WO2017154449A1 - Gel electrolyte and preparation method thereof - Google Patents

Gel electrolyte and preparation method thereof Download PDF

Info

Publication number
WO2017154449A1
WO2017154449A1 PCT/JP2017/004554 JP2017004554W WO2017154449A1 WO 2017154449 A1 WO2017154449 A1 WO 2017154449A1 JP 2017004554 W JP2017004554 W JP 2017004554W WO 2017154449 A1 WO2017154449 A1 WO 2017154449A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix polymer
gel electrolyte
electrolyte
carbonate
polymer
Prior art date
Application number
PCT/JP2017/004554
Other languages
French (fr)
Japanese (ja)
Inventor
圭介 渡辺
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016053140A external-priority patent/JP6829943B2/en
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to KR1020187016225A priority Critical patent/KR101942835B1/en
Priority to CN201780004567.8A priority patent/CN108370067B/en
Priority to EP17762793.2A priority patent/EP3429018A4/en
Priority to US16/067,869 priority patent/US20190348711A1/en
Publication of WO2017154449A1 publication Critical patent/WO2017154449A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/22Vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a gel electrolyte and a method for preparing the same, and more particularly to a gel electrolyte including a non-aqueous electrolyte in which a lithium-containing electrolyte is dissolved in a non-aqueous solvent and a matrix polymer, and a method for preparing the gel electrolyte.
  • batteries have attracted attention as a power source for small portable devices such as smartphones, and a power source for electric vehicles and hybrid vehicles.
  • lithium ion batteries having a small volume and a large capacity are attracting particular attention.
  • Patent Document 1 discloses a gel polymer electrolyte for a lithium ion secondary battery using a gel composition containing a terpolymer of vinylidene fluoride, hexafluoropropene and chlorotrifluoroethylene and a lithium salt-soluble organic solvent. ing.
  • the gel electrolyte usually contains a non-aqueous electrolyte and a polymer.
  • the polymer itself constituting the gel electrolyte does not directly contribute to the battery capacity. Therefore, it is preferable that the amount of the polymer present in the gel electrolyte is small.
  • the gel electrolyte contains a large amount of non-aqueous electrolyte compared to the polymer, that is, when the polymer concentration in the gel electrolyte is relatively low, the gel strength decreases, and consequently the gel state is reduced. It cannot be maintained. If the gel state cannot be maintained, the non-aqueous electrolyte leaks to the outside of the battery, resulting in a problem relating to reliability such as the battery firing.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a gel electrolyte capable of maintaining a gel state with a polymer concentration lower than usual.
  • the gel electrolyte according to the present invention is a gel electrolyte comprising a non-aqueous electrolyte solution in which a lithium-containing electrolyte is dissolved in a non-aqueous solvent, and a matrix polymer.
  • a copolymer containing vinylidene fluoride units and fluorine atom-containing monomer units as repeating units and the melting point T m of the matrix polymer is the concentration C (mass%) of the matrix polymer contained in the gel electrolyte. ) Within the range satisfying the following formula (I).
  • a method for preparing a gel electrolyte according to the present invention is a method for preparing a gel electrolyte comprising a non-aqueous electrolyte solution in which a lithium-containing electrolyte is dissolved in a non-aqueous solvent and a matrix polymer. And the non-aqueous electrolyte so that the melting point T m of the matrix polymer and the concentration C (% by mass) of the matrix polymer contained in the gel electrolyte satisfy the following formula (I): It has the structure which mixes the said matrix polymer.
  • the present invention it is possible to provide a gel electrolyte in which the concentration of the matrix polymer is lower than usual and the gel state can be maintained.
  • the gel electrolyte according to the present invention is a gel electrolyte containing a non-aqueous electrolyte solution in which a lithium-containing electrolyte is dissolved in a non-aqueous solvent and a matrix polymer, wherein the matrix polymer includes a vinylidene fluoride unit and a fluorine.
  • T m of the matrix polymer is expressed by the following formula (concentration C) (% by mass) of the matrix polymer contained in the gel electrolyte: I) T m ⁇ 145-C (I) (In formula (I), 0.1 ⁇ C ⁇ 30.) It is within the range that satisfies.
  • the copolymer containing a vinylidene fluoride unit and a fluorine atom-containing monomer unit as a repeating unit is a vinylidene fluoride and a fluorine atom-containing monomer used as a monomer when polymerizing the copolymer, It is a copolymer containing a structure derived from vinylidene fluoride and a structure derived from a fluorine atom-containing monomer as repeating units.
  • the matrix polymer used for the gel electrolyte in the present embodiment is a copolymer (that is, a vinylidene fluoride copolymer) containing vinylidene fluoride units and fluorine atom-containing monomer units as repeating units.
  • the concentration of the matrix polymer in the gel electrolyte is 0.1% by mass or more and 30% by mass or less.
  • a preferable lower limit of the concentration of the matrix polymer in the gel electrolyte is 0.5% by mass or more, and a more preferable lower limit is 1.0% by mass or more.
  • a suitable upper limit is 20 mass% or less, and a more suitable upper limit is 15 mass% or less.
  • the melting point T m of the matrix polymer is represented by the following formula (I) T m ⁇ 145-C (I)
  • a matrix polymer that satisfies the above is used as the matrix polymer in the present embodiment.
  • the melting point T m of a matrix polymer can be measured by a conventionally known measuring method, for example, it can be measured by a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the weight average molecular weight of the matrix polymer is preferably 100,000 to 3,000,000, more preferably 200,000 to 2,000,000, and still more preferably 300,000 to 1,500,000.
  • the fluorine atom-containing monomer in the present embodiment is a compound containing a fluorine atom, and a compound that can be used as a monomer component in polymerization is intended.
  • Fluorine atom-containing monomers include, but are not limited to, compounds having a structure in which fluorine is directly bonded to sp2 carbon, such as hexafluoropropylene (HFP) and chlorotrifluoroethylene (CTFE), trifluoromethyl acrylate, vinyl triflate. Examples thereof include fluoromethyl ether and trifluoroethylene.
  • the fluorine atom-containing monomer in the present embodiment include hexafluoropropylene (HFP) and chlorotrifluoroethylene (CTFE).
  • HFP and CTFE are also referred to as “fluorine monomer (A)”.
  • the matrix polymer in the present embodiment may include only one type of fluorine atom-containing monomer as the above-described fluorine atom-containing monomer, or may include two or more types of fluorine atom-containing monomers.
  • the matrix polymer in the present embodiment is provided with the retention of the nonaqueous electrolyte solution by controlling the crystallinity by including a fluorine atom-containing monomer (for example, the above-described fluorine-based monomer (A)).
  • the matrix polymer in this embodiment should just contain the repeating unit of a vinylidene fluoride unit and a fluorine atom containing monomer unit, and may further contain the other repeating unit.
  • Other repeating units include repeating units derived from unsaturated dibasic acids (hereinafter referred to as unsaturated dibasic acid units) and repeating units derived from unsaturated dibasic acid monoesters (hereinafter referred to as unsaturated dibasic acid monoesters). Unit).
  • the matrix polymer may contain both unsaturated dibasic acid units and unsaturated dibasic acid monoester units, or may contain either one.
  • the content of other repeating units in the matrix polymer in the present embodiment is particularly limited as long as the basic physical properties as a copolymer including a vinylidene fluoride unit and a fluorine atom-containing monomer unit as a repeating unit are not impaired. There is no limitation.
  • Examples of the unsaturated dibasic acid that forms the unsaturated dibasic acid unit in the matrix polymer in the present embodiment include unsaturated disulfonic acid and unsaturated dicarboxylic acid.
  • Examples of the unsaturated dicarboxylic acid include fumaric acid, (anhydrous) maleic acid and citraconic acid. Of these, (anhydrous) maleic acid and citraconic acid are preferred.
  • the matrix polymer in this embodiment contains an unsaturated dibasic acid unit, it may contain only one type of unsaturated dibasic acid unit, or may contain two or more types of unsaturated dibasic acid units.
  • the content of the unsaturated dibasic acid in the matrix polymer in the present embodiment is particularly limited as long as the basic physical properties as a copolymer containing a vinylidene fluoride unit and a fluorine atom-containing monomer unit as a repeating unit are not impaired. There is no.
  • Examples of the unsaturated dibasic acid monoester that forms the unsaturated dibasic acid monoester unit in the matrix polymer in the present embodiment include unsaturated disulfonic acid monoesters and unsaturated dicarboxylic acid monoesters. It is done.
  • Examples of the unsaturated dicarboxylic acid monoester include fumaric acid monomethyl ester, fumaric acid monoethyl ester, maleic acid monomethyl ester, maleic acid monoethyl ester, citraconic acid monomethyl ester, and citraconic acid monoethyl ester.
  • the matrix polymer in this embodiment contains an unsaturated dibasic acid monoester unit, it may contain only one type of unsaturated dibasic acid monoester unit, or two or more types of unsaturated dibasic acid monoesters Units may be included.
  • the content of the unsaturated dibasic acid monoester in the matrix polymer in the present embodiment is within a range that does not impair the basic physical properties of the copolymer containing vinylidene fluoride units and fluorine atom-containing monomer units as repeating units. There is no particular limitation.
  • the gel electrolyte in the present embodiment has a functional group such as a carboxy group of the unsaturated dibasic acid as a matrix polymer. By containing in, it becomes easy to gelatinize by the hydrogen bond between functional groups.
  • Method for preparing matrix polymer As a method for preparing the matrix polymer in the present embodiment, conventionally known methods and conditions can be used other than the method and conditions described below.
  • the melting point of the matrix polymer according to the above formula (I) and the concentration (mass%) of the matrix polymer in the gel electrolyte are determined.
  • T m ⁇ 135 is determined by substituting 10 for C in formula (I)
  • the lower limit of the melting point of the matrix polymer is determined to be 135 ° C. can do. That is, once the matrix polymer concentration in the gel electrolyte is determined, the lower limit of the melting point of the matrix polymer satisfying the formula (I) can be determined under the concentration condition.
  • the melting point of the matrix polymer may be determined in advance, and the concentration of the vinylidene fluoride copolymer in the gel electrolyte satisfying the formula (I) may be determined under the melting point condition.
  • a vinylidene fluoride copolymer that satisfies the determined melting point may be manufactured.
  • the melting point of the vinylidene fluoride copolymer mainly depends on the amount of the fluorine atom-containing monomer (for example, fluorine-based monomer (A)) contained and the method of introducing it. Therefore, in order to prepare a matrix polymer having a desired melting point, first, the amount of fluorine atom-containing monomer contained in the matrix polymer is determined.
  • the melting point of a copolymer (vinylidene fluoride copolymer) obtained by copolymerizing a fluorine atom-containing monomer (for example, a fluorine-based monomer (A)) and vinylidene fluoride is the charging ratio of the fluorine atom-containing monomer and vinylidene fluoride. It depends on. When the introduction method of the fluorine atom-containing monomer is the same, the melting point of the copolymer becomes lower than that of the homopolymer of vinylidene fluoride as the ratio of the fluorine atom-containing monomer to vinylidene fluoride increases.
  • the method for introducing the fluorine atom-containing monomer is set.
  • the method for introducing a fluorine atom-containing monomer that is a factor for determining the melting point of the vinylidene fluoride copolymer include the timing of the introduction of the fluorine atom-containing monomer in the synthesis of the vinylidene fluoride copolymer and the manner of introduction. However, it is not limited to these.
  • timing of the introduction of the fluorine atom-containing monomer and the manner of introduction include, for example, introducing the fluorine atom-containing monomer dividedly, continuously, or collectively.
  • a person skilled in the art can easily produce a vinylidene fluoride copolymer having a desired melting point based on the above-described technical contents and technical common sense in this technical field.
  • the non-aqueous electrolyte used for the gel electrolyte in the present embodiment is prepared by dissolving a lithium-containing electrolyte in a non-aqueous solvent.
  • a conventionally known non-aqueous electrolyte used for obtaining a gel electrolyte can be used.
  • the gel electrolyte preferably contains 70 to 99.9 parts by mass, more preferably 80 to 99.5 parts by mass of the nonaqueous electrolyte solution per 100 parts by mass of the gel electrolyte.
  • lithium-containing electrolyte examples include lithium salt electrolytes.
  • a conventionally known lithium salt can be used as the lithium salt.
  • lithium-containing electrolytes include LiPF 6 , LiAsF 6 , LiClO 4 , LiBF 4 , LiCl, LiBr, LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , and LiC (CF 3 SO 2 ) 3, and the like.
  • a lithium containing electrolyte used for the non-aqueous electrolyte in this embodiment only 1 type of lithium containing electrolyte may be used, and 2 or more types of lithium containing electrolyte may be used.
  • the concentration of the lithium-containing electrolyte in the nonaqueous electrolytic solution is preferably 0.1 to 3 mol / dm 3 , and more preferably 0.5 to 2 mol / dm 3 .
  • Nonaqueous solvent As the non-aqueous solvent used in the non-aqueous electrolyte in the present embodiment, a conventionally known non-aqueous solvent can be used.
  • non-aqueous solvents include organic solvents, specifically, ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, ethyl butyl carbonate. , ⁇ -butyrolactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, methyl propionate, and ethyl propionate.
  • non-aqueous solvent used in the non-aqueous electrolysis solution in the present embodiment only one type of non-aqueous solvent may be used, or at least two or more types of non-aqueous solvents may be used. You may use the mixed solvent mixed.
  • the melting point T m of the matrix polymer and the concentration C (mass%) of the matrix polymer contained in the gel electrolyte are represented by the following formula (I): T m ⁇ 145-C (I) (In formula (1), 0.1 ⁇ C ⁇ 30.) What is necessary is just to include mixing a non-aqueous electrolyte and a matrix polymer so that it may satisfy
  • the method for preparing the gel electrolyte in the present embodiment will be described in detail below.
  • the means for mixing the non-aqueous electrolyte and the matrix polymer to form a gel electrolyte is not particularly limited, but in one aspect of the gel electrolyte preparation method in the present embodiment, the matrix polymer is dissolved. Further, a volatile organic solvent for mixing is used for mixing to obtain a gel electrolyte. That is, as one aspect, a step of mixing a matrix polymer, a non-aqueous electrolyte, and a volatile organic solvent for dissolving the matrix polymer, and then volatilizing the volatile organic solvent from the obtained mixture. After that, a film-like gel electrolyte is obtained.
  • a matrix polymer and a volatile organic solvent for dissolving the matrix polymer are mixed to prepare a solution in which the vinylidene fluoride copolymer is dissolved.
  • the solution and the non-aqueous electrolyte are mixed.
  • a film-like gel electrolyte is obtained through a step of volatilizing a volatile organic solvent from the obtained mixture.
  • the mixing in these embodiments is usually performed under heating conditions, preferably at 40 to 150 ° C.
  • the step of volatilizing the volatile organic solvent is preferably performed at 0 to 100 ° C., more preferably at 15 to 60 ° C.
  • Non-aqueous electrolysis is performed so that the concentration of the matrix polymer in the gel electrolyte finally obtained in this manner is in the range of 0.1 to 30% by mass, preferably in the range of 0.5 to 20% by mass.
  • the liquid and the matrix polymer are mixed.
  • volatile organic solvent in the present embodiment, a solvent having a high vapor pressure at a relatively low temperature, being easily volatilized, and well dissolving the matrix polymer is preferable.
  • volatile organic solvents include tetrahydrofuran, methyltetrahydrofuran, acetone, methyl ethyl ketone, 1,3-dioxolane, cyclohexanone, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate, but are not necessarily limited thereto. Absent.
  • the addition amount of the volatile organic solvent used in the method of the present embodiment may be an amount that can sufficiently dissolve the matrix polymer, and may be appropriately adjusted according to the matrix polymer.
  • organic solvents such as propylene carbonate, ethylene carbonate, and dimethyl carbonate can be used as the solvent for the matrix polymer. Therefore, when these solvents are employed as the nonaqueous solvent used in the nonaqueous electrolytic solution, it is also possible to prepare a gel electrolyte without using a volatile organic solvent separately.
  • a lithium-containing electrolyte may be added and further dissolved in a solution in which the matrix polymer is dissolved in these non-aqueous solvents.
  • the matrix polymer and the lithium-containing electrolyte may be simultaneously dissolved in these nonaqueous solvents.
  • the gel electrolyte is obtained by swelling the film with a non-aqueous electrolyte. You can also.
  • the gel electrolyte according to the present invention can be used as a member in a nonaqueous electrolyte battery.
  • the nonaqueous electrolyte battery here is a battery having a configuration in which a gel electrolyte is provided between a positive electrode and a negative electrode. Examples of such a non-aqueous electrolyte battery include, but are not limited to, a lithium ion secondary battery.
  • a conventionally well-known method can be used as a preparation method of a nonaqueous electrolyte battery.
  • the gel electrolyte according to the present invention is a gel electrolyte comprising a non-aqueous electrolyte solution in which a lithium-containing electrolyte is dissolved in a non-aqueous solvent, and a matrix polymer.
  • a copolymer containing vinylidene fluoride units and fluorine atom-containing monomer units as repeating units and the melting point T m of the matrix polymer is the concentration C (mass%) of the matrix polymer contained in the gel electrolyte. ) Within the range satisfying the following formula (I).
  • the copolymer preferably further includes at least one of a repeating unit derived from an unsaturated dibasic acid and a repeating unit derived from an unsaturated dibasic acid monoester.
  • the unsaturated dibasic acid and the unsaturated dibasic acid monoester are an unsaturated dicarboxylic acid and an unsaturated dicarboxylic acid monoester, respectively.
  • the fluorine atom-containing monomer unit is preferably a repeating unit derived from hexafluoropropylene or chlorotrifluoroethylene.
  • the non-aqueous solvent is ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, ethyl butyl carbonate, ⁇ -butyrolactone. 1,2-dimethoxyethane, 1,2-diethoxyethane, methyl propionate or ethyl propionate, or a mixed solvent in which at least two of these are mixed is preferable.
  • a method for preparing a gel electrolyte according to the present invention is a method for preparing a gel electrolyte comprising a non-aqueous electrolyte solution in which a lithium-containing electrolyte is dissolved in a non-aqueous solvent and a matrix polymer. And the non-aqueous electrolyte so that the melting point T m of the matrix polymer and the concentration C (% by mass) of the matrix polymer contained in the gel electrolyte satisfy the following formula (I): It has the structure which mixes the said matrix polymer.
  • ⁇ Confirmation method of gelation> The gelation by the matrix polymer was confirmed by the inversion method. Specifically, after heating and dissolving a predetermined amount of matrix polymer in a non-aqueous electrolyte, the mixture is allowed to cool to room temperature, and the container containing the gel electrolyte is turned upside down as appropriate to change the flow state of the contents. Check. Those whose contents did not flow within 3 days were determined to be gelled, and those whose gelation could not be confirmed within 3 days were determined not to gel.
  • Example 1 [Method for preparing matrix polymer] In an autoclave with an internal volume of 2 liters, 1060 g of ion exchange water, 0.62 g of Metrose SM-100, 50% by mass of di-i-propyl peroxydicarbonate-1,1,2,2-tetrafluoroethyl-2 2.18 g of 2,2-trifluoroethyl ether solution, 390 g of vinylidene fluoride, 20 g of hexafluoropropylene, and 2.06 g of monomethyl maleate were charged. The mixture was heated to 29 ° C. over 1 hour and polymerized while maintaining 29 ° C. for a total of 42.8 hours from the start of the temperature increase.
  • polymer A After completion of the polymerization, the polymer slurry was heat treated at 95 ° C. for 60 minutes, dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a polymer powder.
  • the polymerization rate was 80%.
  • the polymer obtained here will be referred to as polymer A below.
  • the powdered polymer A is preheated at 200 ° C. for 30 seconds using a press molding machine (AYSR-5 manufactured by Shindo Metal Industry Co., Ltd.), and after preheating, it is heated and pressed at a cylinder pressure of 10 MPa. The sheet was formed into a sheet shape. Thereafter, a 10 mg sheet was cut out from the molded sheet to obtain a melting point measurement sample. The melting point was measured by raising and lowering the temperature at a rate of 10 ° C./min in the range of 30 ° C. to 230 ° C. using a differential thermal scanning calorimeter (DSC1 manufactured by METTLER TOLEDO). As a result, the melting point (T m ) of the polymer A was 157 ° C.
  • Example 2 In the matrix polymer preparation method of Example 1, the copolymerization ratio of VDF (vinylidene fluoride), HFP (hexafluoropropylene), and MMM (monomethyl maleate) was adjusted so that the melting point of the matrix polymer was 153 ° C. As a result, a polymer B was obtained. And the gelation test similar to Example 1 was implemented except having used the polymer B as a matrix polymer.
  • VDF vinyllidene fluoride
  • HFP hexafluoropropylene
  • MMM monomethyl maleate
  • Example 3 In the method for preparing the matrix polymer in Example 1, polymer C was obtained by adjusting the copolymerization ratio of VDF, HFP, and MMM so that the melting point of the matrix polymer was 143 ° C. And the gelation test similar to Example 1 was implemented except having used the polymer C as a matrix polymer.
  • Example 4 In the matrix polymer preparation method of Example 1, polymer D was obtained by adjusting the copolymerization ratio of VDF and HFP so that the melting point of the matrix polymer was 169 ° C. without using MMM. And the gelation test similar to Example 1 was implemented except having used the polymer D as a matrix polymer and having made the matrix polymer density
  • Example 5 The same gelation test as in Example 4 was performed except that the matrix polymer concentration was 5% by mass.
  • Example 6 A gelation test similar to that of Example 4 was performed except that the matrix polymer concentration was 10% by mass.
  • Example 7 A gelation test similar to that of Example 4 was performed except that the matrix polymer concentration was 20% by mass.
  • Example 8> In the method for preparing the matrix polymer of Example 1, polymer E was obtained by adjusting the copolymerization ratio of VDF and HFP so that the melting point of the matrix polymer was 163 ° C. without using MMM. And the gelation test similar to Example 1 was implemented except having used the polymer E as a matrix polymer and having made the matrix polymer density
  • Example 9 A gelation test similar to that of Example 8 was performed except that the matrix polymer concentration was 5% by mass.
  • Example 10 A gelation test similar to Example 8 was performed except that the matrix polymer concentration was 10% by mass.
  • Example 11 A gelation test similar to Example 8 was performed except that the matrix polymer concentration was 20% by mass.
  • Example 12 In the method for preparing the matrix polymer of Example 1, polymer F was obtained by adjusting the copolymerization ratio of VDF and HFP so that the melting point of the matrix polymer was 154 ° C. without using MMM. And the gelation test similar to Example 1 was implemented except having used the polymer F as a matrix polymer and having made the matrix polymer density
  • Example 13> A gelation test similar to that of Example 12 was performed except that the matrix polymer concentration was set to 5% by mass.
  • Example 14 A gelation test similar to Example 12 was performed except that the matrix polymer concentration was 10% by mass.
  • Example 15 A gelation test similar to Example 12 was performed except that the matrix polymer concentration was 20% by mass.
  • Example 16> In the method for preparing the matrix polymer of Example 1, polymer G was obtained by adjusting the copolymerization ratio of VDF and HFP so that the melting point of the matrix polymer was 127 ° C. without using MMM. And the gelation test similar to Example 1 was implemented except having used the polymer G as a matrix polymer and having made the matrix polymer density
  • Example 17 In the method for preparing the matrix polymer of Example 1, CTFE (chlorotrifluoroethylene) was used instead of MMM and HFP, and the copolymerization ratio of VDF and CTFE was adjusted so that the melting point of the matrix polymer was 168 ° C. As a result, a polymer H was obtained. And the gelation test similar to Example 1 was implemented except having used the polymer H as a matrix polymer.
  • CTFE chlorotrifluoroethylene
  • Example 18 In the method for preparing the matrix polymer of Example 1, instead of MMM and HFP, CTFE was used, and polymer J was prepared by adjusting the copolymerization ratio of VDF and CTFE so that the melting point of the matrix polymer was 166 ° C. Obtained. And the gelation test similar to Example 1 was implemented except having used the polymer J as a matrix polymer.
  • Example 19 In the method for preparing the matrix polymer of Example 1, instead of HFP, CTFE was used, and the polymer K was prepared by adjusting the copolymerization ratio of VDF, CTFE, and MMM so that the melting point of the matrix polymer was 163 ° C. Obtained. And the gelation test similar to Example 1 was implemented except having used the polymer K as a matrix polymer.
  • Example 5 In the method for preparing the matrix polymer of Example 1, polymer M was obtained by adjusting the copolymerization ratio of VDF and HFP so that the melting point of the matrix polymer was 106 ° C. without using MMM. And the gelation test similar to Example 1 was implemented except having used the polymer M as a matrix polymer, and having made the matrix polymer density
  • FIG. 1 is a graph showing the relationship between the melting point of the matrix polymer and the concentration of the matrix polymer in Examples 1 to 19 and Comparative Examples 1 to 8.
  • the vertical axis represents the matrix polymer concentration C (% by mass) in the finally prepared mixture, and the horizontal axis represents the melting point T m (° C.) of the matrix polymer.
  • the numbers accompanying ⁇ or ⁇ indicate the numbers of the examples or comparative examples, respectively, ⁇ indicates that the finally adjusted mixture has gelled, and ⁇ indicates that the finally adjusted mixture It shows that it did not gel.
  • the dotted line in the graph of FIG. 1 has shown Formula (I) at the time of making an inequality sign into an equal sign.
  • the finally prepared mixture is a gel. It has become. That is, the finally adjusted mixture is a gel electrolyte.
  • the present invention can be suitably used as a gel electrolyte in a nonaqueous electrolyte secondary battery.

Abstract

A gel electrolyte is provided which has a low matrix polymer concentration and which can maintain a gel state. This gel polymer contains a matrix polymer, and a nonaqueous electrolytic solution comprising a lithium-containing electrolyte dissolved in a non-aqueous solvent, wherein the matrix polymer is a copolymer including vinylidene fluoride units and fluorine atom-containing monomer units, and, for the concentration C (mass%) of the matrix polymer in the gel electrolyte, the melting temperature Tm of the matrix polymer satisfies the equation Tm ≧ 145 - C (I) (In expression (I), 0.1 ≦ C ≦ 30).

Description

ゲル状電解質およびその調製方法Gel electrolyte and method for preparing the same
 本発明は、ゲル状電解質およびその調製方法に関し、より詳細には、リチウム含有電解質が非水溶媒に溶解している非水電解液と、マトリクスポリマーとを含むゲル状電解質およびその調製方法に関する。 The present invention relates to a gel electrolyte and a method for preparing the same, and more particularly to a gel electrolyte including a non-aqueous electrolyte in which a lithium-containing electrolyte is dissolved in a non-aqueous solvent and a matrix polymer, and a method for preparing the gel electrolyte.
 近年、スマートフォンなどの小型携帯機器の電源、ならびに電気自動車およびハイブリッド自動車の電源として電池が注目されている。現在、電池の中でも小さな体積で大きな容量を有するリチウムイオン電池が特に注目されている。 In recent years, batteries have attracted attention as a power source for small portable devices such as smartphones, and a power source for electric vehicles and hybrid vehicles. At present, lithium ion batteries having a small volume and a large capacity are attracting particular attention.
 電池への技術的な要求としては、小型化、軽量化、形状の自由度を高めること、および安全性を高めること等が挙げられる。これらの要求を満たすために、電池を構成する電解質として、無機固体電解質、高分子電解質またはゲル状電解質等を用いることによる電解質固体化が検討されている。電解質固体化においては、イオン伝導度の観点から、現状においては、ゲル状電解質を用いることが最も有望視されている。 Technical requirements for batteries include miniaturization, weight reduction, increasing the degree of freedom in shape, and increasing safety. In order to satisfy these requirements, solidification of an electrolyte by using an inorganic solid electrolyte, a polymer electrolyte, a gel electrolyte, or the like as an electrolyte constituting a battery has been studied. In electrolyte solidification, from the viewpoint of ionic conductivity, at present, the use of a gel electrolyte is considered most promising.
 特許文献1には、フッ化ビニリデン、ヘキサフルオロプロペンおよびクロロトリフルオロエチレンの3元共重合体およびリチウム塩可溶性有機溶媒を含むゲル組成物を用いたリチウムイオン二次電池用ゲルポリマー電解質が開示されている。 Patent Document 1 discloses a gel polymer electrolyte for a lithium ion secondary battery using a gel composition containing a terpolymer of vinylidene fluoride, hexafluoropropene and chlorotrifluoroethylene and a lithium salt-soluble organic solvent. ing.
日本国公開特許公報「特開2001-279044号(2001年10月10日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2001-279044 (published on October 10, 2001)”
 ゲル状電解質は、通常、非水電解液と、ポリマーとを含む。しかしながら、ゲル状電解質を構成するポリマー自体は、電池容量に直接寄与するものではない。そのため、ゲル状電解質に存在するポリマーの量は少ない方が好ましい。しかし、ゲル状電解質は、ポリマーと比較して多くの非水電解液を含有する場合、すなわち、ゲル状電解質中のポリマー濃度を相対的に低くした場合、ゲル強度が低下し、ひいてはゲル状態を維持できなくなる。ゲル状態が維持できない場合、非水電解液が電池の外部に漏えいしてしまい、結果として、電池が発火するなどの信頼性に関わる問題となる。 The gel electrolyte usually contains a non-aqueous electrolyte and a polymer. However, the polymer itself constituting the gel electrolyte does not directly contribute to the battery capacity. Therefore, it is preferable that the amount of the polymer present in the gel electrolyte is small. However, when the gel electrolyte contains a large amount of non-aqueous electrolyte compared to the polymer, that is, when the polymer concentration in the gel electrolyte is relatively low, the gel strength decreases, and consequently the gel state is reduced. It cannot be maintained. If the gel state cannot be maintained, the non-aqueous electrolyte leaks to the outside of the battery, resulting in a problem relating to reliability such as the battery firing.
 本発明は、上記の問題に鑑みてなされたものであり、その目的は、ポリマーの濃度が通常より低く、かつ、ゲル状態を維持することができるゲル状電解質を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a gel electrolyte capable of maintaining a gel state with a polymer concentration lower than usual.
 本発明に係るゲル状電解質は、上記課題を解決するために、リチウム含有電解質が非水溶媒に溶解している非水電解液と、マトリクスポリマーとを含むゲル状電解質であって、上記マトリクスポリマーは、フッ化ビニリデン単位とフッ素原子含有モノマー単位とを繰り返し単位として含む共重合体であり、上記マトリクスポリマーの融点Tは、上記ゲル状電解質中に含まれる上記マトリクスポリマーの濃度C(質量%)に対して、下記式(I)を満たす範囲内にある。 In order to solve the above problems, the gel electrolyte according to the present invention is a gel electrolyte comprising a non-aqueous electrolyte solution in which a lithium-containing electrolyte is dissolved in a non-aqueous solvent, and a matrix polymer. Is a copolymer containing vinylidene fluoride units and fluorine atom-containing monomer units as repeating units, and the melting point T m of the matrix polymer is the concentration C (mass%) of the matrix polymer contained in the gel electrolyte. ) Within the range satisfying the following formula (I).
 T≧145-C (I)
(式(I)において、0.1≦C≦30である。)
T m ≧ 145-C (I)
(In formula (I), 0.1 ≦ C ≦ 30.)
 本発明に係るゲル状電解質の調製方法は、上記課題を解決するために、リチウム含有電解質が非水溶媒に溶解している非水電解液と、マトリクスポリマーとを含むゲル状電解質の調製方法であって、上記マトリクスポリマーの融点Tと、上記ゲル状電解質中に含まれる上記マトリクスポリマーの濃度C(質量%)とが、下記式(I)を満たすように、上記非水電解液と、上記マトリクスポリマーとを混合する構成を有している。 In order to solve the above problems, a method for preparing a gel electrolyte according to the present invention is a method for preparing a gel electrolyte comprising a non-aqueous electrolyte solution in which a lithium-containing electrolyte is dissolved in a non-aqueous solvent and a matrix polymer. And the non-aqueous electrolyte so that the melting point T m of the matrix polymer and the concentration C (% by mass) of the matrix polymer contained in the gel electrolyte satisfy the following formula (I): It has the structure which mixes the said matrix polymer.
 T≧145-C (I)
(式(1)において、0.1≦C≦30である。)
T m ≧ 145-C (I)
(In formula (1), 0.1 ≦ C ≦ 30.)
 本発明によれば、マトリクスポリマーの濃度が通常より低く、かつ、ゲル状態を維持することができるゲル状電解質を提供することができる。 According to the present invention, it is possible to provide a gel electrolyte in which the concentration of the matrix polymer is lower than usual and the gel state can be maintained.
本発明の実施形態に係るゲル状電解質の融点と、当該ゲル状電解質中のマトリクスポリマー濃度との関係を示すグラフである。It is a graph which shows the relationship between melting | fusing point of the gel electrolyte which concerns on embodiment of this invention, and the matrix polymer density | concentration in the said gel electrolyte.
 以下、本発明の実施の形態について、詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 本発明に係るゲル状電解質は、リチウム含有電解質が非水溶媒に溶解している非水電解液と、マトリクスポリマーとを含むゲル状電解質であって、上記マトリクスポリマーは、フッ化ビニリデン単位とフッ素原子含有モノマー単位とを繰り返し単位として含む共重合体であり、上記マトリクスポリマーの融点Tは、上記ゲル状電解質中に含まれる上記マトリクスポリマーの濃度C(質量%)に対して、下記式(I)
 T≧145-C (I)
 (式(I)において、0.1≦C≦30である。)
を満たす範囲内である。
The gel electrolyte according to the present invention is a gel electrolyte containing a non-aqueous electrolyte solution in which a lithium-containing electrolyte is dissolved in a non-aqueous solvent and a matrix polymer, wherein the matrix polymer includes a vinylidene fluoride unit and a fluorine. It is a copolymer containing an atom-containing monomer unit as a repeating unit, and the melting point T m of the matrix polymer is expressed by the following formula (concentration C) (% by mass) of the matrix polymer contained in the gel electrolyte: I)
T m ≧ 145-C (I)
(In formula (I), 0.1 ≦ C ≦ 30.)
It is within the range that satisfies.
 なお、フッ化ビニリデン単位とフッ素原子含有モノマー単位とを繰り返し単位として含む共重合体とは、共重合体を重合するときに、単量体として、フッ化ビニリデンおよびフッ素原子含有モノマーが用いられ、繰り返し単位として、フッ化ビニリデンに由来する構造と、フッ素原子含有モノマーに由来する構造とを含む共重合体のことである。 The copolymer containing a vinylidene fluoride unit and a fluorine atom-containing monomer unit as a repeating unit is a vinylidene fluoride and a fluorine atom-containing monomer used as a monomer when polymerizing the copolymer, It is a copolymer containing a structure derived from vinylidene fluoride and a structure derived from a fluorine atom-containing monomer as repeating units.
 <マトリクスポリマー>
 本実施形態におけるゲル状電解質に用いられるマトリクスポリマーは、フッ化ビニリデン単位とフッ素原子含有モノマー単位とを繰り返し単位として含む共重合体(すなわち、フッ化ビニリデン共重合体)である。
<Matrix polymer>
The matrix polymer used for the gel electrolyte in the present embodiment is a copolymer (that is, a vinylidene fluoride copolymer) containing vinylidene fluoride units and fluorine atom-containing monomer units as repeating units.
 本実施形態におけるゲル状電解質中のマトリクスポリマーの濃度は、0.1質量%以上であり、かつ、30質量%以下である。ゲル状電解質中のマトリクスポリマーの濃度の好適な下限は、0.5質量%以上であり、より好適な下限は1.0質量%以上である。また、好適な上限は20質量%以下であり、より好適な上限は15質量%以下である。 In the present embodiment, the concentration of the matrix polymer in the gel electrolyte is 0.1% by mass or more and 30% by mass or less. A preferable lower limit of the concentration of the matrix polymer in the gel electrolyte is 0.5% by mass or more, and a more preferable lower limit is 1.0% by mass or more. Moreover, a suitable upper limit is 20 mass% or less, and a more suitable upper limit is 15 mass% or less.
 また、ゲル状電解質中のマトリクスポリマーの濃度をC(質量%)とした場合に、マトリクスポリマーの融点Tが、下記式(I)
 T≧145-C (I)
を満たすようなマトリクスポリマーが、本実施形態におけるマトリクスポリマーとして使用されている。
Further, when the concentration of the matrix polymer in the gel electrolyte is C (mass%), the melting point T m of the matrix polymer is represented by the following formula (I)
T m ≧ 145-C (I)
A matrix polymer that satisfies the above is used as the matrix polymer in the present embodiment.
 なお、本実施形態において、マトリクスポリマーの融点Tは、従来公知の測定方法により測定することができ、例えば、示差走査熱量計(DSC)により測定することができる。 In the present embodiment, the melting point T m of a matrix polymer can be measured by a conventionally known measuring method, for example, it can be measured by a differential scanning calorimeter (DSC).
 マトリクスポリマーの重量平均分子量は、好ましくは、10万~300万であり、より好ましくは、20万~200万であり、さらに好ましくは、30万~150万である。 The weight average molecular weight of the matrix polymer is preferably 100,000 to 3,000,000, more preferably 200,000 to 2,000,000, and still more preferably 300,000 to 1,500,000.
 〔フッ素原子含有モノマー〕
 本実施形態におけるフッ素原子含有モノマーとは、フッ素原子を含む化合物であり、重合の際の単量体成分として使用し得る化合物が意図される。フッ素原子含有モノマーとしては、非限定的に、ヘキサフルオロプロピレン(HFP)およびクロロトリフルオロエチレン(CTFE)等のsp2炭素上にフッ素が直接結合した構造を有する化合物、アクリル酸トリフルオロメチル、ビニルトリフルオロメチルエーテル、およびトリフルオロエチレン等が挙げられる。本実施形態におけるフッ素原子含有モノマーの好適な例としては、ヘキサフルオロプロピレン(HFP)、およびクロロトリフルオロエチレン(CTFE)等が挙げられる。なお、以下では、HFPおよびCTFEを、「フッ素系モノマー(A)」とも記述する。本実施形態におけるマトリクスポリマーは、上述のフッ素原子含有モノマーとして、1種類のフッ素原子含有モノマーのみを含んでもよいし、2種類以上のフッ素原子含有モノマーを含んでもよい。本実施形態におけるマトリクスポリマーは、フッ素原子含有モノマー(例えば、上述のフッ素系モノマー(A))を含むことにより結晶性が制御されることで非水電解液の保持性が付与されている。
[Fluorine atom-containing monomer]
The fluorine atom-containing monomer in the present embodiment is a compound containing a fluorine atom, and a compound that can be used as a monomer component in polymerization is intended. Fluorine atom-containing monomers include, but are not limited to, compounds having a structure in which fluorine is directly bonded to sp2 carbon, such as hexafluoropropylene (HFP) and chlorotrifluoroethylene (CTFE), trifluoromethyl acrylate, vinyl triflate. Examples thereof include fluoromethyl ether and trifluoroethylene. Preferable examples of the fluorine atom-containing monomer in the present embodiment include hexafluoropropylene (HFP) and chlorotrifluoroethylene (CTFE). Hereinafter, HFP and CTFE are also referred to as “fluorine monomer (A)”. The matrix polymer in the present embodiment may include only one type of fluorine atom-containing monomer as the above-described fluorine atom-containing monomer, or may include two or more types of fluorine atom-containing monomers. The matrix polymer in the present embodiment is provided with the retention of the nonaqueous electrolyte solution by controlling the crystallinity by including a fluorine atom-containing monomer (for example, the above-described fluorine-based monomer (A)).
 なお、フッ化ビニリデン共重合体におけるフッ素原子含有モノマー単位の含有率は、目的とする融点Tが得られるように適宜決定すればよい。 In addition, what is necessary is just to determine suitably the content rate of the fluorine atom containing monomer unit in a vinylidene fluoride copolymer so that target melting | fusing point Tm may be obtained.
 〔その他の繰り返し単位〕
 本実施形態におけるマトリクスポリマーは、フッ化ビニリデン単位およびフッ素原子含有モノマー単位の繰り返し単位を含んでいればよく、その他の繰り返し単位をさらに含んでいてもよい。その他の繰り返し単位としては、不飽和二塩基酸に由来する繰り返し単位(以下、不飽和二塩基酸単位)および不飽和二塩基酸モノエステルに由来する繰り返し単位(以下、不飽和二塩基酸モノエステル単位)が挙げられる。マトリクスポリマーは、不飽和二塩基酸単位および不飽和二塩基酸モノエステル単位の両方を含んでいてもよく、あるいは何れか一方を含むものであってもよい。なお、本実施形態におけるマトリクスポリマー中のその他の繰り返し単位の含有率は、フッ化ビニリデン単位とフッ素原子含有モノマー単位とを繰り返し単位として含む共重合体としての基本物性を損なわない範囲である限り特に限定はない。
[Other repeat units]
The matrix polymer in this embodiment should just contain the repeating unit of a vinylidene fluoride unit and a fluorine atom containing monomer unit, and may further contain the other repeating unit. Other repeating units include repeating units derived from unsaturated dibasic acids (hereinafter referred to as unsaturated dibasic acid units) and repeating units derived from unsaturated dibasic acid monoesters (hereinafter referred to as unsaturated dibasic acid monoesters). Unit). The matrix polymer may contain both unsaturated dibasic acid units and unsaturated dibasic acid monoester units, or may contain either one. The content of other repeating units in the matrix polymer in the present embodiment is particularly limited as long as the basic physical properties as a copolymer including a vinylidene fluoride unit and a fluorine atom-containing monomer unit as a repeating unit are not impaired. There is no limitation.
 本実施形態におけるマトリクスポリマー中の不飽和二塩基酸単位を形成させる不飽和二塩基酸の例としては、不飽和ジスルホン酸、および不飽和ジカルボン酸等が挙げられる。不飽和ジカルボン酸としては、フマル酸、(無水)マレイン酸およびシトラコン酸等が挙げられる。中でも、(無水)マレイン酸およびシトラコン酸が好ましい。本実施形態におけるマトリクスポリマーが不飽和二塩基酸単位を含む場合、1種類の不飽和二塩基酸単位のみを含んでもよいし、2種類以上の不飽和二塩基酸単位を含んでもよい。本実施形態におけるマトリクスポリマー中の不飽和二塩基酸の含有率は、フッ化ビニリデン単位とフッ素原子含有モノマー単位とを繰り返し単位として含む共重合体としての基本物性を損なわない範囲である限り特に限定はない。 Examples of the unsaturated dibasic acid that forms the unsaturated dibasic acid unit in the matrix polymer in the present embodiment include unsaturated disulfonic acid and unsaturated dicarboxylic acid. Examples of the unsaturated dicarboxylic acid include fumaric acid, (anhydrous) maleic acid and citraconic acid. Of these, (anhydrous) maleic acid and citraconic acid are preferred. When the matrix polymer in this embodiment contains an unsaturated dibasic acid unit, it may contain only one type of unsaturated dibasic acid unit, or may contain two or more types of unsaturated dibasic acid units. The content of the unsaturated dibasic acid in the matrix polymer in the present embodiment is particularly limited as long as the basic physical properties as a copolymer containing a vinylidene fluoride unit and a fluorine atom-containing monomer unit as a repeating unit are not impaired. There is no.
 また、本実施形態におけるマトリクスポリマー中の不飽和二塩基酸モノエステル単位を形成させる不飽和二塩基酸モノエステルの例としては、不飽和ジスルホン酸モノエステル、および不飽和ジカルボン酸モノエステル等が挙げられる。不飽和ジカルボン酸モノエステルとしては、フマル酸モノメチルエステル、フマル酸モノエチルエステル、マレイン酸モノメチルエステル、マレイン酸モノエチルエステル、シトラコン酸モノメチルエステルおよびシトラコン酸モノエチルエステル等が挙げられる。そして、本実施形態におけるマトリクスポリマーが不飽和二塩基酸モノエステル単位を含む場合、1種類の不飽和二塩基酸モノエステル単位のみを含んでもよいし、2種類以上の不飽和二塩基酸モノエステル単位を含んでもよい。本実施形態におけるマトリクスポリマー中の不飽和二塩基酸モノエステルの含有率は、フッ化ビニリデン単位とフッ素原子含有モノマー単位とを繰り返し単位として含む共重合体としての基本物性を損なわない範囲である限り特に限定はない。 Examples of the unsaturated dibasic acid monoester that forms the unsaturated dibasic acid monoester unit in the matrix polymer in the present embodiment include unsaturated disulfonic acid monoesters and unsaturated dicarboxylic acid monoesters. It is done. Examples of the unsaturated dicarboxylic acid monoester include fumaric acid monomethyl ester, fumaric acid monoethyl ester, maleic acid monomethyl ester, maleic acid monoethyl ester, citraconic acid monomethyl ester, and citraconic acid monoethyl ester. And when the matrix polymer in this embodiment contains an unsaturated dibasic acid monoester unit, it may contain only one type of unsaturated dibasic acid monoester unit, or two or more types of unsaturated dibasic acid monoesters Units may be included. As long as the content of the unsaturated dibasic acid monoester in the matrix polymer in the present embodiment is within a range that does not impair the basic physical properties of the copolymer containing vinylidene fluoride units and fluorine atom-containing monomer units as repeating units. There is no particular limitation.
 フッ化ビニリデン共重合体に不飽和二塩基酸単位または不飽和二塩基酸モノエステル単位を含む場合、本実施形態におけるゲル状電解質は、不飽和二塩基酸のカルボキシ基等の官能基をマトリクスポリマー中に含有することで、官能基間の水素結合によりゲル化しやすくなる。 When the vinylidene fluoride copolymer includes an unsaturated dibasic acid unit or an unsaturated dibasic acid monoester unit, the gel electrolyte in the present embodiment has a functional group such as a carboxy group of the unsaturated dibasic acid as a matrix polymer. By containing in, it becomes easy to gelatinize by the hydrogen bond between functional groups.
 〔マトリクスポリマーの調製方法〕
 本実施形態におけるマトリクスポリマーの調製方法としては、以下で説明する方法および条件以外は、従来公知の方法および条件を用いることができる。
[Method for preparing matrix polymer]
As a method for preparing the matrix polymer in the present embodiment, conventionally known methods and conditions can be used other than the method and conditions described below.
 まず、本実施形態におけるマトリクスポリマーを調製するためには、まず、上述の式(I)に従ったマトリクスポリマーの融点とゲル状電解質中のマトリクスポリマーの濃度(質量%)とを決定する。例えば、マトリクスポリマー濃度が10質量%であるゲル状電解質を調製する場合、式(I)のCに10を代入することにより、T≧135となり、マトリクスポリマーの融点の下限を135℃と決定することができる。つまり、ゲル状電解質中のマトリクスポリマー濃度を定めたら、当該濃度の条件の下で式(I)を満たすマトリクスポリマーの融点の下限を定めることができる。逆に、マトリクスポリマーの融点を先に定めておき、当該融点の条件の下で式(I)を満たすゲル状電解質中のフッ化ビニリデン共重合体の濃度を定めてもよい。 First, in order to prepare the matrix polymer in the present embodiment, first, the melting point of the matrix polymer according to the above formula (I) and the concentration (mass%) of the matrix polymer in the gel electrolyte are determined. For example, when preparing a gel electrolyte having a matrix polymer concentration of 10% by mass, T m ≧ 135 is determined by substituting 10 for C in formula (I), and the lower limit of the melting point of the matrix polymer is determined to be 135 ° C. can do. That is, once the matrix polymer concentration in the gel electrolyte is determined, the lower limit of the melting point of the matrix polymer satisfying the formula (I) can be determined under the concentration condition. Conversely, the melting point of the matrix polymer may be determined in advance, and the concentration of the vinylidene fluoride copolymer in the gel electrolyte satisfying the formula (I) may be determined under the melting point condition.
 マトリクスポリマーの融点が定まれば、続いて、定まった融点を満たすフッ化ビニリデン共重合体を製造すればよい。フッ化ビニリデン共重合体の融点は、主として、含まれるフッ素原子含有モノマー(例えば、フッ素系モノマー(A))の量と、これの導入方法とに依存する。従って、所望の融点を有するマトリクスポリマーを調製するためには、まず、マトリクスポリマーに含まれるフッ素原子含有モノマーの量を定める。 Once the melting point of the matrix polymer is determined, a vinylidene fluoride copolymer that satisfies the determined melting point may be manufactured. The melting point of the vinylidene fluoride copolymer mainly depends on the amount of the fluorine atom-containing monomer (for example, fluorine-based monomer (A)) contained and the method of introducing it. Therefore, in order to prepare a matrix polymer having a desired melting point, first, the amount of fluorine atom-containing monomer contained in the matrix polymer is determined.
 フッ素原子含有モノマー(例えば、フッ素系モノマー(A))とフッ化ビニリデンとを共重合してなるコポリマー(フッ化ビニリデン共重合体)の融点は、フッ素原子含有モノマーとフッ化ビニリデンとの仕込み比によって変化する。フッ素原子含有モノマーの導入方法が同じ場合、コポリマーの融点は、フッ化ビニリデンに対するフッ素原子含有モノマーの比が大きくなるにつれ、フッ化ビニリデンのホモポリマーのそれよりも低くなっていく。 The melting point of a copolymer (vinylidene fluoride copolymer) obtained by copolymerizing a fluorine atom-containing monomer (for example, a fluorine-based monomer (A)) and vinylidene fluoride is the charging ratio of the fluorine atom-containing monomer and vinylidene fluoride. It depends on. When the introduction method of the fluorine atom-containing monomer is the same, the melting point of the copolymer becomes lower than that of the homopolymer of vinylidene fluoride as the ratio of the fluorine atom-containing monomer to vinylidene fluoride increases.
 フッ素原子含有モノマー(例えば、フッ素系モノマー(A))とフッ化ビニリデンとの仕込み比が定まったら、次に、フッ素原子含有モノマーの導入方法を設定する。フッ化ビニリデン共重合体の融点を決定する要因となるフッ素原子含有モノマーの導入方法の例としては、フッ化ビニリデン共重合体の合成におけるフッ素原子含有モノマーの投入のタイミングおよび投入の仕方等が挙げられるが、これらに限定されない。なお、フッ素原子含有モノマーの投入のタイミングおよび投入の仕方とは、例えば、フッ素原子含有モノマーを、分割して導入する、連続して導入する、または一括して導入するなどである。当業者であれば、上述の技術内容および本技術分野の技術常識に基づき、所望の融点のフッ化ビニリデン共重合体を容易に製造することができる。 Once the charging ratio between the fluorine atom-containing monomer (for example, fluorine monomer (A)) and vinylidene fluoride is determined, the method for introducing the fluorine atom-containing monomer is set. Examples of the method for introducing a fluorine atom-containing monomer that is a factor for determining the melting point of the vinylidene fluoride copolymer include the timing of the introduction of the fluorine atom-containing monomer in the synthesis of the vinylidene fluoride copolymer and the manner of introduction. However, it is not limited to these. In addition, the timing of the introduction of the fluorine atom-containing monomer and the manner of introduction include, for example, introducing the fluorine atom-containing monomer dividedly, continuously, or collectively. A person skilled in the art can easily produce a vinylidene fluoride copolymer having a desired melting point based on the above-described technical contents and technical common sense in this technical field.
 <非水電解液>
 本実施形態におけるゲル状電解質に用いられる非水電解液は、リチウム含有電解質が非水溶媒に溶解されることによって調製されたものである。非水電解液としては、ゲル状電解質を得る際に用いられる従来公知の非水電解液を用いることができる。また、ゲル状電解質は、非水電解液を、ゲル状電解質100質量部あたり、70~99.9質量部含むことが好ましく、80~99.5質量部含むことがより好ましい。
<Non-aqueous electrolyte>
The non-aqueous electrolyte used for the gel electrolyte in the present embodiment is prepared by dissolving a lithium-containing electrolyte in a non-aqueous solvent. As the non-aqueous electrolyte, a conventionally known non-aqueous electrolyte used for obtaining a gel electrolyte can be used. In addition, the gel electrolyte preferably contains 70 to 99.9 parts by mass, more preferably 80 to 99.5 parts by mass of the nonaqueous electrolyte solution per 100 parts by mass of the gel electrolyte.
 〔リチウム含有電解質〕
 本実施形態におけるリチウム含有電解質としては、例えば、リチウム塩の電解質が挙げられる。リチウム塩としては、従来公知のリチウム塩を用いることができる。リチウム含有電解質の例としては、LiPF、LiAsF、LiClO、LiBF、LiCl、LiBr、LiCHSO、LiCFSO、LiN(CFSO、およびLiC(CFSO等が挙げられる。本実施形態における非水電解液に用いられるリチウム含有電解質としては、1種類のリチウム含有電解質のみを用いてもよいし、2種類以上のリチウム含有電解質を用いてもよい。非水電解液中のリチウム含有電解質の濃度は、0.1~3mol/dmであることが好ましく、0.5~2mol/dmであることがより好ましい。
[Lithium-containing electrolyte]
Examples of the lithium-containing electrolyte in the present embodiment include lithium salt electrolytes. A conventionally known lithium salt can be used as the lithium salt. Examples of lithium-containing electrolytes include LiPF 6 , LiAsF 6 , LiClO 4 , LiBF 4 , LiCl, LiBr, LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , and LiC (CF 3 SO 2 ) 3, and the like. As a lithium containing electrolyte used for the non-aqueous electrolyte in this embodiment, only 1 type of lithium containing electrolyte may be used, and 2 or more types of lithium containing electrolyte may be used. The concentration of the lithium-containing electrolyte in the nonaqueous electrolytic solution is preferably 0.1 to 3 mol / dm 3 , and more preferably 0.5 to 2 mol / dm 3 .
 〔非水溶媒〕
 本実施形態における非水電解液に用いられる非水溶媒としては、従来公知の非水溶媒を用いることができる。非水溶媒の例としては、有機溶媒が挙げられ、具体的には、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート、エチルブチルカーボネート、γ―ブチロラクトン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、プロピオン酸メチル、およびプロピオン酸エチル等が挙げられる。本実施形態における非水電界液に用いられる非水溶媒としては、これらのうちの1種類の非水溶媒のみを用いてもよいし、または、これらのうちの少なくとも2種類以上の非水溶媒が混合された混合溶媒を用いてもよい。
[Nonaqueous solvent]
As the non-aqueous solvent used in the non-aqueous electrolyte in the present embodiment, a conventionally known non-aqueous solvent can be used. Examples of non-aqueous solvents include organic solvents, specifically, ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, ethyl butyl carbonate. , Γ-butyrolactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, methyl propionate, and ethyl propionate. As the non-aqueous solvent used in the non-aqueous electrolysis solution in the present embodiment, only one type of non-aqueous solvent may be used, or at least two or more types of non-aqueous solvents may be used. You may use the mixed solvent mixed.
 <ゲル状電解質の調製方法>
 本実施形態におけるゲル状電解質の調製方法は、マトリクスポリマーの融点Tと、ゲル状電解質中に含まれるマトリクスポリマーの濃度C(質量%)とが、下記式(I)
 T≧145-C (I)
(式(1)において、0.1≦C≦30である。)
を満たすように、非水電解液と、マトリクスポリマーとを混合することを含んでいればよい。本実施形態におけるゲル状電解質の調製方法を、以下で詳細に説明する。
<Method for preparing gel electrolyte>
In the method for preparing a gel electrolyte in the present embodiment, the melting point T m of the matrix polymer and the concentration C (mass%) of the matrix polymer contained in the gel electrolyte are represented by the following formula (I):
T m ≧ 145-C (I)
(In formula (1), 0.1 ≦ C ≦ 30.)
What is necessary is just to include mixing a non-aqueous electrolyte and a matrix polymer so that it may satisfy | fill. The method for preparing the gel electrolyte in the present embodiment will be described in detail below.
 本実施形態において、非水電解液と、マトリクスポリマーとを混合してゲル状電解質とする手段は特に限定されないが、本実施形態におけるゲル状電解質の調製方法の一態様においては、マトリクスポリマーを溶解させるための揮発性の有機溶媒をさらに用いて混合を行い、ゲル状電解質を得ている。すなわち、一態様としては、マトリクスポリマー、非水電解液、および、マトリクスポリマーを溶解させるための揮発性の有機溶媒を混合し、次いで、得られた混合物から揮発性の有機溶媒を揮発させる工程を経て、フィルム状のゲル状電解質を得る。また、別の態様においては、マトリクスポリマー、およびマトリクスポリマーを溶解させるための揮発性の有機溶媒を混合し、フッ化ビニリデン共重合体が溶解した溶液を調製する。次いで、その溶液と、非水電解液とを混合する。次いで、得られた混合物から揮発性の有機溶媒を揮発させる工程を経て、フィルム状のゲル状電解質を得る。なお、これらの態様における混合は、通常は、加熱条件下で行われ、好ましくは、40~150℃で行われる。また、揮発性の有機溶媒を揮発させる工程は、好ましくは、0~100℃、より好ましくは15~60℃で行われる。 In the present embodiment, the means for mixing the non-aqueous electrolyte and the matrix polymer to form a gel electrolyte is not particularly limited, but in one aspect of the gel electrolyte preparation method in the present embodiment, the matrix polymer is dissolved. Further, a volatile organic solvent for mixing is used for mixing to obtain a gel electrolyte. That is, as one aspect, a step of mixing a matrix polymer, a non-aqueous electrolyte, and a volatile organic solvent for dissolving the matrix polymer, and then volatilizing the volatile organic solvent from the obtained mixture. After that, a film-like gel electrolyte is obtained. In another embodiment, a matrix polymer and a volatile organic solvent for dissolving the matrix polymer are mixed to prepare a solution in which the vinylidene fluoride copolymer is dissolved. Next, the solution and the non-aqueous electrolyte are mixed. Next, a film-like gel electrolyte is obtained through a step of volatilizing a volatile organic solvent from the obtained mixture. The mixing in these embodiments is usually performed under heating conditions, preferably at 40 to 150 ° C. The step of volatilizing the volatile organic solvent is preferably performed at 0 to 100 ° C., more preferably at 15 to 60 ° C.
 このようにして最終的に得られるゲル状電解質におけるマトリクスポリマー濃度が、0.1~30質量%の範囲内、好ましくは、0.5~20質量%の範囲内となるように、非水電解液とマトリクスポリマーとを混合しておく。 Non-aqueous electrolysis is performed so that the concentration of the matrix polymer in the gel electrolyte finally obtained in this manner is in the range of 0.1 to 30% by mass, preferably in the range of 0.5 to 20% by mass. The liquid and the matrix polymer are mixed.
 本実施形態における揮発性の有機溶媒としては、比較的低い温度で高い蒸気圧を有し、揮発しやすく、かつ、マトリクスポリマーをよく溶解するものが好ましい。揮発性の有機溶媒の例としては、テトラヒドロフラン、メチルテトラヒドロフラン、アセトン、メチルエチルケトン、1,3-ジオキソラン、シクロヘキサノン、ジメチルカーボネート、ジエチルカーボネートおよびエチルメチルカーボネート等が挙げられるが、必ずしもこれらに限定されるものではない。 As the volatile organic solvent in the present embodiment, a solvent having a high vapor pressure at a relatively low temperature, being easily volatilized, and well dissolving the matrix polymer is preferable. Examples of volatile organic solvents include tetrahydrofuran, methyltetrahydrofuran, acetone, methyl ethyl ketone, 1,3-dioxolane, cyclohexanone, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate, but are not necessarily limited thereto. Absent.
 本実施形態の方法で用いられる揮発性有機溶媒の添加量は、マトリクスポリマーが十分に溶解できる量であればよく、マトリクスポリマーに応じて適宜調整すればよい。 The addition amount of the volatile organic solvent used in the method of the present embodiment may be an amount that can sufficiently dissolve the matrix polymer, and may be appropriately adjusted according to the matrix polymer.
 また、上述の非水電解液に用いられる非水溶媒の中でも、プロピレンカーボネート、エチレンカーボネートおよびジメチルカーボネート等の有機溶媒は、マトリクスポリマーの溶媒としても用いることができる。そのため、非水電解液に用いられる非水溶媒として、これらの溶媒を採用した場合には、別途、揮発性の有機溶媒を用いることなく、ゲル状電解質を調製することも可能である。 Also, among the non-aqueous solvents used in the above-described non-aqueous electrolyte, organic solvents such as propylene carbonate, ethylene carbonate, and dimethyl carbonate can be used as the solvent for the matrix polymer. Therefore, when these solvents are employed as the nonaqueous solvent used in the nonaqueous electrolytic solution, it is also possible to prepare a gel electrolyte without using a volatile organic solvent separately.
 例えば、非水溶媒として、プロピレンカーボネート、エチレンカーボネートおよびジメチルカーボネート等を用いた場合、マトリクスポリマーをこれらの非水溶媒で溶解した溶液の中に、リチウム含有電解質を加えて更に溶解してもよい。または、マトリクスポリマーとリチウム含有電解質とを、同時にこれらの非水溶媒で溶解してもよい。そして、これらの工程は、通常は加熱条件下、好ましくは、40~150℃で行われ、マトリクスポリマーとリチウム含有電解質とが溶解した溶液を、室温まで冷やすことにより、フィルム状のゲル状電解質を得ることができる。 For example, when propylene carbonate, ethylene carbonate, dimethyl carbonate or the like is used as the non-aqueous solvent, a lithium-containing electrolyte may be added and further dissolved in a solution in which the matrix polymer is dissolved in these non-aqueous solvents. Alternatively, the matrix polymer and the lithium-containing electrolyte may be simultaneously dissolved in these nonaqueous solvents. These steps are usually performed under heating conditions, preferably at 40 to 150 ° C., and the solution in which the matrix polymer and the lithium-containing electrolyte are dissolved is cooled to room temperature, whereby the film-like gel electrolyte is obtained. Obtainable.
 また、ゲル状電解質の調製方法における別の例では、マトリクスポリマー(フッ化ビニリデン共重合体)をフィルム状に成形した後、当該フィルムを非水電解液で膨潤させることによって、ゲル状電解質を得ることもできる。 In another example of the method for preparing a gel electrolyte, after forming a matrix polymer (vinylidene fluoride copolymer) into a film shape, the gel electrolyte is obtained by swelling the film with a non-aqueous electrolyte. You can also.
 以上のようなゲル状電解質の調製方法によって、マトリックスポリマーの濃度が通常より低く、かつ、ゲル状態を維持することができる信頼性の高いゲル状電解質を得ることができる。 By the gel electrolyte preparation method as described above, a highly reliable gel electrolyte in which the concentration of the matrix polymer is lower than usual and the gel state can be maintained can be obtained.
 <非水電解質電池>
 本発明に係るゲル状電解質は、非水電解質電池における部材として利用することができる。ここでの非水電解質電池とは、正極と負極との間にゲル状電解質が設けられている構成を有している電池である。このような非水電解質電池の例としては、リチウムイオン二次電池が挙げられるが、これに限定されない。また、非水電解質電池の調製方法としては、従来公知の方法を用いることができる。
<Nonaqueous electrolyte battery>
The gel electrolyte according to the present invention can be used as a member in a nonaqueous electrolyte battery. The nonaqueous electrolyte battery here is a battery having a configuration in which a gel electrolyte is provided between a positive electrode and a negative electrode. Examples of such a non-aqueous electrolyte battery include, but are not limited to, a lithium ion secondary battery. Moreover, a conventionally well-known method can be used as a preparation method of a nonaqueous electrolyte battery.
 (まとめ)
 本発明に係るゲル状電解質は、上記課題を解決するために、リチウム含有電解質が非水溶媒に溶解している非水電解液と、マトリクスポリマーとを含むゲル状電解質であって、上記マトリクスポリマーは、フッ化ビニリデン単位とフッ素原子含有モノマー単位とを繰り返し単位として含む共重合体であり、上記マトリクスポリマーの融点Tは、上記ゲル状電解質中に含まれる上記マトリクスポリマーの濃度C(質量%)に対して、下記式(I)を満たす範囲内にある。
(Summary)
In order to solve the above problems, the gel electrolyte according to the present invention is a gel electrolyte comprising a non-aqueous electrolyte solution in which a lithium-containing electrolyte is dissolved in a non-aqueous solvent, and a matrix polymer. Is a copolymer containing vinylidene fluoride units and fluorine atom-containing monomer units as repeating units, and the melting point T m of the matrix polymer is the concentration C (mass%) of the matrix polymer contained in the gel electrolyte. ) Within the range satisfying the following formula (I).
 T≧145-C (I)
(式(I)において、0.1≦C≦30である。)
T m ≧ 145-C (I)
(In formula (I), 0.1 ≦ C ≦ 30.)
 本発明に係るゲル状電解質において、上記共重合体は、不飽和二塩基酸に由来する繰り返し単位および不飽和二塩基酸モノエステルに由来する繰り返し単位の少なくとも一方をさらに含むことが好ましい。 In the gel electrolyte according to the present invention, the copolymer preferably further includes at least one of a repeating unit derived from an unsaturated dibasic acid and a repeating unit derived from an unsaturated dibasic acid monoester.
 本発明に係るゲル状電解質において、上記不飽和二塩基酸および上記不飽和二塩基酸モノエステルは、それぞれ不飽和ジカルボン酸および不飽和ジカルボン酸モノエステルであることが好ましい。 In the gel electrolyte according to the present invention, it is preferable that the unsaturated dibasic acid and the unsaturated dibasic acid monoester are an unsaturated dicarboxylic acid and an unsaturated dicarboxylic acid monoester, respectively.
 本発明に係るゲル状電解質において、上記フッ素原子含有モノマー単位は、ヘキサフルオロプロピレン由来またはクロロトリフルオロエチレン由来の繰り返し単位であることが好ましい。 In the gel electrolyte according to the present invention, the fluorine atom-containing monomer unit is preferably a repeating unit derived from hexafluoropropylene or chlorotrifluoroethylene.
 本発明に係るゲル状電解質において、上記非水溶媒は、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート、エチルブチルカーボネート、γ―ブチロラクトン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、プロピオン酸メチルもしくはプロピオン酸エチル、またはこれらのうちの少なくとも2つ以上が混合された混合溶媒であることが好ましい。 In the gel electrolyte according to the present invention, the non-aqueous solvent is ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, ethyl butyl carbonate, γ-butyrolactone. 1,2-dimethoxyethane, 1,2-diethoxyethane, methyl propionate or ethyl propionate, or a mixed solvent in which at least two of these are mixed is preferable.
 本発明に係るゲル状電解質の調製方法は、上記課題を解決するために、リチウム含有電解質が非水溶媒に溶解している非水電解液と、マトリクスポリマーとを含むゲル状電解質の調製方法であって、上記マトリクスポリマーの融点Tと、上記ゲル状電解質中に含まれる上記マトリクスポリマーの濃度C(質量%)とが、下記式(I)を満たすように、上記非水電解液と、上記マトリクスポリマーとを混合する構成を有している。 In order to solve the above problems, a method for preparing a gel electrolyte according to the present invention is a method for preparing a gel electrolyte comprising a non-aqueous electrolyte solution in which a lithium-containing electrolyte is dissolved in a non-aqueous solvent and a matrix polymer. And the non-aqueous electrolyte so that the melting point T m of the matrix polymer and the concentration C (% by mass) of the matrix polymer contained in the gel electrolyte satisfy the following formula (I): It has the structure which mixes the said matrix polymer.
 T≧145-C (I)
(式(1)において、0.1≦C≦30である。)
T m ≧ 145-C (I)
(In formula (1), 0.1 ≦ C ≦ 30.)
 以下に実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。さらに、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された文献の全てが参考として援用される。 Examples will be shown below, and the embodiments of the present invention will be described in more detail. Of course, the present invention is not limited to the following examples, and it goes without saying that various aspects are possible in detail. Further, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope shown in the claims, and the present invention is also applied to the embodiments obtained by appropriately combining the disclosed technical means. It is included in the technical scope of the invention. Moreover, all the literatures described in this specification are used as reference.
 まず、本発明に係るゲル状電解質を調製した実施例の説明に先立って、マトリクスポリマーによるゲル化を評価する評価方法について説明する。 First, prior to the description of the examples in which the gel electrolyte according to the present invention was prepared, an evaluation method for evaluating gelation by the matrix polymer will be described.
 <ゲル化の確認方法>
 マトリクスポリマーによるゲル化の確認は倒置法により行った。具体的には、所定量のマトリクスポリマーを非水電解液に加熱溶解した後、室温まで放冷していき、適宜、このゲル状電解質が入った容器を上下反転させ、内容物の流動状態を確認する。3日以内に内容物が流動しなくなったものを、ゲル化したと判定し、3日以内にゲル化の確認ができなかったものを、ゲル化しなかったと判定した。
<Confirmation method of gelation>
The gelation by the matrix polymer was confirmed by the inversion method. Specifically, after heating and dissolving a predetermined amount of matrix polymer in a non-aqueous electrolyte, the mixture is allowed to cool to room temperature, and the container containing the gel electrolyte is turned upside down as appropriate to change the flow state of the contents. Check. Those whose contents did not flow within 3 days were determined to be gelled, and those whose gelation could not be confirmed within 3 days were determined not to gel.
 <実施例1>
 〔マトリクスポリマーの調製方法〕
 内容量2リットルのオートクレーブに、イオン交換水を1060g、メトローズSM-100を0.62g、50質量%のジ-i-プロピルペルオキシジカーボネート-1,1,2,2―テトラフルオロエチル―2,2,2-トリフルオロエチルエーテル溶液を2.18g、フッ化ビニリデンを390g、ヘキサフルオロプロピレンを20g、マレイン酸モノメチルを2.06g仕込んだ。この混合液を、29℃まで1時間で昇温し、昇温開始から合計42.8時間、29℃を維持しながら重合させた。
<Example 1>
[Method for preparing matrix polymer]
In an autoclave with an internal volume of 2 liters, 1060 g of ion exchange water, 0.62 g of Metrose SM-100, 50% by mass of di-i-propyl peroxydicarbonate-1,1,2,2-tetrafluoroethyl-2 2.18 g of 2,2-trifluoroethyl ether solution, 390 g of vinylidene fluoride, 20 g of hexafluoropropylene, and 2.06 g of monomethyl maleate were charged. The mixture was heated to 29 ° C. over 1 hour and polymerized while maintaining 29 ° C. for a total of 42.8 hours from the start of the temperature increase.
 重合終了後、重合体スラリーを95℃で60分間熱処理した後、脱水、水洗し、更に80℃で20時間乾燥して重合体粉末を得た。重合率は80%であった。ここで得られたポリマーを以下ではポリマーAと記す。 After completion of the polymerization, the polymer slurry was heat treated at 95 ° C. for 60 minutes, dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a polymer powder. The polymerization rate was 80%. The polymer obtained here will be referred to as polymer A below.
 〔融点の測定〕
 粉末状のポリマーAを、プレス成型機((株)神藤金属工業製AYSR-5)を用いて、200℃で30秒予備加熱を行い、予備加熱の後、シリンダー圧10MPaで加熱プレスすることで、シート状に成形した。その後、成形されたシートから、10mg分のシートを切り出し、融点測定用サンプルとした。融点は、示差熱走査熱量装置(メトラー・トレド製DSC1)を用いて、30℃から230℃の範囲で、10℃/分の速度で昇降温し測定した。結果、ポリマーAの融点(T)は、157℃であった。
[Measurement of melting point]
The powdered polymer A is preheated at 200 ° C. for 30 seconds using a press molding machine (AYSR-5 manufactured by Shindo Metal Industry Co., Ltd.), and after preheating, it is heated and pressed at a cylinder pressure of 10 MPa. The sheet was formed into a sheet shape. Thereafter, a 10 mg sheet was cut out from the molded sheet to obtain a melting point measurement sample. The melting point was measured by raising and lowering the temperature at a rate of 10 ° C./min in the range of 30 ° C. to 230 ° C. using a differential thermal scanning calorimeter (DSC1 manufactured by METTLER TOLEDO). As a result, the melting point (T m ) of the polymer A was 157 ° C.
 〔ゲル化試験〕
 1mol/dmとなるように、リチウム含有電解質としてLiClOを溶解したプロピレンカーボネート(PC)/ジメチルカーボネート(DMC)=3/7(質量比)溶液と、ポリマーAとを、マトリクスポリマー濃度が5質量%となるように混合し、水浴で65℃、3時間、加熱撹拌した。その後、この混合物を、室温に冷却し、倒置法により、当該混合物がゲル化していることを確認した。
[Gelation test]
A solution of propylene carbonate (PC) / dimethyl carbonate (DMC) = 3/7 (mass ratio) in which LiClO 4 is dissolved as a lithium-containing electrolyte so as to be 1 mol / dm 3 , polymer A, and a matrix polymer concentration of 5 It mixed so that it might become mass%, and it heated and stirred at 65 degreeC for 3 hours in the water bath. Thereafter, this mixture was cooled to room temperature, and it was confirmed that the mixture was gelled by an inversion method.
 なお、これ以降の実施例におけるマトリクスポリマーの融点と最終的に調整された混合物中のマトリクスポリマーの濃度とは、上述の式(I)を満たしている。 Note that the melting point of the matrix polymer and the concentration of the matrix polymer in the finally adjusted mixture satisfy the above-described formula (I) in the following examples.
 <実施例2>
 実施例1のマトリクスポリマーの調製方法において、マトリクスポリマーの融点が153℃になるように、VDF(フッ化ビニリデン)とHFP(ヘキサフルオロプロピレン)とMMM(マレイン酸モノメチル)との共重合比を調整することによってポリマーBを得た。そして、マトリクスポリマーとして、ポリマーBを用いたこと以外は、実施例1と同様のゲル化試験を実施した。
<Example 2>
In the matrix polymer preparation method of Example 1, the copolymerization ratio of VDF (vinylidene fluoride), HFP (hexafluoropropylene), and MMM (monomethyl maleate) was adjusted so that the melting point of the matrix polymer was 153 ° C. As a result, a polymer B was obtained. And the gelation test similar to Example 1 was implemented except having used the polymer B as a matrix polymer.
 <実施例3>
 実施例1のマトリクスポリマーの調製方法において、マトリクスポリマーの融点が143℃になるように、VDFとHFPとMMMとの共重合比を調整することによってポリマーCを得た。そして、マトリクスポリマーとして、ポリマーCを用いたこと以外は、実施例1と同様のゲル化試験を実施した。
<Example 3>
In the method for preparing the matrix polymer in Example 1, polymer C was obtained by adjusting the copolymerization ratio of VDF, HFP, and MMM so that the melting point of the matrix polymer was 143 ° C. And the gelation test similar to Example 1 was implemented except having used the polymer C as a matrix polymer.
 <実施例4>
 実施例1のマトリクスポリマーの調製方法において、MMMを用いずに、マトリクスポリマーの融点が169℃となるように、VDFとHFPとの共重合比を調整することによってポリマーDを得た。そして、マトリクスポリマーとしてポリマーDを用い、マトリクスポリマー濃度を2.5質量%としたこと以外は、実施例1と同様のゲル化試験を実施した。
<Example 4>
In the matrix polymer preparation method of Example 1, polymer D was obtained by adjusting the copolymerization ratio of VDF and HFP so that the melting point of the matrix polymer was 169 ° C. without using MMM. And the gelation test similar to Example 1 was implemented except having used the polymer D as a matrix polymer and having made the matrix polymer density | concentration into 2.5 mass%.
 <実施例5>
 マトリクスポリマー濃度を5質量%としたこと以外は、実施例4と同様のゲル化試験を実施した。
<Example 5>
The same gelation test as in Example 4 was performed except that the matrix polymer concentration was 5% by mass.
 <実施例6>
 マトリクスポリマー濃度を10質量%としたこと以外は、実施例4と同様のゲル化試験を実施した。
<Example 6>
A gelation test similar to that of Example 4 was performed except that the matrix polymer concentration was 10% by mass.
 <実施例7>
 マトリクスポリマー濃度を20質量%としたこと以外は、実施例4と同様のゲル化試験を実施した。
<Example 7>
A gelation test similar to that of Example 4 was performed except that the matrix polymer concentration was 20% by mass.
 <実施例8>
 実施例1のマトリクスポリマーの調製方法において、MMMを用いずに、マトリクスポリマーの融点が163℃となるように、VDFとHFPとの共重合比を調整することによってポリマーEを得た。そして、マトリクスポリマーとしてポリマーEを用い、マトリクスポリマー濃度を2.5質量%としたこと以外は、実施例1と同様のゲル化試験を実施した。
<Example 8>
In the method for preparing the matrix polymer of Example 1, polymer E was obtained by adjusting the copolymerization ratio of VDF and HFP so that the melting point of the matrix polymer was 163 ° C. without using MMM. And the gelation test similar to Example 1 was implemented except having used the polymer E as a matrix polymer and having made the matrix polymer density | concentration into 2.5 mass%.
 <実施例9>
 マトリクスポリマー濃度を5質量%としたこと以外は、実施例8と同様のゲル化試験を実施した。
<Example 9>
A gelation test similar to that of Example 8 was performed except that the matrix polymer concentration was 5% by mass.
 <実施例10>
 マトリクスポリマー濃度を10質量%としたこと以外は、実施例8と同様のゲル化試験を実施した。
<Example 10>
A gelation test similar to Example 8 was performed except that the matrix polymer concentration was 10% by mass.
 <実施例11>
 マトリクスポリマー濃度を20質量%としたこと以外は、実施例8と同様のゲル化試験を実施した。
<Example 11>
A gelation test similar to Example 8 was performed except that the matrix polymer concentration was 20% by mass.
 <実施例12>
 実施例1のマトリクスポリマーの調製方法において、MMMを用いずに、マトリクスポリマーの融点が154℃となるように、VDFとHFPとの共重合比を調整することによってポリマーFを得た。そして、マトリクスポリマーとしてポリマーFを用い、マトリクスポリマー濃度を2.5質量%としたこと以外は、実施例1と同様のゲル化試験を実施した。
<Example 12>
In the method for preparing the matrix polymer of Example 1, polymer F was obtained by adjusting the copolymerization ratio of VDF and HFP so that the melting point of the matrix polymer was 154 ° C. without using MMM. And the gelation test similar to Example 1 was implemented except having used the polymer F as a matrix polymer and having made the matrix polymer density | concentration into 2.5 mass%.
 <実施例13>
 マトリクスポリマー濃度を5質量%としたこと以外は、実施例12と同様のゲル化試験を実施した。
<Example 13>
A gelation test similar to that of Example 12 was performed except that the matrix polymer concentration was set to 5% by mass.
 <実施例14>
 マトリクスポリマー濃度を10質量%としたこと以外は、実施例12と同様のゲル化試験を実施した。
<Example 14>
A gelation test similar to Example 12 was performed except that the matrix polymer concentration was 10% by mass.
 <実施例15>
 マトリクスポリマー濃度を20質量%としたこと以外は、実施例12と同様のゲル化試験を実施した。
<Example 15>
A gelation test similar to Example 12 was performed except that the matrix polymer concentration was 20% by mass.
 <実施例16>
 実施例1のマトリクスポリマーの調製方法において、MMMを用いずに、マトリクスポリマーの融点が127℃となるように、VDFとHFPとの共重合比を調整することによってポリマーGを得た。そして、マトリクスポリマーとしてポリマーGを用い、マトリクスポリマー濃度を20質量%としたこと以外は、実施例1と同様のゲル化試験を実施した。
<Example 16>
In the method for preparing the matrix polymer of Example 1, polymer G was obtained by adjusting the copolymerization ratio of VDF and HFP so that the melting point of the matrix polymer was 127 ° C. without using MMM. And the gelation test similar to Example 1 was implemented except having used the polymer G as a matrix polymer and having made the matrix polymer density | concentration into 20 mass%.
 <実施例17>
 実施例1のマトリクスポリマーの調製方法において、MMMおよびHFPに代えて、CTFE(クロロトリフルオロエチレン)を用い、マトリクスポリマーの融点が168℃となるように、VDFとCTFEとの共重合比を調整することによってポリマーHを得た。そして、マトリクスポリマーとしてポリマーHを用いたこと以外は、実施例1と同様のゲル化試験を実施した。
<Example 17>
In the method for preparing the matrix polymer of Example 1, CTFE (chlorotrifluoroethylene) was used instead of MMM and HFP, and the copolymerization ratio of VDF and CTFE was adjusted so that the melting point of the matrix polymer was 168 ° C. As a result, a polymer H was obtained. And the gelation test similar to Example 1 was implemented except having used the polymer H as a matrix polymer.
 <実施例18>
 実施例1のマトリクスポリマーの調製方法において、MMMおよびHFPに代えて、CTFEを用い、マトリクスポリマーの融点が166℃となるように、VDFとCTFEとの共重合比を調整することによってポリマーJを得た。そして、マトリクスポリマーとしてポリマーJを用いたこと以外は、実施例1と同様のゲル化試験を実施した。
<Example 18>
In the method for preparing the matrix polymer of Example 1, instead of MMM and HFP, CTFE was used, and polymer J was prepared by adjusting the copolymerization ratio of VDF and CTFE so that the melting point of the matrix polymer was 166 ° C. Obtained. And the gelation test similar to Example 1 was implemented except having used the polymer J as a matrix polymer.
 <実施例19>
 実施例1のマトリクスポリマーの調製方法において、HFPに代えて、CTFEを用い、マトリクスポリマーの融点が163℃となるように、VDFとCTFEとMMMとの共重合比を調整することによってポリマーKを得た。そして、マトリクスポリマーとしてポリマーKを用いたこと以外は、実施例1と同様のゲル化試験を実施した。
<Example 19>
In the method for preparing the matrix polymer of Example 1, instead of HFP, CTFE was used, and the polymer K was prepared by adjusting the copolymerization ratio of VDF, CTFE, and MMM so that the melting point of the matrix polymer was 163 ° C. Obtained. And the gelation test similar to Example 1 was implemented except having used the polymer K as a matrix polymer.
 <比較例1>
 実施例1のマトリクスポリマーの調製方法において、マトリクスポリマーの融点が137℃となるように、VDFとHFPとMMMとの共重合比を調整することによってポリマーLを得た。そして、マトリクスポリマーとしてポリマーLを用いたこと以外は、実施例1と同様のゲル化試験を実施した。なお、これ以降の比較例におけるマトリクスポリマーの融点と最終的に調整された混合物中のマトリクスポリマーの濃度とは、上述の式(I)を満たしていない。
<Comparative Example 1>
In the method for preparing the matrix polymer of Example 1, polymer L was obtained by adjusting the copolymerization ratio of VDF, HFP, and MMM so that the melting point of the matrix polymer was 137 ° C. And the gelation test similar to Example 1 was implemented except having used the polymer L as a matrix polymer. Note that the melting point of the matrix polymer and the concentration of the matrix polymer in the finally adjusted mixture in the comparative examples thereafter do not satisfy the above-described formula (I).
 <比較例2>
 マトリクスポリマーとしてポリマーGを用い、マトリクスポリマー濃度を2.5質量%としたこと以外は、実施例1と同様のゲル化試験を実施した。
<Comparative Example 2>
The same gelation test as in Example 1 was performed except that the polymer G was used as the matrix polymer and the matrix polymer concentration was 2.5% by mass.
 <比較例3>
 マトリクスポリマー濃度を5質量%としたこと以外は、比較例2と同様のゲル化試験を実施した。
<Comparative Example 3>
A gelation test similar to that of Comparative Example 2 was performed, except that the matrix polymer concentration was 5% by mass.
 <比較例4>
 マトリクスポリマー濃度を10質量%としたこと以外は、比較例2と同様のゲル化試験を実施した。
<Comparative Example 4>
A gelation test similar to that of Comparative Example 2 was performed except that the matrix polymer concentration was 10% by mass.
 <比較例5>
 実施例1のマトリクスポリマーの調製方法において、MMMを用いずに、マトリクスポリマーの融点が106℃となるように、VDFとHFPとの共重合比を調整することによってポリマーMを得た。そして、マトリクスポリマーとしてポリマーMを用い、マトリクスポリマー濃度を2.5質量%としたこと以外は、実施例1と同様のゲル化試験を実施した。
<Comparative Example 5>
In the method for preparing the matrix polymer of Example 1, polymer M was obtained by adjusting the copolymerization ratio of VDF and HFP so that the melting point of the matrix polymer was 106 ° C. without using MMM. And the gelation test similar to Example 1 was implemented except having used the polymer M as a matrix polymer, and having made the matrix polymer density | concentration into 2.5 mass%.
 <比較例6>
 マトリクスポリマー濃度を5質量%としたこと以外は、比較例5と同様のゲル化試験を実施した。
<Comparative Example 6>
A gelation test similar to that of Comparative Example 5 was performed, except that the matrix polymer concentration was 5% by mass.
 <比較例7>
 マトリクスポリマー濃度を10質量%としたこと以外は、比較例5と同様のゲル化試験を実施した。
<Comparative Example 7>
A gelation test similar to that of Comparative Example 5 was performed except that the matrix polymer concentration was 10% by mass.
 <比較例8>
 マトリクスポリマー濃度を20質量%としたこと以外は、比較例5と同様のゲル化試験を実施した。
<Comparative Example 8>
A gelation test similar to that of Comparative Example 5 was performed, except that the matrix polymer concentration was 20% by mass.
 図1は、実施例1~19および比較例1~8におけるマトリクスポリマーの融点とマトリクスポリマーの濃度との関係を示すグラフである。縦軸は、最終的に調整された混合物中のマトリクスポリマー濃度C(質量%)を示し、横軸は、マトリクスポリマーの融点T(℃)を示している。○または×に付随した番号は、それぞれ、実施例または比較例の番号を示し、○は、最終的に調整された混合物がゲル化したことを示し、×は、最終的に調整された混合物がゲル化しなかったことを示している。また、図1のグラフ内の点線は、不等号を等号にした場合の式(I)を示している。 FIG. 1 is a graph showing the relationship between the melting point of the matrix polymer and the concentration of the matrix polymer in Examples 1 to 19 and Comparative Examples 1 to 8. The vertical axis represents the matrix polymer concentration C (% by mass) in the finally prepared mixture, and the horizontal axis represents the melting point T m (° C.) of the matrix polymer. The numbers accompanying ○ or × indicate the numbers of the examples or comparative examples, respectively, ○ indicates that the finally adjusted mixture has gelled, and × indicates that the finally adjusted mixture It shows that it did not gel. Moreover, the dotted line in the graph of FIG. 1 has shown Formula (I) at the time of making an inequality sign into an equal sign.
 図1に示すように、ポリマー濃度Cが0.5~20の範囲内において、式(I)を満たす融点のマトリクスポリマーを用いた実施例1~19では、最終的に調整された混合物がゲル化している。すなわち、最終的に調整された混合物は、ゲル状電解質となっている。 As shown in FIG. 1, in Examples 1 to 19 using a matrix polymer having a melting point satisfying the formula (I) when the polymer concentration C is in the range of 0.5 to 20, the finally prepared mixture is a gel. It has become. That is, the finally adjusted mixture is a gel electrolyte.
 本発明は、非水電解質二次電池におけるゲル状電解質として好適に利用することができる。 The present invention can be suitably used as a gel electrolyte in a nonaqueous electrolyte secondary battery.

Claims (6)

  1.  リチウム含有電解質が非水溶媒に溶解している非水電解液と、マトリクスポリマーとを含むゲル状電解質であって、
     上記マトリクスポリマーは、フッ化ビニリデン単位とフッ素原子含有モノマー単位とを繰り返し単位として含む共重合体であり、
     上記マトリクスポリマーの融点Tは、上記ゲル状電解質中に含まれる上記マトリクスポリマーの濃度C(質量%)に対して、下記式(I)
     T≧145-C (I)
    (式(I)において、0.1≦C≦30である。)
    を満たす範囲内であることを特徴とするゲル状電解質。
    A gel electrolyte comprising a non-aqueous electrolyte in which a lithium-containing electrolyte is dissolved in a non-aqueous solvent, and a matrix polymer,
    The matrix polymer is a copolymer containing vinylidene fluoride units and fluorine atom-containing monomer units as repeating units,
    The melting point T m of a matrix polymer, relative to the concentration of the matrix polymer contained in the gel electrolyte C (mass%), the following formula (I)
    T m ≧ 145-C (I)
    (In formula (I), 0.1 ≦ C ≦ 30.)
    A gel electrolyte characterized by being in a range satisfying
  2.  上記共重合体は、不飽和二塩基酸に由来する繰り返し単位および不飽和二塩基酸モノエステルに由来する繰り返し単位の少なくとも一方をさらに含むことを特徴とする請求項1に記載のゲル状電解質。 The gel electrolyte according to claim 1, wherein the copolymer further comprises at least one of a repeating unit derived from an unsaturated dibasic acid and a repeating unit derived from an unsaturated dibasic acid monoester.
  3.  上記不飽和二塩基酸および上記不飽和二塩基酸モノエステルは、それぞれ不飽和ジカルボン酸および不飽和ジカルボン酸モノエステルであることを特徴とする請求項2に記載のゲル状電解質。 3. The gel electrolyte according to claim 2, wherein the unsaturated dibasic acid and the unsaturated dibasic acid monoester are an unsaturated dicarboxylic acid and an unsaturated dicarboxylic acid monoester, respectively.
  4.  上記フッ素原子含有モノマー単位は、ヘキサフルオロプロピレン由来またはクロロトリフルオロエチレン由来の繰り返し単位であることを特徴とする請求項1~3の何れか1項に記載のゲル状電解質。 The gel electrolyte according to any one of claims 1 to 3, wherein the fluorine atom-containing monomer unit is a repeating unit derived from hexafluoropropylene or chlorotrifluoroethylene.
  5.  上記非水溶媒は、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート、エチルブチルカーボネート、γ―ブチロラクトン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、プロピオン酸メチルもしくはプロピオン酸エチル、またはこれらのうちの少なくとも2つ以上が混合された混合溶媒であることを特徴とする請求項1~4の何れか1項に記載のゲル状電解質。 The non-aqueous solvent is ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, ethyl butyl carbonate, γ-butyrolactone, 1,2-dimethoxyethane, 5, 2-diethoxyethane, methyl propionate or ethyl propionate, or a mixed solvent in which at least two of these are mixed is described in any one of claims 1 to 4 Gel electrolyte.
  6.  リチウム含有電解質が非水溶媒に溶解している非水電解液と、マトリクスポリマーとを含むゲル状電解質の調製方法であって、
     上記マトリクスポリマーの融点Tと、上記ゲル状電解質中に含まれる上記マトリクスポリマーの濃度C(質量%)とが、下記式(I)
     T≧145-C (I)
    (式(1)において、0.1≦C≦30である。)
    を満たすように、上記非水電解液と、上記マトリクスポリマーとを混合することを特徴とするゲル状電解質の調製方法。
    A method for preparing a gel electrolyte comprising a non-aqueous electrolyte in which a lithium-containing electrolyte is dissolved in a non-aqueous solvent, and a matrix polymer,
    A melting point T m of a the matrix polymer, the concentration of the matrix polymer contained in the gel electrolyte C (wt%), but the following formula (I)
    T m ≧ 145-C (I)
    (In formula (1), 0.1 ≦ C ≦ 30.)
    The method for preparing a gel electrolyte, comprising mixing the non-aqueous electrolyte and the matrix polymer so as to satisfy the above.
PCT/JP2017/004554 2016-03-10 2017-02-08 Gel electrolyte and preparation method thereof WO2017154449A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187016225A KR101942835B1 (en) 2016-03-10 2017-02-08 Gel electrolyte and method for preparing the same
CN201780004567.8A CN108370067B (en) 2016-03-10 2017-02-08 Gel-like electrolyte with and preparation method thereof
EP17762793.2A EP3429018A4 (en) 2016-03-10 2017-02-08 Gel electrolyte and preparation method thereof
US16/067,869 US20190348711A1 (en) 2016-03-10 2017-02-08 Gel electrolyte and method for preparing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-047547 2016-03-10
JP2016047547 2016-03-10
JP2016-053140 2016-03-16
JP2016053140A JP6829943B2 (en) 2016-03-10 2016-03-16 Gel electrolyte and its preparation method

Publications (1)

Publication Number Publication Date
WO2017154449A1 true WO2017154449A1 (en) 2017-09-14

Family

ID=59790334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004554 WO2017154449A1 (en) 2016-03-10 2017-02-08 Gel electrolyte and preparation method thereof

Country Status (1)

Country Link
WO (1) WO2017154449A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090828A1 (en) * 2018-10-31 2020-05-07 株式会社クレハ Gel electrolyte and nonaqueous electrolyte secondary battery
US20200280094A1 (en) * 2017-09-18 2020-09-03 Blue Solutions Solid polymer electrolyte comprising a solvating polymer, a lithium salt and a selected halogenated polymer and battery comprising same
WO2022114039A1 (en) * 2020-11-30 2022-06-02 株式会社クレハ Vinylidene fluoride polymer composition and method for producing same, resin composition, electrode mixture, electrode containing these, and method for producing same
WO2022114044A1 (en) * 2020-11-30 2022-06-02 株式会社クレハ Vinylidene fluoride copolymer composition and method for producing same, polymer dispersion solution, electrode for nonaqueous electrolyte secondary battery, electrolyte layer for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008226807A (en) * 2007-02-14 2008-09-25 Nissan Motor Co Ltd Non-aqueous electrolyte secondary battery
JP2009301833A (en) * 2008-06-12 2009-12-24 Kureha Elastomer Co Ltd Cross-linked polymer solid electrolyte and method of manufacturing the same
WO2011096564A1 (en) * 2010-02-05 2011-08-11 ダイキン工業株式会社 Composite gel electrolyte film for secondary battery, and secondary battery
WO2014147955A1 (en) * 2013-03-19 2014-09-25 ソニー株式会社 Battery, electrolyte layer, battery pack, electronic apparatus, electric vehicle, power storage device, and power system
WO2015137137A1 (en) * 2014-03-11 2015-09-17 株式会社クレハ Vinylidene fluoride copolymer, method for producing same, gel electrolyte and nonaqueous battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008226807A (en) * 2007-02-14 2008-09-25 Nissan Motor Co Ltd Non-aqueous electrolyte secondary battery
JP2009301833A (en) * 2008-06-12 2009-12-24 Kureha Elastomer Co Ltd Cross-linked polymer solid electrolyte and method of manufacturing the same
WO2011096564A1 (en) * 2010-02-05 2011-08-11 ダイキン工業株式会社 Composite gel electrolyte film for secondary battery, and secondary battery
WO2014147955A1 (en) * 2013-03-19 2014-09-25 ソニー株式会社 Battery, electrolyte layer, battery pack, electronic apparatus, electric vehicle, power storage device, and power system
WO2015137137A1 (en) * 2014-03-11 2015-09-17 株式会社クレハ Vinylidene fluoride copolymer, method for producing same, gel electrolyte and nonaqueous battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3429018A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200280094A1 (en) * 2017-09-18 2020-09-03 Blue Solutions Solid polymer electrolyte comprising a solvating polymer, a lithium salt and a selected halogenated polymer and battery comprising same
US11804619B2 (en) * 2017-09-18 2023-10-31 Blue Solutions Solid polymer electrolyte including solvating polymer, lithium salt, and PVdF-HFP copolymer and battery including same
WO2020090828A1 (en) * 2018-10-31 2020-05-07 株式会社クレハ Gel electrolyte and nonaqueous electrolyte secondary battery
JPWO2020090828A1 (en) * 2018-10-31 2021-06-10 株式会社クレハ Gel-like electrolyte and non-aqueous electrolyte secondary batteries
JP7042924B2 (en) 2018-10-31 2022-03-28 株式会社クレハ Gel-like electrolyte and non-aqueous electrolyte secondary batteries
WO2022114039A1 (en) * 2020-11-30 2022-06-02 株式会社クレハ Vinylidene fluoride polymer composition and method for producing same, resin composition, electrode mixture, electrode containing these, and method for producing same
WO2022114044A1 (en) * 2020-11-30 2022-06-02 株式会社クレハ Vinylidene fluoride copolymer composition and method for producing same, polymer dispersion solution, electrode for nonaqueous electrolyte secondary battery, electrolyte layer for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
WO2017154448A1 (en) Gel electrolyte and preparation method thereof
JP6829943B2 (en) Gel electrolyte and its preparation method
WO2017154449A1 (en) Gel electrolyte and preparation method thereof
CN104053687B (en) Cement, anode mixture and cathode agent
CN105754027B (en) A kind of partial fluorine ethylene polymer, preparation method and application
KR20160149273A (en) Composite electrodes
JP2011174032A (en) Method for producing fluorine-containing copolymer, polymer electrolyte, electrode for lithium battery, and lithium battery
KR20180033237A (en) Electrode-forming composition
JP2016501950A (en) Dense fluoropolymer film
JP2000231936A (en) Electrolyte polymer for rechargeable lithium battery
US20220085375A1 (en) Non-aqueous electrolyte cell electrode binder, non-aqueous electrolyte cell electrode binder solution, non-aqueous electrolyte cell electrode slurry, non-aqueous electrolyte cell electrode, and non-aqueous electrolyte cell
JP2002249589A (en) Gel composition
KR102578307B1 (en) Gel electrolyte and non-aqueous electrolyte secondary batteries
CN110352526B (en) Gel electrolyte
JP4325098B2 (en) Gel composition
JP7238114B2 (en) Positive electrode mixture for lithium ion secondary battery, method for producing the same, and method for producing lithium ion secondary battery
JP4266054B2 (en) Polymer electrolyte and non-aqueous battery using the same
JP2019519896A (en) Fluoropolymer membrane for electrochemical devices
JP2005310658A (en) Binder for non-aqueous electrolytic liquid primary battery
US20220025139A1 (en) Flexible polymer electrolyte
JP2001210333A (en) Gel electrolyte for lithium primary battery and lithium primary battery using it
CN106661366A (en) Soluble vinyl fluoride interpolymers and polymer binder solutions

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187016225

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017762793

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017762793

Country of ref document: EP

Effective date: 20181010

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17762793

Country of ref document: EP

Kind code of ref document: A1