to the black display state (that is, to the liquid crystal layer 30). The response speed when the applied voltage is switched from the horizontal electric field to the vertical electric field is also improved. FIG. 17 shows the result of calculating the response characteristics (relationship between time and normalized luminance) when the pixel is changed from the white display state to the black display state by simulation. FIG. 17 shows the case where the dielectric anisotropy Δε of the liquid crystal material is 10, 15, 16, 18, 20, and 25. The simulation conditions are as shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 図17から、オーバーコート層が省略され、且つ、液晶材料の誘電異方性Δεが16以上の場合に、応答特性が十分に向上していることがわかる。 17 that the response characteristics are sufficiently improved when the overcoat layer is omitted and the dielectric anisotropy Δε of the liquid crystal material is 16 or more.
 このように、オーバーコート層の省略により、コントラスト比のいっそうの向上と、画素を白表示状態から黒表示状態へ遷移させるときの応答特性の向上とを図ることができる。また、オーバーコート層が設けられていると、オーバーコート層に電荷が溜まることに起因した焼き付きが発生するおそれがあるが、オーバーコート層の省略により、そのような焼き付きの発生を防止することができるので、信頼性が向上する。 Thus, by omitting the overcoat layer, it is possible to further improve the contrast ratio and to improve the response characteristics when the pixel is changed from the white display state to the black display state. In addition, if an overcoat layer is provided, there is a possibility that image sticking due to the accumulation of electric charge in the overcoat layer may occur, but the occurrence of such image burn-in can be prevented by omitting the overcoat layer. This improves reliability.
 なお、液晶層30の自然カイラルピッチpが大きい構成(具体的にはp/dが3を大きく超えるような構成)においては、オーバーコート層を省略すると、画素を黒表示状態から白表示状態へ遷移させるときの応答特性が低くなりすぎてしまうため、オーバーコート層を省略することはできなかった。これに対し、本実施形態のように、液晶層30の自然カイラルピッチpが小さい構成(具体的にはp/dが3以下となるような構成)を採用することにより、オーバーコート層を省略することができ、上述した効果を得ることができる。 In the configuration in which the natural chiral pitch p of the liquid crystal layer 30 is large (specifically, the configuration in which p / d greatly exceeds 3), if the overcoat layer is omitted, the pixel is changed from the black display state to the white display state. Since the response characteristics at the time of transition are too low, the overcoat layer could not be omitted. On the other hand, the overcoat layer is omitted by adopting a configuration in which the natural chiral pitch p of the liquid crystal layer 30 is small (specifically, a configuration in which p / d is 3 or less) as in the present embodiment. And the effects described above can be obtained.
 液晶層30の厚さdに制限はないが、液晶層30の厚さdが小さくなるほど、応答速度が向上する。応答速度の観点からは、液晶層30の厚さdは、4.0μm以下であることが好ましい。なお、液晶層30の厚さdが小さすぎると、液晶表示パネル1の歩留まりが低下することがある。歩留りの観点からは、液晶層30の厚さdは、2.5μm以上であることが好ましい。 The thickness d of the liquid crystal layer 30 is not limited, but the response speed improves as the thickness d of the liquid crystal layer 30 decreases. From the viewpoint of response speed, the thickness d of the liquid crystal layer 30 is preferably 4.0 μm or less. If the thickness d of the liquid crystal layer 30 is too small, the yield of the liquid crystal display panel 1 may be reduced. From the viewpoint of yield, the thickness d of the liquid crystal layer 30 is preferably 2.5 μm or more.
 (他の実施形態)
 これまでの説明では、液晶層30に横電界が生成された状態において、液晶層30の厚さ方向における中央付近の液晶分子31が、スリット方向Dに略直交するように配向する場合を例示したが、本発明の実施形態は、この構成に限定されるものではない。
(Other embodiments)
In the description so far, the case where the liquid crystal molecules 31 near the center in the thickness direction of the liquid crystal layer 30 are aligned so as to be substantially orthogonal to the slit direction D in a state where a horizontal electric field is generated in the liquid crystal layer 30 has been exemplified. However, the embodiment of the present invention is not limited to this configuration.
 また、本実施形態では、フィールドシーケンシャル方式でカラー表示を行うシースルーディスプレイを例示したが、本発明の実施形態は、必ずしもこれに限定されるものではない。本発明の実施形態は、液晶分子がツイスト配向をとり得るオン・オンモードの液晶表示装置に広く用いることができる。 Further, in the present embodiment, a see-through display that performs color display by a field sequential method is exemplified, but the embodiment of the present invention is not necessarily limited to this. Embodiments of the present invention can be widely used in an on / on mode liquid crystal display device in which liquid crystal molecules can have twist alignment.
 本発明の実施形態によると、液晶分子がツイスト配向をとり得るオン・オンモードの液晶表示装置において、優れた応答特性と高いコントラスト比とを両立することができる。 According to the embodiment of the present invention, it is possible to achieve both excellent response characteristics and a high contrast ratio in an on / on mode liquid crystal display device in which liquid crystal molecules can be twisted.
 本発明の実施形態による液晶表示装置は、シースルーディスプレイとして好適に用いられる。 The liquid crystal display device according to the embodiment of the present invention is suitably used as a see-through display.
 1  液晶表示パネル
 2  照明素子
 2a  光源ユニット
 2b  導光板
 10  第1基板(背面基板)
 10a  透明基板
 11  第1電極(上層電極)
 11a  スリット
 11b  枝状部
 12  第2電極(下層電極)
 13  絶縁層
 14  第1水平配向膜
 15  第1偏光板
 15a  第1偏光板の透過軸
 16A  第1TFT
 16B  第2TFT
 17  ゲートバスライン
 18  ソースバスライン
 20  第2基板(前面基板)
 20a  透明基板
 21  第3電極(対向電極)
 22  誘電体層(オーバーコート層)
 24  第2水平配向膜
 25  第2偏光板
 25a  第2偏光板の透過軸
 30  液晶層
 31  液晶分子
 100、100A、200  液晶表示装置
DESCRIPTION OF SYMBOLS 1 Liquid crystal display panel 2 Illumination element 2a Light source unit 2b Light guide plate 10 1st board | substrate (back substrate)
10a Transparent substrate 11 First electrode (upper layer electrode)
11a Slit 11b Branch-shaped part 12 2nd electrode (lower layer electrode)
DESCRIPTION OF SYMBOLS 13 Insulating layer 14 1st horizontal alignment film 15 1st polarizing plate 15a Transmission axis of 1st polarizing plate 16A 1st TFT
16B 2nd TFT
17 Gate bus line 18 Source bus line 20 Second substrate (front substrate)
20a Transparent substrate 21 Third electrode (counter electrode)
22 Dielectric layer (overcoat layer)
24 Second horizontal alignment film 25 Second polarizing plate 25a Transmission axis of second polarizing plate 30 Liquid crystal layer 31 Liquid crystal molecule 100, 100A, 200 Liquid crystal display device

Claims (10)

  1.  互いに対向する第1基板および第2基板と、前記第1基板および前記第2基板の間に設けられた液晶層とを有する液晶表示パネルを備え、
     マトリクス状に配列された複数の画素を有する液晶表示装置であって、
     前記第1基板は、前記複数の画素のそれぞれに設けられた第1電極と、前記第1電極とともに前記液晶層に横電界を生成する第2電極とを有し、
     前記第2基板は、前記第1電極および前記第2電極に対向するように設けられ、前記第1電極および前記第2電極とともに前記液晶層に縦電界を生成する第3電極を有し、
     前記液晶層に横電界が生成された状態において、前記液晶層の液晶分子は、ツイスト配向をとり、
     前記液晶層の厚さdと、前記液晶層の自然カイラルピッチpとが、1≦p/d≦3の関係を満足し、
     前記液晶層に含まれる液晶材料の誘電異方性Δεは、16以上25以下である、液晶表示装置。
    A liquid crystal display panel having a first substrate and a second substrate facing each other, and a liquid crystal layer provided between the first substrate and the second substrate;
    A liquid crystal display device having a plurality of pixels arranged in a matrix,
    The first substrate includes a first electrode provided in each of the plurality of pixels, and a second electrode that generates a lateral electric field in the liquid crystal layer together with the first electrode,
    The second substrate includes a third electrode that is provided to face the first electrode and the second electrode, and generates a vertical electric field in the liquid crystal layer together with the first electrode and the second electrode,
    In a state where a horizontal electric field is generated in the liquid crystal layer, the liquid crystal molecules in the liquid crystal layer take a twist alignment,
    The thickness d of the liquid crystal layer and the natural chiral pitch p of the liquid crystal layer satisfy the relationship 1 ≦ p / d ≦ 3,
    The liquid crystal display device, wherein the liquid crystal material included in the liquid crystal layer has a dielectric anisotropy Δε of 16 or more and 25 or less.
  2.  前記液晶層の厚さdは、2.5μm以上4.0μm以下である請求項1に記載の液晶表示装置。 2. The liquid crystal display device according to claim 1, wherein a thickness d of the liquid crystal layer is 2.5 μm or more and 4.0 μm or less.
  3.  前記第1基板は、前記液晶層側の表面に第1配向膜を有し、
     前記第2基板は、前記液晶層側の表面に第2配向膜を有し、
     前記第2基板は、前記第3電極と前記第2配向膜との間に誘電体層を有する請求項1または2に記載の液晶表示装置。
    The first substrate has a first alignment film on the surface on the liquid crystal layer side,
    The second substrate has a second alignment film on the surface on the liquid crystal layer side,
    The liquid crystal display device according to claim 1, wherein the second substrate has a dielectric layer between the third electrode and the second alignment film.
  4.  前記第1基板は、前記液晶層側の表面に第1配向膜を有し、
     前記第2基板は、前記液晶層側の表面に第2配向膜を有し、
     前記第2基板は、前記第3電極と前記第2配向膜との間に誘電体層を有しない請求項1または2に記載の液晶表示装置。
    The first substrate has a first alignment film on the surface on the liquid crystal layer side,
    The second substrate has a second alignment film on the surface on the liquid crystal layer side,
    The liquid crystal display device according to claim 1, wherein the second substrate does not have a dielectric layer between the third electrode and the second alignment film.
  5.  前記複数の画素のそれぞれは、
     前記液晶層に縦電界が生成された状態で黒表示が行われる黒表示状態と、
     前記液晶層に横電界が生成された状態で白表示が行われる白表示状態と、
     前記液晶層に電圧が印加されていない状態で前記液晶表示パネルの背面側が透けて見える透明表示状態と、を切り替えて呈することができる請求項1から4のいずれかに記載の液晶表示装置。
    Each of the plurality of pixels is
    A black display state in which black display is performed in a state where a vertical electric field is generated in the liquid crystal layer;
    A white display state in which a white display is performed in a state where a horizontal electric field is generated in the liquid crystal layer;
    5. The liquid crystal display device according to claim 1, wherein the liquid crystal display device can be switched between a transparent display state in which a back side of the liquid crystal display panel can be seen through when no voltage is applied to the liquid crystal layer.
  6.  前記第1電極は、絶縁層を介して前記第2電極上に位置するように設けられている請求項1から5のいずれかに記載の液晶表示装置。 6. The liquid crystal display device according to claim 1, wherein the first electrode is provided on the second electrode via an insulating layer.
  7.  前記第1電極は、所定の方向に延びる少なくとも1つのスリットを有し、
     前記液晶層に横電界が生成された状態において、前記液晶層の厚さ方向における中央付近の液晶分子は、前記所定の方向に略平行であるか、または、略直交するように配向する請求項1から6のいずれかに記載の液晶表示装置。
    The first electrode has at least one slit extending in a predetermined direction;
    The liquid crystal molecules near the center in the thickness direction of the liquid crystal layer in a state where a lateral electric field is generated in the liquid crystal layer, are aligned so as to be substantially parallel to or substantially orthogonal to the predetermined direction. The liquid crystal display device according to any one of 1 to 6.
  8.  前記液晶表示パネルに、赤色光、緑色光および青色光を含む複数の色光を切り替えて照射し得る照明素子をさらに備える請求項1から7のいずれかに記載の液晶表示装置。 The liquid crystal display device according to any one of claims 1 to 7, further comprising an illumination element capable of switching and irradiating the liquid crystal display panel with a plurality of color lights including red light, green light, and blue light.
  9.  フィールドシーケンシャル方式でカラー表示を行う請求項1から8のいずれかに記載の液晶表示装置。 The liquid crystal display device according to any one of claims 1 to 8, wherein color display is performed by a field sequential method.
  10.  前記液晶表示パネルは、カラーフィルタを有していない請求項1から9のいずれかに記載の液晶表示装置。 10. The liquid crystal display device according to claim 1, wherein the liquid crystal display panel does not have a color filter.
PCT/JP2017/007898 2016-03-10 2017-02-28 Liquid crystal display device WO2017154680A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-047373 2016-03-10
JP2016047373 2016-03-10

Publications (1)

Publication Number Publication Date
WO2017154680A1 true WO2017154680A1 (en) 2017-09-14

Family

ID=59789692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007898 WO2017154680A1 (en) 2016-03-10 2017-02-28 Liquid crystal display device

Country Status (1)

Country Link
WO (1) WO2017154680A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004354407A (en) * 2003-05-26 2004-12-16 Hitachi Ltd Liquid crystal display device
JP2005010202A (en) * 2003-06-16 2005-01-13 Nec Corp Liquid crystal panel, liquid crystal display device using liquid crystal panel, and electronic device on which liquid crystal display is mounted
WO2011078126A1 (en) * 2009-12-25 2011-06-30 学校法人東京理科大学 Tn liquid crystal element, and method for producing same
JP2013166936A (en) * 2012-02-15 2013-08-29 Merck Patent Gmbh Liquid-crystalline medium
WO2014136586A1 (en) * 2013-03-07 2014-09-12 シャープ株式会社 Liquid crystal display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004354407A (en) * 2003-05-26 2004-12-16 Hitachi Ltd Liquid crystal display device
JP2005010202A (en) * 2003-06-16 2005-01-13 Nec Corp Liquid crystal panel, liquid crystal display device using liquid crystal panel, and electronic device on which liquid crystal display is mounted
WO2011078126A1 (en) * 2009-12-25 2011-06-30 学校法人東京理科大学 Tn liquid crystal element, and method for producing same
JP2013166936A (en) * 2012-02-15 2013-08-29 Merck Patent Gmbh Liquid-crystalline medium
WO2014136586A1 (en) * 2013-03-07 2014-09-12 シャープ株式会社 Liquid crystal display device

Similar Documents

Publication Publication Date Title
JP5932135B2 (en) Liquid crystal display
WO2016035611A1 (en) Liquid crystal display device
WO2016190211A1 (en) Liquid crystal display device
WO2015186635A1 (en) Liquid crystal display device
KR20110101894A (en) Liquid crsytal display
WO2015190588A1 (en) Liquid crystal display device
US20140240651A1 (en) Liquid crystal display panel and liquid crystal display device
WO2016035578A1 (en) Liquid crystal display device
WO2017170542A1 (en) Liquid crystal display device and method for manufacturing liquid crystal display device
US10175542B2 (en) Liquid crystal display device
KR20140040651A (en) Liquid crystal display device and driving method of the same
JP6105928B2 (en) Liquid crystal display
WO2016035561A1 (en) Liquid crystal display device
WO2012093621A1 (en) Liquid-crystal display device
JP2005284304A (en) Active matrix liquid crystal display
WO2017154680A1 (en) Liquid crystal display device
KR20100099950A (en) Viewing angle controllable liquid crystal display using fringe-field switching mode
US10796650B2 (en) Liquid crystal display device and driving method therefor
JP4328281B2 (en) Liquid crystal display
WO2015194498A1 (en) Liquid crystal display device
CN112698533B (en) Liquid crystal display device having a light shielding layer
US20200184909A1 (en) Liquid crystal display device
US11959006B2 (en) Liquid crystal display device
US9250485B1 (en) Liquid crystal display panel and array substrate thereof wherein a width of bar-shaped gaps in each of a plurality of pixel units increases gradually
KR20070016952A (en) Liquid crystal display

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763020

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17763020

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP