WO2017154456A1 - Self-driving control device and self-driving system - Google Patents

Self-driving control device and self-driving system Download PDF

Info

Publication number
WO2017154456A1
WO2017154456A1 PCT/JP2017/004855 JP2017004855W WO2017154456A1 WO 2017154456 A1 WO2017154456 A1 WO 2017154456A1 JP 2017004855 W JP2017004855 W JP 2017004855W WO 2017154456 A1 WO2017154456 A1 WO 2017154456A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle
unit
reliability
obstacle detection
light
Prior art date
Application number
PCT/JP2017/004855
Other languages
French (fr)
Japanese (ja)
Inventor
将広 内藤
袴田 浩司
毅 小形
谷 則幸
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2017154456A1 publication Critical patent/WO2017154456A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present disclosure relates to data processing technology, and more particularly to an automatic operation control device and an automatic operation system.
  • a device such as a TOF (Time ⁇ of ⁇ ⁇ flight) camera
  • TOF Time ⁇ of ⁇ ⁇ flight
  • the TOF camera When the TOF camera is used outdoors, the light of the same wavelength included in the outdoor light becomes noise, and the accuracy of distance measurement by the TOF camera decreases. Therefore, for example, in an automatic driving system using a TOF camera, even if an obstacle is detected, the prediction of the distance from the vehicle to the obstacle may be inaccurate. On the other hand, in the automatic driving of the vehicle, since it is necessary to control the vehicle so as to avoid the obstacle, it is preferable that the prediction of the distance from the vehicle to the obstacle is accurate.
  • the present disclosure has been made in view of such a situation, and a main object is to provide a technology that supports obstacle avoidance in automatic driving of a vehicle.
  • an automatic operation control device includes an acquisition unit that acquires an obstacle detection result, and a collision with an obstacle according to the detection result acquired by the acquisition unit.
  • a determination unit that determines the behavior of the vehicle so as to avoid, and an operation control unit that causes the vehicle to execute the behavior determined by the determination unit.
  • the acquisition unit further acquires information indicating the reliability of the obstacle detection result, and the determination unit determines different behaviors according to the information indicating the reliability.
  • the automatic driving system includes an obstacle detection device and an automatic driving control device.
  • the obstacle detection device includes a light emitting unit that emits light toward the outside of the vehicle, a detection unit that detects an obstacle according to the time until the light emitted from the light emitting unit is reflected back to the object, and the light emission.
  • An estimation unit for estimating the reliability of the detection result by the detection unit according to the intensity of the background light received when the unit is not emitting light, information on the obstacle detected by the detection unit, and the reliability estimated by the estimation unit
  • a transmitter for transmitting the information to the automatic operation control device.
  • the automatic driving control device determines the behavior of the vehicle according to the obstacle information transmitted from the obstacle detection device so as to avoid a collision with the obstacle, and the behavior determined by the decision unit.
  • An operation control unit to be executed by the vehicle.
  • the determination unit determines different behaviors according to the reliability information transmitted from the obstacle detection device.
  • obstacle avoidance in automatic driving of a vehicle can be supported.
  • Fig. 1 shows the principle of the TOF camera.
  • the TOF camera 10 is also referred to as a TOF type distance image sensor, and the light receiving element 14 receives the reflected light returned from the measurement light emitted from the light emitting element 12 after being reflected by the object 16.
  • the TOF camera 10 measures the distance Z to the object 16 based on the time from the emission of the measurement light to the reception of the reflected light.
  • the distance Z is obtained by (light velocity c ⁇ delay time ⁇ t / 2 from the measurement light emission to the reflection light reception).
  • the TOF camera 10 when the TOF camera 10 is used outdoors, the light of the same wavelength contained in the light from the noise light source 18 such as the sun becomes noise, and the measurement accuracy of the distance Z by the TOF camera 10 decreases. Therefore, for example, in an automatic driving system using a TOF camera, there may be a problem that an obstacle that does not exist is erroneously detected, or a problem that a distance to the obstacle is erroneously detected. As a result, there may be a problem that the operation for avoiding the obstacle cannot be executed at an appropriate timing. Further, when a separate sensor for measuring noise light is provided, there arises a problem that the number of parts and the cost increase.
  • the obstacle detection apparatus of this embodiment detects an obstacle using a TOF camera and estimates the reliability of the detection result.
  • the automatic driving control device of the present embodiment determines the behavior of the vehicle based on the obstacle detection result by the obstacle detection device so as to avoid collision with the obstacle, and causes the vehicle to execute the determined behavior. Moreover, even if the detection result of an obstruction is the same, the automatic driving
  • FIG. 2 shows a configuration of the vehicle 20 according to the first embodiment.
  • the vehicle 20 includes a driving operation unit 22, an obstacle detection device 24, and an automatic driving control device 26.
  • elements constituting the automatic driving system 28 among various elements constituting the vehicle 20 are shown.
  • the driving operation unit 22 is an element that operates the behavior of the vehicle 20 and includes a steering wheel 30, a brake pedal 32, an accelerator pedal 34, and a winker switch 36.
  • the steering 30, brake pedal 32, accelerator pedal 34, and blinker switch 36 can be electronically controlled by a steering ECU (ECU: Electronic Control Unit), brake ECU, engine ECU, and / or motor ECU. It is.
  • ECU Electronic Control Unit
  • brake ECU brake ECU
  • engine ECU Engine ECU
  • motor ECU It is.
  • the steering ECU, the brake ECU, the engine ECU, and the motor ECU drive the actuator in accordance with a control signal supplied from the automatic operation control device 26.
  • the blinker controller turns on or off the blinker lamp according to a control signal supplied from the automatic operation control device 26.
  • the obstacle detection device 24 includes a TOF camera 40, an obstacle detection unit 48, a reliability estimation unit 50, and an obstacle information transmission unit 52.
  • the TOF camera 40 includes a light emitting unit 42 corresponding to the light emitting element 12 in FIG. 1, a light receiving unit 44 corresponding to the light receiving element 14 in FIG. 1, and a distance measuring unit 46.
  • the light emitting unit 42 emits predetermined measurement light (for example, infrared light) toward the outside of the vehicle 20 (for example, the front space of the vehicle 20).
  • the light receiving unit 44 receives light (hereinafter referred to as “reflected light”) when the light emitted from the light emitting unit 42 is reflected back to an object outside the vehicle 20 and returned.
  • the light receiving unit 44 also receives light (hereinafter referred to as “background light”) input when the light emitting unit 42 does not emit light.
  • the background light is light that does not include the reflected light accompanying the light emission by the light emitting unit 42, and is light that is received from the surrounding environment of the vehicle 20 regardless of whether the light emitting unit 42 emits light.
  • the distance measuring unit 46 measures the distance from the vehicle 20 to the object outside the vehicle 20 according to the time until the light emitted from the light emitting unit 42 is reflected by the object and returns.
  • the distance measurement unit 46 generates image data (hereinafter referred to as “TOF image”) in which the distance from the vehicle 20 to the object is associated with each of the plurality of pixels, and outputs the image data to the obstacle detection unit 48.
  • TOF image image data
  • FIG. 3 shows light emission pulses and light reception pulses in the TOF camera 40.
  • the time from the rise of the light emission pulse to the rise of the light reception pulse corresponds to the delay time ⁇ t from the emission of the measurement light to the reception of the reflected light.
  • A0 in the figure is the exposure amount from the rising edge of the received light pulse to the falling edge of the light emission pulse.
  • A1 in the figure is the exposure amount from the fall of the light emission pulse to the fall of the light reception pulse.
  • the time from the fall of the light emission pulse to the fall of the light reception pulse also corresponds to the delay time ⁇ t.
  • BG in the figure is the exposure amount of the background light.
  • the distance measuring unit 46 may determine the delay time ⁇ t based on the exposure amount of the received light pulse. Specifically, it may be calculated based on the area ratio of A0, A1, and BG shown in FIG. Alternatively, the distance measuring unit 46 may directly obtain the delay time ⁇ t by time measurement, such as measuring the time from the rise of the light emission pulse to the rise of the light reception pulse. The distance measuring unit 46 may obtain the delay time ⁇ t for each pixel of the TOF image, and associate the distance Z to the object calculated based on the light speed c and the delay time ⁇ t to each pixel of the TOF image.
  • the reliability estimation unit 50 described later identifies the amplitude (Ha) of the light emission pulse shown in FIG. 3 as the light emission intensity, and uses the background light offset value Hb (for example, the distance from the reference value indicating the amount of received light 0) as the background. You may identify as light intensity. Or the reliability estimation part 50 mentioned later may identify the light emission amount (Aa) shown in FIG. 3 as light emission intensity, and may identify the exposure amount (BG) of background light as background light intensity. Furthermore, the reliability estimation unit 50 described later may identify the average value of Hb or BG measured for each pixel of the TOF image as the background light intensity.
  • the obstacle detection unit 48 detects an obstacle present on the travel route of the vehicle 20 in accordance with information indicating the distance to the object measured by the distance measurement unit 46. For example, the obstacle detection unit 48 extracts one or more object regions indicating one or more objects from the TOF image generated by the distance measurement unit 46, and excludes objects that match predetermined road surface data. The remaining objects may be identified as obstacles. The obstacle detection unit 48 may detect the position of the obstacle in the front space of the vehicle 20 (in other words, the distance from the vehicle 20) and the time until the vehicle 20 collides with the obstacle.
  • the TOF camera 40 and the obstacle detection unit 48 cooperate to detect the obstacle according to the time until the emitted light is reflected back to the object and returned. To do.
  • the measurement of the distance from the vehicle 20 to the object outside the vehicle 20 and the detection of the obstacle based on the measurement result may be realized by a known method.
  • the reliability estimation unit 50 estimates the reliability of the obstacle detection result by the obstacle detection unit 48 according to the intensity of background light received by the light receiving unit 44 when the light emitting unit 42 is not emitting light. This reliability can be said to be an index value indicating the level of accuracy of the obstacle detection result by the obstacle detection unit 48.
  • the reliability estimation unit 50 acquires the light emission intensity by the light emission unit 42 and the background light intensity from the TOF camera 40, and compares the two to estimate the reliability. Specifically, the reliability is obtained as a signal-to-noise ratio (S / N ratio), and the ratio between the light emission intensity and the background light intensity is estimated as the reliability. For example, the reliability estimation unit 50 may identify a value obtained by dividing the light emission intensity by the background light intensity as the reliability value.
  • the obstacle information transmission unit 52 associates the obstacle information related to the obstacle and the reliability information indicating the reliability of the obstacle information and transmits the information to the automatic operation control device 26.
  • the obstacle information includes information indicating the position of the obstacle detected by the obstacle detection unit 48 and the time until the obstacle is reached.
  • the reliability information includes a reliability value estimated by the reliability estimation unit 50.
  • the automatic driving control device 26 is an automatic driving controller in which an automatic driving control function is implemented, and controls the behavior (also referred to as action or operation) of the vehicle 20 in automatic driving.
  • the automatic operation control device 26 includes an I / O unit 60, a storage unit 62, and a control unit 64.
  • the I / O unit 60 executes communication control according to various communication formats.
  • the storage unit 62 includes a nonvolatile recording medium such as a flash memory.
  • the storage unit 62 holds a predetermined automatic operation algorithm.
  • the automatic driving algorithm includes an obstacle avoidance algorithm that determines a driving mode (route, speed, etc.) of the vehicle so as to avoid a collision with the obstacle according to the position of the detected obstacle.
  • the obstacle avoidance algorithm includes information indicating a safety distance that is a distance to be maintained between the vehicle and the obstacle for safely avoiding a collision with the obstacle.
  • the storage unit 62 also holds various threshold data that are conditions for determining the mode of automatic driving.
  • the control unit 64 can be realized by cooperation of hardware resources and software resources, or only by hardware resources. Processors, ROM, RAM, and other LSIs can be used as hardware resources, and programs such as an operating system, application, and firmware can be used as software resources.
  • the control unit 64 includes an obstacle information acquisition unit 66, a behavior determination unit 68, and an operation control unit 70.
  • the obstacle information acquisition unit 66 acquires the obstacle information transmitted from the obstacle detection device 24 via the I / O unit 60.
  • the obstacle information includes the obstacle detection result (the position of the obstacle, etc.) by the obstacle detection device 24 and the reliability information indicating the reliability of the detection result.
  • the behavior determination unit 68 determines the behavior of the vehicle so as to avoid collision with the obstacle according to the information of the obstacle detection result acquired by the obstacle information acquisition unit 66.
  • the behavior of the vehicle for avoiding a collision with an obstacle is hereinafter referred to as “obstacle avoidance behavior”.
  • the behavior determination unit 68 determines the obstacle avoidance behavior according to the obstacle avoidance algorithm stored in the storage unit 62.
  • the behavior determination unit 68 may determine overtaking of the obstacle as the obstacle avoidance behavior. In this case, the behavior determining unit 68 determines a time and a vehicle speed until the lane change to the right lane is started, and further, a time until the lane change to the left lane is started after the lane change to the right lane is completed. And the vehicle speed may be determined. Moreover, the behavior determination unit 68 may determine to stop before the obstacle as the obstacle avoidance behavior. In this case, the behavior determination unit 68 may determine the waiting time until the actuator of the brake pedal 32 is operated, the operation time of the actuator of the brake pedal 32 and the strength thereof.
  • the behavior determination unit 68 determines different obstacle avoidance behaviors according to the reliability information acquired by the obstacle information acquisition unit 66. That is, the behavior determination unit 68 determines the obstacle avoidance behavior according to the obstacle detection result indicated by the obstacle information transmitted from the obstacle detection device 24, but differs depending on the reliability indicated by the obstacle information. Determine obstacle avoidance behavior. In other words, even if the obstacle detection result is the same, the behavior determination unit 68 determines a different obstacle avoidance behavior if the reliability of the obstacle detection result is different.
  • the storage unit 62 may store one or more predetermined threshold values (hereinafter also referred to as “reliability threshold values”) for determining the level of reliability indicated by the reliability information.
  • the behavior determining unit 68 determines that the reliability of the obstacle detection result is high when the reliability value indicated by the reliability information is equal to or higher than the reliability threshold, and determines the obstacle avoidance behavior corresponding to the high reliability. Also good.
  • the behavior determining unit 68 determines that the reliability of the obstacle detection result is low when the reliability value indicated by the reliability information is less than the reliability threshold value, and determines the obstacle avoidance behavior corresponding to the low reliability. You may decide.
  • the reliability threshold value may be determined by a developer's knowledge, an experiment using the automatic driving system 28, or the like.
  • the obstacle avoidance algorithm stored in the storage unit 62 includes a first safe distance when the reliability is relatively high and a safe distance when the obstacle is relatively low, which is greater than the first safe distance.
  • a large second safety distance may be defined.
  • the behavior determination unit 68 may determine the obstacle avoidance behavior so that the distance between the host vehicle and the obstacle maintains the first safety distance.
  • the behavior determination unit 68 determines the obstacle avoidance behavior so that the distance between the host vehicle and the obstacle maintains the second safety distance. Good.
  • the behavior determination unit 68 starts the behavior to avoid collision with an obstacle earlier than when the reliability is relatively high. It may be determined as follows. To make the start of the behavior early may be that the start position of the obstacle avoidance behavior is brought forward, or the start time of the obstacle avoidance behavior may be advanced. As yet another example, the behavior determining unit 68 is configured such that when the reliability indicated by the reliability information is relatively low, the distance from the obstacle when avoiding a collision with the obstacle is higher than when the reliability is relatively high. The behavior may be determined so as to increase. The distance to the obstacle here may be a distance that is secured at least between the vehicle and the obstacle.
  • FIG. 4 shows an example of the obstacle avoidance behavior of the vehicle.
  • FIG. 4A shows an obstacle avoidance behavior when the reliability of the obstacle detection result is relatively high.
  • the behavior determining unit 68 changes the lane to the right when (1) the distance between the vehicle 20 and the obstacle 80 reaches a predetermined behavior start distance 82, and (2) the avoidance distance 84. (3) The obstacle avoidance behavior is determined so as to return to the original lane in front of the obstacle 80.
  • FIG. 4B shows the obstacle avoidance behavior when the reliability of the obstacle detection result is relatively low.
  • the behavior determining unit 68 determines the behavior of the vehicle 20 so as to pass the obstacle 80. However, the behavior determination unit 68 sets the behavior start distance 82 for starting the obstacle avoidance behavior to be larger than that when the reliability is relatively high. That is, the obstacle avoidance behavior is started at an earlier timing than when the reliability is high. If the behavior determination unit 68 determines that it is difficult to change the lane to the right lane as a result of increasing the behavior start distance 82, the behavior determination unit 68 determines the obstacle avoidance behavior so as to stop before the obstacle 80. Furthermore, the behavior determination unit 68 increases the avoidance distance 84 that is secured when passing the side of the obstacle, compared to the case where the reliability is relatively high.
  • the behavior determining unit 68 is configured to increase the distance between the vehicle 20 and the obstacle 80 when the reliability of the obstacle detection result by the obstacle detection device 24 is low than when the reliability is high. Determine avoidance behavior. Thereby, even if the reliability of the obstacle detection result by the obstacle detection device 24 is low, the certainty of collision avoidance between the vehicle 20 and the obstacle 80 can be improved. In addition, when the reliability of the obstacle detection result is low, the behavior determination unit 68 may make either one of the behavior start distance 82 and the avoidance distance 84 longer than when the reliability is high.
  • the operation control unit 70 is the behavior determined by the behavior determination unit 68, and in the present embodiment, causes the vehicle 20 to execute an obstacle avoidance behavior in particular. Specifically, the driving control unit 70 calculates a control value for the control target (steering 30 or the like) of the driving operation unit 22 for causing the vehicle 20 to execute the obstacle avoidance behavior. The operation control unit 70 transmits a control command indicating the calculated control value to each control target ECU or controller via the I / O unit 60.
  • FIG. 5 is a flowchart showing the operation of the automatic driving system 28 according to the first embodiment.
  • the TOF camera 40 of the obstacle detection device 24 measures the distance from the vehicle to an object existing in the traveling direction of the vehicle (eg, forward) (S10).
  • the obstacle detection unit 48 of the obstacle detection device 24 detects an obstacle to the traveling of the vehicle based on the distance information to the object measured by the TOF camera 40 (S12).
  • the reliability estimation unit 50 of the obstacle detection device 24 determines the obstacle detection result according to the ratio between the emission intensity of the TOF camera 40 and the current background light intensity. Is estimated (S16).
  • the obstacle information transmission unit 52 of the obstacle detection device 24 transmits the obstacle detection result and its reliability information to the automatic operation control device 26 (S18).
  • the obstacle detection device 24 periodically repeats the processes of S10 to S18.
  • the behavior determination unit 68 of the automatic operation control device 26 determines the obstacle avoidance behavior according to the obstacle detection result by the obstacle detection device 24 (S20).
  • the driving control unit 70 of the automatic driving control device 26 causes the vehicle 20 to execute the obstacle avoidance behavior determined in S20 (S24).
  • the behavior determination unit 68 of the automatic driving control device 26 changes the obstacle avoidance behavior determined in S20 to a safer mode (S26).
  • the driving control unit 70 of the automatic driving control device 26 causes the vehicle 20 to execute the obstacle avoidance behavior resulting from the change in S26 (S24). If no obstacle is detected by the obstacle detection device 24 (N in S14), the subsequent processing is skipped and the flow of FIG.
  • the behavior determination unit 68 increases the distance between the vehicle 20 and the obstacle when avoiding the obstacle, for example, when the reliability is equal to or higher than a predetermined threshold. Obstacle avoidance behavior may be changed. In addition, when the obstacle avoidance behavior that avoids the obstacle and continues to proceed is determined in S20, the behavior determining unit 68 sets the behavior so as to stop before the obstacle as a safer obstacle avoidance behavior. It may be changed. In the example of FIG. 5, the obstacle avoidance behavior is changed in S26, but the behavior determination unit 68 uses a parameter associated with the reliability value among a plurality of predetermined parameters in S20. Different obstacle avoidance behavior may be determined according to the reliability value.
  • the obstacle avoidance behavior for avoiding the collision with the obstacle detected by the obstacle detection device 24 is adapted to the reliability estimated by the obstacle detection device 24.
  • the vehicle 20 can be executed in such a manner.
  • the reliability of the obstacle detection result is estimated by comparing the light emission intensity detectable by the TOF camera 40 and the background light intensity. This eliminates the need for a new sensor or the like for obtaining reliability, and can suppress the number of parts and cost.
  • the functional blocks of the automatic driving system 28 of the second embodiment are the same as those of the first embodiment (FIG. 2).
  • the obstacle detection device 24 of the second embodiment has an obstacle according to the reliability of the obstacle detection result.
  • the detection process and the reliability estimation process are repeated a plurality of times.
  • the configuration of the obstacle detection device 24 will be described.
  • the reliability estimation unit 50 re-executes the distance measurement processing on the TOF camera 40 when the reliability of the first obstacle detection result by the obstacle detection unit 48 is less than a predetermined reliability threshold. Instruct.
  • the light emitting unit 42 increases the intensity of the light emission pulse, that is, newly emits measurement light having a higher intensity than before.
  • the light receiving unit 44 receives reflected light obtained by reflecting the newly emitted measurement light on an object outside the vehicle 20.
  • the distance measuring unit 46 newly measures the distance to the object outside the vehicle 20 according to the time from the emission of the measurement light whose intensity has been increased until the reflected light is received.
  • the obstacle detection unit 48 detects the presence of an obstacle according to the distance to the object outside the vehicle 20 measured by the distance measurement unit 46 as in the first embodiment.
  • the reliability estimation unit 50 estimates the reliability of the new obstacle detection result by the obstacle detection unit 48 by comparing the intensity of the background light and the intensity of the newly emitted measurement light. Specifically, as in the first embodiment, the ratio (S / N ratio) between the intensity of the background light and the intensity of the newly emitted measurement light is calculated as the reliability.
  • FIG. 6 is a flowchart showing the operation of the automatic driving system 28 according to the second embodiment.
  • the processes of S30 to S36 and S44 to S52 of FIG. 6 correspond to S10 to S26 of FIG. 5 described in the first embodiment.
  • the TOF camera 40 of the obstacle detection device 24 measures the distance from the vehicle to the object existing in the traveling direction of the vehicle (S30).
  • the obstacle detection unit 48 of the obstacle detection device 24 detects an obstacle to the traveling of the vehicle based on the distance information to the object measured by the TOF camera 40 (S32).
  • the reliability estimation unit 50 of the obstacle detection device 24 determines the obstacle detection result according to the ratio between the emission intensity of the TOF camera 40 and the current background light intensity. Is estimated (S36).
  • S30 to S36 are the first execution (N in S38) and the reliability of the obstacle detection result is equal to or higher than a predetermined threshold (Y in S40), the obstacle information transmission unit 52 of the obstacle detection device 24 will be described. Transmits the obstacle detection result and its reliability information to the automatic operation control device 26 (S44). On the other hand, if the reliability of the obstacle detection result is less than the predetermined threshold (N in S40), the TOF camera 40 of the obstacle detection device 24 newly emits measurement light with increased intensity (S42). The processes of S30 to S36 are repeated.
  • the obstacle information transmission unit 52 of the obstacle detection device 24 performs the second obstacle regardless of the reliability of the second obstacle detection result.
  • the detection result and its reliability information are transmitted to the automatic operation control device 26 (S44).
  • the obstacle detection result with high reliability and the reliability information among the first obstacle detection result and the second obstacle detection result may be transmitted to the automatic operation control device 26.
  • the obstacle detection device 24 periodically repeats the processes of S30 to S44.
  • the behavior determination unit 68 of the automatic operation control device 26 determines the obstacle avoidance behavior according to the obstacle detection result by the obstacle detection device 24 (S46).
  • the driving control unit 70 of the automatic driving control device 26 causes the vehicle 20 to execute the obstacle avoidance behavior determined in S46 (S50).
  • the behavior determination unit 68 of the automatic driving control device 26 changes the obstacle avoidance behavior determined in S46 to a safer mode (S52).
  • the driving control unit 70 of the automatic driving control device 26 causes the vehicle 20 to execute the obstacle avoidance behavior resulting from the change in S52 (S50). If an obstacle is not detected by the obstacle detection device 24 (N in S34), the subsequent processing is skipped and the flow of FIG.
  • the automatic driving system 28 of the second embodiment it is easy to obtain an obstacle detection result with high reliability, and it is easy to cause the vehicle to execute an obstacle avoidance behavior based on the obstacle detection result with high reliability. As a result, it is possible to more reliably prevent the avoidance operation from being executed at an unnecessary timing, or the obstacle avoidance in time and the collision with the obstacle.
  • the obstacle detection device 24 of the third embodiment is the obstacle detection of the first embodiment.
  • the reliability of the obstacle detection result is estimated by a method different from that of the device 24.
  • the configuration of the obstacle detection device 24 will be described.
  • FIG. 7 shows the configuration of the obstacle detection device 24 according to the third embodiment.
  • the obstacle detection device 24 further includes a background light intensity storage unit 54.
  • the background light intensity storage unit 54 stores information indicating the intensity of background light (hereinafter referred to as “BG0”) measured in advance in an environment (in this embodiment, indoors) in which a noise light source such as the sun is excluded or reduced. To do.
  • the reliability estimation unit 50 compares the background light intensity (BG0) stored in the background light intensity storage unit 54 with the current background light intensity (hereinafter referred to as “BGx”), and compares it with an obstacle detection unit. The reliability of the obstacle detection result by 48 is estimated.
  • the current background light intensity (BGx) is the intensity of the background light received by the light receiving unit 44 when the light emitting unit 42 does not emit light in an environment where the vehicle 20 is traveling. In other words, it is the intensity of the background light at the time of measuring the distance from the object by the TOF camera 40, and in other words, the intensity of the background light at the time of the obstacle detection processing by the obstacle detection unit 48.
  • the reliability estimation unit 50 may estimate the reliability according to the difference or ratio between BG0 and BGx.
  • the reliability estimation unit 50 determines that the reliability is low when the difference between BG0 and BGx is equal to or greater than a predetermined threshold A, and generates reliability information indicating the low reliability.
  • the reliability estimation unit 50 determines that the reliability is high and generates reliability information indicating high reliability.
  • the threshold A is set to a value that is assumed that the reliability of the obstacle detection result is low when the difference between BG0 and BGx exceeds this value.
  • the threshold A may be determined based on the developer's knowledge, an experiment by the automatic driving system 28, or the like.
  • FIG. 8 is a flowchart showing the operation of the automatic driving system 28 according to the third embodiment.
  • S60 to S64, S68, and S72 to S82 in FIG. 8 correspond to S30 to S34, S38, and S42 to S52 in FIG. 6 described in the second embodiment.
  • the TOF camera 40 of the obstacle detection device 24 measures the distance from the vehicle to the object existing in the traveling direction of the vehicle (S60).
  • the obstacle detection unit 48 of the obstacle detection device 24 detects an obstacle to the traveling of the vehicle based on the distance information to the object measured by the TOF camera 40 (S62).
  • the reliability estimation unit 50 of the obstacle detection device 24 acquires the current background light intensity BGx from the TOF camera 40 (S66).
  • S60 to S66 are the first execution (N in S68) and the difference between BG0 stored in advance and BGx is less than a predetermined threshold A (N in S70), the obstacle detection device 24 has a fault.
  • the object information transmission part 52 transmits an obstacle detection result and its reliability information to the automatic driving control device 26 (S74).
  • the difference between BG0 and BGx is greater than or equal to the threshold value A (Y in S70)
  • the TOF camera 40 of the obstacle detection device 24 newly emits measurement light with increased intensity (S72), and S60 to The process of S66 is repeated.
  • the obstacle information transmission unit 52 of the obstacle detection device 24 determines the second obstacle detection result and its result regardless of the difference between BG0 and BGx.
  • the reliability information is transmitted to the automatic operation control device 26 (S74).
  • the obstacle detection device 24 periodically repeats the processing of S60 to S74.
  • the behavior determination unit 68 of the automatic operation control device 26 determines the obstacle avoidance behavior according to the obstacle detection result by the obstacle detection device 24 (S76). If the reliability of the obstacle detection result is equal to or higher than the predetermined threshold (Y in S78), the driving control unit 70 of the automatic driving control device 26 causes the vehicle 20 to execute the obstacle avoidance behavior determined in S76 (S80). ). When the reliability of the obstacle detection result is less than the predetermined threshold (N in S78), the behavior determination unit 68 of the automatic driving control device 26 changes the obstacle avoidance behavior determined in S76 to a safer mode (S82). ). In this case, the driving control unit 70 of the automatic driving control device 26 causes the vehicle 20 to execute the obstacle avoidance behavior resulting from the change in S82 (S80). If no obstacle is detected by the obstacle detection device 24 (N in S64), the subsequent processing is skipped and the flow of this figure is terminated.
  • the reliability of the obstacle detection result is estimated by comparing the current background light intensity detectable by the TOF camera 40 and the indoor background light intensity measured in advance. . This eliminates the need for a new sensor or the like for obtaining reliability, and can suppress the number of parts and cost.
  • the obstacle detection process and the reliability estimation process were repeated at most twice.
  • the obstacle detection process and the reliability estimation process may be repeated three or more times. And every time it repeats, you may increase the emitted light intensity by the TOF camera 40 (light emission part 42) in steps. This makes it easier to obtain highly reliable obstacle detection results even outdoors where there is a lot of noise.
  • the automatic driving system 28 may include another sensor having a method different from that of the TOF camera 40.
  • Another sensor may be, for example, any one or combination of a CCD image sensor, a CMOS image sensor, a sonar, and a radar.
  • the obstacle detection unit 48 detects the presence of the obstacle based on the output result of another sensor. Also good.
  • the obstacle information transmitting unit 52 may transmit an obstacle detection result based on the output result of another sensor to the automatic driving control device 26 so that the automatic driving control device 26 determines the obstacle avoidance behavior.
  • the behavior determination unit 68 of the automatic operation control device 26 may evaluate the reliability estimated by the obstacle detection device 24 in three or more stages such as high, medium, and low.
  • the behavior determination unit 68 may determine the travel route, speed, etc. of the vehicle so that the lower the reliability estimated by the obstacle detection device 24, the faster the start of the behavior for avoiding collision with the obstacle. .
  • the behavior determination unit 68 determines the travel route, speed, and the like of the vehicle so that the lower the reliability estimated by the obstacle detection device 24, the greater the distance from the obstacle when avoiding a collision with the obstacle. May be.
  • An acquisition unit that acquires the detection result of the obstacle, a determination unit that determines the behavior of the vehicle so as to avoid a collision with the obstacle according to the detection result acquired by the acquisition unit, and a behavior determined by the determination unit
  • An automatic operation control device comprising: an operation control unit that causes the vehicle to execute the operation.
  • the acquisition unit further acquires information indicating the reliability of the obstacle detection result, and the determination unit determines different behaviors according to the information indicating the reliability.
  • this automatic driving control device it is possible to cause the vehicle to execute a suitable obstacle avoidance behavior according to the reliability of the input obstacle detection result.
  • the determination unit determines to start the behavior earlier to avoid collision with the obstacle than when the reliability is relatively high. Also good.
  • the determination unit behaves so as to increase the distance to the obstacle when avoiding a collision with the obstacle compared to the case where the reliability is relatively high. May be determined.
  • An automatic driving system including an obstacle detection device and an automatic driving control device.
  • the obstacle detection device includes a light emitting unit that emits light toward the outside of the vehicle, a detection unit that detects an obstacle according to the time until the light emitted from the light emitting unit is reflected back to the object, and the light emission.
  • An estimation unit for estimating the reliability of the detection result by the detection unit according to the intensity of the background light received when the unit is not emitting light, information on the obstacle detected by the detection unit, and the reliability estimated by the estimation unit
  • a transmitter for transmitting the information to the automatic operation control device.
  • the automatic driving control device determines the behavior of the vehicle according to the obstacle information transmitted from the obstacle detection device so as to avoid a collision with the obstacle, and the behavior determined by the decision unit.
  • An operation control unit to be executed by the vehicle.
  • the determination unit determines different behaviors according to the reliability information transmitted from the obstacle detection device.
  • this automatic driving system it is possible to cause the vehicle to execute a suitable obstacle avoidance behavior according to the reliability estimated by the obstacle detection result together with the obstacle detection.
  • the estimation unit may estimate the reliability by comparing the intensity of background light with the intensity of light emitted by the light emitting unit.
  • the reliability of the obstacle detection result can be estimated without providing a new sensor or the like.
  • the light emitting unit When the reliability estimated by the estimation unit is less than a predetermined threshold, the light emitting unit newly emits light with increased intensity, and the detection unit is in a time until the newly emitted light returns. Accordingly, the presence of an obstacle is newly detected, and the estimation unit compares the intensity of the background light with the intensity of the newly emitted light to estimate the reliability of the new detection result by the detection unit. Also good.
  • the obstacle detection device may further include a storage unit that stores the intensity of background light indoors.
  • the estimation unit may estimate the reliability by comparing the intensity of the background light stored in the storage unit with the current intensity of the background light.
  • the reliability of the obstacle detection result can be estimated without providing a new sensor or the like.
  • the obstacle detection device of the present disclosure is useful because the reliability of the obstacle detection result is improved and the vehicle can have a suitable obstacle avoidance behavior.

Abstract

The present invention assists obstacle avoidance in self-driving of a vehicle. An obstacle detection unit of an obstacle detection device detects an obstacle on the basis of output data from a TOF camera. A reliability estimation unit of the obstacle detection device estimates the reliability of an obstacle detection result from the obstacle detection unit on the basis of the intensity of background light. An obstacle information acquisition unit of the automatic drive control device acquires the obstacle detection result and the reliability thereof from the obstacle detection device. In accordance with the obstacle detection result, a behavior determination unit of the automatic drive control device determines a vehicle behavior so as to avoid collision with the obstacle, and determines a different behavior in accordance with the reliability of the obstacle detection result. A drive control unit of the self-driving control device causes the vehicle to execute a behavior determined by the behavior determination unit.

Description

自動運転制御装置および自動運転システムAutomatic operation control device and automatic operation system
 本開示は、データ処理技術に関し、特に自動運転制御装置および自動運転システムに関する。 The present disclosure relates to data processing technology, and more particularly to an automatic operation control device and an automatic operation system.
 パルス発光した光が物体に反射して戻ってくるまでの時間に基づいて物体までの距離を測定する装置(TOF(Time of flight)カメラ等)を使用して、車両の走行経路上に存在する障害物を検出する技術が提案されている。 Using a device (such as a TOF (Time 時間 of ま で flight) camera) that measures the distance to the object based on the time it takes for the pulsed light to be reflected and returned to the object, it is present on the travel route of the vehicle. Techniques for detecting obstacles have been proposed.
特開2010-256179号公報JP 2010-256179 A
 TOFカメラを屋外で使用する場合、屋外光に含まれる同一波長の光がノイズとなり、TOFカメラによる距離測定の精度が低下する。そのため、例えばTOFカメラを用いた自動運転システムでは、障害物を検知しても、車両から障害物までの距離の予測が不正確になることがある。一方、車両の自動運転では、障害物を回避するように車両を制御する必要があるため、車両から障害物までの距離の予測が正確である方が好ましい。 When the TOF camera is used outdoors, the light of the same wavelength included in the outdoor light becomes noise, and the accuracy of distance measurement by the TOF camera decreases. Therefore, for example, in an automatic driving system using a TOF camera, even if an obstacle is detected, the prediction of the distance from the vehicle to the obstacle may be inaccurate. On the other hand, in the automatic driving of the vehicle, since it is necessary to control the vehicle so as to avoid the obstacle, it is preferable that the prediction of the distance from the vehicle to the obstacle is accurate.
 本開示はこうした状況に鑑みてなされたものであり、主な目的は、車両の自動運転における障害物回避を支援する技術を提供することにある。 The present disclosure has been made in view of such a situation, and a main object is to provide a technology that supports obstacle avoidance in automatic driving of a vehicle.
 上記課題を解決するために、本開示のある態様の自動運転制御装置は、障害物の検出結果を取得する取得部と、取得部により取得された検出結果に応じて、障害物との衝突を避けるように車両の挙動を決定する決定部と、決定部により決定された挙動を車両に実行させる運転制御部と、を備える。取得部は、障害物の検出結果の信頼度を示す情報をさらに取得し、決定部は、信頼度を示す情報に応じて異なる挙動を決定する。 In order to solve the above problem, an automatic operation control device according to an aspect of the present disclosure includes an acquisition unit that acquires an obstacle detection result, and a collision with an obstacle according to the detection result acquired by the acquisition unit. A determination unit that determines the behavior of the vehicle so as to avoid, and an operation control unit that causes the vehicle to execute the behavior determined by the determination unit. The acquisition unit further acquires information indicating the reliability of the obstacle detection result, and the determination unit determines different behaviors according to the information indicating the reliability.
 本開示の別の態様は、自動運転システムである。この自動運転システムは、障害物検出装置と自動運転制御装置を備える。障害物検出装置は、車両の外部へ向けて発光する発光部と、発光部により発光された光が物体に反射して戻ってくるまでの時間に応じて障害物を検出する検出部と、発光部の非発光時に受け付けた背景光の強度に応じて、検出部による検出結果の信頼度を推定する推定部と、検出部により検出された障害物の情報と、推定部により推定された信頼度の情報を自動運転制御装置へ送信する送信部と、を含む。自動運転制御装置は、障害物検出装置から送信された障害物の情報に応じて、その障害物との衝突を避けるように車両の挙動を決定する決定部と、決定部により決定された挙動を車両に実行させる運転制御部と、を含む。決定部は、障害物検出装置から送信された信頼度の情報に応じて異なる挙動を決定する。 Another aspect of the present disclosure is an automatic driving system. The automatic driving system includes an obstacle detection device and an automatic driving control device. The obstacle detection device includes a light emitting unit that emits light toward the outside of the vehicle, a detection unit that detects an obstacle according to the time until the light emitted from the light emitting unit is reflected back to the object, and the light emission. An estimation unit for estimating the reliability of the detection result by the detection unit according to the intensity of the background light received when the unit is not emitting light, information on the obstacle detected by the detection unit, and the reliability estimated by the estimation unit And a transmitter for transmitting the information to the automatic operation control device. The automatic driving control device determines the behavior of the vehicle according to the obstacle information transmitted from the obstacle detection device so as to avoid a collision with the obstacle, and the behavior determined by the decision unit. An operation control unit to be executed by the vehicle. The determination unit determines different behaviors according to the reliability information transmitted from the obstacle detection device.
 なお、以上の構成要素の任意の組合せ、本開示の表現を、方法、コンピュータプログラム、コンピュータプログラムを記録した記録媒体、本装置を搭載した車両などの間で変換したものもまた、本開示の態様として有効である。 Note that any combination of the above components, the expression of the present disclosure converted between a method, a computer program, a recording medium on which the computer program is recorded, a vehicle equipped with the apparatus, and the like are also included in the aspects of the present disclosure It is effective as
 本開示によれば、車両の自動運転における障害物回避を支援することができる。 According to the present disclosure, obstacle avoidance in automatic driving of a vehicle can be supported.
TOFカメラの原理を示す図である。It is a figure which shows the principle of a TOF camera. 第1実施例に係る車両の構成を示す図である。It is a figure which shows the structure of the vehicle which concerns on 1st Example. TOFカメラにおける発光パルスと受光パルスを示す図である。It is a figure which shows the light emission pulse and light reception pulse in a TOF camera. 車両の障害物回避挙動の例を示す図である。It is a figure which shows the example of the obstacle avoidance behavior of a vehicle. 第1実施例に係る自動運転システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the automatic driving system which concerns on 1st Example. 第2実施例に係る自動運転システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the automatic driving | operation system which concerns on 2nd Example. 第3実施例に係る障害物検出装置の構成を示す図である。It is a figure which shows the structure of the obstruction detection apparatus which concerns on 3rd Example. 第3実施例に係る自動運転システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the automatic driving | operation system which concerns on 3rd Example.
 本開示の実施例を具体的に説明する前に、実施例の概要を述べる。 DETAILED DESCRIPTION An outline of an embodiment will be described before specifically describing an embodiment of the present disclosure.
 図1は、TOFカメラの原理を示す。TOFカメラ10は、TOF方式距離画像センサとも呼ばれ、発光素子12で発光した測定光が物体16に反射して戻ってきた反射光を受光素子14で受光する。TOFカメラ10は、測定光の発光から反射光の受光までの時間に基づいて物体16までの距離Zを測定する。距離Zは、(光速c × 測定光の発光から反射光の受光までの遅延時間Δt / 2)により求められる。 Fig. 1 shows the principle of the TOF camera. The TOF camera 10 is also referred to as a TOF type distance image sensor, and the light receiving element 14 receives the reflected light returned from the measurement light emitted from the light emitting element 12 after being reflected by the object 16. The TOF camera 10 measures the distance Z to the object 16 based on the time from the emission of the measurement light to the reception of the reflected light. The distance Z is obtained by (light velocity c × delay time Δt / 2 from the measurement light emission to the reflection light reception).
 しかし、TOFカメラ10を屋外で使用する場合、太陽等のノイズ光源18からの光に含まれる同一波長の光がノイズになり、TOFカメラ10による距離Zの測定精度が低下する。そのため、例えばTOFカメラを用いた自動運転システムでは、存在しない障害物を誤って検出するという問題、または、障害物までの距離を誤って検出するという問題が発生しうる。この結果、障害物を回避する動作を適切なタイミングで実行できないという問題が生じることがある。また、ノイズ光を測定するための別途のセンサを設ける場合、部品点数およびコストが増加するという問題が生じる。 However, when the TOF camera 10 is used outdoors, the light of the same wavelength contained in the light from the noise light source 18 such as the sun becomes noise, and the measurement accuracy of the distance Z by the TOF camera 10 decreases. Therefore, for example, in an automatic driving system using a TOF camera, there may be a problem that an obstacle that does not exist is erroneously detected, or a problem that a distance to the obstacle is erroneously detected. As a result, there may be a problem that the operation for avoiding the obstacle cannot be executed at an appropriate timing. Further, when a separate sensor for measuring noise light is provided, there arises a problem that the number of parts and the cost increase.
 そこで本実施例の障害物検出装置は、TOFカメラを用いて障害物を検出するとともに、その検出結果の信頼度を推定する。本実施例の自動運転制御装置は、障害物検出装置による障害物の検出結果に基づいて、その障害物との衝突を避けるように車両の挙動を決定し、決定した挙動を車両に実行させる。また、本実施例の自動運転制御装置は、障害物の検出結果が同じであっても、その検出結果の信頼度に応じて異なる挙動を決定する。すなわち、本実施例の自動運転制御装置は、センサーの出力値の信頼度に応じて、障害物回避のための走行制御を変更する。なお、障害物との衝突を避けるための車両の挙動は、障害物の手前で停止することを含み、また、障害物を避けつつ進行を継続すること、言い換えれば障害物を追い越すことを含む。 Therefore, the obstacle detection apparatus of this embodiment detects an obstacle using a TOF camera and estimates the reliability of the detection result. The automatic driving control device of the present embodiment determines the behavior of the vehicle based on the obstacle detection result by the obstacle detection device so as to avoid collision with the obstacle, and causes the vehicle to execute the determined behavior. Moreover, even if the detection result of an obstruction is the same, the automatic driving | operation control apparatus of a present Example determines a different behavior according to the reliability of the detection result. That is, the automatic driving control device of the present embodiment changes the traveling control for avoiding the obstacle according to the reliability of the output value of the sensor. Note that the behavior of the vehicle for avoiding a collision with an obstacle includes stopping before the obstacle, and continuing to proceed while avoiding the obstacle, in other words, overtaking the obstacle.
 (第1実施例)
 図2は、第1実施例に係る車両20の構成を示す。車両20は、運転操作部22、障害物検出装置24、自動運転制御装置26を備える。図2では、車両20を構成する様々な要素のうち自動運転システム28を構成する要素を示している。
(First embodiment)
FIG. 2 shows a configuration of the vehicle 20 according to the first embodiment. The vehicle 20 includes a driving operation unit 22, an obstacle detection device 24, and an automatic driving control device 26. In FIG. 2, elements constituting the automatic driving system 28 among various elements constituting the vehicle 20 are shown.
 運転操作部22は、車両20の挙動を操作する要素であり、ステアリング30、ブレーキペダル32、アクセルペダル34、ウィンカスイッチ36を含む。ステアリング30、ブレーキペダル32、アクセルペダル34、ウィンカスイッチ36は、ステアリングECU(ECU:Electronic Control Unit(電子制御ユニット))、ブレーキECU、エンジンECUとモータECUの少なくとも一方、ウィンカコントローラにより電子制御が可能である。自動運転モードにおいて、ステアリングECU、ブレーキECU、エンジンECU、モータECUは、自動運転制御装置26から供給される制御信号に応じてアクチュエータを駆動する。またウィンカコントローラは、自動運転制御装置26から供給される制御信号に応じてウィンカランプを点灯または消灯する。 The driving operation unit 22 is an element that operates the behavior of the vehicle 20 and includes a steering wheel 30, a brake pedal 32, an accelerator pedal 34, and a winker switch 36. The steering 30, brake pedal 32, accelerator pedal 34, and blinker switch 36 can be electronically controlled by a steering ECU (ECU: Electronic Control Unit), brake ECU, engine ECU, and / or motor ECU. It is. In the automatic operation mode, the steering ECU, the brake ECU, the engine ECU, and the motor ECU drive the actuator in accordance with a control signal supplied from the automatic operation control device 26. The blinker controller turns on or off the blinker lamp according to a control signal supplied from the automatic operation control device 26.
 障害物検出装置24は、TOFカメラ40、障害物検出部48、信頼度推定部50、障害物情報送信部52を含む。TOFカメラ40は、図1の発光素子12に対応する発光部42と、図1の受光素子14に対応する受光部44と、距離測定部46を含む。発光部42は、車両20の外部(例えば車両20の前方空間)へ向けて所定の測定光(例えば赤外光)を発光する。 The obstacle detection device 24 includes a TOF camera 40, an obstacle detection unit 48, a reliability estimation unit 50, and an obstacle information transmission unit 52. The TOF camera 40 includes a light emitting unit 42 corresponding to the light emitting element 12 in FIG. 1, a light receiving unit 44 corresponding to the light receiving element 14 in FIG. 1, and a distance measuring unit 46. The light emitting unit 42 emits predetermined measurement light (for example, infrared light) toward the outside of the vehicle 20 (for example, the front space of the vehicle 20).
 受光部44は、発光部42により発光された光が車両20外部の物体に反射して戻ってきた場合にその光(以下「反射光」と呼ぶ。)を受光する。また受光部44は、発光部42が非発光時に入力された光(以下「背景光」と呼ぶ。)も受光する。背景光は、発光部42による発光に伴う反射光を含まない光であり、発光部42による発光有無にかかわらず、車両20の周囲環境から受け付ける光である。 The light receiving unit 44 receives light (hereinafter referred to as “reflected light”) when the light emitted from the light emitting unit 42 is reflected back to an object outside the vehicle 20 and returned. The light receiving unit 44 also receives light (hereinafter referred to as “background light”) input when the light emitting unit 42 does not emit light. The background light is light that does not include the reflected light accompanying the light emission by the light emitting unit 42, and is light that is received from the surrounding environment of the vehicle 20 regardless of whether the light emitting unit 42 emits light.
 距離測定部46は、発光部42により発光された光が物体に反射して戻ってくるまでの時間に応じて、車両20から車両20外部の物体までの距離を測定する。距離測定部46は、複数の画素それぞれに車両20から物体への距離を対応づけた画像データ(以下「TOF画像」と呼ぶ。)を生成し、障害物検出部48へ出力する。 The distance measuring unit 46 measures the distance from the vehicle 20 to the object outside the vehicle 20 according to the time until the light emitted from the light emitting unit 42 is reflected by the object and returns. The distance measurement unit 46 generates image data (hereinafter referred to as “TOF image”) in which the distance from the vehicle 20 to the object is associated with each of the plurality of pixels, and outputs the image data to the obstacle detection unit 48.
 図3は、TOFカメラ40における発光パルスと受光パルスを示す。発光パルスの立ち上がりから受光パルスの立ち上がりまでの時間が、測定光の発光から反射光の受光までの遅延時間Δtに相当する。同図のA0は、受光パルスの立ち上がりから発光パルスの立ち下がりまでの露光量である。同図のA1は、発光パルスの立ち下がりから受光パルスの立ち下がりまでの露光量である。発光パルスの立ち下がりから受光パルスの立ち下がりまでの時間も遅延時間Δtに相当する。同図のBGは背景光の露光量である。 FIG. 3 shows light emission pulses and light reception pulses in the TOF camera 40. The time from the rise of the light emission pulse to the rise of the light reception pulse corresponds to the delay time Δt from the emission of the measurement light to the reception of the reflected light. A0 in the figure is the exposure amount from the rising edge of the received light pulse to the falling edge of the light emission pulse. A1 in the figure is the exposure amount from the fall of the light emission pulse to the fall of the light reception pulse. The time from the fall of the light emission pulse to the fall of the light reception pulse also corresponds to the delay time Δt. BG in the figure is the exposure amount of the background light.
 距離測定部46は、遅延時間Δtを受光パルスの露光量に基づいて決定してもよい。具体的には、図3に示すA0、A1、およびBGの面積比に基づいて算出してもよい。または距離測定部46は、発光パルスの立ち上がりから受光パルスの立ち上がりまでの時間を計測する等、遅延時間Δtを時間計測により直接求めてもよい。距離測定部46は、TOF画像の画素ごとに遅延時間Δtを求めて、TOF画像の各画素に光速cと遅延時間Δtに基づいて算出した物体までの距離Zを対応づけてもよい。 The distance measuring unit 46 may determine the delay time Δt based on the exposure amount of the received light pulse. Specifically, it may be calculated based on the area ratio of A0, A1, and BG shown in FIG. Alternatively, the distance measuring unit 46 may directly obtain the delay time Δt by time measurement, such as measuring the time from the rise of the light emission pulse to the rise of the light reception pulse. The distance measuring unit 46 may obtain the delay time Δt for each pixel of the TOF image, and associate the distance Z to the object calculated based on the light speed c and the delay time Δt to each pixel of the TOF image.
 なお、後述の信頼度推定部50は、図3で示す発光パルスの振幅(Ha)を発光強度として識別し、背景光のオフセット値Hb(例えば受光量0を示す基準値からの距離)を背景光強度として識別してもよい。または、後述の信頼度推定部50は、図3で示す発光量(Aa)を発光強度として識別し、背景光の露光量(BG)を背景光強度として識別してもよい。さらにまた、後述の信頼度推定部50は、TOF画像の画素ごとに測定されたHbまたはBGの平均値を背景光強度として識別してもよい。 The reliability estimation unit 50 described later identifies the amplitude (Ha) of the light emission pulse shown in FIG. 3 as the light emission intensity, and uses the background light offset value Hb (for example, the distance from the reference value indicating the amount of received light 0) as the background. You may identify as light intensity. Or the reliability estimation part 50 mentioned later may identify the light emission amount (Aa) shown in FIG. 3 as light emission intensity, and may identify the exposure amount (BG) of background light as background light intensity. Furthermore, the reliability estimation unit 50 described later may identify the average value of Hb or BG measured for each pixel of the TOF image as the background light intensity.
 図2に戻り、障害物検出部48は、距離測定部46により測定された物体までの距離を示す情報にしたがって車両20の走行経路上に存在する障害物を検出する。例えば障害物検出部48は、距離測定部46により生成されたTOF画像から、1つ以上の物体を示す1つ以上のオブジェクト領域を抽出し、予め定められた路面データに合致するオブジェクトを除外した残りのオブジェクトを障害物と識別してもよい。障害物検出部48は、車両20の前方空間内での障害物の位置(言い換えれば車両20からの距離)と、車両20が障害物に衝突するまでの時間を検出してもよい。 2, the obstacle detection unit 48 detects an obstacle present on the travel route of the vehicle 20 in accordance with information indicating the distance to the object measured by the distance measurement unit 46. For example, the obstacle detection unit 48 extracts one or more object regions indicating one or more objects from the TOF image generated by the distance measurement unit 46, and excludes objects that match predetermined road surface data. The remaining objects may be identified as obstacles. The obstacle detection unit 48 may detect the position of the obstacle in the front space of the vehicle 20 (in other words, the distance from the vehicle 20) and the time until the vehicle 20 collides with the obstacle.
 このように本実施例の障害物検出装置24では、TOFカメラ40と障害物検出部48とが連携し、発光した光が物体に反射して戻ってくるまでの時間に応じて障害物を検出する。なお、車両20から車両20外部の物体への距離の測定と、その測定結果に基づく障害物の検出は、公知の手法により実現されてよい。 As described above, in the obstacle detection device 24 of the present embodiment, the TOF camera 40 and the obstacle detection unit 48 cooperate to detect the obstacle according to the time until the emitted light is reflected back to the object and returned. To do. The measurement of the distance from the vehicle 20 to the object outside the vehicle 20 and the detection of the obstacle based on the measurement result may be realized by a known method.
 信頼度推定部50は、発光部42の非発光時に、受光部44により受け付けられた背景光の強度に応じて、障害物検出部48による障害物検出結果の信頼度を推定する。この信頼度は、障害物検出部48による障害物検出結果についてその正確性の高低を示す指標値と言える。 The reliability estimation unit 50 estimates the reliability of the obstacle detection result by the obstacle detection unit 48 according to the intensity of background light received by the light receiving unit 44 when the light emitting unit 42 is not emitting light. This reliability can be said to be an index value indicating the level of accuracy of the obstacle detection result by the obstacle detection unit 48.
 本実施例の信頼度推定部50は、発光部42による発光強度と、背景光強度とをTOFカメラ40から取得し、両者を比較して信頼度を推定する。具体的には、信頼度を信号対雑音比(S/N比)として求め、発光強度と背景光強度との比を信頼度として推定する。例えば、信頼度推定部50は、発光強度を背景光強度で除算した結果の値を信頼度の値として識別してもよい。 The reliability estimation unit 50 according to the present embodiment acquires the light emission intensity by the light emission unit 42 and the background light intensity from the TOF camera 40, and compares the two to estimate the reliability. Specifically, the reliability is obtained as a signal-to-noise ratio (S / N ratio), and the ratio between the light emission intensity and the background light intensity is estimated as the reliability. For example, the reliability estimation unit 50 may identify a value obtained by dividing the light emission intensity by the background light intensity as the reliability value.
 障害物情報送信部52は、障害物に関する障害物情報と、その障害物情報の信頼度を示す信頼度情報とを対応づけて自動運転制御装置26へ送信する。障害物情報は、障害物検出部48により検出された障害物の位置と、その障害物に達するまでの時間を示す情報を含む。また信頼度情報は、信頼度推定部50により推定された信頼度の値を含む。 The obstacle information transmission unit 52 associates the obstacle information related to the obstacle and the reliability information indicating the reliability of the obstacle information and transmits the information to the automatic operation control device 26. The obstacle information includes information indicating the position of the obstacle detected by the obstacle detection unit 48 and the time until the obstacle is reached. The reliability information includes a reliability value estimated by the reliability estimation unit 50.
 自動運転制御装置26は、自動運転制御機能を実装した自動運転コントローラであり、自動運転における車両20の挙動(行動、動作とも言える)を制御する。自動運転制御装置26は、I/O部60、記憶部62、制御部64を含む。I/O部60は、各種の通信フォーマットに応じた通信制御を実行する。 The automatic driving control device 26 is an automatic driving controller in which an automatic driving control function is implemented, and controls the behavior (also referred to as action or operation) of the vehicle 20 in automatic driving. The automatic operation control device 26 includes an I / O unit 60, a storage unit 62, and a control unit 64. The I / O unit 60 executes communication control according to various communication formats.
 記憶部62は、フラッシュメモリ等の不揮発性記録媒体を備える。記憶部62は、予め定められた自動運転アルゴリズムを保持する。自動運転アルゴリズムは、検出された障害物の位置に応じて、その障害物との衝突を避けるように車両の走行態様(ルート、速度等)を決定する障害物回避アルゴリズムを含む。障害物回避アルゴリズムは、障害物との衝突を安全に回避するための、車両と障害物との間で維持すべき距離である安全距離を示す情報を含む。また記憶部62は、自動運転の態様を決定するための条件となる各種閾値データも保持する。 The storage unit 62 includes a nonvolatile recording medium such as a flash memory. The storage unit 62 holds a predetermined automatic operation algorithm. The automatic driving algorithm includes an obstacle avoidance algorithm that determines a driving mode (route, speed, etc.) of the vehicle so as to avoid a collision with the obstacle according to the position of the detected obstacle. The obstacle avoidance algorithm includes information indicating a safety distance that is a distance to be maintained between the vehicle and the obstacle for safely avoiding a collision with the obstacle. The storage unit 62 also holds various threshold data that are conditions for determining the mode of automatic driving.
 制御部64は、ハードウェア資源とソフトウェア資源の協働、又はハードウェア資源のみにより実現できる。ハードウェア資源としてプロセッサ、ROM、RAM、その他のLSIを利用でき、ソフトウェア資源としてオペレーティングシステム、アプリケーション、ファームウェア等のプログラムを利用できる。制御部64は、障害物情報取得部66、挙動決定部68、運転制御部70を含む。 The control unit 64 can be realized by cooperation of hardware resources and software resources, or only by hardware resources. Processors, ROM, RAM, and other LSIs can be used as hardware resources, and programs such as an operating system, application, and firmware can be used as software resources. The control unit 64 includes an obstacle information acquisition unit 66, a behavior determination unit 68, and an operation control unit 70.
 障害物情報取得部66は、I/O部60を介して、障害物検出装置24から送信された障害物情報を取得する。既述したように障害物情報は、障害物検出装置24による障害物の検出結果(障害物の位置等)と、その検出結果の信頼度を示す信頼度情報を含む。 The obstacle information acquisition unit 66 acquires the obstacle information transmitted from the obstacle detection device 24 via the I / O unit 60. As described above, the obstacle information includes the obstacle detection result (the position of the obstacle, etc.) by the obstacle detection device 24 and the reliability information indicating the reliability of the detection result.
 挙動決定部68は、障害物情報取得部66により取得された障害物検出結果の情報に応じて、その障害物との衝突を避けるように車両の挙動を決定する。障害物との衝突を避けるための車両の挙動を、以下「障害物回避挙動」と呼ぶ。挙動決定部68は、記憶部62に記憶された障害物回避アルゴリズムにしたがって障害物回避挙動を決定する。 The behavior determination unit 68 determines the behavior of the vehicle so as to avoid collision with the obstacle according to the information of the obstacle detection result acquired by the obstacle information acquisition unit 66. The behavior of the vehicle for avoiding a collision with an obstacle is hereinafter referred to as “obstacle avoidance behavior”. The behavior determination unit 68 determines the obstacle avoidance behavior according to the obstacle avoidance algorithm stored in the storage unit 62.
 例えば、挙動決定部68は、障害物回避挙動として、障害物の追い越しを決定してもよい。この場合、挙動決定部68は、右車線への車線変更を開始するまでの時間および車速を決定し、さらに、右車線への車線変更完了後、左車線への車線変更を開始するまでの時間および車速を決定してもよい。また、挙動決定部68は、障害物回避挙動として、障害物の手前で停止することを決定してもよい。この場合、挙動決定部68は、ブレーキペダル32のアクチュエータを作動させるまでの待ち時間、ブレーキペダル32のアクチュエータの作動時間とその強さを決定してもよい。 For example, the behavior determination unit 68 may determine overtaking of the obstacle as the obstacle avoidance behavior. In this case, the behavior determining unit 68 determines a time and a vehicle speed until the lane change to the right lane is started, and further, a time until the lane change to the left lane is started after the lane change to the right lane is completed. And the vehicle speed may be determined. Moreover, the behavior determination unit 68 may determine to stop before the obstacle as the obstacle avoidance behavior. In this case, the behavior determination unit 68 may determine the waiting time until the actuator of the brake pedal 32 is operated, the operation time of the actuator of the brake pedal 32 and the strength thereof.
 また挙動決定部68は、障害物情報取得部66により取得された信頼度情報に応じて異なる障害物回避挙動を決定する。すなわち、挙動決定部68は、障害物検出装置24から送信された障害物情報が示す障害物検出結果に応じて障害物回避挙動を決定するが、その障害物情報が示す信頼度に応じて異なる障害物回避挙動を決定する。言い換えれば、挙動決定部68は、障害物検出結果が同じであっても、障害物検出結果の信頼度が異なれば異なる障害物回避挙動を決定する。 Also, the behavior determination unit 68 determines different obstacle avoidance behaviors according to the reliability information acquired by the obstacle information acquisition unit 66. That is, the behavior determination unit 68 determines the obstacle avoidance behavior according to the obstacle detection result indicated by the obstacle information transmitted from the obstacle detection device 24, but differs depending on the reliability indicated by the obstacle information. Determine obstacle avoidance behavior. In other words, even if the obstacle detection result is the same, the behavior determination unit 68 determines a different obstacle avoidance behavior if the reliability of the obstacle detection result is different.
 例えば、記憶部62には、信頼度情報が示す信頼度の高低を判定するための、予め定められた1つ以上の閾値(以下「信頼度閾値」とも呼ぶ。)が記憶されてもよい。挙動決定部68は、信頼度情報が示す信頼度の値が信頼度閾値以上の場合に障害物検出結果の信頼度が高いと判定し、高い信頼度に対応する障害物回避挙動を決定してもよい。その一方、挙動決定部68は、信頼度情報が示す信頼度の値が信頼度閾値未満の場合に障害物検出結果の信頼度が低いと判定し、低い信頼度に対応する障害物回避挙動を決定してもよい。なお、信頼度閾値は、開発者の知見、または自動運転システム28を用いた実験等により決定されてよい。 For example, the storage unit 62 may store one or more predetermined threshold values (hereinafter also referred to as “reliability threshold values”) for determining the level of reliability indicated by the reliability information. The behavior determining unit 68 determines that the reliability of the obstacle detection result is high when the reliability value indicated by the reliability information is equal to or higher than the reliability threshold, and determines the obstacle avoidance behavior corresponding to the high reliability. Also good. On the other hand, the behavior determining unit 68 determines that the reliability of the obstacle detection result is low when the reliability value indicated by the reliability information is less than the reliability threshold value, and determines the obstacle avoidance behavior corresponding to the low reliability. You may decide. Note that the reliability threshold value may be determined by a developer's knowledge, an experiment using the automatic driving system 28, or the like.
 ここで信頼度に応じて異なる障害物回避挙動を決定する例を示す。例えば、記憶部62に記憶される障害物回避アルゴリズムには、信頼度が相対的に高い場合の第1安全距離と、障害物が相対的に低い場合の安全距離であり、第1安全距離より大きい第2安全距離とが定められてもよい。挙動決定部68は、信頼度情報が示す信頼度が相対的に高い場合、自車両と障害物との間隔が第1安全距離を維持するように障害物回避挙動を決定してもよい。その一方、挙動決定部68は、信頼度情報が示す信頼度が相対的に低い場合、自車両と障害物との間隔が第2安全距離を維持するように障害物回避挙動を決定してもよい。 Here, an example of determining different obstacle avoidance behavior depending on the reliability is shown. For example, the obstacle avoidance algorithm stored in the storage unit 62 includes a first safe distance when the reliability is relatively high and a safe distance when the obstacle is relatively low, which is greater than the first safe distance. A large second safety distance may be defined. When the reliability indicated by the reliability information is relatively high, the behavior determination unit 68 may determine the obstacle avoidance behavior so that the distance between the host vehicle and the obstacle maintains the first safety distance. On the other hand, when the reliability indicated by the reliability information is relatively low, the behavior determination unit 68 determines the obstacle avoidance behavior so that the distance between the host vehicle and the obstacle maintains the second safety distance. Good.
 別の例として、挙動決定部68は、信頼度情報が示す信頼度が相対的に低い場合、信頼度が相対的に高い場合より、障害物との衝突を避けるための挙動の開始を早くするように決定してもよい。挙動の開始を早くするとは、障害物回避挙動の開始位置を手前にすることでもよく、障害物回避挙動の開始時刻を早くすることでもよい。さらに別の例として、挙動決定部68は、信頼度情報が示す信頼度が相対的に低い場合、信頼度が相対的に高い場合より、障害物との衝突を避ける際の障害物との距離を大きくするように挙動を決定してもよい。ここでの障害物との距離は、車両と障害物との間で少なくとも確保する距離であってもよい。 As another example, when the reliability indicated by the reliability information is relatively low, the behavior determination unit 68 starts the behavior to avoid collision with an obstacle earlier than when the reliability is relatively high. It may be determined as follows. To make the start of the behavior early may be that the start position of the obstacle avoidance behavior is brought forward, or the start time of the obstacle avoidance behavior may be advanced. As yet another example, the behavior determining unit 68 is configured such that when the reliability indicated by the reliability information is relatively low, the distance from the obstacle when avoiding a collision with the obstacle is higher than when the reliability is relatively high. The behavior may be determined so as to increase. The distance to the obstacle here may be a distance that is secured at least between the vehicle and the obstacle.
 図4は、車両の障害物回避挙動の例を示す。図4の(a)は、障害物検出結果の信頼度が相対的に高い場合の障害物回避挙動を示している。図4の(a)では、挙動決定部68は、(1)車両20と障害物80との距離が予め定められた挙動開始距離82になると、右へ車線変更し、(2)回避距離84の間隔を保ちつつ障害物80の側方を通過し、(3)障害物80の前方にて元の車線に戻るように障害物回避挙動を決定している。 FIG. 4 shows an example of the obstacle avoidance behavior of the vehicle. FIG. 4A shows an obstacle avoidance behavior when the reliability of the obstacle detection result is relatively high. In FIG. 4A, the behavior determining unit 68 changes the lane to the right when (1) the distance between the vehicle 20 and the obstacle 80 reaches a predetermined behavior start distance 82, and (2) the avoidance distance 84. (3) The obstacle avoidance behavior is determined so as to return to the original lane in front of the obstacle 80.
 図4の(b)は、障害物検出結果の信頼度が相対的に低い場合の障害物回避挙動を示している。図4の(b)においても、挙動決定部68は、障害物80を追い越すように車両20の挙動を決定する。ただし挙動決定部68は、障害物回避挙動を開始する挙動開始距離82を、信頼度が相対的に高い場合より大きくする。すなわち、信頼度が高い場合より早いタイミングで障害物回避挙動を開始する。挙動決定部68は、挙動開始距離82を大きくした結果、右車線への車線変更が困難と判定すれば、障害物80の手前で停止するように障害物回避挙動を決定する。さらに挙動決定部68は、信頼度が相対的に高い場合よりも、障害物の側方を通過する際に確保する回避距離84を大きくする。 FIG. 4B shows the obstacle avoidance behavior when the reliability of the obstacle detection result is relatively low. Also in (b) of FIG. 4, the behavior determining unit 68 determines the behavior of the vehicle 20 so as to pass the obstacle 80. However, the behavior determination unit 68 sets the behavior start distance 82 for starting the obstacle avoidance behavior to be larger than that when the reliability is relatively high. That is, the obstacle avoidance behavior is started at an earlier timing than when the reliability is high. If the behavior determination unit 68 determines that it is difficult to change the lane to the right lane as a result of increasing the behavior start distance 82, the behavior determination unit 68 determines the obstacle avoidance behavior so as to stop before the obstacle 80. Furthermore, the behavior determination unit 68 increases the avoidance distance 84 that is secured when passing the side of the obstacle, compared to the case where the reliability is relatively high.
 このように、挙動決定部68は、障害物検出装置24による障害物検出結果の信頼度が低い場合、信頼度が高い場合より、車両20と障害物80との間隔を長くするように障害物回避挙動を決定する。これにより、障害物検出装置24による障害物検出結果の信頼度が低くても、車両20と障害物80との衝突回避の確実性を高めることができる。なお、挙動決定部68は、障害物検出結果の信頼度が低い場合に、挙動開始距離82と回避距離84のいずれか一方を、信頼度が高い場合より長くしてもよい。 As described above, the behavior determining unit 68 is configured to increase the distance between the vehicle 20 and the obstacle 80 when the reliability of the obstacle detection result by the obstacle detection device 24 is low than when the reliability is high. Determine avoidance behavior. Thereby, even if the reliability of the obstacle detection result by the obstacle detection device 24 is low, the certainty of collision avoidance between the vehicle 20 and the obstacle 80 can be improved. In addition, when the reliability of the obstacle detection result is low, the behavior determination unit 68 may make either one of the behavior start distance 82 and the avoidance distance 84 longer than when the reliability is high.
 図2に戻り、運転制御部70は、挙動決定部68により決定された挙動であり、本実施例では特に障害物回避挙動を車両20に実行させる。具体的には、運転制御部70は、障害物回避挙動を車両20に実行させるための、運転操作部22の制御対象(ステアリング30等)に対する制御値を算出する。運転制御部70は、算出した制御値を示す制御コマンドを、I/O部60を介して、各制御対象のECUまたはコントローラへ伝達する。 2, the operation control unit 70 is the behavior determined by the behavior determination unit 68, and in the present embodiment, causes the vehicle 20 to execute an obstacle avoidance behavior in particular. Specifically, the driving control unit 70 calculates a control value for the control target (steering 30 or the like) of the driving operation unit 22 for causing the vehicle 20 to execute the obstacle avoidance behavior. The operation control unit 70 transmits a control command indicating the calculated control value to each control target ECU or controller via the I / O unit 60.
 以上の構成による自動運転システム28の動作を説明する。 The operation of the automatic driving system 28 having the above configuration will be described.
 図5は、第1実施例に係る自動運転システム28の動作を示すフローチャートである。障害物検出装置24のTOFカメラ40は、車両から、車両の進行方向(前方等)に存在する物体への距離を測定する(S10)。障害物検出装置24の障害物検出部48は、TOFカメラ40により測定された物体までの距離情報に基づいて、車両の走行に対する障害物を検出する(S12)。障害物が検出された場合(S14のY)、障害物検出装置24の信頼度推定部50は、TOFカメラ40の発光強度と、現在の背景光強度との比に応じて、障害物検出結果の信頼度を推定する(S16)。障害物検出装置24の障害物情報送信部52は、障害物検出結果とその信頼度情報を自動運転制御装置26へ送信する(S18)。障害物検出装置24は、S10~S18の処理を定期的に繰り返す。 FIG. 5 is a flowchart showing the operation of the automatic driving system 28 according to the first embodiment. The TOF camera 40 of the obstacle detection device 24 measures the distance from the vehicle to an object existing in the traveling direction of the vehicle (eg, forward) (S10). The obstacle detection unit 48 of the obstacle detection device 24 detects an obstacle to the traveling of the vehicle based on the distance information to the object measured by the TOF camera 40 (S12). When an obstacle is detected (Y in S14), the reliability estimation unit 50 of the obstacle detection device 24 determines the obstacle detection result according to the ratio between the emission intensity of the TOF camera 40 and the current background light intensity. Is estimated (S16). The obstacle information transmission unit 52 of the obstacle detection device 24 transmits the obstacle detection result and its reliability information to the automatic operation control device 26 (S18). The obstacle detection device 24 periodically repeats the processes of S10 to S18.
 自動運転制御装置26の挙動決定部68は、障害物検出装置24による障害物検出結果にしたがって障害物回避挙動を決定する(S20)。障害物検出結果の信頼度が所定の閾値以上である場合(S22のY)、自動運転制御装置26の運転制御部70は、S20で決定された障害物回避挙動を車両20に実行させる(S24)。障害物検出結果の信頼度が所定の閾値未満の場合(S22のN)、自動運転制御装置26の挙動決定部68は、S20で決定した障害物回避挙動をより安全な態様へ変更する(S26)。この場合、自動運転制御装置26の運転制御部70は、S26における変更結果の障害物回避挙動を車両20に実行させる(S24)。障害物検出装置24にて障害物が検出されなければ(S14のN)、以降の処理をスキップして本図のフローを終了する。 The behavior determination unit 68 of the automatic operation control device 26 determines the obstacle avoidance behavior according to the obstacle detection result by the obstacle detection device 24 (S20). When the reliability of the obstacle detection result is equal to or greater than the predetermined threshold (Y in S22), the driving control unit 70 of the automatic driving control device 26 causes the vehicle 20 to execute the obstacle avoidance behavior determined in S20 (S24). ). When the reliability of the obstacle detection result is less than the predetermined threshold (N in S22), the behavior determination unit 68 of the automatic driving control device 26 changes the obstacle avoidance behavior determined in S20 to a safer mode (S26). ). In this case, the driving control unit 70 of the automatic driving control device 26 causes the vehicle 20 to execute the obstacle avoidance behavior resulting from the change in S26 (S24). If no obstacle is detected by the obstacle detection device 24 (N in S14), the subsequent processing is skipped and the flow of FIG.
 S26の障害物回避挙動の変更において、挙動決定部68は、例えば、信頼度が所定の閾値以上である場合よりも障害物を回避する際の車両20と障害物との距離を大きくするように障害物回避挙動を変更してもよい。また挙動決定部68は、障害物を避けて進行を継続する障害物回避挙動をS20で決定していた場合に、より安全な障害物回避挙動として、障害物の手前で停止するように挙動を変更してもよい。なお図5の例ではS26で障害物回避挙動を変更したが、挙動決定部68は、S20において、予め定められた複数種類のパラメータのうち信頼度の値に対応づけられたパラメータを使用して、信頼度の値に応じて異なる障害物回避挙動を決定してもよい。 In the change of the obstacle avoidance behavior in S26, the behavior determination unit 68 increases the distance between the vehicle 20 and the obstacle when avoiding the obstacle, for example, when the reliability is equal to or higher than a predetermined threshold. Obstacle avoidance behavior may be changed. In addition, when the obstacle avoidance behavior that avoids the obstacle and continues to proceed is determined in S20, the behavior determining unit 68 sets the behavior so as to stop before the obstacle as a safer obstacle avoidance behavior. It may be changed. In the example of FIG. 5, the obstacle avoidance behavior is changed in S26, but the behavior determination unit 68 uses a parameter associated with the reliability value among a plurality of predetermined parameters in S20. Different obstacle avoidance behavior may be determined according to the reliability value.
 第1実施例の自動運転制御装置26によると、障害物検出装置24により検出された障害物との衝突を避けるための障害物回避挙動を、障害物検出装置24により推定された信頼度に適合する態様で車両20に実行させることができる。また、障害物検出装置24によると、TOFカメラ40で検出可能な発光強度と背景光強度とを比較することにより、障害物検出結果の信頼度を推定する。これにより、信頼度を求めるための新たなセンサ等が不要になり、部品点数およびコストを抑制できる。 According to the automatic operation control device 26 of the first embodiment, the obstacle avoidance behavior for avoiding the collision with the obstacle detected by the obstacle detection device 24 is adapted to the reliability estimated by the obstacle detection device 24. The vehicle 20 can be executed in such a manner. Further, according to the obstacle detection device 24, the reliability of the obstacle detection result is estimated by comparing the light emission intensity detectable by the TOF camera 40 and the background light intensity. This eliminates the need for a new sensor or the like for obtaining reliability, and can suppress the number of parts and cost.
 (第2実施例)
 第2実施例の自動運転システム28の機能ブロックは第1実施例(図2)と同じだが、第2実施例の障害物検出装置24は、障害物検出結果の信頼度に応じて、障害物検出処理と信頼度推定処理を複数回繰り返す。以下、障害物検出装置24の構成を説明する。
(Second embodiment)
The functional blocks of the automatic driving system 28 of the second embodiment are the same as those of the first embodiment (FIG. 2). However, the obstacle detection device 24 of the second embodiment has an obstacle according to the reliability of the obstacle detection result. The detection process and the reliability estimation process are repeated a plurality of times. Hereinafter, the configuration of the obstacle detection device 24 will be described.
 信頼度推定部50は、障害物検出部48による1回目の障害物検出結果の信頼度が、予め定められた信頼度閾値未満の場合に、TOFカメラ40に対して測距処理の再実行を指示する。この指示に応じて、発光部42は発光パルス強度を高め、すなわち、それまでより強度を上げた測定光を新たに発光する。受光部44は、新たに発光された測定光が車両20外部の物体に反射した反射光を受光する。距離測定部46は、強度を上げた測定光の発光から、その反射光を受光するまでの時間に応じて、車両20外部の物体までの距離を新たに測定する。 The reliability estimation unit 50 re-executes the distance measurement processing on the TOF camera 40 when the reliability of the first obstacle detection result by the obstacle detection unit 48 is less than a predetermined reliability threshold. Instruct. In response to this instruction, the light emitting unit 42 increases the intensity of the light emission pulse, that is, newly emits measurement light having a higher intensity than before. The light receiving unit 44 receives reflected light obtained by reflecting the newly emitted measurement light on an object outside the vehicle 20. The distance measuring unit 46 newly measures the distance to the object outside the vehicle 20 according to the time from the emission of the measurement light whose intensity has been increased until the reflected light is received.
 障害物検出部48は、第1実施例と同様に、距離測定部46により測定された車両20外部の物体までの距離に応じて障害物の存在を検出する。信頼度推定部50は、背景光の強度と、新たに発光された測定光の強度とを比較して、障害物検出部48による新たな障害物検出結果の信頼度を推定する。具体的には、第1実施例と同様に、背景光の強度と、新たに発光された測定光の強度との比(S/N比)を信頼度として算出する。 The obstacle detection unit 48 detects the presence of an obstacle according to the distance to the object outside the vehicle 20 measured by the distance measurement unit 46 as in the first embodiment. The reliability estimation unit 50 estimates the reliability of the new obstacle detection result by the obstacle detection unit 48 by comparing the intensity of the background light and the intensity of the newly emitted measurement light. Specifically, as in the first embodiment, the ratio (S / N ratio) between the intensity of the background light and the intensity of the newly emitted measurement light is calculated as the reliability.
 図6は、第2実施例に係る自動運転システム28の動作を示すフローチャートである。図6のS30~S36、S44~S52の処理は、第1実施例で説明した図5のS10~S26に対応する。 FIG. 6 is a flowchart showing the operation of the automatic driving system 28 according to the second embodiment. The processes of S30 to S36 and S44 to S52 of FIG. 6 correspond to S10 to S26 of FIG. 5 described in the first embodiment.
 障害物検出装置24のTOFカメラ40は、車両から、車両の進行方向に存在する物体への距離を測定する(S30)。障害物検出装置24の障害物検出部48は、TOFカメラ40により測定された物体までの距離情報に基づいて、車両の走行に対する障害物を検出する(S32)。障害物が検出された場合(S34のY)、障害物検出装置24の信頼度推定部50は、TOFカメラ40の発光強度と、現在の背景光強度との比に応じて、障害物検出結果の信頼度を推定する(S36)。 The TOF camera 40 of the obstacle detection device 24 measures the distance from the vehicle to the object existing in the traveling direction of the vehicle (S30). The obstacle detection unit 48 of the obstacle detection device 24 detects an obstacle to the traveling of the vehicle based on the distance information to the object measured by the TOF camera 40 (S32). When an obstacle is detected (Y in S34), the reliability estimation unit 50 of the obstacle detection device 24 determines the obstacle detection result according to the ratio between the emission intensity of the TOF camera 40 and the current background light intensity. Is estimated (S36).
 S30~S36が1回目の実行であって(S38のN)、障害物検出結果の信頼度が所定の閾値以上であれば(S40のY)、障害物検出装置24の障害物情報送信部52は、障害物検出結果とその信頼度情報を自動運転制御装置26へ送信する(S44)。その一方、障害物検出結果の信頼度が所定の閾値未満であれば(S40のN)、障害物検出装置24のTOFカメラ40は、強度を上げた測定光を新たに発光し(S42)、S30~S36の処理を繰り返す。 If S30 to S36 are the first execution (N in S38) and the reliability of the obstacle detection result is equal to or higher than a predetermined threshold (Y in S40), the obstacle information transmission unit 52 of the obstacle detection device 24 will be described. Transmits the obstacle detection result and its reliability information to the automatic operation control device 26 (S44). On the other hand, if the reliability of the obstacle detection result is less than the predetermined threshold (N in S40), the TOF camera 40 of the obstacle detection device 24 newly emits measurement light with increased intensity (S42). The processes of S30 to S36 are repeated.
 S30~S36が2回目の実行である場合(S38のY)、2回目の障害物検出結果の信頼度に関わらず、障害物検出装置24の障害物情報送信部52は、2回目の障害物検出結果とその信頼度情報を自動運転制御装置26へ送信する(S44)。変形例として、1回目の障害物検出結果と2回目の障害物検出結果のうち信頼度が高い障害物検出結果とその信頼度情報を自動運転制御装置26へ送信してもよい。障害物検出装置24は、S30~S44の処理を定期的に繰り返す。 When S30 to S36 are the second execution (Y of S38), the obstacle information transmission unit 52 of the obstacle detection device 24 performs the second obstacle regardless of the reliability of the second obstacle detection result. The detection result and its reliability information are transmitted to the automatic operation control device 26 (S44). As a modification, the obstacle detection result with high reliability and the reliability information among the first obstacle detection result and the second obstacle detection result may be transmitted to the automatic operation control device 26. The obstacle detection device 24 periodically repeats the processes of S30 to S44.
 自動運転制御装置26の挙動決定部68は、障害物検出装置24による障害物検出結果にしたがって障害物回避挙動を決定する(S46)。障害物検出結果の信頼度が所定の閾値以上である場合(S48のY)、自動運転制御装置26の運転制御部70は、S46で決定された障害物回避挙動を車両20に実行させる(S50)。障害物検出結果の信頼度が所定の閾値未満の場合(S48のN)、自動運転制御装置26の挙動決定部68は、S46で決定した障害物回避挙動をより安全な態様へ変更する(S52)。この場合、自動運転制御装置26の運転制御部70は、S52における変更結果の障害物回避挙動を車両20に実行させる(S50)。障害物検出装置24にて障害物が検出されなければ(S34のN)、以降の処理をスキップして本図のフローを終了する。 The behavior determination unit 68 of the automatic operation control device 26 determines the obstacle avoidance behavior according to the obstacle detection result by the obstacle detection device 24 (S46). When the reliability of the obstacle detection result is equal to or higher than the predetermined threshold (Y in S48), the driving control unit 70 of the automatic driving control device 26 causes the vehicle 20 to execute the obstacle avoidance behavior determined in S46 (S50). ). When the reliability of the obstacle detection result is less than the predetermined threshold (N in S48), the behavior determination unit 68 of the automatic driving control device 26 changes the obstacle avoidance behavior determined in S46 to a safer mode (S52). ). In this case, the driving control unit 70 of the automatic driving control device 26 causes the vehicle 20 to execute the obstacle avoidance behavior resulting from the change in S52 (S50). If an obstacle is not detected by the obstacle detection device 24 (N in S34), the subsequent processing is skipped and the flow of FIG.
 第2実施例の自動運転システム28によると、信頼度が高い障害物検出結果を得やすくなり、また、信頼度が高い障害物検出結果に基づく障害物回避挙動を車両に実行させやすくなる。これにより、不要なタイミングで回避動作を実行してしまうこと、または、障害物の回避が間に合わず障害物に衝突してしまうことを一層確実に防止できる。 According to the automatic driving system 28 of the second embodiment, it is easy to obtain an obstacle detection result with high reliability, and it is easy to cause the vehicle to execute an obstacle avoidance behavior based on the obstacle detection result with high reliability. As a result, it is possible to more reliably prevent the avoidance operation from being executed at an unnecessary timing, or the obstacle avoidance in time and the collision with the obstacle.
 (第3実施例)
 第3実施例の運転操作部22と自動運転制御装置26の構成は第1実施例(図2)と同じだが、第3実施例の障害物検出装置24は、第1実施例の障害物検出装置24とは異なる手法にて障害物検出結果の信頼度を推定する。以下、障害物検出装置24の構成を説明する。
(Third embodiment)
Although the configuration of the driving operation unit 22 and the automatic driving control device 26 of the third embodiment is the same as that of the first embodiment (FIG. 2), the obstacle detection device 24 of the third embodiment is the obstacle detection of the first embodiment. The reliability of the obstacle detection result is estimated by a method different from that of the device 24. Hereinafter, the configuration of the obstacle detection device 24 will be described.
 図7は、第3実施例に係る障害物検出装置24の構成を示す。障害物検出装置24は、背景光強度記憶部54をさらに含む。背景光強度記憶部54は、太陽等のノイズ光源が排除または低減された環境(本実施例では屋内)において予め測定された背景光の強度(以下「BG0」と呼ぶ。)を示す情報を記憶する。信頼度推定部50は、背景光強度記憶部54に記憶された背景光強度(BG0)と、現在の背景光の強度(以下「BGx」と呼ぶ。)とを比較して、障害物検出部48による障害物検出結果の信頼度を推定する。 FIG. 7 shows the configuration of the obstacle detection device 24 according to the third embodiment. The obstacle detection device 24 further includes a background light intensity storage unit 54. The background light intensity storage unit 54 stores information indicating the intensity of background light (hereinafter referred to as “BG0”) measured in advance in an environment (in this embodiment, indoors) in which a noise light source such as the sun is excluded or reduced. To do. The reliability estimation unit 50 compares the background light intensity (BG0) stored in the background light intensity storage unit 54 with the current background light intensity (hereinafter referred to as “BGx”), and compares it with an obstacle detection unit. The reliability of the obstacle detection result by 48 is estimated.
 現在の背景光の強度(BGx)は、車両20が走行中の環境下で、発光部42が非発光時に受光部44により受光された背景光の強度である。言い換えれば、TOFカメラ40による物体との距離測定時点における背景光の強度であり、さらに言い換えれば、障害物検出部48による障害物検出処理時における背景光の強度である。 The current background light intensity (BGx) is the intensity of the background light received by the light receiving unit 44 when the light emitting unit 42 does not emit light in an environment where the vehicle 20 is traveling. In other words, it is the intensity of the background light at the time of measuring the distance from the object by the TOF camera 40, and in other words, the intensity of the background light at the time of the obstacle detection processing by the obstacle detection unit 48.
 信頼度推定部50は、BG0とBGxとの差もしくは比に応じて信頼度を推定してもよい。本実施例の信頼度推定部50は、BG0とBGxとの差が予め定められた閾値A以上である場合に、信頼度が低いと判定し、低い信頼度を示す信頼度情報を生成する。その一方、信頼度推定部50は、BG0とBGxとの差が閾値A未満であれば、信頼度が高いと判定し、高い信頼度を示す信頼度情報を生成する。閾値Aには、BG0とBGxとの差がこれ以上になったら障害物検出結果の信頼度が低いと想定される値が設定される。閾値Aは、開発者の知見、または自動運転システム28による実験等により決定されてよい。 The reliability estimation unit 50 may estimate the reliability according to the difference or ratio between BG0 and BGx. The reliability estimation unit 50 according to the present embodiment determines that the reliability is low when the difference between BG0 and BGx is equal to or greater than a predetermined threshold A, and generates reliability information indicating the low reliability. On the other hand, if the difference between BG0 and BGx is less than the threshold value A, the reliability estimation unit 50 determines that the reliability is high and generates reliability information indicating high reliability. The threshold A is set to a value that is assumed that the reliability of the obstacle detection result is low when the difference between BG0 and BGx exceeds this value. The threshold A may be determined based on the developer's knowledge, an experiment by the automatic driving system 28, or the like.
 図8は、第3実施例に係る自動運転システム28の動作を示すフローチャートである。図8のS60~S64、S68、S72~S82は、第2実施例で説明した図6のS30~34、S38、S42~S52に対応する。 FIG. 8 is a flowchart showing the operation of the automatic driving system 28 according to the third embodiment. S60 to S64, S68, and S72 to S82 in FIG. 8 correspond to S30 to S34, S38, and S42 to S52 in FIG. 6 described in the second embodiment.
 障害物検出装置24のTOFカメラ40は、車両から、車両の進行方向に存在する物体への距離を測定する(S60)。障害物検出装置24の障害物検出部48は、TOFカメラ40により測定された物体までの距離情報に基づいて、車両の走行に対する障害物を検出する(S62)。障害物が検出された場合(S64のY)、障害物検出装置24の信頼度推定部50は、現在の背景光強度BGxをTOFカメラ40から取得する(S66)。 The TOF camera 40 of the obstacle detection device 24 measures the distance from the vehicle to the object existing in the traveling direction of the vehicle (S60). The obstacle detection unit 48 of the obstacle detection device 24 detects an obstacle to the traveling of the vehicle based on the distance information to the object measured by the TOF camera 40 (S62). When an obstacle is detected (Y in S64), the reliability estimation unit 50 of the obstacle detection device 24 acquires the current background light intensity BGx from the TOF camera 40 (S66).
 S60~S66が1回目の実行であって(S68のN)、予め記憶されたBG0と、BGxとの差が所定の閾値A未満であれば(S70のN)、障害物検出装置24の障害物情報送信部52は、障害物検出結果とその信頼度情報を自動運転制御装置26へ送信する(S74)。その一方、BG0とBGxとの差が閾値A以上であれば(S70のY)、障害物検出装置24のTOFカメラ40は、強度を上げた測定光を新たに発光し(S72)、S60~S66の処理を繰り返す。 If S60 to S66 are the first execution (N in S68) and the difference between BG0 stored in advance and BGx is less than a predetermined threshold A (N in S70), the obstacle detection device 24 has a fault. The object information transmission part 52 transmits an obstacle detection result and its reliability information to the automatic driving control device 26 (S74). On the other hand, if the difference between BG0 and BGx is greater than or equal to the threshold value A (Y in S70), the TOF camera 40 of the obstacle detection device 24 newly emits measurement light with increased intensity (S72), and S60 to The process of S66 is repeated.
 S60~S66が2回目の実行である場合(S68のY)、BG0とBGxとの差に関わらず、障害物検出装置24の障害物情報送信部52は、2回目の障害物検出結果とその信頼度情報を自動運転制御装置26へ送信する(S74)。変形例として、1回目の障害物検出結果と2回目の障害物検出結果のうち、BG0とBGxとの差が小さい障害物検出結果とその信頼度情報を自動運転制御装置26へ送信してもよい。障害物検出装置24は、S60~S74の処理を定期的に繰り返す。 When S60 to S66 are the second execution (Y of S68), the obstacle information transmission unit 52 of the obstacle detection device 24 determines the second obstacle detection result and its result regardless of the difference between BG0 and BGx. The reliability information is transmitted to the automatic operation control device 26 (S74). As a modification, even if the obstacle detection result with the small difference between BG0 and BGx out of the first obstacle detection result and the second obstacle detection result and its reliability information are transmitted to the automatic operation control device 26, Good. The obstacle detection device 24 periodically repeats the processing of S60 to S74.
 自動運転制御装置26の挙動決定部68は、障害物検出装置24による障害物検出結果にしたがって障害物回避挙動を決定する(S76)。障害物検出結果の信頼度が所定の閾値以上である場合(S78のY)、自動運転制御装置26の運転制御部70は、S76で決定された障害物回避挙動を車両20に実行させる(S80)。障害物検出結果の信頼度が所定の閾値未満の場合(S78のN)、自動運転制御装置26の挙動決定部68は、S76で決定した障害物回避挙動をより安全な態様へ変更する(S82)。この場合、自動運転制御装置26の運転制御部70は、S82における変更結果の障害物回避挙動を車両20に実行させる(S80)。障害物検出装置24にて障害物が検出されなければ(S64のN)、以降の処理をスキップして本図のフローを終了する。 The behavior determination unit 68 of the automatic operation control device 26 determines the obstacle avoidance behavior according to the obstacle detection result by the obstacle detection device 24 (S76). If the reliability of the obstacle detection result is equal to or higher than the predetermined threshold (Y in S78), the driving control unit 70 of the automatic driving control device 26 causes the vehicle 20 to execute the obstacle avoidance behavior determined in S76 (S80). ). When the reliability of the obstacle detection result is less than the predetermined threshold (N in S78), the behavior determination unit 68 of the automatic driving control device 26 changes the obstacle avoidance behavior determined in S76 to a safer mode (S82). ). In this case, the driving control unit 70 of the automatic driving control device 26 causes the vehicle 20 to execute the obstacle avoidance behavior resulting from the change in S82 (S80). If no obstacle is detected by the obstacle detection device 24 (N in S64), the subsequent processing is skipped and the flow of this figure is terminated.
 第3実施例の自動運転システム28によると、TOFカメラ40で検出可能な現在の背景光強度と、予め測定された屋内背景光強度を比較することにより、障害物検出結果の信頼度を推定する。これにより、信頼度を求めるための新たなセンサ等が不要になり、部品点数およびコストを抑制できる。 According to the automatic driving system 28 of the third embodiment, the reliability of the obstacle detection result is estimated by comparing the current background light intensity detectable by the TOF camera 40 and the indoor background light intensity measured in advance. . This eliminates the need for a new sensor or the like for obtaining reliability, and can suppress the number of parts and cost.
 以上、本発明を第1~第3実施例をもとに説明した。これらの実施例は例示であり、それらの各構成要素あるいは各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described based on the first to third embodiments. Those skilled in the art will understand that these embodiments are exemplifications, and that various modifications can be made to each component or combination of each treatment process, and such modifications are within the scope of the present invention. is there.
 第2実施例および第3実施例に関連する変形例を説明する。第2実施例と第3実施例では、障害物検出処理と信頼度推定処理を最大2回繰り返した。変形例として、障害物検出結果の信頼度が所定の信頼度閾値に到達しない場合、障害物検出処理と信頼度推定処理を3回以上繰り返してもよい。そして、繰り返し毎に、TOFカメラ40(発光部42)による発光強度を段階的に増加してもよい。これにより、ノイズが多い屋外においても信頼性が高い障害物検出結果を得やすくなる。 Modifications related to the second embodiment and the third embodiment will be described. In the second example and the third example, the obstacle detection process and the reliability estimation process were repeated at most twice. As a modification, when the reliability of the obstacle detection result does not reach a predetermined reliability threshold, the obstacle detection process and the reliability estimation process may be repeated three or more times. And every time it repeats, you may increase the emitted light intensity by the TOF camera 40 (light emission part 42) in steps. This makes it easier to obtain highly reliable obstacle detection results even outdoors where there is a lot of noise.
 第2実施例および第3実施例に関連する変形例を説明する。第2実施例と第3実施例では、TOFカメラ40の出力データに基づく障害物検出結果の信頼度が所定の信頼度閾値に到達しない場合、TOFカメラ40による発光強度を増加した。変形例として、自動運転システム28は、TOFカメラ40とは方式の異なる別のセンサを備えてもよい。別のセンサは、例えばCCDイメージセンサ、CMOSイメージセンサ、ソナー、レーダーのいずれかもしくは組み合わせであってもよい。TOFカメラ40の出力データに基づく障害物検出結果の信頼度が所定の信頼度閾値に到達しない場合、障害物検出部48は、別のセンサの出力結果に基づいて障害物の存在を検出してもよい。障害物情報送信部52は、別のセンサの出力結果に基づく障害物検出結果を自動運転制御装置26へ送信して、自動運転制御装置26に障害物回避挙動を決定させてもよい。 Modifications related to the second embodiment and the third embodiment will be described. In the second embodiment and the third embodiment, when the reliability of the obstacle detection result based on the output data of the TOF camera 40 does not reach the predetermined reliability threshold, the light emission intensity by the TOF camera 40 is increased. As a modification, the automatic driving system 28 may include another sensor having a method different from that of the TOF camera 40. Another sensor may be, for example, any one or combination of a CCD image sensor, a CMOS image sensor, a sonar, and a radar. When the reliability of the obstacle detection result based on the output data of the TOF camera 40 does not reach the predetermined reliability threshold, the obstacle detection unit 48 detects the presence of the obstacle based on the output result of another sensor. Also good. The obstacle information transmitting unit 52 may transmit an obstacle detection result based on the output result of another sensor to the automatic driving control device 26 so that the automatic driving control device 26 determines the obstacle avoidance behavior.
 第1~第3実施例に関連する変形例を説明する。自動運転制御装置26の挙動決定部68は、障害物検出装置24で推定された信頼度を、高・中・低等の3段階以上で評価してもよい。挙動決定部68は、障害物検出装置24で推定された信頼度が低いほど、障害物との衝突を避けるための挙動の開始を早めるように車両の走行ルートおよび速度等を決定してもよい。また挙動決定部68は、障害物検出装置24で推定された信頼度が低いほど、障害物との衝突を避ける際の障害物との距離を大きくするように車両の走行ルートおよび速度等を決定してもよい。 Modifications related to the first to third embodiments will be described. The behavior determination unit 68 of the automatic operation control device 26 may evaluate the reliability estimated by the obstacle detection device 24 in three or more stages such as high, medium, and low. The behavior determination unit 68 may determine the travel route, speed, etc. of the vehicle so that the lower the reliability estimated by the obstacle detection device 24, the faster the start of the behavior for avoiding collision with the obstacle. . In addition, the behavior determination unit 68 determines the travel route, speed, and the like of the vehicle so that the lower the reliability estimated by the obstacle detection device 24, the greater the distance from the obstacle when avoiding a collision with the obstacle. May be.
 上述した実施例および変形例の任意の組み合わせもまた本発明の実施の形態として有用である。組み合わせによって生じる新たな実施の形態は、組み合わされる実施例および変形例それぞれの効果をあわせもつ。また、請求項に記載の各構成要件が果たすべき機能は、実施例および変形例において示された各構成要素の単体もしくはそれらの連携によって実現されることも当業者には理解されるところである。 Any combination of the above-described examples and modifications is also useful as an embodiment of the present invention. The new embodiment resulting from the combination has the effects of the combined example and modification. Further, it should be understood by those skilled in the art that the functions to be fulfilled by the constituent elements described in the claims are realized by the individual constituent elements shown in the embodiments and the modified examples or by their cooperation.
 なお、実施例および変形例に記載の技術は、以下の項目によって特定されてもよい。 It should be noted that the techniques described in the embodiments and the modifications may be specified by the following items.
 [項目1]
 障害物の検出結果を取得する取得部と、取得部により取得された検出結果に応じて、障害物との衝突を避けるように車両の挙動を決定する決定部と、決定部により決定された挙動を車両に実行させる運転制御部と、を備える自動運転制御装置。取得部は、障害物の検出結果の信頼度を示す情報をさらに取得し、決定部は、信頼度を示す情報に応じて異なる挙動を決定する。
[Item 1]
An acquisition unit that acquires the detection result of the obstacle, a determination unit that determines the behavior of the vehicle so as to avoid a collision with the obstacle according to the detection result acquired by the acquisition unit, and a behavior determined by the determination unit An automatic operation control device comprising: an operation control unit that causes the vehicle to execute the operation. The acquisition unit further acquires information indicating the reliability of the obstacle detection result, and the determination unit determines different behaviors according to the information indicating the reliability.
 この自動運転制御装置によると、入力された障害物の検出結果の信頼度に応じた好適な障害物回避挙動を車両に実行させることができる。 According to this automatic driving control device, it is possible to cause the vehicle to execute a suitable obstacle avoidance behavior according to the reliability of the input obstacle detection result.
 [項目2]
 決定部は、障害物の検出結果の信頼度が相対的に低い場合、信頼度が相対的に高い場合より、当該障害物との衝突を避けるための挙動の開始を早くするように決定してもよい。
[Item 2]
When the reliability of the obstacle detection result is relatively low, the determination unit determines to start the behavior earlier to avoid collision with the obstacle than when the reliability is relatively high. Also good.
 この態様によると、障害物との衝突回避の確実性を高めることができる。 ¡According to this aspect, it is possible to improve the certainty of avoiding collision with an obstacle.
 [項目3]
 決定部は、障害物の検出結果の信頼度が相対的に低い場合、信頼度が相対的に高い場合より、当該障害物との衝突を避ける際の障害物との距離を大きくするように挙動を決定してもよい。
[Item 3]
When the reliability of the obstacle detection result is relatively low, the determination unit behaves so as to increase the distance to the obstacle when avoiding a collision with the obstacle compared to the case where the reliability is relatively high. May be determined.
 この態様によると、障害物との衝突回避の確実性を高めることができる。 ¡According to this aspect, it is possible to improve the certainty of avoiding collision with an obstacle.
 [項目4]
 障害物検出装置と自動運転制御装置を備える自動運転システム。障害物検出装置は、車両の外部へ向けて発光する発光部と、発光部により発光された光が物体に反射して戻ってくるまでの時間に応じて障害物を検出する検出部と、発光部の非発光時に受け付けた背景光の強度に応じて、検出部による検出結果の信頼度を推定する推定部と、検出部により検出された障害物の情報と、推定部により推定された信頼度の情報を自動運転制御装置へ送信する送信部と、を含む。自動運転制御装置は、障害物検出装置から送信された障害物の情報に応じて、その障害物との衝突を避けるように車両の挙動を決定する決定部と、決定部により決定された挙動を車両に実行させる運転制御部と、を含む。決定部は、障害物検出装置から送信された信頼度の情報に応じて異なる挙動を決定する。
[Item 4]
An automatic driving system including an obstacle detection device and an automatic driving control device. The obstacle detection device includes a light emitting unit that emits light toward the outside of the vehicle, a detection unit that detects an obstacle according to the time until the light emitted from the light emitting unit is reflected back to the object, and the light emission. An estimation unit for estimating the reliability of the detection result by the detection unit according to the intensity of the background light received when the unit is not emitting light, information on the obstacle detected by the detection unit, and the reliability estimated by the estimation unit And a transmitter for transmitting the information to the automatic operation control device. The automatic driving control device determines the behavior of the vehicle according to the obstacle information transmitted from the obstacle detection device so as to avoid a collision with the obstacle, and the behavior determined by the decision unit. An operation control unit to be executed by the vehicle. The determination unit determines different behaviors according to the reliability information transmitted from the obstacle detection device.
 この自動運転システムによると、障害物検出結果が障害物検出とともに推定した信頼度に応じて、好適な障害物回避挙動を車両に実行させることができる。 According to this automatic driving system, it is possible to cause the vehicle to execute a suitable obstacle avoidance behavior according to the reliability estimated by the obstacle detection result together with the obstacle detection.
 [項目5]
 推定部は、背景光の強度と、発光部による発光の強度とを比較して信頼度を推定してもよい。
[Item 5]
The estimation unit may estimate the reliability by comparing the intensity of background light with the intensity of light emitted by the light emitting unit.
 この態様によると、障害物の検出結果の信頼度を、新たなセンサ等を設けることなく推定できる。 According to this aspect, the reliability of the obstacle detection result can be estimated without providing a new sensor or the like.
 [項目6]
 推定部により推定された信頼度が所定の閾値未満の場合に、発光部は、強度を上げた光を新たに発光し、検出部は、新たに発光された光が戻ってくるまでの時間に応じて障害物の存在を新たに検出し、推定部は、背景光の強度と、新たに発光された光の強度とを比較して、検出部による新たな検出結果の信頼度を推定してもよい。
[Item 6]
When the reliability estimated by the estimation unit is less than a predetermined threshold, the light emitting unit newly emits light with increased intensity, and the detection unit is in a time until the newly emitted light returns. Accordingly, the presence of an obstacle is newly detected, and the estimation unit compares the intensity of the background light with the intensity of the newly emitted light to estimate the reliability of the new detection result by the detection unit. Also good.
 この態様によると、信頼度が高い障害物の検出結果を得やすくなる。 According to this aspect, it becomes easy to obtain the detection result of the obstacle with high reliability.
 [項目7]
 障害物検出装置は、屋内における背景光の強度を記憶する記憶部をさらに含んでもよい。推定部は、記憶部に記憶された背景光の強度と、現在の背景光の強度とを比較して信頼度を推定してもよい。
[Item 7]
The obstacle detection device may further include a storage unit that stores the intensity of background light indoors. The estimation unit may estimate the reliability by comparing the intensity of the background light stored in the storage unit with the current intensity of the background light.
 この態様によると、障害物の検出結果の信頼度を、新たなセンサ等を設けることなく推定できる。 According to this aspect, the reliability of the obstacle detection result can be estimated without providing a new sensor or the like.
 本開示の障害物検出装置は、障害物の検出結果の信頼度が向上し、車両に対し好適な障害物回避挙動をさせることができて有用である。 The obstacle detection device of the present disclosure is useful because the reliability of the obstacle detection result is improved and the vehicle can have a suitable obstacle avoidance behavior.
 20 車両
 24 障害物検出装置
 26 自動運転制御装置
 28 自動運転システム
 40 TOFカメラ
 42 発光部
 44 受光部
 46 距離測定部
 48 障害物検出部
 50 信頼度推定部
 54 背景光強度記憶部
 66 障害物情報取得部
 68 挙動決定部
 70 運転制御部
DESCRIPTION OF SYMBOLS 20 Vehicle 24 Obstacle detection apparatus 26 Automatic driving control apparatus 28 Automatic driving system 40 TOF camera 42 Light emission part 44 Light receiving part 46 Distance measurement part 48 Obstacle detection part 50 Reliability estimation part 54 Background light intensity memory | storage part 66 Obstacle information acquisition Unit 68 Behavior determining unit 70 Operation control unit

Claims (7)

  1.  障害物の検出結果を取得する取得部と、
     前記取得部により取得された検出結果に応じて、障害物との衝突を避けるように車両の挙動を決定する決定部と、
     前記決定部により決定された挙動を車両に実行させる運転制御部と、
     を備え、
     前記取得部は、障害物の検出結果の信頼度を示す情報をさらに取得し、
     前記決定部は、前記信頼度を示す情報に応じて異なる挙動を決定することを特徴とする自動運転制御装置。
    An acquisition unit for acquiring obstacle detection results;
    In accordance with the detection result acquired by the acquisition unit, a determination unit that determines the behavior of the vehicle so as to avoid a collision with an obstacle,
    An operation control unit for causing the vehicle to execute the behavior determined by the determination unit;
    With
    The acquisition unit further acquires information indicating the reliability of the obstacle detection result,
    The automatic operation control device, wherein the determining unit determines different behaviors according to information indicating the reliability.
  2.  前記決定部は、障害物の検出結果の信頼度が相対的に低い場合、信頼度が相対的に高い場合より、当該障害物との衝突を避けるための挙動の開始を早くするように決定する請求項1に記載の自動運転制御装置。 The determination unit determines that the start of the behavior for avoiding a collision with the obstacle is earlier when the reliability of the obstacle detection result is relatively low than when the reliability is relatively high. The automatic operation control device according to claim 1.
  3.  前記決定部は、障害物の検出結果の信頼度が相対的に低い場合、信頼度が相対的に高い場合より、当該障害物との衝突を避ける際の障害物との距離を大きくするように挙動を決定する請求項1または2に記載の自動運転制御装置。 When the reliability of the obstacle detection result is relatively low, the determination unit increases the distance from the obstacle when avoiding a collision with the obstacle compared to the case where the reliability is relatively high. The automatic operation control device according to claim 1 or 2, wherein the behavior is determined.
  4.  障害物検出装置と自動運転制御装置を備え、
     前記障害物検出装置は、
     車両の外部へ向けて発光する発光部と、
     前記発光部により発光された光が物体に反射して戻ってくるまでの時間に応じて障害物を検出する検出部と、
     前記発光部の非発光時に受け付けた背景光の強度に応じて、前記検出部による検出結果の信頼度を推定する推定部と、
     前記検出部により検出された障害物の情報と、前記推定部により推定された信頼度の情報を前記自動運転制御装置へ送信する送信部と、を含み、
     前記自動運転制御装置は、
     前記障害物検出装置から送信された障害物の情報に応じて、その障害物との衝突を避けるように車両の挙動を決定する決定部と、
     前記決定部により決定された挙動を車両に実行させる運転制御部と、を含み、
     前記決定部は、前記障害物検出装置から送信された信頼度の情報に応じて異なる挙動を決定することを特徴とする自動運転システム。
    Equipped with obstacle detection device and automatic operation control device,
    The obstacle detection device includes:
    A light emitting unit that emits light toward the outside of the vehicle;
    A detection unit that detects an obstacle according to a time until the light emitted from the light-emitting unit is reflected by the object and returns;
    An estimation unit that estimates the reliability of the detection result by the detection unit according to the intensity of background light received when the light emitting unit is not emitting light,
    Including information on the obstacle detected by the detection unit, and a transmission unit that transmits information on the reliability estimated by the estimation unit to the automatic operation control device,
    The automatic operation control device is
    A determination unit that determines the behavior of the vehicle so as to avoid a collision with the obstacle according to the information of the obstacle transmitted from the obstacle detection device;
    An operation control unit that causes the vehicle to execute the behavior determined by the determination unit,
    The said determination part determines a different behavior according to the information of the reliability transmitted from the said obstacle detection apparatus, The automatic driving system characterized by the above-mentioned.
  5.  前記推定部は、前記背景光の強度と、前記発光部による発光の強度とを比較して前記信頼度を推定する請求項4に記載の自動運転システム。 The automatic operation system according to claim 4, wherein the estimation unit estimates the reliability by comparing the intensity of the background light and the intensity of light emitted by the light emitting unit.
  6.  前記推定部により推定された信頼度が所定の閾値未満の場合に、
     前記発光部は、強度を上げた光を新たに発光し、
     前記検出部は、前記新たに発光された光が戻ってくるまでの時間に応じて障害物の存在を新たに検出し、
     前記推定部は、前記背景光の強度と、前記新たに発光された光の強度とを比較して、前記検出部による新たな検出結果の信頼度を推定する請求項5に記載の自動運転システム。
    When the reliability estimated by the estimation unit is less than a predetermined threshold,
    The light emitting unit newly emits light with increased intensity,
    The detection unit newly detects the presence of an obstacle according to the time until the newly emitted light returns,
    6. The automatic driving system according to claim 5, wherein the estimation unit compares the intensity of the background light with the intensity of the newly emitted light to estimate the reliability of a new detection result by the detection unit. .
  7.  前記障害物検出装置は、屋内における背景光の強度を記憶する記憶部をさらに含み、
     前記推定部は、前記記憶部に記憶された背景光の強度と、現在の背景光の強度とを比較して前記信頼度を推定する請求項4に記載の自動運転システム。
    The obstacle detection device further includes a storage unit that stores the intensity of background light indoors,
    The automatic operation system according to claim 4, wherein the estimation unit estimates the reliability by comparing a background light intensity stored in the storage unit with a current background light intensity.
PCT/JP2017/004855 2016-03-09 2017-02-10 Self-driving control device and self-driving system WO2017154456A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-046195 2016-03-09
JP2016046195A JP2017159801A (en) 2016-03-09 2016-03-09 Self-driving control device and self-driving system

Publications (1)

Publication Number Publication Date
WO2017154456A1 true WO2017154456A1 (en) 2017-09-14

Family

ID=59790484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004855 WO2017154456A1 (en) 2016-03-09 2017-02-10 Self-driving control device and self-driving system

Country Status (2)

Country Link
JP (1) JP2017159801A (en)
WO (1) WO2017154456A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113963327A (en) * 2021-09-06 2022-01-21 阿波罗智能技术(北京)有限公司 Obstacle detection method, obstacle detection apparatus, autonomous vehicle, device, and storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112019007983T5 (en) * 2019-12-20 2022-12-15 Honda Motor Co., Ltd. Working machine and processing device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1031799A (en) * 1996-07-15 1998-02-03 Toyota Motor Corp Automatic traveling controller
JP2007232687A (en) * 2006-03-03 2007-09-13 Sharp Corp Optical range finder
JP2012183868A (en) * 2011-03-03 2012-09-27 Fuji Heavy Ind Ltd Vehicle driving support apparatus
JP2013117453A (en) * 2011-12-05 2013-06-13 Hitachi Ltd Distance measuring method and apparatus and shape measuring apparatus with the same packaged therein
JP2014099019A (en) * 2012-11-14 2014-05-29 Denso Corp Collision prevention apparatus for vehicle
JP2015148899A (en) * 2014-02-05 2015-08-20 トヨタ自動車株式会社 collision avoidance control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1031799A (en) * 1996-07-15 1998-02-03 Toyota Motor Corp Automatic traveling controller
JP2007232687A (en) * 2006-03-03 2007-09-13 Sharp Corp Optical range finder
JP2012183868A (en) * 2011-03-03 2012-09-27 Fuji Heavy Ind Ltd Vehicle driving support apparatus
JP2013117453A (en) * 2011-12-05 2013-06-13 Hitachi Ltd Distance measuring method and apparatus and shape measuring apparatus with the same packaged therein
JP2014099019A (en) * 2012-11-14 2014-05-29 Denso Corp Collision prevention apparatus for vehicle
JP2015148899A (en) * 2014-02-05 2015-08-20 トヨタ自動車株式会社 collision avoidance control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113963327A (en) * 2021-09-06 2022-01-21 阿波罗智能技术(北京)有限公司 Obstacle detection method, obstacle detection apparatus, autonomous vehicle, device, and storage medium
CN113963327B (en) * 2021-09-06 2023-09-08 阿波罗智能技术(北京)有限公司 Obstacle detection method, obstacle detection device, autonomous vehicle, apparatus, and storage medium

Also Published As

Publication number Publication date
JP2017159801A (en) 2017-09-14

Similar Documents

Publication Publication Date Title
JP5846316B2 (en) Vehicle acceleration suppression device and vehicle acceleration suppression method
CN106796292B (en) For detecting method, driver assistance system and the motor vehicles of at least one object in the peripheral region of motor vehicles
US20140333467A1 (en) Object detection device
MY188558A (en) Vehicle driving assist control method and control device
CN107209264B (en) Method for detecting objects in the surrounding area of a motor vehicle by checking spatial deviations of measurement points, control device, driver assistance system and motor vehicle
US10569766B2 (en) Vehicle control device
RU2017134760A (en) PROBABLE IDENTIFICATION OF THE OBJECT BY NUMEROUS SENSORS AND AUTOMATIC BRAKING
US9528461B2 (en) Obstacle detection device for vehicle and misacceleration mitigation device using the same
JP2009085939A (en) Method and device for detecting view field affecting phenomenon by vehicle, and computer program therefor
JP6645254B2 (en) Object recognition device
JP2002257934A (en) Road surface condition detector for vehicle and range- finder for vehicle
US10197672B2 (en) Moving object detection apparatus and drive support apparatus
CN108944918B (en) Driving assistance system with short distance determination function and operation method
GB2576206A (en) Sensor degradation
WO2017154456A1 (en) Self-driving control device and self-driving system
JP4692077B2 (en) Leading vehicle detection device
US10656270B2 (en) Object detection device, object detection method, and program
JP2005300307A (en) Object recognition device for vehicle and program
JP2004184333A (en) Distance measuring apparatus
JP5163087B2 (en) Object detection device
JP2006047057A (en) Outside-vehicle monitoring device, and traveling control device provided with this outside-vehicle monitoring device
WO2017163736A1 (en) Movement path detection device, moving object detection device, and movement path detection method
JP2007163431A (en) Target recognition device of vehicle, and target recognition method
JP2006168628A (en) Collision prevention supporting method and device
JP6725982B2 (en) Obstacle determination device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17762800

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17762800

Country of ref document: EP

Kind code of ref document: A1