WO2017154160A1 - Base station, terminal, radio communication system and processing method - Google Patents

Base station, terminal, radio communication system and processing method Download PDF

Info

Publication number
WO2017154160A1
WO2017154160A1 PCT/JP2016/057479 JP2016057479W WO2017154160A1 WO 2017154160 A1 WO2017154160 A1 WO 2017154160A1 JP 2016057479 W JP2016057479 W JP 2016057479W WO 2017154160 A1 WO2017154160 A1 WO 2017154160A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
random access
radio resource
base station
access signal
Prior art date
Application number
PCT/JP2016/057479
Other languages
French (fr)
Japanese (ja)
Inventor
中村 道春
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2016/057479 priority Critical patent/WO2017154160A1/en
Publication of WO2017154160A1 publication Critical patent/WO2017154160A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]

Definitions

  • the present invention relates to a base station, a terminal, a wireless communication system, and a processing method.
  • LTE Long Term Evolution
  • 3G third generation mobile communication system
  • LTE-Advanced corresponding to fourth generation mobile communication system LTE-Advanced corresponding to fourth generation mobile communication system
  • 5G fifth generation mobile communication system
  • LTE is an abbreviation for Long Term Evolution.
  • RACH Random Access Channel
  • JP2013-192251A JP 2012-186841 A Japanese Patent Application Laid-Open No. 2010-200337 JP 2013-55461 A International Publication No. 2012/108046 International Publication No. 2012/077237 Special table 2014-522205 gazette JP2015-65485A JP 2011-205242 A JP 2010-98707 A
  • an object of the present invention is to provide a base station, a terminal, a wireless communication system, and a processing method that can shorten the time until data transmission is possible.
  • a terminal transmits a random access signal using a first radio resource, and a base station transmits using the first radio resource.
  • the random access signal to the received local station is received, the terminal that has transmitted the random access signal is identified based on the received random access signal, and a response signal to the random access signal is identified.
  • the terminal transmits a response signal permitting data to be transmitted to the local station using a second radio resource different from the first radio resource, and the terminal is based on the response signal transmitted from the base station.
  • the base station transmits data to the base station using the second radio resource, and the base station transmits data transmitted from the terminal using the second radio resource.
  • Base station receiving terminal, a wireless communication system and processing method are proposed.
  • FIG. 1 is a diagram illustrating an example of a wireless communication system according to an embodiment.
  • FIG. 2 is a diagram illustrating another example of the wireless communication system according to the embodiment.
  • FIG. 3 is a diagram illustrating an example of a configuration of a radio frame in the radio communication system according to the embodiment.
  • FIG. 4 is a diagram illustrating another example of a configuration of a radio frame in the radio communication system according to the embodiment.
  • FIG. 5 is a flowchart illustrating an example of processing in the wireless communication system according to the embodiment.
  • FIG. 6 is a diagram of an example of the base station according to the embodiment.
  • FIG. 7 is a diagram illustrating an example of a terminal according to the embodiment.
  • FIG. 8 is a flowchart illustrating an example of processing performed by the base station according to the embodiment.
  • FIG. 9 is a flowchart illustrating another example of processing performed by the base station according to the embodiment.
  • FIG. 10 is a flowchart illustrating an example of processing performed by the terminal according to the embodiment.
  • FIG. 11 is a flowchart illustrating another example of processing performed by the terminal according to the embodiment.
  • FIG. 12 is a diagram illustrating an example of a radio frame according to the first embodiment.
  • FIG. 13 is a flowchart of an example of processing in the wireless communication system according to the first embodiment.
  • FIG. 14 is a diagram illustrating an example of a configuration of a radio frame in the radio communication system according to the second embodiment.
  • FIG. 15 is a flowchart of an example of processing in the wireless communication system according to the third embodiment.
  • FIG. 16 is a flowchart of an example of processing in the wireless communication system according to the fourth embodiment.
  • FIG. 17 is a diagram of an example of the first radio resource according to the sixth embodiment.
  • FIG. 18 is a diagram illustrating an example of a sequence of a random access signal according to the sixth embodiment.
  • FIG. 19 is a diagram of an example of the first radio resource according to the seventh embodiment.
  • FIG. 20 is a diagram of an example of the first radio resource according to the eighth embodiment.
  • FIG. 1 is a diagram illustrating an example of a wireless communication system according to an embodiment.
  • a radio communication system 100 includes a base station 110 and a terminal 120.
  • the base station 110 is a radio base station that forms a cell and can perform radio communication with terminals located in the formed cell.
  • the terminal 120 is located in the cell of the base station 110 and is a wireless terminal capable of wireless communication with the base station 110 by connecting to the base station 110.
  • the base station 110 includes a receiving unit 111, a specifying unit 112, and a transmitting unit 113.
  • the receiving unit 111 receives the random access signal transmitted to the own station transmitted by the first radio resource, and outputs the received random access signal to the specifying unit 112.
  • the random access signal is, for example, a random access preamble in a random access procedure.
  • the first radio resource is a radio resource that the base station 110 broadcasts in its own cell as a radio resource for transmitting a random access signal to the base station 110, for example.
  • the first radio resource may be a radio resource that is set in advance in the radio communication system 100 and is known in the base station 110 and the terminal 120.
  • a radio resource is a combination of a frequency resource and a time resource.
  • the identifying unit 112 identifies the terminal 120 that has transmitted the random access signal based on the random access signal output from the receiving unit 111.
  • the identification of the terminal 120 is identification of the identifier of the terminal 120, for example.
  • the identifier of the terminal 120 is an identifier such as IMSI or IMEI.
  • IMSI stands for International Mobile Subscriber Identity (International Mobile Subscriber Identifier).
  • IMEI is an abbreviation for International Mobile Equipment Identity (international mobile equipment identifier).
  • the random access signal transmitted by the terminal 120 is a random access signal of a specific sequence assigned only to the terminal 120.
  • the sequence is a bit string (bit pattern) used for a random access signal (preamble).
  • the specifying unit 112 can specify the terminal 120 based on the result of assigning a specific sequence to the terminal 120 and the sequence of the random access signal output from the receiving unit 111.
  • the assignment result of the specific sequence to the terminal 120 is correspondence information that associates the specific sequence with the identifier of the terminal 120.
  • the random access signal transmitted by the terminal 120 is a radio resource included in the first radio resource, and may be a random access signal transmitted by a specific radio resource allocated only to the terminal 120.
  • the specifying unit 112 can specify the terminal 120 based on the result of assignment of a specific radio resource to the terminal 120 and the radio resource to which the random access signal output from the receiving unit 111 is transmitted.
  • the assignment result of the specific radio resource to the terminal 120 is correspondence information that associates the specific radio resource with the identifier of the terminal 120.
  • the random access signal transmitted by the terminal 120 is a random access signal of a specific sequence assigned to the terminal 120 and is transmitted by a specific radio resource assigned to the terminal 120. It may be.
  • the combination of the specific sequence and the specific radio resource is a combination assigned only to the terminal 120.
  • the identifying unit 112 can identify the terminal 120 based on the allocation result of the specific sequence and the specific radio resource to the terminal 120 and the radio resource to which the sequence of the random access signal and the random access signal are transmitted.
  • the assignment result of the specific sequence and the specific radio resource to the terminal 120 is correspondence information that associates the combination of the specific sequence and the specific radio resource with the identifier of the terminal 120.
  • the allocation of the specific sequence and the specific radio resource to the terminal 120 is, for example, when the terminal 120 performs initial access to the base station 110 or when the terminal 120 performs location registration via the base station 110.
  • the base station 110 can perform this. In this case, the base station 110 notifies the terminal 120 of a specific sequence assigned to the terminal 120 and a specific radio resource.
  • the terminal 120 When data to be transmitted to the base station 110 is generated, the terminal 120 transmits a random access signal to the base station 110 using a specific sequence or a specific radio resource notified from the base station 110. Thereby, the identifying unit 112 of the base station 110 can identify the terminal 120 based on the random access signal transmitted by the terminal 120.
  • the method for identifying the terminal 120 based on the random access signal is not limited to these.
  • a specific sequence or a specific radio resource may be allocated to the terminal 120 in advance based on the contract content of the user of the terminal 120.
  • information indicating a specific sequence or a specific radio resource allocated in advance to the terminal 120 is stored in the memory of the terminal 120.
  • the terminal 120 transmits a random access signal using a specific sequence or a specific radio resource based on the information stored in the memory.
  • Correspondence information that associates a specific sequence or a specific radio resource assigned to terminal 120 in advance with the identifier of terminal 120 is stored in the memory of base station 110.
  • the base station 110 identifies the terminal 120 based on the correspondence information stored in the memory.
  • the identifying unit 112 notifies the transmitting unit 113 of the identification result when the terminal 120 can be identified based on the random access signal.
  • the case where the terminal 120 can be specified is, for example, a case where a random access signal transmitted from the terminal 120 is normally received and a specific sequence can be identified.
  • the transmission unit 113 transmits a response signal to the random access signal from the terminal 120 to the terminal 120 based on the identification result notified from the identification unit 112.
  • the response signal transmitted by the transmission unit 113 is transmitted as an individual control signal from the base station 110 to the terminal 120, for example.
  • the response signal transmitted by the transmission unit 113 may be transmitted by a predetermined radio resource that is uniquely determined from the first radio resource to which the random access signal is transmitted. Thereby, the terminal 120 can receive the response signal transmitted by the transmission unit 113.
  • the transmission unit 113 transmits a response signal to be transmitted to the terminal 120 when the identifying unit 112 has identified the terminal 120, and data transmission that allows the terminal 120 to transmit data to the own station using the second radio resource.
  • the second radio resource is a radio resource different from the first radio resource. Further, the second radio resource may be notified to terminal 120 by a data transmission permission signal, or may be notified to terminal 120 in advance by broadcast information from base station 110 or the like.
  • the terminal 120 can transmit data (for example, user data) to the base station 110 using the second radio resource allocated from the base station 110 based on the response signal received from the base station 110.
  • the reception unit 111 of the base station 110 receives data transmitted from the terminal 120 using the second radio resource.
  • the terminal 120 includes a transmission unit 121 and a reception unit 122.
  • Transmitter 121 transmits a random access signal to base station 110 using the first radio resource described above.
  • the transmission unit 121 identifies the first radio resource from the broadcast information from the base station 110, and transmits a random access signal to the base station 110 using the identified first radio resource.
  • the reception unit 122 receives a response signal from the base station 110 to the random access signal transmitted by the transmission unit 121, and outputs the received response signal to the transmission unit 121.
  • the response signal output from the reception unit 122 is a data transmission permission signal that allows the terminal to transmit data to the base station 110 using the second radio resource
  • the transmission unit 121 transmits the second radio signal.
  • Data (user data) is transmitted to the base station 110 by the resource.
  • the base station 110 when the base station 110 can identify the terminal 120 based on the random access signal, the terminal 120 is permitted to transmit data using a response signal to the random access signal. it can. Thereby, a part of the random access procedure is omitted, and the time until data transmission from the terminal 120 to the base station 110 becomes possible can be shortened.
  • the transmitting unit 113 of the base station 110 sets the response signal transmitted to the terminal 120 as a random access signal retransmission request signal.
  • the case where the terminal 120 could not be identified is a case where the random access signal transmitted by the terminal 120 could not be normally received due to the influence of reception power, interference, etc., and a specific sequence could not be identified.
  • the random access signal retransmission request signal is a signal for requesting the terminal 120 to retransmit the random access signal using the third radio resource.
  • the third radio resource is, for example, a radio resource different from the first radio resource.
  • retransmission of the random access signal is performed in a radio resource that does not compete with the initial transmission of the random access signal, and the success rate of retransmission of the random access signal can be improved.
  • the third radio resource may be notified to terminal 120 by a random access signal retransmission request signal, or may be notified to terminal 120 in advance by broadcast information from base station 110 or the like.
  • the transmission unit 121 of the terminal 120 When the transmission unit 121 of the terminal 120 outputs a response signal including information indicating the third radio resource for the terminal itself to retransmit the random access signal to the base station 110, the response signal output from the reception unit 122 is Then, the random access signal is retransmitted by the third radio resource.
  • the terminal 120 randomly generates the third wireless resource different from the first wireless resource.
  • the access signal can be retransmitted.
  • the random access signal can be retransmitted using the radio resource used only by the terminal 120 that failed to transmit the random access signal. For this reason, the success rate of retransmission of a random access signal can be improved, and the time until data transmission from the terminal 120 to the base station 110 becomes possible can be shortened.
  • the base station 110 allocates the third radio resource to communication between another terminal different from the terminal 120 and the own station. Also good. As a result, the third radio resource that is not used for retransmission of the random access signal can be used for communication between the other terminal and the own station, and the utilization efficiency of the radio resource can be improved.
  • the random access signal transmitted by the terminal 120 may include information on data (user data) transmitted from the terminal 120 to the base station 110 in addition to the random access preamble. Thereby, the information regarding the data transmitted from the terminal 120 to the base station 110 can be efficiently transmitted to the base station 110.
  • Information related to data can be, for example, information indicating at least one of the presence of data to be transmitted from the terminal 120 to the base station 110 and the amount of data to be transmitted from the terminal 120 to the base station 110.
  • the base station 110 notifies the base station 110 of the amount of data to be transmitted from the terminal 120 to the base station 110 by using a random access signal, so that the base station 110 can transmit the second wireless signal without excess or deficiency with respect to data transmission from the terminal 120 Resources can be allocated. For this reason, the utilization efficiency of a radio
  • the random access signal transmitted by the terminal 120 may include at least a part of data (user data) transmitted from the terminal 120 to the base station 110. Thereby, data transmitted from terminal 120 to base station 110 can be efficiently transmitted to base station 110.
  • FIG. 2 is a diagram illustrating another example of the wireless communication system according to the embodiment.
  • the radio communication system 200 shown in FIG. 2 includes a base station 210 and terminals 221 to 224.
  • a cell 211 is a cell of the base station 210.
  • Terminals 221 to 224 are terminals located in the cell 211.
  • the terminal 221 is an information terminal such as a mobile phone or a smartphone that communicates with the base station 210 using an application such as a web browser.
  • the terminal 222 is a communication terminal applied to a thermometer, and transmits information indicating the measurement result of the thermometer to the base station 210, for example.
  • the terminal 223 is a communication terminal applied to a monitoring device such as a monitoring camera, and transmits, for example, image data and moving image data obtained by photographing with the monitoring camera to the base station 210.
  • the terminal 224 is a communication terminal applied to the fire alarm, and transmits information for notifying the discovery of a fire to the base station 210, for example.
  • a base station controls radio resources used by a terminal, and the terminal communicates with the base station using radio resources instructed to the base station.
  • the radio resource given to the terminal is basically exclusive with other terminals, so that a plurality of terminals can communicate with the base station without competing radio resources.
  • a cellular radio communication system it is necessary to request allocation of radio resources for transmitting data from a terminal side to a base station in various situations.
  • a situation for example, when the mobile phone terminal starts a call, or when the user temporarily stops communication while the user is browsing the web, For example, requesting page data.
  • the terminal is a sensor such as a thermometer, a rain gauge, and a power meter, and the terminal is ready to start transmitting data sensed.
  • the terminal may be a monitoring device such as detecting a suspicious person or finding a fire, and may notify the abnormality when the terminal detects the abnormality.
  • the data transmitted from the terminal to the base station is, for example, data indicating that the data for the next page of the web is requested, temperature, rainfall, power measurement data, suspicious persons or fires are detected. There is data to show that we did. These are data at the application level.
  • On the communication system further control the communication, such as data indicating the application, data indicating the source and destination of the data on the network, data indicating the order of the data, and data for detecting that there is an error. Data to which each piece of information is added is transmitted.
  • communication channel coding is performed on data to be transmitted.
  • the data transmitted / received on the radio resource by the terminal or the base station refers to data after, for example, data for controlling communication is added to application level data and further processing for channel coding is performed.
  • “Overall description; Stage 2” of TS36.300 of 3GPP defines a random access procedure for the purpose of requesting allocation of radio resources for transmitting data from the terminal side to the base station.
  • 3GPP is an abbreviation for 3rd Generation Partnership Project.
  • 3GPP TS36.211 defines a waveform of a random access preamble that is actually used.
  • the random access preamble defined in TS 36.211 is a time waveform obtained by IFFT of a Zadoff Chu sequence having a bit length of 839 or 139.
  • IFFT is an abbreviation for Inverse Fast Fourier Transform (Inverse Fast Fourier Transform).
  • the base station has a known waveform of 64 random access preambles used. For this reason, the base station can detect which random access preamble is transmitted among the 64 random access preambles by performing a correlation operation between the received signal and the known random access preamble.
  • the terminal first transmits one random access preamble randomly selected from 64 random access preambles as message 1 (MSG1).
  • the base station returns a random access response as message 2 (MSG2).
  • a plurality of terminals may select and transmit the same random access preamble, and it is not specified which terminal communicates with the base station.
  • the terminal transmits a connection request signal (also called Scheduled Transmission) including its own ID as message 3 (MSG3), and the base station starts a procedure for specifying the received ID and putting the terminal in a connected state.
  • a connection request signal also called Scheduled Transmission
  • MSG3 message 3
  • the terminal transmits a scheduling request signal after the connection procedure including its own ID is started and becomes connected.
  • the terminal can transmit data using the specified radio resource only after receiving a transmission grant (UL grant) in which the radio resource used for data transmission is specified from the base station.
  • UL grant transmission grant
  • the terminal may not start the connection procedure for its own ID even if it transmits a connection request signal including its own ID for the obtained random access response. In such a case, the terminal starts over from transmission of the random access preamble. Even when the procedure up to the connection state has already been executed and the terminal is in the connection state, the procedure after the transmission of the scheduling request (SR) signal is required.
  • SR scheduling request
  • a wireless system that multiplexes by the CSMA method typified by a wireless LAN
  • a wireless LAN there is no equivalent to a base station in a cellular wireless system that manages wireless resources, and a terminal transmits data by self-judgment.
  • LAN is an abbreviation for Local Area Network.
  • CSMA is an abbreviation for Carrier Sense Multiple Access (carrier sense multiple access).
  • a terminal receives a radio resource to be transmitted for a certain period according to a certain random number, and performs transmission when it is determined that the radio resource is unused. After the transmission, if the terminal does not receive a reception acknowledgment signal (ACK) from the transmission destination partner, the terminal determines that the transmission has competed with another terminal and performs retransmission.
  • ACK reception acknowledgment signal
  • the terminal When retransmitting, the terminal selects a reception time of radio resources to determine whether or not transmission is possible with a random number from the extended period. As a result, it is possible to reduce the probability that terminals that have competed for transmission compete again. Before the terminal transmits, it confirms that the radio resource is unused for the time according to the random number, so it takes inevitably the time when the radio resource is unused, and the average time generates a random number. It becomes the average of time. This average time becomes longer when transmission competition by a plurality of terminals occurs.
  • the base station 110 shown in FIG. 1 can be realized by the base station 210, for example.
  • the terminal 120 shown in FIG. 1 can be realized by each of the terminals 221 to 224, for example. As a result, it is possible to shorten the time from when the data to be transmitted to the base station 110 is generated in the terminals 221 to 224 until the data is transmitted to the base station 110.
  • FIG. 3 is a diagram illustrating an example of a configuration of a radio frame in the radio communication system according to the embodiment.
  • the horizontal axis indicates the time of the radio resource
  • the vertical axis indicates the frequency of the radio resource.
  • DL Down Link
  • UL Up Link
  • the radio resource 301 is a radio resource in the DL period 311.
  • the radio resource 301 is a radio resource assigned to downlink control information or broadcast information.
  • the downlink control information or broadcast information of the radio resource 301 is information indicating an arrangement of a radio resource 302 (first radio resource) described later.
  • the radio resource 302 is a radio resource in the UL period 312.
  • Radio resource 302 is a radio resource (first radio resource) for transmitting a random access signal.
  • the radio resource 303 is a radio resource in the DL period 313.
  • the radio resource 303 is a radio resource for transmitting a response signal for the random access signal.
  • the response signal transmitted by the radio resource 303 is a data transmission permission signal indicating a radio resource 304 (second radio resource) described later or a random access signal retransmission request indicating a radio resource 305 (third radio resource) described later. Signal.
  • the wireless resource 304 is a wireless resource in the UL period 314.
  • the radio resource 304 is a radio resource (second radio resource) for transmitting data (user data).
  • the radio resource 305 is a radio resource in the UL period 314.
  • the radio resource 305 is a radio resource (third radio resource) for retransmitting the random access signal.
  • the radio resource 305 (third radio resource) for the terminal 120 to retransmit the random access signal is set to a period 314 immediately after the period 313 for notifying the radio resource 305.
  • the terminal 120 can retransmit the random access signal earlier than waiting for the next radio resource 301. For this reason, the time until the terminal 120 can transmit data to the base station 110 can be shortened.
  • FIG. 4 is a diagram illustrating another example of a configuration of a radio frame in the radio communication system according to the embodiment.
  • radio resources 301 and 401 are radio resources in DL periods 311 and 313, respectively.
  • Radio resources 301 and 401 are radio resources allocated to downlink control information.
  • the downlink control information of the radio resource 301 is information indicating the arrangement of the radio resource 402 (broadcast information) and the arrangement of the radio resource 303.
  • the radio resource 402 is a radio resource in the DL periods 311 and 313.
  • Radio resource 402 is a radio resource assigned to broadcast information.
  • the broadcast information of the radio resource 402 is information indicating the arrangement of the radio resource 302 (first radio resource).
  • FIG. 5 is a flowchart illustrating an example of processing in the wireless communication system according to the embodiment.
  • the base station 110 determines a radio resource arrangement (for example, see FIGS. 3 and 4) on a radio frame (step S501).
  • the radio resource arrangement on the radio frame may be determined in advance at the time of system design.
  • the base station 110 reads information on radio resource arrangement on the radio frame determined at the time of system design and stored in the memory of the base station 110.
  • the radio resource allocation determined in step S501 is notified from the base station 110 to the terminal 120 using downlink control information and broadcast information.
  • the radio resource allocation determined in step S501 may be all notified to the terminal 120 before data to be transmitted by the terminal 120 is generated, or each time data to be transmitted by the terminal 120 is generated, the terminal 120 May be notified.
  • step S502 it is assumed that data to be transmitted has occurred in the terminal 120 (step S502).
  • the terminal 120 transmits a random access signal to the base station 110 using the first radio resource notified from the base station 110 in order to obtain permission to transmit data (step S503).
  • the base station 110 Based on the random access signal transmitted in step S503, the base station 110 attempts to identify the terminal 120 that has transmitted the random access signal.
  • step S504 When the base station 110 can identify the terminal 120 that has transmitted the random access signal, the base station 110 permits data transmission to the terminal 120 after step S503 (step S504).
  • the data transmission permission in step S504 is performed, for example, by transmitting a data transmission permission signal indicating the second radio resource to the terminal 120.
  • the terminal 120 transmits data to the base station 110 in accordance with the data transmission permission in step S504 (step S505), and the series of processing ends.
  • the data transmission in step S505 is performed by the second radio resource indicated by the data transmission permission signal from the base station 110, for example.
  • the base station 110 When the base station 110 cannot identify the terminal 120 that has transmitted the random access signal, the base station 110 requests the terminal 120 to retransmit the random access signal (step S506), and returns to the process of step S503. .
  • the retransmission request for the random access signal in step S506 is performed, for example, by transmitting a random access signal retransmission request signal indicating the third radio resource to the terminal 120. Also, the retransmission of the random access signal by the terminal 120 upon returning from step S506 to step S503 is performed by the third radio resource indicated by the random access signal retransmission request signal from the base station 110.
  • FIG. 6 is a diagram of an example of the base station according to the embodiment.
  • the base station 110 according to the embodiment includes, for example, a processor 610, a memory 620, a transmission signal generator 631, a transmitter 632, a transmission / reception signal separator 640, an antenna 650, A receiver 661 and a received signal processor 662 are provided.
  • the processor 610 is a CPU (Central Processing Unit) that controls the entire base station 110, for example.
  • the memory 620 includes, for example, a main memory and an auxiliary memory.
  • the main memory is, for example, a RAM (Random Access Memory).
  • the main memory is used as a work area for the processor 610.
  • the auxiliary memory is, for example, a nonvolatile memory such as a magnetic disk, an optical disk, or a flash memory.
  • Various programs for operating the base station 110 are stored in the auxiliary memory. The program stored in the auxiliary memory is loaded into the main memory and executed by the processor 610.
  • the processor 610 for example, a radio resource allocation control unit 611, a control information / broadcast information generation unit 612, a random access signal detection unit 613, a data decoding unit 614, a data transmission permission / random access retransmission determination unit 615, Is realized.
  • the processor 610 is not limited to these, and each processing unit for operating the base station 110 is realized.
  • the radio resource allocation control unit 611 determines radio resource arrangement (for example, see FIGS. 3 and 4) on the radio frame. Radio resource allocation control section 611 outputs arrangement information indicating the determined arrangement of radio resources to control information / notification information generation section 612.
  • Control information / broadcast information generating section 612 generates DL control information and broadcast information transmitted from base station 110, and outputs a signal including the generated control information and broadcast information to transmission signal generator 631.
  • the control information / broadcast information generation unit 612 stores the arrangement information output from the radio resource allocation control unit 611 in the DL control information or broadcast information to be generated.
  • the control information / broadcast information generation unit 612 stores the data transmission permission signal and the random access signal retransmission request signal output from the data transmission permission / random access retransmission determination unit 615, which will be described later, in the control information of the DL to be generated. .
  • the transmission signal generator 631 arranges various information such as control information and broadcast information included in the signal output from the processor 610 on a radio frame and converts the information into a radio signal. Then, the transmission signal generator 631 outputs the signal converted into the radio signal to the transmitter 632.
  • the transmitter 632 performs transmission processing of the signal output from the transmission signal generator 631.
  • the transmission processing by the transmitter 632 includes, for example, conversion from a digital signal to an analog signal, frequency conversion from a baseband band to an RF (Radio Frequency) band, amplification, and the like.
  • the transmitter 632 outputs the signal subjected to the transmission process to the transmission / reception signal separator 640.
  • the transmission / reception signal separator 640 outputs the DL signal output from the transmitter 632 to the antenna 650, and outputs the UL signal output from the antenna 650 to the receiver 661, whereby the DL signal and the UL signal are output. And isolate.
  • the antenna 650 wirelessly transmits the signal output from the transmission / reception signal separator 640 to the terminal 120.
  • Antenna 650 receives a signal wirelessly transmitted from terminal 120, and outputs the received signal to transmission / reception signal separator 640.
  • the receiver 661 performs reception processing of the signal output from the transmission / reception number separator 640.
  • the reception processing by the receiver 661 includes, for example, amplification, frequency conversion from the RF band to the baseband, conversion from an analog signal to a digital signal, and the like.
  • the receiver 661 outputs the signal subjected to the reception process to the reception signal processor 662.
  • Received signal processor 662 demodulates the signal output from receiver 661. Thereby, a random access signal and a signal including data are obtained. Reception signal processor 662 outputs the signal obtained by demodulation to processor 610.
  • the random access signal detector 613 realized by the processor 610 detects a random access signal included in the signal output from the received signal processor 662. Then, the random access signal detection unit 613 determines the sequence of the detected random access signal. Also, the random access signal detection unit 613 notifies the data transmission permission / random access retransmission determination unit 615 of the detection and determination results.
  • the data decoding unit 614 decodes and extracts UL data (for example, user data) included in the signal output from the reception signal processor 662.
  • the data transmission permission / random access retransmission determination unit 615 determines the response content to be returned to the terminal 120 from the sequence of the determined random access signal. For example, the data transmission permission / random access retransmission determination unit 615 identifies the terminal 120 based on the random access signal described above.
  • the data transmission permission / random access retransmission determination unit 615 outputs a data transmission permission signal to the terminal 120 indicating the second radio resource to the control information / broadcast information generation unit 612. In addition, if the terminal 120 cannot be identified, the data transmission permission / random access retransmission determination unit 615 transmits a random access signal retransmission request signal to the terminal 120 indicating the third radio resource to the control information / broadcast information generation unit 612. Output.
  • the specifying unit 112 illustrated in FIG. 1 can be realized by the data transmission permission / random access retransmission determination unit 615, for example.
  • the transmission unit 113 illustrated in FIG. 1 can be realized by, for example, a control information / broadcast information generation unit 612, a transmission signal generator 631, a transmitter 632, a transmission / reception signal separator 640, and an antenna 650.
  • FIG. 7 is a diagram illustrating an example of a terminal according to the embodiment.
  • the terminal 120 includes, for example, a processor 710, a memory 720, a transmission signal generator 731, a transmitter 732, a transmission / reception signal separator 740, an antenna 750, and a reception.
  • Machine 761 and a received signal processor 762 are examples of a received signal processor 762.
  • the processor 710 is a CPU that controls the entire terminal 120, for example.
  • the memory 720 includes, for example, a main memory and an auxiliary memory.
  • the main memory is, for example, a RAM.
  • the main memory is used as a work area for the processor 710.
  • the auxiliary memory is a non-volatile memory such as a magnetic disk or a flash memory.
  • Various programs for operating the terminal 120 are stored in the auxiliary memory. The program stored in the auxiliary memory is loaded into the main memory and executed by the processor 710.
  • the processor 710 implements, for example, a transmission data generation detection unit 711, a random access signal generation unit 712, a data transmission unit 713, and a control information / broadcast information analysis unit 714.
  • the processor 710 is not limited to these, and each processing unit for operating the terminal 120 is realized.
  • the transmission data generation detection unit 711 detects the generation of data to be transmitted from the terminal 120 to the base station 110 from various sensors and monitoring devices. When the transmission data generation detection unit 711 detects the generation of data to be transmitted, the transmission data generation detection unit 711 notifies the random access signal generation unit 712 of the generation of data to be transmitted, and outputs the generated data to be transmitted to the data transmission unit 713. To do.
  • the random access signal generation unit 712 When the generation of data to be transmitted is notified from the transmission data generation detection unit 711, the random access signal generation unit 712 generates a random access signal. For example, the random access signal generation unit 712 generates a random access signal based on a specific sequence or a specific radio resource assigned and notified in advance from the terminal 120. Then, the random access signal generation unit 712 outputs the generated random access signal to the transmission signal generator 731.
  • the random access signal generated by the random access signal generation unit 712 for example, a signal conforming to the random access preamble defined in TS36.211 which is the specification of the cellular radio communication system defined by 3GPP can be used.
  • a Zadoff Chu sequence of a route different from the Random Access Preamble defined in TS 36.211 a random access signal having a purpose different from the purpose defined in TS 36.211 can be obtained.
  • the random access signal is not limited to such a random access signal, and various sequences can be used. However, it is desirable that a plurality of specific sequences in the random access signal are orthogonal to each other. Being orthogonal to each other means that the correlation becomes zero when a correlation operation is performed with a sequence that does not match.
  • a Walsh code ⁇ 0000, 0101, 0110, 0011 ⁇ can be used for a random access signal. If the length of the code of the random access signal is increased, more orthogonal codes can be obtained. In general, N orthogonal codes can be obtained if a length N code is used.
  • the random access signal of a specific sequence may be unique so that the terminal 120 can be completely specified.
  • a radio resource for transmitting a random access signal may be determined for each terminal group, and a random access signal that identifies a terminal in the terminal group that uses the radio resource may be used.
  • the data transmission unit 713 adds data for controlling communication to application level data (user data) or performs processing of channel coding.
  • the application level data includes, for example, data output from the transmission data generation detection unit 711.
  • the data transmission unit 713 outputs a signal obtained by the channel coding process to the transmission signal generator 731.
  • the transmission signal generator 731 arranges a random access signal or data included in the signal output from the processor 710 on a wireless frame and converts it into a wireless signal. Then, the transmission signal generator 731 outputs the signal converted into the radio signal to the transmitter 732.
  • the transmitter 732 performs transmission processing of the signal output from the transmission signal generator 731.
  • the transmission processing by the transmitter 732 includes, for example, conversion from a digital signal to an analog signal, frequency conversion from a baseband to an RF band, amplification, and the like.
  • the transmitter 732 outputs the signal subjected to the transmission process to the transmission / reception signal separator 740.
  • the transmission / reception signal separator 740 outputs the UL signal output from the transmitter 732 to the antenna 750 and outputs the DL signal output from the antenna 750 to the receiver 761, whereby the UL signal and the DL signal are output. And isolate.
  • the antenna 750 wirelessly transmits the signal output from the transmission / reception signal separator 740 to the base station 110.
  • the antenna 750 receives a signal wirelessly transmitted from the base station 110 and outputs the received signal to the transmission / reception signal separator 740.
  • the receiver 761 performs reception processing of the signal output from the transmission / reception signal separator 740.
  • the reception processing by the receiver 761 includes, for example, amplification, frequency conversion from the RF band to the baseband, conversion from an analog signal to a digital signal, and the like.
  • the receiver 761 outputs the signal subjected to the reception process to the reception signal processor 762.
  • the reception signal processor 762 demodulates the signal output from the receiver 761. As a result, a signal including a control signal and broadcast information from the base station 110 is obtained. Reception signal processor 762 outputs a signal obtained by demodulation to processor 710.
  • the control information / notification information analysis unit 714 realized by the processor 710 extracts a control signal and notification information included in the signal output from the reception signal processor 762. Then, the control information / notification information analysis unit 714 analyzes the extracted control signal and notification information. For example, the control information / broadcast information analysis unit 714 notifies the random access signal generation unit 712 of radio resources for initial transmission of the random access signal indicated by the control signal or broadcast information from the base station 110. In this case, the random access signal generation unit 712 generates a random access signal transmitted for the first time using the radio resource notified from the control information / broadcast information analysis unit 714.
  • control information / broadcast information analysis unit 714 outputs a data transmission permission signal indicating the second radio resource included in the control signal or broadcast information from the base station 110 to the data transmission unit 713.
  • the data transmission unit 713 generates a data signal using the second radio resource indicated by the data transmission permission signal output from the control information / broadcast information analysis unit 714.
  • control information / broadcast information analysis unit 714 outputs a random access signal retransmission request signal indicating the third radio resource included in the control signal or broadcast information from the base station 110 to the random access signal generation unit 712.
  • the random access signal generation unit 712 generates a retransmission random access signal using the third radio resource indicated by the random access signal retransmission request signal output from the control information / broadcast information analysis unit 714.
  • the receiving unit 122 illustrated in FIG. 1 can be realized by, for example, the antenna 750, the transmission / reception signal separator 740, the receiver 761, the received signal processor 762, and the control information / broadcast information analyzing unit 714.
  • FIG. 8 is a flowchart illustrating an example of processing performed by the base station according to the embodiment.
  • the base station 110 according to the embodiment executes, for example, each step shown in FIG. First, the base station 110 determines a radio resource arrangement on a radio frame (step S801). Next, the base station 110 determines a sequence of a random access signal used by the terminal (for example, the terminal 120) and notifies the terminal of the random access signal (step S802).
  • the base station 110 transmits first radio resource arrangement information as broadcast information (step S803).
  • the base station 110 performs a random access signal reception process using the first radio resource and the third radio resource (step S804).
  • the base station 110 determines whether or not a random access signal is detected by the reception process in step S804 (step S805).
  • a random access signal is not detected (step S805: No)
  • the base station 110 allocates a radio resource that is scheduled to be used when a random access signal is detected as a resource for communication of another terminal. (Step S806).
  • the radio resource that is scheduled to be used when the random access signal is detected is, for example, a radio resource that is scheduled to be used for response transmission of a random access signal, permission to transmit data, or retransmission of random access.
  • the base station 110 returns to step S803.
  • step S805 when a random access signal is detected (step S805: Yes), the base station 110 determines whether the terminal 120 that has transmitted the detected random access signal has been identified (step S807). When the terminal 120 that has transmitted the random access signal has not been identified (step S807: No), the base station 110 transmits a random access signal retransmission request signal including the arrangement information of the third radio resource (step S808). Return to step S804. By returning to step S804 from step S808 and performing reception processing of the random access signal, it is possible to cope with a case where another terminal 120 transmits a new random access signal.
  • step S807 when the terminal 120 that has transmitted the random access signal can be identified (step S807: Yes), the process proceeds to step S809. That is, the base station 110 transmits a data transmission permission signal including the second radio resource arrangement information to the terminal 120 (step S809). Next, the base station 110 receives data transmitted from the terminal 120 using the second radio resource (step S810), and ends a series of processes.
  • FIG. 9 is a flowchart illustrating another example of processing by the base station according to the embodiment.
  • the base station 110 according to the embodiment may execute the steps shown in FIG. 9, for example. Steps S901 and S902 shown in FIG. 9 are the same as steps S801 and S802 shown in FIG. Subsequent to step S902, the base station 110 transmits arrangement information of the first radio resource, the second radio resource, and the third radio resource as broadcast information (step S903).
  • Steps S904 to S907 shown in FIG. 9 are the same as steps S804 to S807 shown in FIG.
  • step S907 when the terminal 120 that has transmitted the random access signal cannot be identified (step S907: No), the base station 110 transmits a random access signal retransmission request signal (step S908), and returns to step S904.
  • the random access signal retransmission request signal transmitted in step S908 since the arrangement information of the third radio resource is broadcast in step S903, the random access signal retransmission request signal transmitted in step S908 includes the arrangement information of the third radio resource. It does not have to be.
  • step S907 when the terminal 120 that has transmitted the random access signal can be identified (step S907: Yes), the base station 110 transmits a data transmission permission signal to the terminal 120 (step S909).
  • the second radio resource arrangement information is notified in step S903, and therefore the data transmission permission signal transmitted in step S909 includes the second radio resource arrangement information. It does not have to be.
  • the base station 110 receives data transmitted from the terminal 120 using the second radio resource (step S910), and ends a series of processes.
  • the base station 110 may previously notify the arrangement information of the second radio resource and the third radio resource in the cell by the broadcast information.
  • the second radio resource and the third radio resource become a radio resource common to the plurality of terminals 120.
  • the base station 110 can receive data using the second radio resource or receive a retransmitted random access signal using the third radio resource.
  • FIG. 10 is a flowchart illustrating an example of processing performed by the terminal according to the embodiment.
  • the terminal 120 executes, for example, each step shown in FIG. First, the terminal 120 receives random access signal sequence information indicating a specific sequence of random access signals to be used from the base station 110 (step S1001).
  • Step S1001 can be performed, for example, when the terminal 120 is connected to the base station 110 for the first time or when the location of the terminal 120 is registered.
  • the terminal 120 in the initial connection of the terminal 120 to the base station 110 and the location registration of the terminal 120, by performing a normal random access procedure, the terminal 120 can be connected even before a specific sequence is assigned to the terminal 120.
  • a connection to the base station 110 can be made.
  • the terminal 120 determines whether or not data to be transmitted is generated (step S1002), and waits until data to be transmitted is generated (step S1002: No loop).
  • step S1002 determines whether or not data to be transmitted is generated (step S1002: Yes)
  • the terminal 120 acquires the first radio resource arrangement information from the base station 110 (step S1003).
  • the acquisition of the placement information in step S1003 can be performed by receiving broadcast information from the base station 110, for example.
  • the terminal 120 transmits a random access signal using the first radio resource based on the arrangement information of the first radio resource received in step S1003 (step S1004).
  • the terminal 120 transmits a random access signal using a specific sequence indicated by the random access signal sequence information received in step S1001.
  • the terminal 120 performs a reception process of a response from the base station 110 with respect to the transmitted random access signal (step S1005).
  • the terminal 120 determines whether or not the response of the base station 110 has been received by the reception process of step S1005 (step S1006). When the response has not been received (step S1006: No), the terminal 120 returns to step S1003.
  • step S1006 determines whether or not the response received in step S1005 is a data transmission permission signal including second radio resource arrangement information (Ste S1007).
  • the terminal 120 proceeds to step S1008. That is, terminal 120 determines whether or not the response received in step S1005 is a random access signal retransmission request signal including third radio resource arrangement information (step S1008).
  • step S1008 when the received response is not a random access signal retransmission request signal including the arrangement information of the third radio resource (step S1008: No), the terminal 120 returns to step S1003.
  • the terminal 120 proceeds to step S1009. That is, terminal 120 transmits (retransmits) a random access signal to base station 110 using the third radio resource based on the arrangement information of the third radio resource (step S1009), and returns to step S1005.
  • step S1007 when the received response is a data transmission permission signal including the second radio resource arrangement information (step S1007: Yes), the terminal 120 proceeds to step S1010. That is, terminal 120 transmits data using the second radio resource based on the arrangement information of the second radio resource (step S1010), and ends a series of processes.
  • FIG. 11 is a flowchart illustrating another example of processing performed by the terminal according to the embodiment.
  • the terminal 120 may execute the steps shown in FIG. 11, for example.
  • the terminal 120 receives random access signal sequence information indicating a sequence of random access signals to be used from the base station 110 (step S1101).
  • the terminal 120 acquires the arrangement information of the first radio resource, the second radio resource, and the third radio resource from the broadcast information of the base station 110 (step S1102).
  • the acquisition of arrangement information in step S1102 can be performed by receiving broadcast information from the base station 110, for example.
  • step S1103 determines whether or not data to be transmitted is generated (step S1103), and waits until data to be transmitted is generated (step S1103: No loop).
  • step S1103: Yes the terminal 120 proceeds to step S1104.
  • Steps S1104 to S1106 shown in FIG. 11 are the same as steps S1004 to S1006 shown in FIG.
  • step S1106 Yes
  • the terminal 120 determines whether or not the response received in step S1105 is a data transmission permission signal (step S1107).
  • step S1107: No the terminal 120 determines whether or not the response received in step S1105 is a random access signal retransmission request signal (step S1108).
  • step S1108 when the received response is not a random access signal retransmission request signal (step S1108: No), the terminal 120 returns to step S1104.
  • step S1108: Yes when the received response is a random access signal retransmission request signal (step S1108: Yes), the terminal 120 proceeds to step S1109. That is, terminal 120 transmits a random access signal to base station 110 using the third radio resource based on the arrangement information of the third radio resource acquired in step S1102 (step S1109), and returns to step S1105. .
  • step S1107 when the received response is a data transmission permission signal (step S1107: Yes), the terminal 120 proceeds to step S1110. That is, the terminal 120 transmits data using the second radio resource based on the arrangement information of the second radio resource acquired in step S1102 (step S1110), and ends a series of processes.
  • the base station 110 when the base station 110 can identify the terminal 120 based on the random access signal, the terminal is permitted to transmit data using the response signal for the random access signal. 120. Thereby, a part of the random access procedure is omitted, and the time until data transmission from the terminal 120 to the base station 110 becomes possible can be shortened.
  • the random access signal can be retransmitted from the terminal 120 using the third radio resource different from the first radio resource.
  • the success rate of retransmission of the random access signal can be improved, and the time until data transmission from the terminal 120 to the base station 110 becomes possible can be shortened.
  • FIG. 12 is a diagram illustrating an example of a radio frame according to the first embodiment. 12, parts similar to those shown in FIGS. 3 and 4 are given the same reference numerals and description thereof is omitted.
  • a radio frame 1211 (n) illustrated in FIG. 12 is an n-th radio frame including a DL period 311 and a UL period 312.
  • the radio frame 1212 (n + 1) is an (n + 1) th radio frame configured by a DL period 313 and a UL period 314.
  • the terminal 120 determines the arrangement information of the radio resources 302 from the control information or broadcast information of the radio resources 301 of the radio frame 1211 (n). To get.
  • the radio resource 302 is a first radio resource for transmitting a random access signal in the UL of the radio frame 1211.
  • the terminal 120 transmits a random access signal in the radio resource 302 based on the acquired arrangement information.
  • the base station 110 receives the random access signal from the terminal 120 and attempts to identify the terminal 120 that has transmitted the received random access signal. If the base station 110 can identify the terminal 120, the base station 110 transmits a data transmission permission signal to the terminal 120 using the DL radio resource 303 of the radio frame 1212 (n + 1). This data transmission permission signal includes information on the radio resource 304 (second radio resource) for the terminal 120 to transmit data in the UL of the radio frame 1212 (n + 1).
  • the terminal 120 that has received a transmission permission signal including information related to the radio resource 304 from the base station 110 transmits data to the base station 110 using the UL radio resource 304 in the radio frame 1212.
  • the base station 110 When the base station 110 cannot identify the terminal 120 that has transmitted the random access signal, the base station 110 transmits a random access signal retransmission request signal to the terminal 120 in the DL radio resource 303 of the radio frame 1212.
  • the random access signal retransmission request signal includes information on the radio resource 305 (third radio resource) for retransmitting the random access signal.
  • the terminal 120 that has received the random access signal retransmission request signal retransmits the random access signal in the UL radio resource 305 in the radio frame 1212.
  • the radio resource 1201 in the DL of the radio frame 1211 (n) is used to transmit a response signal from the base station 110 to the random access signal transmitted from the terminal 120 during the UL period of the (n ⁇ 1) th radio frame.
  • a radio resource 1202 (second radio resource) in the UL of the radio frame 1211 (n) is used for data transmission from the terminal 120 based on a response signal by the radio resource 1201.
  • the radio resource 1203 (third radio resource) in the UL of the radio frame 1211 (n) is used for retransmission of a random access signal from the terminal 120 based on the response signal by the radio resource 1201.
  • the radio resource 1204 in the DL of the radio frame 1212 (n + 1) is used for control information or broadcast information indicating the radio resource 1205 (first radio resource) in the UL of the radio frame 1212.
  • the response to the random access signal transmitted by the UL radio resource 1205 of the radio frame 1212 (n + 1) is transmitted by the radio resource in the DL period of the (n + 2) th radio frame.
  • the radio resources 302 and 1205 (first radio resource) for transmitting the random access signal when the transmission data is generated and the radio resources 305 and 1203 (third radio resource) for retransmitting the random access signal are transmitted.
  • a collision between a random access signal transmitted first in a certain radio frame and a random access signal transmitted in an earlier radio frame but retransmitted because data transmission permission was not obtained can be detected. Can be avoided.
  • the first radio resource and the second The three radio resources may be shared.
  • the wireless resource 302 and the wireless resource 1203 may be the same wireless resource.
  • the radio resource 1205 and the radio resource 305 may be the same radio resource.
  • the radio resources 304, 305, 1202, and 1203 may be assigned for data transmission of other terminals that are already in communication.
  • FIG. 13 is a flowchart of an example of processing in the wireless communication system according to the first embodiment.
  • the base station 110 determines a radio resource arrangement (for example, see FIGS. 3 and 4) on a radio frame (step S1301).
  • Step S1302 the base station 110 transmits arrangement information indicating the arrangement of the first radio resource among the radio resource arrangements determined in step S1301 to the terminal 120 (step S1302).
  • Step S1302 is performed using, for example, downlink control information and broadcast information.
  • step S1303 the terminal 120 acquires the arrangement information of the first radio resource transmitted from the base station 110 using the downlink control information and broadcast information in step S1302 (step S1304).
  • the terminal 120 transmits a random access signal to the base station 110 to request data transmission permission (step S1305).
  • the transmission of the random access signal in step S1303 is performed by the first radio resource based on the arrangement information received in step S1304, for example.
  • the transmission of the random access signal in step S1303 is performed using a specific sequence or a specific radio resource assigned to the terminal 120 in advance.
  • the base station 110 receives the random access signal transmitted in step S1305 (step S1306). Based on the random access signal received in step S1306, the base station 110 determines whether the terminal 120 that has transmitted the random access signal has been identified (step S1307).
  • step S1307 when the terminal 120 that has transmitted the random access signal can be identified (step S1307: Yes), the base station 110 proceeds to step S1308. That is, base station 110 transmits a data transmission permission signal including second radio resource arrangement information to terminal 120 as a response to the random access signal received in step S1306 (step S1308).
  • step S1307 when the terminal 120 that has transmitted the random access signal has not been identified (step S1307: No), the base station 110 proceeds to step S1309. That is, base station 110 transmits a random access signal retransmission request signal including third radio resource arrangement information to terminal 120 as a response to the random access signal received in step S1306 (step S1309).
  • the terminal 120 receives a response from the base station 110 transmitted in step S1308 or step S1309 to the random access signal transmitted in step S1305 (step S1310).
  • the terminal 120 determines whether or not the response received in step S1310 is a data transmission permission signal including the second radio resource arrangement information (step S1311).
  • the response received by the terminal 120 in step S1310 is a random including the arrangement information of the third radio resource. This is an access signal retransmission request signal.
  • the terminal 120 returns to step S1305 to retransmit the random access signal.
  • step S1311 when the received response is a data transmission permission signal including the second radio resource arrangement information (step S1311: Yes), the terminal 120 proceeds to step S1312. That is, the terminal 120 transmits data using the second radio resource based on the arrangement information of the second radio resource (step S1312).
  • step S1313 the base station 110 receives the data transmitted in step S1312 (step S1313), and ends a series of processing.
  • FIG. 14 is a diagram illustrating an example of a configuration of a radio frame in the radio communication system according to the second embodiment.
  • the radio resources 301 and 1204 in the DL periods 311 and 313 are used for transmission of control information including broadcast information and information on the arrangement of response signals with respect to random access signals.
  • the radio resources 1401 and 1402 in the DL periods 311 and 313 are used for transmission of broadcast information including information on the arrangement of the radio resources 302 and 1205 (first radio resources) for the terminal 120 to transmit a random access signal. .
  • the terminal 120 receives the control information of the radio resource 301 in the DL period 311 of the radio frame 1211 (n), thereby acquiring the broadcast information arrangement information of the radio resource 1401. And the terminal 120 can acquire the information regarding arrangement
  • the terminal 120 that has transmitted the random access signal by the radio resource 302 receives the DL radio resource 1204 of the radio frame 1212 (n + 1). Thereby, the terminal 120 can acquire information on where the response (the radio resource 303) is arranged on the radio frame. And the terminal 120 can receive the response of the radio
  • FIG. 15 is a flowchart of an example of processing in the wireless communication system according to the third embodiment.
  • each step shown in FIG. 15 is executed.
  • Steps S1501 and S1502 shown in FIG. 15 are the same as steps S1301 and S1302 shown in FIG.
  • the base station 110 transmits arrangement information indicating the arrangement of the first radio resource among the radio resource arrangements determined in step S1501 as broadcast information in the own cell (step S1502).
  • the terminal 120 acquires first radio resource arrangement information from the broadcast information transmitted from the base station 110 in step S1502 (step S1503). Next, it is assumed that data to be transmitted is generated in the terminal 120 (step S1504). Next, the terminal 120 proceeds to step S1505. Steps S1505 to S1513 shown in FIG. 15 are the same as steps S1305 to S1313 shown in FIG.
  • the base station 110 determines the first radio resource for the terminal 120 to transmit random access as being quasi-fixed over a number of radio frames, and notifies the terminal 120 as broadcast information.
  • the terminal 120 acquires information related to the arrangement of the first radio resource with the broadcast information transmitted in the radio frame before the transmission data is generated. Then, when data to be transmitted is generated, the terminal 120 transmits a random access signal using the first radio resource that can be used immediately.
  • FIG. 16 is a flowchart of an example of processing in the wireless communication system according to the fourth embodiment.
  • each step illustrated in FIG. 16 is executed.
  • Steps S1601 and S1602 shown in FIG. 16 are the same as steps S1501 and S1502 shown in FIG.
  • the base station 110 broadcasts the arrangement information indicating the arrangement of the first radio resource, the second radio resource, and the third radio resource in the determined radio resource arrangement to the own cell. It transmits as information (step S1602).
  • the terminal 120 acquires the arrangement information of the first radio resource, the second radio resource, and the third radio resource from the broadcast information transmitted from the base station 110 in step S1602 (step S1603), The process moves to step S1604.
  • Steps S1604 to S1613 shown in FIG. 16 are the same as steps S1504 to S1513 shown in FIG.
  • the data transmission permission signal transmitted in step S1608 may not include the second radio resource arrangement information.
  • the terminal 120 transmits data using the second radio resource based on the arrangement information of the second radio resource acquired in step S1603.
  • the random access signal retransmission request signal transmitted in step S1609 may not include the third radio resource arrangement information.
  • terminal 120 when returning from step S1611 to step S1605, terminal 120 retransmits the random access signal using the third radio resource based on the arrangement information of the third radio resource acquired in step S1603.
  • the base station 110 determines all or part of the first radio resource, the second radio resource, and the third radio resource as being quasi-fixed over a number of radio frames, and broadcasts it as broadcast information. May be notified to the terminal 120.
  • the terminal 120 transmits a random access signal using the first radio resource that can be used immediately.
  • the base station 110 When the base station 110 can identify the terminal 120 based on the random access signal from the terminal 120, the base station 110 transmits a data transmission permission signal to the terminal 120 as a response to the random access signal. In addition, when the base station 110 cannot identify the terminal 120 based on the random access signal from the terminal 120, the base station 110 transmits a random access signal retransmission request signal to the terminal 120 as a response to the random access signal. Thereby, the amount of control information exchanged after data generation in step S1604 can be reduced.
  • Example 5 In the radio communication system 100 according to the fifth embodiment, it is assumed that the arrangement of all or part of the first radio resource, the second radio resource, and the third radio resource is fixed in advance by the system. As a result, for example, transmission of information related to the arrangement of each radio resource in the first to fourth embodiments becomes unnecessary. For this reason, the amount of control information exchanged after data generation in the terminal 120 can be reduced.
  • the base station 110 and the terminal 120 transmit and receive a random access signal using the first radio resource fixed in advance in the radio communication system 100.
  • the base station 110 and the terminal 120 perform transmission / reception of a random access signal using the second radio resource fixed in advance in the radio communication system 100.
  • base station 110 and terminal 120 perform transmission / reception (retransmission) of a random access signal using a third radio resource fixed in advance in radio communication system 100. .
  • FIG. 17 is a diagram of an example of the first radio resource according to the sixth embodiment.
  • FIG. 18 is a diagram illustrating an example of a sequence of a random access signal according to the sixth embodiment.
  • the 4 [bit] sequence transmitted by the terminal 120 using the radio resource 1700 for example, four sequences shown in the table 1800 of FIG. 18 are prepared as the specific sequence described above.
  • the base station 110 gives the terminal 120 one of the numbers “1” to “4”. After that, when data to be transmitted is generated, the terminal 120 transmits a sequence of numbers given from the base station 110 as a random access signal using the first radio resource.
  • the terminal 120 transmits “0101” as a random access signal using the radio resource 1700.
  • the base station 110 performs a correlation calculation between the received random access signal and the four types of sequences shown in the table 1800. The correlation can be calculated as “1” when the bits match and “ ⁇ 1” when they do not match.
  • the base station 110 can determine that “0101”, which is the second sequence in the table 1800 having the largest correlation calculation result, is the sequence transmitted by the terminal 120 as a random access signal.
  • the base station 110 can specify which terminal has transmitted the random access sequence.
  • a 4 [bit] long sequence is taken as an example of the random access signal, but the random access signal is not limited to this.
  • a random access signal it is possible to use a sequence that is as long as the ratio of the first radio resource in the radio frame allows.
  • FIG. 19 is a diagram of an example of the first radio resource according to the seventh embodiment.
  • the first radio resource for the terminal 120 to transmit a random access signal can be, for example, three 4 [bit] radio resources 1901 to 1903 shown in FIG.
  • the terminal 120 selects one radio resource from the radio resources 1901 to 1903, and transmits a 4 [bit] sequence as a random access signal using the selected radio resource.
  • the sequence transmitted by the terminal 120 using the selected radio resource is the same as the example shown in FIGS. 17 and 18, for example.
  • the terminal 120 when the terminal 120 is connected to the base station 110, a specific radio resource to be used in the radio resources 1901 to 1903 is given to the terminal 120 together with one of the numbers “1” to “4” in the table 1800. Notice. At this time, different terminals with the same radio resource are prevented from being given the same sequence number.
  • the terminal 120 transmits a sequence of numbers notified from the base station 110 as a random access signal using a specific radio resource notified from the base station 110 among the radio resources 1901 to 1903. To do.
  • the base station 110 detects whether a signal is received by each of the radio resources 1901 to 1903, and if it is detected that the signal is received, performs a correlation operation between the received signal and four types of sequences. Do. This makes it possible to determine which sequence is transmitted with which radio resource. Therefore, the base station 110 can specify which terminal has transmitted the random access signal as a terminal that has given the set by the set of the radio resource from which the signal is received and the detected sequence number.
  • a 4 [bit] long sequence is taken as an example of the random access signal, but the random access signal is not limited to this.
  • a random access signal it is possible to use a sequence that is as long as the ratio of the first radio resource in the radio frame allows.
  • FIG. 20 is a diagram of an example of the first radio resource according to the eighth embodiment.
  • the first radio resource for the terminal 120 to transmit a random access signal can be, for example, an 8-bit radio resource 2000 shown in FIG.
  • the radio resource 2000 includes a sequence unit 2001 and an information unit 2002.
  • the sequence part 2001 is a 4 [bit] part to which the terminal 120 sends a random access signal sequence.
  • the information part 2002 is a 4 [bit] part to which the terminal 120 sends information related to data.
  • the sequence transmitted by the terminal 120 by the sequence unit 2001 is the same as the example shown in FIGS. 17 and 18, for example.
  • the information part 2002 can store all or part of data to be transmitted by the terminal 120. Further, the information section 2002 may store information related to the amount of data to be transmitted. For example, a data amount corresponding to a number (0 to 15) indicated by 4 [bits] is determined, and the terminal 120 sets any number from 0 to 15 in the information unit 2002 according to the amount of data to be transmitted. It transmits to the base station 110 by the information part 4 [bit].
  • the base station 110 transmits the data transmission permission signal including the arrangement information of the second radio resource to the terminal 120, the amount of the second radio resource according to the amount of data transmitted from the terminal 120 Can be secured.
  • the configuration is not limited to this.
  • the sequence unit 2001 and the information unit 2002 are not limited thereto.
  • the sequence unit 2001 it is possible to use a sequence unit that is as long as the ratio of the first radio resource in the radio frame allows.
  • a plurality of radio resources can be set as the first radio resource.
  • the information unit 2002 becomes longer to some extent, it is possible to apply encoding having error correction performance with good characteristics to the information unit 2002.
  • the base station As described above, according to the base station, the terminal, the wireless communication system, and the processing method, it is possible to shorten the time until data transmission becomes possible.
  • an event (such as start of a call, operation of a terminal by a user, completion of sensor sensing, detection of an abnormality of a monitoring device, etc.) is started at a terminal. It takes time until data is actually transmitted after it occurs. For example, according to TR36.912 of 3GPP, 50 [ms] until the terminal enters the connection state, and 9.5 [ms] from the time when the scheduling request (SR) signal is transmitted until the data transmission becomes possible It is reported that.
  • SR scheduling request
  • an interactive communication such as a remote operation of a PC (Personal Computer) via communication.
  • a remote operation For example, data indicating a keyboard or mouse operation performed by a user is transmitted to a remote PC via a communication path, and data for displaying a character input by a human or moving a mouse pointer as a response is remote. It is transmitted from the PC to the user's screen.
  • the time from when the user performs an operation until the result of the operation is reflected on the user's screen is long, the operability by the user is significantly impaired, and in some cases, it may be painful for the operating human Become.
  • a radio resource for performing data transmission to a terminal is constantly given, and transmission is performed using the resource as the transmission data is generated at the terminal, thereby enabling low-delay data transmission.
  • the data to be transmitted does not always occur, such as a sensor that does not always operate or a monitoring device that does not always have an abnormality, radio resources when there is no data to be transmitted are wasted. Therefore, the radio resource utilization efficiency is not good.
  • increasing the resources used for the random access preamble ensures radio resources for transmission of random access preambles that do not always occur, and limits the radio resources that can be used for normal data transmission. Will be. For this reason, the utilization efficiency of radio resources is not good.
  • base station 110 when base station 110 can identify terminal 120 based on a random access signal, data transmission permission is given to terminal 120 using a response signal to the random access signal. be able to. Thereby, a part of the random access procedure is omitted, and the time until data transmission from the terminal 120 to the base station 110 becomes possible can be shortened. Moreover, the utilization efficiency of the radio
  • Radio resource allocation control unit 612 Control information / broadcast information generation unit 613
  • Random access signal detection unit 614 Data decoding unit 615 Data transmission permission / random access retransmission determination unit 620 , 720 memory 631,731 transmission signal generator 632,732 transmitter 640,740 transmission / reception signal separator 650,750 antenna 661,761 receiver 662,762 reception signal processor 711 transmission Data generation detector section 712 the random access signal generator 713 the data transmission unit 714 control information and the broadcast information analysis unit 1211 radio frames 1800 table 2001 sequence portion 2002 information unit

Abstract

A terminal (120) transmits a random access signal by use of a first radio resource. A base station (110) receives the random access signal transmitted thereto by use of the first radio resource and identifies, on the basis of the received random access signal, the terminal (120) having transmitted the random access signal. The base station (110) then transmits a response signal that is responsive to the random access signal and that permits the identified terminal (120) to transmit data to the base station (110) by use of a second radio resource different from the first radio resource. The terminal (120) transmits, on the basis of the response signal transmitted from the base station (110), the data to the base station (110) by use of the second radio resource. The base station (110) receives the data transmitted from the terminal (120) by use of the second radio resource.

Description

基地局、端末、無線通信システムおよび処理方法Base station, terminal, wireless communication system and processing method
 本発明は、基地局、端末、無線通信システムおよび処理方法に関する。 The present invention relates to a base station, a terminal, a wireless communication system, and a processing method.
 従来、第3世代移動通信システム(3G)、第3.9世代移動通信システムに対応するLTE、第4世代移動通信システムに対応するLTE-Advanced、第5世代移動通信システム(5G)などの移動通信システムが知られている。LTEはLong Term Evolutionの略である。 Conventionally, mobiles such as LTE corresponding to third generation mobile communication system (3G), LTE corresponding to 3.9 generation mobile communication system, LTE-Advanced corresponding to fourth generation mobile communication system, and fifth generation mobile communication system (5G) Communication systems are known. LTE is an abbreviation for Long Term Evolution.
 また、移動通信システムにおいては、RACH(Random Access Channel:ランダムアクセスチャネル)を用いて端末が基地局に接続するランダムアクセスが知られている(たとえば、下記特許文献1~10参照。)。 In addition, in mobile communication systems, random access in which a terminal connects to a base station using RACH (Random Access Channel) is known (for example, see Patent Documents 1 to 10 below).
特開2013-192251号公報JP2013-192251A 特開2012-186841号公報JP 2012-186841 A 特開2010-200337号公報Japanese Patent Application Laid-Open No. 2010-200337 特開2013-55461号公報JP 2013-55461 A 国際公開第2012/108046号International Publication No. 2012/108046 国際公開第2012/077237号International Publication No. 2012/077237 特表2014-522205号公報Special table 2014-522205 gazette 特開2015-65485号公報JP2015-65485A 特開2011-205242号公報JP 2011-205242 A 特開2010-98707号公報JP 2010-98707 A
 しかしながら、上述した従来のランダムアクセスの技術では、端末と基地局との間で多くの制御信号が送受信されるため、送信データが発生してからデータ送信が可能になるまでに時間がかかるという問題がある。 However, in the conventional random access technique described above, since many control signals are transmitted and received between the terminal and the base station, there is a problem that it takes time until transmission of data is possible after transmission data is generated. There is.
 1つの側面では、本発明は、データ送信が可能になるまでの時間の短縮を図ることができる基地局、端末、無線通信システムおよび処理方法を提供することを目的とする。 In one aspect, an object of the present invention is to provide a base station, a terminal, a wireless communication system, and a processing method that can shorten the time until data transmission is possible.
 上述した課題を解決し、目的を達成するため、本発明の一側面によれば、端末が、第1の無線リソースによりランダムアクセス信号を送信し、基地局が、前記第1の無線リソースにより送信された自局への前記ランダムアクセス信号を受信し、受信した前記ランダムアクセス信号に基づいて前記ランダムアクセス信号を送信した前記端末を特定し、前記ランダムアクセス信号への応答信号であって、特定した前記端末が前記第1の無線リソースと異なる第2の無線リソースにより自局へデータを送信することを許可する応答信号を送信し、端末が、前記基地局から送信された前記応答信号に基づいて、前記第2の無線リソースにより前記基地局へデータを送信し、前記基地局が、前記端末から前記第2の無線リソースにより送信されたデータを受信する基地局、端末、無線通信システムおよび処理方法が提案される。 In order to solve the above-described problems and achieve the object, according to one aspect of the present invention, a terminal transmits a random access signal using a first radio resource, and a base station transmits using the first radio resource. The random access signal to the received local station is received, the terminal that has transmitted the random access signal is identified based on the received random access signal, and a response signal to the random access signal is identified. The terminal transmits a response signal permitting data to be transmitted to the local station using a second radio resource different from the first radio resource, and the terminal is based on the response signal transmitted from the base station. The base station transmits data to the base station using the second radio resource, and the base station transmits data transmitted from the terminal using the second radio resource. Base station receiving terminal, a wireless communication system and processing method are proposed.
 本発明の一側面によれば、データ送信が可能になるまでの時間の短縮を図ることができるという効果を奏する。 According to one aspect of the present invention, it is possible to shorten the time until data transmission is possible.
図1は、実施の形態にかかる無線通信システムの一例を示す図である。FIG. 1 is a diagram illustrating an example of a wireless communication system according to an embodiment. 図2は、実施の形態にかかる無線通信システムの他の一例を示す図である。FIG. 2 is a diagram illustrating another example of the wireless communication system according to the embodiment. 図3は、実施の形態にかかる無線通信システムにおける無線フレームの構成の一例を示す図である。FIG. 3 is a diagram illustrating an example of a configuration of a radio frame in the radio communication system according to the embodiment. 図4は、実施の形態にかかる無線通信システムにおける無線フレームの構成の他の一例を示す図である。FIG. 4 is a diagram illustrating another example of a configuration of a radio frame in the radio communication system according to the embodiment. 図5は、実施の形態にかかる無線通信システムにおける処理の一例を示すフローチャートである。FIG. 5 is a flowchart illustrating an example of processing in the wireless communication system according to the embodiment. 図6は、実施の形態にかかる基地局の一例を示す図である。FIG. 6 is a diagram of an example of the base station according to the embodiment. 図7は、実施の形態にかかる端末の一例を示す図である。FIG. 7 is a diagram illustrating an example of a terminal according to the embodiment. 図8は、実施の形態にかかる基地局による処理の一例を示すフローチャートである。FIG. 8 is a flowchart illustrating an example of processing performed by the base station according to the embodiment. 図9は、実施の形態にかかる基地局による処理の他の一例を示すフローチャートである。FIG. 9 is a flowchart illustrating another example of processing performed by the base station according to the embodiment. 図10は、実施の形態にかかる端末による処理の一例を示すフローチャートである。FIG. 10 is a flowchart illustrating an example of processing performed by the terminal according to the embodiment. 図11は、実施の形態にかかる端末による処理の他の一例を示すフローチャートである。FIG. 11 is a flowchart illustrating another example of processing performed by the terminal according to the embodiment. 図12は、実施例1にかかる無線フレームの一例を示す図である。FIG. 12 is a diagram illustrating an example of a radio frame according to the first embodiment. 図13は、実施例1にかかる無線通信システムにおける処理の一例を示すフローチャートである。FIG. 13 is a flowchart of an example of processing in the wireless communication system according to the first embodiment. 図14は、実施例2にかかる無線通信システムにおける無線フレームの構成の一例を示す図である。FIG. 14 is a diagram illustrating an example of a configuration of a radio frame in the radio communication system according to the second embodiment. 図15は、実施例3にかかる無線通信システムにおける処理の一例を示すフローチャートである。FIG. 15 is a flowchart of an example of processing in the wireless communication system according to the third embodiment. 図16は、実施例4にかかる無線通信システムにおける処理の一例を示すフローチャートである。FIG. 16 is a flowchart of an example of processing in the wireless communication system according to the fourth embodiment. 図17は、実施例6にかかる第1の無線リソースの一例を示す図である。FIG. 17 is a diagram of an example of the first radio resource according to the sixth embodiment. 図18は、実施例6にかかるランダムアクセス信号のシーケンスの一例を示す図である。FIG. 18 is a diagram illustrating an example of a sequence of a random access signal according to the sixth embodiment. 図19は、実施例7にかかる第1の無線リソースの一例を示す図である。FIG. 19 is a diagram of an example of the first radio resource according to the seventh embodiment. 図20は、実施例8にかかる第1の無線リソースの一例を示す図である。FIG. 20 is a diagram of an example of the first radio resource according to the eighth embodiment.
 以下に図面を参照して、本発明にかかる基地局、端末、無線通信システムおよび処理方法の実施の形態を詳細に説明する。 Embodiments of a base station, a terminal, a wireless communication system, and a processing method according to the present invention will be described in detail below with reference to the drawings.
(実施の形態)
(実施の形態にかかる無線通信システム)
 図1は、実施の形態にかかる無線通信システムの一例を示す図である。図1に示すように、実施の形態にかかる無線通信システム100は、基地局110と、端末120と、を含む。基地局110は、セルを形成し、形成したセルに在圏する端末との間で無線通信が可能な無線基地局である。端末120は、基地局110のセルに在圏しており、基地局110に接続することにより基地局110との間で無線通信が可能な無線端末である。
(Embodiment)
(Radio communication system according to embodiment)
FIG. 1 is a diagram illustrating an example of a wireless communication system according to an embodiment. As shown in FIG. 1, a radio communication system 100 according to the embodiment includes a base station 110 and a terminal 120. The base station 110 is a radio base station that forms a cell and can perform radio communication with terminals located in the formed cell. The terminal 120 is located in the cell of the base station 110 and is a wireless terminal capable of wireless communication with the base station 110 by connecting to the base station 110.
 基地局110は、受信部111と、特定部112と、送信部113と、を備える。受信部111は、第1の無線リソースにより送信された自局へのランダムアクセス信号を受信し、受信したランダムアクセス信号を特定部112へ出力する。ランダムアクセス信号は、たとえばランダムアクセス手順におけるランダムアクセスプリアンブル(random access preamble)である。 The base station 110 includes a receiving unit 111, a specifying unit 112, and a transmitting unit 113. The receiving unit 111 receives the random access signal transmitted to the own station transmitted by the first radio resource, and outputs the received random access signal to the specifying unit 112. The random access signal is, for example, a random access preamble in a random access procedure.
 第1の無線リソースは、たとえば、基地局110へのランダムアクセス信号を送信するための無線リソースとして基地局110が自セル内で報知する無線リソースである。または、第1の無線リソースは、無線通信システム100において予め設定されており、基地局110および端末120において既知の無線リソースであってもよい。無線リソースは、周波数リソースと時間リソースの組み合わせである。 The first radio resource is a radio resource that the base station 110 broadcasts in its own cell as a radio resource for transmitting a random access signal to the base station 110, for example. Alternatively, the first radio resource may be a radio resource that is set in advance in the radio communication system 100 and is known in the base station 110 and the terminal 120. A radio resource is a combination of a frequency resource and a time resource.
 特定部112は、受信部111から出力されたランダムアクセス信号に基づいて、そのランダムアクセス信号を送信した端末120を特定する。端末120の特定は、たとえば端末120の識別子の特定である。端末120の識別子は、たとえば、IMSIやIMEIなどの識別子である。IMSIはInternational Mobile Subscriber Identity(国際移動体加入者識別子)の略である。IMEIはInternational Mobile Equipment Identity(国際移動体装置識別子)の略である。 The identifying unit 112 identifies the terminal 120 that has transmitted the random access signal based on the random access signal output from the receiving unit 111. The identification of the terminal 120 is identification of the identifier of the terminal 120, for example. The identifier of the terminal 120 is an identifier such as IMSI or IMEI. IMSI stands for International Mobile Subscriber Identity (International Mobile Subscriber Identifier). IMEI is an abbreviation for International Mobile Equipment Identity (international mobile equipment identifier).
 たとえば、端末120が送信するランダムアクセス信号は、端末120のみに対して割り当てられた特定のシーケンスのランダムアクセス信号である。シーケンスは、ランダムアクセス信号(プリアンブル)に用いられるビット列(ビットパターン)である。この場合に、特定部112は、端末120に対する特定のシーケンスの割り当て結果と、受信部111から出力されたランダムアクセス信号のシーケンスと、に基づいて端末120を特定することができる。端末120に対する特定のシーケンスの割り当て結果は、特定のシーケンスと、端末120の識別子と、を対応付ける対応情報である。 For example, the random access signal transmitted by the terminal 120 is a random access signal of a specific sequence assigned only to the terminal 120. The sequence is a bit string (bit pattern) used for a random access signal (preamble). In this case, the specifying unit 112 can specify the terminal 120 based on the result of assigning a specific sequence to the terminal 120 and the sequence of the random access signal output from the receiving unit 111. The assignment result of the specific sequence to the terminal 120 is correspondence information that associates the specific sequence with the identifier of the terminal 120.
 または、端末120が送信するランダムアクセス信号は、第1の無線リソースに含まれる無線リソースであって、端末120のみに対して割り当てられた特定の無線リソースにより送信されたランダムアクセス信号であってもよい。この場合に、特定部112は、端末120に対する特定の無線リソースの割り当て結果と、受信部111から出力されたランダムアクセス信号が送信された無線リソースと、に基づいて端末120を特定することができる。端末120に対する特定の無線リソースの割り当て結果は、特定の無線リソースと、端末120の識別子と、を対応付ける対応情報である。 Alternatively, the random access signal transmitted by the terminal 120 is a radio resource included in the first radio resource, and may be a random access signal transmitted by a specific radio resource allocated only to the terminal 120. Good. In this case, the specifying unit 112 can specify the terminal 120 based on the result of assignment of a specific radio resource to the terminal 120 and the radio resource to which the random access signal output from the receiving unit 111 is transmitted. . The assignment result of the specific radio resource to the terminal 120 is correspondence information that associates the specific radio resource with the identifier of the terminal 120.
 または、端末120が送信するランダムアクセス信号は、端末120に対して割り当てられた特定のシーケンスのランダムアクセス信号であり、かつ端末120に対して割り当てられた特定の無線リソースにより送信されたランダムアクセス信号であってもよい。この場合は、特定のシーケンスおよび特定の無線リソースの組み合わせは端末120のみに対して割り当てられた組み合わせである。特定部112は、端末120に対する特定のシーケンスおよび特定の無線リソースの割り当て結果と、ランダムアクセス信号のシーケンスおよびランダムアクセス信号が送信された無線リソースと、に基づいて端末120を特定することができる。端末120に対する特定のシーケンスおよび特定の無線リソースの割り当て結果は、特定のシーケンスおよび特定の無線リソースの組み合わせと、端末120の識別子と、を対応付ける対応情報である。 Alternatively, the random access signal transmitted by the terminal 120 is a random access signal of a specific sequence assigned to the terminal 120 and is transmitted by a specific radio resource assigned to the terminal 120. It may be. In this case, the combination of the specific sequence and the specific radio resource is a combination assigned only to the terminal 120. The identifying unit 112 can identify the terminal 120 based on the allocation result of the specific sequence and the specific radio resource to the terminal 120 and the radio resource to which the sequence of the random access signal and the random access signal are transmitted. The assignment result of the specific sequence and the specific radio resource to the terminal 120 is correspondence information that associates the combination of the specific sequence and the specific radio resource with the identifier of the terminal 120.
 特定のシーケンスおよび特定の無線リソースの端末120への割り当ては、たとえば、端末120が基地局110への初期アクセスを行った場合や、端末120が基地局110を介して位置登録を行った場合などに基地局110が行うことができる。この場合に、基地局110は、端末120に割り当てた特定のシーケンスや特定の無線リソースを端末120へ通知する。 The allocation of the specific sequence and the specific radio resource to the terminal 120 is, for example, when the terminal 120 performs initial access to the base station 110 or when the terminal 120 performs location registration via the base station 110. The base station 110 can perform this. In this case, the base station 110 notifies the terminal 120 of a specific sequence assigned to the terminal 120 and a specific radio resource.
 端末120は、基地局110へ送信すべきデータが発生すると、基地局110から通知された特定のシーケンスや特定の無線リソースを用いてランダムアクセス信号を基地局110へ送信する。これにより、端末120が送信したランダムアクセス信号に基づいて基地局110の特定部112が端末120を特定可能になる。 When data to be transmitted to the base station 110 is generated, the terminal 120 transmits a random access signal to the base station 110 using a specific sequence or a specific radio resource notified from the base station 110. Thereby, the identifying unit 112 of the base station 110 can identify the terminal 120 based on the random access signal transmitted by the terminal 120.
 ただし、ランダムアクセス信号に基づく端末120の特定方法はこれらに限らない。たとえば、端末120のユーザの契約内容等に基づいて、端末120に対して予め特定のシーケンスや特定の無線リソースが割り当てられていてもよい。この場合は、端末120に対して予め割り当てられた特定のシーケンスや特定の無線リソースを示す情報が、端末120のメモリに記憶される。そして、端末120は、メモリに記憶された情報に基づいて、特定のシーケンスや特定の無線リソースを用いてランダムアクセス信号の送信を行う。また、端末120に対して予め割り当てられた特定のシーケンスや特定の無線リソースと端末120の識別子とを対応付ける対応情報が基地局110のメモリに記憶される。そして、基地局110は、メモリに記憶された対応情報に基づいて端末120の特定を行う。 However, the method for identifying the terminal 120 based on the random access signal is not limited to these. For example, a specific sequence or a specific radio resource may be allocated to the terminal 120 in advance based on the contract content of the user of the terminal 120. In this case, information indicating a specific sequence or a specific radio resource allocated in advance to the terminal 120 is stored in the memory of the terminal 120. Then, the terminal 120 transmits a random access signal using a specific sequence or a specific radio resource based on the information stored in the memory. Correspondence information that associates a specific sequence or a specific radio resource assigned to terminal 120 in advance with the identifier of terminal 120 is stored in the memory of base station 110. Then, the base station 110 identifies the terminal 120 based on the correspondence information stored in the memory.
 特定部112は、ランダムアクセス信号に基づいて端末120を特定できた場合は、特定結果を送信部113へ通知する。端末120を特定できた場合とは、たとえば端末120が送信したランダムアクセス信号を正常に受信し、特定のシーケンスを識別できた場合である。 The identifying unit 112 notifies the transmitting unit 113 of the identification result when the terminal 120 can be identified based on the random access signal. The case where the terminal 120 can be specified is, for example, a case where a random access signal transmitted from the terminal 120 is normally received and a specific sequence can be identified.
 送信部113は、特定部112から通知された特定結果に基づいて、端末120からのランダムアクセス信号への応答信号を端末120へ送信する。送信部113が送信する応答信号は、たとえば基地局110から端末120への個別の制御信号として送信される。または、送信部113が送信する応答信号は、ランダムアクセス信号が送信された第1の無線リソースから一意に決まる所定の無線リソースによって送信されてもよい。これにより、端末120は、送信部113によって送信された応答信号を受信することができる。 The transmission unit 113 transmits a response signal to the random access signal from the terminal 120 to the terminal 120 based on the identification result notified from the identification unit 112. The response signal transmitted by the transmission unit 113 is transmitted as an individual control signal from the base station 110 to the terminal 120, for example. Alternatively, the response signal transmitted by the transmission unit 113 may be transmitted by a predetermined radio resource that is uniquely determined from the first radio resource to which the random access signal is transmitted. Thereby, the terminal 120 can receive the response signal transmitted by the transmission unit 113.
 また、送信部113は、特定部112が端末120を特定できた場合に端末120へ送信する応答信号を、端末120が第2の無線リソースにより自局へデータを送信することを許可するデータ送信許可信号とする。第2の無線リソースは、第1の無線リソースとは異なる無線リソースである。また、第2の無線リソースは、データ送信許可信号によって端末120へ通知されてもよいし、基地局110からの報知情報などによって事前に端末120へ通知されてもよい。 Further, the transmission unit 113 transmits a response signal to be transmitted to the terminal 120 when the identifying unit 112 has identified the terminal 120, and data transmission that allows the terminal 120 to transmit data to the own station using the second radio resource. Use permission signal. The second radio resource is a radio resource different from the first radio resource. Further, the second radio resource may be notified to terminal 120 by a data transmission permission signal, or may be notified to terminal 120 in advance by broadcast information from base station 110 or the like.
 これに対して、端末120は、基地局110から受信した応答信号に基づいて、基地局110から割り当てられた第2の無線リソースによってデータ(たとえばユーザデータ)を基地局110へ送信することができる。この場合に、基地局110の受信部111は、端末120から第2の無線リソースにより送信されたデータを受信する。 On the other hand, the terminal 120 can transmit data (for example, user data) to the base station 110 using the second radio resource allocated from the base station 110 based on the response signal received from the base station 110. . In this case, the reception unit 111 of the base station 110 receives data transmitted from the terminal 120 using the second radio resource.
 端末120は、送信部121と、受信部122と、を備える。送信部121は、上述した第1の無線リソースにより基地局110へのランダムアクセス信号を送信する。たとえば、送信部121は、基地局110からの報知情報から第1の無線リソースを特定し、特定した第1の無線リソースにより基地局110へのランダムアクセス信号を送信する。 The terminal 120 includes a transmission unit 121 and a reception unit 122. Transmitter 121 transmits a random access signal to base station 110 using the first radio resource described above. For example, the transmission unit 121 identifies the first radio resource from the broadcast information from the base station 110, and transmits a random access signal to the base station 110 using the identified first radio resource.
 受信部122は、送信部121によって送信されたランダムアクセス信号への基地局110からの応答信号を受信し、受信した応答信号を送信部121へ出力する。送信部121は、受信部122から出力された応答信号が、自端末が第2の無線リソースにより基地局110へデータを送信することを許可するデータ送信許可信号である場合は、第2の無線リソースにより基地局110へデータ(ユーザデータ)を送信する。 The reception unit 122 receives a response signal from the base station 110 to the random access signal transmitted by the transmission unit 121, and outputs the received response signal to the transmission unit 121. When the response signal output from the reception unit 122 is a data transmission permission signal that allows the terminal to transmit data to the base station 110 using the second radio resource, the transmission unit 121 transmits the second radio signal. Data (user data) is transmitted to the base station 110 by the resource.
 このように、無線通信システム100によれば、基地局110がランダムアクセス信号に基づいて端末120を特定できた場合は、ランダムアクセス信号に対する応答信号にてデータの送信許可を端末120に与えることができる。これにより、ランダムアクセス手順の一部を省略し、端末120から基地局110へのデータ送信が可能になるまでの時間を短縮することができる。 As described above, according to the wireless communication system 100, when the base station 110 can identify the terminal 120 based on the random access signal, the terminal 120 is permitted to transmit data using a response signal to the random access signal. it can. Thereby, a part of the random access procedure is omitted, and the time until data transmission from the terminal 120 to the base station 110 becomes possible can be shortened.
 また、基地局110の送信部113は、特定部112によって端末120が特定できなかった場合は、端末120へ送信する応答信号をランダムアクセス信号再送要求信号とする。端末120を特定できなかった場合とは、たとえば端末120が送信したランダムアクセス信号を受信電力や干渉などの影響で正常に受信できず、特定のシーケンスを識別できなかった場合である。 In addition, when the identifying unit 112 cannot identify the terminal 120, the transmitting unit 113 of the base station 110 sets the response signal transmitted to the terminal 120 as a random access signal retransmission request signal. The case where the terminal 120 could not be identified is a case where the random access signal transmitted by the terminal 120 could not be normally received due to the influence of reception power, interference, etc., and a specific sequence could not be identified.
 ランダムアクセス信号再送要求信号は、端末120が第3の無線リソースによりランダムアクセス信号を再送することを要求する信号である。第3の無線リソースは、たとえば第1の無線リソースと異なる無線リソースとする。これにより、ランダムアクセス信号の再送を、ランダムアクセス信号の初回送信と競合しない無線リソースにおいて行い、ランダムアクセス信号の再送の成功率を向上させることができる。また、第3の無線リソースは、ランダムアクセス信号再送要求信号によって端末120へ通知されてもよいし、基地局110からの報知情報などによって事前に端末120へ通知されてもよい。 The random access signal retransmission request signal is a signal for requesting the terminal 120 to retransmit the random access signal using the third radio resource. The third radio resource is, for example, a radio resource different from the first radio resource. As a result, retransmission of the random access signal is performed in a radio resource that does not compete with the initial transmission of the random access signal, and the success rate of retransmission of the random access signal can be improved. Also, the third radio resource may be notified to terminal 120 by a random access signal retransmission request signal, or may be notified to terminal 120 in advance by broadcast information from base station 110 or the like.
 端末120の送信部121は、受信部122から出力された応答信号が、自端末が基地局110へランダムアクセス信号を再送するための第3の無線リソースを示す情報を含む応答信号である場合は、第3の無線リソースによりランダムアクセス信号を再送する。 When the transmission unit 121 of the terminal 120 outputs a response signal including information indicating the third radio resource for the terminal itself to retransmit the random access signal to the base station 110, the response signal output from the reception unit 122 is Then, the random access signal is retransmitted by the third radio resource.
 このように、無線通信システム100によれば、基地局110がランダムアクセス信号に基づいて端末120を特定できなかった場合は、第1の無線リソースとは異なる第3の無線リソースによって端末120からランダムアクセス信号を再送させることができる。これにより、ランダムアクセス信号の送信に失敗した端末120のみが使用する無線リソースでランダムアクセス信号の再送を行うことができる。このため、ランダムアクセス信号の再送の成功率を向上させ、端末120から基地局110へのデータ送信が可能になるまでの時間を短縮することができる。 As described above, according to the wireless communication system 100, when the base station 110 cannot identify the terminal 120 based on the random access signal, the terminal 120 randomly generates the third wireless resource different from the first wireless resource. The access signal can be retransmitted. As a result, the random access signal can be retransmitted using the radio resource used only by the terminal 120 that failed to transmit the random access signal. For this reason, the success rate of retransmission of a random access signal can be improved, and the time until data transmission from the terminal 120 to the base station 110 becomes possible can be shortened.
 また、基地局110は、ランダムアクセス信号を送信した端末120が特定部112によって特定できた場合に、第3の無線リソースを、端末120と異なる他端末と自局との間の通信に割り当ててもよい。これにより、ランダムアクセス信号の再送に使用されない第3の無線リソースを他端末と自局との間の通信に使用し、無線リソースの利用効率を向上させることができる。 Further, when the terminal 120 that has transmitted the random access signal can be identified by the identifying unit 112, the base station 110 allocates the third radio resource to communication between another terminal different from the terminal 120 and the own station. Also good. As a result, the third radio resource that is not used for retransmission of the random access signal can be used for communication between the other terminal and the own station, and the utilization efficiency of the radio resource can be improved.
 また、端末120が送信するランダムアクセス信号は、ランダムアクセスプリアンブルに加えて、端末120から基地局110へ送信されるデータ(ユーザデータ)に関する情報を含んでいてもよい。これにより、端末120から基地局110へ送信されるデータに関する情報を効率よく基地局110へ送信することができる。 Further, the random access signal transmitted by the terminal 120 may include information on data (user data) transmitted from the terminal 120 to the base station 110 in addition to the random access preamble. Thereby, the information regarding the data transmitted from the terminal 120 to the base station 110 can be efficiently transmitted to the base station 110.
 データに関する情報は、たとえば、端末120から基地局110へ送信すべきデータの存在と、端末120から基地局110へ送信すべきデータ量と、の少なくともいずれかを示す情報とすることができる。たとえば、端末120から基地局110へ送信すべきデータ量をランダムアクセス信号により基地局110へ通知することで、基地局110は、端末120からのデータの送信に対して過不足なく第2の無線リソースを割り当てることができる。このため、無線リソースの利用効率を向上させることができる。 Information related to data can be, for example, information indicating at least one of the presence of data to be transmitted from the terminal 120 to the base station 110 and the amount of data to be transmitted from the terminal 120 to the base station 110. For example, the base station 110 notifies the base station 110 of the amount of data to be transmitted from the terminal 120 to the base station 110 by using a random access signal, so that the base station 110 can transmit the second wireless signal without excess or deficiency with respect to data transmission from the terminal 120 Resources can be allocated. For this reason, the utilization efficiency of a radio | wireless resource can be improved.
 また、端末120が送信するランダムアクセス信号は、端末120から基地局110へ送信されるデータ(ユーザデータ)の少なくとも一部を含んでいてもよい。これにより、端末120から基地局110へ送信されるデータを効率よく基地局110へ送信することができる。 Further, the random access signal transmitted by the terminal 120 may include at least a part of data (user data) transmitted from the terminal 120 to the base station 110. Thereby, data transmitted from terminal 120 to base station 110 can be efficiently transmitted to base station 110.
 図2は、実施の形態にかかる無線通信システムの他の一例を示す図である。図2に示す無線通信システム200は、基地局210と、端末221~224と、を含む。セル211は、基地局210のセルである。端末221~224は、セル211に在圏している端末である。端末221は、たとえばウェブブラウザなどのアプリケーションによって基地局210との間で通信を行う携帯電話やスマートフォンなどの情報端末である。 FIG. 2 is a diagram illustrating another example of the wireless communication system according to the embodiment. The radio communication system 200 shown in FIG. 2 includes a base station 210 and terminals 221 to 224. A cell 211 is a cell of the base station 210. Terminals 221 to 224 are terminals located in the cell 211. The terminal 221 is an information terminal such as a mobile phone or a smartphone that communicates with the base station 210 using an application such as a web browser.
 端末222は、温度計に適用された通信端末であり、たとえば温度計の測定結果を示す情報を基地局210へ送信する。端末223は、監視カメラなどの監視装置に適用された通信端末であり、たとえば監視カメラによる撮影によって得られた画像データや動画データを基地局210へ送信する。端末224は、火災報知器に適用された通信端末であり、たとえば火災の発見を報知する情報を基地局210へ送信する。 The terminal 222 is a communication terminal applied to a thermometer, and transmits information indicating the measurement result of the thermometer to the base station 210, for example. The terminal 223 is a communication terminal applied to a monitoring device such as a monitoring camera, and transmits, for example, image data and moving image data obtained by photographing with the monitoring camera to the base station 210. The terminal 224 is a communication terminal applied to the fire alarm, and transmits information for notifying the discovery of a fire to the base station 210, for example.
 従来、たとえば無線通信システム200のようなセルラ無線通信システムにおいては、端末が使用する無線リソースを基地局が制御し、端末は基地局に指示された無線リソースにより基地局との通信を行う。端末に与えられる無線リソースは基本的には他の端末と排他的であり、これによって複数の端末で無線リソースが競合することなく基地局と通信をすることができる。 Conventionally, in a cellular radio communication system such as the radio communication system 200, for example, a base station controls radio resources used by a terminal, and the terminal communicates with the base station using radio resources instructed to the base station. The radio resource given to the terminal is basically exclusive with other terminals, so that a plurality of terminals can communicate with the base station without competing radio resources.
 また、セルラ無線通信システムにおいては、様々な場面で、端末側から基地局にデータを送信するための無線リソースの割り当てを要求することを要する。このような場面には、たとえば、携帯電話端末が通話を開始する場合や、ユーザが端末でウェブブラウジングをしている途中で一時的に通信が中断していたところにユーザが操作を行い次のページのデータを要求する場合などがある。 In a cellular radio communication system, it is necessary to request allocation of radio resources for transmitting data from a terminal side to a base station in various situations. In such a situation, for example, when the mobile phone terminal starts a call, or when the user temporarily stops communication while the user is browsing the web, For example, requesting page data.
 また、このような場面には、たとえば、端末が温度計や雨量計、電力計など各種センサであり、端末がセンシングしたデータの送信を開始する準備ができた場合などがある。また、このような場面には、端末が不審者の検知や火災の発見など何らかの監視装置であり、端末が異常を検出したときにその異常を通知する場合などがある。 Also, in such a scene, for example, the terminal is a sensor such as a thermometer, a rain gauge, and a power meter, and the terminal is ready to start transmitting data sensed. In such a scene, the terminal may be a monitoring device such as detecting a suspicious person or finding a fire, and may notify the abnormality when the terminal detects the abnormality.
 端末から基地局に送信するデータは、上述の例でいうと、たとえば、ウェブの次のページのデータを要求することを示すデータ、温度、雨量、電力などの計測データ、不審者や火災を検知したことを示すデータなどがある。これらはアプリケーションのレベルでのデータである。通信システム上では、さらに、アプリケーションを示すデータ、ネットワーク上でデータの送信元や宛て先を示すデータ、データの順番を示すデータ、誤りがあったことを検出するためのデータなど、通信を制御するための各情報が付加されたデータが送信される。 In the above example, the data transmitted from the terminal to the base station is, for example, data indicating that the data for the next page of the web is requested, temperature, rainfall, power measurement data, suspicious persons or fires are detected. There is data to show that we did. These are data at the application level. On the communication system, further control the communication, such as data indicating the application, data indicating the source and destination of the data on the network, data indicating the order of the data, and data for detecting that there is an error. Data to which each piece of information is added is transmitted.
 また、無線システムでは通常、通信路での誤りに対する耐性を持たせるため、送信しようとするデータに通信路符号化を施す。以下、端末や基地局が無線リソース上で送受信するデータは、たとえば、アプリケーションレベルのデータに通信を制御するためのデータが加えられ、さらに通信路符号化の処理がなされた後のデータを指すものとする。 Also, in a wireless system, in general, in order to have tolerance against errors in a communication channel, communication channel coding is performed on data to be transmitted. Hereinafter, the data transmitted / received on the radio resource by the terminal or the base station refers to data after, for example, data for controlling communication is added to application level data and further processing for channel coding is performed. And
 3GPPのTS36.300の“Overall description;Stage 2”では、端末側から基地局にデータを送信するための無線リソースの割り当てを要求する目的のためランダムアクセスの手順を定義している。なお、3GPPは3rd Generation Partnership Projectの略である。 “Overall description; Stage 2” of TS36.300 of 3GPP defines a random access procedure for the purpose of requesting allocation of radio resources for transmitting data from the terminal side to the base station. 3GPP is an abbreviation for 3rd Generation Partnership Project.
 また、3GPPのTS36.211では実際に使われるランダムアクセスプリアンブルの波形が定義されている。TS36.211で定義されているランダムアクセスプリアンブルは、ビット長が839あるいは139のZadoff ChuシーケンスをIFFTして得られる時間波形である。IFFTはInverse Fast Fourier Transform(逆高速フーリエ変換)の略である。 Also, 3GPP TS36.211 defines a waveform of a random access preamble that is actually used. The random access preamble defined in TS 36.211 is a time waveform obtained by IFFT of a Zadoff Chu sequence having a bit length of 839 or 139. IFFT is an abbreviation for Inverse Fast Fourier Transform (Inverse Fast Fourier Transform).
 このランダムアクセスプリアンブルをサイクリックシフトするかあるいはZadoff Chuシーケンスのルートを変えることにより、セルごとに64個の異なるランダムアクセスプリアンブルが使用されるように定義されている。 It is defined that 64 different random access preambles are used for each cell by cyclically shifting this random access preamble or changing the route of the Zadoff Chu sequence.
 基地局では使用される64個のランダムアクセスプリアンブルの波形が既知である。このため、基地局は、受信信号と既知のランダムアクセスプリアンブルとの相関演算をすることにより、64個のランダムアクセスプリアンブルのうちどのランダムアクセスプリアンブルが送信されたかを検知することができる。 The base station has a known waveform of 64 random access preambles used. For this reason, the base station can detect which random access preamble is transmitted among the 64 random access preambles by performing a correlation operation between the received signal and the known random access preamble.
 3GPPのセルラ無線通信システムの仕様が定める手順によれば、端末は、まず、メッセージ1(MSG1)として、64通りのランダムアクセスプリアンブルの中からランダムに選んだ1個のランダムアクセスプリアンブルを送信する。これに対して、基地局は、メッセージ2(MSG2)として、ランダムアクセスレスポンスを返す。この段階では複数の端末が同じランダムアクセスプリアンブルを選んで送信している場合もあり、基地局側ではどの端末と通信を行うのかが特定されていない。 According to the procedure defined by the specifications of the 3GPP cellular radio communication system, the terminal first transmits one random access preamble randomly selected from 64 random access preambles as message 1 (MSG1). In response to this, the base station returns a random access response as message 2 (MSG2). At this stage, a plurality of terminals may select and transmit the same random access preamble, and it is not specified which terminal communicates with the base station.
 次に端末は、メッセージ3(MSG3)として、自分のIDを含む接続要求信号(Scheduled Transmission とも呼ばれる)を送信し、基地局は受信したIDを指定して端末を接続状態にする手順を開始する。 Next, the terminal transmits a connection request signal (also called Scheduled Transmission) including its own ID as message 3 (MSG3), and the base station starts a procedure for specifying the received ID and putting the terminal in a connected state. .
 端末は、自分のIDを含む接続手順が開始され接続状態になった後にスケジューリング要求信号を送信する。そして、端末は、データ送信に使用する無線リソースが指定された送信許可(UL grant)を基地局から受信してはじめて指定された無線リソースにてデータ送信が可能になる。 The terminal transmits a scheduling request signal after the connection procedure including its own ID is started and becomes connected. The terminal can transmit data using the specified radio resource only after receiving a transmission grant (UL grant) in which the radio resource used for data transmission is specified from the base station.
 ランダムアクセスプリアンブルが競合した場合は、端末は、得られたランダムアクセスレスポンスに対して自分のIDを含む接続要求信号を送信しても、自分のIDに対する接続手順が開始されないことがある。このような場合は、端末は、ランダムアクセスプリアンブルの送信からやり直すことになる。既に接続状態になるまでの手順が実行済みで端末が接続状態になっている場合でも、スケジューリング要求(SR)信号の送信以降の手順を要する。 When the random access preamble conflicts, the terminal may not start the connection procedure for its own ID even if it transmits a connection request signal including its own ID for the obtained random access response. In such a case, the terminal starts over from transmission of the random access preamble. Even when the procedure up to the connection state has already been executed and the terminal is in the connection state, the procedure after the transmission of the scheduling request (SR) signal is required.
 一方、無線LANに代表されるCSMA方式で多重を行う無線システムでは、無線リソースの管理を行うセルラ無線システムにおける基地局に相当するものはなく、端末は自己判断でデータの送信を行う。LANはLocal Area Network(構内通信網)の略である。CSMAはCarrier Sense Multiple Access(搬送波感知多重アクセス)の略である。 On the other hand, in a wireless system that multiplexes by the CSMA method typified by a wireless LAN, there is no equivalent to a base station in a cellular wireless system that manages wireless resources, and a terminal transmits data by self-judgment. LAN is an abbreviation for Local Area Network. CSMA is an abbreviation for Carrier Sense Multiple Access (carrier sense multiple access).
 たとえば、CSMA方式において、端末は、ある乱数に従った一定期間だけ、送信しようとする無線リソースにより受信を行い、その無線リソースが未使用であると判断できた場合に送信を行う。送信を行った後、端末は、送信先の相手から受信了解シグナル(ACK)が得られない場合、その送信が他の端末と競合したと判断し、再送を行う。 For example, in the CSMA scheme, a terminal receives a radio resource to be transmitted for a certain period according to a certain random number, and performs transmission when it is determined that the radio resource is unused. After the transmission, if the terminal does not receive a reception acknowledgment signal (ACK) from the transmission destination partner, the terminal determines that the transmission has competed with another terminal and performs retransmission.
 再送を行う際、端末は、送信可否を判断するために行う無線リソースの受信をする時間を、延長された期間の中から乱数で選択する。これにより、送信が競合した端末同士が再度競合する確率を減らすことができる。端末が送信を行う前に乱数に従った時間だけ無線リソースが未使用であることを確認するため、必然的に無線リソースが未使用である時間を要し、その平均時間は、乱数が発生する時間の平均となる。この平均時間は、複数の端末による送信の競合が起こると長くなる。 When retransmitting, the terminal selects a reception time of radio resources to determine whether or not transmission is possible with a random number from the extended period. As a result, it is possible to reduce the probability that terminals that have competed for transmission compete again. Before the terminal transmits, it confirms that the radio resource is unused for the time according to the random number, so it takes inevitably the time when the radio resource is unused, and the average time generates a random number. It becomes the average of time. This average time becomes longer when transmission competition by a plurality of terminals occurs.
 図1に示した基地局110は、たとえば基地局210により実現することができる。図1に示した端末120は、たとえば端末221~224のそれぞれにより実現することができる。これにより、端末221~224において基地局110へ送信すべきデータが発生してから基地局110へデータを送信するまでの時間を短縮することができる。 The base station 110 shown in FIG. 1 can be realized by the base station 210, for example. The terminal 120 shown in FIG. 1 can be realized by each of the terminals 221 to 224, for example. As a result, it is possible to shorten the time from when the data to be transmitted to the base station 110 is generated in the terminals 221 to 224 until the data is transmitted to the base station 110.
(実施の形態にかかる無線通信システムにおける無線フレームの構成)
 図3は、実施の形態にかかる無線通信システムにおける無線フレームの構成の一例を示す図である。図3において、横軸は無線リソースの時間を示し、縦軸は無線リソースの周波数を示す。ここでは、DL(Down Link:下りリンク)との伝送とUL(Up Link:上りリンク)の伝送とが時間的に分離されて行われる場合について説明する。図3に示す例では、期間311,313はDLの期間であり、期間312,314はULの期間である。
(Configuration of Radio Frame in Radio Communication System According to Embodiment)
FIG. 3 is a diagram illustrating an example of a configuration of a radio frame in the radio communication system according to the embodiment. In FIG. 3, the horizontal axis indicates the time of the radio resource, and the vertical axis indicates the frequency of the radio resource. Here, a case will be described in which transmission with DL (Down Link) and transmission with UL (Up Link) are performed separately in time. In the example illustrated in FIG. 3, the periods 311 and 313 are DL periods, and the periods 312 and 314 are UL periods.
 無線リソース301は、DLの期間311における無線リソースである。また、無線リソース301は、下り制御情報または報知情報に割り当てられた無線リソースである。無線リソース301の下り制御情報または報知情報は、後述の無線リソース302(第1の無線リソース)の配置を示す情報である。無線リソース302は、ULの期間312における無線リソースである。また、無線リソース302は、ランダムアクセス信号の送信を行うための無線リソース(第1の無線リソース)である。 The radio resource 301 is a radio resource in the DL period 311. The radio resource 301 is a radio resource assigned to downlink control information or broadcast information. The downlink control information or broadcast information of the radio resource 301 is information indicating an arrangement of a radio resource 302 (first radio resource) described later. The radio resource 302 is a radio resource in the UL period 312. Radio resource 302 is a radio resource (first radio resource) for transmitting a random access signal.
 無線リソース303は、DLの期間313における無線リソースである。また、無線リソース303は、ランダムアクセス信号に対する応答信号を送信するための無線リソースである。無線リソース303によって送信される応答信号は、後述の無線リソース304(第2の無線リソース)を示すデータ送信許可信号、または後述の無線リソース305(第3の無線リソース)を示すランダムアクセス信号再送要求信号である。 The radio resource 303 is a radio resource in the DL period 313. The radio resource 303 is a radio resource for transmitting a response signal for the random access signal. The response signal transmitted by the radio resource 303 is a data transmission permission signal indicating a radio resource 304 (second radio resource) described later or a random access signal retransmission request indicating a radio resource 305 (third radio resource) described later. Signal.
 無線リソース304は、ULの期間314における無線リソースである。また、無線リソース304は、データ(ユーザデータ)を送信するための無線リソース(第2の無線リソース)である。無線リソース305は、ULの期間314における無線リソースである。また、無線リソース305は、ランダムアクセス信号を再送するための無線リソース(第3の無線リソース)である。 The wireless resource 304 is a wireless resource in the UL period 314. The radio resource 304 is a radio resource (second radio resource) for transmitting data (user data). The radio resource 305 is a radio resource in the UL period 314. The radio resource 305 is a radio resource (third radio resource) for retransmitting the random access signal.
 たとえば図3に示す例のように、端末120がランダムアクセス信号を再送するための無線リソース305(第3の無線リソース)を、無線リソース305を通知する期間313の直後の期間314に設定する。これにより、たとえば、端末120は、次の無線リソース301を待つよりも早く、ランダムアクセス信号の再送を行うことができる。このため、端末120が基地局110へデータ送信可能になるまでの時間を短縮することができる。 For example, as in the example illustrated in FIG. 3, the radio resource 305 (third radio resource) for the terminal 120 to retransmit the random access signal is set to a period 314 immediately after the period 313 for notifying the radio resource 305. Thereby, for example, the terminal 120 can retransmit the random access signal earlier than waiting for the next radio resource 301. For this reason, the time until the terminal 120 can transmit data to the base station 110 can be shortened.
 図4は、実施の形態にかかる無線通信システムにおける無線フレームの構成の他の一例を示す図である。図4において、図3に示した部分と同様の部分については同一の符号を付して説明を省略する。図4に示す例においては、無線リソース301,401は、それぞれDLの期間311,313における無線リソースである。また、無線リソース301,401は、下り制御情報に割り当てられた無線リソースである。無線リソース301の下り制御情報は、無線リソース402(報知情報)の配置や、無線リソース303の配置を示す情報である。 FIG. 4 is a diagram illustrating another example of a configuration of a radio frame in the radio communication system according to the embodiment. In FIG. 4, the same parts as those shown in FIG. In the example shown in FIG. 4, radio resources 301 and 401 are radio resources in DL periods 311 and 313, respectively. Radio resources 301 and 401 are radio resources allocated to downlink control information. The downlink control information of the radio resource 301 is information indicating the arrangement of the radio resource 402 (broadcast information) and the arrangement of the radio resource 303.
 無線リソース402は、DLの期間311,313における無線リソースである。また、無線リソース402は、報知情報に割り当てられた無線リソースである。無線リソース402の報知情報は、無線リソース302(第1の無線リソース)の配置を示す情報である。 The radio resource 402 is a radio resource in the DL periods 311 and 313. Radio resource 402 is a radio resource assigned to broadcast information. The broadcast information of the radio resource 402 is information indicating the arrangement of the radio resource 302 (first radio resource).
(実施の形態にかかる無線通信システムにおける処理)
 図5は、実施の形態にかかる無線通信システムにおける処理の一例を示すフローチャートである。無線通信システム100においては、たとえば図5に示す各ステップが実行される。まず、基地局110が、無線フレーム上での無線リソース配置(たとえば図3,図4参照)の決定を行う(ステップS501)。ただし、無線フレーム上での無線リソース配置は、システム設計時に予め決定しておいてもよい。この場合は、基地局110は、ステップS501において、システム設計時に決定され基地局110のメモリに記憶された無線フレーム上での無線リソース配置の情報を読み出す。
(Processing in Radio Communication System According to Embodiment)
FIG. 5 is a flowchart illustrating an example of processing in the wireless communication system according to the embodiment. In the wireless communication system 100, for example, each step shown in FIG. 5 is executed. First, the base station 110 determines a radio resource arrangement (for example, see FIGS. 3 and 4) on a radio frame (step S501). However, the radio resource arrangement on the radio frame may be determined in advance at the time of system design. In this case, in step S501, the base station 110 reads information on radio resource arrangement on the radio frame determined at the time of system design and stored in the memory of the base station 110.
 ステップS501によって決定された無線リソース配置は、下り制御情報や報知情報を用いて基地局110から端末120へ通知される。たとえば、ステップS501によって決定された無線リソース配置は、端末120で送信すべきデータが発生する前に端末120に全て通知されてもよいし、端末120で送信すべきデータが発生するごとに端末120に通知されるようにしてもよい。 The radio resource allocation determined in step S501 is notified from the base station 110 to the terminal 120 using downlink control information and broadcast information. For example, the radio resource allocation determined in step S501 may be all notified to the terminal 120 before data to be transmitted by the terminal 120 is generated, or each time data to be transmitted by the terminal 120 is generated, the terminal 120 May be notified.
 つぎに、端末120において、送信すべきデータが発生したとする(ステップS502)。つぎに、端末120が、データの送信許可を求めるために、基地局110から通知された第1の無線リソースにより基地局110へランダムアクセス信号を送信する(ステップS503)。基地局110は、ステップS503によって送信されたランダムアクセス信号に基づいて、そのランダムアクセス信号を送信した端末120の特定を試みる。 Next, it is assumed that data to be transmitted has occurred in the terminal 120 (step S502). Next, the terminal 120 transmits a random access signal to the base station 110 using the first radio resource notified from the base station 110 in order to obtain permission to transmit data (step S503). Based on the random access signal transmitted in step S503, the base station 110 attempts to identify the terminal 120 that has transmitted the random access signal.
 基地局110がランダムアクセス信号を送信した端末120を特定できた場合は、ステップS503のつぎに、基地局110が、データの送信許可を端末120に対して行う(ステップS504)。ステップS504におけるデータの送信許可は、たとえば第2の無線リソースを示すデータ送信許可信号を端末120へ送信することにより行われる。 When the base station 110 can identify the terminal 120 that has transmitted the random access signal, the base station 110 permits data transmission to the terminal 120 after step S503 (step S504). The data transmission permission in step S504 is performed, for example, by transmitting a data transmission permission signal indicating the second radio resource to the terminal 120.
 つぎに、端末120が、ステップS504のデータの送信許可に従ってデータを基地局110へ送信し(ステップS505)、一連の処理を終了する。ステップS505におけるデータの送信は、たとえば基地局110からのデータ送信許可信号が示す第2の無線リソースにより行われる。 Next, the terminal 120 transmits data to the base station 110 in accordance with the data transmission permission in step S504 (step S505), and the series of processing ends. The data transmission in step S505 is performed by the second radio resource indicated by the data transmission permission signal from the base station 110, for example.
 基地局110がランダムアクセス信号を送信した端末120を特定できなかった場合は、基地局110が、端末120に対して、ランダムアクセス信号の再送要求を行い(ステップS506)、ステップS503の処理に戻る。ステップS506におけるランダムアクセス信号の再送要求は、たとえば第3の無線リソースを示すランダムアクセス信号再送要求信号を端末120へ送信することにより行われる。また、ステップS506からステップS503へ戻った際の端末120によるランダムアクセス信号の再送は、基地局110からのランダムアクセス信号再送要求信号が示す第3の無線リソースにより行われる。 When the base station 110 cannot identify the terminal 120 that has transmitted the random access signal, the base station 110 requests the terminal 120 to retransmit the random access signal (step S506), and returns to the process of step S503. . The retransmission request for the random access signal in step S506 is performed, for example, by transmitting a random access signal retransmission request signal indicating the third radio resource to the terminal 120. Also, the retransmission of the random access signal by the terminal 120 upon returning from step S506 to step S503 is performed by the third radio resource indicated by the random access signal retransmission request signal from the base station 110.
(実施の形態にかかる基地局)
 図6は、実施の形態にかかる基地局の一例を示す図である。図6に示すように、実施の形態にかかる基地局110は、たとえば、プロセッサ610と、メモリ620と、送信信号生成器631と、送信機632と、送受信号分離器640と、アンテナ650と、受信機661と、受信信号処理器662と、を備える。
(Base station according to the embodiment)
FIG. 6 is a diagram of an example of the base station according to the embodiment. As shown in FIG. 6, the base station 110 according to the embodiment includes, for example, a processor 610, a memory 620, a transmission signal generator 631, a transmitter 632, a transmission / reception signal separator 640, an antenna 650, A receiver 661 and a received signal processor 662 are provided.
 プロセッサ610は、たとえば基地局110の全体の制御を司るCPU(Central Processing Unit:中央処理装置)である。メモリ620には、たとえばメインメモリおよび補助メモリが含まれる。メインメモリは、たとえばRAM(Random Access Memory)である。メインメモリは、プロセッサ610のワークエリアとして使用される。補助メモリは、たとえば磁気ディスク、光ディスク、フラッシュメモリなどの不揮発メモリである。補助メモリには、基地局110を動作させる各種のプログラムが記憶されている。補助メモリに記憶されたプログラムは、メインメモリにロードされてプロセッサ610によって実行される。 The processor 610 is a CPU (Central Processing Unit) that controls the entire base station 110, for example. The memory 620 includes, for example, a main memory and an auxiliary memory. The main memory is, for example, a RAM (Random Access Memory). The main memory is used as a work area for the processor 610. The auxiliary memory is, for example, a nonvolatile memory such as a magnetic disk, an optical disk, or a flash memory. Various programs for operating the base station 110 are stored in the auxiliary memory. The program stored in the auxiliary memory is loaded into the main memory and executed by the processor 610.
 プロセッサ610により、たとえば、無線リソース割り当て制御部611と、制御情報・報知情報生成部612と、ランダムアクセス信号検出部613と、データ復号部614と、データ送信許可・ランダムアクセス再送判断部615と、が実現される。ただし、プロセッサ610においては、これらに限らず、基地局110を動作させるための各処理部が実現される。 By the processor 610, for example, a radio resource allocation control unit 611, a control information / broadcast information generation unit 612, a random access signal detection unit 613, a data decoding unit 614, a data transmission permission / random access retransmission determination unit 615, Is realized. However, the processor 610 is not limited to these, and each processing unit for operating the base station 110 is realized.
 無線リソース割り当て制御部611は、無線フレーム上での無線リソース配置(たとえば図3,図4参照)を決定する。無線リソース割り当て制御部611は、決定した無線リソースの配置を示す配置情報を制御情報・報知情報生成部612へ出力する。 The radio resource allocation control unit 611 determines radio resource arrangement (for example, see FIGS. 3 and 4) on the radio frame. Radio resource allocation control section 611 outputs arrangement information indicating the determined arrangement of radio resources to control information / notification information generation section 612.
 制御情報・報知情報生成部612は、基地局110が送信するDLの制御情報および報知情報を生成し、生成した制御情報および報知情報を含む信号を送信信号生成器631へ出力する。たとえば、制御情報・報知情報生成部612は、無線リソース割り当て制御部611から出力された配置情報を、生成するDLの制御情報または報知情報に格納する。また、制御情報・報知情報生成部612は、後述のデータ送信許可・ランダムアクセス再送判断部615から出力されたデータ送信許可信号やランダムアクセス信号再送要求信号を、生成するDLの制御情報に格納する。 Control information / broadcast information generating section 612 generates DL control information and broadcast information transmitted from base station 110, and outputs a signal including the generated control information and broadcast information to transmission signal generator 631. For example, the control information / broadcast information generation unit 612 stores the arrangement information output from the radio resource allocation control unit 611 in the DL control information or broadcast information to be generated. The control information / broadcast information generation unit 612 stores the data transmission permission signal and the random access signal retransmission request signal output from the data transmission permission / random access retransmission determination unit 615, which will be described later, in the control information of the DL to be generated. .
 送信信号生成器631は、プロセッサ610から出力された信号に含まれる制御情報や報知情報などの各種の情報を無線フレーム上に配置して無線信号に変換する。そして、送信信号生成器631は、無線信号に変換した信号を送信機632へ出力する。 The transmission signal generator 631 arranges various information such as control information and broadcast information included in the signal output from the processor 610 on a radio frame and converts the information into a radio signal. Then, the transmission signal generator 631 outputs the signal converted into the radio signal to the transmitter 632.
 送信機632は、送信信号生成器631から出力された信号の送信処理を行う。送信機632による送信処理には、たとえば、デジタル信号からアナログ信号への変換、ベースバンド帯からRF(Radio Frequency)帯への周波数変換、増幅などが含まれる。送信機632は、送信処理を行った信号を送受信号分離器640へ出力する。 The transmitter 632 performs transmission processing of the signal output from the transmission signal generator 631. The transmission processing by the transmitter 632 includes, for example, conversion from a digital signal to an analog signal, frequency conversion from a baseband band to an RF (Radio Frequency) band, amplification, and the like. The transmitter 632 outputs the signal subjected to the transmission process to the transmission / reception signal separator 640.
 送受信号分離器640は、送信機632から出力されたDLの信号をアンテナ650へ出力し、アンテナ650から出力されたULの信号を受信機661へ出力することにより、DLの信号とULの信号とを分離する。アンテナ650は、送受信号分離器640から出力された信号を端末120へ無線送信する。また、アンテナ650は、端末120から無線送信される信号を受信し、受信した信号を送受信号分離器640へ出力する。 The transmission / reception signal separator 640 outputs the DL signal output from the transmitter 632 to the antenna 650, and outputs the UL signal output from the antenna 650 to the receiver 661, whereby the DL signal and the UL signal are output. And isolate. The antenna 650 wirelessly transmits the signal output from the transmission / reception signal separator 640 to the terminal 120. Antenna 650 receives a signal wirelessly transmitted from terminal 120, and outputs the received signal to transmission / reception signal separator 640.
 受信機661は、送受信号分離器640から出力された信号の受信処理を行う。受信機661による受信処理には、たとえば、増幅、RF帯からベースバンド帯への周波数変換、アナログ信号からデジタル信号への変換などが含まれる。受信機661は、受信処理を行った信号を受信信号処理器662へ出力する。 The receiver 661 performs reception processing of the signal output from the transmission / reception number separator 640. The reception processing by the receiver 661 includes, for example, amplification, frequency conversion from the RF band to the baseband, conversion from an analog signal to a digital signal, and the like. The receiver 661 outputs the signal subjected to the reception process to the reception signal processor 662.
 受信信号処理器662は、受信機661から出力された信号を復調する。これにより、ランダムアクセス信号やデータが含まれる信号が得られる。受信信号処理器662は、復調により得られた信号をプロセッサ610へ出力する。 Received signal processor 662 demodulates the signal output from receiver 661. Thereby, a random access signal and a signal including data are obtained. Reception signal processor 662 outputs the signal obtained by demodulation to processor 610.
 プロセッサ610により実現されるランダムアクセス信号検出部613は、受信信号処理器662から出力された信号に含まれるランダムアクセス信号を検出する。そして、ランダムアクセス信号検出部613は、検出したランダムアクセス信号のシーケンスを判定する。また、ランダムアクセス信号検出部613は、検出および判定の結果をデータ送信許可・ランダムアクセス再送判断部615へ通知する。 The random access signal detector 613 realized by the processor 610 detects a random access signal included in the signal output from the received signal processor 662. Then, the random access signal detection unit 613 determines the sequence of the detected random access signal. Also, the random access signal detection unit 613 notifies the data transmission permission / random access retransmission determination unit 615 of the detection and determination results.
 データ復号部614は、受信信号処理器662から出力された信号に含まれるULのデータ(たとえばユーザデータ)を復号して取り出す。 The data decoding unit 614 decodes and extracts UL data (for example, user data) included in the signal output from the reception signal processor 662.
 データ送信許可・ランダムアクセス再送判断部615は、判定されたランダムアクセス信号のシーケンスから端末120に返すべき応答内容を決める。たとえば、データ送信許可・ランダムアクセス再送判断部615は、上述したランダムアクセス信号に基づく端末120の特定を行う。 The data transmission permission / random access retransmission determination unit 615 determines the response content to be returned to the terminal 120 from the sequence of the determined random access signal. For example, the data transmission permission / random access retransmission determination unit 615 identifies the terminal 120 based on the random access signal described above.
 そして、データ送信許可・ランダムアクセス再送判断部615は、端末120を特定できた場合は第2の無線リソースを示す端末120へのデータ送信許可信号を制御情報・報知情報生成部612へ出力する。また、データ送信許可・ランダムアクセス再送判断部615は、端末120を特定できなかった場合は第3の無線リソースを示す端末120へのランダムアクセス信号再送要求信号を制御情報・報知情報生成部612へ出力する。 Then, when the terminal 120 can be identified, the data transmission permission / random access retransmission determination unit 615 outputs a data transmission permission signal to the terminal 120 indicating the second radio resource to the control information / broadcast information generation unit 612. In addition, if the terminal 120 cannot be identified, the data transmission permission / random access retransmission determination unit 615 transmits a random access signal retransmission request signal to the terminal 120 indicating the third radio resource to the control information / broadcast information generation unit 612. Output.
 図1に示した受信部111は、たとえばアンテナ650、送受信号分離器640、受信機661、受信信号処理器662、ランダムアクセス信号検出部613およびデータ復号部614により実現することができる。図1に示した特定部112は、たとえばデータ送信許可・ランダムアクセス再送判断部615により実現することができる。図1に示した送信部113は、たとえば制御情報・報知情報生成部612、送信信号生成器631、送信機632、送受信号分離器640およびアンテナ650により実現することができる。 1 can be realized by an antenna 650, a transmission / reception signal separator 640, a receiver 661, a reception signal processor 662, a random access signal detection unit 613, and a data decoding unit 614, for example. The specifying unit 112 illustrated in FIG. 1 can be realized by the data transmission permission / random access retransmission determination unit 615, for example. The transmission unit 113 illustrated in FIG. 1 can be realized by, for example, a control information / broadcast information generation unit 612, a transmission signal generator 631, a transmitter 632, a transmission / reception signal separator 640, and an antenna 650.
(実施の形態にかかる端末)
 図7は、実施の形態にかかる端末の一例を示す図である。図7に示すように、実施の形態にかかる端末120は、たとえば、プロセッサ710と、メモリ720と、送信信号生成器731と、送信機732と、送受信号分離器740と、アンテナ750と、受信機761と、受信信号処理器762と、を備える。
(Terminal according to the embodiment)
FIG. 7 is a diagram illustrating an example of a terminal according to the embodiment. As illustrated in FIG. 7, the terminal 120 according to the embodiment includes, for example, a processor 710, a memory 720, a transmission signal generator 731, a transmitter 732, a transmission / reception signal separator 740, an antenna 750, and a reception. Machine 761 and a received signal processor 762.
 プロセッサ710は、たとえば端末120の全体の制御を司るCPUである。メモリ720には、たとえばメインメモリおよび補助メモリが含まれる。メインメモリは、たとえばRAMである。メインメモリは、プロセッサ710のワークエリアとして使用される。補助メモリは、たとえば磁気ディスク、フラッシュメモリなどの不揮発メモリである。補助メモリには、端末120を動作させる各種のプログラムが記憶されている。補助メモリに記憶されたプログラムは、メインメモリにロードされてプロセッサ710によって実行される。 The processor 710 is a CPU that controls the entire terminal 120, for example. The memory 720 includes, for example, a main memory and an auxiliary memory. The main memory is, for example, a RAM. The main memory is used as a work area for the processor 710. The auxiliary memory is a non-volatile memory such as a magnetic disk or a flash memory. Various programs for operating the terminal 120 are stored in the auxiliary memory. The program stored in the auxiliary memory is loaded into the main memory and executed by the processor 710.
 プロセッサ710により、たとえば、送信データ発生検出部711と、ランダムアクセス信号生成部712と、データ送信部713と、制御情報・報知情報解析部714と、が実現される。ただし、プロセッサ710においては、これらに限らず、端末120を動作させるための各処理部が実現される。 The processor 710 implements, for example, a transmission data generation detection unit 711, a random access signal generation unit 712, a data transmission unit 713, and a control information / broadcast information analysis unit 714. However, the processor 710 is not limited to these, and each processing unit for operating the terminal 120 is realized.
 送信データ発生検出部711は、各種センサや監視装置などから、端末120から基地局110へ送信すべきデータの発生を検出する。そして、送信データ発生検出部711は、送信すべきデータの発生を検出すると、送信すべきデータの発生をランダムアクセス信号生成部712へ通知し、発生した送信すべきデータをデータ送信部713へ出力する。 The transmission data generation detection unit 711 detects the generation of data to be transmitted from the terminal 120 to the base station 110 from various sensors and monitoring devices. When the transmission data generation detection unit 711 detects the generation of data to be transmitted, the transmission data generation detection unit 711 notifies the random access signal generation unit 712 of the generation of data to be transmitted, and outputs the generated data to be transmitted to the data transmission unit 713. To do.
 ランダムアクセス信号生成部712は、送信データ発生検出部711から送信すべきデータの発生が通知されると、ランダムアクセス信号を生成する。たとえば、ランダムアクセス信号生成部712は、事前に端末120から割り当てられ通知された特定のシーケンスや特定の無線リソースに基づいてランダムアクセス信号を生成する。そして、ランダムアクセス信号生成部712は、生成したランダムアクセス信号を送信信号生成器731へ出力する。 When the generation of data to be transmitted is notified from the transmission data generation detection unit 711, the random access signal generation unit 712 generates a random access signal. For example, the random access signal generation unit 712 generates a random access signal based on a specific sequence or a specific radio resource assigned and notified in advance from the terminal 120. Then, the random access signal generation unit 712 outputs the generated random access signal to the transmission signal generator 731.
 ランダムアクセス信号生成部712が生成するランダムアクセス信号には、たとえば、3GPPが定めるセルラ無線通信システムの仕様であるTS36.211で定義されるランダムアクセスプリアンブルに準じた信号を使うことができる。TS36.211で定義されているRandom Access Preambleと異なるルートのZadoff Chuシーケンスを使うことにより、TS36.211で規定されている目的とは異なる目的を持つランダムアクセス信号とすることができる。 As the random access signal generated by the random access signal generation unit 712, for example, a signal conforming to the random access preamble defined in TS36.211 which is the specification of the cellular radio communication system defined by 3GPP can be used. By using a Zadoff Chu sequence of a route different from the Random Access Preamble defined in TS 36.211, a random access signal having a purpose different from the purpose defined in TS 36.211 can be obtained.
 ランダムアクセス信号には、このようなランダムアクセス信号に限らず、各種のシーケンスを用いることができる。ただし、ランダムアクセス信号における複数の特定のシーケンスは、互いに直交していることが望ましい。互いに直交しているとは、一致しないシーケンスと相関演算を行ったときに相関がゼロになることである。 The random access signal is not limited to such a random access signal, and various sequences can be used. However, it is desirable that a plurality of specific sequences in the random access signal are orthogonal to each other. Being orthogonal to each other means that the correlation becomes zero when a correlation operation is performed with a sequence that does not match.
 一例としては、ランダムアクセス信号には、Walshコード{0000,0101,0110,0011}を使用することができる。ランダムアクセス信号のコードの長さを長くすれば、より多くの直交するコードが得られる。一般に、長さNのコードを使えばN個の直交するコードが得られる。 As an example, a Walsh code {0000, 0101, 0110, 0011} can be used for a random access signal. If the length of the code of the random access signal is increased, more orthogonal codes can be obtained. In general, N orthogonal codes can be obtained if a length N code is used.
 また、特定のシーケンスのランダムアクセス信号は、端末120を完全に特定できるユニークなものであってもよいが、無線通信システム100における端末120の数が多い場合は、いくつかの端末群を構成してもよい。この場合は、端末群ごとにランダムアクセス信号を送信する無線リソースを決定し、その無線リソースを使用する端末群の中で端末が特定されるランダムアクセス信号を用いればよい。 Further, the random access signal of a specific sequence may be unique so that the terminal 120 can be completely specified. However, when the number of the terminals 120 in the wireless communication system 100 is large, several terminal groups are configured. May be. In this case, a radio resource for transmitting a random access signal may be determined for each terminal group, and a random access signal that identifies a terminal in the terminal group that uses the radio resource may be used.
 データ送信部713は、アプリケーションレベルのデータ(ユーザデータ)に通信を制御するためのデータを付加したり、通信路符号化の処理を行ったりする。アプリケーションレベルのデータには、たとえば送信データ発生検出部711から出力されたデータが含まれる。データ送信部713は、通信路符号化の処理によって得られた信号を送信信号生成器731へ出力する。 The data transmission unit 713 adds data for controlling communication to application level data (user data) or performs processing of channel coding. The application level data includes, for example, data output from the transmission data generation detection unit 711. The data transmission unit 713 outputs a signal obtained by the channel coding process to the transmission signal generator 731.
 送信信号生成器731は、プロセッサ710から出力された信号に含まれるランダムアクセス信号やデータを無線フレーム上に配置して無線信号に変換する。そして、送信信号生成器731は、無線信号に変換した信号を送信機732へ出力する。 The transmission signal generator 731 arranges a random access signal or data included in the signal output from the processor 710 on a wireless frame and converts it into a wireless signal. Then, the transmission signal generator 731 outputs the signal converted into the radio signal to the transmitter 732.
 送信機732は、送信信号生成器731から出力された信号の送信処理を行う。送信機732による送信処理には、たとえば、デジタル信号からアナログ信号への変換、ベースバンド帯からRF帯への周波数変換、増幅などが含まれる。送信機732は、送信処理を行った信号を送受信号分離器740へ出力する。 The transmitter 732 performs transmission processing of the signal output from the transmission signal generator 731. The transmission processing by the transmitter 732 includes, for example, conversion from a digital signal to an analog signal, frequency conversion from a baseband to an RF band, amplification, and the like. The transmitter 732 outputs the signal subjected to the transmission process to the transmission / reception signal separator 740.
 送受信号分離器740は、送信機732から出力されたULの信号をアンテナ750へ出力し、アンテナ750から出力されたDLの信号を受信機761へ出力することにより、ULの信号とDLの信号とを分離する。アンテナ750は、送受信号分離器740から出力された信号を基地局110へ無線送信する。また、アンテナ750は、基地局110から無線送信される信号を受信し、受信した信号を送受信号分離器740へ出力する。 The transmission / reception signal separator 740 outputs the UL signal output from the transmitter 732 to the antenna 750 and outputs the DL signal output from the antenna 750 to the receiver 761, whereby the UL signal and the DL signal are output. And isolate. The antenna 750 wirelessly transmits the signal output from the transmission / reception signal separator 740 to the base station 110. The antenna 750 receives a signal wirelessly transmitted from the base station 110 and outputs the received signal to the transmission / reception signal separator 740.
 受信機761は、送受信号分離器740から出力された信号の受信処理を行う。受信機761による受信処理には、たとえば、増幅、RF帯からベースバンド帯への周波数変換、アナログ信号からデジタル信号への変換などが含まれる。受信機761は、受信処理を行った信号を受信信号処理器762へ出力する。 The receiver 761 performs reception processing of the signal output from the transmission / reception signal separator 740. The reception processing by the receiver 761 includes, for example, amplification, frequency conversion from the RF band to the baseband, conversion from an analog signal to a digital signal, and the like. The receiver 761 outputs the signal subjected to the reception process to the reception signal processor 762.
 受信信号処理器762は、受信機761から出力された信号を復調する。これにより、基地局110からの制御信号や報知情報が含まれる信号が得られる。受信信号処理器762は、復調により得られた信号をプロセッサ710へ出力する。 The reception signal processor 762 demodulates the signal output from the receiver 761. As a result, a signal including a control signal and broadcast information from the base station 110 is obtained. Reception signal processor 762 outputs a signal obtained by demodulation to processor 710.
 プロセッサ710により実現される制御情報・報知情報解析部714は、受信信号処理器762から出力された信号に含まれる制御信号および報知情報を抽出する。そして、制御情報・報知情報解析部714は、抽出した制御信号および報知情報の解析を行う。たとえば、制御情報・報知情報解析部714は、基地局110からの制御信号または報知情報が示す、ランダムアクセス信号の初回送信のための無線リソースをランダムアクセス信号生成部712へ通知する。この場合は、ランダムアクセス信号生成部712は、初回送信のランダムアクセス信号を、制御情報・報知情報解析部714から通知された無線リソースにより生成する。 The control information / notification information analysis unit 714 realized by the processor 710 extracts a control signal and notification information included in the signal output from the reception signal processor 762. Then, the control information / notification information analysis unit 714 analyzes the extracted control signal and notification information. For example, the control information / broadcast information analysis unit 714 notifies the random access signal generation unit 712 of radio resources for initial transmission of the random access signal indicated by the control signal or broadcast information from the base station 110. In this case, the random access signal generation unit 712 generates a random access signal transmitted for the first time using the radio resource notified from the control information / broadcast information analysis unit 714.
 また、制御情報・報知情報解析部714は、基地局110からの制御信号または報知情報に含まれる、第2の無線リソースを示すデータ送信許可信号をデータ送信部713へ出力する。この場合は、データ送信部713は、制御情報・報知情報解析部714から出力されたデータ送信許可信号が示す第2の無線リソースによってデータ信号を生成する。 Also, the control information / broadcast information analysis unit 714 outputs a data transmission permission signal indicating the second radio resource included in the control signal or broadcast information from the base station 110 to the data transmission unit 713. In this case, the data transmission unit 713 generates a data signal using the second radio resource indicated by the data transmission permission signal output from the control information / broadcast information analysis unit 714.
 また、制御情報・報知情報解析部714は、基地局110からの制御信号または報知情報に含まれる、第3の無線リソースを示すランダムアクセス信号再送要求信号をランダムアクセス信号生成部712へ出力する。この場合は、ランダムアクセス信号生成部712は、制御情報・報知情報解析部714から出力されたランダムアクセス信号再送要求信号が示す第3の無線リソースによって、再送のランダムアクセス信号を生成する。 Also, the control information / broadcast information analysis unit 714 outputs a random access signal retransmission request signal indicating the third radio resource included in the control signal or broadcast information from the base station 110 to the random access signal generation unit 712. In this case, the random access signal generation unit 712 generates a retransmission random access signal using the third radio resource indicated by the random access signal retransmission request signal output from the control information / broadcast information analysis unit 714.
 図1に示した送信部121は、たとえばランダムアクセス信号生成部712、送信信号生成器731、送信機732、送受信号分離器740、アンテナ750およびデータ送信部713により実現することができる。図1に示した受信部122は、たとえばアンテナ750、送受信号分離器740、受信機761、受信信号処理器762および制御情報・報知情報解析部714により実現することができる。 1 can be realized by a random access signal generation unit 712, a transmission signal generator 731, a transmitter 732, a transmission / reception signal separator 740, an antenna 750, and a data transmission unit 713, for example. The receiving unit 122 illustrated in FIG. 1 can be realized by, for example, the antenna 750, the transmission / reception signal separator 740, the receiver 761, the received signal processor 762, and the control information / broadcast information analyzing unit 714.
(実施の形態にかかる基地局による処理)
 図8は、実施の形態にかかる基地局による処理の一例を示すフローチャートである。実施の形態にかかる基地局110は、たとえば図8に示す各ステップを実行する。まず、基地局110は、無線フレーム上での無線リソース配置の決定を行う(ステップS801)。つぎに、基地局110は、端末(たとえば端末120)が使用するランダムアクセス信号のシーケンスを決定して端末に通知する(ステップS802)。
(Processing by the base station according to the embodiment)
FIG. 8 is a flowchart illustrating an example of processing performed by the base station according to the embodiment. The base station 110 according to the embodiment executes, for example, each step shown in FIG. First, the base station 110 determines a radio resource arrangement on a radio frame (step S801). Next, the base station 110 determines a sequence of a random access signal used by the terminal (for example, the terminal 120) and notifies the terminal of the random access signal (step S802).
 つぎに、基地局110は、第1の無線リソースの配置情報を報知情報として送信する(ステップS803)。つぎに、基地局110は、第1の無線リソースおよび第3の無線リソースによりランダムアクセス信号の受信処理を行う(ステップS804)。 Next, the base station 110 transmits first radio resource arrangement information as broadcast information (step S803). Next, the base station 110 performs a random access signal reception process using the first radio resource and the third radio resource (step S804).
 つぎに、基地局110は、ステップS804の受信処理によってランダムアクセス信号を検出したか否かを判断する(ステップS805)。ランダムアクセス信号を検出していない場合(ステップS805:No)は、基地局110は、ランダムアクセス信号を検出した場合に使用される予定だった無線リソースを他の端末の通信のためのリソースとして割り当てる(ステップS806)。ランダムアクセス信号を検出した場合に使用される予定だった無線リソースは、たとえば、ランダムアクセス信号の応答送信、データの送信許可またはランダムアクセスの再送のために使用される予定だった無線リソースである。ステップS806の後に、基地局110は、ステップS803へ戻る。 Next, the base station 110 determines whether or not a random access signal is detected by the reception process in step S804 (step S805). When a random access signal is not detected (step S805: No), the base station 110 allocates a radio resource that is scheduled to be used when a random access signal is detected as a resource for communication of another terminal. (Step S806). The radio resource that is scheduled to be used when the random access signal is detected is, for example, a radio resource that is scheduled to be used for response transmission of a random access signal, permission to transmit data, or retransmission of random access. After step S806, the base station 110 returns to step S803.
 ステップS805において、ランダムアクセス信号を検出した場合(ステップS805:Yes)は、基地局110は、検出したランダムアクセス信号を送信した端末120を特定できたか否かを判断する(ステップS807)。ランダムアクセス信号を送信した端末120を特定できていない場合(ステップS807:No)は、基地局110は、第3の無線リソースの配置情報を含むランダムアクセス信号再送要求信号を送信し(ステップS808)、ステップS804へ戻る。ステップS808からステップS804へ戻ってランダムアクセス信号の受信処理を行うことで、別の端末120が新たなランダムアクセス信号を送信してきた場合にも対応することが可能になる。 In step S805, when a random access signal is detected (step S805: Yes), the base station 110 determines whether the terminal 120 that has transmitted the detected random access signal has been identified (step S807). When the terminal 120 that has transmitted the random access signal has not been identified (step S807: No), the base station 110 transmits a random access signal retransmission request signal including the arrangement information of the third radio resource (step S808). Return to step S804. By returning to step S804 from step S808 and performing reception processing of the random access signal, it is possible to cope with a case where another terminal 120 transmits a new random access signal.
 ステップS807において、ランダムアクセス信号を送信した端末120を特定できた場合(ステップS807:Yes)は、ステップS809へ移行する。すなわち、基地局110は、第2の無線リソースの配置情報を含むデータ送信許可信号を端末120へ送信する(ステップS809)。つぎに、基地局110は、端末120から第2の無線リソースにより送信されるデータの受信を行い(ステップS810)、一連の処理を終了する。 In step S807, when the terminal 120 that has transmitted the random access signal can be identified (step S807: Yes), the process proceeds to step S809. That is, the base station 110 transmits a data transmission permission signal including the second radio resource arrangement information to the terminal 120 (step S809). Next, the base station 110 receives data transmitted from the terminal 120 using the second radio resource (step S810), and ends a series of processes.
 図9は、実施の形態にかかる基地局による処理の他の一例を示すフローチャートである。実施の形態にかかる基地局110は、たとえば図9に示す各ステップを実行してもよい。図9に示すステップS901,S902は、図8に示したステップS801,S802と同様である。ステップS902のつぎに、基地局110は、第1の無線リソース、第2の無線リソースおよび第3の無線リソースの配置情報を報知情報として送信する(ステップS903)。 FIG. 9 is a flowchart illustrating another example of processing by the base station according to the embodiment. The base station 110 according to the embodiment may execute the steps shown in FIG. 9, for example. Steps S901 and S902 shown in FIG. 9 are the same as steps S801 and S802 shown in FIG. Subsequent to step S902, the base station 110 transmits arrangement information of the first radio resource, the second radio resource, and the third radio resource as broadcast information (step S903).
 図9に示すステップS904~S907は、図8に示したステップS804~S807と同様である。ステップS907において、ランダムアクセス信号を送信した端末120を特定できていない場合(ステップS907:No)は、基地局110は、ランダムアクセス信号再送要求信号を送信し(ステップS908)、ステップS904へ戻る。図9に示す例では、第3の無線リソースの配置情報はステップS903において報知されているため、ステップS908において送信されるランダムアクセス信号再送要求信号には、第3の無線リソースの配置情報が含まれていなくてもよい。 Steps S904 to S907 shown in FIG. 9 are the same as steps S804 to S807 shown in FIG. In step S907, when the terminal 120 that has transmitted the random access signal cannot be identified (step S907: No), the base station 110 transmits a random access signal retransmission request signal (step S908), and returns to step S904. In the example shown in FIG. 9, since the arrangement information of the third radio resource is broadcast in step S903, the random access signal retransmission request signal transmitted in step S908 includes the arrangement information of the third radio resource. It does not have to be.
 ステップS907において、ランダムアクセス信号を送信した端末120を特定できた場合(ステップS907:Yes)は、基地局110は、データ送信許可信号を端末120へ送信する(ステップS909)。図9に示す例では、第2の無線リソースの配置情報はステップS903において報知されているため、ステップS909において送信されるデータ送信許可信号には、第2の無線リソースの配置情報が含まれていなくてもよい。つぎに、基地局110は、第2の無線リソースにより端末120から送信されるデータの受信を行い(ステップS910)、一連の処理を終了する。 In step S907, when the terminal 120 that has transmitted the random access signal can be identified (step S907: Yes), the base station 110 transmits a data transmission permission signal to the terminal 120 (step S909). In the example illustrated in FIG. 9, the second radio resource arrangement information is notified in step S903, and therefore the data transmission permission signal transmitted in step S909 includes the second radio resource arrangement information. It does not have to be. Next, the base station 110 receives data transmitted from the terminal 120 using the second radio resource (step S910), and ends a series of processes.
 図9に示したように、基地局110は、第2の無線リソースおよび第3の無線リソースの配置情報を報知情報により予めセル内に報知しておいてもよい。この場合は、たとえば無線通信システム100において複数の端末120が存在する場合に、第2の無線リソースおよび第3の無線リソースは複数の端末120の間で共通の無線リソースになる。 As shown in FIG. 9, the base station 110 may previously notify the arrangement information of the second radio resource and the third radio resource in the cell by the broadcast information. In this case, for example, when there are a plurality of terminals 120 in the radio communication system 100, the second radio resource and the third radio resource become a radio resource common to the plurality of terminals 120.
 このような場合においても、たとえば、複数の端末120からのデータ送信が同時に発生する可能性が低い場合は、同一の第2の無線リソースまたは同一の第3の無線リソースが複数の端末120によって使用される可能性は低い。このため、基地局110は、第2の無線リソースによってデータを受信、または第3の無線リソースによって再送のランダムアクセス信号を受信することができる。 Even in such a case, for example, when it is unlikely that data transmission from a plurality of terminals 120 will occur simultaneously, the same second radio resource or the same third radio resource is used by the plurality of terminals 120. It is unlikely to be done. Therefore, the base station 110 can receive data using the second radio resource or receive a retransmitted random access signal using the third radio resource.
(実施の形態にかかる端末による処理)
 図10は、実施の形態にかかる端末による処理の一例を示すフローチャートである。たとえば基地局110が図8に示す処理を行う場合に、実施の形態にかかる端末120は、たとえば図10に示す各ステップを実行する。まず、端末120は、使用すべきランダムアクセス信号の特定のシーケンスを示すランダムアクセス信号シーケンス情報を基地局110から受信する(ステップS1001)。
(Processing by the terminal according to the embodiment)
FIG. 10 is a flowchart illustrating an example of processing performed by the terminal according to the embodiment. For example, when the base station 110 performs the processing shown in FIG. 8, the terminal 120 according to the embodiment executes, for example, each step shown in FIG. First, the terminal 120 receives random access signal sequence information indicating a specific sequence of random access signals to be used from the base station 110 (step S1001).
 ステップS1001は、たとえば、端末120の基地局110への初回接続時や端末120の位置登録時に行うことができる。この場合に、端末120の基地局110への初回接続や端末120の位置登録においては、通常のランダムアクセス手順を行うことで、特定のシーケンスが端末120に割り当てられる前であっても端末120が基地局110へ接続することができる。 Step S1001 can be performed, for example, when the terminal 120 is connected to the base station 110 for the first time or when the location of the terminal 120 is registered. In this case, in the initial connection of the terminal 120 to the base station 110 and the location registration of the terminal 120, by performing a normal random access procedure, the terminal 120 can be connected even before a specific sequence is assigned to the terminal 120. A connection to the base station 110 can be made.
 つぎに、端末120は、送信すべきデータが発生しているか否かを判断し(ステップS1002)、送信すべきデータが発生するまで待つ(ステップS1002:Noのループ)。送信すべきデータが発生すると(ステップS1002:Yes)、端末120は、第1の無線リソースの配置情報の基地局110からの取得を行う(ステップS1003)。ステップS1003における配置情報の取得は、たとえば基地局110からの報知情報を受信することによって行うことができる。 Next, the terminal 120 determines whether or not data to be transmitted is generated (step S1002), and waits until data to be transmitted is generated (step S1002: No loop). When data to be transmitted is generated (step S1002: Yes), the terminal 120 acquires the first radio resource arrangement information from the base station 110 (step S1003). The acquisition of the placement information in step S1003 can be performed by receiving broadcast information from the base station 110, for example.
 つぎに、端末120は、ステップS1003によって受信した第1の無線リソースの配置情報に基づいて、第1の無線リソースによりランダムアクセス信号の送信を行う(ステップS1004)。ステップS1004において、端末120は、ステップS1001によって受信したランダムアクセス信号シーケンス情報が示す特定のシーケンスを用いてランダムアクセス信号の送信を行う。 Next, the terminal 120 transmits a random access signal using the first radio resource based on the arrangement information of the first radio resource received in step S1003 (step S1004). In step S1004, the terminal 120 transmits a random access signal using a specific sequence indicated by the random access signal sequence information received in step S1001.
 つぎに、端末120は、送信したランダムアクセス信号に対する基地局110からの応答の受信処理を行う(ステップS1005)。つぎに、端末120は、ステップS1005の受信処理によって基地局110の応答を受信したか否かを判断する(ステップS1006)。応答を受信していない場合(ステップS1006:No)は、端末120は、ステップS1003へ戻る。 Next, the terminal 120 performs a reception process of a response from the base station 110 with respect to the transmitted random access signal (step S1005). Next, the terminal 120 determines whether or not the response of the base station 110 has been received by the reception process of step S1005 (step S1006). When the response has not been received (step S1006: No), the terminal 120 returns to step S1003.
 ステップS1006において、応答を受信した場合(ステップS1006:Yes)は、端末120は、ステップS1005において受信した応答が、第2の無線リソースの配置情報を含むデータ送信許可信号か否かを判断する(ステップS1007)。受信した応答が第2の無線リソースの配置情報を含むデータ送信許可信号でない場合(ステップS1007:No)は、端末120は、ステップS1008へ移行する。すなわち、端末120は、ステップS1005において受信した応答が、第3の無線リソースの配置情報を含むランダムアクセス信号再送要求信号か否かを判断する(ステップS1008)。 If a response is received in step S1006 (step S1006: Yes), terminal 120 determines whether or not the response received in step S1005 is a data transmission permission signal including second radio resource arrangement information ( Step S1007). When the received response is not a data transmission permission signal including the second radio resource arrangement information (step S1007: No), the terminal 120 proceeds to step S1008. That is, terminal 120 determines whether or not the response received in step S1005 is a random access signal retransmission request signal including third radio resource arrangement information (step S1008).
 ステップS1008において、受信した応答が第3の無線リソースの配置情報を含むランダムアクセス信号再送要求信号でない場合(ステップS1008:No)は、端末120は、ステップS1003へ戻る。受信した応答が第3の無線リソースの配置情報を含むランダムアクセス信号再送要求信号である場合(ステップS1008:Yes)は、端末120はステップS1009へ移行する。すなわち、端末120は、第3の無線リソースの配置情報に基づいて、第3の無線リソースによりランダムアクセス信号の基地局110への送信(再送)を行い(ステップS1009)、ステップS1005へ戻る。 In step S1008, when the received response is not a random access signal retransmission request signal including the arrangement information of the third radio resource (step S1008: No), the terminal 120 returns to step S1003. When the received response is a random access signal retransmission request signal including the arrangement information of the third radio resource (step S1008: Yes), the terminal 120 proceeds to step S1009. That is, terminal 120 transmits (retransmits) a random access signal to base station 110 using the third radio resource based on the arrangement information of the third radio resource (step S1009), and returns to step S1005.
 ステップS1007において、受信した応答が第2の無線リソースの配置情報を含むデータ送信許可信号である場合(ステップS1007:Yes)は、端末120は、ステップS1010へ移行する。すなわち、端末120は、第2の無線リソースの配置情報に基づいて、第2の無線リソースによりデータの送信を行い(ステップS1010)、一連の処理を終了する。 In step S1007, when the received response is a data transmission permission signal including the second radio resource arrangement information (step S1007: Yes), the terminal 120 proceeds to step S1010. That is, terminal 120 transmits data using the second radio resource based on the arrangement information of the second radio resource (step S1010), and ends a series of processes.
 図11は、実施の形態にかかる端末による処理の他の一例を示すフローチャートである。たとえば基地局110が図9に示す処理を行う場合に、実施の形態にかかる端末120は、たとえば図11に示す各ステップを実行してもよい。まず、端末120は、使用すべきランダムアクセス信号のシーケンスを示すランダムアクセス信号シーケンス情報を基地局110から受信する(ステップS1101)。 FIG. 11 is a flowchart illustrating another example of processing performed by the terminal according to the embodiment. For example, when the base station 110 performs the process shown in FIG. 9, the terminal 120 according to the embodiment may execute the steps shown in FIG. 11, for example. First, the terminal 120 receives random access signal sequence information indicating a sequence of random access signals to be used from the base station 110 (step S1101).
 つぎに、端末120は、基地局110の報知情報により、第1の無線リソース、第2の無線リソースおよび第3の無線リソースの配置情報の取得を行う(ステップS1102)。ステップS1102における配置情報の取得は、たとえば基地局110からの報知情報を受信することによって行うことができる。 Next, the terminal 120 acquires the arrangement information of the first radio resource, the second radio resource, and the third radio resource from the broadcast information of the base station 110 (step S1102). The acquisition of arrangement information in step S1102 can be performed by receiving broadcast information from the base station 110, for example.
 つぎに、端末120は、送信すべきデータが発生しているか否かを判断し(ステップS1103)、送信すべきデータが発生するまで待つ(ステップS1103:Noのループ)。送信すべきデータが発生すると(ステップS1103:Yes)、端末120は、ステップS1104へ移行する。 Next, the terminal 120 determines whether or not data to be transmitted is generated (step S1103), and waits until data to be transmitted is generated (step S1103: No loop). When data to be transmitted is generated (step S1103: Yes), the terminal 120 proceeds to step S1104.
 図11に示すステップS1104~S1106は、図10に示したステップS1004~S1006と同様である。ステップS1106において、応答を受信した場合(ステップS1106:Yes)は、端末120は、ステップS1105において受信した応答が、データ送信許可信号か否かを判断する(ステップS1107)。受信した応答がデータ送信許可信号でない場合(ステップS1107:No)は、端末120は、ステップS1105において受信した応答がランダムアクセス信号再送要求信号か否かを判断する(ステップS1108)。 Steps S1104 to S1106 shown in FIG. 11 are the same as steps S1004 to S1006 shown in FIG. If a response is received in step S1106 (step S1106: Yes), the terminal 120 determines whether or not the response received in step S1105 is a data transmission permission signal (step S1107). When the received response is not a data transmission permission signal (step S1107: No), the terminal 120 determines whether or not the response received in step S1105 is a random access signal retransmission request signal (step S1108).
 ステップS1108において、受信した応答がランダムアクセス信号再送要求信号でない場合(ステップS1108:No)は、端末120は、ステップS1104へ戻る。受信した応答がランダムアクセス信号再送要求信号である場合(ステップS1108:Yes)は、端末120はステップS1109へ移行する。すなわち、端末120は、ステップS1102によって取得した第3の無線リソースの配置情報に基づいて、第3の無線リソースによりランダムアクセス信号の基地局110への送信を行い(ステップS1109)、ステップS1105へ戻る。 In step S1108, when the received response is not a random access signal retransmission request signal (step S1108: No), the terminal 120 returns to step S1104. When the received response is a random access signal retransmission request signal (step S1108: Yes), the terminal 120 proceeds to step S1109. That is, terminal 120 transmits a random access signal to base station 110 using the third radio resource based on the arrangement information of the third radio resource acquired in step S1102 (step S1109), and returns to step S1105. .
 ステップS1107において、受信した応答がデータ送信許可信号である場合(ステップS1107:Yes)は、端末120は、ステップS1110へ移行する。すなわち、端末120は、ステップS1102によって取得した第2の無線リソースの配置情報に基づいて、第2の無線リソースによりデータの送信を行い(ステップS1110)、一連の処理を終了する。 In step S1107, when the received response is a data transmission permission signal (step S1107: Yes), the terminal 120 proceeds to step S1110. That is, the terminal 120 transmits data using the second radio resource based on the arrangement information of the second radio resource acquired in step S1102 (step S1110), and ends a series of processes.
 このように、実施の形態にかかる無線通信システム100によれば、基地局110がランダムアクセス信号に基づいて端末120を特定できた場合は、ランダムアクセス信号に対する応答信号にてデータの送信許可を端末120に与えることができる。これにより、ランダムアクセス手順の一部を省略し、端末120から基地局110へのデータ送信が可能になるまでの時間を短縮することができる。 As described above, according to the wireless communication system 100 according to the embodiment, when the base station 110 can identify the terminal 120 based on the random access signal, the terminal is permitted to transmit data using the response signal for the random access signal. 120. Thereby, a part of the random access procedure is omitted, and the time until data transmission from the terminal 120 to the base station 110 becomes possible can be shortened.
 また、基地局110がランダムアクセス信号に基づいて端末120を特定できなかった場合は、第1の無線リソースとは異なる第3の無線リソースによって端末120からランダムアクセス信号を再送させることができる。これにより、ランダムアクセス信号の再送の成功率を向上させ、端末120から基地局110へのデータ送信が可能になるまでの時間を短縮することができる。 In addition, when the base station 110 cannot identify the terminal 120 based on the random access signal, the random access signal can be retransmitted from the terminal 120 using the third radio resource different from the first radio resource. As a result, the success rate of retransmission of the random access signal can be improved, and the time until data transmission from the terminal 120 to the base station 110 becomes possible can be shortened.
(実施例1)
(実施例1にかかる無線フレーム)
 図12は、実施例1にかかる無線フレームの一例を示す図である。図12において、図3,図4に示した部分と同様の部分については同一の符号を付して説明を省略する。図12に示す無線フレーム1211(n)は、DLの期間311とULの期間312により構成されるn番目の無線フレームである。無線フレーム1212(n+1)は、DLの期間313とULの期間314により構成されるn+1番目の無線フレームである。
Example 1
(Radio frame according to the first embodiment)
FIG. 12 is a diagram illustrating an example of a radio frame according to the first embodiment. 12, parts similar to those shown in FIGS. 3 and 4 are given the same reference numerals and description thereof is omitted. A radio frame 1211 (n) illustrated in FIG. 12 is an n-th radio frame including a DL period 311 and a UL period 312. The radio frame 1212 (n + 1) is an (n + 1) th radio frame configured by a DL period 313 and a UL period 314.
 端末120は、送信すべきデータが発生してデータを送信するための無線リソースの割り当てを要するとき、無線フレーム1211(n)の無線リソース301の制御情報あるいは報知情報から、無線リソース302の配置情報を取得する。無線リソース302は、無線フレーム1211のULにおいてランダムアクセス信号の送信を行うための第1の無線リソースである。端末120は、取得した配置情報に基づいて、無線リソース302においてランダムアクセス信号を送信する。 When the data to be transmitted occurs and the terminal 120 needs to allocate radio resources for transmitting data, the terminal 120 determines the arrangement information of the radio resources 302 from the control information or broadcast information of the radio resources 301 of the radio frame 1211 (n). To get. The radio resource 302 is a first radio resource for transmitting a random access signal in the UL of the radio frame 1211. The terminal 120 transmits a random access signal in the radio resource 302 based on the acquired arrangement information.
 基地局110は、端末120からのランダムアクセス信号を受信し、受信したランダムアクセス信号を送信した端末120の特定を試みる。そして、基地局110は、端末120を特定できた場合は、無線フレーム1212(n+1)のDLの無線リソース303において端末120に対してデータ送信許可信号を送信する。このデータ送信許可信号には、この無線フレーム1212(n+1)のULで端末120がデータを送信するための無線リソース304(第2の無線リソース)に関する情報が含まれる。 The base station 110 receives the random access signal from the terminal 120 and attempts to identify the terminal 120 that has transmitted the received random access signal. If the base station 110 can identify the terminal 120, the base station 110 transmits a data transmission permission signal to the terminal 120 using the DL radio resource 303 of the radio frame 1212 (n + 1). This data transmission permission signal includes information on the radio resource 304 (second radio resource) for the terminal 120 to transmit data in the UL of the radio frame 1212 (n + 1).
 基地局110から無線リソース304に関する情報を含む送信許可信号を受信した端末120は、無線フレーム1212におけるULの無線リソース304において基地局110へデータを送信する。 The terminal 120 that has received a transmission permission signal including information related to the radio resource 304 from the base station 110 transmits data to the base station 110 using the UL radio resource 304 in the radio frame 1212.
 基地局110は、ランダムアクセス信号を送信した端末120を特定できなかった場合は、無線フレーム1212のDLの無線リソース303において端末120に対してランダムアクセス信号再送要求信号を送信する。ランダムアクセス信号再送要求信号には、ランダムアクセス信号の再送をするための無線リソース305(第3の無線リソース)に関する情報が含まれる。ランダムアクセス信号再送要求信号を受信した端末120は、無線フレーム1212におけるULの無線リソース305においてランダムアクセス信号を再送する。 When the base station 110 cannot identify the terminal 120 that has transmitted the random access signal, the base station 110 transmits a random access signal retransmission request signal to the terminal 120 in the DL radio resource 303 of the radio frame 1212. The random access signal retransmission request signal includes information on the radio resource 305 (third radio resource) for retransmitting the random access signal. The terminal 120 that has received the random access signal retransmission request signal retransmits the random access signal in the UL radio resource 305 in the radio frame 1212.
 無線フレーム1211(n)のDLにおける無線リソース1201は、n-1番目の無線フレームのULの期間において端末120から送信されたランダムアクセス信号に対する基地局110からの応答信号の送信に使用される。無線フレーム1211(n)のULにおける無線リソース1202(第2の無線リソース)は、この無線リソース1201による応答信号に基づく端末120からのデータの送信に使用される。無線フレーム1211(n)のULにおける無線リソース1203(第3の無線リソース)は、この無線リソース1201による応答信号に基づく端末120からのランダムアクセス信号の再送に使用される。 The radio resource 1201 in the DL of the radio frame 1211 (n) is used to transmit a response signal from the base station 110 to the random access signal transmitted from the terminal 120 during the UL period of the (n−1) th radio frame. A radio resource 1202 (second radio resource) in the UL of the radio frame 1211 (n) is used for data transmission from the terminal 120 based on a response signal by the radio resource 1201. The radio resource 1203 (third radio resource) in the UL of the radio frame 1211 (n) is used for retransmission of a random access signal from the terminal 120 based on the response signal by the radio resource 1201.
 無線フレーム1212(n+1)のDLにおける無線リソース1204は、無線フレーム1212のULにおける無線リソース1205(第1の無線リソース)を示す制御情報あるいは報知情報に用いられる。無線フレーム1212(n+1)のULの無線リソース1205で送信されたランダムアクセス信号への応答は、n+2番目の無線フレームのDLの期間における無線リソースで送信される。 The radio resource 1204 in the DL of the radio frame 1212 (n + 1) is used for control information or broadcast information indicating the radio resource 1205 (first radio resource) in the UL of the radio frame 1212. The response to the random access signal transmitted by the UL radio resource 1205 of the radio frame 1212 (n + 1) is transmitted by the radio resource in the DL period of the (n + 2) th radio frame.
 このように、送信データの発生時にランダムアクセス信号を送信するための無線リソース302,1205(第1の無線リソース)とランダムアクセス信号を再送するための無線リソース305,1203(第3の無線リソース)と、を別のリソースとして配置する。これにより、ある無線フレームで最初に送信されたランダムアクセス信号と、より前の無線フレームで送信したがデータの送信許可が得られなかったことにより再送されたランダムアクセス信号と、の間の衝突を回避できる。 Thus, the radio resources 302 and 1205 (first radio resource) for transmitting the random access signal when the transmission data is generated and the radio resources 305 and 1203 (third radio resource) for retransmitting the random access signal are transmitted. Are placed as separate resources. As a result, a collision between a random access signal transmitted first in a certain radio frame and a random access signal transmitted in an earlier radio frame but retransmitted because data transmission permission was not obtained can be detected. Can be avoided.
 ただし、複数の端末が同時にランダムアクセス信号を送信し、一部の端末にデータ送信の許可を与え残りの端末にランダムアクセス信号の再送を求めることを考慮しなければ、第1の無線リソースおよび第3の無線リソースを共通化してもよい。たとえば、無線リソース302と無線リソース1203を同一の無線リソースとしてもよい。また、無線リソース1205と無線リソース305を同一の無線リソースとしてもよい。 However, if it is not considered that a plurality of terminals transmit random access signals at the same time, grant permission for data transmission to some terminals, and request retransmission of random access signals to the remaining terminals, the first radio resource and the second The three radio resources may be shared. For example, the wireless resource 302 and the wireless resource 1203 may be the same wireless resource. Also, the radio resource 1205 and the radio resource 305 may be the same radio resource.
 また、基地局110は、ランダムアクセス信号を検出しない場合は、無線リソース304,305,1202,1203を既に通信中の状態になっている他の端末のデータ送信用に割り当ててもよい。 In addition, when the base station 110 does not detect a random access signal, the radio resources 304, 305, 1202, and 1203 may be assigned for data transmission of other terminals that are already in communication.
(実施例1にかかる無線通信システムにおける処理)
 図13は、実施例1にかかる無線通信システムにおける処理の一例を示すフローチャートである。無線通信システム100においては、たとえば図13に示す各ステップが実行される。まず、基地局110が、無線フレーム上での無線リソース配置(たとえば図3,図4参照)の決定を行う(ステップS1301)。
(Processing in the wireless communication system according to the first embodiment)
FIG. 13 is a flowchart of an example of processing in the wireless communication system according to the first embodiment. In the wireless communication system 100, for example, each step shown in FIG. 13 is executed. First, the base station 110 determines a radio resource arrangement (for example, see FIGS. 3 and 4) on a radio frame (step S1301).
 つぎに、基地局110が、ステップS1301によって決定した無線リソース配置のうちの第1の無線リソースの配置を示す配置情報を端末120へ送信する(ステップS1302)。ステップS1302は、たとえば下り制御情報や報知情報を用いて行われる。 Next, the base station 110 transmits arrangement information indicating the arrangement of the first radio resource among the radio resource arrangements determined in step S1301 to the terminal 120 (step S1302). Step S1302 is performed using, for example, downlink control information and broadcast information.
 一方で、端末120において、送信すべきデータが発生したとする(ステップS1303)。つぎに、端末120が、ステップS1302によって下り制御情報や報知情報を用いて基地局110から送信された第1の無線リソースの配置情報の取得を行う(ステップS1304)。 On the other hand, it is assumed that data to be transmitted is generated in the terminal 120 (step S1303). Next, the terminal 120 acquires the arrangement information of the first radio resource transmitted from the base station 110 using the downlink control information and broadcast information in step S1302 (step S1304).
 つぎに、端末120が、データの送信許可を求めるために基地局110へランダムアクセス信号を送信する(ステップS1305)。ステップS1303のランダムアクセス信号の送信は、たとえば、ステップS1304によって受信された配置情報に基づいて、第1の無線リソースにより行われる。また、ステップS1303のランダムアクセス信号の送信は、事前に端末120に割り当てられた特定のシーケンスや特定の無線リソースを用いて行われる。 Next, the terminal 120 transmits a random access signal to the base station 110 to request data transmission permission (step S1305). The transmission of the random access signal in step S1303 is performed by the first radio resource based on the arrangement information received in step S1304, for example. In addition, the transmission of the random access signal in step S1303 is performed using a specific sequence or a specific radio resource assigned to the terminal 120 in advance.
 つぎに、基地局110が、ステップS1305によって送信されたランダムアクセス信号の受信を行う(ステップS1306)。そして、基地局110は、ステップS1306によって受信したランダムアクセス信号に基づいて、そのランダムアクセス信号を送信した端末120を特定できたか否かを判断する(ステップS1307)。 Next, the base station 110 receives the random access signal transmitted in step S1305 (step S1306). Based on the random access signal received in step S1306, the base station 110 determines whether the terminal 120 that has transmitted the random access signal has been identified (step S1307).
 ステップS1307において、ランダムアクセス信号を送信した端末120を特定できた場合(ステップS1307:Yes)は、基地局110は、ステップS1308へ移行する。すなわち、基地局110は、第2の無線リソースの配置情報を含むデータ送信許可信号を、ステップS1306において受信したランダムアクセス信号に対する応答として端末120へ送信する(ステップS1308)。 In step S1307, when the terminal 120 that has transmitted the random access signal can be identified (step S1307: Yes), the base station 110 proceeds to step S1308. That is, base station 110 transmits a data transmission permission signal including second radio resource arrangement information to terminal 120 as a response to the random access signal received in step S1306 (step S1308).
 ステップS1307において、ランダムアクセス信号を送信した端末120を特定できていない場合(ステップS1307:No)は、基地局110は、ステップS1309へ移行する。すなわち、基地局110は、第3の無線リソースの配置情報を含むランダムアクセス信号再送要求信号を、ステップS1306において受信したランダムアクセス信号に対する応答として端末120へ送信する(ステップS1309)。 In step S1307, when the terminal 120 that has transmitted the random access signal has not been identified (step S1307: No), the base station 110 proceeds to step S1309. That is, base station 110 transmits a random access signal retransmission request signal including third radio resource arrangement information to terminal 120 as a response to the random access signal received in step S1306 (step S1309).
 つぎに、端末120が、ステップS1305によって送信したランダムアクセス信号に対する、ステップS1308またはステップS1309によって送信された基地局110からの応答の受信を行う(ステップS1310)。 Next, the terminal 120 receives a response from the base station 110 transmitted in step S1308 or step S1309 to the random access signal transmitted in step S1305 (step S1310).
 つぎに、端末120が、ステップS1310によって受信した応答が、第2の無線リソースの配置情報を含むデータ送信許可信号であるか否かを判断する(ステップS1311)。受信した応答が第2の無線リソースの配置情報を含むデータ送信許可信号でない場合(ステップS1311:No)は、端末120がステップS1310によって受信した応答は、第3の無線リソースの配置情報を含むランダムアクセス信号再送要求信号である。この場合は、端末120は、ステップS1305に戻ってランダムアクセス信号の再送を行う。 Next, the terminal 120 determines whether or not the response received in step S1310 is a data transmission permission signal including the second radio resource arrangement information (step S1311). When the received response is not a data transmission permission signal including the arrangement information of the second radio resource (step S1311: No), the response received by the terminal 120 in step S1310 is a random including the arrangement information of the third radio resource. This is an access signal retransmission request signal. In this case, the terminal 120 returns to step S1305 to retransmit the random access signal.
 ステップS1311において、受信した応答が、第2の無線リソースの配置情報を含むデータ送信許可信号である場合(ステップS1311:Yes)は、端末120が、ステップS1312へ移行する。すなわち、端末120は、第2の無線リソースの配置情報に基づいて、第2の無線リソースによりデータの送信を行う(ステップS1312)。つぎに、基地局110が、ステップS1312によって送信されたデータの受信を行い(ステップS1313)、一連の処理を終了する。 In step S1311, when the received response is a data transmission permission signal including the second radio resource arrangement information (step S1311: Yes), the terminal 120 proceeds to step S1312. That is, the terminal 120 transmits data using the second radio resource based on the arrangement information of the second radio resource (step S1312). Next, the base station 110 receives the data transmitted in step S1312 (step S1313), and ends a series of processing.
(実施例2)
(実施例2にかかる無線通信システムにおける無線フレームの構成)
 図14は、実施例2にかかる無線通信システムにおける無線フレームの構成の一例を示す図である。図14において、図12に示した部分と同様の部分については同一の符号を付して説明を省略する。実施例2においては、DLの期間311,313における無線リソース301,1204は、報知情報やランダムアクセス信号に対する応答信号の配置に関する情報を含む制御情報の送信に用いられる。
(Example 2)
(Configuration of radio frame in radio communication system according to second embodiment)
FIG. 14 is a diagram illustrating an example of a configuration of a radio frame in the radio communication system according to the second embodiment. In FIG. 14, the same parts as those shown in FIG. In the second embodiment, the radio resources 301 and 1204 in the DL periods 311 and 313 are used for transmission of control information including broadcast information and information on the arrangement of response signals with respect to random access signals.
 DLの期間311,313における無線リソース1401,1402は、端末120がランダムアクセス信号を送信するための無線リソース302,1205(第1の無線リソース)の配置に関する情報を含む報知情報の送信に用いられる。 The radio resources 1401 and 1402 in the DL periods 311 and 313 are used for transmission of broadcast information including information on the arrangement of the radio resources 302 and 1205 (first radio resources) for the terminal 120 to transmit a random access signal. .
 端末120は、無線フレーム1211(n)のDLの期間311において、無線リソース301の制御情報を受信することにより、無線リソース1401の報知情報の配置情報を取得する。そして、端末120は、取得した配置情報に基づいて、無線リソース1401の報知情報を受信することにより、無線リソース302(第1の無線リソース)の配置に関する情報を得ることができる。 The terminal 120 receives the control information of the radio resource 301 in the DL period 311 of the radio frame 1211 (n), thereby acquiring the broadcast information arrangement information of the radio resource 1401. And the terminal 120 can acquire the information regarding arrangement | positioning of the radio | wireless resource 302 (1st radio | wireless resource) by receiving the alerting | reporting information of the radio | wireless resource 1401 based on the acquired arrangement | positioning information.
 また、無線フレーム1211(n)のULの期間312において、無線リソース302によってランダムアクセス信号を送信した端末120は、無線フレーム1212(n+1)のDLの無線リソース1204を受信する。これにより、端末120は、その応答(無線リソース303)が無線フレーム上のどこに配置されているかの情報を取得することができる。そして、端末120は、取得した情報に基づいて、ランダムアクセスに対する無線リソース303の応答を受信することができる。 In addition, in the UL period 312 of the radio frame 1211 (n), the terminal 120 that has transmitted the random access signal by the radio resource 302 receives the DL radio resource 1204 of the radio frame 1212 (n + 1). Thereby, the terminal 120 can acquire information on where the response (the radio resource 303) is arranged on the radio frame. And the terminal 120 can receive the response of the radio | wireless resource 303 with respect to random access based on the acquired information.
(実施例3)
(実施例3にかかる無線通信システムにおける処理)
 図15は、実施例3にかかる無線通信システムにおける処理の一例を示すフローチャートである。無線通信システム100においては、たとえば図15に示す各ステップが実行される。図15に示すステップS1501,S1502は、図13に示したステップS1301,S1302と同様である。ただし、ステップS1502において、基地局110は、ステップS1501によって決定した無線リソース配置のうちの第1の無線リソースの配置を示す配置情報を自セル内への報知情報として送信する(ステップS1502)。
(Example 3)
(Processing in the wireless communication system according to the third embodiment)
FIG. 15 is a flowchart of an example of processing in the wireless communication system according to the third embodiment. In the wireless communication system 100, for example, each step shown in FIG. 15 is executed. Steps S1501 and S1502 shown in FIG. 15 are the same as steps S1301 and S1302 shown in FIG. However, in step S1502, the base station 110 transmits arrangement information indicating the arrangement of the first radio resource among the radio resource arrangements determined in step S1501 as broadcast information in the own cell (step S1502).
 一方で、端末120は、ステップS1502によって基地局110から送信された報知情報から、第1の無線リソースの配置情報の取得を行う(ステップS1503)。つぎに、端末120において、送信すべきデータが発生したとする(ステップS1504)。つぎに、端末120は、ステップS1505へ移行する。図15に示すステップS1505~S1513は、図13に示したステップS1305~S1313と同様である。 On the other hand, the terminal 120 acquires first radio resource arrangement information from the broadcast information transmitted from the base station 110 in step S1502 (step S1503). Next, it is assumed that data to be transmitted is generated in the terminal 120 (step S1504). Next, the terminal 120 proceeds to step S1505. Steps S1505 to S1513 shown in FIG. 15 are the same as steps S1305 to S1313 shown in FIG.
 このように、基地局110は、端末120がランダムアクセスを送信するための第1の無線リソースを多数の無線フレームにわたって準固定的なものとして決定し、それを報知情報として端末120に通知する。端末120は、送信データが発生する以前の無線フレームで送信された報知情報で第1の無線リソースの配置に関する情報を取得しておく。そして、端末120は、送信すべきデータが発生すると直ちに利用可能な第1の無線リソースによりランダムアクセス信号を送信する。 Thus, the base station 110 determines the first radio resource for the terminal 120 to transmit random access as being quasi-fixed over a number of radio frames, and notifies the terminal 120 as broadcast information. The terminal 120 acquires information related to the arrangement of the first radio resource with the broadcast information transmitted in the radio frame before the transmission data is generated. Then, when data to be transmitted is generated, the terminal 120 transmits a random access signal using the first radio resource that can be used immediately.
(実施例4)
(実施例4にかかる無線通信システムにおける処理)
 図16は、実施例4にかかる無線通信システムにおける処理の一例を示すフローチャートである。実施例4にかかる無線通信システム100においては、たとえば図16に示す各ステップが実行される。図16に示すステップS1601,S1602は、図15に示したステップS1501,S1502と同様である。ただし、ステップS1602において、基地局110は、決定した無線リソース配置のうちの第1の無線リソース、第2の無線リソースおよび第3の無線リソースの配置を示す配置情報を、自セル内への報知情報として送信する(ステップS1602)。
(Example 4)
(Processing in Radio Communication System According to Embodiment 4)
FIG. 16 is a flowchart of an example of processing in the wireless communication system according to the fourth embodiment. In the wireless communication system 100 according to the fourth embodiment, for example, each step illustrated in FIG. 16 is executed. Steps S1601 and S1602 shown in FIG. 16 are the same as steps S1501 and S1502 shown in FIG. However, in step S1602, the base station 110 broadcasts the arrangement information indicating the arrangement of the first radio resource, the second radio resource, and the third radio resource in the determined radio resource arrangement to the own cell. It transmits as information (step S1602).
 一方で、端末120は、ステップS1602によって基地局110から送信された報知情報から、第1の無線リソース、第2の無線リソースおよび第3の無線リソースの配置情報の取得を行い(ステップS1603)、ステップS1604へ移行する。図16に示すステップS1604~S1613は、図15に示したステップS1504~S1513と同様である。 On the other hand, the terminal 120 acquires the arrangement information of the first radio resource, the second radio resource, and the third radio resource from the broadcast information transmitted from the base station 110 in step S1602 (step S1603), The process moves to step S1604. Steps S1604 to S1613 shown in FIG. 16 are the same as steps S1504 to S1513 shown in FIG.
 ただし、ステップS1608において送信されるデータ送信許可信号には、第2の無線リソースの配置情報は含まれていなくてもよい。この場合に、端末120は、ステップS1612において、ステップS1603において取得した第2の無線リソースの配置情報に基づいて、第2の無線リソースによりデータを送信する。 However, the data transmission permission signal transmitted in step S1608 may not include the second radio resource arrangement information. In this case, in step S1612, the terminal 120 transmits data using the second radio resource based on the arrangement information of the second radio resource acquired in step S1603.
 また、ステップS1609において送信されるランダムアクセス信号再送要求信号には、第3の無線リソースの配置情報は含まれていなくてもよい。この場合に、端末120は、ステップS1611からステップS1605へ戻った際に、ステップS1603において取得した第3の無線リソースの配置情報に基づいて、第3の無線リソースによりランダムアクセス信号を再送する。 The random access signal retransmission request signal transmitted in step S1609 may not include the third radio resource arrangement information. In this case, when returning from step S1611 to step S1605, terminal 120 retransmits the random access signal using the third radio resource based on the arrangement information of the third radio resource acquired in step S1603.
 このように、基地局110は、第1の無線リソース、第2の無線リソースおよび第3の無線リソースの全部または一部を多数の無線フレームにわたって準固定的なものとして決定し、それを報知情報として端末120に通知してもよい。端末120は、送信すべきデータが発生すると直ちに利用可能な第1の無線リソースによりランダムアクセス信号を送信する。 In this way, the base station 110 determines all or part of the first radio resource, the second radio resource, and the third radio resource as being quasi-fixed over a number of radio frames, and broadcasts it as broadcast information. May be notified to the terminal 120. When data to be transmitted is generated, the terminal 120 transmits a random access signal using the first radio resource that can be used immediately.
 基地局110は、端末120からのランダムアクセス信号に基づいて端末120を特定できた場合はデータ送信許可信号をランダムアクセス信号への応答として端末120へ送信する。また、基地局110は、端末120からのランダムアクセス信号に基づいて端末120を特定できなかった場合はランダムアクセス信号再送要求信号をランダムアクセス信号への応答として端末120へ送信する。これにより、ステップS1604におけるデータ発生後にやりとりする制御情報の量を少なくすることができる。 When the base station 110 can identify the terminal 120 based on the random access signal from the terminal 120, the base station 110 transmits a data transmission permission signal to the terminal 120 as a response to the random access signal. In addition, when the base station 110 cannot identify the terminal 120 based on the random access signal from the terminal 120, the base station 110 transmits a random access signal retransmission request signal to the terminal 120 as a response to the random access signal. Thereby, the amount of control information exchanged after data generation in step S1604 can be reduced.
(実施例5)
 実施例5にかかる無線通信システム100においては、第1の無線リソース、第2の無線リソースおよび第3の無線リソースの全部または一部の配置をシステムで予め固定したものとする。これにより、たとえば実施例1~4における各無線リソースの配置に関する情報の伝達が不要となる。このため、端末120におけるデータ発生後にやりとりする制御情報の量を少なくすることができる。
(Example 5)
In the radio communication system 100 according to the fifth embodiment, it is assumed that the arrangement of all or part of the first radio resource, the second radio resource, and the third radio resource is fixed in advance by the system. As a result, for example, transmission of information related to the arrangement of each radio resource in the first to fourth embodiments becomes unnecessary. For this reason, the amount of control information exchanged after data generation in the terminal 120 can be reduced.
 たとえば、図16に示した例において、ステップS1601~S1603を省いた処理とすることができる。この場合に、図16に示した一回目のステップS1605,S1606において、基地局110および端末120は、無線通信システム100において予め固定された第1の無線リソースによりランダムアクセス信号の送受信を行う。 For example, in the example shown in FIG. 16, it is possible to omit the steps S1601 to S1603. In this case, in first steps S1605 and S1606 shown in FIG. 16, the base station 110 and the terminal 120 transmit and receive a random access signal using the first radio resource fixed in advance in the radio communication system 100.
 また、図16に示した一回目のステップS1612,S1613において、基地局110および端末120は、無線通信システム100において予め固定された第2の無線リソースによりランダムアクセス信号の送受信を行う。 Also, in the first steps S1612 and S1613 shown in FIG. 16, the base station 110 and the terminal 120 perform transmission / reception of a random access signal using the second radio resource fixed in advance in the radio communication system 100.
 また、図16に示した2回目以降のステップS1605,S1606において、基地局110および端末120は、無線通信システム100において予め固定された第3の無線リソースによりランダムアクセス信号の送受信(再送)を行う。 Further, in steps S1605 and S1606 after the second time shown in FIG. 16, base station 110 and terminal 120 perform transmission / reception (retransmission) of a random access signal using a third radio resource fixed in advance in radio communication system 100. .
(実施例6)
(実施例6にかかる第1の無線リソース)
 図17は、実施例6にかかる第1の無線リソースの一例を示す図である。端末120がランダムアクセス信号を送信するための第1の無線リソースは、たとえば図17に示す4[bit]の無線リソース1700とすることができる。4[bit]の無線リソース1700により、たとえば最大で2^4=16通りのシーケンスを用意することができる。
(Example 6)
(First radio resource according to the sixth embodiment)
FIG. 17 is a diagram of an example of the first radio resource according to the sixth embodiment. The first radio resource for the terminal 120 to transmit a random access signal can be, for example, a 4 [bit] radio resource 1700 shown in FIG. With 4 [bit] radio resource 1700, for example, 2 ^ 4 = 16 sequences at maximum can be prepared.
(実施例6にかかるランダムアクセス信号のシーケンス)
 図18は、実施例6にかかるランダムアクセス信号のシーケンスの一例を示す図である。端末120が無線リソース1700によって送信する4[bit]のシーケンスには、上述した特定のシーケンスとして、たとえば図18のテーブル1800に示す4通りのシーケンスが用意される。
(Sequence of Random Access Signal According to Embodiment 6)
FIG. 18 is a diagram illustrating an example of a sequence of a random access signal according to the sixth embodiment. In the 4 [bit] sequence transmitted by the terminal 120 using the radio resource 1700, for example, four sequences shown in the table 1800 of FIG. 18 are prepared as the specific sequence described above.
 たとえば端末120が基地局110に接続を行ったときに、基地局110は端末120に番号“1”から“4”のうち一つを与える。その後に、端末120は、送信すべきデータが発生すると、基地局110から与えられた番号のシーケンスを第1の無線リソースによりランダムアクセス信号として送信する。 For example, when the terminal 120 connects to the base station 110, the base station 110 gives the terminal 120 one of the numbers “1” to “4”. After that, when data to be transmitted is generated, the terminal 120 transmits a sequence of numbers given from the base station 110 as a random access signal using the first radio resource.
 たとえば、端末120は、基地局110から番号“2”が与えられた場合は、ランダムアクセス信号として“0101”を無線リソース1700によって送信する。これに対して、基地局110は、受信したランダムアクセス信号と、テーブル1800に示す4種類のシーケンスとの間の相関演算を行う。相関は、それぞれのビットが一致するとき“1”、一致しないとき“-1”として計算することができる。 For example, when the number “2” is given from the base station 110, the terminal 120 transmits “0101” as a random access signal using the radio resource 1700. On the other hand, the base station 110 performs a correlation calculation between the received random access signal and the four types of sequences shown in the table 1800. The correlation can be calculated as “1” when the bits match and “−1” when they do not match.
 たとえば、基地局110が受信したランダムアクセス信号(“0101”)とテーブル1800の1番のシーケンスである“0000”との間の相関を計算すると、一致するものが2個、一致しないものが2個ある。このため、相関演算の結果は1+(-1)+1+(-1)=0である。 For example, when the correlation between the random access signal (“0101”) received by the base station 110 and “0000”, which is the first sequence in the table 1800, is calculated, two matches and two mismatches are calculated. There are pieces. For this reason, the result of the correlation calculation is 1 + (− 1) +1 + (− 1) = 0.
 また、基地局110が受信したランダムアクセス信号(“0101”)とテーブル1800の2番のシーケンスである“0101”との間の相関を計算すると、一致するものが4個である。このため、相関演算の結果は1+1+1+1=4である。 Further, when the correlation between the random access signal (“0101”) received by the base station 110 and “0101”, which is the second sequence in the table 1800, is calculated, there are four matches. For this reason, the result of the correlation calculation is 1 + 1 + 1 + 1 = 4.
 また、基地局110が受信したランダムアクセス信号(“0101”)とテーブル1800の3番のシーケンスである“0011”との間の相関を計算すると、一致するものが2個、一致しないものが2個である。このため、相関演算の結果は1+(-1)+(-1)+1=0である。 Further, when calculating the correlation between the random access signal (“0101”) received by the base station 110 and “0011”, which is the third sequence in the table 1800, two matches and 2 does not match. It is a piece. For this reason, the result of the correlation calculation is 1 + (− 1) + (− 1) + 1 = 0.
 また、基地局110が受信したランダムアクセス信号(“0101”)とテーブル1800の4番のシーケンスである“0110”との間の相関を計算すると、一致するものが2個、一致しないものが2個である。このため、相関演算の結果は1+1+(-1)+(-1)=0である。 Further, when the correlation between the random access signal (“0101”) received by the base station 110 and “0110”, which is the fourth sequence in the table 1800, is calculated, two matches and two not match. It is a piece. For this reason, the result of the correlation calculation is 1 + 1 + (− 1) + (− 1) = 0.
 以上から、基地局110は、相関演算の結果が最も大きいテーブル1800の2番のシーケンスである“0101”が、端末120がランダムアクセス信号として送信したシーケンスであると判定することができる。ここで、複数の端末に2番のシーケンスを与えていない限り、基地局110は、どの端末がランダムアクセスシーケンスを送信したかを特定することができる。 From the above, the base station 110 can determine that “0101”, which is the second sequence in the table 1800 having the largest correlation calculation result, is the sequence transmitted by the terminal 120 as a random access signal. Here, as long as the second sequence is not given to a plurality of terminals, the base station 110 can specify which terminal has transmitted the random access sequence.
 図17,図18に示した例では、ランダムアクセス信号として4[bit]長のシーケンスを例にしたが、ランダムアクセス信号はこれに限らない。たとえば、ランダムアクセス信号として、無線フレーム中で第1の無線リソースが占める割合が許す限り長いシーケンスを使用することも可能である。 In the example shown in FIGS. 17 and 18, a 4 [bit] long sequence is taken as an example of the random access signal, but the random access signal is not limited to this. For example, as a random access signal, it is possible to use a sequence that is as long as the ratio of the first radio resource in the radio frame allows.
(実施例7)
(実施例7にかかる第1の無線リソース)
 図19は、実施例7にかかる第1の無線リソースの一例を示す図である。端末120がランダムアクセス信号を送信するための第1の無線リソースは、たとえば図19に示す4[bit]の3個の無線リソース1901~1903とすることができる。端末120は無線リソース1901~1903の中から1つの無線リソースを選択し、選択した無線リソースにより、ランダムアクセス信号として4[bit]のシーケンスを送信する。選択した無線リソースにより端末120が送信するシーケンスは、たとえば図17,図18に示した例と同様である。
(Example 7)
(First radio resource according to the seventh embodiment)
FIG. 19 is a diagram of an example of the first radio resource according to the seventh embodiment. The first radio resource for the terminal 120 to transmit a random access signal can be, for example, three 4 [bit] radio resources 1901 to 1903 shown in FIG. The terminal 120 selects one radio resource from the radio resources 1901 to 1903, and transmits a 4 [bit] sequence as a random access signal using the selected radio resource. The sequence transmitted by the terminal 120 using the selected radio resource is the same as the example shown in FIGS. 17 and 18, for example.
 たとえば、端末120が基地局110に接続したとき、端末120にテーブル1800の番号“1”から“4”のうちの一つとともに、無線リソース1901~1903の中で使用すべき特定の無線リソースを通知する。このとき、同じ無線リソースで異なる端末が同じシーケンス番号を与えられることがないようにしておく。端末120は、送信すべきデータが発生すると、基地局110から通知された番号のシーケンスを、無線リソース1901~1903のうちの基地局110から通知された特定の無線リソースにより、ランダムアクセス信号として送信する。 For example, when the terminal 120 is connected to the base station 110, a specific radio resource to be used in the radio resources 1901 to 1903 is given to the terminal 120 together with one of the numbers “1” to “4” in the table 1800. Notice. At this time, different terminals with the same radio resource are prevented from being given the same sequence number. When data to be transmitted is generated, the terminal 120 transmits a sequence of numbers notified from the base station 110 as a random access signal using a specific radio resource notified from the base station 110 among the radio resources 1901 to 1903. To do.
 基地局110は、無線リソース1901~1903のそれぞれで信号が受信されているかを検出し、信号が受信されていると検出された場合は受信されている信号と4種類のシーケンスとの相関演算を行う。これにより、どの無線リソースでどのシーケンスが送信されたかを判定することができる。したがって、基地局110は、どの端末がランダムアクセス信号を送信したかを、信号が受信された無線リソースと検出したシーケンス番号との組によりその組を与えた端末として特定することができる。 The base station 110 detects whether a signal is received by each of the radio resources 1901 to 1903, and if it is detected that the signal is received, performs a correlation operation between the received signal and four types of sequences. Do. This makes it possible to determine which sequence is transmitted with which radio resource. Therefore, the base station 110 can specify which terminal has transmitted the random access signal as a terminal that has given the set by the set of the radio resource from which the signal is received and the detected sequence number.
 図19に示した例では、ランダムアクセス信号として4[bit]長のシーケンスを例にしたが、ランダムアクセス信号はこれに限らない。たとえば、ランダムアクセス信号として、無線フレーム中で第1の無線リソースが占める割合が許す限り長いシーケンスを使用することも可能である。 In the example shown in FIG. 19, a 4 [bit] long sequence is taken as an example of the random access signal, but the random access signal is not limited to this. For example, as a random access signal, it is possible to use a sequence that is as long as the ratio of the first radio resource in the radio frame allows.
(実施例8)
 図20は、実施例8にかかる第1の無線リソースの一例を示す図である。端末120がランダムアクセス信号を送信するための第1の無線リソースは、たとえば図20に示す8[bit]の無線リソース2000とすることができる。無線リソース2000は、シーケンス部2001と、情報部2002と、を含む。
(Example 8)
FIG. 20 is a diagram of an example of the first radio resource according to the eighth embodiment. The first radio resource for the terminal 120 to transmit a random access signal can be, for example, an 8-bit radio resource 2000 shown in FIG. The radio resource 2000 includes a sequence unit 2001 and an information unit 2002.
 シーケンス部2001は、端末120がランダムアクセス信号のシーケンスを送る4[bit]の部分である。情報部2002は、端末120がデータに関する情報を送る4[bit]の部分である。端末120がシーケンス部2001によって送信するシーケンスは、たとえば図17,図18に示した例と同様である。 The sequence part 2001 is a 4 [bit] part to which the terminal 120 sends a random access signal sequence. The information part 2002 is a 4 [bit] part to which the terminal 120 sends information related to data. The sequence transmitted by the terminal 120 by the sequence unit 2001 is the same as the example shown in FIGS. 17 and 18, for example.
 たとえば、情報部2002には、端末120が送信すべきデータの全部または一部を格納することができる。また、情報部2002には、送信すべきデータの量に関する情報を格納してもよい。たとえば4[bit]で示される数字(0~15)に対応するデータ量を決めておき、端末120は、送信すべきデータの量に応じて0~15のいずれかの数字を情報部2002の情報部4[bit]で基地局110へ送信する。 For example, the information part 2002 can store all or part of data to be transmitted by the terminal 120. Further, the information section 2002 may store information related to the amount of data to be transmitted. For example, a data amount corresponding to a number (0 to 15) indicated by 4 [bits] is determined, and the terminal 120 sets any number from 0 to 15 in the information unit 2002 according to the amount of data to be transmitted. It transmits to the base station 110 by the information part 4 [bit].
 これにより、基地局110は、第2の無線リソースの配置情報を含むデータ送信許可信号を端末120へ送信する際に、端末120から送信されるデータの量に応じた第2の無線リソースの量を確保することができる。 Thereby, when the base station 110 transmits the data transmission permission signal including the arrangement information of the second radio resource to the terminal 120, the amount of the second radio resource according to the amount of data transmitted from the terminal 120 Can be secured.
 情報部2002に4[bit]を割り当てる場合について説明したが、このような構成に限らない。たとえば、情報部2002の伝送誤り特性の向上のため、情報部2002の情報の正味を2[bit]として2回繰り返して4[bit]にすることも可能である。 Although the case where 4 [bit] is assigned to the information unit 2002 has been described, the configuration is not limited to this. For example, in order to improve the transmission error characteristic of the information unit 2002, it is possible to set the net information of the information unit 2002 to 2 [bit] and to repeat 4 times to 4 [bit].
 図20に示した例では、シーケンス部2001および情報部2002としてそれぞれ4[bit]長を割り当てる場合を例にしたが、シーケンス部2001および情報部2002はこれに限らない。たとえば、シーケンス部2001として、無線フレーム中で第1の無線リソースが占める割合が許す限り長いシーケンス部を使用することも可能である。また、図19に示したように、第1の無線リソースとして複数の無線リソースを設定することも可能である。また、情報部2002がある程度長くなると、情報部2002に特性のよい誤り訂正性能を持つ符号化を適用することも可能になる。 In the example illustrated in FIG. 20, the case where 4 [bit] lengths are assigned as the sequence unit 2001 and the information unit 2002 is taken as an example, but the sequence unit 2001 and the information unit 2002 are not limited thereto. For example, as the sequence unit 2001, it is possible to use a sequence unit that is as long as the ratio of the first radio resource in the radio frame allows. In addition, as illustrated in FIG. 19, a plurality of radio resources can be set as the first radio resource. In addition, when the information unit 2002 becomes longer to some extent, it is possible to apply encoding having error correction performance with good characteristics to the information unit 2002.
 以上説明したように、基地局、端末、無線通信システムおよび処理方法によれば、データ送信が可能になるまでの時間の短縮を図ることができる。 As described above, according to the base station, the terminal, the wireless communication system, and the processing method, it is possible to shorten the time until data transmission becomes possible.
 たとえば、従来の3GPPのセルラ無線の仕様に従うと、上述したように端末でデータの送信を開始する事象(通話の開始、ユーザによる端末の操作、センサのセンシング完了、監視装置の異常検出等)が発生してから実際にデータが送信されるまでに時間がかかる。たとえば3GPPのTR36.912によれば、端末が接続状態になるまでに50[ms]、スケジューリング要求(SR)信号を送信してからデータ送信が可能になるまでの時間が9.5[ms]であると報告されている。 For example, according to the specifications of the conventional 3GPP cellular radio, as described above, an event (such as start of a call, operation of a terminal by a user, completion of sensor sensing, detection of an abnormality of a monitoring device, etc.) is started at a terminal. It takes time until data is actually transmitted after it occurs. For example, according to TR36.912 of 3GPP, 50 [ms] until the terminal enters the connection state, and 9.5 [ms] from the time when the scheduling request (SR) signal is transmitted until the data transmission becomes possible It is reported that.
 また、ランダムアクセスプリアンブルの送信で競合が起こり接続手順の実行に失敗した場合はランダムアクセスプリアンブルの送信からやり直すことになる。このため、ランダムアクセスプリアンブルの送信で競合が起こる場合はデータ送信が可能になるまでの時間がさらに長くなる可能性がある。 Also, if contention occurs in the transmission of the random access preamble and the execution of the connection procedure fails, the process starts again from the transmission of the random access preamble. For this reason, when contention occurs in transmission of the random access preamble, there is a possibility that the time until data transmission becomes possible may be further increased.
 また、センサや監視装置など、人間が介在することなくM2M(Machine to Machine:機械対機械)で通信を行う応用では、通信する事象が発生してから通信が開始されデータが送信されるまでにかかる時間が問題になることがある。たとえば3GPPのTR22.885では、Pre-crash Sensing Warningの事例として、自動車が、衝突が避けられないことを検知したとき、その情報を周囲に20[ms]以内に伝送することを要する、としている。 Also, in applications that communicate with M2M (Machine to Machine) without human intervention, such as sensors and monitoring devices, after communication events occur, communication is started and data is transmitted. Such time may be a problem. For example, in TR22.885 of 3GPP, as an example of Pre-crash Sensing Warning, when a car detects that a collision is unavoidable, it needs to transmit the information within 20 [ms] to the surroundings. .
 また、人間が介在する場合においても、たとえば、通信を介してPC(Personal Computer)のリモート操作を行うなど、インタラクティブな通信を行う場合がある。たとえば、ユーザが行ったキーボードやマウスの操作を伝えるデータが通信路を介してリモートPCに送信され、その反応として人間が入力した文字を表示したりマウスのポインタを移動表示させたりするデータがリモートPCからユーザの画面へ送信される。このとき、ユーザが操作を行ってから、その操作結果がユーザの画面に反映されるまでの時間が長いと、ユーザによる操作性が著しく損なわれ、場合によっては操作する人間に苦痛を与えるものとなる。 Also, even when a person is involved, there may be an interactive communication such as a remote operation of a PC (Personal Computer) via communication. For example, data indicating a keyboard or mouse operation performed by a user is transmitted to a remote PC via a communication path, and data for displaying a character input by a human or moving a mouse pointer as a response is remote. It is transmitted from the PC to the user's screen. At this time, if the time from when the user performs an operation until the result of the operation is reflected on the user's screen is long, the operability by the user is significantly impaired, and in some cases, it may be painful for the operating human Become.
 すなわち、用途によって、現状のセルラ無線標準が提供するデータ送信遅延時間より短い遅延時間で通信が行われることが求められており、新たな手段によって遅延時間が短縮されるなら、セルラ通信の応用の幅が広げられることに寄与することができる。 In other words, depending on the application, communication is required to be performed with a delay time shorter than the data transmission delay time provided by the current cellular radio standard. If the delay time is reduced by new means, the application of cellular communication This can contribute to widening the width.
 また、たとえば、端末に対してデータ送信を行うための無線リソースを定常的に与え、端末で送信データの発生とともにそのリソースを使用して送信を行うことによって低遅延なデータ送信が可能になる。しかしながら、常時動作していなくてもよいセンサや、常に異常が発生しているわけではない監視装置など、送信するデータが常時発生するものでなければ、送信するデータがないときの無線リソースが無駄になるので、無線リソース利用効率がよくない。 Also, for example, a radio resource for performing data transmission to a terminal is constantly given, and transmission is performed using the resource as the transmission data is generated at the terminal, thereby enabling low-delay data transmission. However, if the data to be transmitted does not always occur, such as a sensor that does not always operate or a monitoring device that does not always have an abnormality, radio resources when there is no data to be transmitted are wasted. Therefore, the radio resource utilization efficiency is not good.
 また、たとえばランダムアクセスプリアンブルに使用されるリソースを大きくすることは、常時発生するわけではないランダムアクセスプリアンブルの送信のための無線リソースが確保され、通常のデータ送信のために利用できる無線リソースが限られることになる。このため、無線リソースの利用効率がよくない。 Also, for example, increasing the resources used for the random access preamble ensures radio resources for transmission of random access preambles that do not always occur, and limits the radio resources that can be used for normal data transmission. Will be. For this reason, the utilization efficiency of radio resources is not good.
 これに対して、上述した実施の形態によれば、基地局110がランダムアクセス信号に基づいて端末120を特定できた場合は、ランダムアクセス信号に対する応答信号にてデータの送信許可を端末120に与えることができる。これにより、ランダムアクセス手順の一部を省略し、端末120から基地局110へのデータ送信が可能になるまでの時間を短縮することができる。また、端末120から基地局110へのデータ送信を可能にするための無線リソースの利用効率を向上させることができる。 On the other hand, according to the above-described embodiment, when base station 110 can identify terminal 120 based on a random access signal, data transmission permission is given to terminal 120 using a response signal to the random access signal. be able to. Thereby, a part of the random access procedure is omitted, and the time until data transmission from the terminal 120 to the base station 110 becomes possible can be shortened. Moreover, the utilization efficiency of the radio | wireless resource for enabling the data transmission from the terminal 120 to the base station 110 can be improved.
 100,200 無線通信システム
 110,210 基地局
 111,122 受信部
 112 特定部
 113,121 送信部
 120,221~224 端末
 211 セル
 301~305,401,402,1201~1205,1401,1402,1700,1901~1903,2000 無線リソース
 311~314 期間
 610,710 プロセッサ
 611 無線リソース割り当て制御部
 612 制御情報・報知情報生成部
 613 ランダムアクセス信号検出部
 614 データ復号部
 615 データ送信許可・ランダムアクセス再送判断部
 620,720 メモリ
 631,731 送信信号生成器
 632,732 送信機
 640,740 送受信号分離器
 650,750 アンテナ
 661,761 受信機
 662,762 受信信号処理器
 711 送信データ発生検出部
 712 ランダムアクセス信号生成部
 713 データ送信部
 714 制御情報・報知情報解析部
 1211,1212 無線フレーム
 1800 テーブル
 2001 シーケンス部
 2002 情報部
100, 200 Wireless communication system 110, 210 Base station 111, 122 Receiver 112 Identification unit 113, 121 Transmitter 120, 221 to 224 Terminal 211 Cell 301 to 305, 401, 402, 1201 to 1205, 1401, 1402, 1700, 1901 to 1903, 2000 Radio resource 311 to 314 Period 610,710 Processor 611 Radio resource allocation control unit 612 Control information / broadcast information generation unit 613 Random access signal detection unit 614 Data decoding unit 615 Data transmission permission / random access retransmission determination unit 620 , 720 memory 631,731 transmission signal generator 632,732 transmitter 640,740 transmission / reception signal separator 650,750 antenna 661,761 receiver 662,762 reception signal processor 711 transmission Data generation detector section 712 the random access signal generator 713 the data transmission unit 714 control information and the broadcast information analysis unit 1211 radio frames 1800 table 2001 sequence portion 2002 information unit

Claims (15)

  1.  第1の無線リソースにより送信された自局へのランダムアクセス信号を受信する受信部と、
     前記受信部によって受信された前記ランダムアクセス信号に基づいて前記ランダムアクセス信号を送信した端末を特定する特定部と、
     前記ランダムアクセス信号への応答信号であって、前記特定部によって特定された前記端末が前記第1の無線リソースと異なる第2の無線リソースにより自局へデータを送信することを許可する応答信号を送信する送信部と、を備え、
     前記受信部は、前記端末から前記第2の無線リソースにより送信されたデータを受信する、
     ことを特徴とする基地局。
    A receiving unit for receiving a random access signal to the local station transmitted by the first radio resource;
    A specifying unit for specifying a terminal that has transmitted the random access signal based on the random access signal received by the receiving unit;
    A response signal to the random access signal, the response signal permitting the terminal specified by the specifying unit to transmit data to the own station using a second radio resource different from the first radio resource; A transmission unit for transmitting,
    The receiving unit receives data transmitted from the terminal by the second radio resource;
    A base station characterized by that.
  2.  前記ランダムアクセス信号は、前記端末に対して割り当てられた特定のシーケンスのランダムアクセス信号であり、
     前記特定部は、前記端末に対する前記特定のシーケンスの割り当て結果と、前記ランダムアクセス信号のシーケンスと、に基づいて前記端末を特定する、
     ことを特徴とする請求項1に記載の基地局。
    The random access signal is a specific sequence of random access signals assigned to the terminal;
    The specifying unit specifies the terminal based on an allocation result of the specific sequence to the terminal and a sequence of the random access signal;
    The base station according to claim 1.
  3.  前記ランダムアクセス信号は、前記第1の無線リソースに含まれ前記端末に対して割り当てられた特定の無線リソースにより送信されたランダムアクセス信号であり、
     前記特定部は、前記端末に対する前記特定の無線リソースの割り当て結果と、前記ランダムアクセス信号が送信された無線リソースと、に基づいて前記端末を特定する、
     ことを特徴とする請求項1または2に記載の基地局。
    The random access signal is a random access signal transmitted by a specific radio resource included in the first radio resource and allocated to the terminal;
    The specifying unit specifies the terminal based on an allocation result of the specific radio resource to the terminal and a radio resource to which the random access signal is transmitted;
    The base station according to claim 1 or 2, characterized in that
  4.  前記送信部は、前記特定部によって前記ランダムアクセス信号を送信した端末が特定できなかった場合は、前記ランダムアクセス信号への応答信号であって、前記端末が第3の無線リソースにより前記ランダムアクセス信号を再送することを要求する応答信号を送信し、
     前記受信部は、前記端末から前記第3の無線リソースにより再送された自局へのランダムアクセス信号を受信する、
     ことを特徴とする請求項1~3のいずれか一つに記載の基地局。
    The transmitting unit is a response signal to the random access signal when the terminal that has transmitted the random access signal by the specifying unit is not specified, and the terminal uses the third radio resource to transmit the random access signal. Send a response signal requesting that
    The receiving unit receives a random access signal from the terminal to the local station retransmitted by the third radio resource;
    The base station according to any one of claims 1 to 3, wherein:
  5.  前記第3の無線リソースは前記第1の無線リソースと異なる無線リソースであることを特徴とする請求項4に記載の基地局。 The base station according to claim 4, wherein the third radio resource is a radio resource different from the first radio resource.
  6.  前記特定部によって前記ランダムアクセス信号を送信した端末が特定できた場合に、前記第3の無線リソースを、前記ランダムアクセス信号を送信した端末と異なる他端末と自局との間の通信に割り当てることを特徴とする請求項4または5に記載の基地局。 When the terminal that has transmitted the random access signal can be specified by the specifying unit, the third radio resource is allocated to communication between another terminal different from the terminal that has transmitted the random access signal and the own station. The base station according to claim 4 or 5, wherein
  7.  前記送信部は、前記第1の無線リソースを示す情報を自セル内に報知する報知情報を送信することを特徴とする請求項1~6のいずれか一つに記載の基地局。 The base station according to any one of claims 1 to 6, wherein the transmission unit transmits broadcast information for broadcasting information indicating the first radio resource in the own cell.
  8.  前記ランダムアクセス信号は、前記端末から自局へ送信される前記データに関する情報を含むことを特徴とする請求項1~7のいずれか一つに記載の基地局。 The base station according to any one of claims 1 to 7, wherein the random access signal includes information on the data transmitted from the terminal to the own station.
  9.  前記データに関する情報は、前記データの存在および前記データの量の少なくともいずれかを示す情報であることを特徴とする請求項8に記載の基地局。 The base station according to claim 8, wherein the information related to the data is information indicating at least one of the presence of the data and the amount of the data.
  10.  前記ランダムアクセス信号は、前記端末から自局へ送信される前記データの少なくとも一部を含むことを特徴とする請求項1~9のいずれか一つに記載の基地局。 The base station according to any one of claims 1 to 9, wherein the random access signal includes at least a part of the data transmitted from the terminal to the own station.
  11.  前記ランダムアクセス信号は、ランダムアクセス手順におけるランダムアクセスプリアンブルであることを特徴とする請求項1~10のいずれか一つに記載の基地局。 The base station according to any one of claims 1 to 10, wherein the random access signal is a random access preamble in a random access procedure.
  12.  第1の無線リソースにより基地局へのランダムアクセス信号を送信する送信部と、
     前記送信部によって送信された前記ランダムアクセス信号への前記基地局からの応答信号であって、自端末が前記第1の無線リソースと異なる第2の無線リソースにより前記基地局へデータを送信することを許可する応答信号を受信する受信部と、
     を備え、前記送信部は、前記受信部によって受信された前記応答信号に基づいて、前記第2の無線リソースにより前記基地局へデータを送信する、
     ことを特徴とする端末。
    A transmission unit for transmitting a random access signal to the base station using the first radio resource;
    A response signal from the base station to the random access signal transmitted by the transmitter, wherein the terminal transmits data to the base station using a second radio resource different from the first radio resource. A receiving unit that receives a response signal that permits
    The transmission unit transmits data to the base station using the second radio resource based on the response signal received by the reception unit.
    A terminal characterized by that.
  13.  第1の無線リソースによりランダムアクセス信号を送信する端末と、
     前記第1の無線リソースにより送信された自局への前記ランダムアクセス信号を受信し、受信した前記ランダムアクセス信号に基づいて前記ランダムアクセス信号を送信した前記端末を特定し、前記ランダムアクセス信号への応答信号であって、特定した前記端末が前記第1の無線リソースと異なる第2の無線リソースにより自局へデータを送信することを許可する応答信号を送信する基地局と、を含み、
     前記端末は、前記基地局から送信された前記応答信号に基づいて、前記第2の無線リソースにより前記基地局へデータを送信し、
     前記基地局は、前記端末から前記第2の無線リソースにより送信されたデータを受信する、
     ことを特徴とする無線通信システム。
    A terminal that transmits a random access signal using a first radio resource;
    Receiving the random access signal to the local station transmitted by the first radio resource, identifying the terminal that has transmitted the random access signal based on the received random access signal, to the random access signal A base station that transmits a response signal that is a response signal that permits the identified terminal to transmit data to the local station using a second radio resource different from the first radio resource, and
    The terminal transmits data to the base station using the second radio resource based on the response signal transmitted from the base station,
    The base station receives data transmitted by the second radio resource from the terminal;
    A wireless communication system.
  14.  基地局による処理方法であって、
     第1の無線リソースにより送信された自局へのランダムアクセス信号を受信し、
     受信した前記ランダムアクセス信号に基づいて前記ランダムアクセス信号を送信した端末を特定し、
     前記ランダムアクセス信号への応答信号であって、特定した前記端末が前記第1の無線リソースと異なる第2の無線リソースにより自局へデータを送信することを許可する応答信号を送信し、
     前記端末から前記第2の無線リソースにより送信されたデータを受信する、
     ことを特徴とする処理方法。
    A processing method by a base station,
    Receiving a random access signal to the local station transmitted by the first radio resource;
    Identify the terminal that transmitted the random access signal based on the received random access signal,
    A response signal to the random access signal, the response signal permitting the identified terminal to transmit data to the own station by a second radio resource different from the first radio resource;
    Receiving data transmitted by the second radio resource from the terminal;
    A processing method characterized by the above.
  15.  端末による処理方法であって、
     第1の無線リソースにより基地局へのランダムアクセス信号を送信し、
     送信した前記ランダムアクセス信号への前記基地局からの応答信号であって、自端末が前記第1の無線リソースと異なる第2の無線リソースにより前記基地局へデータを送信することを許可する応答信号を受信し、
     受信した前記応答信号に基づいて、前記第2の無線リソースにより前記基地局へデータを送信する、
     ことを特徴とする処理方法。
    A terminal processing method,
    Transmitting a random access signal to the base station by the first radio resource;
    A response signal from the base station to the transmitted random access signal, the response signal permitting the terminal to transmit data to the base station using a second radio resource different from the first radio resource Receive
    Based on the received response signal, data is transmitted to the base station by the second radio resource.
    A processing method characterized by the above.
PCT/JP2016/057479 2016-03-09 2016-03-09 Base station, terminal, radio communication system and processing method WO2017154160A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/057479 WO2017154160A1 (en) 2016-03-09 2016-03-09 Base station, terminal, radio communication system and processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/057479 WO2017154160A1 (en) 2016-03-09 2016-03-09 Base station, terminal, radio communication system and processing method

Publications (1)

Publication Number Publication Date
WO2017154160A1 true WO2017154160A1 (en) 2017-09-14

Family

ID=59790230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057479 WO2017154160A1 (en) 2016-03-09 2016-03-09 Base station, terminal, radio communication system and processing method

Country Status (1)

Country Link
WO (1) WO2017154160A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010539755A (en) * 2007-09-12 2010-12-16 ノーテル・ネットワークス・リミテッド System and method for uplink signaling
JP2012231238A (en) * 2011-04-25 2012-11-22 Ntt Docomo Inc Base station and communication control method
JP2015008379A (en) * 2013-06-25 2015-01-15 京セラ株式会社 Communication control method, user terminal, and processor
WO2015166840A1 (en) * 2014-04-30 2015-11-05 株式会社Nttドコモ User device, base station, communication access method, and communication method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010539755A (en) * 2007-09-12 2010-12-16 ノーテル・ネットワークス・リミテッド System and method for uplink signaling
JP2012231238A (en) * 2011-04-25 2012-11-22 Ntt Docomo Inc Base station and communication control method
JP2015008379A (en) * 2013-06-25 2015-01-15 京セラ株式会社 Communication control method, user terminal, and processor
WO2015166840A1 (en) * 2014-04-30 2015-11-05 株式会社Nttドコモ User device, base station, communication access method, and communication method

Similar Documents

Publication Publication Date Title
EP3613233B1 (en) Synchronization and paging channel design for wireless communications
US11057926B2 (en) Physical uplink shared channel coverage enhancements
US10419947B2 (en) Coverage extension level for coverage limited device
US9900786B2 (en) Coverage extension level for coverage limited device
JP6156758B2 (en) Method of issuing content and user equipment
CN109314654B (en) Network access method, device and storage medium
EP3621375A1 (en) Method, user equipment unit, and base station for controlling random access to network
US20160192146A1 (en) Wireless device location services
CN110447254A (en) Downlink spatial transmission and spatial receiver system in multi-beam operation
JP6462141B2 (en) Method and system for scheduling unlicensed band transmission
US20190327768A1 (en) Method for effectively transmitting control message for random access
CN109076617B (en) Random access method, device and storage medium of MTC (machine type communication) system
US20220150956A1 (en) Method and apparatus for resource determination
JP2017532899A5 (en)
US20200344014A1 (en) Method and apparatus for performing fractional subframe transmission
JP2020526078A (en) Electronic device and wireless communication method in wireless communication system
CN107432036A (en) Uplink multi-users transmit sending method, access point and the website of trigger frame
CN110830977A (en) Method and device for transmitting D2D discovery signal and communication system
US9756624B2 (en) Method and device for resource configuration
JPWO2017168702A1 (en) Wireless communication system, wireless device, relay node, and base station
WO2020014885A1 (en) Access signal transmission and reception
WO2017154160A1 (en) Base station, terminal, radio communication system and processing method
JP6410060B2 (en) Data transmission processing method and apparatus
WO2016161633A1 (en) Wireless network communication method and access point device
CN109936871A (en) System message method of reseptance and terminal device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893490

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16893490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP