WO2017154396A1 - Driving change control device and driving change control method - Google Patents

Driving change control device and driving change control method Download PDF

Info

Publication number
WO2017154396A1
WO2017154396A1 PCT/JP2017/002847 JP2017002847W WO2017154396A1 WO 2017154396 A1 WO2017154396 A1 WO 2017154396A1 JP 2017002847 W JP2017002847 W JP 2017002847W WO 2017154396 A1 WO2017154396 A1 WO 2017154396A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
vehicle
driver
change
section
Prior art date
Application number
PCT/JP2017/002847
Other languages
French (fr)
Japanese (ja)
Inventor
卓也 森
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016236159A external-priority patent/JP6394687B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US16/082,685 priority Critical patent/US10766491B2/en
Priority to DE112017001198.1T priority patent/DE112017001198T5/en
Publication of WO2017154396A1 publication Critical patent/WO2017154396A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention

Definitions

  • the present disclosure relates to a driving change control device and a driving change control method for controlling the passing of a driving operation between an automatic driving function and a driver in a vehicle having an automatic driving function.
  • the automatic driving support apparatus disclosed in Patent Document 1 sets an output section before a switching start point at which switching from automatic driving to manual driving is started.
  • this output section the actual traveling output of the vehicle is gradually switched from the traveling output requested by the automatic driving to the traveling output requested by the driver.
  • the traveling speed of the vehicle can be changed smoothly when switching from automatic driving to manual driving.
  • the vehicle can cruise at a relatively high speed, follow-up running in a state of approaching the preceding vehicle, and the like.
  • the driving change to the driver is performed with the driving state controlled by the automatic driving function, the driver is forced to receive a driving operation with a high driving load.
  • smooth switching as described above is performed, the driver is likely to feel uneasy about receiving a driving operation from the automatic driving function.
  • This disclosure is intended to provide a driving change control device and a driving change control method capable of reducing the driver's anxiety when receiving a driving operation from an automatic driving function.
  • a driving shift for controlling the passing of the driving operation between the automatic driving function and the driver
  • the control device refers to the automatic operation function in a section setting unit for setting a replacement execution section for performing a driving shift from the automatic driving function to the driver, and in a switching section before the replacement execution section.
  • a parameter adjustment unit that adjusts the traveling state of the vehicle to a state with a lower driving load than before reaching the switching section by changing a traveling control parameter to be performed.
  • the driving state of the vehicle is adjusted to a low driving load by changing the driving control parameter in the switching section before the changing section. Therefore, the driving operation is delivered from the automatic driving function to the driver in a state where the driving load is low in or near the replacement execution section. Therefore, the driver's anxiety when receiving the driving operation from the automatic driving function is reduced.
  • a driving shift for controlling the passing of the driving operation between the automatic driving function and the driver
  • at least one processor sets a replacement execution section for performing a driving shift from the automatic driving function to the driver, and the automatic switching function is set in the switching section before the replacement execution section.
  • the driving state of the vehicle is adjusted to a low driving load state by changing the driving control parameter in the switching zone before the changing execution zone. Therefore, the driving operation is delivered from the automatic driving function to the driver in a state where the driving load is low in or near the replacement execution section. Therefore, the driver's anxiety when receiving the driving operation from the automatic driving function is reduced.
  • FIG. 1 is a block diagram showing the overall configuration of the automatic operation ECU, HCU, vehicle control ECU, etc. in the first embodiment
  • FIG. 2 is a diagram illustrating an example of specific configurations of the automatic operation ECU, the HCU, and the vehicle control ECU.
  • FIG. 3 is a diagram showing a timeline in which details of the driving change control method are described along a time series.
  • FIG. 4 is a flowchart showing details of a driving change control process performed by the automatic driving ECU.
  • FIG. 5 is a block diagram showing the overall configuration of the automatic operation ECU, HCU, vehicle control ECU, etc. in the second embodiment
  • FIG. 6 is a block diagram showing the overall configuration of the automatic operation ECU and vehicle control ECU in the third embodiment.
  • FIG. 7 is a diagram illustrating an example of specific configurations of the automatic operation ECU, the vehicle control ECU, and the like.
  • the function of the driving change control device is realized by the automatic driving ECU 50 shown in FIGS. 1 and 2.
  • An automatic operation ECU (Electronic Control Unit) 50 is mounted on the vehicle A together with an electronic control unit such as an HCU (Human Machine Interface) control unit 20 and a vehicle control ECU 80.
  • the automatic operation ECU 50, the HCU 20, and the vehicle control ECU 80 are electrically connected to each other and can communicate with each other.
  • the vehicle A has an automatic driving function by the operation of the automatic driving ECU 50 and the vehicle control ECU 80.
  • the HCU 20 controls the acquisition of the operation information input by the driver and the information presentation to the driver in an integrated manner.
  • the HCU 20 is mainly configured by a microcomputer having a main processor 21, a drawing processor 22, a RAM 23, a storage medium 24, and an input / output interface 25.
  • the HCU 20 is electrically connected to a plurality of notification devices 10 that notify information to the driver and a plurality of detection devices 15 that detect the state of the driver.
  • the notification device 10 is configured to notify various information related to the vehicle A to the passengers of the vehicle A including the driver based on the notification control signal output by the HCU 20.
  • the notification device 10 may be configured to be mounted in advance on the vehicle A, or may be configured to be temporarily mounted on the vehicle A by being brought into the passenger compartment by a passenger of the vehicle A.
  • the plurality of notification devices 10 include, for example, a speaker 12, a head-up display (HUD) device 13, a tactile sense presentation device 14, and the like.
  • the speaker 12 performs notification to the driver and the like through hearing by reproducing the notification sound and the message sound in the passenger compartment.
  • the HUD device 13 notifies the driver through vision by forming a virtual image in front of the driver.
  • the tactile sense presentation device 14 is, for example, a vibration device provided on a steering wheel or a footrest capable of changing a posture. The tactile sense presentation device 14 notifies the driver through the tactile sense.
  • the detection device 15 is configured to sequentially output the detection result relating to the driving state of the driver to the HCU 20 as a driver detection signal.
  • the plurality of detection devices 15 include a steering sensor 16, a driver status monitor (Driver Status Monitor, DSM) 17, and the like.
  • the steering sensor 16 is a sensor that detects gripping of the steering wheel, a sensor that detects steering torque input to the steering wheel, or the like. The steering sensor 16 detects whether or not the driver can input a steering operation as a driver detection signal.
  • the DSM 17 is composed of a near-infrared light source and a near-infrared camera and a control unit for controlling them.
  • the DSM 17 photographs a driver's face irradiated with near-infrared light from a near-infrared light source with a near-infrared camera.
  • the DSM 17 extracts, for example, the driver's face direction and the degree of opening of the eyes from the captured image, and detects a driver's look-aside, a decrease in the arousal level, an increase in the sensation level, and the like as a driver detection signal.
  • the HCU 20 constructs the input processing unit 31 and the output processing unit 32 as functional blocks by executing the notification control program stored in the storage medium 24 by each of the processors 21 and 22.
  • the input processing unit 31 acquires a driver detection signal detected by the detection device 15. Based on the acquired driver detection signal, the input processing unit 31 performs, for example, the level classification of the driver's arousal level, the level classification of the driver's obscure level, and determination of whether or not the driving posture is taken. The input processing unit 31 sequentially outputs the awakening degree information, the muzzle degree information, the driving posture information, and the like as driver information to the automatic driving ECU 50.
  • the output processing unit 32 generates a notification control signal based on the HMI control information acquired from the automatic driving ECU 50.
  • the output processing unit 32 sequentially outputs the generated notification control signal toward the notification device 10, thereby enabling information presentation to the driver in cooperation with the automatic driving ECU 50.
  • the vehicle control ECU 80 is electrically connected to a vehicle-mounted actuator group 90 mounted on the vehicle A.
  • the in-vehicle actuator group 90 includes, for example, a throttle actuator, an injector, a brake actuator, a driving motor generator, a steering actuator, and the like.
  • the vehicle control ECU 80 integrally controls acceleration / deceleration and steering of the vehicle A by a control signal output toward the in-vehicle actuator group 90.
  • the vehicle control ECU 80 is mainly configured by a microcomputer having a processor 81, a RAM 83, a storage medium 84, an input / output interface 85, and the like.
  • the vehicle control ECU 80 executes the vehicle control program stored in the storage medium 84 by the processor 81, thereby constructing the actuator control unit 80a as a functional block related to vehicle control.
  • Actuator control unit 80a generates a control signal output from vehicle control ECU 80 toward in-vehicle actuator group 90.
  • the actuator control unit 80a acquires vehicle control information from the automatic driving ECU 50 in a state where the automatic driving function is operating, and generates a control signal based on the vehicle control information.
  • the actuator control unit 80a generates a control signal having contents according to the driving operation input by the driver in a state where the automatic driving function is stopped, and outputs the control signal to the in-vehicle actuator group 90.
  • the automatic operation ECU 50 is electrically connected to the GNSS receiver 71, the lidar 72, the millimeter wave radar 73, the camera unit 74, the map database 75, the V2X receiver 76, and the like.
  • the automatic driving ECU 50 acquires information related to the traveling environment around the host vehicle necessary for automatic driving from these configurations (71 to 76).
  • a GNSS (Global Navigation Satellite System) receiver 71 receives positioning signals from a plurality of artificial satellites.
  • the GNSS receiver 71 measures the current position of the vehicle A based on the received positioning signal.
  • the GNSS receiver 71 sequentially outputs the measured position information of the vehicle A to the automatic operation ECU 50.
  • the lidar 72, the millimeter wave radar 73, and the camera unit 74 are stationary objects such as moving objects such as pedestrians and other vehicles, falling objects on the road, traffic signals, guardrails, curbs, road signs, road markings, and marking lines. It is an autonomous sensor that detects an object.
  • the lidar 72, the millimeter wave radar 73, and the camera unit 74 sequentially output detected object information relating to the detected moving object and stationary object to the automatic operation ECU 50, respectively.
  • the detection range in which the detected object information can be acquired is set to cover the entire circumference of the vehicle A, that is, 360 °.
  • a plurality of riders 72 are mounted on the vehicle A.
  • Each lidar 72 emits laser light in the traveling direction, left-right direction, and rearward direction of the vehicle A, and detects by receiving laser light reflected by a moving object and a stationary object that exist in each direction. Get material information.
  • the millimeter wave radar 73 irradiates the millimeter wave toward the traveling direction of the vehicle A, and acquires the detected object information by receiving the millimeter wave reflected by a moving object and a stationary object existing in the traveling direction.
  • the millimeter wave radar 73 can detect an object farther away than the lidar 72.
  • the camera unit 74 analyzes the front area, the left and right side areas, and the rear area of the vehicle A, the front camera, the side camera, and the rear camera, and the image of the front area captured by each camera. Part. Each camera may be either a monocular type or a compound eye type.
  • the camera unit 74 acquires detected object information by extracting a moving object and a stationary object that appear in each image in the front area, the left and right side areas, and the rear area.
  • the map database 75 is a storage medium that stores a large number of map data.
  • the map data includes structural information such as the curvature, slope, and section length of each road, and non-temporary traffic regulation information such as speed limit and one-way traffic.
  • the map database 75 causes the automatic driving ECU 50 to acquire map data around the current position of the vehicle A and the traveling direction.
  • the V2X receiver 76 exchanges information by wireless communication with an in-vehicle communication device mounted on another vehicle and a roadside device installed on the side of the road.
  • the V2X receiver 76 receives temporary traffic regulation information, congestion information, weather information, and the like through vehicle-to-vehicle communication with the vehicle-mounted communication device and road-to-vehicle communication with the roadside device, and sequentially outputs them to the automatic operation ECU 50.
  • the temporary traffic regulation information includes information such as traffic lane restrictions and road closures that occur on the road in the traveling direction of the vehicle A due to accidents and construction.
  • the congestion information includes information such as the degree of traffic congestion on the road in the traveling direction, that is, whether or not a traffic jam has occurred, the traffic jam occurrence range, and the traffic flow condition (for example, travel speed).
  • the meteorological information includes the amount of rainfall, the amount of snowfall, and the occurrence of fog on the road in the traveling direction.
  • the automatic driving ECU 50 performs an acceleration / deceleration control and a steering control of the vehicle A in cooperation with the vehicle control ECU 80, thereby exhibiting an automatic driving function capable of performing the driving operation of the vehicle A on behalf of the driver.
  • the automatic operation ECU 50 is mainly configured by a microcomputer having a processor 51, a RAM 53, a storage medium 54, and an input / output interface 55.
  • the automatic operation ECU 50 can execute the automatic operation program stored in the storage medium 54 by the processor 51.
  • the automatic driving ECU 50 constructs the driving environment recognition unit 61, the driving plan generation unit 62, the driving change control unit 63, the ECU communication unit 64, and the HCU communication unit 65 as functional blocks related to automatic driving.
  • the traveling environment recognition unit 61 recognizes the traveling environment of the vehicle A by combining the position information acquired from the GNSS receiver 71, the detected object information acquired from each autonomous sensor, the map data acquired from the map database 75, and the like. .
  • the traveling environment recognizing unit 61 recognizes the shape and moving state of the object around the vehicle A based on the integration result of the detected object information, and combines the position information and the map data, particularly within the detection range of each autonomous sensor. Thus, a virtual space that reproduces the actual driving environment in three dimensions is generated.
  • the travel plan generation unit 62 generates a travel plan for automatically driving the vehicle A by an automatic driving function based on the travel environment recognized by the travel environment recognition unit 61.
  • the travel plan includes a long-term travel plan and a short-term travel plan.
  • the long-term driving plan defines a route for the vehicle A to go to the destination set by the driver.
  • the route defined by the long-term driving plan extends beyond the detection range of each autonomous sensor.
  • the long-term driving plan reflects structural information and non-temporary traffic regulation information included in the map data, temporary traffic regulation information received by the V2X receiver 76, and the like.
  • the short-term travel plan defines a planned travel locus for realizing travel according to the long- and medium-term travel plan using the virtual space around the vehicle A generated by the travel environment recognition unit 61.
  • execution of steering for lane change, acceleration / deceleration for speed adjustment, and sudden braking for collision avoidance is specifically determined.
  • the driving change control unit 63 controls switching of the control right related to the driving operation between the automatic driving function and the driver.
  • the driving change control unit 63 starts the operation of the automatic driving function by detecting the switching operation to the automatic driving by the driver in the area where the automatic driving is possible.
  • the driving change control unit 63 refers to the long-term driving plan, and systematically switches from automatic driving to manual driving by the driver before the area where automatic driving can be completed.
  • the driving change control unit 63 is configured to perform manual operation from automatic driving even when it is difficult to recognize the driving environment by the driving environment recognition unit 61 accidentally or suddenly and it is difficult to generate a short-term driving plan by the driving plan generation unit 62. Switch to driving.
  • the driving change control unit 63 adjusts the contents of the driving change control process related to the planned delivery of the driving operation so that the driver receives the driving operation smoothly. Specifically, the driving shift control unit 63 acquires the shape information of the road on which the vehicle A is scheduled to travel by the automatic driving function by referring to the long and medium-term driving plan, and avoids the predetermined high driving load section. Then, a section that is substantially linear and has a small inclination is selected, and the driving operation is delivered to the driver.
  • the high driving load section is a section having a road shape that increases the driving load when the driver drives. For example, a curve section and an upward gradient section are defined as the high driving load section.
  • a section where local heavy rain and fog are generated based on weather information is also regarded as a high driving load section.
  • a section where congestion that makes it difficult to secure the inter-vehicle distance is also regarded as a high driving load section.
  • the ECU communication unit 64 performs an output process of information directed to the vehicle control ECU 80 and an acquisition process of information from the vehicle control ECU 80. Specifically, the ECU communication unit 64 generates vehicle control information having contents according to the planned travel locus formulated by the travel plan generation unit 62, and includes vehicle control information together with operation information indicating whether or not the automatic driving function is operating. It outputs sequentially toward ECU80. Further, the ECU communication unit 64 can sequentially acquire state information indicating the control state of the in-vehicle actuator group 90 from the vehicle control ECU 80, and can correct the content of the vehicle control information.
  • the HCU communication unit 65 performs information output processing to the HCU 20 and information acquisition processing from the HCU 20. Specifically, the HCU communication unit 65 acquires driver information from the HCU 20. In addition, the HCU communication unit 65 generates HMI control information related to driving switching to the driver, and sequentially outputs the HMI control information to the HCU 20 together with operation information indicating whether or not the automatic driving function is operating. The HCU communication unit 65 can appropriately present information related to the driving change to the driver by controlling the notification device 10 in cooperation with the HCU 20.
  • FIG. 3 shows an example of so-called lamp-to-lamp automatic operation.
  • an automatic driving possible area is set on the highway existing on the route to the destination, and the starting point and the ending point of the automatic driving possible area are respectively It is set for each rampway connected to the main road.
  • the driving change control unit 63 sets a driving state for driving switching separately from the driving state at the time of cruising, and starts driving switching after shifting the vehicle A to the driving state for driving switching in advance.
  • the driving change control unit 63 formulates a driving change control processing plan (hereinafter referred to as “substitution plan”) that is scheduled to be implemented in front of the rampway that is set as the end point after the start of automatic driving.
  • substitution plan a driving change control processing plan
  • a substitution execution section, a switching section, a notification timing for driving substitution, necessity and timing of substitution notice, correction points for correcting the contents of the substitution plan, and the like are set.
  • the alternation execution section is a section in which driving operation is handed over to the driver from the automatic driving function.
  • the alternation execution section is set on the main road or the deceleration lane immediately before exiting to the rampway which is the end point.
  • the driving change control unit 63 sets the start position of the replacement execution section with respect to the end point and the length of the replacement execution section.
  • the driving change control unit 63 avoids the high driving load section and sets the replacement execution section in the straight section before the high driving load section. Set (refer to the bottom of Fig. 3).
  • the traveling state of the vehicle A is adjusted.
  • the driving state of the vehicle A is adjusted to a low driving load when it is assumed that the driver is driving.
  • the travel state after the switching section is set to a state where the driving load is lower (low driving load mode) than the state during the cruise control before the switching section is reached (normal traveling mode).
  • the switching section is set before the replacement section on the route in the long and medium-term travel plan.
  • the driving change control unit 63 sets the start position of the switching section with respect to the end point and the length of the switching section. In FIG. 3, the range of the normal driving mode is indicated by a dark dot, and the range of the low driving load mode is indicated by a thin dot.
  • the travel control parameter referred to by the automatic driving function is changed to adjust the travel state.
  • the travel plan generation unit 62 changes travel control parameters used when a short-term travel plan is formulated. For example, when the vehicle A is traveling at a constant speed alone on the front side of the switching section, the target speed of the vehicle A in the constant speed cruise is set as the travel control parameter. A planned travel locus for adjusting the target speed value to a low value in the switching section is generated by the travel plan generation unit 62. As a result, in the replacement execution section after the switching section, the driver can receive the driving operation in a state where the driving speed is lowered and the driving load is low.
  • the target speed value in the above constant speed cruise is determined in consideration of the road form scheduled to travel after being switched to manual operation. Specifically, when driving on a curve with a large curvature after the shift to manual driving, the target speed should be set lower than when the road after the driving shift is straight.
  • the target speed value is an average value of two speed values.
  • the cruise speed when traveling automatically before arrival at the switching section, or the speed limit of the currently traveling road is used.
  • the smaller one of the two speed values has a speed limit of a road (for example, a road after the rampway) that travels after the driving change, or the travel plan generation unit 62 for the road that travels after the driving change.
  • the recommended travel speed to be calculated is used. If the average of these two speed values exceeds the minimum speed of the running road, this average value is set as the target speed, and if it is less than the minimum speed, the value obtained by adding the minimum speed or a predetermined value for the minimum speed Is set as the target speed.
  • the cruise speed or speed limit for automatic driving is 100 km / h and the speed limit or recommended driving speed after passing the rampway is 40 km / h, these values are used in the switching section defined in the deceleration lane.
  • the vehicle is gradually decelerated to an average value of about 70 km / h.
  • the target inter-vehicle distance between the vehicle A and the preceding vehicle is one of the traveling control parameters.
  • a planned travel locus for adjusting the value of the target inter-vehicle distance to a large value in the switching section is generated by the travel plan generation unit 62.
  • the travel control parameter adjusted in the switching section may be an inter-vehicle time.
  • the maximum value of the relative speed of the vehicle A allowed for the preceding vehicle in the following traveling is one of the travel control parameters adjusted in the switching section. obtain.
  • the travel plan generation unit 62 adjusts the maximum value of the relative speed to a small value (for example, zero or negative value) in the switching section. Therefore, the value of the target relative speed is set to a value such that the relative speed with the preceding vehicle becomes zero or the vehicle A gradually moves away from the preceding preceding vehicle in the switching section. According to the above, since the approach to the preceding vehicle of the vehicle A is blocked in the replacement execution section after the switching section, it is difficult for the driver to feel the preceding vehicle as a load.
  • the lane in which the automatic driving function travels the vehicle A is selected based on the lane instruction information set in the long-term driving plan. Is done.
  • the lane instruction information that instructs the lane in this way is also one of the travel control parameters that can be adjusted in the switching section.
  • the traveling environment recognition unit 61 recognizes the degree of congestion of each lane around the vehicle A and in the traveling direction using the detected object information and the congestion information on the front side of the switching section, so that other vehicles It is possible to search for free lanes with few.
  • the lane instruction information is updated so that the lane is vacant and the lane is changed to the vacant lane.
  • the planned travel locus to be generated is generated by the travel plan generation unit 62.
  • the driver can receive a driving operation with a low driving load in the vacant lane among the plurality of lanes in the alternate execution section after the switching section.
  • the overtaking lane tends to have a higher actual speed than the traveling lane
  • changing the lane from the traveling lane to the overtaking lane results in an increase in driving speed and an increase in driving load. Therefore, even when the driving environment recognition unit 61 recognizes that the overtaking lane is more vacant than the driving lane, the lane change from the driving lane to the overtaking lane is not performed.
  • the lane change to the vacant lane in the switching section is limited to the lane change toward the traveling lane. In other words, the driving load is lowered by changing the lane to a lane that is vacant from the currently traveling lane and has a lower actual speed.
  • bi-directional movement between the first travel lane and the second travel lane may be permitted according to the degree of congestion of each travel lane. .
  • the adjustment mode of the travel control parameter as described above is different between the case where the following vehicle exists behind the vehicle A and the case where the following vehicle does not exist. Specifically, the adjustment mode of the travel control parameter is changed so that the deceleration generated in the vehicle A in the switching section is smaller when the subsequent vehicle exists than when the subsequent vehicle does not exist. The As a result, rapid approach with the following vehicle is avoided.
  • the control that adjusts the travel control parameter to the low driving load state described so far can be stopped according to the driver's state, the traveling state of the vehicle A, and the like.
  • the driving change control unit 63 determines that the condition for adjusting the travel control parameter is not satisfied, the driving change control unit 63 can start the driving change without performing control for adjusting the speed or the like to a low driving load state. .
  • One of the conditions for adjusting the travel control parameter described above is the state of arousal level and ambiguity in the driver. Specifically, when the driver's arousal level based on the arousal level information is higher than a preset threshold value, or when the driver's casual level based on the abusive level information is lower than a preset threshold value, The adjustment of the travel control parameter to the low state is stopped.
  • another one of the implementation conditions is the elapsed time after the driving change from the driver to the automatic driving function is implemented.
  • the driving change control unit 63 measures the elapsed time after the driving change to the automatic driving function, and determines that the execution condition is not satisfied when the elapsed time is less than a threshold time (for example, about 30 minutes).
  • a threshold time for example, about 30 minutes
  • another implementation condition is the traveling speed of the vehicle A before reaching the switching section.
  • the driving change control unit 63 based on the vehicle speed information that detects the traveling speed, when the current traveling speed of the vehicle A is lower than the speed threshold speed (about 40 km / h), the traveling control parameter for reducing the driving load. Cancel the adjustment. As described above, for example, when the vehicle is traveling at a low speed due to factors such as traffic congestion, a situation in which the driving load is already sufficiently low, but is controlled to be excessively low can be prevented.
  • the notification of driving change (hereinafter referred to as “change notification”) is information presentation that informs the driver of the delivery operation of the driver from the automatic driving function, more precisely, the start of the delivery.
  • the change notification for example, the driver is required to take a posture suitable for driving operation.
  • the change notification is given to the driver under the control of the notification device 10 by the HCU communication unit 65 and the HCU 20.
  • the notification of the driving change is set after the adjustment of the driving state of the vehicle A accompanying the change of the driving control parameter is completed and before reaching the changing execution section. With the above settings, when the behavior of the vehicle A is in a transient state, the notification of the driving change is not started.
  • the mode of the change notification can be changed according to the state of the driver, specifically, the driver's arousal level and ambiguity level. For example, as the driver's arousal level is lower, the driving change control unit 63 sets the start timing of the change notification to the reference operation timing with respect to the timing when the vehicle A reaches the change execution section. Accelerate from. Along with the early notification of such a change notification, the replacement execution section is secured longer than in the case of the standard operation (see the middle of FIG. 3), so the driver can receive the driving operation with a margin. In addition, when the change notification timing is advanced, the switching section is also changed to a range on the near side with respect to the replacement execution section.
  • a margin time from the start of the change notification to the arrival of the change execution section may be secured longer than in the case of the standard operation. According to such a process, the driver can recover the arousal level or reduce the mute level by using the spare time, and can receive the driving operation in a state suitable for driving.
  • the driving change control unit 63 increases the number of the notification devices 10 used for the change notification as the driver's arousal level is lower or the muffled level is higher. Further, the driving change control unit 63 increases the number of notifications, increases the display size of the virtual image, increases the volume of the notification sound, and increases the intensity of vibration, as the driver's arousal level is low or the muffled level is high. It can be carried out.
  • Driving change notice (hereinafter referred to as “change notice”) is information that notifies the driver of the delivery of the driving operation from the automatic driving function to the driver.
  • the change notice is performed by, for example, a message voice from the speaker 12 or a virtual image display by the HUD device 13.
  • the notice of driving change is set before reaching the switching section.
  • the necessity for the replacement notice is determined according to the state of the driver, specifically, the driver's arousal level and ambiguity. For example, when the driver's arousal level is lower than a preset threshold value, or when the disambiguation level is higher than a preset threshold value, the replacement notice is performed. On the other hand, when the driver's arousal level is higher than a predetermined threshold value and the ambiguity level is lower than the predetermined threshold value, the replacement notice is omitted so that the driver does not feel bothered.
  • the correction point is set on the near side for a predetermined distance or a predetermined time with respect to the ramp way as an end point, for example.
  • the driving change control unit 63 acquires the latest driver information. Based on the acquired driver information, the driving change control unit 63 mainly determines the timing of the changing notification and the necessity of the changing notice, and determines a detailed schedule of a series of changing plans. Note that the position of the correction point with respect to the end point may be changed as appropriate depending on, for example, the presence or absence of a high driving load section.
  • the flow of the driving change control process based on the contents described so far will be described along the time series based on the flowchart shown in FIG. 4 and referring to FIGS.
  • the driving change control process of FIG. 4 is started by the automatic driving ECU 50 when the operation of the automatic driving function is approved by the driver.
  • S101 in order to obtain information on the position that is the end point of the area where automatic driving is possible and the shape information of the road that is the replacement section, the long-term travel plan is referred to and the process proceeds to S102.
  • a replacement plan based on the end point indicated in the long-term driving plan referenced in S101 is formulated, and the process proceeds to S103.
  • positions such as a replacement execution section, a switching section, and a correction point are set for the end point.
  • S103 based on the position information of the GNSS receiver 71, it is determined whether or not the vehicle A has reached the correction point set in S102, thereby waiting for the correction point to be reached. Then, when the vehicle A reaches the correction point, the process proceeds to S104.
  • driver information relating to the current (latest) driver is acquired, and the process proceeds to S105.
  • S105 information indicating the current traveling state of the vehicle A, the latest weather information and congestion information, etc. for the replacement execution section and its vicinity are acquired, and the process proceeds to S106.
  • S106 the details of the replacement plan established in S102 are determined based on the information acquired in S104 and S105. Specifically, in S106, a range to be a replacement execution section and a switching section, necessity of replacement notice, timing of replacement notification, and the like are determined, and the process proceeds to S107. In S107, based on the traveling state of the vehicle A acquired in S105, a traveling control parameter to be adjusted in the switching section and an updated value of each traveling control parameter are determined, and the process proceeds to S108.
  • S108 it is determined whether or not to implement S109 based on the necessity of the change notice determined in S106. If the replacement notice is unnecessary, S109 is skipped. On the other hand, if a change notice is necessary, a drive change notice using the notification device 10 is performed by outputting HMI control information to the HCU 20 in S109, and the process proceeds to S110.
  • S110 based on the position information of the GNSS receiver 71, it is determined whether or not the vehicle A has reached the switching section set in S106, thereby waiting for arrival in the switching section. Then, when the vehicle A reaches the switching section, the process proceeds to S111. In S111, it is determined whether or not the conditions for adjusting the travel control parameter are satisfied. In S111, when it is determined that the control for reducing the driving load is unnecessary and the execution condition is not satisfied, the travel control parameter adjustment is stopped, and the process proceeds to S114. On the other hand, when it is determined in S111 that the execution condition is satisfied, the process proceeds to S112 in which the travel control parameter is changed.
  • the value of the travel control parameter that has been adjusted in S107 is changed, and the process proceeds to S113. Due to S112, the traveling state of the vehicle A transitions to a state where the driving load is low. In S113, it waits for the completion of the adjustment of the running state based on the change process of S112, and proceeds to S114 based on the completion of the adjustment.
  • the notification device 10 is controlled in accordance with the start timing determined in S106, so that the driver is instructed to deliver the driving operation, and the process proceeds to S115.
  • S115 based on the position information of the GNSS receiver 71, it is determined whether or not the vehicle A has arrived at the replacement execution section set in S106, thereby waiting for the replacement execution section to arrive. Then, when the vehicle A reaches the replacement section, the process proceeds to S116.
  • S116 the delivery of the driving operation from the automatic driving function to the driver is started, and the series of driving change control processing is ended.
  • the travel state of the vehicle A is adjusted to a low driving load state by changing the travel control parameter in the switching section set before the replacement execution section. . Therefore, the driving operation is handed over to the driver from the automatic driving function in a state where the driving load is low in or near the alternation execution section. According to such driving change control, the driver's anxiety when receiving the driving operation from the automatic driving function is reduced.
  • the notification of the driving change in the first embodiment is performed after the completion of the transition of the traveling state of the vehicle A in the switching section, and does not overlap with the transition period of the traveling state. Therefore, it is possible to prevent a situation in which the adjustment of the driving state from the normal driving mode to the low driving load mode for the purpose of reducing the driving load at the time of driving switching gives anxiety to the driver receiving the driving operation.
  • the driver can receive the driving operation with a mental margin in the shift execution section.
  • the driver when the driver's arousal level is lower than the threshold value and when the driver's arousal level is higher than the threshold value, a change notice is given to the driver before reaching the switching section. Therefore, the driver can recover the arousal level or reduce the mute level in the switching section. As a result, the driver can face the shift execution section in a state suitable for driving and can receive a driving operation.
  • the timing of the change notification is delayed and the change notice is also omitted. Therefore, a situation in which the driver is bothered by an early change notification and an excessive change notification is avoided.
  • the adjustment of the driving control parameter to a state with a low driving load is stopped.
  • the driver when the arousal level is high or the ambiguity level is low, even if the driving load is not adjusted to a low level, the driver can perform driving operation automatically without feeling noticeable. Can be received from.
  • the control that is adjusted in advance so as to reduce the driving load is stopped according to the state of the driver, the driver who is surely able to take over the driving operation does not feel annoyance. Thus, it is possible to perform a driving change smoothly.
  • the adjustment of the travel control parameter is also stopped when the elapsed time after the change of driving to the automatic driving function is short. In this case, it can be estimated that the driver's ambiguity is sufficiently low and the arousal level is sufficiently high. Therefore, when the execution time of the automatic operation is relatively short, the control for adjusting the operation load to a low state may be omitted.
  • the adjustment of the traveling control parameter is stopped.
  • control for further reducing the driving load may not be performed.
  • the replacement execution section in the first embodiment is set to avoid the high operation load section. Therefore, the driving change to the driver is performed not only with the driving load caused by the traveling state of the vehicle A but also with a low driving load caused by the road environment. According to the above, it is possible to avoid the occurrence of a scene in which the driver is forced to start a difficult driving operation with a dull driving sensation. Therefore, the driver's anxiety when receiving the driving operation is more reliably reduced.
  • the driving state for switching operation in the first embodiment can be set separately for a scene in which the vehicle A is traveling alone and a scene in which other vehicles such as a preceding vehicle are present. For example, in a scene where the vehicle A is traveling alone, the traveling speed of the vehicle A is reduced in the switching section. As a result, the driving load felt by the driver in the shift execution section can be surely reduced.
  • the inter-vehicle distance from the preceding vehicle is maintained or expanded in the switching section.
  • the pressure that the driver receives from the preceding vehicle in the shift execution section can be surely reduced.
  • the maximum value of the relative speed allowed in the switching section is adjusted to be low, the vehicle A will gradually move away from the preceding vehicle. Therefore, the driver can receive the driving operation without being excessively aware of the preceding vehicle.
  • the first embodiment it is possible to change lanes to vacant lanes in the switching section. As described above, if the vehicle A has been moved to an empty lane in advance, the driver can receive a driving operation without being excessively aware of other vehicles traveling around.
  • the adjustment mode of the travel control parameter is changed so that the deceleration generated in the vehicle A in the switching section is reduced. Therefore, it is possible to adjust the traveling state of the vehicle A to a low driving load while suppressing the influence on the following vehicle.
  • the automatic driving ECU 50 corresponds to a “driving change control device”.
  • the processing unit of S101 in the automatic driving ECU 50 corresponds to the “shape information acquisition unit”
  • the processing units of S102 and S106 correspond to the “section setting unit”
  • the processing unit of S104 corresponds to the “driver information acquisition unit”.
  • the processing unit of S109 and S114 in the automatic operation ECU 50 corresponds to a “notification control unit”
  • the processing unit of S112 corresponds to a “parameter adjustment unit”.
  • the second embodiment of the present disclosure shown in FIG. 5 is a modification of the first embodiment.
  • the HCU 220 according to the second embodiment operates in addition to the input processing unit 31 and the output processing unit 32 that are substantially the same as those of the first embodiment by executing the notification control program by the processors 21 and 22 (see FIG. 2).
  • the replacement control unit 233 is constructed.
  • the functional blocks constructed in the automatic driving ECU 250 are the driving environment recognition unit 61, the driving plan generation unit 62, the ECU communication unit 64, and the HCU communication unit 65 that are substantially the same as those in the first embodiment.
  • the driving change control unit 233 is configured in the HCU 220, so that the driver information acquisition using the detection device 15 and the control of the notification device 10 can be reliably performed.
  • the driving change control unit 233 constructed in the HCU 220 can acquire each travel plan, travel environment information, and the like through communication with the HCU communication unit 65, and set an updated value of the travel control parameter. Therefore, the driving change control unit 233 can formulate a changing plan based on the end point of the automatic driving enabled area. Therefore, in the second embodiment, the same effect as in the first embodiment is obtained, and the driver's anxiety when receiving the driving operation is reduced.
  • the HCU 220 corresponds to a “driving change control device”.
  • the third embodiment of the present disclosure shown in FIGS. 6 and 7 is another modification of the first embodiment.
  • the automatic operation ECU 350 of the third embodiment is an electronic control unit that serves as both the automatic operation ECU 50 (see FIG. 1) and the HCU 20 (see FIG. 1) of the first embodiment.
  • the automatic driving ECU 350 realizes an automatic driving function of the vehicle A in cooperation with the vehicle control ECU 80.
  • the automatic operation ECU 350 is mainly configured by an in-vehicle computer for automatic operation having a main processor 351, a drawing processor 352, a RAM 353, a storage medium 354, and an input / output interface 355.
  • the automatic driving ECU 350 is based on the automatic driving program, and is substantially the same as the driving environment recognition unit 61, the driving plan generation unit 62, the driving change control unit 63, the ECU communication unit 64, the input processing unit 31, and the output processing, as in the first embodiment.
  • the unit 32 is constructed as a functional block related to automatic driving.
  • the third embodiment also has the same effect as the first embodiment, and the driver's anxiety when receiving the driving operation is reduced.
  • the automatic driving ECU 350 corresponds to a “driving change control device”.
  • the notification of the driving change was started after the transition of the running state of the vehicle A was completed.
  • the change notification may be started at a timing overlapping with the switching section. Further, the change notification may be issued early not only when the arousal level is low or when the driver's driving posture is broken, but also when the level of arousal is low.
  • the time for promptly issuing the change notification may be adjusted gradually longer as the wakefulness level divided into a plurality of levels becomes lower or as the muddyness value becomes higher.
  • the change notification may be issued early for a predetermined time.
  • the arousal level and the educaity level are not divided into a plurality of levels, and may be evaluated in two simple levels such as “high” and “low” or “good” and “bad”.
  • each threshold value for evaluating the arousal level and the educaity level can be changed as appropriate. For example, a normal driver's normal arousal level and educaity level may be recorded, and each threshold corresponding to each driver may be set in advance. Moreover, each threshold value of arousal level and educaity level may be adjusted by the input by the driver. Furthermore, the threshold time and the threshold speed for determining whether or not to switch to the low driving load mode may be adjustable by an input by the driver. Further, the switching to the low driving load mode itself may be set so as not to be performed by an input by the driver. Alternatively, it may be set so that the switching to the low operation load mode is not stopped.
  • the change notice is performed only when the driver's arousal level is low or the driver's ambiguity level is high.
  • the change notice may always be performed regardless of the driver's condition.
  • the advance notice timing of the driving change is earlier than the change notice timing, for example, it may overlap with the switching section.
  • the change notice that is started before reaching the switching section may be continued during the switching section. It is desirable that the advance notice of the delivery of the driving operation is performed in a modest manner than the change notification.
  • the replacement execution section in the above embodiment was set avoiding the high operation load section. However, the process of avoiding the high operating load section may be omitted. In addition, when the main road just before the end point has a road shape with a continuous curve, the replacement execution section may be inevitably set to the curve section.
  • the travel speed, the inter-vehicle distance, the inter-vehicle time, the relative speed, and the like are exemplified as the travel control parameters to be adjusted in the switching section.
  • the travel control parameter to be adjusted can be changed as appropriate.
  • the driving state of the low driving load mode suitable for the driving scene may be created by further detailing how to divide the driving scenes such as single driving and following driving.
  • the updated value of the driving control parameter for creating the driving state in the low driving load mode is adjusted based on various information such as the driver's state, the set value input by the driver, the road shape, and the weather state. May be.
  • the driving change control process in the above-described embodiment is performed again from S101 when the long-term driving plan is regenerated due to temporary closure or the like. According to the above, even if a sudden route change occurs, smooth driving operation from the automatic driving function to the driver is performed near the end point of the automatic driving possible area set on the changed route. Delivery can take place.
  • the notification device used for notification and notice of transfer of authority for driving operations can be changed as appropriate.
  • the message voice may be reproduced so as to be heard only by the driver by using an ultrasonic speaker.
  • the notice and notification display may be displayed on a display surface of a display device different from the HUD.
  • the detection device used for detecting the driver's arousal level and sensation level can be changed as appropriate.
  • Each function related to the driving change may be appropriately realized by various electronic control units mounted on the vehicle as in the above embodiment. Furthermore, the number of processors provided in the automatic operation ECU and the HCU 20 may be increased as appropriate. Further, various non-transitional tangible storage media such as a flash memory and a hard disk can be adopted as a configuration for storing a program executed by each processor.
  • each section is expressed as S101, for example.
  • each section can be divided into a plurality of subsections, while a plurality of sections can be combined into one section.
  • each section configured in this manner can be referred to as a device, module, or means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

This driving change control device which controls the transfer of driving operation between an autonomous driving function and a driver, in a vehicle (A) equipped with the autonomous driving function capable of performing driving operation in place of the driver, is equipped with: a section setting unit (S102, S106) which sets a change implementation section in which driving is changed from the autonomous driving function to the driver; and a parameter adjustment unit (S112) which, in a switching section before the change implementation section, adjusts the traveling state of the vehicle to a driving load lower than that before reaching the switching section by changing the travel control parameters referred to by the autonomous driving function.

Description

運転交代制御装置及び運転交代制御方法Driving change control device and driving change control method 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年3月8日に出願された日本特許出願番号2016-44604号および2016年12月5日に出願された日本特許出願番号2016―236159号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2016-44604 filed on March 8, 2016 and Japanese Patent Application No. 2016-236159 filed on December 5, 2016, which is described herein. Incorporate content.
 本開示は、自動運転機能を備える車両において、自動運転機能と運転者との間での運転操作の受け渡しを制御する運転交代制御装置、及び運転交代制御方法に関するものである。 The present disclosure relates to a driving change control device and a driving change control method for controlling the passing of a driving operation between an automatic driving function and a driver in a vehicle having an automatic driving function.
 従来、例えば特許文献1に開示の自動運転支援装置は、自動運転から手動運転に切り替えを開始する切り替え開始地点の手前に、出力区間を設定していた。この出力区間では、車両の実走行出力が、自動運転の要求する走行出力から運転者の要求する走行出力へと徐々に切り替えられる。その結果、自動運転から手動運転への切り替え時において、車両の走行速度がスムーズに変更可能となる。 Conventionally, for example, the automatic driving support apparatus disclosed in Patent Document 1 sets an output section before a switching start point at which switching from automatic driving to manual driving is started. In this output section, the actual traveling output of the vehicle is gradually switched from the traveling output requested by the automatic driving to the traveling output requested by the driver. As a result, the traveling speed of the vehicle can be changed smoothly when switching from automatic driving to manual driving.
 さて、特許文献1に開示のような自動運転機能によれば、車両は、比較的高速で巡航や、前走車と接近した状態での追従走行等を行うことができる。しかし、自動運転機能によって制御された走行状態のまま、運転者への運転交代が実施されてしまうと、運転者は、運転負荷の高い状態で運転操作を受け取らざるをえなくなる。その結果、上述のようなスムーズな切り替えが行われたとしても、運転者は、自動運転機能からの運転操作の受け取りに対して不安を覚え易かった。 Now, according to the automatic driving function as disclosed in Patent Document 1, the vehicle can cruise at a relatively high speed, follow-up running in a state of approaching the preceding vehicle, and the like. However, if the driving change to the driver is performed with the driving state controlled by the automatic driving function, the driver is forced to receive a driving operation with a high driving load. As a result, even if smooth switching as described above is performed, the driver is likely to feel uneasy about receiving a driving operation from the automatic driving function.
特開2015-182525号公報JP2015-182525A
 本開示は、自動運転機能から運転操作を受け取る際の運転者の不安を軽減させることが可能な運転交代制御装置及び運転交代制御方法を提供することを目的とする。 This disclosure is intended to provide a driving change control device and a driving change control method capable of reducing the driver's anxiety when receiving a driving operation from an automatic driving function.
 本開示の第一の態様において、運転者に代わって運転操作を実施可能な自動運転機能を備える車両において、前記自動運転機能と前記運転者との間での運転操作の受け渡しを制御する運転交代制御装置は、前記自動運転機能から前記運転者への運転交代を実施する交代実施区間、を設定する区間設定部と、前記交代実施区間よりも手前の切替区間にて、前記自動運転機能が参照する走行制御パラメータを変更することにより、前記車両の走行状態を前記切替区間に到達する以前よりも運転負荷の低い状態に調整するパラメータ調整部とを備える。 In the first aspect of the present disclosure, in a vehicle having an automatic driving function capable of performing a driving operation on behalf of the driver, a driving shift for controlling the passing of the driving operation between the automatic driving function and the driver The control device refers to the automatic operation function in a section setting unit for setting a replacement execution section for performing a driving shift from the automatic driving function to the driver, and in a switching section before the replacement execution section. A parameter adjustment unit that adjusts the traveling state of the vehicle to a state with a lower driving load than before reaching the switching section by changing a traveling control parameter to be performed.
 上記の運転交代制御装置では、交代実施区間よりも手前の切替区間にて、走行制御パラメータが変更されることにより、車両の走行状態は、運転負荷の低い状態に調整されている。故に、交代実施区間又はその近傍において、運転操作は、運転負荷の低い状態で自動運転機能から運転者へ引き渡される。したがって、自動運転機能から運転操作を受け取る際の運転者の不安が軽減される。 In the above-described driving change control device, the driving state of the vehicle is adjusted to a low driving load by changing the driving control parameter in the switching section before the changing section. Therefore, the driving operation is delivered from the automatic driving function to the driver in a state where the driving load is low in or near the replacement execution section. Therefore, the driver's anxiety when receiving the driving operation from the automatic driving function is reduced.
 本開示の第二の態様において、運転者に代わって運転操作を実施可能な自動運転機能を備える車両において、前記自動運転機能と前記運転者との間での運転操作の受け渡しを制御する運転交代制御方法であって、少なくとも一つのプロセッサは、前記自動運転機能から前記運転者への運転交代を実施する交代実施区間、を設定し、前記交代実施区間よりも手前の切替区間にて、前記自動運転機能が参照する走行制御パラメータを変更することにより、前記車両の走行状態を前記切替区間に到達する以前よりも運転負荷の低い状態に調整する。 In the second aspect of the present disclosure, in a vehicle having an automatic driving function capable of performing a driving operation on behalf of the driver, a driving shift for controlling the passing of the driving operation between the automatic driving function and the driver In the control method, at least one processor sets a replacement execution section for performing a driving shift from the automatic driving function to the driver, and the automatic switching function is set in the switching section before the replacement execution section. By changing the traveling control parameter referred to by the driving function, the traveling state of the vehicle is adjusted to a state where the driving load is lower than before reaching the switching section.
 上記の運転交代制御方法では、交代実施区間よりも手前の切替区間にて、走行制御パラメータが変更されることにより、車両の走行状態は、運転負荷の低い状態に調整されている。故に、交代実施区間又はその近傍において、運転操作は、運転負荷の低い状態で自動運転機能から運転者へ引き渡される。したがって、自動運転機能から運転操作を受け取る際の運転者の不安が軽減される。 In the driving change control method described above, the driving state of the vehicle is adjusted to a low driving load state by changing the driving control parameter in the switching zone before the changing execution zone. Therefore, the driving operation is delivered from the automatic driving function to the driver in a state where the driving load is low in or near the replacement execution section. Therefore, the driver's anxiety when receiving the driving operation from the automatic driving function is reduced.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第一実施形態における自動運転ECU、HCU、及び車両制御ECU等の全体構成を示すブロック図であり、 図2は、自動運転ECU、HCU、及び車両制御ECUの具体的な構成の一例を示す図であり、 図3は、運転交代制御方法の詳細を時系列に沿って記載したタイムラインを示す図であり、 図4は、自動運転ECUによって実施される運転交代制御処理の詳細を示すフローチャートであり、 図5は、第二実施形態における自動運転ECU、HCU、及び車両制御ECU等の全体構成を示すブロック図であり、 図6は、第三実施形態における自動運転ECU及び車両制御ECU等の全体構成を示すブロック図であり、 図7は、自動運転ECU及び車両制御ECU等の具体的な構成の一例を示す図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a block diagram showing the overall configuration of the automatic operation ECU, HCU, vehicle control ECU, etc. in the first embodiment, FIG. 2 is a diagram illustrating an example of specific configurations of the automatic operation ECU, the HCU, and the vehicle control ECU. FIG. 3 is a diagram showing a timeline in which details of the driving change control method are described along a time series. FIG. 4 is a flowchart showing details of a driving change control process performed by the automatic driving ECU. FIG. 5 is a block diagram showing the overall configuration of the automatic operation ECU, HCU, vehicle control ECU, etc. in the second embodiment, FIG. 6 is a block diagram showing the overall configuration of the automatic operation ECU and vehicle control ECU in the third embodiment. FIG. 7 is a diagram illustrating an example of specific configurations of the automatic operation ECU, the vehicle control ECU, and the like.
 以下、本開示の複数の実施形態を図面に基づいて説明する。尚、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形態の構成を適用することができる。また、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合せることができる。 Hereinafter, a plurality of embodiments of the present disclosure will be described with reference to the drawings. In addition, the overlapping description may be abbreviate | omitted by attaching | subjecting the same code | symbol to the corresponding component in each embodiment. When only a part of the configuration is described in each embodiment, the configuration of the other embodiment described above can be applied to the other part of the configuration. In addition, not only combinations of configurations explicitly described in the description of each embodiment, but also the configurations of a plurality of embodiments can be partially combined even if they are not explicitly specified unless there is a problem with the combination. .
 (第一実施形態)
 本開示の第一実施形態による運転交代制御装置の機能は、図1及び図2に示す自動運転ECU50によって実現されている。自動運転ECU(Electronic Control Unit)50は、HCU(HMI(Human Machine Interface)Control Unit)20及び車両制御ECU80等の電子制御ユニットと共に車両Aに搭載されている。自動運転ECU50、HCU20、及び車両制御ECU80は、互いに電気的に接続されており、相互に通信可能である。車両Aは、自動運転ECU50及び車両制御ECU80の作動により、自動運転機能を備える。
(First embodiment)
The function of the driving change control device according to the first embodiment of the present disclosure is realized by the automatic driving ECU 50 shown in FIGS. 1 and 2. An automatic operation ECU (Electronic Control Unit) 50 is mounted on the vehicle A together with an electronic control unit such as an HCU (Human Machine Interface) control unit 20 and a vehicle control ECU 80. The automatic operation ECU 50, the HCU 20, and the vehicle control ECU 80 are electrically connected to each other and can communicate with each other. The vehicle A has an automatic driving function by the operation of the automatic driving ECU 50 and the vehicle control ECU 80.
 HCU20は、運転者によって入力された操作情報の取得と、運転者への情報提示とを統合的に制御する。HCU20は、メインプロセッサ21、描画プロセッサ22、RAM23、記憶媒体24、及び入出力インターフェース25を有するマイクロコンピュータを主体として構成されている。HCU20は、運転者へ向けて情報を通知する複数の報知機器10、及び運転者の状態を検出する複数の検出機器15と電気的に接続されている。 The HCU 20 controls the acquisition of the operation information input by the driver and the information presentation to the driver in an integrated manner. The HCU 20 is mainly configured by a microcomputer having a main processor 21, a drawing processor 22, a RAM 23, a storage medium 24, and an input / output interface 25. The HCU 20 is electrically connected to a plurality of notification devices 10 that notify information to the driver and a plurality of detection devices 15 that detect the state of the driver.
 報知機器10は、HCU20によって出力される報知制御信号に基づき、車両Aに係る種々の情報を、運転者を含む車両Aの乗員へ向けて報知する構成である。報知機器10は、車両Aに予め搭載された構成であってもよく、又は車両Aの乗員によって車室内に持ち込まれることにより、車両Aに一時的に搭載される構成であってもよい。複数の報知機器10には、例えばスピーカ12、ヘッドアップディスプレイ(Head-Up Display,HUD)装置13、及び触覚提示デバイス14等が含まれている。 The notification device 10 is configured to notify various information related to the vehicle A to the passengers of the vehicle A including the driver based on the notification control signal output by the HCU 20. The notification device 10 may be configured to be mounted in advance on the vehicle A, or may be configured to be temporarily mounted on the vehicle A by being brought into the passenger compartment by a passenger of the vehicle A. The plurality of notification devices 10 include, for example, a speaker 12, a head-up display (HUD) device 13, a tactile sense presentation device 14, and the like.
 スピーカ12は、報知音及びメッセージ音声等を車室内に再生させることにより、聴覚を通じた運転者等への報知を行う。HUD装置13は、運転者の前方に虚像を結像させることにより、視覚を通じた運転者への報知を行う。触覚提示デバイス14は、例えばステアリングホイールに設けられた振動デバイス、又は姿勢を変化させることが可能なフットレスト等である。触覚提示デバイス14は、触覚を通じた運転者への報知を行う。 The speaker 12 performs notification to the driver and the like through hearing by reproducing the notification sound and the message sound in the passenger compartment. The HUD device 13 notifies the driver through vision by forming a virtual image in front of the driver. The tactile sense presentation device 14 is, for example, a vibration device provided on a steering wheel or a footrest capable of changing a posture. The tactile sense presentation device 14 notifies the driver through the tactile sense.
 検出機器15は、運転者の運転状態に係る検出結果を運転者検出信号とし、HCU20へ向けて逐次出力する構成である。複数の検出機器15には、ステアリングセンサ16及びドライバステータスモニタ(Driver Status Monitor,DSM)17等が含まれている。 The detection device 15 is configured to sequentially output the detection result relating to the driving state of the driver to the HCU 20 as a driver detection signal. The plurality of detection devices 15 include a steering sensor 16, a driver status monitor (Driver Status Monitor, DSM) 17, and the like.
 ステアリングセンサ16は、ステアリングホイールの把持を検出するセンサ、又はステアリングホイールへ入力される操舵トルクを検出するセンサ等である。ステアリングセンサ16は、運転者が操舵操作を入力可能な状態か否かを、運転者検出信号として検出する。 The steering sensor 16 is a sensor that detects gripping of the steering wheel, a sensor that detects steering torque input to the steering wheel, or the like. The steering sensor 16 detects whether or not the driver can input a steering operation as a driver detection signal.
 DSM17は、近赤外光源及び近赤外カメラと、これらを制御する制御ユニット等とによって構成されている。DSM17は、近赤外光源によって近赤外光を照射された運転者の顔を、近赤外カメラによって撮影する。DSM17は、例えば運転者の顔の向き及び目の開き具合等を撮像画像から抽出し、運転者における脇見、覚醒度の低下、漫然度の上昇等を運転者検出信号として検出する。 The DSM 17 is composed of a near-infrared light source and a near-infrared camera and a control unit for controlling them. The DSM 17 photographs a driver's face irradiated with near-infrared light from a near-infrared light source with a near-infrared camera. The DSM 17 extracts, for example, the driver's face direction and the degree of opening of the eyes from the captured image, and detects a driver's look-aside, a decrease in the arousal level, an increase in the sensation level, and the like as a driver detection signal.
 HCU20は、記憶媒体24に記憶された報知制御プログラムを各プロセッサ21,22によって実行することにより、入力処理部31及び出力処理部32を機能ブロックとして構築する。 The HCU 20 constructs the input processing unit 31 and the output processing unit 32 as functional blocks by executing the notification control program stored in the storage medium 24 by each of the processors 21 and 22.
 入力処理部31は、検出機器15にて検出された運転者検出信号を取得する。入力処理部31は、取得した運転者検出信号に基づき、例えば運転者の覚醒度のレベル分け、運転者の漫然度のレベル分け、及び運転姿勢が取れているか否かの判定等を行う。入力処理部31は、覚醒度情報、漫然度情報、及び運転姿勢情報等を運転者情報として、自動運転ECU50へ向けて逐次出力する。 The input processing unit 31 acquires a driver detection signal detected by the detection device 15. Based on the acquired driver detection signal, the input processing unit 31 performs, for example, the level classification of the driver's arousal level, the level classification of the driver's obscure level, and determination of whether or not the driving posture is taken. The input processing unit 31 sequentially outputs the awakening degree information, the muzzle degree information, the driving posture information, and the like as driver information to the automatic driving ECU 50.
 出力処理部32は、自動運転ECU50から取得するHMI制御情報に基づいて報知制御信号を生成する。出力処理部32は、生成した報知制御信号を報知機器10へ向けて逐次出力することにより、自動運転ECU50と連携した運転者への情報提示を可能にしている。 The output processing unit 32 generates a notification control signal based on the HMI control information acquired from the automatic driving ECU 50. The output processing unit 32 sequentially outputs the generated notification control signal toward the notification device 10, thereby enabling information presentation to the driver in cooperation with the automatic driving ECU 50.
 車両制御ECU80は、車両Aに搭載された車載アクチュエータ群90と電気的に接続されている。車載アクチュエータ群90には、例えばスロットルアクチュエータ、インジェクタ、ブレーキアクチュエータ、駆動用のモータジェネレータ、及び操舵アクチュエータ等が含まれている。車両制御ECU80は、車載アクチュエータ群90へ向けて出力する制御信号により、車両Aの加減速及び操舵を統合的に制御する。 The vehicle control ECU 80 is electrically connected to a vehicle-mounted actuator group 90 mounted on the vehicle A. The in-vehicle actuator group 90 includes, for example, a throttle actuator, an injector, a brake actuator, a driving motor generator, a steering actuator, and the like. The vehicle control ECU 80 integrally controls acceleration / deceleration and steering of the vehicle A by a control signal output toward the in-vehicle actuator group 90.
 車両制御ECU80は、プロセッサ81、RAM83、記憶媒体84、及び入出力インターフェース85等を有するマイクロコンピュータを主体として構成されている。車両制御ECU80は、記憶媒体84に記憶された車両制御プログラムをプロセッサ81によって実行することにより、車両制御に係る機能ブロックとして、アクチュエータ制御部80aを構築する。 The vehicle control ECU 80 is mainly configured by a microcomputer having a processor 81, a RAM 83, a storage medium 84, an input / output interface 85, and the like. The vehicle control ECU 80 executes the vehicle control program stored in the storage medium 84 by the processor 81, thereby constructing the actuator control unit 80a as a functional block related to vehicle control.
 アクチュエータ制御部80aは、車両制御ECU80から車載アクチュエータ群90へ向けて出力される制御信号を生成する。アクチュエータ制御部80aは、自動運転機能が作動している状態において、自動運転ECU50から車両制御情報を取得し、車両制御情報に基づいた制御信号を生成する。またアクチュエータ制御部80aは、自動運転機能が停止している状態において、運転者により入力された運転操作に従った内容の制御信号を生成し、車載アクチュエータ群90へ向けて出力する。 Actuator control unit 80a generates a control signal output from vehicle control ECU 80 toward in-vehicle actuator group 90. The actuator control unit 80a acquires vehicle control information from the automatic driving ECU 50 in a state where the automatic driving function is operating, and generates a control signal based on the vehicle control information. In addition, the actuator control unit 80a generates a control signal having contents according to the driving operation input by the driver in a state where the automatic driving function is stopped, and outputs the control signal to the in-vehicle actuator group 90.
 自動運転ECU50は、GNSS受信器71、ライダ72、ミリ波レーダ73、カメラユニット74、地図データベース75、及びV2X受信器76等と電気的に接続されている。自動運転ECU50は、これらの構成(71~76)から自動運転に必要な自車両周囲の走行環境に係る情報を取得する。 The automatic operation ECU 50 is electrically connected to the GNSS receiver 71, the lidar 72, the millimeter wave radar 73, the camera unit 74, the map database 75, the V2X receiver 76, and the like. The automatic driving ECU 50 acquires information related to the traveling environment around the host vehicle necessary for automatic driving from these configurations (71 to 76).
 GNSS(Global Navigation Satellite System)受信器71は、複数の人工衛星からの測位信号を受信する。GNSS受信器71は、受信した測位信号に基づいて車両Aの現在位置を計測する。GNSS受信器71は、計測した車両Aの位置情報を自動運転ECU50へ向けて逐次出力する。 A GNSS (Global Navigation Satellite System) receiver 71 receives positioning signals from a plurality of artificial satellites. The GNSS receiver 71 measures the current position of the vehicle A based on the received positioning signal. The GNSS receiver 71 sequentially outputs the measured position information of the vehicle A to the automatic operation ECU 50.
 ライダ72、ミリ波レーダ73、及びカメラユニット74は、歩行者及び他の車両等の移動物体、さらに路上の落下物、交通信号、ガードレール、縁石、道路標識、道路標示、及び区画線等の静止物体を検出する自律センサである。ライダ72、ミリ波レーダ73、及びカメラユニット74はそれぞれ、検出した移動物体及び静止物体に係る検出物情報を、自動運転ECU50へ向けて逐次出力する。ライダ72、ミリ波レーダ73、及びカメラユニット74が組み合わされることにより、検出物情報を取得可能な検出範囲は、車両Aの全周、即ち360°をカバーするよう設定されている。 The lidar 72, the millimeter wave radar 73, and the camera unit 74 are stationary objects such as moving objects such as pedestrians and other vehicles, falling objects on the road, traffic signals, guardrails, curbs, road signs, road markings, and marking lines. It is an autonomous sensor that detects an object. The lidar 72, the millimeter wave radar 73, and the camera unit 74 sequentially output detected object information relating to the detected moving object and stationary object to the automatic operation ECU 50, respectively. By combining the lidar 72, the millimeter wave radar 73, and the camera unit 74, the detection range in which the detected object information can be acquired is set to cover the entire circumference of the vehicle A, that is, 360 °.
 ライダ72は、車両Aに複数搭載されている。各ライダ72は、車両Aの進行方向、左右方向、及び後ろ方向へ向けてレーザ光を照射し、各方向に存在する移動物体及び静止物体等で反射されたレーザ光を受信することにより、検出物情報を取得する。ミリ波レーダ73は、車両Aの進行方向へ向けてミリ波を照射し、進行方向に存在する移動物体及び静止物体等で反射されたミリ波を受信することにより、検出物情報を取得する。ミリ波レーダ73は、ライダ72よりも遠方の物体を検出可能である。 A plurality of riders 72 are mounted on the vehicle A. Each lidar 72 emits laser light in the traveling direction, left-right direction, and rearward direction of the vehicle A, and detects by receiving laser light reflected by a moving object and a stationary object that exist in each direction. Get material information. The millimeter wave radar 73 irradiates the millimeter wave toward the traveling direction of the vehicle A, and acquires the detected object information by receiving the millimeter wave reflected by a moving object and a stationary object existing in the traveling direction. The millimeter wave radar 73 can detect an object farther away than the lidar 72.
 カメラユニット74は、車両Aの前方領域、左右の側方領域、後方領域をそれぞれ撮影する前方カメラ、側方カメラ、及び後方カメラと、各カメラによって撮像された前方領域の画像を解析する画像処理部とを有している。各カメラは、単眼式及び複眼式のいずれであってもよい。カメラユニット74は、前方領域、左右の側方領域、及び後方領域の各画像に写る移動物体及び静止物体を抽出することにより、検出物情報を取得する。 The camera unit 74 analyzes the front area, the left and right side areas, and the rear area of the vehicle A, the front camera, the side camera, and the rear camera, and the image of the front area captured by each camera. Part. Each camera may be either a monocular type or a compound eye type. The camera unit 74 acquires detected object information by extracting a moving object and a stationary object that appear in each image in the front area, the left and right side areas, and the rear area.
 地図データベース75は、多数の地図データを格納している記憶媒体である。地図データには、各道路の曲率、勾配、及び区間の長さといった構造情報、並びに制限速度及び一方通行といった非一時的な交通規制情報等が含まれている。地図データベース75は、車両Aの現在位置の周辺及び進行方向の地図データを、自動運転ECU50に取得させる。 The map database 75 is a storage medium that stores a large number of map data. The map data includes structural information such as the curvature, slope, and section length of each road, and non-temporary traffic regulation information such as speed limit and one-way traffic. The map database 75 causes the automatic driving ECU 50 to acquire map data around the current position of the vehicle A and the traveling direction.
 V2X受信器76は、他の車両に搭載された車載通信器及び道路脇に設置された路側器との間で、無線通信によって情報をやり取りする。V2X受信器76は、車載通信器との車車間通信及び路側器との路車間通信により、一時的な交通規制情報、混雑情報、及び気象情報等を受信し、自動運転ECU50へ向けて逐次出力する。一時的な交通規制情報には、事故及び工事によって車両Aの進行方向の道路に生じている車線規制及び通行止め等の情報が含まれている。混雑情報には、進行方向の道路における交通の混雑度合い、即ち、渋滞の発生の有無と渋滞の発生範囲、及び交通の流れの具合(例えば、走行速度)等の情報が含まれている。気象情報には、進行方向の道路における降雨量、降雪量、及び霧の発生情報等が含まれている。 The V2X receiver 76 exchanges information by wireless communication with an in-vehicle communication device mounted on another vehicle and a roadside device installed on the side of the road. The V2X receiver 76 receives temporary traffic regulation information, congestion information, weather information, and the like through vehicle-to-vehicle communication with the vehicle-mounted communication device and road-to-vehicle communication with the roadside device, and sequentially outputs them to the automatic operation ECU 50. To do. The temporary traffic regulation information includes information such as traffic lane restrictions and road closures that occur on the road in the traveling direction of the vehicle A due to accidents and construction. The congestion information includes information such as the degree of traffic congestion on the road in the traveling direction, that is, whether or not a traffic jam has occurred, the traffic jam occurrence range, and the traffic flow condition (for example, travel speed). The meteorological information includes the amount of rainfall, the amount of snowfall, and the occurrence of fog on the road in the traveling direction.
 自動運転ECU50は、車両制御ECU80との連携によって車両Aの加減速制御及び操舵制御を行うことにより、運転者に代わって車両Aの運転操作を実施可能な自動運転機能を発揮する。自動運転ECU50は、プロセッサ51、RAM53、記憶媒体54、及び入出力インターフェース55を有するマイクロコンピュータを主体に構成されている。自動運転ECU50は、記憶媒体54に記憶された自動運転プログラムをプロセッサ51によって実行可能である。自動運転ECU50は、自動運転プログラムに基づき、走行環境認識部61、走行計画生成部62、運転交代制御部63、ECU通信部64、及びHCU通信部65を自動運転に係る機能ブロックとして構築する。 The automatic driving ECU 50 performs an acceleration / deceleration control and a steering control of the vehicle A in cooperation with the vehicle control ECU 80, thereby exhibiting an automatic driving function capable of performing the driving operation of the vehicle A on behalf of the driver. The automatic operation ECU 50 is mainly configured by a microcomputer having a processor 51, a RAM 53, a storage medium 54, and an input / output interface 55. The automatic operation ECU 50 can execute the automatic operation program stored in the storage medium 54 by the processor 51. Based on the automatic driving program, the automatic driving ECU 50 constructs the driving environment recognition unit 61, the driving plan generation unit 62, the driving change control unit 63, the ECU communication unit 64, and the HCU communication unit 65 as functional blocks related to automatic driving.
 走行環境認識部61は、GNSS受信器71から取得した位置情報、各自律センサから取得した検出物情報、及び地図データベース75から取得した地図データ等を組み合わせることで、車両Aの走行環境を認識する。走行環境認識部61は、特に各自律センサの検出範囲内について、車両Aの周囲の物体の形状及び移動状態を各検出物情報の統合結果に基づいて認識し、位置情報及び地図データと組み合わせることで、実際の走行環境を三次元で再現した仮想空間を生成する。 The traveling environment recognition unit 61 recognizes the traveling environment of the vehicle A by combining the position information acquired from the GNSS receiver 71, the detected object information acquired from each autonomous sensor, the map data acquired from the map database 75, and the like. . The traveling environment recognizing unit 61 recognizes the shape and moving state of the object around the vehicle A based on the integration result of the detected object information, and combines the position information and the map data, particularly within the detection range of each autonomous sensor. Thus, a virtual space that reproduces the actual driving environment in three dimensions is generated.
 走行計画生成部62は、走行環境認識部61によって認識された走行環境に基づき、自動運転機能によって車両Aを自動走行させるための走行計画を生成する。走行計画には、長中期の走行計画と、短期の走行計画とが含まれている。 The travel plan generation unit 62 generates a travel plan for automatically driving the vehicle A by an automatic driving function based on the travel environment recognized by the travel environment recognition unit 61. The travel plan includes a long-term travel plan and a short-term travel plan.
 長中期の走行計画は、運転者によって設定された目的地に車両Aを向かわせるための経路を規定している。長中期の走行計画にて規定される経路は、各自律センサの検出範囲外まで及んでいる。長中期の走行計画には、地図データに含まれる構造情報及び非一時的な交通規制情報、並びにV2X受信器76にて受信される一時的な交通規制情報等が反映される。 The long-term driving plan defines a route for the vehicle A to go to the destination set by the driver. The route defined by the long-term driving plan extends beyond the detection range of each autonomous sensor. The long-term driving plan reflects structural information and non-temporary traffic regulation information included in the map data, temporary traffic regulation information received by the V2X receiver 76, and the like.
 短期の走行計画は、走行環境認識部61にて生成された車両Aの周囲の仮想空間を用いて、長中期の走行計画に従った走行を実現するための予定走行軌跡を規定している。短期の走行計画では、具体的に、車線変更のための操舵、速度調整のための加減速、及び衝突回避のための急制動等の実行が決定される。 The short-term travel plan defines a planned travel locus for realizing travel according to the long- and medium-term travel plan using the virtual space around the vehicle A generated by the travel environment recognition unit 61. In the short-term travel plan, execution of steering for lane change, acceleration / deceleration for speed adjustment, and sudden braking for collision avoidance is specifically determined.
 運転交代制御部63は、自動運転機能と運転者との間において、運転操作に係る制御権の切り替えを制御する。運転交代制御部63は、自動運転可能なエリアにおいて、運転者による自動運転への切り替え操作を検出することにより、自動運転機能の作動を開始させる。また運転交代制御部63は、長中期の走行計画を参照し、自動運転可能なエリアが終了する手前にて、計画的に自動運転から運転者によるマニュアル運転に切り替える。さらに運転交代制御部63は、偶発的又は突発的に走行環境認識部61による走行環境の認識が困難となり、走行計画生成部62による短期の走行計画の生成が難しい場合にも、自動運転からマニュアル運転に切り替える。 The driving change control unit 63 controls switching of the control right related to the driving operation between the automatic driving function and the driver. The driving change control unit 63 starts the operation of the automatic driving function by detecting the switching operation to the automatic driving by the driver in the area where the automatic driving is possible. In addition, the driving change control unit 63 refers to the long-term driving plan, and systematically switches from automatic driving to manual driving by the driver before the area where automatic driving can be completed. Further, the driving change control unit 63 is configured to perform manual operation from automatic driving even when it is difficult to recognize the driving environment by the driving environment recognition unit 61 accidentally or suddenly and it is difficult to generate a short-term driving plan by the driving plan generation unit 62. Switch to driving.
 運転交代制御部63は、計画的な運転操作の受け渡しに係る運転交代制御処理の内容を、運転者の運転操作の受け取りがスムーズとなるように調整する。具体的に運転交代制御部63は、長中期の走行計画の参照により、自動運転機能によって車両Aが走行を予定している道路の形状情報を取得し、予め規定された高運転負荷区間を避け、概ね直線状且つ傾斜の少ない区間を選択して、運転者に運転操作を引き渡す。高運転負荷区間は、運転者が運転した場合に運転負荷の高くなる道路形状をした区間である。例えば、カーブ区間及び上り勾配区間等が、高運転負荷区間として規定されている。さらに、気象情報に基づき、局地的な豪雨及び霧の発生等がある区間も、高運転負荷区間とされる。加えて、混雑情報に基づき、車間距離を確保し難いような混雑が生じている区間も、高運転負荷区間とされる。 The driving change control unit 63 adjusts the contents of the driving change control process related to the planned delivery of the driving operation so that the driver receives the driving operation smoothly. Specifically, the driving shift control unit 63 acquires the shape information of the road on which the vehicle A is scheduled to travel by the automatic driving function by referring to the long and medium-term driving plan, and avoids the predetermined high driving load section. Then, a section that is substantially linear and has a small inclination is selected, and the driving operation is delivered to the driver. The high driving load section is a section having a road shape that increases the driving load when the driver drives. For example, a curve section and an upward gradient section are defined as the high driving load section. Furthermore, a section where local heavy rain and fog are generated based on weather information is also regarded as a high driving load section. In addition, based on the congestion information, a section where congestion that makes it difficult to secure the inter-vehicle distance is also regarded as a high driving load section.
 ECU通信部64は、車両制御ECU80へ向けた情報の出力処理と、車両制御ECU80からの情報の取得処理とを行う。具体的に、ECU通信部64は、走行計画生成部62によって策定された予定走行軌跡に従う内容の車両制御情報を生成し、自動運転機能が作動しているか否かを示す作動情報と共に、車両制御ECU80へ向けて逐次出力する。またECU通信部64は、車載アクチュエータ群90の制御状態を示す状態情報を車両制御ECU80から逐次取得し、車両制御情報の内容を補正可能である。 The ECU communication unit 64 performs an output process of information directed to the vehicle control ECU 80 and an acquisition process of information from the vehicle control ECU 80. Specifically, the ECU communication unit 64 generates vehicle control information having contents according to the planned travel locus formulated by the travel plan generation unit 62, and includes vehicle control information together with operation information indicating whether or not the automatic driving function is operating. It outputs sequentially toward ECU80. Further, the ECU communication unit 64 can sequentially acquire state information indicating the control state of the in-vehicle actuator group 90 from the vehicle control ECU 80, and can correct the content of the vehicle control information.
 HCU通信部65は、HCU20へ向けた情報の出力処理と、HCU20からの情報の取得処理とを行う。具体的に、HCU通信部65は、運転者情報をHCU20から取得する。またHCU通信部65は、運転者への運転切り替えに係るHMI制御情報を生成し、自動運転機能が作動しているか否かを示す作動情報と共に、HCU20へ向けて逐次出力する。HCU通信部65は、HCU20との連携による報知機器10の制御により、運転交代に関連する情報を運転者へ適宜提示可能である。 The HCU communication unit 65 performs information output processing to the HCU 20 and information acquisition processing from the HCU 20. Specifically, the HCU communication unit 65 acquires driver information from the HCU 20. In addition, the HCU communication unit 65 generates HMI control information related to driving switching to the driver, and sequentially outputs the HMI control information to the HCU 20 together with operation information indicating whether or not the automatic driving function is operating. The HCU communication unit 65 can appropriately present information related to the driving change to the driver by controlling the notification device 10 in cooperation with the HCU 20.
 次に、ここまで説明した構成によって自動運転機能から運転者に運転交代される一連の運転交代制御方法の詳細を、図3に基づき、図1を参照しつつ説明する。図3には、いわゆるランプ・トゥ・ランプの自動運転の例が示されている。詳記すると、図3に示す自動運転では、目的地までの経路上に存在する高速道路に自動運転可能エリアが設定されており、自動運転可能エリアの開始ポイント及び終了ポイントはそれぞれ、高速道路の本線車道と繋がる各ランプウェイに設定されている。 Next, details of a series of driving change control methods in which driving is changed from the automatic driving function to the driver by the configuration described so far will be described based on FIG. 3 with reference to FIG. FIG. 3 shows an example of so-called lamp-to-lamp automatic operation. Specifically, in the automatic driving shown in FIG. 3, an automatic driving possible area is set on the highway existing on the route to the destination, and the starting point and the ending point of the automatic driving possible area are respectively It is set for each rampway connected to the main road.
 運転交代制御部63は、巡航時の走行状態とは別に、運転切替用の走行状態を設定し、予め運転切替用の走行状態に車両Aを移行させてから、運転切替を開始させる。こうした運転切替のために、運転交代制御部63は、自動運転の開始後に、終了ポイントとされたランプウェイの手前にて実施予定の運転交代制御処理の計画(以下、「交代計画」)を策定する。交代計画では、交代実施区間、切替区間、運転交代の通知タイミング、交代予告の要否及びタイミング、並びに交代計画の内容を補正する補正ポイント等が設定される。 The driving change control unit 63 sets a driving state for driving switching separately from the driving state at the time of cruising, and starts driving switching after shifting the vehicle A to the driving state for driving switching in advance. For such operation switching, the driving change control unit 63 formulates a driving change control processing plan (hereinafter referred to as “substitution plan”) that is scheduled to be implemented in front of the rampway that is set as the end point after the start of automatic driving. To do. In the substitution plan, a substitution execution section, a switching section, a notification timing for driving substitution, necessity and timing of substitution notice, correction points for correcting the contents of the substitution plan, and the like are set.
 交代実施区間は、自動運転機能から運転者に運転操作が引き渡される区間である。交代実施区間は、終了ポイントとされたランプウェイへ退出する直前の本線車道上又は減速車線上に設定される。運転交代制御部63は、終了ポイントに対する交代実施区間の開始位置と、交代実施区間の長さとを設定する。また運転交代制御部63は、ランプウェイへ退出する直前の本線車道が高運転負荷区間である場合に、この高運転負荷区間を避けて、高運転負荷区間の手前の直線区間に交代実施区間を設定する(図3 下段参照)。 The alternation execution section is a section in which driving operation is handed over to the driver from the automatic driving function. The alternation execution section is set on the main road or the deceleration lane immediately before exiting to the rampway which is the end point. The driving change control unit 63 sets the start position of the replacement execution section with respect to the end point and the length of the replacement execution section. In addition, when the main road just before exiting the rampway is a high driving load section, the driving change control unit 63 avoids the high driving load section and sets the replacement execution section in the straight section before the high driving load section. Set (refer to the bottom of Fig. 3).
 切替区間では、車両Aの走行状態が調整される。車両Aの走行状態は、運転者が運転操作を行っていると仮定した場合に、運転負荷の低い状態に調整される。切替区間後の走行状態は、切替区間に到達する以前の巡航制御中の状態(通常走行モード)よりも、運転負荷の低い状態(低運転負荷モード)とされる。切替区間は、長中期の走行計画における経路上にて、交代実施区間よりも手前に設定される。運転交代制御部63は、終了ポイントに対する切替区間の開始位置と、切替区間の長さとを設定する。尚、図3では、通常走行モードの範囲を濃いドットで示し、低運転負荷モードの範囲を薄いドットで示す。 In the switching section, the traveling state of the vehicle A is adjusted. The driving state of the vehicle A is adjusted to a low driving load when it is assumed that the driver is driving. The travel state after the switching section is set to a state where the driving load is lower (low driving load mode) than the state during the cruise control before the switching section is reached (normal traveling mode). The switching section is set before the replacement section on the route in the long and medium-term travel plan. The driving change control unit 63 sets the start position of the switching section with respect to the end point and the length of the switching section. In FIG. 3, the range of the normal driving mode is indicated by a dark dot, and the range of the low driving load mode is indicated by a thin dot.
 切替区間では、走行状態の調整のために、自動運転機能によって参照される走行制御パラメータが変更される。具体的には、走行計画生成部62にて、短期の走行計画を策定する際に用いられる走行制御パラメータが変更される。例えば、切替区間の手前側にて車両Aが単独で定速巡航している場合、定速巡航における車両Aの目標速度が走行制御パラメータとされる。この目標速度の値を切替区間にて低い値に調整する予定走行軌跡が、走行計画生成部62にて生成される。その結果、切替区間後の交代実施区間において、運転者は、走行速度を下げられた運転負荷の低い状態で運転操作を受け取ることができる。 In the switching section, the travel control parameter referred to by the automatic driving function is changed to adjust the travel state. Specifically, the travel plan generation unit 62 changes travel control parameters used when a short-term travel plan is formulated. For example, when the vehicle A is traveling at a constant speed alone on the front side of the switching section, the target speed of the vehicle A in the constant speed cruise is set as the travel control parameter. A planned travel locus for adjusting the target speed value to a low value in the switching section is generated by the travel plan generation unit 62. As a result, in the replacement execution section after the switching section, the driver can receive the driving operation in a state where the driving speed is lowered and the driving load is low.
 以上の定速巡航における目標速度の値は、マニュアル運転に交代された後にて走行予定の道路形態を考慮して決定されることが望ましい。具体的には、マニュアル運転への交代後に曲率の大きいカーブを走行する場合には、運転交代後の道路が直線状である場合よりも、目標速度は、低くされた方がよい。 It is desirable that the target speed value in the above constant speed cruise is determined in consideration of the road form scheduled to travel after being switched to manual operation. Specifically, when driving on a curve with a large curvature after the shift to manual driving, the target speed should be set lower than when the road after the driving shift is straight.
 一例として、目標速度の値は、二つの速度値の平均の値とされる。二つの速度値のうちで大きい方の値には、切替区間への到着前に自動走行していた際の巡航速度、又は現在走行している道路の制限速度が用いられる。一方、二つの速度値のうちで小さい方の値には、運転交代後に走行する道路(例えばランプウェイ通過後の道路)の制限速度、又運転交代後に走行する道路に対し走行計画生成部62が算出する推奨走行速度が用いられる。これら二つの速度値の平均が走行中の道路の最低速度を超えていれば、この平均値が目標速度に設定され、最低速度未満であれば、最低速度又は最低速度の所定値を加えた値が目標速度に設定される。例えば自動走行における巡航速度又は制限速度が100km/hであり、ランプウェイ通過後の制限速度又は推奨走行速度が40km/hである場合、減速車線等に規定された切替区間では、これらの値の平均値である70km/h程度まで徐々に減速される。 As an example, the target speed value is an average value of two speed values. As the larger value of the two speed values, the cruise speed when traveling automatically before arrival at the switching section, or the speed limit of the currently traveling road is used. On the other hand, the smaller one of the two speed values has a speed limit of a road (for example, a road after the rampway) that travels after the driving change, or the travel plan generation unit 62 for the road that travels after the driving change. The recommended travel speed to be calculated is used. If the average of these two speed values exceeds the minimum speed of the running road, this average value is set as the target speed, and if it is less than the minimum speed, the value obtained by adding the minimum speed or a predetermined value for the minimum speed Is set as the target speed. For example, when the cruise speed or speed limit for automatic driving is 100 km / h and the speed limit or recommended driving speed after passing the rampway is 40 km / h, these values are used in the switching section defined in the deceleration lane. The vehicle is gradually decelerated to an average value of about 70 km / h.
 また、切替区間の手前側にて車両Aが追従走行を行っている場合、例えば車両Aと前走車との間の目標車間距離が走行制御パラメータの一つとされる。この目標車間距離の値を切替区間にて大きい値に調整する予定走行軌跡が、走行計画生成部62にて生成される。その結果、切替区間後の交代実施区間において、運転者は、前走車との車間距離を広く確保された運転負荷の低い状態で運転操作を受け取ることができる。尚、切替区間にて調整される走行制御パラメータは、車間時間であってもよい。 Also, when the vehicle A is following following on the front side of the switching section, for example, the target inter-vehicle distance between the vehicle A and the preceding vehicle is one of the traveling control parameters. A planned travel locus for adjusting the value of the target inter-vehicle distance to a large value in the switching section is generated by the travel plan generation unit 62. As a result, in the replacement execution section after the switching section, the driver can receive a driving operation with a low driving load while ensuring a wide inter-vehicle distance from the preceding vehicle. Note that the travel control parameter adjusted in the switching section may be an inter-vehicle time.
 さらに、追従走行における前走車に対して許容される車両Aの相対速度の最大値、換言すれば、前走車に対する目標相対速度が、切替区間にて調整される走行制御パラメータの一つとされ得る。走行計画生成部62は、切替区間にて、相対速度の最大値を小さい値(例えば、ゼロ又は負の値)に調整する。そのため、目標相対速度の値は、切替区間にて、前走車との相対速度がゼロになるか、又は車両Aが先行する前走車から徐々に離れていくような値に設定される。以上によれば、切替区間後の交代実施区間において、車両Aの前走車への接近が阻まれるため、運転者は、前走車を負荷に感じ難くなる。 Further, the maximum value of the relative speed of the vehicle A allowed for the preceding vehicle in the following traveling, in other words, the target relative speed for the preceding vehicle is one of the travel control parameters adjusted in the switching section. obtain. The travel plan generation unit 62 adjusts the maximum value of the relative speed to a small value (for example, zero or negative value) in the switching section. Therefore, the value of the target relative speed is set to a value such that the relative speed with the preceding vehicle becomes zero or the vehicle A gradually moves away from the preceding preceding vehicle in the switching section. According to the above, since the approach to the preceding vehicle of the vehicle A is blocked in the replacement execution section after the switching section, it is difficult for the driver to feel the preceding vehicle as a load.
 また加えて、車両Aの走行する道路に複数の車線が設けられている場合、長中期の走行計画にて設定された車線指示情報に基づき、自動運転機能が車両Aを走行させる車線は、選択される。このように車線を指示する車線指示情報も、切替区間にて調整可能な走行制御パラメータの一つである。 In addition, when a plurality of lanes are provided on the road on which the vehicle A travels, the lane in which the automatic driving function travels the vehicle A is selected based on the lane instruction information set in the long-term driving plan. Is done. The lane instruction information that instructs the lane in this way is also one of the travel control parameters that can be adjusted in the switching section.
 詳記すると、走行環境認識部61は、切替区間の手前側にて、検出物情報及び混雑情報等を用いて、車両Aの周囲及び進行方向における各車線の混雑度合いを認識し、他の車両の少ない、空いている車線を探索可能である。走行環境認識部61にて現在走行中の車線よりも空いている他の車線が探索された場合、空いている車線を走行するように車線指示情報が更新されて、空いている車線に車線変更する予定走行軌跡が、走行計画生成部62にて生成される。その結果、運転者は、切替区間後の交代実施区間において、複数車線のうちで最も空いている車線にて、運転負荷の低い状態で運転操作を受け取ることができる。 Specifically, the traveling environment recognition unit 61 recognizes the degree of congestion of each lane around the vehicle A and in the traveling direction using the detected object information and the congestion information on the front side of the switching section, so that other vehicles It is possible to search for free lanes with few. When another lane vacant than the currently running lane is searched for by the driving environment recognition unit 61, the lane instruction information is updated so that the lane is vacant and the lane is changed to the vacant lane. The planned travel locus to be generated is generated by the travel plan generation unit 62. As a result, the driver can receive a driving operation with a low driving load in the vacant lane among the plurality of lanes in the alternate execution section after the switching section.
 尚、追越車線は走行車線に比べて実勢速度が高い傾向があるため、走行車線から追越車線への車線変更は、走行速度が高くなり、運転負荷を高める結果となる。故に、走行環境認識部61にて走行車線よりも追越車線の方が空いていると認識された場合でも、走行車線から追越車線への車線変更は、実施されない。切替区間における空いている車線への車線変更は、走行車線へ向けた車線変更に限定される。つまり、現在走行している車線よりも空いている車線であって、且つ実勢速度が低い車線へ車線変更することで、運転負荷を低い状態にする。尚、第一走行車線と第二走行車線が設定されている場合では、各走行車線の混雑具合に応じて、第一走行車線及び第二走行車線の間における双方向の移動が許可されてよい。 In addition, since the overtaking lane tends to have a higher actual speed than the traveling lane, changing the lane from the traveling lane to the overtaking lane results in an increase in driving speed and an increase in driving load. Therefore, even when the driving environment recognition unit 61 recognizes that the overtaking lane is more vacant than the driving lane, the lane change from the driving lane to the overtaking lane is not performed. The lane change to the vacant lane in the switching section is limited to the lane change toward the traveling lane. In other words, the driving load is lowered by changing the lane to a lane that is vacant from the currently traveling lane and has a lower actual speed. When the first travel lane and the second travel lane are set, bi-directional movement between the first travel lane and the second travel lane may be permitted according to the degree of congestion of each travel lane. .
 以上のような走行制御パラメータの調整態様は、車両Aの後方に後続車が存在している場合と、後続車が存在していない場合とで異なっている。具体的に、後続車が存在している場合では、後続車が存在していない場合よりも、切替区間にて車両Aに生じる減速度が小さくなるように、走行制御パラメータの調整態様が変更される。その結果、後続車との急速な接近が回避されている。 The adjustment mode of the travel control parameter as described above is different between the case where the following vehicle exists behind the vehicle A and the case where the following vehicle does not exist. Specifically, the adjustment mode of the travel control parameter is changed so that the deceleration generated in the vehicle A in the switching section is smaller when the subsequent vehicle exists than when the subsequent vehicle does not exist. The As a result, rapid approach with the following vehicle is avoided.
 ここまで説明した運転負荷の低い状態に走行制御パラメータを調整する制御は、運転者の状態及び車両Aの走行状態等に応じて、中止可能である。運転交代制御部63は、走行制御パラメータの調整の実施条件が成立していないと判断した場合、運転負荷の低い状態に速度等を調整する制御を実施することなく、運転交代を開始可能である。 The control that adjusts the travel control parameter to the low driving load state described so far can be stopped according to the driver's state, the traveling state of the vehicle A, and the like. When the driving change control unit 63 determines that the condition for adjusting the travel control parameter is not satisfied, the driving change control unit 63 can start the driving change without performing control for adjusting the speed or the like to a low driving load state. .
 上記した走行制御パラメータの調整の実施条件の一つは、運転者における覚醒度及び漫然度の各状態である。具体的に、覚醒度情報に基づく運転者の覚醒度が予め設定された閾値よりも高い場合、又は漫然度情報に基づく運転者の漫然度が予め設定された閾値よりも低い場合、運転負荷の低い状態への走行制御パラメータの調整が中止される。 One of the conditions for adjusting the travel control parameter described above is the state of arousal level and ambiguity in the driver. Specifically, when the driver's arousal level based on the arousal level information is higher than a preset threshold value, or when the driver's casual level based on the abusive level information is lower than a preset threshold value, The adjustment of the travel control parameter to the low state is stopped.
 加えて実施条件の他の一つは、運転者から自動運転機能への運転交代が実施された後の経過時間である。自動運転機能への運転交代直後であれば、運転者の漫然度は十分に低い状態に維持されており、覚醒度も十分に高い状態に維持されていると推定される。故に、運転交代制御部63は、自動運転機能への運転交代後の経過時間を計測し、この経過時間が閾値時間(例えば30分程度)未満である場合に、実施条件が不成立であると判定して、運転負荷の低い状態に調整する制御を省略させる。 In addition, another one of the implementation conditions is the elapsed time after the driving change from the driver to the automatic driving function is implemented. Immediately after the driving change to the automatic driving function, it is presumed that the driver's ambiguity is maintained in a sufficiently low state and the arousal level is maintained in a sufficiently high state. Therefore, the driving change control unit 63 measures the elapsed time after the driving change to the automatic driving function, and determines that the execution condition is not satisfied when the elapsed time is less than a threshold time (for example, about 30 minutes). Thus, control for adjusting to a low operating load state is omitted.
 また実施条件の他の一つは、切替区間に到達する前の車両Aの走行速度である。運転交代制御部63は、走行速度を検出した車速情報に基づき、現在の車両Aの走行速度が速度閾値速度(40km/h程度)よりも低い場合に、運転負荷の低い状態への走行制御パラメータの調整を中止する。以上により、例えば渋滞などの要因によって低速で走行している場合に、運転負荷が既に十分に低い状態であるにも関わらず、過度に低い状態に制御されてしまう事態は、防がれる。 Further, another implementation condition is the traveling speed of the vehicle A before reaching the switching section. The driving change control unit 63, based on the vehicle speed information that detects the traveling speed, when the current traveling speed of the vehicle A is lower than the speed threshold speed (about 40 km / h), the traveling control parameter for reducing the driving load. Cancel the adjustment. As described above, for example, when the vehicle is traveling at a low speed due to factors such as traffic congestion, a situation in which the driving load is already sufficiently low, but is controlled to be excessively low can be prevented.
 運転交代の通知(以下、「交代通知」)は、自動運転機能から運転者への運転操作の引き渡し実施、より厳密には、引き渡しの開始を運転者に知らせる情報提示である。交代通知では、例えば運転操作に適した姿勢をとることが運転者に要求される。交代通知は、HCU通信部65及びHCU20による報知機器10の制御により、運転者へ向けて行われる。運転交代の通知タイミングは、走行制御パラメータの変更に伴う車両Aの走行状態の調整が完了した後であって、交代実施区間への到達前に設定される。以上の設定により、車両Aの挙動が過渡状態であるときには、運転交代の通知は開始されない。 The notification of driving change (hereinafter referred to as “change notification”) is information presentation that informs the driver of the delivery operation of the driver from the automatic driving function, more precisely, the start of the delivery. In the change notification, for example, the driver is required to take a posture suitable for driving operation. The change notification is given to the driver under the control of the notification device 10 by the HCU communication unit 65 and the HCU 20. The notification of the driving change is set after the adjustment of the driving state of the vehicle A accompanying the change of the driving control parameter is completed and before reaching the changing execution section. With the above settings, when the behavior of the vehicle A is in a transient state, the notification of the driving change is not started.
 交代通知の態様は、運転者の状態、具体的には、運転者の覚醒度及び漫然度等に応じて変更可能である。例えば、運転者の覚醒度が低いほど合又は漫然度が高いほど、運転交代制御部63は、交代通知の開始タイミングを、車両Aが交代実施区間に到達するタイミングに対して、基準作動のタイミングから早める。こうした交代通知の早出しに伴って、交代実施区間が基準作動の場合よりも長く確保されるため(図3 中段参照)、運転者は、余裕を持って運転操作を受け取ることができる。また、交代通知のタイミングが早められた場合には、切替区間も、交代実施区間に対して手前側の範囲に変更される。 The mode of the change notification can be changed according to the state of the driver, specifically, the driver's arousal level and ambiguity level. For example, as the driver's arousal level is lower, the driving change control unit 63 sets the start timing of the change notification to the reference operation timing with respect to the timing when the vehicle A reaches the change execution section. Accelerate from. Along with the early notification of such a change notification, the replacement execution section is secured longer than in the case of the standard operation (see the middle of FIG. 3), so the driver can receive the driving operation with a margin. In addition, when the change notification timing is advanced, the switching section is also changed to a range on the near side with respect to the replacement execution section.
 尚、交代通知の早出しにより、交代通知の開始から交代実施区間に到着するまでの余裕時間が、基準作動の場合よりも長く確保されてもよい。こうした処理によれば、運転者は、余裕時間を利用して覚醒度の回復又は漫然度の低減を行い、運転に適した状態で運転操作を受け取ることができる。 In addition, due to the early notification of the change notification, a margin time from the start of the change notification to the arrival of the change execution section may be secured longer than in the case of the standard operation. According to such a process, the driver can recover the arousal level or reduce the mute level by using the spare time, and can receive the driving operation in a state suitable for driving.
 運転交代制御部63は、運転者の覚醒度が低いほど又は漫然度が高いほど、交代通知に用いる報知機器10の数を増加させる。さらに運転交代制御部63は、運転者の覚醒度が低いほど又は漫然度が高いほど、通知回数の増加、虚像の表示サイズの拡大、通知音声の音量のアップ、及び振動の強度のアップ等を行うことができる。 The driving change control unit 63 increases the number of the notification devices 10 used for the change notification as the driver's arousal level is lower or the muffled level is higher. Further, the driving change control unit 63 increases the number of notifications, increases the display size of the virtual image, increases the volume of the notification sound, and increases the intensity of vibration, as the driver's arousal level is low or the muffled level is high. It can be carried out.
 運転交代の予告(以下、「交代予告」)は、自動運転機能から運転者への運転操作の引き渡し実施を運転者に予告する情報提示である。交代予告は、例えばスピーカ12によるメッセージ音声、又はHUD装置13による虚像表示等によって行われる。運転交代の予告タイミングは、切替区間への到達前に設定される。交代予告の要否は、運転者の状態、具体的には、運転者の覚醒度及び漫然度に応じて決定される。例えば、運転者の覚醒度が予め設定された閾値よりも低い場合、又は漫然度が予め設定された閾値よりも高い場合に、交代予告は実施される。一方で、運転者の覚醒度が所定の閾値よりも高く、且つ漫然度も所定の閾値よりも低い場合には、運転者に煩わしく感じられないよう、交代予告は省略される。 Driving change notice (hereinafter referred to as “change notice”) is information that notifies the driver of the delivery of the driving operation from the automatic driving function to the driver. The change notice is performed by, for example, a message voice from the speaker 12 or a virtual image display by the HUD device 13. The notice of driving change is set before reaching the switching section. The necessity for the replacement notice is determined according to the state of the driver, specifically, the driver's arousal level and ambiguity. For example, when the driver's arousal level is lower than a preset threshold value, or when the disambiguation level is higher than a preset threshold value, the replacement notice is performed. On the other hand, when the driver's arousal level is higher than a predetermined threshold value and the ambiguity level is lower than the predetermined threshold value, the replacement notice is omitted so that the driver does not feel bothered.
 補正ポイントは、例えば終了ポイントとなるランプウェイに対して、所定距離又は所定時間だけ手前側に設定される。補正ポイントにおいて、運転交代制御部63は、最新の運転者情報を取得する。運転交代制御部63は、取得した運転者情報に基づき、主に交代通知のタイミングと交代予告の要否とを決定し、一連の交代計画の詳細なスケジュールを確定させる。尚、終了ポイントに対する補正ポイントの位置は、例えば高運転負荷区間の有無に応じて適宜変更されてもよい。 The correction point is set on the near side for a predetermined distance or a predetermined time with respect to the ramp way as an end point, for example. At the correction point, the driving change control unit 63 acquires the latest driver information. Based on the acquired driver information, the driving change control unit 63 mainly determines the timing of the changing notification and the necessity of the changing notice, and determines a detailed schedule of a series of changing plans. Note that the position of the correction point with respect to the end point may be changed as appropriate depending on, for example, the presence or absence of a high driving load section.
 ここまで説明した内容に基づく運転交代制御処理の流れを、図4に示すフローチャートに基づき、図1及び図3を参照しつつ、時系列に沿って説明する。図4の運転交代制御処理は、自動運転機能の作動が運転者に承認されることにより、自動運転ECU50によって開始される。 The flow of the driving change control process based on the contents described so far will be described along the time series based on the flowchart shown in FIG. 4 and referring to FIGS. The driving change control process of FIG. 4 is started by the automatic driving ECU 50 when the operation of the automatic driving function is approved by the driver.
 S101では、自動運転可能エリアの終了ポイントとなる位置の情報と、交代実施区間となる道路の形状情報等とを取得するため、長中期の走行計画を参照し、S102に進む。S102では、S101にて参照の長中期の走行計画に示された終了ポイントを基準とした交代計画を策定し、S103に進む。S102では、交代実施区間、切替区間、及び補正ポイント等の位置が終了ポイントに対して設定される。 In S101, in order to obtain information on the position that is the end point of the area where automatic driving is possible and the shape information of the road that is the replacement section, the long-term travel plan is referred to and the process proceeds to S102. In S102, a replacement plan based on the end point indicated in the long-term driving plan referenced in S101 is formulated, and the process proceeds to S103. In S102, positions such as a replacement execution section, a switching section, and a correction point are set for the end point.
 S103では、GNSS受信器71の位置情報に基づき、S102にて設定した補正ポイントに車両Aが到達したか否かの判定を繰り返すことで、補正ポイントへの到達を待機する。そして、車両Aの補正ポイントへの到達により、S104に進む。S104では、現在(最新)の運転者に係る運転者情報を取得し、S105に進む。S105では、現在の車両Aの走行状態を示す情報、並びに交代実施区間及びその近傍についての最新の気象情報及び混雑情報等を取得し、S106に進む。 In S103, based on the position information of the GNSS receiver 71, it is determined whether or not the vehicle A has reached the correction point set in S102, thereby waiting for the correction point to be reached. Then, when the vehicle A reaches the correction point, the process proceeds to S104. In S104, driver information relating to the current (latest) driver is acquired, and the process proceeds to S105. In S105, information indicating the current traveling state of the vehicle A, the latest weather information and congestion information, etc. for the replacement execution section and its vicinity are acquired, and the process proceeds to S106.
 S106では、S104及びS105にて取得した各情報に基づき、S102にて策定した交代計画の詳細を確定する。具体的に、S106では、交代実施区間及び切替区間とする範囲、交代予告の要否、並びに交代通知のタイミング等を決定し、S107に進む。S107では、S105にて取得した車両Aの走行状態に基づき、切替区間にて調整の対象とする走行制御パラメータと、各走行制御パラメータの更新値とを決定し、S108に進む。 In S106, the details of the replacement plan established in S102 are determined based on the information acquired in S104 and S105. Specifically, in S106, a range to be a replacement execution section and a switching section, necessity of replacement notice, timing of replacement notification, and the like are determined, and the process proceeds to S107. In S107, based on the traveling state of the vehicle A acquired in S105, a traveling control parameter to be adjusted in the switching section and an updated value of each traveling control parameter are determined, and the process proceeds to S108.
 S108では、S106にて決定された交代予告の要否に基づき、S109を実施するか否かを判定する。交代予告が不要な場合、S109はスキップされる。一方、交代予告が必要な場合、S109にて、HCU20へのHMI制御情報の出力により、報知機器10を用いた運転交代の予告を実施し、S110に進む。 In S108, it is determined whether or not to implement S109 based on the necessity of the change notice determined in S106. If the replacement notice is unnecessary, S109 is skipped. On the other hand, if a change notice is necessary, a drive change notice using the notification device 10 is performed by outputting HMI control information to the HCU 20 in S109, and the process proceeds to S110.
 S110では、GNSS受信器71の位置情報に基づき、S106にて設定した切替区間に車両Aが到達したか否かの判定を繰り返すことで、切替区間への到達を待機する。そして、車両Aの切替区間への到達により、S111に進む。S111では、走行制御パラメータの調整の実施条件が成立しているか否かを判定する。S111にて、運転負荷を低くする制御が不要であり、実施条件が不成立であると判定した場合には、走行制御パラメータの調整を中止し、S114に進む。一方で、S111にて、実施条件が成立していると判定した場合、走行制御パラメータを変更するS112に進む。 In S110, based on the position information of the GNSS receiver 71, it is determined whether or not the vehicle A has reached the switching section set in S106, thereby waiting for arrival in the switching section. Then, when the vehicle A reaches the switching section, the process proceeds to S111. In S111, it is determined whether or not the conditions for adjusting the travel control parameter are satisfied. In S111, when it is determined that the control for reducing the driving load is unnecessary and the execution condition is not satisfied, the travel control parameter adjustment is stopped, and the process proceeds to S114. On the other hand, when it is determined in S111 that the execution condition is satisfied, the process proceeds to S112 in which the travel control parameter is changed.
 S112では、S107にて調整対象とされた走行制御パラメータの値を変更し、S113に進む。S112により、車両Aの走行状態は、運転負荷の低い状態へと遷移する。S113では、S112の変更処理に基づく走行状態の調整完了を待機し、調整の完了に基づいてS114に進む。 In S112, the value of the travel control parameter that has been adjusted in S107 is changed, and the process proceeds to S113. Due to S112, the traveling state of the vehicle A transitions to a state where the driving load is low. In S113, it waits for the completion of the adjustment of the running state based on the change process of S112, and proceeds to S114 based on the completion of the adjustment.
 S114では、S106にて確定された開始タイミングに合わせて報知機器10を制御することにより、運転操作の引き渡し実施を運転者に案内し、S115に進む。S115では、GNSS受信器71の位置情報に基づき、S106にて設定した交代実施区間に車両Aが到達したか否かの判定を繰り返すことで、交代実施区間への到達を待機する。そして、車両Aの交代実施区間への到達により、S116に進む。S116では、自動運転機能から運転者への運転操作の引き渡しを開始し、一連の運転交代制御処理を終了する。 In S114, the notification device 10 is controlled in accordance with the start timing determined in S106, so that the driver is instructed to deliver the driving operation, and the process proceeds to S115. In S115, based on the position information of the GNSS receiver 71, it is determined whether or not the vehicle A has arrived at the replacement execution section set in S106, thereby waiting for the replacement execution section to arrive. Then, when the vehicle A reaches the replacement section, the process proceeds to S116. In S116, the delivery of the driving operation from the automatic driving function to the driver is started, and the series of driving change control processing is ended.
 ここまで説明した第一実施形態では、交代実施区間よりも手前に設定された切替区間にて走行制御パラメータが変更されることにより、車両Aの走行状態は、運転負荷の低い状態に調整される。故に、交代実施区間又はその近傍において、運転負荷の低い状態で自動運転機能から運転者へ運転操作が引き渡される。このような運転交代の制御によれば、自動運転機能から運転操作を受け取る際の運転者の不安は、軽減される。 In the first embodiment described so far, the travel state of the vehicle A is adjusted to a low driving load state by changing the travel control parameter in the switching section set before the replacement execution section. . Therefore, the driving operation is handed over to the driver from the automatic driving function in a state where the driving load is low in or near the alternation execution section. According to such driving change control, the driver's anxiety when receiving the driving operation from the automatic driving function is reduced.
 以上によれば、運転感覚の戻りきっていない運転者が、時速100km超で運転を再開せざるを得ないシーンの発生や、車間距離の詰まった状態で運転を再開せざるを得ないシーンの発生は、防がれる。その結果、運転交代の後において、運転者の運転操作の安定性が確保され易くなり、運転者は、スムーズに運転を再開することができる。 According to the above, a scene in which a driver who has not returned his driving sensation has to restart driving at a speed exceeding 100 km / h, or driving in a state where the inter-vehicle distance is jammed has to be restarted. Occurrence is prevented. As a result, it is easy to ensure the stability of the driving operation of the driver after the driving change, and the driver can smoothly restart the driving.
 加えて第一実施形態における運転交代の通知は、切替区間における車両Aの走行状態の遷移完了後に行われ、走行状態の過渡期間とは重ならない。故に、運転切替時の運転負荷の軽減を目的とした通常走行モードから低運転負荷モードへの走行状態の調整が、運転操作を受け取る運転者にかえって不安を与えてしまう事態は、防がれる。 In addition, the notification of the driving change in the first embodiment is performed after the completion of the transition of the traveling state of the vehicle A in the switching section, and does not overlap with the transition period of the traveling state. Therefore, it is possible to prevent a situation in which the adjustment of the driving state from the normal driving mode to the low driving load mode for the purpose of reducing the driving load at the time of driving switching gives anxiety to the driver receiving the driving operation.
 また第一実施形態では、覚醒度が低いほど及び漫然度が高いほど、交代通知の開始タイミングが早められて、交代実施区間は、長く確保されるようになる。その結果、運転者は、交代実施区間にて、反応遅れ及び通知の聞き逃し等のエラーを許容され易くなる。以上によれば、運転者は、交代実施区間において、精神的な余裕を持って運転操作を受け取ることができる。 In the first embodiment, the lower the degree of arousal and the higher the degree of ambiguity, the earlier the start timing of the change notification and the longer the change execution section is secured. As a result, the driver is likely to be allowed errors such as reaction delays and missed notifications in the shift execution section. According to the above, the driver can receive the driving operation with a mental margin in the shift execution section.
 さらに第一実施形態では、運転者の覚醒度が閾値よりも低い場合及び漫然度が閾値よりも高い場合に、切替区間への到達前に、交代予告が運転者に対して行われる。故に運転者は、切替区間において覚醒度の回復又は漫然度の低減を図ることが可能となる。その結果、運転者は、運転に適した状態で交代実施区間に臨み、運転操作を受け取ることが可能になる。 Furthermore, in the first embodiment, when the driver's arousal level is lower than the threshold value and when the driver's arousal level is higher than the threshold value, a change notice is given to the driver before reaching the switching section. Therefore, the driver can recover the arousal level or reduce the mute level in the switching section. As a result, the driver can face the shift execution section in a state suitable for driving and can receive a driving operation.
 また第一実施形態では、運転者が運転交代に適した状態にある場合には、交代通知のタイミングが遅らされると共に、交代予告も省略される。故に、早すぎる交代通知及び過剰な交代通知が運転者に煩わしさを感じさせてしまう事態は、回避される。 In the first embodiment, when the driver is in a state suitable for driving change, the timing of the change notification is delayed and the change notice is also omitted. Therefore, a situation in which the driver is bothered by an early change notification and an excessive change notification is avoided.
 加えて第一実施形態では、運転者の覚醒度が閾値よりも高い場合、又は漫然度が閾値よりも低い場合に、運転負荷の低い状態への走行制御パラメータの調整が中止される。以上のように、覚醒度が高い場や漫然度が低い場合には、運転負荷が低い状態に調整されていなくても、運転者は、顕著な不安を感じることなく、運転操作を自動運転機能から受け取ることができる。以上のように、運転負荷が低くなるように予め調整する制御が運転者の状態に応じて中止されれば、確実に運転操作を引き継げる状態の運転者に対して、煩わしさを感じさせることなく、円滑に運転交代を行うことが可能となる。 In addition, in the first embodiment, when the driver's arousal level is higher than the threshold value, or when the ambiguity level is lower than the threshold value, the adjustment of the driving control parameter to a state with a low driving load is stopped. As described above, when the arousal level is high or the ambiguity level is low, even if the driving load is not adjusted to a low level, the driver can perform driving operation automatically without feeling noticeable. Can be received from. As described above, if the control that is adjusted in advance so as to reduce the driving load is stopped according to the state of the driver, the driver who is surely able to take over the driving operation does not feel annoyance. Thus, it is possible to perform a driving change smoothly.
 また第一実施形態では、自動運転機能への運転交代後の経過時間が短い場合にも、走行制御パラメータの調整が中止される。この場合、運転者の漫然度は十分に低く、覚醒度も十分に高い状態であると推定できる。故に、自動運転の実施時間が比較的短い場合では、運転負荷が低い状態に調整する制御は、省略されてよい。 In the first embodiment, the adjustment of the travel control parameter is also stopped when the elapsed time after the change of driving to the automatic driving function is short. In this case, it can be estimated that the driver's ambiguity is sufficiently low and the arousal level is sufficiently high. Therefore, when the execution time of the automatic operation is relatively short, the control for adjusting the operation load to a low state may be omitted.
 さらに第一実施形態では、例えば渋滞などの要因により、車両Aの走行速度が閾値速度よりも低い場合には、走行制御パラメータの調整が中止される。以上のように、運転負荷が既に低いようなシーンでは、運転負荷をさらに低くするような制御は、実施されなくてよい。こうした制御の中止によれば、過剰な運転負荷の低減実施が回避されるため、運転者に煩わしさを感じさせることなく運転交代を行うことが可能となる。 Further, in the first embodiment, when the traveling speed of the vehicle A is lower than the threshold speed due to factors such as traffic congestion, the adjustment of the traveling control parameter is stopped. As described above, in a scene where the driving load is already low, control for further reducing the driving load may not be performed. By stopping the control as described above, it is possible to perform driving change without making the driver feel bothered because an excessive reduction in driving load is avoided.
 加えて第一実施形態における交代実施区間は、高運転負荷区間を避けて設定される。故に、運転者への運転交代は、車両Aの走行状態に起因する運転負荷だけでなく、道路環境に起因した運転負荷も低い状態で実施される。以上によれば、運転感覚が鈍っている状態で運転者が難しい運転操作を開始せざるを得ないシーンの発生は、回避可能となる。故に、運転操作を受け取る際の運転者の不安は、さらに確実に軽減される。 In addition, the replacement execution section in the first embodiment is set to avoid the high operation load section. Therefore, the driving change to the driver is performed not only with the driving load caused by the traveling state of the vehicle A but also with a low driving load caused by the road environment. According to the above, it is possible to avoid the occurrence of a scene in which the driver is forced to start a difficult driving operation with a dull driving sensation. Therefore, the driver's anxiety when receiving the driving operation is more reliably reduced.
 また第一実施形態における運転切替用の走行状態は、車両Aが単独走行しているシーンと、前走車等の他の車両が周囲に存在するシーンとで、別々に設定可能である。例えば、車両Aが単独走行しているシーンでは、切替区間にて車両Aの走行速度が低減される。その結果、交代実施区間にて運転者の感じる運転負荷は、確実に低減され得る。 Further, the driving state for switching operation in the first embodiment can be set separately for a scene in which the vehicle A is traveling alone and a scene in which other vehicles such as a preceding vehicle are present. For example, in a scene where the vehicle A is traveling alone, the traveling speed of the vehicle A is reduced in the switching section. As a result, the driving load felt by the driver in the shift execution section can be surely reduced.
 一方、前走車が存在するシーンでは、切替区間にて前走車との車間距離が維持されるか又は拡大される。その結果、交代実施区間にて運転者が前走車から受けるプレッシャーは、確実に低減され得る。同様に、切替区間にて許容される相対速度の最大値が低く調整されれば、車両Aは、前走車から少しずつ離れていくようになる。故に、運転者は、前走車を過度に意識すること無く、運転操作を受け取ることができる。 On the other hand, in a scene where a preceding vehicle is present, the inter-vehicle distance from the preceding vehicle is maintained or expanded in the switching section. As a result, the pressure that the driver receives from the preceding vehicle in the shift execution section can be surely reduced. Similarly, if the maximum value of the relative speed allowed in the switching section is adjusted to be low, the vehicle A will gradually move away from the preceding vehicle. Therefore, the driver can receive the driving operation without being excessively aware of the preceding vehicle.
 また第一実施形態では、切替区間にて、空いている車線への車線変更が実施可能である。以上のように、空いている車線へ車両Aが予め移動されていれば、運転者は、周囲を走行する他の車両を過度に意識すること無く、運転操作を受け取ることができる。 In the first embodiment, it is possible to change lanes to vacant lanes in the switching section. As described above, if the vehicle A has been moved to an empty lane in advance, the driver can receive a driving operation without being excessively aware of other vehicles traveling around.
 加えて第一実施形態では、車両Aの後方に後続車が存在している場合に、切替区間にて車両Aに生じる減速度が小さくなるように、走行制御パラメータの調整態様が変更される。故に、後続車への影響を抑えつつ、車両Aの走行状態を運転負荷の低い状態に調整することが可能となる。 In addition, in the first embodiment, when there is a succeeding vehicle behind the vehicle A, the adjustment mode of the travel control parameter is changed so that the deceleration generated in the vehicle A in the switching section is reduced. Therefore, it is possible to adjust the traveling state of the vehicle A to a low driving load while suppressing the influence on the following vehicle.
 尚、第一実施形態では、自動運転ECU50が「運転交代制御装置」に相当する。そして、自動運転ECU50におけるS101の処理部が「形状情報取得部」相当し、S102及びS106の処理部が「区間設定部」に相当し、S104の処理部が「運転者情報取得部」に相当する。さらに、自動運転ECU50におけるS109及びS114の処理部が「報知制御部」に相当し、S112の処理部が「パラメータ調整部」に相当する。 In the first embodiment, the automatic driving ECU 50 corresponds to a “driving change control device”. The processing unit of S101 in the automatic driving ECU 50 corresponds to the “shape information acquisition unit”, the processing units of S102 and S106 correspond to the “section setting unit”, and the processing unit of S104 corresponds to the “driver information acquisition unit”. To do. Further, the processing unit of S109 and S114 in the automatic operation ECU 50 corresponds to a “notification control unit”, and the processing unit of S112 corresponds to a “parameter adjustment unit”.
 (第二実施形態)
 図5に示す本開示の第二実施形態は、第一実施形態の変形例である。第二実施形態のHCU220は、各プロセッサ21,22(図2参照)によって報知制御プログラムを実行することにより、第一実施形態と実質同一の入力処理部31及び出力処理部32に加えて、運転交代制御部233を構築する。一方、自動運転ECU250に構築される機能ブロックは、第一実施形態と実質同一の走行環境認識部61、走行計画生成部62、ECU通信部64、及びHCU通信部65となる。
(Second embodiment)
The second embodiment of the present disclosure shown in FIG. 5 is a modification of the first embodiment. The HCU 220 according to the second embodiment operates in addition to the input processing unit 31 and the output processing unit 32 that are substantially the same as those of the first embodiment by executing the notification control program by the processors 21 and 22 (see FIG. 2). The replacement control unit 233 is constructed. On the other hand, the functional blocks constructed in the automatic driving ECU 250 are the driving environment recognition unit 61, the driving plan generation unit 62, the ECU communication unit 64, and the HCU communication unit 65 that are substantially the same as those in the first embodiment.
 以上のように、運転交代制御部233は、HCU220に構築されることで、検出機器15を用いた運転者情報の取得と報知機器10の制御とを確実に行うことができる。加えて、HCU220に構築された運転交代制御部233であっても、HCU通信部65との通信によって各走行計画及び走行環境情報等を取得し、走行制御パラメータの更新値を設定できる。故に、運転交代制御部233は、自動運転可能エリアの終了ポイントを基準とした交代計画を策定可能となる。したがって、第二実施形態でも、第一実施形態と同様の効果を奏し、運転操作を受け取る際の運転者の不安は軽減される。尚、第二実施形態では、HCU220が「運転交代制御装置」に相当する。 As described above, the driving change control unit 233 is configured in the HCU 220, so that the driver information acquisition using the detection device 15 and the control of the notification device 10 can be reliably performed. In addition, even the driving change control unit 233 constructed in the HCU 220 can acquire each travel plan, travel environment information, and the like through communication with the HCU communication unit 65, and set an updated value of the travel control parameter. Therefore, the driving change control unit 233 can formulate a changing plan based on the end point of the automatic driving enabled area. Therefore, in the second embodiment, the same effect as in the first embodiment is obtained, and the driver's anxiety when receiving the driving operation is reduced. In the second embodiment, the HCU 220 corresponds to a “driving change control device”.
 (第三実施形態)
 図6及び図7に示す本開示の第三実施形態は、第一実施形態の別の変形例である。第三実施形態の自動運転ECU350は、第一実施形態の自動運転ECU50(図1参照)とHCU20(図1参照)とを兼ねた電子制御ユニットである。自動運転ECU350は、車両制御ECU80と連携して、車両Aの自動運転機能を実現する。自動運転ECU350は、メインプロセッサ351、描画プロセッサ352、RAM353、記憶媒体354、及び入出力インターフェース355を有する自動操縦用の車載コンピュータを主体に構成されている。自動運転ECU350は、自動運転プログラムに基づき、第一実施形態と実質同一の走行環境認識部61、走行計画生成部62、運転交代制御部63、ECU通信部64、入力処理部31、及び出力処理部32を自動運転に係る機能ブロックとして構築する。
(Third embodiment)
The third embodiment of the present disclosure shown in FIGS. 6 and 7 is another modification of the first embodiment. The automatic operation ECU 350 of the third embodiment is an electronic control unit that serves as both the automatic operation ECU 50 (see FIG. 1) and the HCU 20 (see FIG. 1) of the first embodiment. The automatic driving ECU 350 realizes an automatic driving function of the vehicle A in cooperation with the vehicle control ECU 80. The automatic operation ECU 350 is mainly configured by an in-vehicle computer for automatic operation having a main processor 351, a drawing processor 352, a RAM 353, a storage medium 354, and an input / output interface 355. The automatic driving ECU 350 is based on the automatic driving program, and is substantially the same as the driving environment recognition unit 61, the driving plan generation unit 62, the driving change control unit 63, the ECU communication unit 64, the input processing unit 31, and the output processing, as in the first embodiment. The unit 32 is constructed as a functional block related to automatic driving.
 以上のように、HCU20(図1参照)の機能が統合された自動運転ECU350によっても、自動運転可能エリアの終了ポイントを基準とした交代計画を策定し、運転負荷を軽減させた低運転負荷モードでの運転交代が実現される。故に、第三実施形態でも、第一実施形態と同様の効果を奏し、運転操作を受け取る際の運転者の不安は軽減される。尚、第三実施形態では、自動運転ECU350が「運転交代制御装置」に相当する。 As described above, even with the automatic operation ECU 350 in which the functions of the HCU 20 (see FIG. 1) are integrated, a replacement plan based on the end point of the area where the automatic operation can be performed is formulated to reduce the operation load. The change of driving is realized. Therefore, the third embodiment also has the same effect as the first embodiment, and the driver's anxiety when receiving the driving operation is reduced. In the third embodiment, the automatic driving ECU 350 corresponds to a “driving change control device”.
 (他の実施形態)
 以上、複数の実施形態について説明したが、本開示は、上記実施形態に限定して解釈されるものではなく、本開示の要旨を逸脱しない範囲内において種々の実施形態及び組み合わせに適用することができる。
(Other embodiments)
Although a plurality of embodiments have been described above, the present disclosure is not construed as being limited to the above-described embodiments, and can be applied to various embodiments and combinations without departing from the scope of the present disclosure. it can.
 上記実施形態での自動運転機能から運転者への制御権の移譲において、運転交代の通知は、車両Aの走行状態の遷移が完了した後に開始されていた。しかし、交代通知は、切替区間と重なるタイミングで開始されてもよい。また、交代通知は、覚醒度の低い場合や漫然度の高い場合だけでなく、例えば運転者の運転姿勢が崩れている場合にも、早出しされてよい。 In the transfer of the control right from the automatic driving function to the driver in the above embodiment, the notification of the driving change was started after the transition of the running state of the vehicle A was completed. However, the change notification may be started at a timing overlapping with the switching section. Further, the change notification may be issued early not only when the arousal level is low or when the driver's driving posture is broken, but also when the level of arousal is low.
 さらに、交代通知を早出しする時間は、複数段階にレベル分けされた覚醒度の値が低くなるほど、又は漫然度の値が高くなるほど、次第に長く調整されてもよい。或いは、複数段階にレベル分けされた覚醒度の値が所定の閾値未満の場合、又は漫然度の値が所定の閾値を超えた場合に、一定時間だけ交代通知が早出しされてもよい。また、覚醒度及び漫然度は、複数段階にレベル分けされず、「高」及び「低」又は「良」及び「不良」等の単純な二段階で評価されてもよい。 Furthermore, the time for promptly issuing the change notification may be adjusted gradually longer as the wakefulness level divided into a plurality of levels becomes lower or as the muddyness value becomes higher. Alternatively, when the value of the arousal level divided into a plurality of levels is less than a predetermined threshold, or when the value of the ambiguity exceeds a predetermined threshold, the change notification may be issued early for a predetermined time. In addition, the arousal level and the absurdity level are not divided into a plurality of levels, and may be evaluated in two simple levels such as “high” and “low” or “good” and “bad”.
 上記実施形態において、覚醒度及び漫然度を評価するための各閾値は、適宜変更可能である。例えば、特定の運転者の通常の覚醒度及び漫然度を記録して、個々の運転者に対応した各閾値が予め設定されていてもよい。また、運転者による入力により、覚醒度及び漫然度の各閾値は、調整されてもよい。さらに、低運転負荷モードへの切り替えを実施するか否かを判定する閾値時間及び閾値速度も、運転者による入力により調整可能であってもよい。また、低運転負荷モードへの切り替え自体が、運転者による入力により、実施されないように設定されてもよい。或いは、低運転負荷モードへの切り替え中止が実施されないように設定可能であってもよい。 In the above embodiment, each threshold value for evaluating the arousal level and the absurdity level can be changed as appropriate. For example, a normal driver's normal arousal level and absurdity level may be recorded, and each threshold corresponding to each driver may be set in advance. Moreover, each threshold value of arousal level and absurdity level may be adjusted by the input by the driver. Furthermore, the threshold time and the threshold speed for determining whether or not to switch to the low driving load mode may be adjustable by an input by the driver. Further, the switching to the low driving load mode itself may be set so as not to be performed by an input by the driver. Alternatively, it may be set so that the switching to the low operation load mode is not stopped.
 上記実施形態では、運転者の覚醒度が低い場合、又は運転者の漫然度が高い場合に限り、交代予告が実施されていた。しかし、運転者の状態に係わらず、交代予告が常に実施される形態であってもよい。さらに、運転交代の予告タイミングは、交代通知タイミングよりも早ければ、例えば切替区間と重なっていてもよい。また、切替区間への到達前に開始された交代予告が、切替区間中も継続されてよい。こうした運転操作の引き渡しの予告は、交代通知よりも控え目な態様で行われることが望ましい。 In the above embodiment, the change notice is performed only when the driver's arousal level is low or the driver's ambiguity level is high. However, the change notice may always be performed regardless of the driver's condition. Further, if the advance notice timing of the driving change is earlier than the change notice timing, for example, it may overlap with the switching section. In addition, the change notice that is started before reaching the switching section may be continued during the switching section. It is desirable that the advance notice of the delivery of the driving operation is performed in a modest manner than the change notification.
 上記実施形態における交代実施区間は、高運転負荷区間を避けて設定されていた。しかし、高運転負荷区間を避ける処理は、省略されてもよい。また、終了ポイント直前の本線車道がカーブの連続するような道路形状である場合、交代実施区間は、やむを得ずカーブ区間に設定されてもよい。 The replacement execution section in the above embodiment was set avoiding the high operation load section. However, the process of avoiding the high operating load section may be omitted. In addition, when the main road just before the end point has a road shape with a continuous curve, the replacement execution section may be inevitably set to the curve section.
 上記実施形態では、走行速度、車間距離、車間時間、及び相対速度等が切替区間にて調整対象となる走行制御パラメータとして例示されていた。しかし、調整対象となる走行制御パラメータは、適宜変更可能である。さらに、単独走行及び追従走行といった走行シーンの分け方をさらに詳細にすることにより、走行シーンに適合した低運転負荷モードの走行状態がつくりだされてもよい。また、低運転負荷モードの走行状態をつくりだすための走行制御パラメータの更新値は、運転者の状態、運転者によって入力された設定値、道路形状、及び気象状態等、種々の情報に基づいて調整されてよい。 In the above embodiment, the travel speed, the inter-vehicle distance, the inter-vehicle time, the relative speed, and the like are exemplified as the travel control parameters to be adjusted in the switching section. However, the travel control parameter to be adjusted can be changed as appropriate. Furthermore, the driving state of the low driving load mode suitable for the driving scene may be created by further detailing how to divide the driving scenes such as single driving and following driving. In addition, the updated value of the driving control parameter for creating the driving state in the low driving load mode is adjusted based on various information such as the driver's state, the set value input by the driver, the road shape, and the weather state. May be.
 上記実施形態における運転交代制御処理は、例えば長中期の走行計画が一時的な通行止め等によって再生成された場合に、S101からやり直されることが望ましい。以上によれば、突発的な経路の変更が生じた場合でも、変更後の経路上に設定された自動運転可能エリアの終了ポイント近傍にて、自動運転機能から運転者への円滑な運転操作の引き渡しが行われ得る。 It is desirable that the driving change control process in the above-described embodiment is performed again from S101 when the long-term driving plan is regenerated due to temporary closure or the like. According to the above, even if a sudden route change occurs, smooth driving operation from the automatic driving function to the driver is performed near the end point of the automatic driving possible area set on the changed route. Delivery can take place.
 運転操作の権限移譲の通知及び予告に用いられる報知機器は、適宜変更可能である。例えば、メッセージ音声は、超音波スピーカを用いることにより、運転者だけに聞こえるよう再生されてもよい。また、予告及び通知の表示は、HUDとは異なる表示デバイスの表示面に映し出されてもよい。同様に、運転者の覚醒度及び漫然度の検出に用いられる検出機器も適宜変更可能である。 The notification device used for notification and notice of transfer of authority for driving operations can be changed as appropriate. For example, the message voice may be reproduced so as to be heard only by the driver by using an ultrasonic speaker. Further, the notice and notification display may be displayed on a display surface of a display device different from the HUD. Similarly, the detection device used for detecting the driver's arousal level and sensation level can be changed as appropriate.
 運転交代に係る各機能は、上記実施形態のように車両に搭載された種々の電子制御ユニットによって適宜実現されてよい。さらに、自動運転ECU及びHCU20等に設けられるプロセッサの数は、適宜増やされてよい。また、フラッシュメモリ及びハードディスク等の種々の非遷移的実体的記憶媒体が、各プロセッサによって実行されるプログラムを格納する構成として採用可能である。 Each function related to the driving change may be appropriately realized by various electronic control units mounted on the vehicle as in the above embodiment. Furthermore, the number of processors provided in the automatic operation ECU and the HCU 20 may be increased as appropriate. Further, various non-transitional tangible storage media such as a flash memory and a hard disk can be adopted as a configuration for storing a program executed by each processor.
 ここで、この出願に記載されるフローチャート、あるいは、フローチャートの処理は、複数のセクション(あるいはステップと言及される)から構成され、各セクションは、たとえば、S101と表現される。さらに、各セクションは、複数のサブセクションに分割されることができる、一方、複数のセクションが合わさって一つのセクションにすることも可能である。さらに、このように構成される各セクションは、デバイス、モジュール、ミーンズとして言及されることができる。 Here, the flowchart described in this application or the process of the flowchart is configured by a plurality of sections (or referred to as steps), and each section is expressed as S101, for example. Further, each section can be divided into a plurality of subsections, while a plurality of sections can be combined into one section. Further, each section configured in this manner can be referred to as a device, module, or means.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (15)

  1.  運転者に代わって運転操作を実施可能な自動運転機能を備える車両(A)において、前記自動運転機能と前記運転者との間での運転操作の受け渡しを制御する運転交代制御装置であって、
     前記自動運転機能から前記運転者への運転交代を実施する交代実施区間、を設定する区間設定部(S102,S106)と、
     前記交代実施区間よりも手前の切替区間にて、前記自動運転機能が参照する走行制御パラメータを変更することにより、前記車両の走行状態を前記切替区間に到達する以前よりも運転負荷の低い状態に調整するパラメータ調整部(S112)と、
     を備える運転交代制御装置。
    In a vehicle (A) having an automatic driving function capable of performing a driving operation on behalf of a driver, a driving shift control device for controlling the passing of the driving operation between the automatic driving function and the driver,
    A section setting unit (S102, S106) for setting a shift execution section for performing a driving shift from the automatic driving function to the driver;
    By changing a travel control parameter referred to by the automatic driving function in the switching section before the replacement execution section, the driving state of the vehicle is made lower in the driving load than before reaching the switching section. A parameter adjustment unit (S112) to be adjusted;
    A driving shift control device comprising:
  2.  前記車両に搭載された報知機器(10)を制御することにより、前記運転者へ向けた報知を行う報知制御部(S109,S114)、をさらに備え、
     前記報知制御部は、前記走行制御パラメータの変更に伴う前記車両の走行状態の調整が完了した後に、前記運転操作の引き渡し実施を前記運転者へ向けて通知する請求項1に記載の運転交代制御装置。
    A notification control unit (S109, S114) for performing notification to the driver by controlling the notification device (10) mounted on the vehicle;
    The driving change control according to claim 1, wherein the notification control unit notifies the driver of the delivery of the driving operation after the adjustment of the running state of the vehicle accompanying the change of the running control parameter is completed. apparatus.
  3.  前記運転者の覚醒度を示す覚醒度情報及び前記運転者の漫然度を示す漫然度情報の少なくとも一方を取得する運転者情報取得部(S104)、をさらに備える請求項2に記載の運転交代制御装置。 The driving change control according to claim 2, further comprising: a driver information acquisition unit (S104) that acquires at least one of arousal level information indicating the driver's arousal level and a casual level information indicating the driver's abusive level. apparatus.
  4.  前記報知制御部は、前記覚醒度情報に基づく前記運転者の覚醒度が低いほど、又は前記漫然度情報に基づく前記運転者の漫然度が高いほど、前記運転者へ向けた通知の開始タイミングを、前記車両が前記交代実施区間に到達するタイミングに対して早める請求項3に記載の運転交代制御装置。 The notification control unit sets the notification start timing to the driver as the driver's arousal level based on the arousal level information is lower or as the driver's abusive level is higher based on the amorousness information. 4. The driving shift control device according to claim 3, wherein the driving shift control apparatus is advanced with respect to a timing at which the vehicle reaches the shift execution section.
  5.  前記報知制御部は、前記覚醒度情報に基づく前記運転者の覚醒度が予め設定された閾値よりも低い場合、又は前記漫然度情報に基づく前記運転者の漫然度が予め設定された閾値よりも高い場合、前記車両が前記切替区間に到達する前に前記運転操作の引き渡し実施を前記運転者に予告する請求項3又は4に記載の運転交代制御装置。 The notification control unit is configured such that the driver's arousal level based on the arousal level information is lower than a preset threshold value, or the driver's abusive level based on the casual level information is lower than a preset threshold value. The driving change control device according to claim 3 or 4, wherein, when the vehicle is high, the driver is notified of the delivery of the driving operation before the vehicle reaches the switching section.
  6.  前記パラメータ調整部は、前記覚醒度情報に基づく前記運転者の覚醒度が予め設定された閾値よりも高い場合、又は前記漫然度情報に基づく前記運転者の漫然度が予め設定された閾値よりも低い場合、運転負荷の低い状態への前記走行制御パラメータの調整を中止する請求項3~5のいずれか一項に記載の運転交代制御装置。 The parameter adjustment unit is configured such that when the driver's arousal level based on the arousal level information is higher than a preset threshold value, or the driver's abusive level based on the casual level information is higher than a preset threshold value. The driving change control device according to any one of claims 3 to 5, wherein when the driving load is low, the adjustment of the traveling control parameter to a low driving load state is stopped.
  7.  前記パラメータ調整部は、
     前記運転者から前記自動運転機能への運転交代が実施された後の経過時間を計測し、
     当該経過時間が閾値時間未満である場合に、運転負荷の低い状態への前記走行制御パラメータの調整を中止する請求項1~6のいずれか一項に記載の運転交代制御装置。
    The parameter adjustment unit includes:
    Measure the elapsed time after the driving change from the driver to the automatic driving function,
    The driving change control device according to any one of claims 1 to 6, wherein when the elapsed time is less than the threshold time, the adjustment of the travel control parameter to a low driving load state is stopped.
  8.  前記パラメータ調整部は、前記車両の走行速度が閾値速度よりも低い場合に、運転負荷の低い状態への前記走行制御パラメータの調整を中止する請求項1~7のいずれか一項に記載の運転交代制御装置。 The driving according to any one of claims 1 to 7, wherein the parameter adjusting unit stops the adjustment of the driving control parameter to a low driving load when the driving speed of the vehicle is lower than a threshold speed. Change control device.
  9.  前記自動運転機能によって前記車両が走行を予定している道路の形状情報を取得する形状情報取得部(S101)、をさらに備え、
     前記区間設定部は、前記形状情報に基づき、運転負荷が高いとして予め規定された高運転負荷区間を避けて、前記交代実施区間を設定する請求項1~8のいずれか一項に記載の運転交代制御装置。
    A shape information acquisition unit (S101) for acquiring shape information of a road on which the vehicle is scheduled to travel by the automatic driving function;
    The driving according to any one of claims 1 to 8, wherein the section setting unit sets the replacement execution section while avoiding a high driving load section that is defined in advance as having a high driving load based on the shape information. Change control device.
  10.  前記パラメータ調整部は、定速巡航における前記車両の目標速度を前記走行制御パラメータとし、当該目標速度の値を前記切替区間にて低い値に調整する請求項1~9のいずれか一項に記載の運転交代制御装置。 10. The parameter adjustment unit according to claim 1, wherein the target speed of the vehicle in constant speed cruise is set as the travel control parameter, and the value of the target speed is adjusted to a low value in the switching section. Driving change control device.
  11.  前記パラメータ調整部は、追従走行における前記車両と前走車との間の目標車間距離を前記走行制御パラメータとし、当該目標車間距離の値を前記切替区間にて大きい値に調整する請求項1~10のいずれか一項に記載の運転交代制御装置。 The parameter adjustment unit uses a target inter-vehicle distance between the vehicle and the preceding vehicle in follow-up traveling as the travel control parameter, and adjusts the value of the target inter-vehicle distance to a large value in the switching section. The driving change control device according to any one of 10.
  12.  前記パラメータ調整部は、追従走行における前走車に対する目標相対速度を前記走行制御パラメータとし、前記前走車との相対速度がゼロになるか、又は前記車両が前記前走車から離れていくように、前記目標相対速度の値を前記切替区間にて調整する請求項1~11のいずれか一項に記載の運転交代制御装置。 The parameter adjustment unit uses the target relative speed with respect to the preceding vehicle in the following traveling as the traveling control parameter, so that the relative speed with respect to the preceding vehicle becomes zero or the vehicle moves away from the preceding vehicle. The driving shift control device according to any one of claims 1 to 11, wherein a value of the target relative speed is adjusted in the switching section.
  13.  前記自動運転機能は、複数車線が設けられた道路にて、前記走行制御パラメータに含まれる車線指示情報に基づき、前記車両を走行させる車線を選択し、
     前記パラメータ調整部は、複数車線のうちで現在走行中の車線よりも空いている車線に前記車両が車線変更するように、前記車線指示情報を更新する請求項1~12のいずれか一項に記載の運転交代制御装置。
    The automatic driving function selects a lane on which the vehicle is to travel on a road provided with a plurality of lanes, based on lane instruction information included in the travel control parameter,
    The lane indication information is updated according to any one of claims 1 to 12, wherein the parameter adjustment unit updates the lane indication information so that the vehicle changes lanes to a lane that is vacant from a lane that is currently traveling among a plurality of lanes. The described driving change control device.
  14.  前記パラメータ調整部は、前記車両の後方に後続車が存在している場合に、当該後続車が存在していない場合よりも、前記切替区間にて前記車両に生じる減速度が小さくなるように、前記走行制御パラメータの調整態様を変更する請求項1~13のいずれか一項に記載の運転交代制御装置。 When the following vehicle exists behind the vehicle, the parameter adjustment unit is configured so that the deceleration generated in the vehicle in the switching section is smaller than when the following vehicle does not exist. The driving change control device according to any one of claims 1 to 13, wherein an adjustment mode of the travel control parameter is changed.
  15.  運転者に代わって運転操作を実施可能な自動運転機能を備える車両(A)において、前記自動運転機能と前記運転者との間での運転操作の受け渡しを制御する運転交代制御方法であって、
     少なくとも一つのプロセッサ(21,22,51,351,352)は、
     前記自動運転機能から前記運転者への運転交代を実施する交代実施区間、を設定し(S102,S106)、
     前記交代実施区間よりも手前の切替区間にて、前記自動運転機能が参照する走行制御パラメータを変更することにより、前記車両の走行状態を前記切替区間に到達する以前よりも運転負荷の低い状態に調整する(S112)運転交代制御方法。
     
     
     
    In a vehicle (A) having an automatic driving function capable of performing a driving operation on behalf of a driver, a driving change control method for controlling the passing of the driving operation between the automatic driving function and the driver,
    At least one processor (21, 22, 51, 351, 352)
    A change execution section for performing a drive change from the automatic driving function to the driver is set (S102, S106),
    By changing a travel control parameter referred to by the automatic driving function in the switching section before the replacement execution section, the driving state of the vehicle is made lower in the driving load than before reaching the switching section. The operation change control method to adjust (S112).


PCT/JP2017/002847 2016-03-08 2017-01-27 Driving change control device and driving change control method WO2017154396A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/082,685 US10766491B2 (en) 2016-03-08 2017-01-27 Driving change control device and driving change control method
DE112017001198.1T DE112017001198T5 (en) 2016-03-08 2017-01-27 CHANGE CONTROL DEVICE AND CHANGE CONTROL METHOD

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016044604 2016-03-08
JP2016-044604 2016-03-08
JP2016236159A JP6394687B2 (en) 2016-03-08 2016-12-05 Driving change control device and driving change control method
JP2016-236159 2016-12-05

Publications (1)

Publication Number Publication Date
WO2017154396A1 true WO2017154396A1 (en) 2017-09-14

Family

ID=59790498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002847 WO2017154396A1 (en) 2016-03-08 2017-01-27 Driving change control device and driving change control method

Country Status (1)

Country Link
WO (1) WO2017154396A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019098811A (en) * 2017-11-29 2019-06-24 トヨタ自動車株式会社 Inter-vehicle distance control apparatus
CN110281934A (en) * 2018-03-13 2019-09-27 本田技研工业株式会社 Controller of vehicle, control method for vehicle and storage medium
JPWO2020230783A1 (en) * 2019-05-13 2021-05-20 大日本印刷株式会社 Barrier film, wavelength conversion sheet using it, and display device using it
CN113264047A (en) * 2020-01-30 2021-08-17 丰田自动车株式会社 Vehicle control device and nonvolatile storage medium storing vehicle control program
CN113485317A (en) * 2020-03-16 2021-10-08 本田技研工业株式会社 Control device, system, computer-readable storage medium, and control method
CN113619597A (en) * 2020-05-08 2021-11-09 百度(美国)有限责任公司 Planning system for automatic vehicle speed limit change
WO2022039022A1 (en) * 2020-08-21 2022-02-24 株式会社デンソー Vehicle display control device, vehicle display control system, and vehicle display control method
WO2022107466A1 (en) * 2020-11-17 2022-05-27 株式会社デンソー Vehicle control device and vehicular notification device
DE112021002091T5 (en) 2020-03-31 2023-05-25 Denso Corporation PRESENTATION CONTROL DEVICE AND PRESENTATION CONTROL PROGRAM
US12030514B2 (en) 2020-03-31 2024-07-09 Denso Corporation Presentation control device and non-transitory computer readable storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05238288A (en) * 1992-02-28 1993-09-17 Mitsubishi Electric Corp Constant speed traveling controller
JPH10309960A (en) * 1997-05-12 1998-11-24 Toyota Motor Corp Automatic traveling vehicle control device
JP2007038911A (en) * 2005-08-04 2007-02-15 Toyota Motor Corp Alarm device for vehicle
JP2015175825A (en) * 2014-03-18 2015-10-05 アイシン・エィ・ダブリュ株式会社 Route search system, route search method, and computer program
JP2017030547A (en) * 2015-07-31 2017-02-09 パナソニックIpマネジメント株式会社 Automatic driving device, automatic driving support method and automatic driving support program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05238288A (en) * 1992-02-28 1993-09-17 Mitsubishi Electric Corp Constant speed traveling controller
JPH10309960A (en) * 1997-05-12 1998-11-24 Toyota Motor Corp Automatic traveling vehicle control device
JP2007038911A (en) * 2005-08-04 2007-02-15 Toyota Motor Corp Alarm device for vehicle
JP2015175825A (en) * 2014-03-18 2015-10-05 アイシン・エィ・ダブリュ株式会社 Route search system, route search method, and computer program
JP2017030547A (en) * 2015-07-31 2017-02-09 パナソニックIpマネジメント株式会社 Automatic driving device, automatic driving support method and automatic driving support program

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019098811A (en) * 2017-11-29 2019-06-24 トヨタ自動車株式会社 Inter-vehicle distance control apparatus
CN110281934B (en) * 2018-03-13 2022-06-28 本田技研工业株式会社 Vehicle control device, vehicle control method, and storage medium
CN110281934A (en) * 2018-03-13 2019-09-27 本田技研工业株式会社 Controller of vehicle, control method for vehicle and storage medium
JPWO2020230783A1 (en) * 2019-05-13 2021-05-20 大日本印刷株式会社 Barrier film, wavelength conversion sheet using it, and display device using it
CN113264047A (en) * 2020-01-30 2021-08-17 丰田自动车株式会社 Vehicle control device and nonvolatile storage medium storing vehicle control program
CN113264047B (en) * 2020-01-30 2023-09-19 丰田自动车株式会社 Vehicle control device and non-volatile storage medium storing vehicle control program
CN113485317A (en) * 2020-03-16 2021-10-08 本田技研工业株式会社 Control device, system, computer-readable storage medium, and control method
CN113485317B (en) * 2020-03-16 2024-05-14 本田技研工业株式会社 Control device, system, computer-readable storage medium, and control method
DE112021002091T5 (en) 2020-03-31 2023-05-25 Denso Corporation PRESENTATION CONTROL DEVICE AND PRESENTATION CONTROL PROGRAM
US12030514B2 (en) 2020-03-31 2024-07-09 Denso Corporation Presentation control device and non-transitory computer readable storage medium
CN113619597A (en) * 2020-05-08 2021-11-09 百度(美国)有限责任公司 Planning system for automatic vehicle speed limit change
WO2022039022A1 (en) * 2020-08-21 2022-02-24 株式会社デンソー Vehicle display control device, vehicle display control system, and vehicle display control method
WO2022107466A1 (en) * 2020-11-17 2022-05-27 株式会社デンソー Vehicle control device and vehicular notification device

Similar Documents

Publication Publication Date Title
JP6394687B2 (en) Driving change control device and driving change control method
WO2017154396A1 (en) Driving change control device and driving change control method
US10782683B2 (en) Vehicle control device
JP6575492B2 (en) Automated driving system
JP6617692B2 (en) Driving change control device and driving change control method
US11209828B2 (en) Vehicle control device, vehicle control method, and storage medium
US10647331B2 (en) Presentation control device and presentation control method
JP7006326B2 (en) Autonomous driving system
WO2017130482A1 (en) Alert control apparatus and alert control method
US20190382021A1 (en) Vehicle control device, vehicle control method, and storage medium
US20190382019A1 (en) Vehicle control device, vehicle control method, and storage medium
US11518414B2 (en) Traveling control method and traveling control device for vehicle
CN109844842B (en) Driving mode switching control device, system, method and storage medium
US20190382022A1 (en) Vehicle control device, vehicle control method, and storage medium
US11230289B2 (en) Vehicle control device, vehicle control method, and storage medium
JP2019038471A (en) Drive shift control device and drive shift control program
US20220306151A1 (en) Driving assistance apparatus, driving assistance system, and driving assistance method
JP7363833B2 (en) Presentation control device, presentation control program, automatic travel control system, and automatic travel control program
JP2019182353A (en) Travel control device
WO2022209459A1 (en) Self-driving control device, self-driving control program, presentation control device, and presentation control program
WO2022030317A1 (en) Vehicular display device and vehicular display method
WO2023085064A1 (en) Vehicle control device
WO2021199964A1 (en) Presentation control device, presentation control program, automated driving control system, and automated driving control program
WO2022039021A1 (en) Vehicle congestion determination device and vehicle display control device
US20230399013A1 (en) Vehicle control device and method for controlling vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17762742

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17762742

Country of ref document: EP

Kind code of ref document: A1