WO2017154386A1 - Composite material containing layered double hydroxide, and battery - Google Patents

Composite material containing layered double hydroxide, and battery Download PDF

Info

Publication number
WO2017154386A1
WO2017154386A1 PCT/JP2017/002266 JP2017002266W WO2017154386A1 WO 2017154386 A1 WO2017154386 A1 WO 2017154386A1 JP 2017002266 W JP2017002266 W JP 2017002266W WO 2017154386 A1 WO2017154386 A1 WO 2017154386A1
Authority
WO
WIPO (PCT)
Prior art keywords
ldh
functional layer
composite material
porous substrate
layered double
Prior art date
Application number
PCT/JP2017/002266
Other languages
French (fr)
Japanese (ja)
Inventor
翔 山本
昌平 横山
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2018504044A priority Critical patent/JP6614728B2/en
Publication of WO2017154386A1 publication Critical patent/WO2017154386A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a layered double hydroxide-containing composite material and a battery.
  • Layered double hydroxide represented by hydrotalcite (hereinafter also referred to as LDH) is a group of substances having anions that can be exchanged between hydroxide layers. It is used as a catalyst, an adsorbent, and a dispersant in a polymer for improving heat resistance.
  • LDH Layered double hydroxide represented by hydrotalcite
  • it has been attracting attention as a material that conducts hydroxide ions, and addition to an electrolyte of an alkaline fuel cell or a catalyst layer of a zinc-air cell has also been studied.
  • Patent Documents 1 and 2 and Non-Patent Document 1 disclose an oriented LDH film.
  • the oriented LDH film suspends the surface of a polymer base material horizontally in a solution containing urea and a metal salt to nucleate LDH. It is produced by forming and orientation growing. In each of the X-ray diffraction results of the oriented LDH thin films obtained in these documents, a strong peak of (003) plane is observed.
  • LDH dense body a dense bulk body of LDH (hereinafter referred to as an LDH dense body).
  • LDH dense body a dense bulk body of LDH
  • hydroxide ion conductivity for LDH dense bodies, it has been found that high conductivity is exhibited by conducting ions in the layer direction of LDH particles.
  • LDH dense body has high resistance. Therefore, for practical use of LDH, it is desired to reduce the resistance by thinning.
  • the oriented LDH film disclosed in Patent Documents 1 and 2 and Non-Patent Document 1 cannot be said to be sufficient in terms of orientation and density.
  • a highly densified LDH film preferably an oriented LDH film is desired.
  • the hydroxide ions in the electrolyte solution must move through the LDH film, so that the substrate supporting the LDH film is required to be porous. Is done.
  • the present inventors include Al, CO 3 and OH in the LDH-containing functional layer. It was found that the conductivity of the LDH-containing functional layer can be significantly improved by the presence of another compound phase.
  • an object of the present invention is to provide an LDH-containing composite material in which the conductivity of the LDH-containing functional layer formed on and / or in the porous substrate is significantly improved.
  • a functional layer comprising other compound phases comprising Al, CO 3 and OH;
  • a layered double hydroxide-containing composite material is provided.
  • a battery including the layered double hydroxide-containing composite material as a separator.
  • FIG. 3 is an exploded perspective view of a denseness discrimination measurement system used in the denseness determination test I of Examples 1 to 4.
  • FIG. 3 is a schematic cross-sectional view of a denseness discrimination measurement system used in the denseness determination test I of Examples 1 to 4.
  • FIG. 3 is an exploded perspective view of a measurement sealed container used in the denseness determination test II of Examples 1 to 4.
  • FIG. 3 is an exploded perspective view of a measurement sealed container used in the denseness determination test II of Examples 1 to 4.
  • FIG. 3 is a schematic cross-sectional view of a measurement system used in the denseness determination test II of Examples 1 to 4. It is a conceptual diagram which shows an example of a He transmittance
  • FIG. 6B is a schematic cross-sectional view of a sample holder used in the measurement system shown in FIG. 6A and its peripheral configuration.
  • FIG. 5 is a schematic cross-sectional view showing an electrochemical measurement system used in Examples 1 to 4. It is the X-ray-diffraction result obtained in Example 1 (comparison) and Example 3.
  • FIG. It is a SEM image which shows the surface microstructure of the composite material sample produced in Example 1 (comparison).
  • the layered double hydroxide-containing composite material (LDH-containing composite material) of the present invention is formed on a porous substrate and on and / or in the porous substrate.
  • the functional layer includes a layered double hydroxide (LDH) and another compound phase.
  • the conductivity of the LDH-containing functional layer can be significantly improved by the presence of another compound phase containing Al, CO 3 and OH in the LDH-containing functional layer.
  • an LDH-containing composite material having an LDH-containing functional layer having a desirable low resistance can be provided. This is advantageous in applying LDH as a solid electrolyte separator to alkaline secondary batteries such as batteries and nickel zinc batteries.
  • Porous materials may be water permeable and breathable due to the presence of pores, but the functional layer is typically a dense layer and LDH to the extent that it does not have water permeability or air permeability (preferably both). It is preferable that it is densified.
  • “not having water permeability” means “measuring test I” adopted in the examples described later) or a measurement object when water permeability is evaluated by a technique or configuration equivalent thereto. It means that water that contacts one surface side (that is, the functional layer and / or the porous substrate) does not permeate the other surface side.
  • not breathable means “denseness determination test II” employed in the examples described later) or a measurement object (that is, a functional layer) when the breathability is evaluated by a technique or configuration equivalent thereto.
  • / or porous substrate means that bubbles caused by helium gas brought into contact with one surface side with a differential pressure of 0.5 atm are not generated in the water on the other surface side.
  • the functional layer is preferably formed on a porous substrate.
  • the functional layer 14 is preferably formed on the porous substrate 12 as an LDH dense film. In this case, needless to say, LDH may be formed on the surface of the porous substrate 12 and in the pores in the vicinity thereof as shown in FIG.
  • the composite material 10 ′ shown in FIG. 2 has a structure in which the film-corresponding portion in the functional layer 14 of the composite material 10 shown in FIG. It suffices if the functional layer exists in parallel with the surface.
  • the functional layer when the functional layer is densified with LDH to such an extent that it does not have water permeability and air permeability, it has hydroxide ion conductivity but water permeability and air permeability. It can have a unique function of not having.
  • the LDH-containing composite material of the present invention even though a porous base material that can have water permeability and air permeability is used, it does not have water permeability or air permeability (preferably both). It is preferable that a dense functional layer is formed.
  • the LDH-containing composite material of the present invention as a whole has hydroxide ion conductivity but does not substantially pass an electrolytic solution such as an aqueous potassium hydroxide solution (that is, a substance other than hydroxide ions is substantially passed. And can function as a battery separator.
  • the porous substrate Since strength can be imparted, the LDH-containing functional layer can be thinned to reduce resistance.
  • the electrolyte can reach the LDH-containing functional layer when used as a solid electrolyte separator for a battery. That is, the LDH-containing composite material of the present invention is extremely useful as a solid electrolyte separator applicable to various battery applications such as metal-air batteries (for example, zinc-air batteries) and other various zinc secondary batteries (for example, nickel-zinc batteries). Can be a material.
  • the porous base material in the composite material of the present invention is preferably capable of forming an LDH-containing functional layer on and / or in it, and the material and the porous structure are not particularly limited.
  • the LDH-containing functional layer is formed on and / or in the porous substrate, but the LDH-containing functional layer is formed on the nonporous substrate, and then nonporous by various known methods.
  • the porous substrate may be made porous.
  • the porous base material has a porous structure having water permeability in that the electrolyte solution can reach the functional layer when incorporated in the battery as a battery separator.
  • the porous substrate is preferably composed of at least one selected from the group consisting of ceramic materials, metal materials, and polymer materials. More preferably, the porous substrate is made of a ceramic material.
  • the ceramic material include alumina, zirconia, titania, magnesia, spinel, calcia, cordierite, zeolite, mullite, ferrite, zinc oxide, silicon carbide, and any combination thereof, and more preferable. Is alumina, zirconia, titania, and any combination thereof, particularly preferably alumina, zirconia (for example, yttria stabilized zirconia (YSZ), and combinations thereof). When these porous ceramics are used, it becomes dense.
  • the metal material include aluminum and zinc
  • preferable examples of the polymer material include polystyrene, polyethersulfone, polypropylene, epoxy resin, polyphenylene sulfide. Id, hydrophilized fluororesin.: None (quartet fluorinated resin such as PTFE) and any combinations thereof above-described various preferred materials are those having alkali resistance as a resistance against the electrolyte of the battery.
  • the porous substrate preferably has an average pore diameter of 0.001 to 1.5 ⁇ m, more preferably 0.001 to 1.25 ⁇ m, still more preferably 0.001 to 1.0 ⁇ m, and particularly preferably 0.001. 0.75 ⁇ m, most preferably 0.001 to 0.5 ⁇ m.
  • the average pore diameter can be measured by measuring the longest distance of the pores based on the electron microscope image of the surface of the porous substrate.
  • the magnification of the electron microscope image used for this measurement is 20000 times or more, and all obtained pore diameters are arranged in the order of size, and the upper 15 points and the lower 15 points from the average value.
  • the average pore size can be obtained by calculating the average value of minutes.
  • a length measurement function of SEM software, image analysis software (for example, Photoshop, manufactured by Adobe) or the like can be used.
  • the surface of the porous substrate preferably has a porosity of 10 to 60%, more preferably 15 to 55%, still more preferably 20 to 50%. By being within these ranges, it is possible to form an LDH-containing functional layer that is so dense that it does not have water permeability, while ensuring the desired water permeability and strength as a support for the porous substrate.
  • the porosity of the surface of the porous substrate is adopted because it is easy to measure the porosity using the image processing described below, and the porosity of the surface of the porous substrate. This is because it can be said that it generally represents the porosity inside the porous substrate. That is, if the surface of the porous substrate is dense, the inside of the porous substrate can be said to be dense as well.
  • the porosity of the surface of the porous substrate can be measured as follows by a technique using image processing. That is, 1) An electron microscope (SEM) image of the surface of the porous substrate (acquisition of 10,000 times or more) is obtained, and 2) a grayscale SEM image is read using image analysis software such as Photoshop (manufactured by Adobe). 3) Create a black-and-white binary image by the procedure of [Image] ⁇ [Tonal Correction] ⁇ [Turn Tone], and 4) The value obtained by dividing the number of pixels occupied by the black part by the total number of pixels in the image Rate (%).
  • the porosity measurement by this image processing is preferably performed for a 6 ⁇ m ⁇ 6 ⁇ m region on the surface of the porous substrate. In order to obtain a more objective index, three arbitrarily selected regions are used. It is more preferable to employ the average value of the obtained porosity.
  • the functional layer in the composite material of the present invention contains layered double hydroxide (LDH).
  • LDH is composed of a plurality of hydroxide base layers and an intermediate layer interposed between the plurality of hydroxide base layers.
  • the hydroxide base layer is mainly composed of metal elements (typically metal ions) and OH groups.
  • the intermediate layer of LDH is composed of anions and H 2 O.
  • the anion is a monovalent or higher anion, preferably a monovalent or divalent ion.
  • the anion in LDH comprises OH - and / or CO 3 2- .
  • LDH has excellent ionic conductivity due to its inherent properties.
  • LDH is M 2+ 1-x M 3+ x (OH) 2 A n ⁇ x / n ⁇ mH 2 O (where M 2+ is a divalent cation and M 3+ is a trivalent cation).
  • a n ⁇ is an n-valent anion, n is an integer of 1 or more, x is 0.1 to 0.4, and m is 0 or more). It is known as a representative.
  • M 2+ may be any divalent cation, and preferred examples include Mg 2+ , Ca 2+ and Zn 2+ , and more preferably Mg 2+ .
  • M 3+ may be any trivalent cation, but preferred examples include Al 3+ or Cr 3+ , and more preferred is Al 3+ .
  • a n- can be any anion, but preferred examples include OH - and CO 3 2- .
  • M 2+ comprises Mg 2+
  • M 3+ comprises Al 3+
  • a n-is OH - and / or CO preferably contains 3 2-.
  • n is an integer of 1 or more, preferably 1 or 2.
  • x is 0.1 to 0.4, preferably 0.2 to 0.35.
  • m is an arbitrary number which means the number of moles of water, and is a real number of 0 or more, typically more than 0 or 1 or more.
  • the above basic composition formula is merely a formula of “basic composition” that is typically exemplified with respect to LDH in general, and the constituent ions can be appropriately replaced.
  • the constituent ions can be appropriately replaced.
  • it may be replaced with some or all of the M 3+ tetravalent or higher valency cations in the basic formula, in which case, the anion A coefficient of n-x / n in the general formula May be changed as appropriate.
  • the various conditions of the X-ray diffraction method may be determined in accordance with various conditions shown in Evaluation 1 of Examples described later.
  • This ratio I A / I LDH can be changed by appropriately controlling the time until the porous substrate is introduced into the raw material aqueous solution when forming the functional layer in the composite material manufacturing method described later. .
  • the functional layer preferably further contains manganese (Mn) at the interface with the porous substrate and in the vicinity thereof.
  • the conductivity is further improved by the inclusion of Mn.
  • the presence form of manganese is not particularly limited as long as the presence of Mn can be confirmed by elemental analysis, but manganese oxide is preferable.
  • Manganese oxide may be in any form of crystalline, amorphous, and combinations thereof, but in the case of crystalline, the oxidation number is 2 to 4 such as MnO, MnO 2 , Mn 3 O 4 , Mn 2 O 3, etc.
  • the manganese oxide is preferably MnO 2 or Mn 2 O 3 . In the case of amorphous manganese oxide, it is non-stoichiometric and the chemical formula cannot be uniquely specified, but it is preferably in a form according to an oxidation number of 2 to 4 (for example, about 4).
  • the functional layer is formed on the porous substrate and / or in the porous substrate, preferably on the porous substrate.
  • the functional layer 14 is in the form of an LDH dense film, which is typically formed from LDH.
  • the functional layer 14 ′ is formed in the porous substrate 12 as shown in FIG. 2, the surface of the porous substrate 12 (typically the surface of the porous substrate 12 and the vicinity thereof). Since the LDH is densely formed in the pores), the functional layer 14 ′ is typically composed of at least a part of the porous substrate 12 and LDH.
  • the composite material 10 ′ and the functional layer 14 ′ shown in FIG. 2 can be obtained by removing a portion corresponding to the film in the functional layer 14 from the composite material 10 shown in FIG. 1 by a known method such as polishing or cutting. .
  • the functional layer preferably has no water permeability. Moreover, it is preferable that a functional layer does not have air permeability. More preferably, the functional layer does not have water permeability and air permeability. For example, the functional layer does not allow water to pass through even if one side of the functional layer is contacted with water at 25 ° C. for one week. That is, the functional layer is preferably densified with LDH to such an extent that it does not have water permeability.
  • an appropriate repair agent for example, epoxy resin
  • Such a repair agent need not necessarily have hydroxide ion conductivity.
  • the functional layer preferably has a He permeability per unit area of 10 cm / min ⁇ atm or less, more preferably 5.0 cm / min ⁇ atm or less, and still more preferably 1.0 cm / min ⁇ atm or less. It can be said that the functional layer having the He transmittance within such a range has extremely high density. Therefore, the functional layer having a He permeability of 10 cm / min ⁇ atm or less can prevent a high level of passage of substances other than hydroxide ions when applied as a separator in an alkaline secondary battery. For example, in the case of a zinc secondary battery, permeation of zinc ions or zincate ions in the electrolytic solution can be extremely effectively suppressed.
  • the He permeability is measured through a process of supplying He gas to one surface of the functional layer and allowing the He gas to pass through the functional layer, and a process of calculating the He permeability and evaluating the density of the functional layer.
  • the He permeability is expressed by the following formula: F / (P ⁇ S), using the He gas permeation amount F per unit time, the differential pressure P applied to the functional layer when He gas permeates, and the membrane area S through which He gas permeates.
  • the layered double hydroxide is composed of an aggregate of a plurality of plate-like particles (that is, LDH plate-like particles), and the plurality of plate-like particles have their plate surfaces perpendicular to the surface of the porous substrate (substrate surface). It is preferable that they are oriented in such a direction as to cross each other diagonally.
  • this embodiment is an embodiment that can be realized particularly preferably when the LDH-containing composite material 10 is formed on the porous substrate 12 as the functional layer 14 as an LDH dense film.
  • LDH is densely formed in the porous substrate 12 (typically in the surface of the porous substrate 12 and in the pores in the vicinity thereof). This can be realized even when at least a part of the substrate 12 forms the functional layer 14 '.
  • the LDH crystal is known to have the form of a plate-like particle having a layered structure as shown in FIG. 3, but the vertical or oblique orientation is determined by the LDH-containing functional layer (for example, an LDH dense film).
  • the LDH-containing functional layer for example, an LDH dense film.
  • an oriented LDH-containing functional layer eg, an oriented LDH dense film
  • the present inventors have found that in an LDH oriented bulk body, the conductivity (S / cm) in the orientation direction is an order of magnitude higher than the conductivity (S / cm) in the direction perpendicular to the orientation direction. It has gained. That is, the vertical or oblique orientation in the LDH-containing functional layer of the present invention indicates the conductivity anisotropy that the LDH oriented body can have in the layer thickness direction (that is, the direction perpendicular to the surface of the functional layer or porous substrate). As a result, the conductivity in the layer thickness direction can be maximized or significantly increased. In addition, since the LDH-containing functional layer has a layer form, lower resistance than that of the bulk form LDH can be realized.
  • the LDH-containing functional layer having such an orientation is easy to conduct hydroxide ions in the layer thickness direction.
  • it is extremely suitable for use in functional membranes such as battery separators (eg, hydroxide ion conductive separators for zinc-air batteries) where high conductivity in the layer thickness direction and denseness are desired. Suitable.
  • the LDH plate-like particles are highly oriented in the vertical direction in the LDH-containing functional layer (typically an LDH dense film). This high degree of orientation is confirmed by the fact that when the surface of the functional layer is measured by the X-ray diffraction method, the peak of the (003) plane is not substantially detected or smaller than the peak of the (012) plane. (However, when a porous substrate in which a diffraction peak is observed at the same position as the peak due to the (012) plane is used, the peak of the (012) plane due to the LDH plate-like particle is used. This is not the case). This characteristic peak characteristic indicates that the LDH plate-like particles constituting the functional layer are oriented in a direction perpendicular to the functional layer.
  • the “vertical direction” in this specification includes not only a strict vertical direction but also a substantially vertical direction similar thereto.
  • the (003) plane peak is known as the strongest peak observed when X-ray diffraction is performed on non-oriented LDH powder.
  • LDH plate-like particles function. Due to the orientation in the direction perpendicular to the layer, the peak of the (003) plane is not substantially detected or is smaller than the peak of the (012) plane. This is because the c-axis direction (00l) plane (l is 3 and 6) to which the (003) plane belongs is a plane parallel to the layered structure of the LDH plate-like particles.
  • the LDH layered structure when the layer is oriented in the vertical direction, the LDH layered structure also faces in the vertical direction.
  • the peak does not appear or becomes difficult to appear.
  • the (003) plane peak tends to be stronger than the (006) plane peak when it exists, so it can be said that it is easier to evaluate the presence of vertical orientation than the (006) plane peak. . Therefore, in the oriented LDH-containing functional layer, the (003) plane peak is substantially not detected or smaller than the (012) plane peak, suggesting a high degree of vertical orientation. It can be said that it is preferable.
  • the LDH alignment film disclosed in Patent Documents 1 and 2 and Non-Patent Document 1 is one in which the peak of the (003) plane is strongly detected, and is considered to be inferior in the vertical alignment, In addition, it seems that it does not have high density.
  • the functional layer preferably has a thickness of 100 ⁇ m or less, more preferably 75 ⁇ m or less, still more preferably 50 ⁇ m or less, particularly preferably 25 ⁇ m or less, and most preferably 5 ⁇ m or less. Such thinness can reduce the resistance of the functional layer.
  • the functional layer is preferably formed as an LDH dense film on the porous substrate, and in this case, the thickness of the functional layer corresponds to the thickness of the LDH dense film. Further, when the functional layer is formed in the porous substrate, the thickness of the functional layer corresponds to the thickness of the composite layer composed of at least part of the porous substrate and LDH, and the functional layer is porous. When formed over and in the substrate, this corresponds to the total thickness of the LDH dense film and the composite layer.
  • the thickness is as described above, a desired low resistance suitable for practical use in battery applications and the like can be realized.
  • the lower limit of the thickness of the LDH alignment film is not particularly limited because it varies depending on the application, but in order to ensure a certain degree of hardness desired as a functional film such as a separator, the thickness is preferably 1 ⁇ m or more. Preferably it is 2 micrometers or more.
  • the layered double hydroxide-containing composite material may be produced by any method.
  • the LDH-containing composite material is (1) a porous substrate is prepared, (2) Mn is adhered to the porous substrate if desired, and (3) a certain time at high temperature without pressurizing the raw material aqueous solution.
  • the porous base material is immersed in the raw material aqueous solution, and maintained for a certain period of time at a high temperature without being pressurized to produce a functional layer on and / or in the porous base material. Can do.
  • the porous substrate is as described above, and is preferably composed of at least one selected from the group consisting of ceramic materials, metal materials, and polymer materials. More preferably, the porous substrate is made of a ceramic material.
  • the ceramic material include alumina, zirconia, titania, magnesia, spinel, calcia, cordierite, zeolite, mullite, ferrite, zinc oxide, silicon carbide, and any combination thereof, and more preferable. Is alumina, zirconia, titania, and any combination thereof, particularly preferably alumina and zirconia, most preferably alumina.
  • the density of the LDH-containing functional layer tends to be improved.
  • the porous substrate is more preferably composed of a ceramic material.
  • the porous substrate made of a ceramic material may be a commercially available product or may be prepared according to a known technique, and is not particularly limited.
  • ceramic powder for example, zirconia powder, boehmite powder, titania powder, etc.
  • methylcellulose, and ion-exchanged water are kneaded at a desired blending ratio, the obtained kneaded product is subjected to extrusion molding, and the resulting molded body is obtained.
  • a porous substrate made of a ceramic material can be prepared by drying at 70 to 200 ° C. for 10 to 40 hours and then firing at 900 to 1300 ° C. for 1 to 5 hours.
  • the blending ratio of methylcellulose is preferably 1 to 20 parts by weight with respect to 100 parts by weight of the ceramic powder.
  • the mixing ratio of the ion exchange water is preferably 10 to 100 parts by weight with respect to 100 parts by weight of the ceramic powder.
  • a polymer substrate that can be sulfonated in terms of suitability for the subsequent manganese deposition step. It is desirable that the polymer substrate capable of being sulfonated has alkali resistance as resistance to the electrolyte solution of the battery.
  • a sulfonateable polymer substrate is selected from the group consisting of polystyrene, polyethersulfone, polypropylene, epoxy resin, polyphenylene sulfide, and hydrophilic fluororesin (tetrafluorinated resin: PTFE, etc.). It is preferable to consist of at least one.
  • the aromatic polymer base material is preferable in that it is easily sulfonated, and such an aromatic polymer base material is selected from the group consisting of polystyrene, polyethersulfone, epoxy resin, and polyphenylene sulfide, for example. Most preferably, it consists of polystyrene.
  • Mn Adhesion of manganese (Mn)
  • Mn is attached to the porous substrate.
  • the attachment of manganese (Mn) to the porous substrate may be carried out by any method, but is not particularly limited.
  • (I) It is oxidized by applying a sol containing manganese oxide to the porous member or (ii) by heating. After applying a solution or sol containing a manganese compound capable of producing manganese, the manganese compound is oxidized and decomposed by heat treatment to produce manganese oxide.
  • the manganese compound include manganese nitrate, manganese chloride, manganese carbonate, manganese sulfate and the like, and manganese nitrate is particularly preferable.
  • the spin coating conditions are not particularly limited.
  • the spin coating may be performed at a rotational speed of 1000 to 10000 rpm for about 5 to 60 seconds.
  • the oxidative decomposition of the manganese compound by heat treatment is preferably performed by heating at 150 to 1000 ° C. for 5 minutes to 5 hours.
  • the manganese oxide may be in any form of crystalline, amorphous and combinations thereof, but in the case of crystalline, MnO, MnO 2 , Mn Manganese oxide having an oxidation number of 2 to 4 such as 3 O 4 and Mn 2 O 3 is preferable, and MnO 2 or Mn 2 O 3 is more preferable.
  • MnO, MnO 2 , Mn Manganese oxide having an oxidation number of 2 to 4 such as 3 O 4 and Mn 2 O 3 is preferable, and MnO 2 or Mn 2 O 3 is more preferable.
  • amorphous manganese oxide it is non-stoichiometric and the chemical formula cannot be uniquely specified, but it is preferably in a form according to an oxidation number of 2 to 4 (for example, about 4).
  • raw material aqueous solution is hold
  • This high temperature holding is desirably performed without applying pressure. Therefore, although it is desirable to cover the reaction vessel in order to suppress the reduction of the raw material aqueous solution due to evaporation, the lid is preferably simply placed on the upper end of the reaction vessel without being pressurized.
  • the high temperature holding is preferably performed at 60 to 150 ° C., more preferably 65 to 120 ° C., still more preferably 65 to 100 ° C., and particularly preferably 70 to 90 ° C.
  • the raw material aqueous solution contains magnesium ions (Mg 2+ ) and aluminum ions (Al 3+ ) at a predetermined total concentration, and contains urea. Due to the presence of urea, ammonia is generated in the solution by utilizing hydrolysis of urea, so that the pH value rises, and the coexisting metal ions form hydroxides so that LDH fine particles are partially precipitated. Or is likely to precipitate. Therefore, the pH of the raw material aqueous solution can be adjusted by appropriately adjusting the high temperature holding time, thereby controlling the proportion of other compound phases (compound phases containing Al, CO 3 and OH) that can be precipitated together with LDH. can do.
  • Mg 2+ magnesium ions
  • Al 3+ aluminum ions
  • the pH of the aqueous raw material solution having an initial pH of about 3 can be raised to around pH 7-8. Further, since the hydrolysis is accompanied by generation of carbon dioxide, the anion can bring about carbonate ion type LDH.
  • the total concentration (Mg 2+ + Al 3+ ) of magnesium ions and aluminum ions contained in the raw material aqueous solution is preferably 0.20 to 0.40 mol / L, more preferably 0.22 to 0.38 mol / L, still more preferably The amount is 0.24 to 0.36 mol / L, particularly preferably 0.26 to 0.34 mol / L.
  • nucleation and crystal growth can proceed in a balanced manner, and an LDH-containing functional layer excellent not only in orientation but also in denseness can be obtained. That is, when the total concentration of magnesium ions and aluminum ions is low, crystal growth becomes dominant compared to nucleation, and the number of particles decreases and particle size increases. It is considered that the generation becomes dominant, the number of particles increases, and the particle size decreases.
  • magnesium nitrate and aluminum nitrate are dissolved in the raw material aqueous solution, whereby the raw material aqueous solution contains nitrate ions in addition to magnesium ions and aluminum ions.
  • the molar ratio of urea to nitrate ions (NO 3 ⁇ ) (urea / NO 3 ⁇ ) in the raw material aqueous solution is preferably 2 to 6, and more preferably 4 to 5.
  • the porous substrate When the porous substrate is held horizontally, the porous substrate may be suspended, floated, or disposed so as to be in contact with the bottom of the container. For example, the porous substrate is suspended from the bottom of the container in the raw material aqueous solution. The material may be fixed.
  • a jig that can set the porous substrate vertically on the bottom of the container may be placed.
  • the LDH is perpendicular to or close to the porous substrate (that is, the LDH plate-like particles are such that their plate surfaces intersect the surface (substrate surface) of the porous substrate perpendicularly or obliquely. It is preferable to adopt a configuration or arrangement in which the growth is performed in any direction.
  • the high temperature holding after immersion in the porous substrate is also preferably performed at 60 to 150 ° C., more preferably 65 to 120 ° C., further preferably 65 to 100 ° C., and particularly preferably 70 to 90 ° C. It is.
  • the upper limit temperature may be selected so that the porous substrate (for example, the polymer substrate) is not deformed by heat.
  • the high temperature holding time may be appropriately determined according to the target density and thickness of the LDH-containing functional layer.
  • the coexisting metal ions form hydroxides in the raw material aqueous solution whose pH has been increased through the hydrolysis of urea, whereby LDH is converted into other compound phases (compound phases containing Al, CO 3 and OH). ). Further, since carbon dioxide is generated in the hydrolysis, LDH in which the anion is carbonate ion type can be obtained.
  • the porous substrate is preferably taken out from the container and washed with ion exchange water.
  • the LDH-containing functional layer in the LDH-containing composite material produced as described above is one in which LDH plate-like particles are highly densified and are oriented in the vertical direction advantageous for conduction.
  • an improvement in power generation performance can be expected, and two types of zinc-air batteries using an electrolytic solution that could not be applied conventionally are used.
  • new separators such as zinc dendrite progress barrier and carbon dioxide invasion separator, which is a big barrier for the next battery.
  • the LDH-containing functional layer obtained by the above production method can be formed on both surfaces of the porous substrate. For this reason, in order to make the LDH-containing composite material suitable for use as a separator, the LDH-containing functional layer on one side of the porous substrate is mechanically scraped after film formation, or on one side during film formation. It is desirable to take measures so that the LDH-containing functional layer cannot be formed.
  • Evaluation 1 Identification of a film sample Using an X-ray diffractometer (RINT TTR III manufactured by Rigaku Corporation), a radiation source: Cu-K ⁇ , a voltage: 50 kV, a current value: 300 mA, a measurement range: 5 to 70 °, An XRD profile is obtained by measuring the crystalline phase of the membrane sample. About the obtained XRD profile, JCPDS card NO. Identification was performed using diffraction peaks of layered double hydroxide (hydrotalcite compound), Al 5 (CO 3 ) 3 (OH) 13 ⁇ zH 2 O described in 35-0964.
  • X-ray diffractometer RINT TTR III manufactured by Rigaku Corporation
  • Evaluation 2 Observation of microstructure The surface microstructure of the film sample was observed with a scanning electron microscope (SEM, JSM-6610LV, manufactured by JEOL) at an acceleration voltage of 10 to 20 kV. Moreover, after obtaining the cross-sectional polished surface of the film sample with an ion milling device (manufactured by Hitachi High-Technologies Corporation, IM4000), the microstructure of the cross-sectional polished surface was observed by SEM under the same conditions as the observation of the surface microstructure.
  • SEM scanning electron microscope
  • the acrylic container 126 disposed on the porous substrate side of the composite material sample 120 has a bottom, and ion-exchanged water 128 is contained in the container 126.
  • Al and / or Mg may be dissolved in the ion exchange water. That is, by assembling the components upside down after assembly, the constituent members are arranged so that the ion exchange water 128 is in contact with the porous substrate side of the composite material sample 120. After assembling these components, the total weight was measured. Needless to say, the container 126 has a closed vent hole (not shown) and is opened after being turned upside down. As shown in FIG. 4B, the assembly was placed upside down and held at 25 ° C. for 1 week, after which the total weight was measured again.
  • An epoxy adhesive 134 was applied to the depression 132 b of the alumina jig 132, and the film sample 136 b side of the composite material sample 136 was placed in the depression 132 b and adhered to the alumina jig 132 in an air-tight and liquid-tight manner. Then, the alumina jig 132 to which the composite material sample 136 is bonded is adhered to the upper end of the acrylic container 130 in a gas-tight and liquid-tight manner using a silicone adhesive 138 so as to completely close the open portion of the acrylic container 130. A measurement sealed container 140 was obtained.
  • the measurement sealed container 140 was placed in a water tank 142, and the gas supply port 130 a of the acrylic container 130 was connected to a pressure gauge 144 and a flow meter 146 so that helium gas could be supplied into the acrylic container 130.
  • Water 143 was put into the water tank 142 and the measurement sealed container 140 was completely submerged.
  • the inside of the measurement sealed container 140 is sufficiently airtight and liquid tight, and the membrane sample 136b side of the composite material sample 136 is exposed to the internal space of the measurement sealed container 140, while the composite material sample
  • the porous substrate 136 a side of 136 is in contact with the water in the water tank 142.
  • helium gas was introduced into the measurement sealed container 140 into the acrylic container 130 via the gas supply port 130a.
  • the pressure gauge 144 and the flow meter 146 are controlled so that the differential pressure inside and outside the membrane sample 136a is 0.5 atm (that is, the pressure applied to the side in contact with the helium gas is 0.5 atm higher than the water pressure applied to the opposite side). Whether or not helium gas bubbles were generated in the water from the composite material sample 136 was observed. As a result, when the generation of bubbles due to helium gas was not observed, it was determined that the film sample 136b had a high density so as not to have air permeability.
  • He permeation measurement A He permeation test was performed as follows to evaluate the denseness of the film sample from the viewpoint of He permeability.
  • the He transmittance measurement system 310 shown in FIGS. 6A and 6B was constructed.
  • He gas from a gas cylinder filled with He gas is supplied to a sample holder 316 via a pressure gauge 312 and a flow meter 314 (digital flow meter), and the denseness held in the sample holder 316 is measured.
  • the membrane 318 is configured to be transmitted through one surface from the other surface and discharged.
  • the sample holder 316 has a structure including a gas supply port 316a, a sealed space 316b, and a gas discharge port 316c, and was assembled as follows. First, an adhesive 322 was applied along the outer periphery of the dense film 318 and attached to a jig 324 (made of ABS resin) having an opening at the center. Support members 328a and 328b (made of PTFE) provided with gaskets made of butyl rubber as sealing members 326a and 326b at the upper and lower ends of the jig 324 and further provided with openings formed from flanges from the outside of the sealing members 326a and 326b. ).
  • the sealed space 316b was defined by the dense film 318, the jig 324, the sealing member 326a, and the support member 328a.
  • the dense film 318 is in the form of a composite material formed on the porous substrate 320, but the dense film 318 is disposed so that the dense film 318 side faces the gas supply port 316a.
  • the support members 328a and 328b were firmly fastened to each other by fastening means 330 using screws so that He gas leakage did not occur from a portion other than the gas discharge port 316c.
  • a gas supply pipe 334 was connected to the gas supply port 316 a of the sample holder 316 assembled in this way via a joint 332.
  • He gas was supplied to the He permeability measurement system 310 through the gas supply pipe 334 and permeated through the dense film 318 held in the sample holder 316.
  • the gas supply pressure and the flow rate were monitored by the pressure gauge 312 and the flow meter 314.
  • the He permeability was calculated. The calculation of the He permeability is based on the permeation amount F (cm 3 / min) of He gas per unit time, the differential pressure P (atm) applied to the dense film during He gas permeation, and the membrane area S (cm 2 ) and calculated by the formula of F / (P ⁇ S).
  • the permeation amount F (cm 3 / min) of He gas was directly read from the flow meter 314. Further, as the differential pressure P, the gauge pressure read from the pressure gauge 312 was used. The He gas was supplied so that the differential pressure P was in the range of 0.05 to 0.90 atm.
  • the conductivity of the membrane sample in the electrolytic solution was measured as follows using an electrochemical measurement system shown in FIG.
  • the composite material sample S porous substrate with LDH film
  • the composite material sample S was sandwiched from both sides by a 1 mm thick silicone packing 40 and incorporated into a PTFE flange type cell 42 having an inner diameter of 6 mm.
  • As the electrode 46 a # 100 mesh nickel wire mesh was incorporated into the cell 42 in a cylindrical shape having a diameter of 6 mm so that the distance between the electrodes was 2.2 mm.
  • As the electrolytic solution 44 a 6 M KOH aqueous solution was filled in the cell 42.
  • the frequency range is 1 MHz to 0.1 Hz
  • the applied voltage is 10 mV
  • the real axis intercept was the resistance of the membrane sample (porous substrate with LDH membrane).
  • the same measurement as described above was performed only on the porous substrate without the LDH film, and the resistance of only the porous substrate was also obtained.
  • the difference between the resistance of the composite material sample S (porous substrate with LDH film) and the resistance of only the substrate was defined as the resistance of the LDH film.
  • the conductivity was determined using the resistance of the LDH film and the film thickness and area of the LDH.
  • DOP manufactured by Kur
  • the slurry was molded into a sheet shape on a PET film using a tape molding machine so that the film thickness after drying was 220 ⁇ m to obtain a sheet molded body.
  • the obtained molded body was cut out to have a size of 2.0 cm ⁇ 2.0 cm ⁇ thickness 0.022 cm and fired at 1300 ° C. for 2 hours to obtain an alumina porous substrate.
  • the porosity of the porous substrate surface was measured by a technique using image processing, and it was 40%.
  • the porosity is measured by 1) observing the surface microstructure with an accelerating voltage of 10 to 20 kV using a scanning electron microscope (SEM, JSM-6610LV, manufactured by JEOL Co., Ltd.). SEM) image (magnification of 10,000 times or more) is obtained, 2) a grayscale SEM image is read using image analysis software such as Photoshop (manufactured by Adobe), etc.
  • the average pore diameter of the porous substrate was measured, it was 0.3 ⁇ m.
  • the average pore diameter was measured by measuring the longest distance of the pores based on an electron microscope (SEM) image of the surface of the porous substrate.
  • the magnification of the electron microscope (SEM) image used for this measurement is 20000 times, and all the obtained pore diameters are arranged in order of size, and the top 15 points and the bottom 15 points from the average value, and 30 points per visual field in total.
  • the average value for two visual fields was calculated to obtain the average pore diameter.
  • the length measurement function of SEM software was used.
  • the obtained porous substrate was ultrasonically cleaned in acetone for 5 minutes, ultrasonically cleaned in ethanol for 2 minutes, and then ultrasonically cleaned in ion-exchanged water for 1 minute.
  • magnesium nitrate hexahydrate (Mg (NO 3) 2 ⁇ 6H 2 O, manufactured by Kanto Chemical Co., Inc.), aluminum nitrate nonahydrate (Al (NO 3) 3 ⁇ 9H 2 O, manufactured by Kanto Chemical Co., Ltd.) and urea ((NH 2 ) 2 CO, manufactured by Sigma-Aldrich) were prepared.
  • Mg (NO 3) 2 ⁇ 6H 2 O manufactured by Kanto Chemical Co., Inc.
  • Al (NO 3) 3 ⁇ 9H 2 O manufactured by Kanto Chemical Co., Ltd.
  • urea ((NH 2 ) 2 CO, manufactured by Sigma-Aldrich)
  • ion exchange water was added to make a total volume of 75 ml.
  • the substrate is taken out from the sealed container, washed with ion-exchanged water, dried at 70 ° C. for 10 hours, and a dense layer of layered double hydroxide (hereinafter referred to as LDH) (hereinafter referred to as a membrane sample) ) was obtained on a substrate.
  • LDH layered double hydroxide
  • a composite material sample a layered double hydroxide-containing composite material sample
  • Evaluation Results Evaluations 1 to 6 were performed on the obtained LDH film samples. The results were as follows. -Evaluation 1: From the XRD profile, it was identified that the film sample was LDH (hydrotalcite compound). A peak identified as a compound phase containing Al, CO 3 and OH was not observed. -Evaluation 2: It was confirmed that there was no exposed portion of the porous substrate, and the LDH film was uniformly formed over the entire surface of the porous substrate. SEM images of the surface microstructure and cross-sectional microstructure of the composite material sample are shown in FIGS. 9A and 9B, respectively. -Evaluation 3: It was confirmed that the membrane sample has high density so as not to have water permeability.
  • -Evaluation 4 It was confirmed that the membrane sample has a high density so as not to have air permeability.
  • -Evaluation 5 The He permeability of the membrane sample was 0 cm 3 / min ⁇ atm.
  • -Evaluation 6 The conductivity of the film sample was 0.3 mS / cm.
  • Examples 2-4 A layered double hydroxide-containing composite material sample was produced in the same manner as in Example 1 except that the LDH film containing other compound phases was formed as follows.
  • the initial pH of the aqueous raw material solution was about 3, but as a result of holding at 80 ° C., the pH rose to a level of 7 to 8 when the porous substrate was introduced.
  • the porous substrate was fixed by being floated from the bottom of a Teflon (registered trademark) container, and placed horizontally so that the solution was in contact with both surfaces of the substrate. After that, as before, to prevent the inside of the container from being pressurized, it is simply placed without sealing the cover of the stainless steel jacket and kept at a water temperature of 80 ° C. for a predetermined time to form a layered composite on the substrate surface.
  • a composite film (functional layer) containing a hydroxide and another compound phase (including Al, CO 3 and OH) was formed.
  • the retention time of the raw material aqueous solution at a water temperature of 80 ° C. was such that the total of the retention time before loading the porous substrate and the retention time after loading the porous substrate was 72 hours (3 days).
  • the substrate is taken out of the container, washed with ion-exchanged water, and dried at 70 ° C. for 10 hours to obtain a dense film of layered double hydroxide (hereinafter referred to as a membrane sample) on the substrate. It was.
  • the thickness of the obtained film sample was about 1.8 ⁇ m.
  • a layered double hydroxide-containing composite material sample (hereinafter referred to as a composite material sample) was obtained.
  • the layered double hydroxide was formed on both surfaces of the porous substrate, the layered double hydroxide on one surface of the porous substrate was mechanically scraped to give the composite material a form as a separator. It was.
  • Evaluations 1 to 6 were performed on the obtained LDH film samples. The results were as follows.
  • the ratio of the peak intensity I A (see the peak marked A in the figure) due to the other compound phase detected at 3 °, that is, the ratio I A / I LDH was calculated.
  • Met. -Evaluation 2 From the SEM image of the surface microstructure of the membrane sample, it is confirmed that there is no exposed portion of the porous substrate, and the LDH film is uniformly formed over the entire surface of the porous substrate. It was done. SEM images of the surface microstructure and the cross-sectional microstructure of the composite material sample produced in Example 3 are shown in FIGS. 10A and 10B, respectively.
  • -Evaluation 3 It was confirmed that the membrane sample has high density so as not to have water permeability.
  • -Evaluation 4 It was confirmed that the membrane sample has a high density so as not to have air permeability.
  • -Evaluation 5 The He permeability of the membrane sample was 0 cm 3 / min ⁇ atm.
  • -Evaluation 6 The ionic conductivity of the membrane sample was as shown in Table 1.

Abstract

A composite material containing a layered double hydroxide (LDH) is provided, the composite material including an LDH-containing functional layer formed on and/or in a porous base, the functional layer having significantly improved conductivity. The LDH-containing composite material of the present invention comprises a porous base and a functional layer disposed on and/or in the porous base, the functional layer comprising an LDH and a phase of another compound including Al, CO3, and OH, the compound giving a peak at 2θ=9.8 to 10.3º when analyzed by X-ray diffractometry.

Description

層状複水酸化物含有複合材料及び電池Layered double hydroxide-containing composite material and battery
 本発明は、層状複水酸化物含有複合材料及び電池に関するものである。 The present invention relates to a layered double hydroxide-containing composite material and a battery.
 ハイドロタルサイトに代表される層状複水酸化物(Layered Double Hydroxide)(以下、LDHともいう)は、水酸化物の層と層の間に交換可能な陰イオンを有する物質群であり、その特徴を活かして触媒や吸着剤、耐熱性向上のための高分子中の分散剤等として利用されている。特に、近年、水酸化物イオンを伝導する材料として注目され、アルカリ形燃料電池の電解質や亜鉛空気電池の触媒層への添加についても検討されている。 Layered double hydroxide represented by hydrotalcite (hereinafter also referred to as LDH) is a group of substances having anions that can be exchanged between hydroxide layers. It is used as a catalyst, an adsorbent, and a dispersant in a polymer for improving heat resistance. In particular, in recent years, it has been attracting attention as a material that conducts hydroxide ions, and addition to an electrolyte of an alkaline fuel cell or a catalyst layer of a zinc-air cell has also been studied.
 従来の適用分野である触媒等を考えた場合、高比表面積が必要であることから粉末状LDHでの合成及び使用で十分であった。一方、アルカリ形燃料電池などの水酸化物イオン伝導性を活かした電解質への応用を考えた場合、燃料ガスの混合を防ぎ、十分な起電力を得るためにも高い緻密性のLDH膜が望まれる。 When considering a catalyst, which is a conventional application field, a high specific surface area is necessary, so that synthesis and use in powdered LDH was sufficient. On the other hand, when considering application to an electrolyte utilizing hydroxide ion conductivity such as an alkaline fuel cell, a highly dense LDH film is desirable in order to prevent mixing of fuel gas and obtain sufficient electromotive force. It is.
 特許文献1及び2並びに非特許文献1には配向LDH膜が開示されており、この配向LDH膜は高分子基材の表面を尿素及び金属塩を含有する溶液中に水平に浮かせてLDHを核生成させ配向成長させることにより作製されている。これらの文献で得られた配向LDH薄膜のX線回折結果はいずれも(003)面の強いピークが観察されるものである。 Patent Documents 1 and 2 and Non-Patent Document 1 disclose an oriented LDH film. The oriented LDH film suspends the surface of a polymer base material horizontally in a solution containing urea and a metal salt to nucleate LDH. It is produced by forming and orientation growing. In each of the X-ray diffraction results of the oriented LDH thin films obtained in these documents, a strong peak of (003) plane is observed.
中国登録特許公報CNC1333113号Chinese registered patent gazette CNC 1333113 国際公開第2006/050648号International Publication No. 2006/050648
 本発明者らは、LDHの緻密なバルク体(以下、LDH緻密体という)の作製に先だって成功している。また、LDH緻密体について水酸化物イオン伝導度の評価を実施する中で、LDH粒子の層方向にイオンを伝導させることで高い伝導度を示すことを知見している。しかしながら、亜鉛空気電池やニッケル亜鉛電池等のアルカリ二次電池へ固体電解質セパレータとしてLDHの適用を考えた場合、LDH緻密体が高抵抗であるとの問題がある。したがって、LDHの実用化のためには薄膜化による低抵抗化が望まれる。この点、特許文献1及び2並びに非特許文献1に開示される配向LDH膜は配向性及び緻密性において十分なものとはいえない。そこで、高度に緻密化されたLDH膜、好ましくは配向LDH膜が望まれる。また、固体電解質セパレータとしてLDH膜の適用を考えた場合、電解液中の水酸化物イオンがLDH膜を通して移動しなければならないことから、LDH膜を支持する基材は多孔質であることが要求される。 The present inventors have succeeded in manufacturing a dense bulk body of LDH (hereinafter referred to as an LDH dense body). In addition, while conducting evaluation of hydroxide ion conductivity for LDH dense bodies, it has been found that high conductivity is exhibited by conducting ions in the layer direction of LDH particles. However, when considering application of LDH as a solid electrolyte separator to an alkaline secondary battery such as a zinc-air battery or a nickel-zinc battery, there is a problem that the LDH dense body has high resistance. Therefore, for practical use of LDH, it is desired to reduce the resistance by thinning. In this regard, the oriented LDH film disclosed in Patent Documents 1 and 2 and Non-Patent Document 1 cannot be said to be sufficient in terms of orientation and density. Therefore, a highly densified LDH film, preferably an oriented LDH film is desired. In addition, considering the application of an LDH film as a solid electrolyte separator, the hydroxide ions in the electrolyte solution must move through the LDH film, so that the substrate supporting the LDH film is required to be porous. Is done.
 本発明者らは、今般、多孔質基材上及び/又は前記多孔質基材中に形成されたLDH膜等のLDH含有機能層において、LDH含有機能層において、Al、CO及びOHを含む他の化合物相を存在させることで、LDH含有機能層の伝導率を有意に向上できるとの知見を得た。 In the LDH-containing functional layer such as an LDH film formed on and / or in the porous substrate, the present inventors include Al, CO 3 and OH in the LDH-containing functional layer. It was found that the conductivity of the LDH-containing functional layer can be significantly improved by the presence of another compound phase.
 したがって、本発明の目的は、多孔質基材上及び/又は多孔質基材中に形成されたLDH含有機能層の伝導率が有意に向上された、LDH含有複合材料を提供することにある。 Therefore, an object of the present invention is to provide an LDH-containing composite material in which the conductivity of the LDH-containing functional layer formed on and / or in the porous substrate is significantly improved.
 本発明の一態様によれば、多孔質基材と、
 前記多孔質基材上及び/又は前記多孔質基材中に設けられ、層状複水酸化物、及びX線回折法により測定した場合に2θ=9.8~10.3°にピークが検出されるAl、CO及びOHを含む他の化合物相を含む、機能層と、
を備えた、層状複水酸化物含有複合材料が提供される。
According to one aspect of the invention, a porous substrate;
A peak is detected at 2θ = 9.8 to 10.3 ° when measured by the layered double hydroxide and X-ray diffraction method provided on and / or in the porous substrate. A functional layer comprising other compound phases comprising Al, CO 3 and OH;
A layered double hydroxide-containing composite material is provided.
 本発明の他の一態様によれば、前記層状複水酸化物含有複合材料をセパレータとして備えた電池が提供される。 According to another aspect of the present invention, there is provided a battery including the layered double hydroxide-containing composite material as a separator.
本発明のLDH含有複合材料の一態様を示す模式断面図である。It is a schematic cross section which shows one aspect | mode of the LDH containing composite material of this invention. 本発明のLDH含有複合材料の他の一態様を示す模式断面図である。It is a schematic cross section which shows the other one aspect | mode of the LDH containing composite material of this invention. 層状複水酸化物(LDH)板状粒子を示す模式図である。It is a schematic diagram which shows a layered double hydroxide (LDH) plate-like particle. 例1~4の緻密性判定試験Iで使用された緻密性判別測定系の分解斜視図である。FIG. 3 is an exploded perspective view of a denseness discrimination measurement system used in the denseness determination test I of Examples 1 to 4. 例1~4の緻密性判定試験Iで使用された緻密性判別測定系の模式断面図である。FIG. 3 is a schematic cross-sectional view of a denseness discrimination measurement system used in the denseness determination test I of Examples 1 to 4. 例1~4の緻密性判定試験IIで使用された測定用密閉容器の分解斜視図である。FIG. 3 is an exploded perspective view of a measurement sealed container used in the denseness determination test II of Examples 1 to 4. 例1~4の緻密性判定試験IIで使用された測定系の模式断面図である。FIG. 3 is a schematic cross-sectional view of a measurement system used in the denseness determination test II of Examples 1 to 4. He透過度測定系の一例を示す概念図である。It is a conceptual diagram which shows an example of a He transmittance | permeability measurement system. 図6Aに示される測定系に用いられる試料ホルダ及びその周辺構成の模式断面図である。FIG. 6B is a schematic cross-sectional view of a sample holder used in the measurement system shown in FIG. 6A and its peripheral configuration. 例1~4で用いた電気化学測定系を示す模式断面図である。FIG. 5 is a schematic cross-sectional view showing an electrochemical measurement system used in Examples 1 to 4. 例1(比較)及び例3において得られたX線回折結果である。It is the X-ray-diffraction result obtained in Example 1 (comparison) and Example 3. FIG. 例1(比較)において作製された複合材料試料の表面微構造を示すSEM画像である。It is a SEM image which shows the surface microstructure of the composite material sample produced in Example 1 (comparison). 例1(比較)において作製された複合材料試料の断面微構造を示すSEM画像である。It is a SEM image which shows the cross-sectional microstructure of the composite material sample produced in Example 1 (comparison). 例3において作製された複合材料試料の表面微構造を示すSEM画像である。6 is an SEM image showing a surface microstructure of a composite material sample produced in Example 3. 例3において作製された複合材料試料の断面微構造を示すSEM画像である。6 is an SEM image showing a cross-sectional microstructure of a composite material sample produced in Example 3.
 層状複水酸化物含有複合材料
 本発明の層状複水酸化物含有複合材料(LDH含有複合材料)は、多孔質基材と、この多孔質基材上及び/又は多孔質基材中に形成される機能層とを備える。機能層は、層状複水酸化物(LDH)と、他の化合物相とを含む。他の化合物相は、X線回折法により測定した場合に2θ=9.8~10.3°にピークが検出されるAl、CO及びOHを含む化合物相である。このように、LDH含有機能層において、Al、CO及びOHを含む他の化合物相を存在させることで、LDH含有機能層の伝導率を有意に向上させることができる。前述のとおり、LDHの実用化のためには薄膜化による低抵抗化が望まれるが、本発明によれば望ましく低抵抗なLDH含有機能層を備えたLDH含有複合材料を提供できるので、亜鉛空気電池やニッケル亜鉛電池等のアルカリ二次電池へ固体電解質セパレータとしてLDHの適用において有利となる。
Layered Double Hydroxide-Containing Composite Material The layered double hydroxide-containing composite material (LDH-containing composite material) of the present invention is formed on a porous substrate and on and / or in the porous substrate. Functional layers. The functional layer includes a layered double hydroxide (LDH) and another compound phase. The other compound phase is a compound phase containing Al, CO 3 and OH whose peak is detected at 2θ = 9.8 to 10.3 ° when measured by the X-ray diffraction method. Thus, the conductivity of the LDH-containing functional layer can be significantly improved by the presence of another compound phase containing Al, CO 3 and OH in the LDH-containing functional layer. As described above, for the practical application of LDH, a reduction in resistance by thinning is desired. However, according to the present invention, an LDH-containing composite material having an LDH-containing functional layer having a desirable low resistance can be provided. This is advantageous in applying LDH as a solid electrolyte separator to alkaline secondary batteries such as batteries and nickel zinc batteries.
 多孔質材料は孔の存在により透水性及び通気性を有しうるが、機能層は典型的には緻密な層であり、透水性又は通気性(望ましくはその両方)を有しない程にまでLDHで緻密化されているのが好ましい。なお、本明細書において「透水性を有しない」とは、後述する実施例で採用される「緻密性判定試験I」)又はそれに準ずる手法ないし構成で透水性を評価した場合に、測定対象物(すなわち機能層及び/又は多孔質基材)の一面側に接触した水が他面側に透過しないことを意味する。また、「通気性を有しない」とは、後述する実施例で採用される「緻密性判定試験II」)又はそれに準ずる手法ないし構成で通気性を評価した場合に、測定対象物(すなわち機能層及び/又は多孔質基材)の一面側に0.5atmの差圧で接触させたヘリウムガスに起因する泡が他面側の水中に発生しないことを意味する。機能層は多孔質基材上に形成されるのが好ましい。例えば、図1に示されるように、LDH含有複合材料10は、多孔質基材12上に機能層14がLDH緻密膜として形成されるのが好ましい。この場合、多孔質基材12の性質上、図1に示されるように多孔質基材12の表面及びその近傍の孔内にもLDHが形成されてよいのはいうまでもない。あるいは、図2に示されるLDH複合材料10’のように、多孔質基材12中(例えば多孔質基材12の表面及びその近傍の孔内)にLDHが緻密に形成され、それにより多孔質基材12の少なくとも一部が機能層14’を構成するものであってもよい。この点、図2に示される複合材料10’は図1に示される複合材料10の機能層14における膜相当部分を除去した構成となっているが、これに限定されず、多孔性基材12の表面と平行に機能層が存在していればよい。いずれにせよ、本発明のLDH含有複合材料において、機能層が透水性や通気性を有しない程にまでLDHで緻密化されている場合、水酸化物イオン伝導性を有するが透水性や通気性を有しないという特有の機能を有することができる。 Porous materials may be water permeable and breathable due to the presence of pores, but the functional layer is typically a dense layer and LDH to the extent that it does not have water permeability or air permeability (preferably both). It is preferable that it is densified. In this specification, “not having water permeability” means “measuring test I” adopted in the examples described later) or a measurement object when water permeability is evaluated by a technique or configuration equivalent thereto. It means that water that contacts one surface side (that is, the functional layer and / or the porous substrate) does not permeate the other surface side. In addition, “not breathable” means “denseness determination test II” employed in the examples described later) or a measurement object (that is, a functional layer) when the breathability is evaluated by a technique or configuration equivalent thereto. And / or porous substrate) means that bubbles caused by helium gas brought into contact with one surface side with a differential pressure of 0.5 atm are not generated in the water on the other surface side. The functional layer is preferably formed on a porous substrate. For example, as shown in FIG. 1, in the LDH-containing composite material 10, the functional layer 14 is preferably formed on the porous substrate 12 as an LDH dense film. In this case, needless to say, LDH may be formed on the surface of the porous substrate 12 and in the pores in the vicinity thereof as shown in FIG. 1 due to the nature of the porous substrate 12. Alternatively, as in the LDH composite material 10 ′ shown in FIG. 2, LDH is densely formed in the porous substrate 12 (for example, in the surface of the porous substrate 12 and in the pores in the vicinity thereof). At least a part of the substrate 12 may constitute the functional layer 14 ′. In this regard, the composite material 10 ′ shown in FIG. 2 has a structure in which the film-corresponding portion in the functional layer 14 of the composite material 10 shown in FIG. It suffices if the functional layer exists in parallel with the surface. In any case, in the LDH-containing composite material of the present invention, when the functional layer is densified with LDH to such an extent that it does not have water permeability and air permeability, it has hydroxide ion conductivity but water permeability and air permeability. It can have a unique function of not having.
 このように、本発明のLDH含有複合材料においては、透水性及び通気性を有しうる多孔質基材を用いるにもかかわらず、透水性又は通気性(望ましくはその両方)を有しない程に緻密な機能層が形成されたものであるのが好ましい。その結果、本発明のLDH含有複合材料は、全体として、水酸化物イオン伝導性を有するが水酸化カリウム水溶液等の電解液を実質的に通過させない(すなわち水酸化物イオン以外の物質を実質的に通過させない)ものとなり、電池用セパレータとしての機能を呈することができる。前述したとおり、電池用固体電解質セパレータとしてLDHの適用を考えた場合、バルク形態のLDH緻密体では高抵抗であるとの問題があったが、本発明の複合材料においては、多孔質基材により強度を付与できるため、LDH含有機能層を薄くして低抵抗化を図ることができる。その上、多孔質基材は透水性を有しうるため、電池用固体電解質セパレータとして使用された際に電解液がLDH含有機能層に到達可能な構成となりうる。すなわち、本発明のLDH含有複合材料は、金属空気電池(例えば亜鉛空気電池)及びその他各種亜鉛二次電池(例えばニッケル亜鉛電池)等の各種電池用途に適用可能な固体電解質セパレータとして、極めて有用な材料となりうる。 As described above, in the LDH-containing composite material of the present invention, even though a porous base material that can have water permeability and air permeability is used, it does not have water permeability or air permeability (preferably both). It is preferable that a dense functional layer is formed. As a result, the LDH-containing composite material of the present invention as a whole has hydroxide ion conductivity but does not substantially pass an electrolytic solution such as an aqueous potassium hydroxide solution (that is, a substance other than hydroxide ions is substantially passed. And can function as a battery separator. As described above, when considering the application of LDH as a solid electrolyte separator for a battery, there was a problem that a bulk LDH dense body had high resistance, but in the composite material of the present invention, the porous substrate Since strength can be imparted, the LDH-containing functional layer can be thinned to reduce resistance. In addition, since the porous substrate can have water permeability, the electrolyte can reach the LDH-containing functional layer when used as a solid electrolyte separator for a battery. That is, the LDH-containing composite material of the present invention is extremely useful as a solid electrolyte separator applicable to various battery applications such as metal-air batteries (for example, zinc-air batteries) and other various zinc secondary batteries (for example, nickel-zinc batteries). Can be a material.
 本発明の複合材料における多孔質基材は、その上及び/又は中にLDH含有機能層を形成できるものが好ましく、その材質や多孔構造は特に限定されない。多孔質基材上及び/又は中にLDH含有機能層を形成するのが典型的ではあるが、無孔質基材上にLDH含有機能層を成膜し、その後公知の種々の手法により無孔質基材を多孔化してもよい。いずれにしても、多孔質基材は透水性を有する多孔構造を有するのが、電池用セパレータとして電池に組み込まれた場合に電解液を機能層に到達可能に構成できる点で好ましい。 The porous base material in the composite material of the present invention is preferably capable of forming an LDH-containing functional layer on and / or in it, and the material and the porous structure are not particularly limited. Typically, the LDH-containing functional layer is formed on and / or in the porous substrate, but the LDH-containing functional layer is formed on the nonporous substrate, and then nonporous by various known methods. The porous substrate may be made porous. In any case, it is preferable that the porous base material has a porous structure having water permeability in that the electrolyte solution can reach the functional layer when incorporated in the battery as a battery separator.
 多孔質基材は、セラミックス材料、金属材料、及び高分子材料からなる群から選択される少なくとも1種で構成されるのが好ましい。多孔質基材は、セラミックス材料で構成されるのがより好ましい。この場合、セラミックス材料の好ましい例としては、アルミナ、ジルコニア、チタニア、マグネシア、スピネル、カルシア、コージライト、ゼオライト、ムライト、フェライト、酸化亜鉛、炭化ケイ素、及びそれらの任意の組合せが挙げられ、より好ましくは、アルミナ、ジルコニア、チタニア、及びそれらの任意の組合せであり、特に好ましくはアルミナ、ジルコニア(例えばイットリア安定化ジルコニア(YSZ)、及びその組合せである。これらの多孔質セラミックスを用いると緻密性に優れたLDH含有機能層を形成しやすい。金属材料の好ましい例としては、アルミニウム及び亜鉛が挙げられる。高分子材料の好ましい例としては、ポリスチレン、ポリエーテルサルフォン、ポリプロピレン、エポキシ樹脂、ポリフェニレンサルファイド、親水化したフッ素樹脂(四フッ素化樹脂:PTFE等)及びそれらの任意の組合せが挙げられる。上述した各種の好ましい材料はいずれも電池の電解液に対する耐性として耐アルカリ性を有するものである。 The porous substrate is preferably composed of at least one selected from the group consisting of ceramic materials, metal materials, and polymer materials. More preferably, the porous substrate is made of a ceramic material. In this case, preferable examples of the ceramic material include alumina, zirconia, titania, magnesia, spinel, calcia, cordierite, zeolite, mullite, ferrite, zinc oxide, silicon carbide, and any combination thereof, and more preferable. Is alumina, zirconia, titania, and any combination thereof, particularly preferably alumina, zirconia (for example, yttria stabilized zirconia (YSZ), and combinations thereof). When these porous ceramics are used, it becomes dense. It is easy to form an excellent LDH-containing functional layer.Preferable examples of the metal material include aluminum and zinc, and preferable examples of the polymer material include polystyrene, polyethersulfone, polypropylene, epoxy resin, polyphenylene sulfide. Id, hydrophilized fluororesin.: None (quartet fluorinated resin such as PTFE) and any combinations thereof above-described various preferred materials are those having alkali resistance as a resistance against the electrolyte of the battery.
 多孔質基材は0.001~1.5μmの平均気孔径を有するのが好ましく、より好ましくは0.001~1.25μm、さらに好ましくは0.001~1.0μm、特に好ましくは0.001~0.75μm、最も好ましくは0.001~0.5μmである。これらの範囲内とすることで多孔質基材に所望の透水性、及び支持体としての強度を確保しながら、透水性を有しない程に緻密なLDH含有機能層を形成することができる。本発明において、平均気孔径の測定は多孔質基材の表面の電子顕微鏡画像をもとに気孔の最長距離を測長することにより行うことができる。この測定に用いる電子顕微鏡画像の倍率は20000倍以上であり、得られた全ての気孔径をサイズ順に並べて、その平均値から上位15点及び下位15点、合わせて1視野あたり30点で2視野分の平均値を算出して、平均気孔径を得ることができる。測長には、SEMのソフトウェアの測長機能や画像解析ソフト(例えば、Photoshop、Adobe社製)等を用いることができる。 The porous substrate preferably has an average pore diameter of 0.001 to 1.5 μm, more preferably 0.001 to 1.25 μm, still more preferably 0.001 to 1.0 μm, and particularly preferably 0.001. 0.75 μm, most preferably 0.001 to 0.5 μm. By being within these ranges, it is possible to form an LDH-containing functional layer that is so dense that it does not have water permeability, while ensuring the desired water permeability and strength as a support for the porous substrate. In the present invention, the average pore diameter can be measured by measuring the longest distance of the pores based on the electron microscope image of the surface of the porous substrate. The magnification of the electron microscope image used for this measurement is 20000 times or more, and all obtained pore diameters are arranged in the order of size, and the upper 15 points and the lower 15 points from the average value. The average pore size can be obtained by calculating the average value of minutes. For the length measurement, a length measurement function of SEM software, image analysis software (for example, Photoshop, manufactured by Adobe) or the like can be used.
 多孔質基材の表面は、10~60%の気孔率を有するのが好ましく、より好ましくは15~55%、さらに好ましくは20~50%である。これらの範囲内とすることで多孔質基材に所望の透水性、及び支持体としての強度を確保しながら、透水性を有しない程に緻密なLDH含有機能層を形成することができる。ここで、多孔質基材の表面の気孔率を採用しているのは、以下に述べる画像処理を用いた気孔率の測定がしやすいことによるものであり、多孔質基材の表面の気孔率は多孔質基材内部の気孔率を概ね表しているといえるからである。すなわち、多孔質基材の表面が緻密であれば多孔質基材の内部もまた同様に緻密であるといえる。本発明において、多孔質基材の表面の気孔率は画像処理を用いた手法により以下のようにして測定することができる。すなわち、1)多孔質基材の表面の電子顕微鏡(SEM)画像(倍率10000倍以上)を取得し、2)Photoshop(Adobe社製)等の画像解析ソフトを用いてグレースケールのSEM画像を読み込み、3)[イメージ]→[色調補正]→[2階調化]の手順で白黒の2値画像を作成し、4)黒い部分が占めるピクセル数を画像の全ピクセル数で割った値を気孔率(%)とする。なお、この画像処理による気孔率の測定は多孔質基材表面の6μm×6μmの領域について行われるのが好ましく、より客観的な指標とするためには、任意に選択された3箇所の領域について得られた気孔率の平均値を採用するのがより好ましい。 The surface of the porous substrate preferably has a porosity of 10 to 60%, more preferably 15 to 55%, still more preferably 20 to 50%. By being within these ranges, it is possible to form an LDH-containing functional layer that is so dense that it does not have water permeability, while ensuring the desired water permeability and strength as a support for the porous substrate. Here, the porosity of the surface of the porous substrate is adopted because it is easy to measure the porosity using the image processing described below, and the porosity of the surface of the porous substrate. This is because it can be said that it generally represents the porosity inside the porous substrate. That is, if the surface of the porous substrate is dense, the inside of the porous substrate can be said to be dense as well. In the present invention, the porosity of the surface of the porous substrate can be measured as follows by a technique using image processing. That is, 1) An electron microscope (SEM) image of the surface of the porous substrate (acquisition of 10,000 times or more) is obtained, and 2) a grayscale SEM image is read using image analysis software such as Photoshop (manufactured by Adobe). 3) Create a black-and-white binary image by the procedure of [Image] → [Tonal Correction] → [Turn Tone], and 4) The value obtained by dividing the number of pixels occupied by the black part by the total number of pixels in the image Rate (%). The porosity measurement by this image processing is preferably performed for a 6 μm × 6 μm region on the surface of the porous substrate. In order to obtain a more objective index, three arbitrarily selected regions are used. It is more preferable to employ the average value of the obtained porosity.
 本発明の複合材料における機能層は、層状複水酸化物(LDH)を含む。一般的に知られているように、LDHは、複数の水酸化物基本層と、これら複数の水酸化物基本層間に介在する中間層とから構成される。水酸化物基本層は主として金属元素(典型的には金属イオン)とOH基で構成される。LDHの中間層は、陰イオン及びHOで構成される。陰イオンは1価以上の陰イオン、好ましくは1価又は2価のイオンである。好ましくは、LDH中の陰イオンはOH及び/又はCO 2-を含む。また、LDHはその固有の性質に起因して優れたイオン伝導性を有する。 The functional layer in the composite material of the present invention contains layered double hydroxide (LDH). As is generally known, LDH is composed of a plurality of hydroxide base layers and an intermediate layer interposed between the plurality of hydroxide base layers. The hydroxide base layer is mainly composed of metal elements (typically metal ions) and OH groups. The intermediate layer of LDH is composed of anions and H 2 O. The anion is a monovalent or higher anion, preferably a monovalent or divalent ion. Preferably, the anion in LDH comprises OH - and / or CO 3 2- . LDH has excellent ionic conductivity due to its inherent properties.
 一般的に、LDHは、M2+ 1-x3+ (OH)n- x/n・mHO(式中、M2+は2価の陽イオンであり、M3+は3価の陽イオンであり、An-はn価の陰イオンであり、nは1以上の整数であり、xは0.1~0.4であり、mは0以上である)の基本組成式で代表されるものとして知られている。上記基本組成式において、M2+は任意の2価の陽イオンでありうるが、好ましい例としてはMg2+、Ca2+及びZn2+が挙げられ、より好ましくはMg2+である。M3+は任意の3価の陽イオンでありうるが、好ましい例としてはAl3+又はCr3+が挙げられ、より好ましくはAl3+である。An-は任意の陰イオンでありうるが、好ましい例としてはOH及びCO 2-が挙げられる。したがって、上記基本組成式において、M2+がMg2+を含み、M3+がAl3+を含み、An-がOH及び/又はCO 2-を含むのが好ましい。nは1以上の整数であるが、好ましくは1又は2である。xは0.1~0.4であるが、好ましくは0.2~0.35である。mは水のモル数を意味する任意の数であり、0以上、典型的には0を超える又は1以上の実数である。もっとも、上記基本組成式は、一般にLDHに関して代表的に例示される「基本組成」の式にすぎず、構成イオンを適宜置き換え可能なものである。例えば、上記基本組成式においてM3+の一部または全部を4価またはそれ以上の価数の陽イオンで置き換えてもよく、その場合は、上記一般式における陰イオンAn-の係数x/nは適宜変更されてよい。 In general, LDH is M 2+ 1-x M 3+ x (OH) 2 A n− x / n · mH 2 O (where M 2+ is a divalent cation and M 3+ is a trivalent cation). A n− is an n-valent anion, n is an integer of 1 or more, x is 0.1 to 0.4, and m is 0 or more). It is known as a representative. In the above basic composition formula, M 2+ may be any divalent cation, and preferred examples include Mg 2+ , Ca 2+ and Zn 2+ , and more preferably Mg 2+ . M 3+ may be any trivalent cation, but preferred examples include Al 3+ or Cr 3+ , and more preferred is Al 3+ . A n- can be any anion, but preferred examples include OH - and CO 3 2- . Accordingly, in the above basic formula, M 2+ comprises Mg 2+, M 3+ comprises Al 3+, A n-is OH - and / or CO preferably contains 3 2-. n is an integer of 1 or more, preferably 1 or 2. x is 0.1 to 0.4, preferably 0.2 to 0.35. m is an arbitrary number which means the number of moles of water, and is a real number of 0 or more, typically more than 0 or 1 or more. However, the above basic composition formula is merely a formula of “basic composition” that is typically exemplified with respect to LDH in general, and the constituent ions can be appropriately replaced. For example, it may be replaced with some or all of the M 3+ tetravalent or higher valency cations in the basic formula, in which case, the anion A coefficient of n-x / n in the general formula May be changed as appropriate.
 本発明の複合材料における機能層は、また、X線回折法により測定した場合に2θ=9.8~10.3°にピークが検出されるAl、CO及びOHを含む他の化合物相をも含む。Al、CO及びOHを含む他の化合物相は、X線回折法により測定した場合に2θ=9.8~10.3°にピークが検出される化合物として特定されるものであり、当該XRDピークを結晶相同定ソフトで解析すると、Al(CO(OH)13・zHO(式中、zは0以上である)として同定されうるが、Al(OH)13(CO)5HOの化学式として同定されうるもの及びこれに類するものも他の化合物相としてみなすことができる。いずれにしても、2θ=9.8~10.3°にピークが検出される化合物はAl、CO及びOHを含む化合物相であるといえる。X線回折法の諸条件については後述する実施例の評価1に示される諸条件に準拠して決定すればよい。 The functional layer in the composite material of the present invention also contains other compound phases containing Al, CO 3 and OH whose peak is detected at 2θ = 9.8 to 10.3 ° when measured by the X-ray diffraction method. Including. The other compound phase containing Al, CO 3 and OH is specified as a compound in which a peak is detected at 2θ = 9.8 to 10.3 ° when measured by the X-ray diffraction method. When the peak is analyzed by the crystal phase identification software, it can be identified as Al 5 (CO 3 ) 3 (OH) 13 .zH 2 O (wherein z is 0 or more), but Al 5 (OH) 13 (CO 3 ) What can be identified as a chemical formula of 5H 2 O and the like can also be regarded as other compound phases. In any case, it can be said that the compound whose peak is detected at 2θ = 9.8 to 10.3 ° is a compound phase containing Al, CO 3 and OH. The various conditions of the X-ray diffraction method may be determined in accordance with various conditions shown in Evaluation 1 of Examples described later.
 本発明の好ましい態様によれば、機能層の表面をX線回折法により測定した場合に、2θ=11.6~11.8°に検出される層状複合酸化物に起因するピーク強度ILDHに対する、2θ=9.8~10.3°に検出される他の化合物相に起因するピーク強度Iの比、すなわち比I/ILDHが0.3以上であり、好ましくは0.4以上、より好ましくは0.4~7、さらに好ましくは0.4~5である。これらの範囲内であると機能層のイオン伝導率がさらに向上する。この比I/ILDHは、後述する複合材料の製造方法において、機能層を形成する際に、原料水溶液に多孔質基材を投入するまでの時間を適宜制御することにより変化させることができる。 According to a preferred embodiment of the present invention, when the surface of the functional layer is measured by an X-ray diffraction method, the peak intensity I LDH due to the layered complex oxide detected at 2θ = 11.6 to 11.8 ° is detected. The ratio of peak intensities I A due to other compound phases detected at 2θ = 9.8 to 10.3 °, that is, the ratio I A / I LDH is 0.3 or more, preferably 0.4 or more More preferably, it is 0.4 to 7, and still more preferably 0.4 to 5. Within these ranges, the ionic conductivity of the functional layer is further improved. This ratio I A / I LDH can be changed by appropriately controlling the time until the porous substrate is introduced into the raw material aqueous solution when forming the functional layer in the composite material manufacturing method described later. .
 機能層は、多孔質基材との界面及びその近傍にマンガン(Mn)をさらに含有するのが好ましい。Mnの含有により伝導率がさらに向上する。マンガンの存在形態は特に限定されず、元素分析によりMnの存在が確認できればよいが、好ましくは酸化マンガンである。酸化マンガンは結晶質、非晶質及びそれらの組合せのいずれの形態であってもよいが、結晶質の場合、MnO、MnO、Mn、Mn等の酸化数2~4の酸化マンガンが好ましく、より好ましくはMnOあるいはMnである。非晶質酸化マンガンの場合には不定比であり化学式を一義的に特定することはできないが酸化数2~4(例えば約4)に準ずる形態であるのが好ましい。 The functional layer preferably further contains manganese (Mn) at the interface with the porous substrate and in the vicinity thereof. The conductivity is further improved by the inclusion of Mn. The presence form of manganese is not particularly limited as long as the presence of Mn can be confirmed by elemental analysis, but manganese oxide is preferable. Manganese oxide may be in any form of crystalline, amorphous, and combinations thereof, but in the case of crystalline, the oxidation number is 2 to 4 such as MnO, MnO 2 , Mn 3 O 4 , Mn 2 O 3, etc. The manganese oxide is preferably MnO 2 or Mn 2 O 3 . In the case of amorphous manganese oxide, it is non-stoichiometric and the chemical formula cannot be uniquely specified, but it is preferably in a form according to an oxidation number of 2 to 4 (for example, about 4).
 機能層は、多孔質基材上及び/又は多孔質基材中、好ましくは多孔質基材上に形成される。例えば、図1に示されるように機能層14が多孔質基材12上に形成される場合には、機能層14はLDH緻密膜の形態であり、このLDH緻密膜は典型的にはLDHからなる。また、図2に示されるように機能層14’が多孔質基材12中に形成される場合には、多孔質基材12中(典型的には多孔質基材12の表面及びその近傍の孔内)にLDHが緻密に形成されることから、機能層14’は典型的には多孔質基材12の少なくとも一部及びLDHからなる。図2に示される複合材料10’及び機能層14’は、図1に示される複合材料10から機能層14における膜相当部分を研磨、切削等の公知の手法により除去することにより得ることができる。 The functional layer is formed on the porous substrate and / or in the porous substrate, preferably on the porous substrate. For example, when the functional layer 14 is formed on the porous substrate 12 as shown in FIG. 1, the functional layer 14 is in the form of an LDH dense film, which is typically formed from LDH. Become. Further, when the functional layer 14 ′ is formed in the porous substrate 12 as shown in FIG. 2, the surface of the porous substrate 12 (typically the surface of the porous substrate 12 and the vicinity thereof). Since the LDH is densely formed in the pores), the functional layer 14 ′ is typically composed of at least a part of the porous substrate 12 and LDH. The composite material 10 ′ and the functional layer 14 ′ shown in FIG. 2 can be obtained by removing a portion corresponding to the film in the functional layer 14 from the composite material 10 shown in FIG. 1 by a known method such as polishing or cutting. .
 機能層は透水性を有しないのが好ましい。また、機能層は通気性を有しないのが好ましい。より好ましくは、機能層は透水性及び通気性を有しない。例えば、機能層はその片面を25℃で1週間水と接触させても水を透過させない。すなわち、機能層は透水性を有しない程にまでLDHで緻密化されているのが好ましい。もっとも、局所的且つ/又は偶発的に透水性を有する欠陥が機能膜に存在する場合には、当該欠陥を適当な補修剤(例えばエポキシ樹脂等)で埋めて補修することで水不透性を確保してもよく、そのような補修剤は必ずしも水酸化物イオン伝導性を有する必要はない。 The functional layer preferably has no water permeability. Moreover, it is preferable that a functional layer does not have air permeability. More preferably, the functional layer does not have water permeability and air permeability. For example, the functional layer does not allow water to pass through even if one side of the functional layer is contacted with water at 25 ° C. for one week. That is, the functional layer is preferably densified with LDH to such an extent that it does not have water permeability. However, when a defect having water permeability locally and / or accidentally exists in the functional film, water impermeableness can be improved by filling the defect with an appropriate repair agent (for example, epoxy resin) and repairing the defect. Such a repair agent need not necessarily have hydroxide ion conductivity.
 機能層は、単位面積あたりのHe透過度が10cm/min・atm以下であるのが好ましく、より好ましくは5.0cm/min・atm以下、さらに好ましくは1.0cm/min・atm以下である。このような範囲内のHe透過度を有する機能層は緻密性が極めて高いといえる。したがって、He透過度が10cm/min・atm以下である機能層は、アルカリ二次電池においてセパレータとして適用した場合に、水酸化物イオン以外の物質の通過を高いレベルを阻止することができる。例えば、亜鉛二次電池の場合、電解液中において亜鉛イオン又は亜鉛酸イオンの透過を極めて効果的に抑制することができる。こうして亜鉛イオン又は亜鉛酸イオンの透過が顕著に抑制されることで、亜鉛二次電池に用いた場合に亜鉛デンドライトの成長を効果的に抑制できるものと原理的に考えられる。He透過度は、機能層の一方の面にHeガスを供給して機能層にHeガスを透過させる工程と、He透過度を算出して機能層の緻密性を評価する工程とを経て測定される。He透過度は、単位時間あたりのHeガスの透過量F、Heガス透過時に機能層に加わる差圧P、及びHeガスが透過する膜面積Sを用いて、F/(P×S)の式により算出する。このようにHeガスを用いてガス透過性の評価を行うことにより、極めて高いレベルでの緻密性の有無を評価することができ、その結果、水酸化物イオン以外の物質(特に亜鉛デンドライト成長を引き起こす亜鉛イオン又は亜鉛酸イオン)を極力透過させない(極微量しか透過させない)といった高度な緻密性を効果的に評価することができる。これは、Heガスが、ガスを構成しうる多種多様な原子ないし分子の中でも最も小さい構成単位を有しており、しかも反応性が極めて低いためである。すなわち、Heは、分子を形成することなく、He原子単体でHeガスを構成する。この点、水素ガスはH分子により構成されるため、ガス構成単位としてはHe原子単体の方がより小さい。そもそもHガスは可燃性ガスのため危険である。そして、上述した式により定義されるHeガス透過度という指標を採用することで、様々な試料サイズや測定条件の相違を問わず、緻密性に関する客観的な評価を簡便に行うことができる。こうして、機能層が亜鉛二次電池用セパレータに適した十分に高い緻密性を有するのか否かを簡便、安全かつ効果的に評価することができる。He透過度の測定は、後述する実施例の評価5に示される手順に従って好ましく行うことができる。 The functional layer preferably has a He permeability per unit area of 10 cm / min · atm or less, more preferably 5.0 cm / min · atm or less, and still more preferably 1.0 cm / min · atm or less. It can be said that the functional layer having the He transmittance within such a range has extremely high density. Therefore, the functional layer having a He permeability of 10 cm / min · atm or less can prevent a high level of passage of substances other than hydroxide ions when applied as a separator in an alkaline secondary battery. For example, in the case of a zinc secondary battery, permeation of zinc ions or zincate ions in the electrolytic solution can be extremely effectively suppressed. In principle, it is considered that the growth of zinc dendrite can be effectively suppressed when the zinc ion or zincate ion permeation is remarkably suppressed, when used in a zinc secondary battery. The He permeability is measured through a process of supplying He gas to one surface of the functional layer and allowing the He gas to pass through the functional layer, and a process of calculating the He permeability and evaluating the density of the functional layer. The The He permeability is expressed by the following formula: F / (P × S), using the He gas permeation amount F per unit time, the differential pressure P applied to the functional layer when He gas permeates, and the membrane area S through which He gas permeates. Calculated by Thus, by evaluating the gas permeability using He gas, it is possible to evaluate the presence or absence of denseness at a very high level, and as a result, substances other than hydroxide ions (especially zinc dendrite growth can be performed). It is possible to effectively evaluate a high degree of denseness such that the zinc ion or zincate ion to be caused is not transmitted as much as possible (only a very small amount is transmitted). This is because the He gas has the smallest structural unit among a wide variety of atoms or molecules that can constitute the gas, and the reactivity is extremely low. That is, He forms He gas by a single He atom without forming a molecule. In this respect, since hydrogen gas is composed of H 2 molecules, a single He atom is smaller as a gas constituent unit. In the first place, H 2 gas is dangerous because it is a combustible gas. Then, by adopting the He gas permeability index defined by the above-described formula, objective evaluation regarding the denseness can be easily performed regardless of differences in various sample sizes and measurement conditions. In this way, it is possible to simply, safely and effectively evaluate whether or not the functional layer has a sufficiently high density suitable for a zinc secondary battery separator. The measurement of the He permeability can be preferably performed according to the procedure shown in Evaluation 5 of Examples described later.
 層状複水酸化物は複数の板状粒子(すなわちLDH板状粒子)の集合体で構成され、当該複数の板状粒子がそれらの板面が多孔質基材の表面(基材面)と垂直に又は斜めに交差するような向きに配向してなるのが好ましい。この態様は、図1に示されるように、LDH含有複合材料10が、多孔質基材12上に機能層14がLDH緻密膜として形成される場合に特に好ましく実現可能な態様であるが、図2に示されるLDH複合材料10’のように、多孔質基材12中(典型的には多孔質基材12の表面及びその近傍の孔内)にLDHが緻密に形成され、それにより多孔質基材12の少なくとも一部が機能層14’を構成する場合においても実現可能である。 The layered double hydroxide is composed of an aggregate of a plurality of plate-like particles (that is, LDH plate-like particles), and the plurality of plate-like particles have their plate surfaces perpendicular to the surface of the porous substrate (substrate surface). It is preferable that they are oriented in such a direction as to cross each other diagonally. As shown in FIG. 1, this embodiment is an embodiment that can be realized particularly preferably when the LDH-containing composite material 10 is formed on the porous substrate 12 as the functional layer 14 as an LDH dense film. As in the LDH composite material 10 ′ shown in FIG. 2, LDH is densely formed in the porous substrate 12 (typically in the surface of the porous substrate 12 and in the pores in the vicinity thereof). This can be realized even when at least a part of the substrate 12 forms the functional layer 14 '.
 すなわち、LDH結晶は図3に示されるような層状構造を持った板状粒子の形態を有することが知られているが、上記垂直又は斜めの配向は、LDH含有機能層(例えばLDH緻密膜)にとって極めて有利な特性である。というのも、配向されたLDH含有機能層(例えば配向LDH緻密膜)には、LDH板状粒子が配向する方向(即ちLDHの層と平行方向)の水酸化物イオン伝導度が、これと垂直方向の伝導度よりも格段に高いという伝導度異方性があるためである。実際、本発明者らは、LDHの配向バルク体において、配向方向における伝導度(S/cm)が配向方向と垂直な方向の伝導度(S/cm)と比べて1桁高いとの知見を得ている。すなわち、本発明のLDH含有機能層における上記垂直又は斜めの配向は、LDH配向体が持ちうる伝導度異方性を層厚方向(すなわち機能層又は多孔質基材の表面に対して垂直方向)に最大限または有意に引き出すものであり、その結果、層厚方向への伝導度を最大限又は有意に高めることができる。その上、LDH含有機能層は層形態を有するため、バルク形態のLDHよりも低抵抗を実現することができる。このような配向性を備えたLDH含有機能層は、層厚方向に水酸化物イオンを伝導させやすくなる。その上、緻密化されているため、層厚方向への高い伝導度及び緻密性が望まれる電池用セパレータ等の機能膜の用途(例えば亜鉛空気電池用の水酸化物イオン伝導性セパレータ)に極めて適する。 That is, the LDH crystal is known to have the form of a plate-like particle having a layered structure as shown in FIG. 3, but the vertical or oblique orientation is determined by the LDH-containing functional layer (for example, an LDH dense film). This is a very advantageous property for the user. This is because an oriented LDH-containing functional layer (eg, an oriented LDH dense film) has a hydroxide ion conductivity perpendicular to this in the direction in which the LDH plate-like particles are oriented (ie, in a direction parallel to the LDH layer). This is because there is a conductivity anisotropy that is much higher than the conductivity in the direction. In fact, the present inventors have found that in an LDH oriented bulk body, the conductivity (S / cm) in the orientation direction is an order of magnitude higher than the conductivity (S / cm) in the direction perpendicular to the orientation direction. It has gained. That is, the vertical or oblique orientation in the LDH-containing functional layer of the present invention indicates the conductivity anisotropy that the LDH oriented body can have in the layer thickness direction (that is, the direction perpendicular to the surface of the functional layer or porous substrate). As a result, the conductivity in the layer thickness direction can be maximized or significantly increased. In addition, since the LDH-containing functional layer has a layer form, lower resistance than that of the bulk form LDH can be realized. The LDH-containing functional layer having such an orientation is easy to conduct hydroxide ions in the layer thickness direction. In addition, since it is densified, it is extremely suitable for use in functional membranes such as battery separators (eg, hydroxide ion conductive separators for zinc-air batteries) where high conductivity in the layer thickness direction and denseness are desired. Suitable.
 特に好ましくは、LDH含有機能層(典型的にはLDH緻密膜)においてLDH板状粒子が垂直方向に高度に配向してなる。この高度な配向は、機能層の表面をX線回折法により測定した場合に、(003)面のピークが実質的に検出されないか又は(012)面のピークよりも小さく検出されることで確認可能なものである(但し、(012)面に起因するピークと同位置に回折ピークが観察される多孔質基材を用いた場合には、LDH板状粒子に起因する(012)面のピークを特定できないことから、この限りでない)。この特徴的なピーク特性は、機能層を構成するLDH板状粒子が機能層に対して垂直方向に配向していることを示す。ここで、本明細書において「垂直方向」とは厳密な垂直方向のみならずそれに類する略垂直方向を含む概念であることはいうまでもない。すなわち、(003)面のピークは無配向のLDH粉末をX線回折した場合に観察される最も強いピークとして知られているが、配向LDH含有機能層にあっては、LDH板状粒子が機能層に対して垂直方向に配向していることで(003)面のピークが実質的に検出されないか又は(012)面のピークよりも小さく検出される。これは、(003)面が属するc軸方向(00l)面(lは3及び6である)がLDH板状粒子の層状構造と平行な面であるため、このLDH板状粒子が機能層に対して垂直方向に配向しているとLDH層状構造も垂直方向を向くこととなる結果、機能層表面をX線回折法により測定した場合に(00l)面(lは3及び6である)のピークが現れないか又は現れにくくなるからである。特に(003)面のピークは、それが存在する場合、(006)面のピークよりも強く出る傾向があるから、(006)面のピークよりも垂直方向の配向の有無を評価しやすいといえる。したがって、配向LDH含有機能層は、(003)面のピークが実質的に検出されないか又は(012)面のピークよりも小さく検出されるのが、垂直方向への高度な配向を示唆することから好ましいといえる。この点、特許文献1及び2並びに非特許文献1にも開示されるLDH配向膜は(003)面のピークが強く検出されるものであり、垂直方向への配向性に劣るものと考えられ、その上、高い緻密性も有してないものと見受けられる。 Particularly preferably, the LDH plate-like particles are highly oriented in the vertical direction in the LDH-containing functional layer (typically an LDH dense film). This high degree of orientation is confirmed by the fact that when the surface of the functional layer is measured by the X-ray diffraction method, the peak of the (003) plane is not substantially detected or smaller than the peak of the (012) plane. (However, when a porous substrate in which a diffraction peak is observed at the same position as the peak due to the (012) plane is used, the peak of the (012) plane due to the LDH plate-like particle is used. This is not the case). This characteristic peak characteristic indicates that the LDH plate-like particles constituting the functional layer are oriented in a direction perpendicular to the functional layer. Here, it is needless to say that the “vertical direction” in this specification includes not only a strict vertical direction but also a substantially vertical direction similar thereto. In other words, the (003) plane peak is known as the strongest peak observed when X-ray diffraction is performed on non-oriented LDH powder. In an oriented LDH-containing functional layer, LDH plate-like particles function. Due to the orientation in the direction perpendicular to the layer, the peak of the (003) plane is not substantially detected or is smaller than the peak of the (012) plane. This is because the c-axis direction (00l) plane (l is 3 and 6) to which the (003) plane belongs is a plane parallel to the layered structure of the LDH plate-like particles. On the other hand, when the layer is oriented in the vertical direction, the LDH layered structure also faces in the vertical direction. As a result, when the surface of the functional layer is measured by the X-ray diffraction method, This is because the peak does not appear or becomes difficult to appear. In particular, the (003) plane peak tends to be stronger than the (006) plane peak when it exists, so it can be said that it is easier to evaluate the presence of vertical orientation than the (006) plane peak. . Therefore, in the oriented LDH-containing functional layer, the (003) plane peak is substantially not detected or smaller than the (012) plane peak, suggesting a high degree of vertical orientation. It can be said that it is preferable. In this regard, the LDH alignment film disclosed in Patent Documents 1 and 2 and Non-Patent Document 1 is one in which the peak of the (003) plane is strongly detected, and is considered to be inferior in the vertical alignment, In addition, it seems that it does not have high density.
 機能層は100μm以下の厚さを有するのが好ましく、より好ましくは75μm以下、さらに好ましくは50μm以下、特に好ましくは25μm以下、最も好ましくは5μm以下である。このように薄いことで機能層の低抵抗化を実現できる。機能層が多孔質基材上にLDH緻密膜として形成されるのが好ましく、この場合、機能層の厚さはLDH緻密膜の厚さに相当する。また、機能層が多孔質基材中に形成される場合には、機能層の厚さは多孔質基材の少なくとも一部及びLDHからなる複合層の厚さに相当し、機能層が多孔質基材上及び中にまたがって形成される場合にはLDH緻密膜と上記複合層の合計厚さに相当する。いずれにしても、上記のような厚さであると、電池用途等への実用化に適した所望の低抵抗を実現することができる。LDH配向膜の厚さの下限値は用途に応じて異なるため特に限定されないが、セパレータ等の機能膜として望まれるある程度の堅さを確保するためには厚さ1μm以上であるのが好ましく、より好ましくは2μm以上である。 The functional layer preferably has a thickness of 100 μm or less, more preferably 75 μm or less, still more preferably 50 μm or less, particularly preferably 25 μm or less, and most preferably 5 μm or less. Such thinness can reduce the resistance of the functional layer. The functional layer is preferably formed as an LDH dense film on the porous substrate, and in this case, the thickness of the functional layer corresponds to the thickness of the LDH dense film. Further, when the functional layer is formed in the porous substrate, the thickness of the functional layer corresponds to the thickness of the composite layer composed of at least part of the porous substrate and LDH, and the functional layer is porous. When formed over and in the substrate, this corresponds to the total thickness of the LDH dense film and the composite layer. In any case, when the thickness is as described above, a desired low resistance suitable for practical use in battery applications and the like can be realized. The lower limit of the thickness of the LDH alignment film is not particularly limited because it varies depending on the application, but in order to ensure a certain degree of hardness desired as a functional film such as a separator, the thickness is preferably 1 μm or more. Preferably it is 2 micrometers or more.
 層状複水酸化物含有複合材料の製造方法
 層状複水酸化物含有複合材料(LDH含有複合材料)は、いかなる方法により製造されたものであってもよい。好ましくは、LDH含有複合材料は、(1)多孔質基材を用意し、(2)所望により多孔質基材にMnを付着させ、(3)原料水溶液を加圧せずに高温で一定時間保持した後、(4)多孔質基材を原料水溶液に浸漬させ、加圧せずに高温で一定時間保持して機能層を多孔質基材上及び/又は中に形成させることにより製造することができる。
Method for Producing Layered Double Hydroxide-Containing Composite Material The layered double hydroxide-containing composite material (LDH-containing composite material) may be produced by any method. Preferably, the LDH-containing composite material is (1) a porous substrate is prepared, (2) Mn is adhered to the porous substrate if desired, and (3) a certain time at high temperature without pressurizing the raw material aqueous solution. (4) The porous base material is immersed in the raw material aqueous solution, and maintained for a certain period of time at a high temperature without being pressurized to produce a functional layer on and / or in the porous base material. Can do.
(1)多孔質基材の用意
 多孔質基材は、前述したとおりであり、セラミックス材料、金属材料、及び高分子材料からなる群から選択される少なくとも1種で構成されるのが好ましい。多孔質基材は、セラミックス材料で構成されるのがより好ましい。この場合、セラミックス材料の好ましい例としては、アルミナ、ジルコニア、チタニア、マグネシア、スピネル、カルシア、コージライト、ゼオライト、ムライト、フェライト、酸化亜鉛、炭化ケイ素、及びそれらの任意の組合せが挙げられ、より好ましくは、アルミナ、ジルコニア、チタニア、及びそれらの任意の組合せであり、特に好ましくはアルミナ及びジルコニアであり、最も好ましくはアルミナである。これらの多孔質セラミックスを用いるとLDH含有機能層の緻密性を向上しやすい傾向がある。セラミックス材料製の多孔質基材を用いる場合、超音波洗浄、イオン交換水での洗浄等を多孔質基材に施すのが好ましい。
(1) Preparation of porous substrate The porous substrate is as described above, and is preferably composed of at least one selected from the group consisting of ceramic materials, metal materials, and polymer materials. More preferably, the porous substrate is made of a ceramic material. In this case, preferable examples of the ceramic material include alumina, zirconia, titania, magnesia, spinel, calcia, cordierite, zeolite, mullite, ferrite, zinc oxide, silicon carbide, and any combination thereof, and more preferable. Is alumina, zirconia, titania, and any combination thereof, particularly preferably alumina and zirconia, most preferably alumina. When these porous ceramics are used, the density of the LDH-containing functional layer tends to be improved. When using a porous substrate made of a ceramic material, it is preferable to subject the porous substrate to ultrasonic cleaning, cleaning with ion exchange water, and the like.
 上述のとおり、多孔質基材は、セラミックス材料で構成されるのがより好ましい。セラミックス材料製の多孔質基材は、市販品であってもよいし、公知の手法に従って作製したものであってもよく、特に限定されない。例えば、セラミックス粉末(例えばジルコニア粉末、ベーマイト粉末、チタニア粉末等)、メチルセルロース、及びイオン交換水を所望の配合比で混練し、得られた混練物を押出成形に付し、得られた成形体を70~200℃で10~40時間乾燥した後、900~1300℃で1~5時間焼成することによりセラミックス材料製の多孔質基材を作製することができる。メチルセルロースの配合割合はセラミックス粉末100重量部に対して、1~20重量部とするのが好ましい。また、イオン交換水の配合割合はセラミックス粉末100重量部に対して、10~100重量部とするのが好ましい。 As described above, the porous substrate is more preferably composed of a ceramic material. The porous substrate made of a ceramic material may be a commercially available product or may be prepared according to a known technique, and is not particularly limited. For example, ceramic powder (for example, zirconia powder, boehmite powder, titania powder, etc.), methylcellulose, and ion-exchanged water are kneaded at a desired blending ratio, the obtained kneaded product is subjected to extrusion molding, and the resulting molded body is obtained. A porous substrate made of a ceramic material can be prepared by drying at 70 to 200 ° C. for 10 to 40 hours and then firing at 900 to 1300 ° C. for 1 to 5 hours. The blending ratio of methylcellulose is preferably 1 to 20 parts by weight with respect to 100 parts by weight of the ceramic powder. Further, the mixing ratio of the ion exchange water is preferably 10 to 100 parts by weight with respect to 100 parts by weight of the ceramic powder.
 一方、高分子材料を用いる場合、後続のマンガン付着工程に適する点で、スルホン化可能な高分子基材を用意するのが好ましい。スルホン化可能な高分子基材は、電池の電解液に対する耐性として耐アルカリ性を有するものが望ましい。そのようなスルホン化可能な高分子基材は、ポリスチレン、ポリエーテルサルフォン、ポリプロピレン、エポキシ樹脂、ポリフェニレンサルファイド、及び親水化したフッ素樹脂(四フッ素化樹脂:PTFE等)からなる群から選択される少なくとも一種からなるのが好ましい。特に、芳香族系高分子基材がスルホン化しやすい点で好ましく、そのような芳香族系高分子基材は、例えば、ポリスチレン、ポリエーテルサルフォン、エポキシ樹脂、及びポリフェニレンサルファイドからなる群から選択される少なくとも一種からなり、最も好ましくはポリスチレンからなる。 On the other hand, when a polymer material is used, it is preferable to prepare a polymer substrate that can be sulfonated in terms of suitability for the subsequent manganese deposition step. It is desirable that the polymer substrate capable of being sulfonated has alkali resistance as resistance to the electrolyte solution of the battery. Such a sulfonateable polymer substrate is selected from the group consisting of polystyrene, polyethersulfone, polypropylene, epoxy resin, polyphenylene sulfide, and hydrophilic fluororesin (tetrafluorinated resin: PTFE, etc.). It is preferable to consist of at least one. In particular, the aromatic polymer base material is preferable in that it is easily sulfonated, and such an aromatic polymer base material is selected from the group consisting of polystyrene, polyethersulfone, epoxy resin, and polyphenylene sulfide, for example. Most preferably, it consists of polystyrene.
(2)マンガン(Mn)の付着
 所望により、多孔質基材にMnを付着させる。多孔質基材へのマンガン(Mn)の付着はいかなる方法によって行ってもよく特に限定されないが、(i)多孔質部材に酸化マンガンを含むゾルを塗布することにより、又は(ii)加熱により酸化マンガンを生成可能なマンガン化合物を含む溶液若しくはゾルを塗布した後、熱処理によりマンガン化合物を酸化分解して酸化マンガンを生成させることにより行うことができる。この場合、好ましいマンガン化合物の例としては、硝酸マンガン、塩化マンガン、炭酸マンガン、硫酸マンガン等が挙げられるが、硝酸マンガンが特に好ましい。酸化マンガン又はマンガン化合物を含むゾルの塗布はスピンコートにより行うのが極めて均一に塗布できる点で好ましい。スピンコートの条件は特に限定されないが、例えば1000~10000rpmの回転数で5~60秒間程度行えばよい。熱処理によるマンガン化合物の酸化分解は、150~1000℃で5分~5時間加熱することにより行うのが好ましい。なお、上記(i)及び(ii)のいずれにおいても、酸化マンガンは結晶質、非晶質及びそれらの組合せのいずれの形態であってもよいが、結晶質の場合、MnO、MnO、Mn、Mn等の酸化数2~4の酸化マンガンが好ましく、より好ましくはMnOあるいはMnである。非晶質酸化マンガンの場合には不定比であり化学式を一義的に特定することはできないが酸化数2~4(例えば約4)に準ずる形態であるのが好ましい。
(2) Adhesion of manganese (Mn) If desired, Mn is attached to the porous substrate. The attachment of manganese (Mn) to the porous substrate may be carried out by any method, but is not particularly limited. (I) It is oxidized by applying a sol containing manganese oxide to the porous member or (ii) by heating. After applying a solution or sol containing a manganese compound capable of producing manganese, the manganese compound is oxidized and decomposed by heat treatment to produce manganese oxide. In this case, preferable examples of the manganese compound include manganese nitrate, manganese chloride, manganese carbonate, manganese sulfate and the like, and manganese nitrate is particularly preferable. Application of the sol containing manganese oxide or a manganese compound is preferably performed by spin coating because it can be applied very uniformly. The spin coating conditions are not particularly limited. For example, the spin coating may be performed at a rotational speed of 1000 to 10000 rpm for about 5 to 60 seconds. The oxidative decomposition of the manganese compound by heat treatment is preferably performed by heating at 150 to 1000 ° C. for 5 minutes to 5 hours. In any of the above (i) and (ii), the manganese oxide may be in any form of crystalline, amorphous and combinations thereof, but in the case of crystalline, MnO, MnO 2 , Mn Manganese oxide having an oxidation number of 2 to 4 such as 3 O 4 and Mn 2 O 3 is preferable, and MnO 2 or Mn 2 O 3 is more preferable. In the case of amorphous manganese oxide, it is non-stoichiometric and the chemical formula cannot be uniquely specified, but it is preferably in a form according to an oxidation number of 2 to 4 (for example, about 4).
(3)原料水溶液のpH調整
 一方、原料水溶液を高温で一定時間保持する。この高温保持は加圧することなく行われるのが望ましい。したがって、反応容器には蒸発による原料水溶液の減少を抑制するために蓋をするのが望ましいものの、蓋は加圧することなく反応容器の上端に単に載置するだけとするのが好ましい。上記高温保持は、60~150℃で行われるのが好ましく、より好ましくは65~120℃であり、さらに好ましくは65~100℃であり、特に好ましくは70~90℃である。原料水溶液は、マグネシウムイオン(Mg2+)及びアルミニウムイオン(Al3+)を所定の合計濃度で含み、かつ、尿素を含む。尿素が存在することで尿素の加水分解を利用してアンモニアが溶液中に発生することによりpH値が上昇し、共存する金属イオンが水酸化物を形成することによりLDHの微粒子が部分的に析出するか又は析出しそうな状態となる。したがって、上記高温保持時間を適宜調整することで原料水溶液のpHを調整することができ、それによりLDHと共に析出しうる他の化合物相(Al、CO及びOHを含む化合物相)の割合を制御することができる。典型的には、初期pHが約3の原料水溶液のpHがpH7~8の辺りまで上昇しうる。また、加水分解に二酸化炭素の発生を伴うため、陰イオンが炭酸イオン型のLDHをもたらすことができる。原料水溶液に含まれるマグネシウムイオン及びアルミニウムイオンの合計濃度(Mg2++Al3+)は0.20~0.40mol/Lが好ましく、より好ましくは0.22~0.38mol/Lであり、さらに好ましくは0.24~0.36mol/L、特に好ましくは0.26~0.34mol/Lである。このような範囲内の濃度であると核生成と結晶成長をバランスよく進行させることができ、配向性のみならず緻密性にも優れたLDH含有機能層を得ることが可能となる。すなわち、マグネシウムイオン及びアルミニウムイオンの合計濃度が低いと核生成に比べて結晶成長が支配的となり、粒子数が減少して粒子サイズが増大する一方、この合計濃度が高いと結晶成長に比べて核生成が支配的となり、粒子数が増大して粒子サイズが減少するものと考えられる。
(3) pH adjustment of raw material aqueous solution On the other hand, raw material aqueous solution is hold | maintained at high temperature for a fixed time. This high temperature holding is desirably performed without applying pressure. Therefore, although it is desirable to cover the reaction vessel in order to suppress the reduction of the raw material aqueous solution due to evaporation, the lid is preferably simply placed on the upper end of the reaction vessel without being pressurized. The high temperature holding is preferably performed at 60 to 150 ° C., more preferably 65 to 120 ° C., still more preferably 65 to 100 ° C., and particularly preferably 70 to 90 ° C. The raw material aqueous solution contains magnesium ions (Mg 2+ ) and aluminum ions (Al 3+ ) at a predetermined total concentration, and contains urea. Due to the presence of urea, ammonia is generated in the solution by utilizing hydrolysis of urea, so that the pH value rises, and the coexisting metal ions form hydroxides so that LDH fine particles are partially precipitated. Or is likely to precipitate. Therefore, the pH of the raw material aqueous solution can be adjusted by appropriately adjusting the high temperature holding time, thereby controlling the proportion of other compound phases (compound phases containing Al, CO 3 and OH) that can be precipitated together with LDH. can do. Typically, the pH of the aqueous raw material solution having an initial pH of about 3 can be raised to around pH 7-8. Further, since the hydrolysis is accompanied by generation of carbon dioxide, the anion can bring about carbonate ion type LDH. The total concentration (Mg 2+ + Al 3+ ) of magnesium ions and aluminum ions contained in the raw material aqueous solution is preferably 0.20 to 0.40 mol / L, more preferably 0.22 to 0.38 mol / L, still more preferably The amount is 0.24 to 0.36 mol / L, particularly preferably 0.26 to 0.34 mol / L. When the concentration is within such a range, nucleation and crystal growth can proceed in a balanced manner, and an LDH-containing functional layer excellent not only in orientation but also in denseness can be obtained. That is, when the total concentration of magnesium ions and aluminum ions is low, crystal growth becomes dominant compared to nucleation, and the number of particles decreases and particle size increases. It is considered that the generation becomes dominant, the number of particles increases, and the particle size decreases.
 好ましくは、原料水溶液に硝酸マグネシウム及び硝酸アルミニウムが溶解されており、それにより原料水溶液がマグネシウムイオン及びアルミニウムイオンに加えて硝酸イオンを含む。そして、この場合、原料水溶液における、尿素の硝酸イオン(NO )に対するモル比(尿素/NO )が、2~6が好ましく、より好ましくは4~5である。 Preferably, magnesium nitrate and aluminum nitrate are dissolved in the raw material aqueous solution, whereby the raw material aqueous solution contains nitrate ions in addition to magnesium ions and aluminum ions. In this case, the molar ratio of urea to nitrate ions (NO 3 ) (urea / NO 3 ) in the raw material aqueous solution is preferably 2 to 6, and more preferably 4 to 5.
(4)他の化合物相を含むLDH含有機能層の形成
 上記一定時間の高温保持を経た(すなわちpH調整された)原料水溶液に、多孔質基材を所望の向きで(例えば水平又は垂直に)浸漬させ、加圧することなく高温で保持する。この高温保持もまた加圧することなく行われるのが望ましい。したがって、反応容器には蒸発による原料水溶液の減少を抑制するために蓋をするのが望ましいものの、蓋は加圧することなく反応容器の上端に単に載置するだけとするのが好ましい。こうしてLDH及び他の化合物相を含む機能層を多孔質基材上及び/又は多孔質基材中に形成させる。多孔質基材を水平に保持する場合は、吊るす、浮かせる、容器の底に接するように多孔質基材を配置すればよく、例えば、容器の底から原料水溶液中に浮かせた状態で多孔質基材を固定としてもよい。多孔質基材を垂直に保持する場合は、容器の底に多孔質基材を垂直に設置できるような冶具を置けばよい。いずれにしても、多孔質基材にLDHを垂直方向又はそれに近い方向(すなわちLDH板状粒子がそれらの板面が多孔質基材の表面(基材面)と垂直に又は斜めに交差するような向きに)に成長させる構成ないし配置とするのが好ましい。
(4) Formation of LDH-containing functional layer containing other compound phases In a raw material aqueous solution that has been maintained at a high temperature for a certain period of time (that is, pH-adjusted), the porous substrate is placed in a desired orientation (for example, horizontally or vertically). Immerse and hold at high temperature without pressure. It is desirable that this high temperature holding is also performed without applying pressure. Therefore, although it is desirable to cover the reaction vessel in order to suppress the reduction of the raw material aqueous solution due to evaporation, the lid is preferably simply placed on the upper end of the reaction vessel without being pressurized. Thus, a functional layer containing LDH and other compound phases is formed on and / or in the porous substrate. When the porous substrate is held horizontally, the porous substrate may be suspended, floated, or disposed so as to be in contact with the bottom of the container. For example, the porous substrate is suspended from the bottom of the container in the raw material aqueous solution. The material may be fixed. When the porous substrate is held vertically, a jig that can set the porous substrate vertically on the bottom of the container may be placed. In any case, the LDH is perpendicular to or close to the porous substrate (that is, the LDH plate-like particles are such that their plate surfaces intersect the surface (substrate surface) of the porous substrate perpendicularly or obliquely. It is preferable to adopt a configuration or arrangement in which the growth is performed in any direction.
 多孔質基材浸漬後の高温保持もまた、60~150℃で行われるのが好ましく、より好ましくは65~120℃であり、さらに好ましくは65~100℃であり、特に好ましくは70~90℃である。上限温度は多孔質基材(例えば高分子基材)が熱で変形しない程度の温度を選択すればよい。高温保持の時間はLDH含有機能層の目的とする密度と厚さに応じて適宜決定すればよい。前述のとおり、尿素の加水分解を経てpHが上昇した原料水溶液中で、共存する金属イオンが水酸化物を形成することにより、LDHを他の化合物相(Al、CO及びOHを含む化合物相)を伴った形態で得ることができる。また、加水分解に二酸化炭素の発生を伴うため、陰イオンが炭酸イオン型のLDHを得ることができる。 The high temperature holding after immersion in the porous substrate is also preferably performed at 60 to 150 ° C., more preferably 65 to 120 ° C., further preferably 65 to 100 ° C., and particularly preferably 70 to 90 ° C. It is. The upper limit temperature may be selected so that the porous substrate (for example, the polymer substrate) is not deformed by heat. The high temperature holding time may be appropriately determined according to the target density and thickness of the LDH-containing functional layer. As described above, the coexisting metal ions form hydroxides in the raw material aqueous solution whose pH has been increased through the hydrolysis of urea, whereby LDH is converted into other compound phases (compound phases containing Al, CO 3 and OH). ). Further, since carbon dioxide is generated in the hydrolysis, LDH in which the anion is carbonate ion type can be obtained.
 機能層形成後、容器から多孔質基材を取り出し、イオン交換水で洗浄するのが好ましい。 After forming the functional layer, the porous substrate is preferably taken out from the container and washed with ion exchange water.
 上記のようにして製造されたLDH含有複合材料におけるLDH含有機能層は、LDH板状粒子が高度に緻密化したものであり、しかも伝導に有利な垂直方向に配向したものである。特に、十分なガスタイト性を有する緻密性を有するLDH含有機能層を亜鉛空気電池等の電池に用いた場合、発電性能の向上が見込めると共に、従来適用できなかった電解液を用いる亜鉛空気電池の二次電池化の大きな障壁となっている亜鉛デンドライト進展阻止及び二酸化炭素侵入防止用セパレータ等への新たな適用が期待される。また、同様に亜鉛デンドライト進展が実用化の大きな障壁となっているニッケル亜鉛電池にも適用が期待される。 The LDH-containing functional layer in the LDH-containing composite material produced as described above is one in which LDH plate-like particles are highly densified and are oriented in the vertical direction advantageous for conduction. In particular, when an LDH-containing functional layer having sufficient gas tightness is used for a battery such as a zinc-air battery, an improvement in power generation performance can be expected, and two types of zinc-air batteries using an electrolytic solution that could not be applied conventionally are used. It is expected to be applied to new separators such as zinc dendrite progress barrier and carbon dioxide invasion separator, which is a big barrier for the next battery. Similarly, it is expected to be applied to a nickel-zinc battery in which the progress of zinc dendrite is a major barrier to practical use.
 ところで、上記製造方法により得られるLDH含有機能層は多孔質基材の両面に形成されうる。このため、LDH含有複合材料をセパレータとして好適に使用可能な形態とするためには、成膜後に多孔質基材の片面のLDH含有機能層を機械的に削るか、あるいは成膜時に片面にはLDH含有機能層が成膜できないような措置を講ずるのが望ましい。 By the way, the LDH-containing functional layer obtained by the above production method can be formed on both surfaces of the porous substrate. For this reason, in order to make the LDH-containing composite material suitable for use as a separator, the LDH-containing functional layer on one side of the porous substrate is mechanically scraped after film formation, or on one side during film formation. It is desirable to take measures so that the LDH-containing functional layer cannot be formed.
 本発明を以下の例によってさらに具体的に説明する。 The present invention will be described more specifically with reference to the following examples.
 以下、多孔質基材上に層状複水酸化物配向膜を作製した例を示す。なお、以下の例で作製される膜試料の評価方法は以下のとおりとした。 Hereinafter, an example in which a layered double hydroxide alignment film is produced on a porous substrate will be shown. In addition, the evaluation method of the film | membrane sample produced in the following examples was as follows.
 評価1:膜試料の同定
 X線回折装置(リガク社製 RINT TTR III)にて、線源:Cu-Kα、電圧:50kV、電流値:300mA、測定範囲:5~70°の測定条件で、膜試料の結晶相を測定してXRDプロファイルを得る。得られたXRDプロファイルについて、JCPDSカードNO.35-0964に記載される層状複水酸化物(ハイドロタルサイト類化合物)、Al(CO(OH)13・zHO等の回折ピークを用いて同定を行った。
Evaluation 1 : Identification of a film sample Using an X-ray diffractometer (RINT TTR III manufactured by Rigaku Corporation), a radiation source: Cu-Kα, a voltage: 50 kV, a current value: 300 mA, a measurement range: 5 to 70 °, An XRD profile is obtained by measuring the crystalline phase of the membrane sample. About the obtained XRD profile, JCPDS card NO. Identification was performed using diffraction peaks of layered double hydroxide (hydrotalcite compound), Al 5 (CO 3 ) 3 (OH) 13 · zH 2 O described in 35-0964.
 評価2:微構造の観察
 膜試料の表面微構造を走査型電子顕微鏡(SEM、JSM-6610LV、JEOL社製)を用いて10~20kVの加速電圧で観察した。また、イオンミリング装置(日立ハイテクノロジーズ社製、IM4000によって、膜試料の断面研磨面を得た後に、この断面研磨面の微構造を表面微構造の観察と同様の条件でSEMにより観察した。
Evaluation 2 : Observation of microstructure The surface microstructure of the film sample was observed with a scanning electron microscope (SEM, JSM-6610LV, manufactured by JEOL) at an acceleration voltage of 10 to 20 kV. Moreover, after obtaining the cross-sectional polished surface of the film sample with an ion milling device (manufactured by Hitachi High-Technologies Corporation, IM4000), the microstructure of the cross-sectional polished surface was observed by SEM under the same conditions as the observation of the surface microstructure.
 評価3:緻密性判定試験I
 膜試料が透水性を有しない程の緻密性を有することを確認すべく、緻密性判定試験を以下のとおり行った。まず、図4Aに示されるように、LDH含有複合材料試料120(1cm×1cm平方に切り出されたもの)の膜試料側に、中央に0.5cm×0.5cm平方の開口部122aを備えたシリコンゴム122を接着し、得られた積層物を2つのアクリル製容器124,126で挟んで接着した。シリコンゴム122側に配置されるアクリル製容器124は底が抜けており、それによりシリコンゴム122はその開口部122aが開放された状態でアクリル製容器124と接着される。一方、複合材料試料120の多孔質基材側に配置されるアクリル製容器126は底を有しており、その容器126内にはイオン交換水128が入っている。この時、イオン交換水にAl及び/又はMgを溶解させておいてもよい。すなわち、組み立て後に上下逆さにすることで、複合材料試料120の多孔質基材側にイオン交換水128が接するように各構成部材が配置されてなる。これらの構成部材等を組み立て後、総重量を測定した。なお、容器126には閉栓された通気穴(図示せず)が形成されており、上下逆さにした後に開栓されることはいうまでもない。図4Bに示されるように組み立て体を上下逆さに配置して25℃で1週間保持した後、総重量を再度測定した。このとき、アクリル製容器124の内側側面に水滴が付着している場合には、その水滴を拭き取った。そして、試験前後の総重量の差を算出することにより緻密度を判定した。25℃で1週間保持した後においても、イオン交換水の重量に変化は見られなかった場合に、膜試料(すなわち機能膜)は透水性を有しない程に高い緻密性を有するものと判定した。
Evaluation 3 : Density judgment test I
In order to confirm that the membrane sample has a denseness that does not have water permeability, a denseness determination test was performed as follows. First, as shown in FIG. 4A, an opening 122a having a size of 0.5 cm × 0.5 cm square was provided at the center on the film sample side of the LDH-containing composite material sample 120 (one cut into 1 cm × 1 cm square). Silicon rubber 122 was bonded, and the resulting laminate was bonded between two acrylic containers 124 and 126. The bottom of the acrylic container 124 disposed on the silicon rubber 122 side is pulled out, whereby the silicon rubber 122 is bonded to the acrylic container 124 with the opening 122a open. On the other hand, the acrylic container 126 disposed on the porous substrate side of the composite material sample 120 has a bottom, and ion-exchanged water 128 is contained in the container 126. At this time, Al and / or Mg may be dissolved in the ion exchange water. That is, by assembling the components upside down after assembly, the constituent members are arranged so that the ion exchange water 128 is in contact with the porous substrate side of the composite material sample 120. After assembling these components, the total weight was measured. Needless to say, the container 126 has a closed vent hole (not shown) and is opened after being turned upside down. As shown in FIG. 4B, the assembly was placed upside down and held at 25 ° C. for 1 week, after which the total weight was measured again. At this time, when water droplets were attached to the inner side surface of the acrylic container 124, the water droplets were wiped off. Then, the density was determined by calculating the difference in the total weight before and after the test. Even after holding at 25 ° C. for 1 week, when no change was observed in the weight of the ion-exchanged water, it was determined that the membrane sample (that is, the functional membrane) was so dense that it had no water permeability. .
 評価4:緻密性判定試験II
 膜試料が通気性を有しない程の緻密性を有することを確認すべく、緻密性判定試験を以下のとおり行った。まず、図5A及び5Bに示されるように、蓋の無いアクリル容器130と、このアクリル容器130の蓋として機能しうる形状及びサイズのアルミナ治具132とを用意した。アクリル容器130にはその中にガスを供給するためのガス供給口130aが形成されている。また、アルミナ治具132には直径5mmの開口部132aが形成されており、この開口部132aの外周に沿って膜試料載置用の窪み132bが形成されてなる。アルミナ治具132の窪み132bにエポキシ接着剤134を塗布し、この窪み132bに複合材料試料136の膜試料136b側を載置してアルミナ治具132に気密かつ液密に接着させた。そして、複合材料試料136が接合されたアルミナ治具132を、アクリル容器130の開放部を完全に塞ぐようにシリコーン接着剤138を用いて気密かつ液密にアクリル容器130の上端に接着させて、測定用密閉容器140を得た。この測定用密閉容器140を水槽142に入れ、アクリル容器130のガス供給口130aを圧力計144及び流量計146に接続して、ヘリウムガスをアクリル容器130内に供給可能に構成した。水槽142に水143を入れて測定用密閉容器140を完全に水没させた。このとき、測定用密閉容器140の内部は気密性及び液密性が十分に確保されており、複合材料試料136の膜試料136b側が測定用密閉容器140の内部空間に露出する一方、複合材料試料136の多孔質基材136a側が水槽142内の水に接触している。この状態で、アクリル容器130内にガス供給口130aを介してヘリウムガスを測定用密閉容器140内に導入した。圧力計144及び流量計146を制御して膜試料136a内外の差圧が0.5atmとなる(すなわちヘリウムガスに接する側に加わる圧力が反対側に加わる水圧よりも0.5atm高くなる)ようにして、複合材料試料136から水中にヘリウムガスの泡が発生するか否かを観察した。その結果、ヘリウムガスに起因する泡の発生は観察されなかった場合に、膜試料136bは通気性を有しない程に高い緻密性を有するものと判定した。
Evaluation 4 : Density determination test II
In order to confirm that the film sample has a denseness that does not have air permeability, a denseness determination test was performed as follows. First, as shown in FIGS. 5A and 5B, an acrylic container 130 without a lid and an alumina jig 132 having a shape and size that can function as a lid for the acrylic container 130 were prepared. The acrylic container 130 is formed with a gas supply port 130a for supplying gas therein. The alumina jig 132 is formed with an opening 132a having a diameter of 5 mm, and a depression 132b for placing a film sample is formed along the outer periphery of the opening 132a. An epoxy adhesive 134 was applied to the depression 132 b of the alumina jig 132, and the film sample 136 b side of the composite material sample 136 was placed in the depression 132 b and adhered to the alumina jig 132 in an air-tight and liquid-tight manner. Then, the alumina jig 132 to which the composite material sample 136 is bonded is adhered to the upper end of the acrylic container 130 in a gas-tight and liquid-tight manner using a silicone adhesive 138 so as to completely close the open portion of the acrylic container 130. A measurement sealed container 140 was obtained. The measurement sealed container 140 was placed in a water tank 142, and the gas supply port 130 a of the acrylic container 130 was connected to a pressure gauge 144 and a flow meter 146 so that helium gas could be supplied into the acrylic container 130. Water 143 was put into the water tank 142 and the measurement sealed container 140 was completely submerged. At this time, the inside of the measurement sealed container 140 is sufficiently airtight and liquid tight, and the membrane sample 136b side of the composite material sample 136 is exposed to the internal space of the measurement sealed container 140, while the composite material sample The porous substrate 136 a side of 136 is in contact with the water in the water tank 142. In this state, helium gas was introduced into the measurement sealed container 140 into the acrylic container 130 via the gas supply port 130a. The pressure gauge 144 and the flow meter 146 are controlled so that the differential pressure inside and outside the membrane sample 136a is 0.5 atm (that is, the pressure applied to the side in contact with the helium gas is 0.5 atm higher than the water pressure applied to the opposite side). Whether or not helium gas bubbles were generated in the water from the composite material sample 136 was observed. As a result, when the generation of bubbles due to helium gas was not observed, it was determined that the film sample 136b had a high density so as not to have air permeability.
 評価5:He透過測定
 He透過性の観点から膜試料の緻密性を評価すべくHe透過試験を以下のとおり行った。まず、図6A及び図6Bに示されるHe透過度測定系310を構築した。He透過度測定系310は、Heガスを充填したガスボンベからのHeガスが圧力計312及び流量計314(デジタルフローメーター)を介して試料ホルダ316に供給され、この試料ホルダ316に保持された緻密膜318の一方の面から他方の面に透過させて排出させるように構成した。
Evaluation 5 : He permeation measurement A He permeation test was performed as follows to evaluate the denseness of the film sample from the viewpoint of He permeability. First, the He transmittance measurement system 310 shown in FIGS. 6A and 6B was constructed. In the He permeability measurement system 310, He gas from a gas cylinder filled with He gas is supplied to a sample holder 316 via a pressure gauge 312 and a flow meter 314 (digital flow meter), and the denseness held in the sample holder 316 is measured. The membrane 318 is configured to be transmitted through one surface from the other surface and discharged.
 試料ホルダ316は、ガス供給口316a、密閉空間316b及びガス排出口316cを備えた構造を有するものであり、次のようにして組み立てた。まず、緻密膜318の外周に沿って接着剤322を塗布して、中央に開口部を有する治具324(ABS樹脂製)に取り付けた。この治具324の上端及び下端に密封部材326a,326bとしてブチルゴム製のパッキンを配設し、さらに密封部材326a,326bの外側から、フランジからなる開口部を備えた支持部材328a,328b(PTFE製)で挟持した。こうして、緻密膜318、治具324、密封部材326a及び支持部材328aにより密閉空間316bを区画した。なお、緻密膜318は多孔質基材320上に形成された複合材料の形態であるが、緻密膜318側がガス供給口316aに向くように配置した。支持部材328a,328bを、ガス排出口316c以外の部分からHeガスの漏れが生じないように、ネジを用いた締結手段330で互いに堅く締め付けた。こうして組み立てられた試料ホルダ316のガス供給口316aに、継手332を介してガス供給管334を接続した。 The sample holder 316 has a structure including a gas supply port 316a, a sealed space 316b, and a gas discharge port 316c, and was assembled as follows. First, an adhesive 322 was applied along the outer periphery of the dense film 318 and attached to a jig 324 (made of ABS resin) having an opening at the center. Support members 328a and 328b (made of PTFE) provided with gaskets made of butyl rubber as sealing members 326a and 326b at the upper and lower ends of the jig 324 and further provided with openings formed from flanges from the outside of the sealing members 326a and 326b. ). Thus, the sealed space 316b was defined by the dense film 318, the jig 324, the sealing member 326a, and the support member 328a. The dense film 318 is in the form of a composite material formed on the porous substrate 320, but the dense film 318 is disposed so that the dense film 318 side faces the gas supply port 316a. The support members 328a and 328b were firmly fastened to each other by fastening means 330 using screws so that He gas leakage did not occur from a portion other than the gas discharge port 316c. A gas supply pipe 334 was connected to the gas supply port 316 a of the sample holder 316 assembled in this way via a joint 332.
 次いで、He透過度測定系310にガス供給管334を経てHeガスを供給し、試料ホルダ316内に保持された緻密膜318に透過させた。このとき、圧力計312及び流量計314によりガス供給圧と流量をモニタリングした。Heガスの透過を1~30分間行った後、He透過度を算出した。He透過度の算出は、単位時間あたりのHeガスの透過量F(cm/min)、Heガス透過時に緻密膜に加わる差圧P(atm)、及びHeガスが透過する膜面積S(cm)を用いて、F/(P×S)の式により算出した。Heガスの透過量F(cm/min)は流量計314から直接読み取った。また、差圧Pは圧力計312から読み取ったゲージ圧を用いた。なお、Heガスは差圧Pが0.05~0.90atmの範囲内となるように供給された。 Next, He gas was supplied to the He permeability measurement system 310 through the gas supply pipe 334 and permeated through the dense film 318 held in the sample holder 316. At this time, the gas supply pressure and the flow rate were monitored by the pressure gauge 312 and the flow meter 314. After permeation of He gas for 1 to 30 minutes, the He permeability was calculated. The calculation of the He permeability is based on the permeation amount F (cm 3 / min) of He gas per unit time, the differential pressure P (atm) applied to the dense film during He gas permeation, and the membrane area S (cm 2 ) and calculated by the formula of F / (P × S). The permeation amount F (cm 3 / min) of He gas was directly read from the flow meter 314. Further, as the differential pressure P, the gauge pressure read from the pressure gauge 312 was used. The He gas was supplied so that the differential pressure P was in the range of 0.05 to 0.90 atm.
 評価6:伝導率の測定
 電解液中での膜試料の伝導率を図7に示される電気化学測定系を用いて以下のようにして測定した。複合材料試料S(LDH膜付き多孔質基材)を両側から厚み1mmシリコーンパッキン40で挟み、内径6mmのPTFE製フランジ型セル42に組み込んだ。電極46として、#100メッシュのニッケル金網をセル42内に直径6mmの円筒状にして組み込み、電極間距離が2.2mmになるようにした。電解液44として、6MのKOH水溶液をセル42内に充填した。電気化学測定システム(ポテンショ/ガルバノスタット-周波数応答アナライザ、ソーラトロン社製1287A型及び1255B型)を用い、周波数範囲は1MHz~0.1Hz、印加電圧は10mVの条件で測定を行い、実数軸の切片を膜試料(LDH膜付き多孔基材)の抵抗とした。上記同様の測定をLDH膜の付いていない多孔質基材のみに対しても行い、多孔質基材のみの抵抗も求めた。複合材料試料S(LDH膜付き多孔基材)の抵抗と基材のみの抵抗の差をLDH膜の抵抗とした。LDH膜の抵抗と、LDHの膜厚及び面積を用いて伝導率を求めた。
Evaluation 6 : Measurement of conductivity The conductivity of the membrane sample in the electrolytic solution was measured as follows using an electrochemical measurement system shown in FIG. The composite material sample S (porous substrate with LDH film) was sandwiched from both sides by a 1 mm thick silicone packing 40 and incorporated into a PTFE flange type cell 42 having an inner diameter of 6 mm. As the electrode 46, a # 100 mesh nickel wire mesh was incorporated into the cell 42 in a cylindrical shape having a diameter of 6 mm so that the distance between the electrodes was 2.2 mm. As the electrolytic solution 44, a 6 M KOH aqueous solution was filled in the cell 42. Using an electrochemical measurement system (potentiometer / galvanostat-frequency response analyzer, Solartron 1287A type and 1255B type), the frequency range is 1 MHz to 0.1 Hz, the applied voltage is 10 mV, and the real axis intercept Was the resistance of the membrane sample (porous substrate with LDH membrane). The same measurement as described above was performed only on the porous substrate without the LDH film, and the resistance of only the porous substrate was also obtained. The difference between the resistance of the composite material sample S (porous substrate with LDH film) and the resistance of only the substrate was defined as the resistance of the LDH film. The conductivity was determined using the resistance of the LDH film and the film thickness and area of the LDH.
 例1(比較)
(1)多孔質基材の作製
 アルミナ粉末(住友化学社製、AES-12)100重量部に対して、分散媒(キシレン:ブタノール=1:1)70重量部、バインダー(ポリビニルブチラール:積水化学工業株式会社製BM-2)11.1重量部、可塑剤(DOP:黒金化成株式会社製)5.5重量部、及び分散剤(花王株式会社製レオドールSP-O30)2.9重量部を混合し、この混合物を減圧下で攪拌して脱泡することにより、スラリーを得た。このスラリーを、テープ成型機を用いてPETフィルム上に、乾燥後膜厚が220μmとなるようにシート状に成型してシート成形体を得た。得られた成形体を2.0cm×2.0cm×厚さ0.022cmの大きさになるよう切り出し、1300℃で2時間焼成して、アルミナ製多孔質基材を得た。
Example 1 (Comparison)
(1) Preparation of porous substrate 70 parts by weight of a dispersion medium (xylene: butanol = 1: 1) and binder (polyvinyl butyral: Sekisui Chemical) with respect to 100 parts by weight of alumina powder (AES-12, manufactured by Sumitomo Chemical Co., Ltd.) BM-2 manufactured by Kogyo Co., Ltd. 11.1 parts by weight, 5.5 parts by weight of a plasticizer (DOP: manufactured by Kurokin Kasei Co., Ltd.), and 2.9 parts by weight of a dispersant (Rheodor SP-O30 manufactured by Kao Corporation) The mixture was stirred and degassed by stirring under reduced pressure to obtain a slurry. The slurry was molded into a sheet shape on a PET film using a tape molding machine so that the film thickness after drying was 220 μm to obtain a sheet molded body. The obtained molded body was cut out to have a size of 2.0 cm × 2.0 cm × thickness 0.022 cm and fired at 1300 ° C. for 2 hours to obtain an alumina porous substrate.
 得られた多孔質基材について、画像処理を用いた手法により、多孔質基材表面の気孔率を測定したところ、40%であった。この気孔率の測定は、1)表面微構造を走査型電子顕微鏡(SEM、JSM-6610LV、JEOL社製)を用いて10~20kVの加速電圧で観察して多孔質基材表面の電子顕微鏡(SEM)画像(倍率10000倍以上)を取得し、2)Photoshop(Adobe社製)等の画像解析ソフトを用いてグレースケールのSEM画像を読み込み、3)[イメージ]→[色調補正]→[2階調化]の手順で白黒の2値画像を作成し、4)黒い部分が占めるピクセル数を画像の全ピクセル数で割った値を気孔率(%)とすることにより行った。この気孔率の測定は多孔質基材表面の6μm×6μmの領域について行われた。 For the obtained porous substrate, the porosity of the porous substrate surface was measured by a technique using image processing, and it was 40%. The porosity is measured by 1) observing the surface microstructure with an accelerating voltage of 10 to 20 kV using a scanning electron microscope (SEM, JSM-6610LV, manufactured by JEOL Co., Ltd.). SEM) image (magnification of 10,000 times or more) is obtained, 2) a grayscale SEM image is read using image analysis software such as Photoshop (manufactured by Adobe), etc. 3) [Image] → [Tone Correction] → [2 A monochrome binary image was created by the procedure of [gradation], and 4) the porosity (%) was obtained by dividing the number of pixels occupied by the black portion by the total number of pixels in the image. This porosity measurement was performed on a 6 μm × 6 μm region on the surface of the porous substrate.
 また、多孔質基材の平均気孔径を測定したところ0.3μmであった。本発明において、平均気孔径の測定は多孔質基材の表面の電子顕微鏡(SEM)画像をもとに気孔の最長距離を測長することにより行った。この測定に用いた電子顕微鏡(SEM)画像の倍率は20000倍であり、得られた全ての気孔径をサイズ順に並べて、その平均値から上位15点及び下位15点、合わせて1視野あたり30点で2視野分の平均値を算出して、平均気孔径を得た。測長には、SEMのソフトウェアの測長機能を用いた。 Further, when the average pore diameter of the porous substrate was measured, it was 0.3 μm. In the present invention, the average pore diameter was measured by measuring the longest distance of the pores based on an electron microscope (SEM) image of the surface of the porous substrate. The magnification of the electron microscope (SEM) image used for this measurement is 20000 times, and all the obtained pore diameters are arranged in order of size, and the top 15 points and the bottom 15 points from the average value, and 30 points per visual field in total. The average value for two visual fields was calculated to obtain the average pore diameter. For length measurement, the length measurement function of SEM software was used.
 得られた多孔質基材をアセトン中で5分間超音波洗浄し、エタノール中で2分間超音波洗浄、その後、イオン交換水中で1分間超音波洗浄した。 The obtained porous substrate was ultrasonically cleaned in acetone for 5 minutes, ultrasonically cleaned in ethanol for 2 minutes, and then ultrasonically cleaned in ion-exchanged water for 1 minute.
(2)多孔質基材のマンガンコート
 硝酸マンガン六水和物へイオン交換水を加え、濃度0.2重量%の硝酸マンガン水溶液を作製した。上記(1)で得られたアルミナ製多孔質基材上へ硝酸マンガン水溶液0.2mlをスピンコートして塗布した。このスピンコートは、回転数8000rpmで10秒間行った。基材を200℃のホットプレートの上へ静置し 、硝酸マンガンを熱分解させて酸化マンガンにした。こうして形成された酸化マンガンはXRD分析によれば非晶質の形態である。なお、上記のように硝酸マンガンを低温で酸化分解して得られる非晶質の酸化マンガンの酸化数は概ね4くらいであるといわれている。
(2) Manganese coat of porous substrate Ion exchange water was added to manganese nitrate hexahydrate to prepare a manganese nitrate aqueous solution having a concentration of 0.2% by weight. On the alumina porous substrate obtained in the above (1), 0.2 ml of manganese nitrate aqueous solution was applied by spin coating. This spin coating was performed at a rotation speed of 8000 rpm for 10 seconds. The substrate was allowed to stand on a hot plate at 200 ° C., and manganese nitrate was thermally decomposed into manganese oxide. The manganese oxide thus formed is in an amorphous form according to XRD analysis. In addition, it is said that the oxidation number of the amorphous manganese oxide obtained by oxidizing and decomposing manganese nitrate at low temperature as mentioned above is about 4 in general.
(3)原料水溶液の作製
 原料として、硝酸マグネシウム六水和物(Mg(NO・6HO、関東化学株式会社製)、硝酸アルミニウム九水和物(Al(NO・9HO、関東化学株式会社製)、及び尿素((NHCO、シグマアルドリッチ製)を用意した。カチオン比(Mg2+/Al3+)が2となり且つ全金属イオンモル濃度(Mg2++Al3+)が0.34mol/Lとなるように、硝酸マグネシウム六水和物と硝酸アルミニウム九水和物を秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとした。得られた溶液を攪拌した後、溶液中に尿素/NO =4の割合で秤量した尿素を加え、更に攪拌して原料水溶液を得た。
(3) As the manufacturing raw material of the raw aqueous solution, magnesium nitrate hexahydrate (Mg (NO 3) 2 · 6H 2 O, manufactured by Kanto Chemical Co., Inc.), aluminum nitrate nonahydrate (Al (NO 3) 3 · 9H 2 O, manufactured by Kanto Chemical Co., Ltd.) and urea ((NH 2 ) 2 CO, manufactured by Sigma-Aldrich) were prepared. Weigh magnesium nitrate hexahydrate and aluminum nitrate nonahydrate so that the cation ratio (Mg 2+ / Al 3+ ) is 2 and the total metal ion molar concentration (Mg 2+ + Al 3+ ) is 0.34 mol / L. In a beaker, ion exchange water was added to make a total volume of 75 ml. After stirring the obtained solution, urea weighed at a ratio of urea / NO 3 = 4 was added to the solution, and further stirred to obtain an aqueous raw material solution.
(4)LDH膜の形成
 テフロン(登録商標)製密閉容器(オートクレーブ容器、内容量100ml、外側がステンレス製ジャケット)に上記(3)で作製した原料水溶液と上記(2)で酸化マンガン被覆された多孔質基材を共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように水平に設置した。その後、原料水溶液を水温80℃で72時間(3日間)保持することにより基材表面に層状複水酸化物配向膜(機能層)の形成を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、層状複水酸化物(以下、LDHという)の緻密膜(以下、膜試料という)を基材上に得た。得られた膜試料の厚さは約1.5μmであった。こうして、層状複水酸化物含有複合材料試料(以下、複合材料試料という)を得た。なお、LDH膜は多孔質基材の両面に形成されていたが、セパレータとしての形態を複合材料に付与するため、多孔質基材の片面のLDH膜を機械的に削り取った。
(4) Formation of LDH film A Teflon (registered trademark) sealed container (autoclave container, inner volume 100 ml, outer jacket made of stainless steel) was coated with the raw material aqueous solution prepared in (3) above and manganese oxide in (2) above. A porous substrate was encapsulated together. At this time, the base material was fixed by being floated from the bottom of a Teflon (registered trademark) sealed container, and placed horizontally so that the solution was in contact with both surfaces of the base material. Thereafter, the raw material aqueous solution was held at a water temperature of 80 ° C. for 72 hours (3 days) to form a layered double hydroxide alignment film (functional layer) on the surface of the substrate. After the elapse of a predetermined time, the substrate is taken out from the sealed container, washed with ion-exchanged water, dried at 70 ° C. for 10 hours, and a dense layer of layered double hydroxide (hereinafter referred to as LDH) (hereinafter referred to as a membrane sample) ) Was obtained on a substrate. The thickness of the obtained film sample was about 1.5 μm. Thus, a layered double hydroxide-containing composite material sample (hereinafter referred to as a composite material sample) was obtained. In addition, although the LDH film was formed on both surfaces of the porous substrate, the LDH film on one surface of the porous substrate was mechanically scraped to give the composite material a form as a separator.
(5)評価結果
 得られたLDH膜試料に対して評価1~6を行った。結果は以下のとおりであった。
‐評価1:XRDプロファイルから、膜試料はLDH(ハイドロタルサイト類化合物)であることが同定された。Al、CO及びOHを含む化合物相として同定されるピークは観察されなかった。
‐評価2:多孔質基材の露出している部分がなく、多孔質基材の表面の全体にわたってLDH膜がムラなく均一に形成されていることが確認された。複合材料試料の表面微構造及び断面微構造のSEM画像をそれぞれ図9A及び9Bに示す。
‐評価3:膜試料は透水性を有しない程に高い緻密性を有することが確認された。
‐評価4:膜試料は通気性を有しない程に高い緻密性を有することが確認された。
‐評価5:膜試料のHe透過度は0cm/min・atmであった。
‐評価6:膜試料の伝導率は0.3mS/cmであった。
(5) Evaluation Results Evaluations 1 to 6 were performed on the obtained LDH film samples. The results were as follows.
-Evaluation 1: From the XRD profile, it was identified that the film sample was LDH (hydrotalcite compound). A peak identified as a compound phase containing Al, CO 3 and OH was not observed.
-Evaluation 2: It was confirmed that there was no exposed portion of the porous substrate, and the LDH film was uniformly formed over the entire surface of the porous substrate. SEM images of the surface microstructure and cross-sectional microstructure of the composite material sample are shown in FIGS. 9A and 9B, respectively.
-Evaluation 3: It was confirmed that the membrane sample has high density so as not to have water permeability.
-Evaluation 4: It was confirmed that the membrane sample has a high density so as not to have air permeability.
-Evaluation 5: The He permeability of the membrane sample was 0 cm 3 / min · atm.
-Evaluation 6: The conductivity of the film sample was 0.3 mS / cm.
 例2~4
 他の化合物相を含むLDH膜の形成を以下のようにして行ったこと以外は例1と同様にして、層状複水酸化物含有複合材料試料を作製した。
Examples 2-4
A layered double hydroxide-containing composite material sample was produced in the same manner as in Example 1 except that the LDH film containing other compound phases was formed as follows.
(LDH膜の形成)
 テフロン(登録商標)製容器(オートクレーブ容器、内容量100ml、外側がステンレス製ジャケット)に上記(3)で作製した原料水溶液を投入した。このとき、容器内が加圧されないよう、ステレンス製ジャケットの蓋を密閉せずに載せたままの状態とした。その後、原料水溶液を水温80℃で17時間(例2)、15時間(例3)又は13時間(例4)保持した後、上記例1の(2)と同様に酸化マンガン被覆された多孔質基材を投入した。原料水溶液の初期pHは約3であったが、80℃での保持の結果、多孔質基材を投入する時点で、pHが7~8のレベルにまで上昇していた。多孔質基材はテフロン(登録商標)製容器の底から浮かせて固定し、基材両面に溶液が接するように水平に設置した。その後、先ほどと同様に、容器内が加圧されないよう、ステレンス製ジャケットの蓋を密閉せずに単に載置しただけの状態とし、水温80℃で所定時間保持することにより基材表面に層状複水酸化物と他の化合物相(Al、CO及びOHを含む)とを含む複合膜(機能層)の形成を行った。原料水溶液の水温80℃での保持時間は、多孔質基材投入前の保持時間と多孔質基材投入後の保持時間の合計が72時間(3日間)となるようにした。所定時間の経過後、基材を容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、層状複水酸化物の緻密膜(以下、膜試料という)を基材上に得た。得られた膜試料の厚さは約1.8μmであった。こうして、層状複水酸化物含有複合材料試料(以下、複合材料試料という)を得た。なお、層状複水酸化物は多孔質基材の両面に形成されていたが、セパレータとしての形態を複合材料に付与するため、多孔質基材の片面の層状複水酸化物を機械的に削り取った。
(Formation of LDH film)
The raw material aqueous solution prepared in the above (3) was charged into a Teflon (registered trademark) container (autoclave container, inner volume 100 ml, outer jacket made of stainless steel). At this time, the lid of the stainless steel jacket was kept without being sealed so that the inside of the container was not pressurized. Thereafter, the raw material aqueous solution was held at a water temperature of 80 ° C. for 17 hours (Example 2), 15 hours (Example 3) or 13 hours (Example 4), and then porous coated with manganese oxide in the same manner as (2) of Example 1 above. The substrate was charged. The initial pH of the aqueous raw material solution was about 3, but as a result of holding at 80 ° C., the pH rose to a level of 7 to 8 when the porous substrate was introduced. The porous substrate was fixed by being floated from the bottom of a Teflon (registered trademark) container, and placed horizontally so that the solution was in contact with both surfaces of the substrate. After that, as before, to prevent the inside of the container from being pressurized, it is simply placed without sealing the cover of the stainless steel jacket and kept at a water temperature of 80 ° C. for a predetermined time to form a layered composite on the substrate surface. A composite film (functional layer) containing a hydroxide and another compound phase (including Al, CO 3 and OH) was formed. The retention time of the raw material aqueous solution at a water temperature of 80 ° C. was such that the total of the retention time before loading the porous substrate and the retention time after loading the porous substrate was 72 hours (3 days). After a predetermined time has elapsed, the substrate is taken out of the container, washed with ion-exchanged water, and dried at 70 ° C. for 10 hours to obtain a dense film of layered double hydroxide (hereinafter referred to as a membrane sample) on the substrate. It was. The thickness of the obtained film sample was about 1.8 μm. Thus, a layered double hydroxide-containing composite material sample (hereinafter referred to as a composite material sample) was obtained. Although the layered double hydroxide was formed on both surfaces of the porous substrate, the layered double hydroxide on one surface of the porous substrate was mechanically scraped to give the composite material a form as a separator. It was.
 得られたLDH膜試料に対して評価1~6を行った。結果は以下のとおりであった。
‐評価1:図8に示されるXRDプロファイルが得られた。このXRDプロファイルから、膜試料はLDH(ハイドロタルサイト類化合物)とAl、CO及びOHを含む化合物相(具体的にはAl(CO(OH)13・zHO(式中、zは0以上である))として同定された。また、2θ=11.6~11.8°に検出される層状複合酸化物に起因するピーク強度ILDH(図中、LDHと記されるピークを参照)に対する、2θ=9.8~10.3°に検出される他の化合物相に起因するピーク強度I(図中、Aと記されるピークを参照)の比、すなわち比I/ILDHを算出したところ表1に示されるとおりであった。
‐評価2:膜試料の表面微構造のSEM画像から、多孔質基材の露出している部分がなく、多孔質基材の表面の全体にわたってLDH膜がムラなく均一に形成されることが確認された。例3において作製された複合材料試料の表面微構造及び断面微構造のSEM画像をそれぞれ図10A及び10Bに示す。
‐評価3:膜試料は透水性を有しない程に高い緻密性を有することが確認された。
‐評価4:膜試料は通気性を有しない程に高い緻密性を有することが確認された。
‐評価5:膜試料のHe透過度は0cm/min・atmであった。
‐評価6:膜試料のイオン伝導率は表1に示されるとおりであった。
Evaluations 1 to 6 were performed on the obtained LDH film samples. The results were as follows.
-Evaluation 1: The XRD profile shown in FIG. 8 was obtained. From this XRD profile, the film sample is a compound phase containing LDH (hydrotalcite compound) and Al, CO 3 and OH (specifically, Al 5 (CO 3 ) 3 (OH) 13 · zH 2 O (wherein , Z is greater than or equal to 0)). Further, 2θ = 9.8 to 10.10 with respect to the peak intensity I LDH (see the peak indicated as LDH in the figure) due to the layered complex oxide detected at 2θ = 11.6 to 11.8 °. As shown in Table 1, the ratio of the peak intensity I A (see the peak marked A in the figure) due to the other compound phase detected at 3 °, that is, the ratio I A / I LDH was calculated. Met.
-Evaluation 2: From the SEM image of the surface microstructure of the membrane sample, it is confirmed that there is no exposed portion of the porous substrate, and the LDH film is uniformly formed over the entire surface of the porous substrate. It was done. SEM images of the surface microstructure and the cross-sectional microstructure of the composite material sample produced in Example 3 are shown in FIGS. 10A and 10B, respectively.
-Evaluation 3: It was confirmed that the membrane sample has high density so as not to have water permeability.
-Evaluation 4: It was confirmed that the membrane sample has a high density so as not to have air permeability.
-Evaluation 5: The He permeability of the membrane sample was 0 cm 3 / min · atm.
-Evaluation 6: The ionic conductivity of the membrane sample was as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (12)

  1.  多孔質基材と、
     前記多孔質基材上及び/又は前記多孔質基材中に設けられ、層状複水酸化物、及びX線回折法により測定した場合に2θ=9.8~10.3°にピークが検出されるAl、CO及びOHを含む他の化合物相を含む、機能層と、
    を備えた、層状複水酸化物含有複合材料。
    A porous substrate;
    A peak is detected at 2θ = 9.8 to 10.3 ° when measured by the layered double hydroxide and X-ray diffraction method provided on and / or in the porous substrate. A functional layer comprising other compound phases comprising Al, CO 3 and OH;
    A layered double hydroxide-containing composite material.
  2.  前記機能層の表面をX線回折法により測定した場合に、2θ=11.6~11.8°に検出される前記層状複合酸化物に起因するピーク強度ILDHに対する、2θ=9.8~10.3°に検出される前記他の化合物相に起因するピーク強度Iの比、すなわち比I/ILDHが0.3以上である、請求項1に記載の層状複水酸化物含有複合材料。 When the surface of the functional layer is measured by an X-ray diffraction method, 2θ = 9.8 to the peak intensity I LDH caused by the layered composite oxide detected at 2θ = 11.6 to 11.8 °. 10.3 ratio of the peak intensity I a due to the other compound phase which is detected °, ie, the ratio I a / I LDH is 0.3 or more, layered double hydroxides contained according to claim 1 Composite material.
  3.  前記層状複水酸化物が複数の板状粒子の集合体で構成され、該複数の板状粒子がそれらの板面が前記多孔質基材の表面と垂直に又は斜めに交差するような向きに配向している、請求項1又は2に記載の層状複水酸化物含有複合材料。 The layered double hydroxide is composed of an aggregate of a plurality of plate-like particles, and the plurality of plate-like particles are oriented so that their plate surfaces intersect perpendicularly or obliquely with the surface of the porous substrate. The layered double hydroxide-containing composite material according to claim 1 or 2, which is oriented.
  4.  前記層状複水酸化物が、M2+ 1-x3+ (OH)n- x/n・mHO(式中、M2+は2価の陽イオンであり、M3+は3価の陽イオンであり、An-はn価の陰イオンであり、nは1以上の整数、xは0.1~0.4であり、mは0以上である)の基本組成式で代表される、請求項1~3のいずれか一項に記載の層状複水酸化物含有複合材料。 The layered double hydroxide is M 2+ 1-x M 3+ x (OH) 2 A n− x / n · mH 2 O (wherein M 2+ is a divalent cation and M 3+ is trivalent) A n− is an n-valent anion, n is an integer of 1 or more, x is 0.1 to 0.4, and m is 0 or more). The layered double hydroxide-containing composite material according to any one of claims 1 to 3.
  5.  前記機能層が前記多孔質基材上に設けられる、請求項1~4のいずれか一項に記載の層状複水酸化物含有複合材料。 The layered double hydroxide-containing composite material according to any one of claims 1 to 4, wherein the functional layer is provided on the porous substrate.
  6.  前記機能層が100μm以下の厚さを有する、請求項1~5のいずれか一項に記載の層状複水酸化物含有複合材料。 The layered double hydroxide-containing composite material according to any one of claims 1 to 5, wherein the functional layer has a thickness of 100 µm or less.
  7.  前記機能層が50μm以下の厚さを有する、請求項1~5のいずれか一項に記載の層状複水酸化物含有複合材料。 The layered double hydroxide-containing composite material according to any one of claims 1 to 5, wherein the functional layer has a thickness of 50 µm or less.
  8.  前記機能層が5μm以下の厚さを有する、請求項1~5のいずれか一項に記載の層状複水酸化物含有複合材料。 The layered double hydroxide-containing composite material according to any one of claims 1 to 5, wherein the functional layer has a thickness of 5 µm or less.
  9.  前記機能層が透水性を有しない、請求項1~8のいずれか一項に記載の層状複水酸化物含有複合材料。 The layered double hydroxide-containing composite material according to any one of claims 1 to 8, wherein the functional layer does not have water permeability.
  10.  前記機能層が通気性を有しない、請求項1~9のいずれか一項に記載の層状複水酸化物含有複合材料。 The layered double hydroxide-containing composite material according to any one of claims 1 to 9, wherein the functional layer does not have air permeability.
  11.  前記機能層は、単位面積あたりのHe透過度が10cm/min・atm以下である、請求項1~10のいずれか一項に記載の層状複水酸化物含有複合材料。 The layered double hydroxide-containing composite material according to any one of claims 1 to 10, wherein the functional layer has a He permeability per unit area of 10 cm / min · atm or less.
  12.  請求項1~11のいずれか一項に記載の層状複水酸化物含有複合材料をセパレータとして備えた電池。

     
    A battery comprising the layered double hydroxide-containing composite material according to any one of claims 1 to 11 as a separator.

PCT/JP2017/002266 2016-03-09 2017-01-24 Composite material containing layered double hydroxide, and battery WO2017154386A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018504044A JP6614728B2 (en) 2016-03-09 2017-01-24 Layered double hydroxide-containing composite material and battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016045437 2016-03-09
JP2016-045437 2016-03-09

Publications (1)

Publication Number Publication Date
WO2017154386A1 true WO2017154386A1 (en) 2017-09-14

Family

ID=59789190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002266 WO2017154386A1 (en) 2016-03-09 2017-01-24 Composite material containing layered double hydroxide, and battery

Country Status (2)

Country Link
JP (1) JP6614728B2 (en)
WO (1) WO2017154386A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001019428A (en) * 1999-06-30 2001-01-23 Sakai Chem Ind Co Ltd Production of metal ion introduced hydrotalcite compound and method for capturing metal ion
WO2015098610A1 (en) * 2013-12-27 2015-07-02 日本碍子株式会社 Layered-double-hydroxide-containing composite material and method for producing same
WO2015152279A1 (en) * 2014-03-31 2015-10-08 国立大学法人信州大学 Dispersion of hydrotalcite-like compound and flame-resistant coating using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001019428A (en) * 1999-06-30 2001-01-23 Sakai Chem Ind Co Ltd Production of metal ion introduced hydrotalcite compound and method for capturing metal ion
WO2015098610A1 (en) * 2013-12-27 2015-07-02 日本碍子株式会社 Layered-double-hydroxide-containing composite material and method for producing same
WO2015152279A1 (en) * 2014-03-31 2015-10-08 国立大学法人信州大学 Dispersion of hydrotalcite-like compound and flame-resistant coating using same

Also Published As

Publication number Publication date
JP6614728B2 (en) 2019-12-04
JPWO2017154386A1 (en) 2018-09-27

Similar Documents

Publication Publication Date Title
JP6617200B2 (en) Functional layer and composite material containing layered double hydroxide
JP5951164B1 (en) Layered double hydroxide film and layered double hydroxide-containing composite material
WO2017221989A1 (en) Functional layer including layered double hydroxide, and composite material
JP6864758B2 (en) Functional layers and composite materials containing layered double hydroxides
US10199624B2 (en) Layered double hydroxide-containing composite material
JP2018026205A (en) Negative electrode structure and zinc secondary battery including the same
WO2017221988A1 (en) Functional layer including layered double hydroxide, and composite material
JP6038410B1 (en) Hydroxide ion conductive dense membrane and composite material
JP6243583B1 (en) Functional layer and composite material containing layered double hydroxide
WO2017221531A1 (en) Functional layer including layered double hydroxide, and composite material
JP6454555B2 (en) Evaluation method of hydroxide ion conductive dense membrane
JP2017024949A (en) Layered double hydroxide-containing composite material
JP6586221B2 (en) Method for selecting an adhesive suitable for manufacturing an alkaline secondary battery, and an alkaline secondary battery
JP6441693B2 (en) Evaluation method of hydroxide ion conductive dense membrane
JP6614728B2 (en) Layered double hydroxide-containing composite material and battery
WO2017221526A1 (en) Functional layer including layered double hydroxide, and composite material

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018504044

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17762732

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17762732

Country of ref document: EP

Kind code of ref document: A1