WO2017154090A1 - Supercharging device for internal combustion engine - Google Patents

Supercharging device for internal combustion engine Download PDF

Info

Publication number
WO2017154090A1
WO2017154090A1 PCT/JP2016/057096 JP2016057096W WO2017154090A1 WO 2017154090 A1 WO2017154090 A1 WO 2017154090A1 JP 2016057096 W JP2016057096 W JP 2016057096W WO 2017154090 A1 WO2017154090 A1 WO 2017154090A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
nozzle
flow
supercharging
passage
Prior art date
Application number
PCT/JP2016/057096
Other languages
French (fr)
Japanese (ja)
Inventor
正裕 井尻
Original Assignee
正裕 井尻
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 正裕 井尻 filed Critical 正裕 井尻
Priority to PCT/JP2016/057096 priority Critical patent/WO2017154090A1/en
Publication of WO2017154090A1 publication Critical patent/WO2017154090A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/02Other fluid-dynamic features of induction systems for improving quantity of charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/44Passages conducting the charge from the pump to the engine inlet, e.g. reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • F02M26/19Means for improving the mixing of air and recirculated exhaust gases, e.g. venturis or multiple openings to the intake system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a supercharging device for an internal combustion engine using an air flow amplifier.
  • An air flow amplifier which is different from a mechanical supercharger or turbocharger that directly pressurizes intake air, is used as a supercharging means for an internal combustion engine that increases the pressure of the intake air to an atmospheric pressure or higher due to an increase in the output of the internal combustion engine.
  • a supercharging means Patent Documents 1 and 2 that uses and accelerates intake air by a driving flow to amplify the flow.
  • This air flow amplifier has a transformer vector (registered trademark), a flow transformer vector (commercial product name), an ejector, etc. in descending order of the flow amplification ratio. Inversely proportional to Also, as a liquid spray nozzle of an air flow amplifier, there is a spray vector (a commercial product name).
  • the nozzle opening area is made smaller than the cross-sectional area of the driving flow passage serving as an accumulator (accumulator), and the driving flow velocity is increased by the venturi effect. This is a narrowed portion of the flow path.
  • the air flow amplifier accelerates the intake air by the driving flow, it is advantageous for the flow rate amplification efficiency etc. that the nozzle shape is a ring nozzle having a large contact area between the driving flow and the intake flow.
  • the nozzle lip gap of the ring-shaped nozzle is restricted by the restriction of the nozzle opening area, and the ring-shaped nozzle
  • the gap between the nozzle lips is a bottleneck portion of the flow path of the driving flow.
  • the present invention is a nozzle cleaning mechanism for cleaning the nozzle lip surface, and the groove-shaped cleaning means through which the driving flow flows is arranged in the circumferential direction.
  • FIG. 1 is an explanatory view of the concept of the nozzle cleaning mechanism that rotates and cleans
  • FIGS. 2 show modifications 1 (to 3) corresponding to the air flow amplifiers.
  • a compressor system using compressed air generated by a compressor driven by an internal combustion engine (Patent Documents 1 and 2) is used as a driving flow of an air flow rate amplifier that is a supercharging means of a supercharging device for an internal combustion engine.
  • An EGR method (Patent Document 2) using the compressor method or an exhaust gas of an internal combustion engine.
  • the driving flow compressor system requires a compressor driven by an internal combustion engine, and the capacity of this compressor is the capacity obtained by dividing the intake capacity of the boost pressure state of the internal combustion engine by the flow rate amplification ratio of the air flow rate amplifier. Therefore, although the capacity is smaller and smaller than that for the mechanical supercharger that directly pressurizes the intake air, there is a problem of generation of power loss for driving the compressor.
  • EGR exhaust gas recirculation
  • exhaust gas recirculation exhaust gas recirculation
  • the EGR method of driving flow can perform external EGR capable of cooling the recirculated exhaust gas simultaneously with supercharging.
  • This EGR system has a problem that the supercharging operation cannot be performed depending on the operation state of the internal combustion engine, such as inadequate properties as a driving flow when the EGR gas is overheated, and EGR gas when the EGR gas is driven at a low speed and low load. As shown in FIG.
  • the supercharging device of the present invention includes a compressor type and EGR type driving flow mechanism and driving flow control means, and the driving flow control according to the operating state of the internal combustion engine. By controlling the switching of the means, the problem of the driving flow method can be improved.
  • a spark ignition type stratified air supply engine provided with a fuel control device that supplies a hydrocarbon-based fuel such as a hydrocarbon-based fuel by switching.
  • two fluid outflow mechanisms are provided to allow two fluids to flow out.
  • the EGR system of the drive flow mechanism is preferentially used (FIG. 12), and depending on the operating conditions, the compressor By using the method in combination, efficient supercharging operation can be performed.
  • a uniform premixed gas can be obtained by fuel flow out of the air flow rate amplifier, and further by using an in-cylinder fuel injection device in combination with the ignitability in the vicinity of the ignition device.
  • a lean burn engine (lean combustion internal combustion engine) by stratified combustion (Fig. 13) can be formed by forming a good air-fuel mixture layer, or by supplying a different fuel, a bi-fuel engine (two-fuel internal combustion engine) You can also
  • the nozzle opening area of an air flow amplifier that is a supercharging means of a supercharging device for an internal combustion engine needs to be structurally smaller than the cross-sectional area of the drive flow passage. Since the air flow amplifier accelerates the intake air by the driving flow, a ring nozzle with a large contact area between the driving flow and the intake flow has a good flow amplification efficiency, but due to the restriction of the nozzle opening area, the nozzle lip of this ring nozzle Since this gap is limited, it becomes a bottleneck part of the flow path of the driving flow.
  • a nozzle of an air flow rate amplifier which is a supercharging means of a supercharging device for an internal combustion engine, is connected to a rotatable rotating nozzle, and a rotational force is generated by a driving flow or an intake flow in conjunction with the rotating nozzle.
  • a nozzle cleaning mechanism comprising: a rotary drive means; and a groove-like cleaning means provided on the nozzle lip of one or both of the rotating nozzle and the fixed nozzle, and the nozzle lip of the air flow amplifier is formed in a groove-like shape. The driving flow flowing through the cleaning means cleans, and the cleaning means or nozzle lip rotates in the circumferential direction to clean the nozzle lip.
  • fluid outflow means for flowing out fluid to the driving flow or intake flow of the air flow amplifier, fluid supply means for supplying fluid to the fluid outflow means, and communication between the fluid supply means and the fluid outflow means.
  • a fluid control mechanism provided in the fluid passage.
  • a fluid outflow mechanism is provided to allow a fluid such as fuel to flow out into the intake air for mixing.
  • a fluid outlet of the fluid outlet for discharging the fluid of the fluid outlet mechanism in the groove-like cleaner provided in the nozzle lip of the nozzle cleaning mechanism provided in the air flow amplifier serving as a supercharger. The fluid flows out into a driving flow jet having a strong driving flow.
  • the driving flow supplied to the air flow rate amplifier as the supercharging means is EGR gas from the exhaust gas recirculation passage and compressed air supplied from a compressor driven by the internal combustion engine from the compressed air passage.
  • a driving flow control means for controlling the driving flow provided in the exhaust gas recirculation passage and the compressed air passage is provided, and the supercharging operation is performed by controlling the driving flow in accordance with the operation state of the internal combustion engine.
  • An internal combustion engine supercharging device using a supercharging means as an air flow rate amplifier can efficiently supercharge with a simple structure, but the nozzle of the air flow rate amplifier is a constriction in the flow path of the drive flow, and to the nozzle lip of the ring-shaped nozzle There is a problem in that the nozzle opening area is reduced due to the attachment of foreign matters and the performance of the air flow amplifier as the supercharging means is deteriorated.
  • the supercharging device according to claim 1 is provided on a nozzle of an air flow rate amplifier that is a supercharging means, a rotating nozzle that is rotated by a rotating driving means, and a nozzle lip of one or both of the rotating nozzle and the fixed nozzle.
  • a nozzle cleaning mechanism provided with a groove-shaped cleaning means automatically cleans the nozzle lip by rotating the drive flow jet flowing through the groove-shaped cleaning means in the circumferential direction through the nozzle lip of the air flow amplifier. It is possible to prevent the performance of the air flow rate amplifier, which is a supercharging means, from being deteriorated due to adhesion of foreign matter or the like to a simple structure that does not require a control means.
  • the supercharging device can sufficiently mix the fluid and the intake air by providing the fluid outflow mechanism including the fluid supply unit, the fluid outflow unit, the fluid passage, and the fluid control unit.
  • the supply method may be a negative pressure according to Bernoulli's theorem of a driving flow or an intake flow that does not require a power supply for supply, or an internal pressure of a fluid tank of a storage fluid.
  • the fluid that flows out may be gas, liquid (compressed gas), or fuel such as gasoline, ethanol, LPG, or hydrogen.
  • a humidifying coolant such as water or a catalyst or additive such as urea water which is a purification catalyst for reducing NOx of EGR gas may be used.
  • the fluid flowing out is a liquid, it has an action of promoting deposit removal by the cleaning mechanism, a cleaning action of washing away deposits by blowing back when the intake valves overlap, and an action of preventing clogging of the fluid outlet of the fluid outlet mechanism.
  • the flowing fluid is fuel
  • combustion in the combustion chamber can be promoted by contacting the fuel with a recombustible material such as PM (particulate material) of a diesel engine.
  • a special intake air can be obtained by injecting and igniting the fuel from the in-cylinder fuel injection device to the combustible mixture range with the fuel supply amount in the fluid outflow portion being leaner than the theoretical air-fuel ratio or less than the stoichiometric air-fuel ratio.
  • a lean burn engine capable of stratified combustion with a simple intake mechanism and combustion chamber structure that does not require flow control or the like can be achieved. Therefore, reliable ignition and high-speed and uniform premixed combustion of a lean air-fuel mixture are possible, improving combustion efficiency and reducing harmful substances.
  • a bi-fuel engine (a two-fuel internal combustion engine) can be used as a different fuel different from the main fuel. *
  • a supercharging device comprising: a groove-like cleaning means provided in a nozzle lip of the nozzle cleaning mechanism provided in an air flow amplifier serving as a supercharging means; Since the fluid is supplied to the driving flow jet having a strong flow, the negative pressure due to Bernoulli's theorem is increased, and the fluid outlet can be provided on the upstream side of the nozzle. Removal) can be promoted. In addition, when the fluid flows into the strong driving flow, the fluid collides violently with the driving flow, and when the fluid is a liquid, it is atomized by the collision and vaporization is promoted to evaporate. Since the mixing is performed while accelerating, uniform mixing with sufficient diffusion can be performed.
  • the driving flow of the air flow amplifier serving as the supercharging means is a compressor type and an EGR type
  • the driving flow control means for controlling the driving flow is adapted to the operating condition of the internal combustion engine.
  • (A) is sectional drawing of the transvector type supercharging means of the modification 1 of 1st Embodiment
  • (B) is M arrow directional view of the cleaning mechanism 8u provided with the rotation drive means by an intake flow.
  • (C) is sectional drawing of the transvector type supercharging means of the modification 2 of 1st Embodiment
  • (D) is N arrow view of the cleaning mechanism 8v provided with the rotational drive means by a drive flow.
  • (E) is sectional drawing of the ejector type supercharging means of the modification 3 of 1st Embodiment
  • (F) is an enlarged view of the G section.
  • a supercharging device provided with a nozzle cleaning mechanism comprising a nozzle of an air flow rate amplifier which is a supercharging means, a rotating nozzle which is rotated by a rotational driving means, and a groove-like cleaning means on a nozzle lip constituting the nozzle.
  • a nozzle cleaning mechanism comprising a nozzle of an air flow rate amplifier which is a supercharging means, a rotating nozzle which is rotated by a rotational driving means, and a groove-like cleaning means on a nozzle lip constituting the nozzle.
  • the EGR method of the driving flow of the air flow amplifier that is a supercharging means has problems such as purification of EGR gas, overheating of the driving flow, deposit accumulation, and the like.
  • problems in order to make the internal combustion engine a lean burn engine by stratified combustion, there are methods of providing an intake mechanism or combustion chamber structure that generates eddy currents (swirl and tumble), but ensuring fuel mixing properties There is a problem that it is difficult to form a stable layered distribution of fuel.
  • the fluid outflow includes a fluid outflow means, a fluid supply means, a fluid passage, and a fluid control means.
  • a supercharging device provided with a mechanism is Embodiment 2 (FIGS. 5 and 6). (Embodiment 3 (corresponding to claim 3))
  • a power supply for fluid supply is unnecessary, but the negative pressure is generated due to the pressure drop characteristic of the driving flow.
  • a fluid outflow port of the fluid outflow unit for flowing out the fluid of the fluid outflow mechanism is provided in the groove-shaped cleaning unit provided in the nozzle lip of the nozzle cleaning mechanism provided in the air flow rate amplifier which is a supercharging unit.
  • the supercharging device is Embodiment 3 (FIGS. 7 to 9). (Embodiment 4 (corresponding to claim 4))
  • the driving flow of the air flow rate amplifier which is a supercharging means, is a compressor system or EGR system.
  • the compressor system corresponds to the entire operating region of the internal combustion engine. Loss occurs, and the EGR system has a problem that the supercharging operation is limited due to the restriction of the EGR gas overheating and the EGR recirculation amount.
  • the driving flow supplied to the air flow rate amplifier as the supercharging means is EGR gas from the exhaust gas recirculation passage, and further compressed air supplied by the compressor driven by the internal combustion engine from the compressed air passage,
  • the drive flow control means for controlling the drive flow provided in the exhaust gas recirculation passage and the compressed air passage in accordance with the operation state of the internal combustion engine By controlling the drive flow control means for controlling the drive flow provided in the exhaust gas recirculation passage and the compressed air passage in accordance with the operation state of the internal combustion engine, the supercharging operation utilizing the advantages of the respective drive flows is performed.
  • the supercharging device to perform is Embodiment 4 (FIGS. 10 to 13). Details of the above embodiments (1 to 4) will be described below in the order of the drawing numbers (1 to 13). (First embodiment (corresponding to claim 1))
  • FIG. 1 is an explanatory diagram of the concept of supercharging means of the first embodiment.
  • FIG. 1 includes a supercharging means 5k that pressurizes intake air and sends it to a combustion chamber between an intake air inflow passage 22k and an intake air outflow passage 23k that are in the middle of an intake passage of an intake system that supplies intake air to a combustion chamber of an internal combustion engine.
  • the supercharging device for an internal combustion engine wherein the supercharging means 5k includes an air flow rate amplifier 6k and compressed air or exhaust from a compressor (not shown) driven by the air flow rate amplifier 6k by the internal combustion engine.
  • An impeller 87 which is a rotational driving means interlocking with the rotary nozzle 82 which generates a rotational force by an intake air flow, and a rotary nozzle lip which is a nozzle lip of one of the rotary nozzle 82 and the fixed nozzle 81
  • a supercharging device for an internal combustion engine using an air flow amplifier 6k as a supercharging means 5k It is explanatory drawing of the concept of the means 5k.
  • the casing of the air flow amplifier 6k includes a housing 610 and a flange 611. Inside the casing, the rotary nozzle 82 is rotatably provided via a bearing 84 in a nozzle casing 633 supported by the drive flow passage 41k. A seal 85 is provided between the nozzle casing 633 and the rotary nozzle 82. The seal 85 is in contact with the bearing 84, and is a sealing element in which the rotary nozzle 82 is rotatable.
  • the impeller 87 which is a rotational drive means, is fixed to the rotary nozzle 82 and is provided with blades so that a rotational force is generated by the intake air flow.
  • Grooves 882 as groove-shaped cleaning means are provided radially on the rotating nozzle lip 821.
  • the relationship between the depth (D) and the width (W) of the groove is W> 1.5D, and further, to equalize the pressure difference between the cleaning drive flow and the nozzle flow
  • the upstream cross-sectional area (Au) and the downstream cross-sectional area (Ad) of the groove are preferably Au ⁇ Ad. *
  • the operation of the supercharging means 5k is that the driving flow (40) supplied from the driving flow passage 41k is guided to the annular space formed by the nozzle casing 633, the rotary nozzle 82, and the seal 85, and the nozzle 615 which is an opening. Outflowing from the downstream of the intake flow, drawing in the intake with negative pressure according to Bernoulli's theorem, and accelerating the intake by the drive flow to amplify the flow rate. Supercharge by sending in.
  • the rotary nozzle lip 821 of the nozzle 615 is radially provided with grooves 882 which are groove-shaped cleaning means, and the groove 882 flows from the nozzle gap formed by the fixed nozzle lip 811 and the rotary nozzle lip 821.
  • the channel Since the channel is wide and the channel resistance is small, a strong driving flow flows. Therefore, the side surface of the fixed nozzle lip 811 which is the flow channel side surface of the groove 882 is cleaned by deposits being washed away by this strong driving flow. Further, the intake air flowing in from the intake air inflow passage 22k is fixed because the rotating nozzle 82 rotates by applying a rotational force to the impeller 85, and the strong driving flow having the cleaning action rotates and moves the fixed nozzle lip 811. The nozzle lip 811 is cleaned all around, and clogging due to deposits on the nozzle 615 that causes a decrease in supercharging performance can be prevented.
  • channel which is a groove-shaped cleaning means can also be provided in the fixed nozzle lip 811, and the nozzle lip of both sides can also be cleaned.
  • each figure used for explanation of the present invention has a large nozzle lip clearance and groove-shaped cleaning means so that the structure can be easily understood, and the impeller blade has a large angle of attack (torsion angle with respect to the flow). Show. (Modification 1 of the first embodiment (corresponding to claim 1))
  • FIG. 2A is a cross-sectional view of the transvector type supercharging means 5u according to the first modification of the first embodiment
  • FIG. 2B is an M arrow of the cleaning mechanism 8u provided with a rotation driving means by an intake air flow.
  • FIG. FIG. 2A shows a supercharging means 5u that pressurizes intake air and sends it to the combustion chamber between an intake inflow passage 22u and an intake outflow passage 23u that are in the middle of an intake passage for supplying intake air to the combustion chamber of the internal combustion engine.
  • the supercharging device for an internal combustion engine provided with the supercharging means 5u includes a transvector 61u, which is an air flow rate amplifier 6u, and compressed air from a compressor driven by the internal combustion engine in the air flow rate amplifier 6u, or A driving flow passage 41u for supplying EGR gas from the exhaust passage as a driving flow for the air flow rate amplifier 6u, a rotary nozzle 82u that can rotate to the nozzle 615u of the air flow rate amplifier 6u, and a rotational force by the intake flow.
  • An impeller 87u which is a rotation driving means interlocking with the generated rotating nozzle 82u, and a fixed nozzle nozzle which is a nozzle lip of both the rotating nozzle 82u and the fixed nozzle 81u.
  • the air flow amplifier 6u is provided with a nozzle cleaning mechanism 8u provided with a groove 882u and a groove 88u, which are groove-shaped cleaning means provided on the nozzle 811u and the rotary nozzle lip 821u. It is sectional drawing of the supercharging means 5u of the supercharging device of the internal combustion engine which performs.
  • the casing of the air flow amplifier 6u is composed of a flange 611u that is screwed into the housing 610u, and the rotary nozzle 82u is rotatably provided on the flange 611u via a bearing 84u.
  • a seal 85u is provided between the flange 611u and the rotary nozzle 82u, and the seal 85u is a rotatable sealing element that contacts the bearing 84u and a lip contacts the rotary nozzle 82u.
  • the impeller 87u which is a rotation driving means, is an axial flow impeller that is fixed to the rotary nozzle 82u and generates a rotational force by the intake air flow.
  • the groove 88u provided in the fixed nozzle lip 811u, which is a groove-shaped cleaning means, and the groove 882u provided in the rotary nozzle lip 821u are provided in a spiral shape, and FIG. As shown in FIG.
  • the supercharging means 5u functions as an annular chamber in which the driving flow supplied from the driving flow passage 41u is formed by the housing 610u, the flange 611u, the rotating nozzle 82u, and the seal 85u by the transformer vector 61u which is an air flow amplifier 6u. It is guided to 614u and flows out from the nozzle 615u, which is an opening communicating with the annular chamber 614u, in the downstream direction of the intake air flow. By accelerating the intake air, the flow rate is amplified and supercharging is performed.
  • the impeller 87u fixed to the rotating nozzle 82u rotates the rotating nozzle 82u fixed by generating a rotational force by the intake air flow.
  • the groove 882u provided in the rotary nozzle lip 821u can obtain a rotational driving force by a reaction force that flows the driving flow in the spiral direction, the rotational force can be obtained in the same rotational direction as the impeller 87u.
  • the impeller 87u can be omitted by using the groove 882u as the cleaning means as the rotational driving means.
  • the cleaning action of the grooves 88u and 882u which are groove-shaped cleaning means provided on the nozzle lip on both sides of the nozzle 615u, is the same as the action of the groove 882 described in the air flow amplifier 6k (FIG. 1).
  • the inner diameter of the outflow portion intake passage of the nozzle 615u of the transvector 61u which is the air flow amplifier 6u, is made larger than the inner diameter of the intake inflow passage 22u so that the intake flow velocity is reduced by using a diffuser, and the intake velocity is reduced. Is accelerated by the driving flow that flows out from the nozzle 615u, and the speed is increased by the venturi effect that flows out into the intake flow passage 23u whose diameter is reduced, so that the intake air is further accelerated and supercharging is performed. (Modification 2 of the first embodiment (corresponding to claim 1))
  • FIG. 3C is a cross-sectional view of the transvector-type supercharging means 5v according to the second modification of the first embodiment, and FIG. 3D is an N arrow of the cleaning mechanism 8v provided with a rotational driving means using a driving flow.
  • FIG. (C) in FIG. 3 is a supercharging means 5v provided with a transformer vector 61v which is an air flow amplifier 6v, similarly to the supercharging means 5u (FIG. 2).
  • the structure of the casing of the transvector 61v is as follows. Although the left and right sides of the transvector 61u (FIG. 2) are opposite, the flow rate amplification function of the air flow rate amplifier 6v is the same, so the description of the function and the like is omitted.
  • the nozzle cleaning mechanism 8v is provided with two grooves 882v, which are groove-shaped cleaning means, at equal intervals radially on the rotary nozzle lip 821v, and can obtain a rotational driving force by a driving flow flowing out from the annular chamber 614v to the nozzle 615v.
  • 87v is provided.
  • the impeller 87v is provided with the vanes inclined at ⁇ v ° with respect to the axis as shown in the arrow N (D), and fixed to the rotary nozzle 82v by press fitting, welding, or the like.
  • the impeller 87v can be manufactured by mass-productive press processing.
  • FIG. 4E is a cross-sectional view of the ejector-type supercharging means of Modification 3 of the first embodiment
  • FIG. 4F is an enlarged view of a G portion.
  • FIG. 4E shows a supercharging means 5s that pressurizes the intake air and sends it to the combustion chamber between the intake inflow passage 22s and the intake outflow passage 23s in the middle of the intake passage for supplying intake air to the combustion chamber of the internal combustion engine.
  • the supercharging device for an internal combustion engine provided with the supercharging means 5s includes an ejector 63, which is an air flow rate amplifier 6s, and compressed air or exhaust from a compressor driven by the air flow rate amplifier 6s by the internal combustion engine.
  • a drive flow passage 41s for supplying EGR gas from the passage as a drive flow of the air flow amplifier, a rotatable nozzle 82s to the nozzle 635s of the air flow amplifier 6s, and a rotational force are generated by the drive flow.
  • An impeller 87s which is a rotation driving means interlocking with the rotary nozzle 82s, a fixed nozzle lip 811s which is a nozzle lip of the fixed nozzle 81s and the rotary nozzle 82s, and a rotary nozzle
  • a housing 630 that is a housing of the ejector 63 that is the air flow amplifier 6s has three openings that are joined to the drive flow passage 41s via the intake inflow passage 22s, the intake outflow passage 23s, and the bushing 639. Further, a fixed nozzle 81s that is an opening of a nozzle casing 633s that is screwed into the drive flow passage 41s is provided in a downstream direction.
  • a nozzle shaft 637 is provided at an opening portion upstream of the intake flow of the nozzle casing 633 s via a bearing 84 s, and is fixed to a fixed nozzle 81 s provided at a downstream opening portion and a shaft end on the downstream side of the nozzle shaft 637.
  • a nozzle 635s is constituted by the rotating nozzle 82s.
  • the fixed nozzle lip 811s and the rotating nozzle lip 821s of the nozzle 635s are provided with a groove 88s and a groove 882s which are groove-shaped cleaning means.
  • the nozzle shaft 637 is provided with an impeller 87s in the drive flow passage, a seal 85s on the drive flow passage side of the bearing 84s, and a nut and fixing means (not shown) at the upstream shaft end of the intake flow. . *
  • the operation of the supercharging means 5s is that the drive flow supplied from the drive flow passage 41s of the ejector 63, which is the air flow amplifier 6s, passes through the passage in the nozzle casing 633s, thereby generating a rotational drive force in the impeller 87s. Then, the rotating nozzle 82s interlocked via the nozzle shaft 637 is rotated, and the drive flow flows out from the nozzle 635s to the intake flow to be amplified and supercharged.
  • the operation of the grooves (88s, 882s) provided in the nozzle lip on both sides of the nozzle 635s is the same as the operation of cleaning the grooves 882 described in the air flow amplifier 6k (FIG. 1).
  • the side surface of the nozzle lip which is the flow channel side surface
  • the inside diameter of the intake passage portion of the housing 630 of the ejector 63 is made larger than the intake inflow passage 22s and the intake outflow passage 23s to prevent the passage resistance from being increased by the nozzle casing 633s and the like. Since no trouble occurs in the intake operation, there is no need to provide a bypass passage.
  • the air flow rate amplifier 6s as the supercharging means 5s is the ejector 63, the flow rate amplification ratio is smaller than that of the transvector type air flow rate amplifier (6u, 6v), but it corresponds to a supercharging device that requires a large supercharging pressure. it can. (Second embodiment (corresponding to claim 2))
  • FIG. 5 is an explanatory diagram of the concept of the supercharging means 5p and the fluid outflow mechanism 9 of the second embodiment.
  • FIG. 5 shows an air flow amplifier 6p that is a supercharging means 5p in the supercharging device, and a fluid outflow portion 95 that is a fluid outflow means for flowing out a fluid provided near the nozzle of the air flow amplifier 6p,
  • a fluid supply unit 91 that is a fluid supply unit that supplies fluid to the fluid outflow unit, a fluid supply unit 91 that is the fluid supply unit, a fluid passage 94 that communicates with the fluid outflow unit 95 that is the fluid outflow unit, and the fluid
  • the fluid outflow mechanism 9 includes a fluid supply unit 91 having a fluid storage or supply function, a fluid control unit 93 such as a control valve (not shown) for controlling a fluid supply amount, and driving of the air flow amplifier 6p.
  • the nozzle is configured to include a nozzle that flows out the driving flow (40) supplied from the flow passage 41p, or a fluid outflow portion 95 provided with a fluid outlet 955 in the vicinity of the nozzle.
  • the fluid supply unit 91 and the fluid control unit 93 are configured to supply and control a conventional carburetor method when the fluid is a liquid, and supply and control a conventional LPG fuel device or the like when the fluid is a gas.
  • a scheme is available. Therefore, in the fluid outflow mechanism in the present invention, description of the fluid supply means to the liquid tank, the fuel pump, etc. is omitted. *
  • the action of the fluid outflow mechanism 9 is a fluid outflow portion that is a fluid outflow means that outflows the fluid into the driving flow that flows out at high speed from the nozzle of the air flow amplifier 6p that is the supercharging device 5p or the intake air flow that is accelerated to the driving flow.
  • the fluid flows out of the fluid outlet by the negative pressure generated by Bernoulli's theorem by the driving flow or the intake flow or the internal pressure of the outflow fluid.
  • the discharged fluid collides with the driving flow or the intake flow and is mixed.
  • the fluid is a liquid, it is atomized by the collision, and the surface area is increased to promote vaporization and evaporate. In this case, evaporation due to vaporization is further promoted by the heat of the driving flow.
  • the rotary nozzle 82v is provided downstream, and the fluid outlet 955 is provided upstream in the vicinity of the nozzle. It is possible to solve the problem of fuel adhering to the intake passage.
  • the speed of the intake flow varies with the number of revolutions of the internal combustion engine, and the negative pressure generated by the intake flow is proportional to the square of the flow velocity, and when the fluid is liquid, the outflow amount is proportional to the square root of the negative pressure.
  • the weight mixing ratio is constant. However, the mixing ratio needs to fluctuate depending on the load and operating conditions of the internal combustion engine, and the fluid control unit 93 performs adjustment control of the fluid outflow amount.
  • the flowing fluid may be a fuel such as gasoline, ethanol, LPG, hydrogen, a humidifying coolant such as water, or a purification catalyst such as urea water for reducing NOx of EGR gas, and the fluid may be gas or liquid.
  • the lean gas mixture is supplied to the combustion chamber by the fluid outflow mechanism 9, and the main fuel is supplied by the in-cylinder fuel injection device, so that stratified combustion can be performed.
  • the driving flow is the EGR system
  • the fuel comes into contact with recombustible materials such as PM (particulate matter) of diesel engines and unburned materials of gasoline engines, thereby promoting recombustion in the combustion chamber.
  • recombustible materials such as PM (particulate matter) of diesel engines and unburned materials of gasoline engines, thereby promoting recombustion in the combustion chamber.
  • the fluid flowing out is liquid, it has an action of promoting deposit removal by the cleaning mechanism, a cleaning action of washing away deposits by blowing back when the intake valve overlaps, and an action of preventing clogging of the fluid outlet of the fluid outlet mechanism.
  • FIG. 6 is a cross-sectional view of a transvector supercharger according to a first modification of the second embodiment and a configuration diagram of a gas fluid outflow mechanism.
  • FIG. 6 shows a fluid outflow unit for outflowing a fluid provided in the vicinity of the nozzle 615t of the air flow amplifier 6t as the supercharging unit 5t and the transformer vector 61t as the air flow rate amplifier 6t in the supercharging device.
  • An outflow portion 95t, a fluid supply portion 91t which is a fluid supply means for supplying fluid to the fluid outflow means, a fluid passage 94t communicating with the fluid supply means and the fluid outflow means, and a fluid provided in the fluid passage 94t 2.
  • FIG. 6 is a configuration diagram of a gas fluid outflow mechanism 9t.
  • the transformer vector 61t of the air flow rate amplifier 6t which is the supercharging means 5t, is different in shape from the parts of the transformer vector 61u (FIG. 2) and the nozzle cleaning mechanism 8t, but the structure principle is the same. Omitted.
  • the fluid outflow mechanism 9t includes a fluid supply section 91t, a fluid control section 93t, a fluid passage 94t, and a fluid outflow section 95t from the upstream, and a fluid outlet 955t of the fluid outflow section 95t is provided downstream of the nozzle 615t of the transformer vector 61t.
  • the fluid outflow mechanism 9t functions to store fuel such as LPG, hydrogen, etc. flowing in from the joint 916 with a check valve in the fluid tank 911t, which is a pressure tank. Fluid is supplied to the fluid passage 94t.
  • the fluid control section 93t provided in the fluid passage 94t adjusts the internal pressure of the supplied fluid to a set value by the pressure reducing valve 935, and supplies the fluid by the fluid control valve 932t controlled by the ECU (engine control unit). The amount is controlled and supplied to the fluid outflow portion 95t.
  • the fluid outflow portion 95t stays in the fluid chamber 953, which is an annular space formed by screwing the connection ring 941 and the housing 610t, into the fluid controlled by the fluid control portion 93t supplied from the fluid passage 94t.
  • the plurality of fluid outflow ports 955 t outflow equally with the same pressure difference due to the negative pressure generated by the fluid internal pressure and the driving flow.
  • the fluid is a fuel that can supply liquid and gas such as LPG
  • the liquid fuel can be supplied to the in-cylinder fuel injection device by liquid supply (not shown) from the lower portion of the fluid tank 911t.
  • FIG. 7 is a cross-sectional view of a transvector type supercharging means of the third embodiment and a configuration diagram of a liquid fluid outflow mechanism.
  • FIG. 7 shows a groove provided in the fixed nozzle lip 811r and the rotating nozzle lip 821r, which are nozzle lips of the nozzle cleaning mechanism 8r provided in the transvector 61r of the air flow amplifier 6r as the supercharging means 5r in the supercharging device.
  • the internal combustion engine according to claim 2 wherein a fluid outlet 955r of a fluid outlet portion 95r, which is a fluid outlet means for discharging the fluid of the fluid outlet mechanism 9r, is provided in the groove 88r, which is a cleaning means having a shape.
  • the impeller 87r of the transformer vector 61r is different in shape from the impeller 87v of the transformer vector 61v (FIG. 3) and the nozzle cleaning mechanism 8r except the impeller 87r, although the shape of each part is different from that of the nozzle cleaning mechanism 8t (FIG. 6). Since the principle is the same, description of the configuration and operation of the nozzle cleaning mechanism 8r is omitted.
  • the fluid outflow mechanism 9r is provided with a fuel pump 914r downstream of the fluid tank 911r of the fluid supply unit 91r and a fuel chamber of the fluid control unit 93r downstream thereof, similarly to the carburetor of a conventional premixed internal combustion engine that supplies liquid fuel.
  • An outlet 955r is provided. *
  • the operation of the fluid outflow mechanism 9t is to control the supply pressure of the fluid sent from the fluid tank 911r by the fuel pump p914 to a constant value by the fuel chamber 931r, and to control the flow rate by the fluid control valve 932r, from the fluid passage 94r to the fluid chamber 953r.
  • the fluid outflow mechanism 9t is to control the supply pressure of the fluid sent from the fluid tank 911r by the fuel pump p914 to a constant value by the fuel chamber 931r, and to control the flow rate by the fluid control valve 932r, from the fluid passage 94r to the fluid chamber 953r.
  • the driving flow that flows in the groove 88r is a rapid flow with a small passage resistance of the groove 88r than the nozzle gap between the fixed nozzle 81r and the rotating nozzle 82r, so that a cleaning action occurs, and at the same time, the negative pressure increases.
  • a fluid outlet 955r can be provided in the middle of the groove 88r. Therefore, since fluid can be diffused and flown out to the nozzle lip, the nozzle lip cleaning promoting action by liquid can be performed with a simple structure.
  • the outflow fluid is a liquid fuel such as gasoline or ethanol
  • FIG. 8 is a cross-sectional view of an ejector-type supercharging means that is Modification 1 of the third embodiment, and is a configuration diagram of a fluid supply unit and a fluid control unit of a fluid outflow mechanism.
  • H is It is an enlarged view of J section.
  • FIG. 8 shows that in the supercharging device, fluid flows into a groove 882f which is a groove-like cleaning means provided on a nozzle lip of the nozzle cleaning mechanism 8f provided on an ejector 63f of an air flow amplifier 6f which is a supercharging means 5f. 3.
  • FIG. 9 is a configuration diagram of a fluid outflow mechanism 9f.
  • the supercharging means 5f is provided with a fluid outflow portion 95f and a fluid passage 94f of the fluid outflow mechanism 9f in the supercharging means 5s (FIG. 4).
  • the structure of the supercharging means is the above supercharging.
  • the fluid outflow mechanism 9f omits the fluid sensor 934r of the fluid control section 93r of the fluid outflow mechanism 9r (FIG. 7), and the fluid outflow section 95f corresponds to the ejector-type supercharging means 5f.
  • the fluid outflow portion 95f communicates the fluid passage 94f with the fluid chamber 953f of the nozzle shaft 637f through the space of the nozzle casing 633f and the two seals 944, and is connected to the fluid outlet 955f provided in the fluid chamber 953f and the groove 882f.
  • a communicating body outflow passage 954f is provided. *
  • the action of the fluid outflow mechanism 9f is that the liquid supplied from the fluid supply part 91f is flow-controlled by the fluid control part 93f, passes through the fluid passage 94f, and is provided in a nozzle casing 633f of the ejector 63f so as to be rotatable. 637f is supplied to the fluid chamber 953f, and through the fluid outflow passage 954f communicating with the fluid chamber 953f, from the plurality of fluid outlets 955f, the negative pressure generated by the strong flow of the groove 882f causes the same pressure difference. Will flow out evenly.
  • fluid is supplied from the fluid passage 94f to the outer periphery of the rotating nozzle shaft 637f via the spacer 945, and the communication port communicating with the liquid on the outer periphery and the fluid chamber 953f is connected to the nozzle shaft.
  • the air flow rate amplifier 6f which is the supercharging means 5f is the ejector 63f
  • the flow rate amplification ratio is smaller than that of the transvector type air flow rate amplifier (6t, 6r), but it is suitable for a supercharging device which requires a large supercharging pressure.
  • the fluid outlet 955f provided in the rotary nozzle 82f can be provided in the fixed nozzle 81f.
  • FIG. 9 is a cross-sectional view of a transvector type supercharging device that flows out two fluids of Modification 2 of the third embodiment and a configuration diagram of a fluid outflow mechanism that flows out two fluids (fluid A and fluid B).
  • FIG. 9 shows a groove 88g which is a groove-shaped cleaning means provided in a fixed nozzle lip 811g which is a nozzle lip of the nozzle cleaning mechanism 8g provided in an air flow amplifier 6g which is a supercharging means 5g in the supercharging device.
  • the third embodiment (FIG. 7) outflows the liquid that is the supply fluid. )
  • the basic structure are the same, the description of the action of the nozzle cleaning mechanism 8g and the fluid outflow mechanism 9A will be omitted.
  • the difference from the third embodiment (FIG.
  • the action of the fluid outflow mechanism (9A, 9B) is supplied from each fluid supply part (91A, 91B), the flow rate is controlled by the fluid control part (93A, 93B), and from the fluid passage (94A, 94B).
  • Liquid A and gas B which are fluids, are supplied to the fluid chambers (953A, 953B) and pass through the fluid outflow passages (954A, 954B).
  • the gas B flows out of the fluid outlet (954A, 954B) and diffuses into the driving flow by the negative pressure and the internal pressure controlled by the pressure reducing valve 935B of the control unit 935B, and the intake flow is accelerated by the driving flow. Mix evenly.
  • the fluid (A, B) has been described as a liquid and a gas, but may be a gas and a gas or a liquid and a liquid by changing the configuration of the fluid outflow mechanism (9A, 9B).
  • the type of fluid may be a fuel such as gasoline, ethanol, LPG, hydrogen, a humidified coolant, or an additive depending on the purpose. (Fourth embodiment (corresponding to claim 4))
  • FIG. 10 is an explanatory diagram of a concept of a supercharging device including a compressor type and an EGR type driving flow mechanism according to the fourth embodiment.
  • FIG. 10 shows an exhaust gas recirculation passage 32 for supplying EGR gas from the exhaust passage 31h as a driving flow to a driving flow passage 41h for supplying a driving flow to an air flow rate amplifier 6h as a supercharging means 5h in the supercharging device.
  • the compressor 45h driven by the internal combustion engine, the compressed air passage 412 for supplying the compressed air from the compressor 45h to the driving flow passage 41h, the exhaust gas recirculation passage 32 and the compressed air passage 412 are provided.
  • the control valve 421 and the control valve 422 which are driving flow control means for controlling the driving flow are provided, and the driving flow control means is controlled in accordance with the operating condition of the internal combustion engine 1h.
  • This is the supercharging device 4h of any one of the internal combustion engines 1h.
  • the intake air supplied from the air cleaner 21h to the supercharging means 5h through the intake inflow passage 22h is supercharged by the air flow amplifier 6h by the drive flow supplied from the drive flow passage 41h, and is supplied to the internal combustion engine 1h from the intake outflow passage 23h. Supplied.
  • a supercharging sensor 46 is provided in the intake / outflow passage 23h, an exhaust sensor 34 is provided in the exhaust passage 31h, and a driving flow sensor 43 is provided in the driving flow passage 41h.
  • the measurement results of the sensors according to the respective purposes such as pressure, temperature, and flow velocity. Is input to the ECU.
  • the operation of the compressor 45h corresponding to the capacity obtained by dividing the intake air amount in the boost pressure state of the internal combustion engine 1h by the flow rate amplification ratio of the air flow rate amplifier 6h is performed by transmitting the rotational force of the internal combustion engine 1h by the clutch 455.
  • the operation of the supercharging device 4h is to supply the EGR gas from the exhaust gas recirculation passage 32 with a small power loss by turning on the control valve 421 by the output of the ECU for the driving flow supplied to the air flow rate amplifier 6h as the supercharging means 5h. Then perform supercharging operation.
  • the clutch 455 is turned on by the output of the ECU and compressed.
  • the machine 45h is operated, the control valve 421 is turned off, and the control valve 422 is turned on to perform the supercharging operation using the compressed air of the compressor 45h. It is also possible to control the compressed air of the compressor 45h using a continuously variable transmission instead of the clutch 455. Further, the clutch 455 can be omitted, and the compressor or the pneumatic circuit can be switched to perform an unload (no load) operation. In this way, by switching the driving flow of the supercharging means 5h to the EGR gas and the compressed air of the compressor 45h depending on the operating state of the internal combustion engine, the power loss is small, and supercharging is performed over the entire operating region of the internal combustion engine 1h.
  • a supercharger 4h having good responsiveness can be formed by a simple supercharging means 5h, a small capacity compressor 45h, an exhaust gas recirculation passage 32, a driving flow control means, and the like. (Modification 1 of the fourth embodiment (corresponding to claim 4))
  • FIG. 11 is a configuration diagram of a supercharging device that discharges two fluids according to Modification 1 of the fourth embodiment.
  • FIG. 11 is similar to the supercharging device 4h (FIG. 10), includes a compressor type and EGR type driving flow mechanism, and further includes a fluid outflow mechanism 9M for flowing out a fluid M (humidified coolant), and a fluid F
  • This is a supercharging device 4e that flows out two fluids and includes a fluid outflow mechanism 9F that flows out (fuel).
  • the compressed air passage 412e is provided with a control valve 422e, a surge tank 48 having a drive flow sensor 432, a drive flow check valve 442, a cooler 492, and a compressor 45e from the downstream, and the exhaust gas recirculation passage 32e. From downstream, a drive flow check valve 441, a control valve 421e, a drive flow sensor 431, a cooler 491, and a filter 495 are provided. A drain circuit of the filter 495 provided for removing foreign substances in the exhaust is communicated with the exhaust passage 31e.
  • a relief valve 47 communicating with the discharge side and the suction side of the compressor 45e is provided.
  • the exhaust gas recirculation passage 32e for taking in the dynamic pressure faces the opening upstream, and the drain circuit for discharging the drainage by static pressure is connected to the exhaust passage 31e in parallel with the flow.
  • a driving flow sensor 432 is provided in the compressed air passage 412e, a driving flow sensor 431 is provided in the exhaust recirculation passage 32e, an intake sensor 24 is provided in the intake inflow passage 22e, a supercharge sensor 46e is provided in the intake outflow passage 23e, and an exhaust sensor 34e is provided in the exhaust passage 31e.
  • a drive flow sensor 43e is provided in the path 41e, and the measurement results of the sensors according to the respective purposes, such as pressure, temperature, and flow velocity, are input to the ECU.
  • the operation of the supercharging device 4e is as follows: the control valve 421e is turned on by the output of the ECU as a driving flow to be supplied to the air flow rate amplifier 6e as the supercharging means 5e, and the exhaust gas is exhausted. EGR gas from the recirculation passage 32e is supplied to perform a supercharging operation with a small power loss. If the EGR gas at the time of start-up or low-speed rotation is insufficient as the driving flow, or if it is difficult to supercharge with the EGR gas due to overheating of the exhaust gas of the internal combustion engine 1e, restrictions on the EGR recirculation amount, etc.
  • the compressor 45e is operated with the 455e turned on, the pressure increase of the drive flow sensor 432 is confirmed, the control valve 422e is turned on, the control valve 421e is turned off, and the compressor 45e is supercharged with compressed air. Further, the control valve 422e for controlling the flow rate of the compressor type driving flow and the control valve 421e for controlling the flow rate of the EGR type driving flow are adjusted and controlled by the output of the ECU, and both driving flows are used simultaneously. Loss is small and the set capacity of the compressor 455e can be reduced. When using both drive flows, the drive flow check valve (442, 441) prevents the drive flow from flowing backward to a lower pressure.
  • the flow rate of the fluid M and the fluid F supplied from the respective fluid supply units (91M, 91F) is controlled by the fluid control unit (93M, 93F) by the two fluid outflow mechanisms (9M, 9F).
  • the fluid passage (94M, 94F) is sent to a fluid chamber (not shown), and passes through the fluid passage by the negative pressure caused by the driving flow, and then flows out of the fluid outlet and collides with the driving flow having a high flow velocity.
  • the driving flow accelerates the intake air, and at the same time, the second diffusion to the intake air is performed to form a homogeneous premixed gas. Therefore, by providing the fluid outflow mechanism (9M, 9F), it is possible to improve the filling efficiency by overhumidity cooling of the driving flow, improve the exhaust property by lowering the combustion temperature, and promote the nozzle cleaning, and more homogeneous. Since premixing is possible, the internal combustion engine 1e can efficiently perform stratified combustion and homogeneous combustion, and a lean burn engine by stratified combustion combined with the in-cylinder fuel injection device 14e, and by supplying different types of fuel by a fluid outflow mechanism, bi-fuel can be obtained. It can also be an engine. *
  • FIG. 12 is a control flowchart of the supercharging device 4e that flows out the two fluids in FIG.
  • the control flow chart of FIG. 12 includes the compressor type and EGR type driving flow mechanisms, and the fluid outflow mechanisms (9M, 9F) for flowing out two fluids, fluid M (humidified coolant) and fluid F (fuel).
  • 12 is a control flowchart of the supercharging device 4e (FIG. 11) provided with.
  • the supercharging device 4e supercharges the internal combustion engine 1e provided with the in-cylinder fuel injection device 14e, and further performs fluid outflow to the driving flow and intake air, thereby cooling the driving flow with excessive humidity and premixing.
  • the internal combustion engine 1e which is a spark ignition internal combustion engine
  • the internal combustion engine 1e is a lean burn engine.
  • the control of the supercharging device 4e will be described with reference to the flowchart shown in FIG. It should be noted that each determination in the flowchart is made based on all input information of the internal combustion engine 1e, the supercharger 4e, and the like input to the ECU (not shown). Further, the control of the supercharging device 4e described below is repeatedly executed from when the ECU (not shown) is started until it is stopped, and this processing routine and each subroutine are processed in parallel. *
  • the ECU determines whether the operation command of the supercharging device 4e is ON (step S010).
  • the supercharging device stop control (step S100) is performed, and this processing routine is temporarily ended.
  • the stop control of the oversupply 4e is performed by stopping the supply of fluid by the fluid control unit (93M, 93F), closing the EGR type control valve 421e, 0FF of the clutch 455e, and performing a surge by the drive flow sensor 432.
  • the compressor type control valve 422e is closed to prevent the fluid from remaining in the intake passage and outflow of the exhaust to the outside of the engine to stop the supercharging device 4e.
  • step S020 determines whether supercharging is necessary depending on the operation status.
  • this processing routine is temporarily terminated.
  • the ECU determines whether EGR is possible (step S030).
  • the ECU executes an EGR control corresponding operation (step S040) to determine whether the driving flow is insufficient (step S050).
  • the EGR control correspondence calculation is performed in order to supply the driving flow necessary for supercharging, and the opening degree of the EGR control valve 421e corresponding to the operation state of the internal combustion engine 1e, and the EGR at that opening degree. Calculate the reflux rate.
  • step S060 a compressor control corresponding operation is executed to determine whether or not fluid outflow is necessary (step S070). Specifically, the compressor control correspondence calculation is performed when the shortage of the EGR drive flow is supplemented or when the supercharge is performed only by the drive flow of the compressor 45e, the compressor method corresponding to the operation state of the internal combustion engine 1e. The opening degree of the control valve 422e is calculated.
  • step S060 determines whether or not the fluid outflow is necessary.
  • step S070 determines whether or not the fluid outflow is necessary.
  • step S080 the fluid outflow control correspondence calculation
  • step S090 the operation control of the supercharging device
  • the calculation corresponding to the control of the fluid outflow is the calculation of the target outflow amount according to the purpose according to the state of the intake air, the driving flow, the supercharging pressure, the internal combustion engine 1e, etc.
  • the opening degree of the control valve of the fluid control unit for flowing out the target outflow amount is calculated.
  • the processing routine of the fluid outflow control correspondence calculation (step S080) will be described separately in a subroutine flowchart (FIG. 13) described later.
  • the operation control of the supercharger is performed by operating each actuator or the like by the output of the ECU according to the calculation result of each calculation (steps 040, 060, 080), the fluid supply unit (91M, 91F), and the fluid control.
  • each control valve (421e, 422e), and clutch 455e are controlled.
  • the ECU executes the operation control of the supercharging device (step S090), and ends the present processing routine.
  • the compressor type and EGR type drive flow mechanisms are optimally operated, and the fluid outflow mechanism (9M, 9F) causes the fluid outflow according to the operation status. If the ECU is activated and the operation command is not ON, stop control of the supercharging device 4e corresponding to engine stop or restart is performed. Therefore, as the optimum operation of the drive flow mechanism, supercharging is performed with priority given to the EGR drive flow, and the compressor drive flow is used in a complementary manner, so that power loss is small and the entire operation region can be handled. Supercharged operation is possible.
  • FIG. 13 is a subroutine flowchart of the fluid outflow control corresponding calculation (step S080) of the control flowchart of FIG.
  • the supercharger 4e (FIG. 11) includes a compressor-type and EGR-type drive flow mechanism, and a fluid outflow mechanism (9M, 9) that discharges two fluids, a fluid M (humidified coolant) and a fluid F (fuel).
  • 9F) is a supercharging device for the internal combustion engine 1e. Therefore, by supercharging the internal combustion engine 1e equipped with the in-cylinder fuel injection device 14e and further performing fluid outflow to the drive flow and intake air, the humidified coolant such as the drive flow is discharged and the fuel is discharged.
  • the engine can be a lean burn engine by stratified combustion through premixing and in-cylinder fuel injection, or a premixed combustion engine. It should be noted that the fluid outflow control corresponding subroutine described below is repeatedly executed by executing the control flowchart (FIG. 12). *
  • the ECU determines whether the combustion method of the internal combustion engine 1e is stratified combustion (step S081). Specifically, a simulation of each combustion method is executed based on input information such as the rotational speed, torque, exhaust temperature, throttle position sensor, etc. of the internal combustion engine 1e, and an optimal combustion method corresponding to the operating situation is selected, or A combustion method map based on combustion method selection factors (torque, rotation speed, etc.) is created in advance, and the combustion method is determined according to the map.
  • a simulation of each combustion method is executed based on input information such as the rotational speed, torque, exhaust temperature, throttle position sensor, etc. of the internal combustion engine 1e, and an optimal combustion method corresponding to the operating situation is selected, or A combustion method map based on combustion method selection factors (torque, rotation speed, etc.) is created in advance, and the combustion method is determined according to the map.
  • the fluid outflow amount (9F) is calculated by calculating the outflow amount of the fluid F (fuel) by Bernoulli's theorem generated from the flow velocity of the driving flow and the control of the fluid control unit 93F, or The flow rate is measured by a flow rate sensor provided in the fluid control unit, and the outflow rate (weight ratio, etc.) of the fluid F to the intake air flowing out to the intake air outflow passage 23e is calculated.
  • step S084 determines whether the humidification cooling is necessary.
  • step S083 determines whether humidification cooling due to the fluid outflow is necessary.
  • step S085 calculation of the fluid outflow control (9M) (step S085) is executed, and then the fluid is added to the engine control program of the internal combustion engine 1e.
  • the outflow amount (9M, 9F) is fed back (step S086), and this processing subroutine is temporarily ended.
  • the calculation of the fluid outflow amount (9M) necessary for the humidification cooling is performed.
  • the ECU executes feedback (step S086) of the outflow amount (9M, 9F) and ends the present processing subroutine once.
  • Devices and auxiliary devices provided in the supercharging device shown in the first to fourth embodiments can be added and deleted depending on the operating conditions of the internal combustion engine.
  • the first to fourth embodiments show an example of the present invention and do not limit the present invention, and can be changed and improved by those skilled in the art.
  • the supercharging device of the present invention can be provided in the supercharging device described in Document 2, for example, the nozzle cleaning mechanism, the fluid outflow mechanism, etc. of the present invention are provided in the supercharging device described in Document 2. Can do.
  • This supercharging device using an air flow rate amplifier as a supercharging means has improved the problem of nozzle clogging, which is a constricted portion of the flow path of the driving flow, due to the accumulation of deposits by EGR gas. It can be used as a supercharging device for an internal combustion engine of an automobile in which the output is improved by a turbo-type supercharger that directly pressurizes intake air.

Abstract

[Problem] An air flow rate amplifier, which is a supercharging means of a supercharging device for an internal combustion engine, is limited in terms of interval distance between nozzle lips of ring-arrayed nozzles by the restriction of a nozzle opening area through which a driving flow is ejected. Therefore, a problem is presented in that the flow channel area of the nozzles decreases when foreign substances, etc., adhere to the nozzle lips, and the performance of the air flow rate amplifier which is the supercharging means decreases. [Solution] A nozzle of an air flow rate amplifier, which is a supercharging means of a supercharging device for an internal combustion engine, is provided with a nozzle cleaning mechanism equipped with a rotating nozzle that is capable of turning, a rotation drive means that is linked to the rotating nozzle and that generates rotary force through a driving flow or an air intake flow, and a groove-shaped cleaning means provided to the nozzle lip of one or both of the rotary nozzle and a fixed nozzle, the nozzle lip of the air flow rate amplifier being cleaned by the driving flow passing through the groove-shaped cleaning means, and the nozzle lip being cleaned due to the cleaning means or the nozzle lip rotating in a circumferential direction.

Description

内燃機関の過給装置Supercharger for internal combustion engine
本発明は、空気流量増幅器を用いた内燃機関の過給装置に関するものである。 The present invention relates to a supercharging device for an internal combustion engine using an air flow amplifier.
内燃機関の出力増大等のため、吸気の圧力を大気圧以上にする内燃機関の過給手段として、吸気を直接加圧する機械式過給機やターボ式過給機とは異なる、空気流量増幅器を用いて駆動流で吸気を加速して流量増幅する過給手段(特許文献1、2)が従来技術としてある。 この空気流量増幅器には、流量増幅比が大きい順に、トランスベクタ(登録商標)、フロートランスベクタ(市販品の商品名)、エジェクタ等があり、駆動流による流量増幅気流の推力は概ね流量増幅比に反比例する。 また、空気流量増幅器の液体噴霧ノズルとして、スプレーベクタ(市販品の商品名)等がある。 過給手段である空気流量増幅器の構造上、アキュームレータ(蓄圧器)となる駆動流通路の断面積よりノズルの開口面積を小さくして、ベンチュリ効果により駆動流流速を増大するので、ノズルは駆動流の流路の狭窄部となる。 また、空気流量増幅器は吸気を駆動流で加速するので、ノズル形状は駆動流と吸気流との接触面積が大きいリング状ノズルとするのが流量増幅効率等に有利であるが、リング状ノズルのノズルリップの隙間距離とリング状ノズル開口部周長の積が該ノズルの開口面積であるので、前記ノズル開口面積の制約により、このリング状ノズルのノズルリップの隙間は制約され、リング状ノズルを構成するノズルリップの隙間は、駆動流の流路の隘路部となる。 また駆動流が後述するEGR方式の場合、EGRガスに含まれる煤により、EGRの流路には燃料やエンジンオイルまたは、それらの不完全燃焼生成物が徐々に堆積してデポジット(堆積物)が付着する。 このデポジットの過度の堆積は、内燃機関の放熱性、運転性能に悪影響を与え、特に、該EGR方式の場合は、EGRガスによるデポジットの堆積により、前記駆動流の流路の隘路部であるノズルリップの隙間の閉塞が発生する問題点がある。 従って、このノズルリップ面の性状の維持が重要であり、本願発明(請求項1)は、このノズルリップ面を清掃するノズル清掃機構であり、駆動流が流れる溝状の清掃手段を円周方向に回転して清掃する該ノズル清掃機構の概念の説明図を図1に示し、図2(~4)に各空気流量増幅器に対応した変形例1(~3)を示す。  An air flow amplifier, which is different from a mechanical supercharger or turbocharger that directly pressurizes intake air, is used as a supercharging means for an internal combustion engine that increases the pressure of the intake air to an atmospheric pressure or higher due to an increase in the output of the internal combustion engine. Conventionally, there is a supercharging means (Patent Documents 1 and 2) that uses and accelerates intake air by a driving flow to amplify the flow. This air flow amplifier has a transformer vector (registered trademark), a flow transformer vector (commercial product name), an ejector, etc. in descending order of the flow amplification ratio. Inversely proportional to Also, as a liquid spray nozzle of an air flow amplifier, there is a spray vector (a commercial product name). Due to the structure of the air flow amplifier, which is a supercharging means, the nozzle opening area is made smaller than the cross-sectional area of the driving flow passage serving as an accumulator (accumulator), and the driving flow velocity is increased by the venturi effect. This is a narrowed portion of the flow path. In addition, since the air flow amplifier accelerates the intake air by the driving flow, it is advantageous for the flow rate amplification efficiency etc. that the nozzle shape is a ring nozzle having a large contact area between the driving flow and the intake flow. Since the product of the gap distance of the nozzle lip and the circumference of the ring-shaped nozzle opening is the opening area of the nozzle, the nozzle lip gap of the ring-shaped nozzle is restricted by the restriction of the nozzle opening area, and the ring-shaped nozzle The gap between the nozzle lips is a bottleneck portion of the flow path of the driving flow. When the driving flow is an EGR system, which will be described later, fuel, engine oil, or incomplete combustion products thereof gradually accumulate in the EGR flow path due to soot contained in the EGR gas, and deposits (deposits) are generated. Adhere to. This excessive accumulation of deposits adversely affects the heat dissipation and operating performance of the internal combustion engine. In particular, in the case of the EGR system, the deposits deposited by the EGR gas cause nozzles that are the bottleneck portion of the flow path of the driving flow. There is a problem that the gap of the lip is blocked. Therefore, it is important to maintain the properties of the nozzle lip surface. The present invention (Claim 1) is a nozzle cleaning mechanism for cleaning the nozzle lip surface, and the groove-shaped cleaning means through which the driving flow flows is arranged in the circumferential direction. FIG. 1 is an explanatory view of the concept of the nozzle cleaning mechanism that rotates and cleans, and FIGS. 2 (to 4) show modifications 1 (to 3) corresponding to the air flow amplifiers. *
また、内燃機関の過給装置の過給手段である空気流量増幅器の駆動流には、内燃機関により駆動される圧縮機が発生する圧縮空気を利用する圧縮機方式(特許文献1、2)と、該圧縮機方式、または内燃機関の排気ガスを利用するEGR方式(特許文献2)がある。 駆動流の圧縮機方式には、内燃機関により駆動される圧縮機が必要であり、この圧縮機の容量は、内燃機関のブースト圧状態の吸気容量を空気流量増幅器の流量増幅比で除した容量であるので、吸気を直接加圧する前記機械式過給機用より容量が小さく小型であるが、圧縮機を駆動する動力損失の発生の問題点がある。 また、内燃機関において、NOx(窒素酸化物)の発生抑制等を目的として、燃焼後の排気ガスの一部を取り出して吸気側へ導き再度吸気させる、EGR(排気再循環)が従来技術としてある。 駆動流の前記EGR方式は、過給を行うと同時に、再循環排気ガスの冷却が可能な外部EGRを行うことができる。 このEGR方式は、EGRガスの過熱時には駆動流としての性状不適、低速回転低負荷時等のEGRガスが駆動流として圧力不足等の内燃機関の運転状況により過給運転ができない問題点がある。 本願発明(請求項4)の過給装置は、図10に示すように、圧縮機方式とEGR方式の駆動流機構と駆動流制御手段を備え、内燃機関の運転状況に応じて該駆動流制御手段を切換制御することにより、前記駆動流方式の問題点を改善できる。  In addition, a compressor system using compressed air generated by a compressor driven by an internal combustion engine (Patent Documents 1 and 2) is used as a driving flow of an air flow rate amplifier that is a supercharging means of a supercharging device for an internal combustion engine. There is an EGR method (Patent Document 2) using the compressor method or an exhaust gas of an internal combustion engine. The driving flow compressor system requires a compressor driven by an internal combustion engine, and the capacity of this compressor is the capacity obtained by dividing the intake capacity of the boost pressure state of the internal combustion engine by the flow rate amplification ratio of the air flow rate amplifier. Therefore, although the capacity is smaller and smaller than that for the mechanical supercharger that directly pressurizes the intake air, there is a problem of generation of power loss for driving the compressor. Further, in the internal combustion engine, for the purpose of suppressing generation of NOx (nitrogen oxide), EGR (exhaust gas recirculation) is known as a conventional technique in which a part of exhaust gas after combustion is taken out and led to the intake side to be sucked again. . The EGR method of driving flow can perform external EGR capable of cooling the recirculated exhaust gas simultaneously with supercharging. This EGR system has a problem that the supercharging operation cannot be performed depending on the operation state of the internal combustion engine, such as inadequate properties as a driving flow when the EGR gas is overheated, and EGR gas when the EGR gas is driven at a low speed and low load. As shown in FIG. 10, the supercharging device of the present invention (Claim 4) includes a compressor type and EGR type driving flow mechanism and driving flow control means, and the driving flow control according to the operating state of the internal combustion engine. By controlling the switching of the means, the problem of the driving flow method can be improved. *
従来技術として、キャブレタを用いた予混合燃焼機関があり、キャブレタにてフロートチャンバ等の燃料チャンバから供給される液体燃料を、吸気通路に設けたベンチュリにて通路を絞って流速を増大して、ベルヌーイの定理による負圧により吸気に流出して予混合燃焼を行うが、ベンチュリの絞り作用により通路抵抗が大きくなり、内燃機関のポンピングロスの発生、吸気の充填効率の低下等の問題点がある。 また、吸気への液体燃料の流出により、燃料は微細粒子として霧化され蒸発するが、特に寒冷時等には、この予混合が不十分となり、均一な吸気の供給が困難となる。 この問題を解決する従来技術として、図14に示す燃料蒸発装置付内燃機関(特許文献3)がある。 これは、内燃機関1の吸気通路104に燃料供給装置101、その下流に過給装置108と蒸発室103を設け、圧縮機45からの圧縮空気を加熱装置102で加熱して該蒸発室103に供給することにより、液状の噴霧流ではなく、混合気を完全に蒸気の状態で供給して各気筒への空燃比の配分を均一化することにより、薄い混合気で安定した過給運転を可能とし、HC、NOxの減少を図る。 また、従来技術として、吸入吸気に燃料を噴射する燃料噴射弁と燃焼室に燃料を噴射する燃料噴射弁により形成された層状混合気に点火する点火装置と、機関高負荷領域で供給燃料をガソリン等の炭化水素系の燃料からアルコール系燃料に切換えて供給する燃料制御装置を設けた火花点火式層状給気機関(特許文献4)がある。  As a prior art, there is a premixed combustion engine using a carburetor, the liquid fuel supplied from a fuel chamber such as a float chamber by the carburetor, the passage is throttled by a venturi provided in the intake passage, and the flow velocity is increased. The pre-mixed combustion flows out into the intake due to the negative pressure according to Bernoulli's theorem, but the passage resistance increases due to the throttle action of the venturi, causing problems such as the occurrence of pumping loss of the internal combustion engine and the reduction of the charging efficiency of the intake . In addition, the fuel is atomized and evaporated as fine particles due to the outflow of the liquid fuel to the intake air, but this premixing becomes insufficient particularly during cold weather, making it difficult to supply uniform intake air. As a conventional technique for solving this problem, there is an internal combustion engine with a fuel evaporation device (Patent Document 3) shown in FIG. This is because a fuel supply device 101 is provided in the intake passage 104 of the internal combustion engine 1, and a supercharging device 108 and an evaporation chamber 103 are provided downstream thereof, and the compressed air from the compressor 45 is heated by the heating device 102 to enter the evaporation chamber 103. By supplying the air-fuel ratio in a completely vapor state instead of a liquid spray flow, the air-fuel ratio is evenly distributed to each cylinder, enabling stable supercharging operation with a thin air-fuel mixture. To reduce HC and NOx. Further, as conventional techniques, an ignition device for igniting a stratified mixture formed by a fuel injection valve for injecting fuel into intake air and a fuel injection valve for injecting fuel into a combustion chamber, and supply fuel to gasoline in an engine high load region There is a spark ignition type stratified air supply engine provided with a fuel control device that supplies a hydrocarbon-based fuel such as a hydrocarbon-based fuel by switching. *
本願発明(請求項2)は、図5に示す流体流出機構9の概念の説明図のように、流体を駆動流付近に流出することにより、流出する流体が液体の場合は霧化および蒸発が促進され、その混合気である駆動流により吸気の加速と同時に拡散混合が行われるので、吸気と流体の予混合が十分に行われる。 また、駆動流を前記EGR方式とすることにより、前記加熱装置102を必要としない高圧のEGRガスを利用して過給を行うことができ、流体流出機構の流出する流体が液体の場合は駆動流の加湿冷却が、燃料の場合は不完全燃焼物の再燃焼化の促進ができる。 図11に示す過給装置4eのように、2個の流体流出機構を設けることにより2流体を流出し、更に、駆動流機構のEGR方式を優先使用(図12)し、運転状況により圧縮機方式を併用することにより、効率の良い過給運転ができる。 また、本願発明の流体流出機構により燃料を流出する場合は、空気流量増幅器での燃料流出による均一な予混合気が得られ、更に筒内燃料噴射装置を併用することにより点火装置付近に着火性のよい混合気層を形成して、成層燃焼(図13)によるリーンバーンエンジン(希薄燃焼内燃機関)とすることも、異種燃料を供給することにより、バイフューエルエンジン(2種燃料内燃機関)とすることもできる。 In the present invention (Claim 2), as shown in the explanatory diagram of the concept of the fluid outflow mechanism 9 shown in FIG. 5, when the fluid flowing out is liquid, the atomization and evaporation are performed. Since the diffusive mixing is performed simultaneously with the acceleration of the intake air by the driving flow that is the air-fuel mixture, the intake air and the fluid are sufficiently premixed. In addition, by adopting the EGR system for the driving flow, supercharging can be performed using high-pressure EGR gas that does not require the heating device 102, and driving is performed when the fluid flowing out of the fluid outflow mechanism is liquid. In the case of fuel, humidification and cooling of the stream can promote recombustion of incompletely combusted matter. Like the supercharging device 4e shown in FIG. 11, two fluid outflow mechanisms are provided to allow two fluids to flow out. Further, the EGR system of the drive flow mechanism is preferentially used (FIG. 12), and depending on the operating conditions, the compressor By using the method in combination, efficient supercharging operation can be performed. In addition, when fuel is flown out by the fluid outflow mechanism of the present invention, a uniform premixed gas can be obtained by fuel flow out of the air flow rate amplifier, and further by using an in-cylinder fuel injection device in combination with the ignitability in the vicinity of the ignition device. A lean burn engine (lean combustion internal combustion engine) by stratified combustion (Fig. 13) can be formed by forming a good air-fuel mixture layer, or by supplying a different fuel, a bi-fuel engine (two-fuel internal combustion engine) You can also
実開平3-47431号公報Japanese Utility Model Publication No. 3-47431 特願2015-144号Japanese Patent Application No. 2015-144 特開昭51-1827号公報Japanese Patent Laid-Open No. 51-1827 特開昭57-2439号公報Japanese Patent Laid-Open No. 57-2439
内燃機関の過給装置の過給手段である空気流量増幅器のノズル開口面積は、駆動流通路の断面積より構造上、小さくする必要がある。空気流量増幅器は吸気を駆動流で加速するので、駆動流と吸気流との接触面積が大きいリング状ノズルは流量増幅効率が良いが、前記ノズル開口面積の制約により、このリング状ノズルのノズルリップの隙間は制限されるので、駆動流の流路の隘路部となる。この隘路部である駆動流のリング状ノズルを形成するノズルリップに、異物等が付着するとノズルの流路面積が小さくなり、過給手段である空気流量増幅器の性能が低下する問題点がある。特に、空気流量増幅器の駆動流をEGRガスで行う場合は、EGRガスによるデポジットの堆積により、駆動流の前記隘路部であるノズルの閉塞が発生する問題点がある。 The nozzle opening area of an air flow amplifier that is a supercharging means of a supercharging device for an internal combustion engine needs to be structurally smaller than the cross-sectional area of the drive flow passage. Since the air flow amplifier accelerates the intake air by the driving flow, a ring nozzle with a large contact area between the driving flow and the intake flow has a good flow amplification efficiency, but due to the restriction of the nozzle opening area, the nozzle lip of this ring nozzle Since this gap is limited, it becomes a bottleneck part of the flow path of the driving flow. When foreign matter or the like adheres to the nozzle lip forming the ring-shaped nozzle of the driving flow that is the bottleneck portion, there is a problem that the flow area of the nozzle is reduced and the performance of the air flow amplifier that is the supercharging means is lowered. In particular, when the driving flow of the air flow amplifier is performed with EGR gas, there is a problem that the nozzle that is the bottleneck portion of the driving flow is blocked due to the deposition of the deposit by the EGR gas.
請求項1は、内燃機関の過給装置の過給手段である空気流量増幅器のノズルに、回動可能な回転ノズルと、該回転ノズルに連動し、駆動流または吸気流により回転力を発生する回転駆動手段と、該回転ノズルと固定ノズルの片方または両方のノズルのノズルリップに設けた溝状の清掃手段と、を備えたノズル清掃機構を設けて、空気流量増幅器のノズルリップを溝状の清掃手段を流れる駆動流が清掃し、該清掃手段あるいはノズルリップが円周方向に回転することによりノズルリップを清掃する。請求項2は、前記空気流量増幅器の駆動流または吸気流に流体を流出する流体流出手段と、該流体流出手段に流体を供給する流体供給手段と、該流体供給手段と前記流体流出手段に連通する流体通路と、該流体通路に設けた流体制御手段と、を備えた流体流出機構を設けて、燃料等の流体を吸気に流出して、混合を行う。請求項3は、過給手段である空気流量増幅器に設けた前記ノズル清掃機構のノズルリップに設けた溝状の清掃手段に、前記流体流出機構の流体を流出する流体流出手段の流体流出口を設けて、流体を駆動流の強い駆動流噴流に流出する。請求項4は、過給手段である空気流量増幅器に供給する駆動流を、排気還流通路からのEGRガスと、更に圧縮空気通路からの内燃機関により駆動される圧縮機により供給される圧縮空気とし、該排気還流通路と該圧縮空気通路に設けた駆動流を制御する駆動流制御手段を設け、内燃機関の運転状況に対応して該駆動流を制御して過給運転を行う。 According to a first aspect of the present invention, a nozzle of an air flow rate amplifier, which is a supercharging means of a supercharging device for an internal combustion engine, is connected to a rotatable rotating nozzle, and a rotational force is generated by a driving flow or an intake flow in conjunction with the rotating nozzle. A nozzle cleaning mechanism comprising: a rotary drive means; and a groove-like cleaning means provided on the nozzle lip of one or both of the rotating nozzle and the fixed nozzle, and the nozzle lip of the air flow amplifier is formed in a groove-like shape. The driving flow flowing through the cleaning means cleans, and the cleaning means or nozzle lip rotates in the circumferential direction to clean the nozzle lip. According to a second aspect of the present invention, there is provided fluid outflow means for flowing out fluid to the driving flow or intake flow of the air flow amplifier, fluid supply means for supplying fluid to the fluid outflow means, and communication between the fluid supply means and the fluid outflow means. And a fluid control mechanism provided in the fluid passage. A fluid outflow mechanism is provided to allow a fluid such as fuel to flow out into the intake air for mixing. According to a third aspect of the present invention, there is provided a fluid outlet of the fluid outlet for discharging the fluid of the fluid outlet mechanism in the groove-like cleaner provided in the nozzle lip of the nozzle cleaning mechanism provided in the air flow amplifier serving as a supercharger. The fluid flows out into a driving flow jet having a strong driving flow. According to a fourth aspect of the present invention, the driving flow supplied to the air flow rate amplifier as the supercharging means is EGR gas from the exhaust gas recirculation passage and compressed air supplied from a compressor driven by the internal combustion engine from the compressed air passage. A driving flow control means for controlling the driving flow provided in the exhaust gas recirculation passage and the compressed air passage is provided, and the supercharging operation is performed by controlling the driving flow in accordance with the operation state of the internal combustion engine.
過給手段を空気流量増幅器とする内燃機関の過給装置は簡素な構造で効率よく過給できるが、空気流量増幅器のノズルは駆動流の流路における狭窄部で、リング状ノズルのノズルリップへの異物等の付着によりノズル開口面積が小さくなり、過給手段である空気流量増幅器の性能が低下する問題点がある。請求項1の過給装置は、過給手段である空気流量増幅器のノズルに、回転駆動手段により回動する回転ノズルと、該回転ノズルと固定ノズルの片方または両方のノズルのノズルリップに設けた溝状の清掃手段とを備えたノズル清掃機構により、空気流量増幅器のノズルリップを溝状の清掃手段を流れる駆動流噴流が円周方向に回転することにより、ノズルリップを自動清掃し、ノズルリップへの異物等の付着により過給手段である空気流量増幅器の性能が低下するのを、制御手段を必要としない簡素な構造で防止できる。  An internal combustion engine supercharging device using a supercharging means as an air flow rate amplifier can efficiently supercharge with a simple structure, but the nozzle of the air flow rate amplifier is a constriction in the flow path of the drive flow, and to the nozzle lip of the ring-shaped nozzle There is a problem in that the nozzle opening area is reduced due to the attachment of foreign matters and the performance of the air flow amplifier as the supercharging means is deteriorated. The supercharging device according to claim 1 is provided on a nozzle of an air flow rate amplifier that is a supercharging means, a rotating nozzle that is rotated by a rotating driving means, and a nozzle lip of one or both of the rotating nozzle and the fixed nozzle. A nozzle cleaning mechanism provided with a groove-shaped cleaning means automatically cleans the nozzle lip by rotating the drive flow jet flowing through the groove-shaped cleaning means in the circumferential direction through the nozzle lip of the air flow amplifier. It is possible to prevent the performance of the air flow rate amplifier, which is a supercharging means, from being deteriorated due to adhesion of foreign matter or the like to a simple structure that does not require a control means. *
請求項2の過給装置は、流体供給手段、流体流出手段、流体通路、流体制御手段を備えた流体流出機構を設けることにより、流体と吸気との混合を十分に行うことができる。供給方法は、供給用の動力装置が不要である駆動流または吸気流のベルヌーイの定理による負圧でも、貯蔵流体の流体タンクの内圧でもよい。従来のキャブレタのように、ベンチュリ部を設けて吸気流速を上げる必要がなく、ベンチュリ部の絞り効果によるポンピングロス等の問題が発生しない。流出する流体は、気体、液体(圧縮した気体)でもよく、ガソリン、エタノール、LPG、水素、等の燃料でもよい。また、流出条件が制約されるが、水等の加湿冷却剤や、EGRガスのNOx低減のための浄化触媒である尿素水等の触媒や添加剤でも良い。流出する流体が液体の場合は、清掃機構によるデポジット除去の促進作用、吸気弁のオーバーラップ時の吹き返しによる堆積物を洗い流す清掃作用、および流体流出機構の流体流出口の詰まり防止作用がある。流出する流体が燃料の場合は、ディーゼル機関のPM(粒子状物質)等の再燃焼可能物質に燃料が接触することにより、燃焼室での燃焼を促進することができる。また、流体流出部の燃料供給量を理論空燃比の希薄側、あるいは理論空燃比以下として、筒内燃料噴射装置から可燃混合範囲になるように燃料を噴射して点火することにより、特段の吸気流制御等を必要としない簡素な吸気機構と燃焼室構造で成層燃焼が可能なリーンバーンエンジンができる。従って、確実な着火と、希薄混合気の高速で均一な予混合燃焼が可能となり、燃焼効率が向上して有害物質が低減する。また、供給する流体を主燃料と異なる異種燃料として、バイフューエルエンジン(2種燃料内燃機関)とすることもできる。  The supercharging device according to claim 2 can sufficiently mix the fluid and the intake air by providing the fluid outflow mechanism including the fluid supply unit, the fluid outflow unit, the fluid passage, and the fluid control unit. The supply method may be a negative pressure according to Bernoulli's theorem of a driving flow or an intake flow that does not require a power supply for supply, or an internal pressure of a fluid tank of a storage fluid. Unlike conventional carburetors, it is not necessary to increase the intake air flow velocity by providing a venturi section, and problems such as pumping loss due to the throttling effect of the venturi section do not occur. The fluid that flows out may be gas, liquid (compressed gas), or fuel such as gasoline, ethanol, LPG, or hydrogen. Further, although the outflow conditions are restricted, a humidifying coolant such as water or a catalyst or additive such as urea water which is a purification catalyst for reducing NOx of EGR gas may be used. When the fluid flowing out is a liquid, it has an action of promoting deposit removal by the cleaning mechanism, a cleaning action of washing away deposits by blowing back when the intake valves overlap, and an action of preventing clogging of the fluid outlet of the fluid outlet mechanism. When the flowing fluid is fuel, combustion in the combustion chamber can be promoted by contacting the fuel with a recombustible material such as PM (particulate material) of a diesel engine. In addition, a special intake air can be obtained by injecting and igniting the fuel from the in-cylinder fuel injection device to the combustible mixture range with the fuel supply amount in the fluid outflow portion being leaner than the theoretical air-fuel ratio or less than the stoichiometric air-fuel ratio. A lean burn engine capable of stratified combustion with a simple intake mechanism and combustion chamber structure that does not require flow control or the like can be achieved. Therefore, reliable ignition and high-speed and uniform premixed combustion of a lean air-fuel mixture are possible, improving combustion efficiency and reducing harmful substances. Also, a bi-fuel engine (a two-fuel internal combustion engine) can be used as a different fuel different from the main fuel. *
請求項3の過給装置は、過給手段である空気流量増幅器に設けた前記ノズル清掃機構のノズルリップに設けた
溝状の清掃手段に、前記流体流出機構の流体流出手段の流体流出口を設けることにより、強い流れの駆動流噴流に流体を供給するので、ベルヌーイの定理による負圧が大きくなり、ノズルの上流側に流体流出口を設けることができるので、ノズルリップのデポジット等の清掃(除去)が促進できる。また、強い流れの駆動流に流体を流出することにより流体が駆動流に激しく衝突し、流体が液体の場合は、衝突により微粒化して気化が促進されて蒸発し、更に、その駆動流で吸気を加速しながら混合するので、十分に拡散した均一な混合を行うことができる。請求項4の過給装置は、過給手段である空気流量増幅器の駆動流を、圧縮機方式とEGR方式とし、駆動流を制御する駆動流制御手段を、内燃機関の運転状況に対応して制御することにより、出力損失が少ないEGR方式と還流排気ガスの加熱や、EGR還流量の制約を受けない圧縮機方式の利点を生かした過給運転を行うことにより、動力損失が小さく、広い過給運転領域の過給装置ができる。
According to a third aspect of the present invention, there is provided a supercharging device comprising: a groove-like cleaning means provided in a nozzle lip of the nozzle cleaning mechanism provided in an air flow amplifier serving as a supercharging means; Since the fluid is supplied to the driving flow jet having a strong flow, the negative pressure due to Bernoulli's theorem is increased, and the fluid outlet can be provided on the upstream side of the nozzle. Removal) can be promoted. In addition, when the fluid flows into the strong driving flow, the fluid collides violently with the driving flow, and when the fluid is a liquid, it is atomized by the collision and vaporization is promoted to evaporate. Since the mixing is performed while accelerating, uniform mixing with sufficient diffusion can be performed. According to a fourth aspect of the present invention, the driving flow of the air flow amplifier serving as the supercharging means is a compressor type and an EGR type, and the driving flow control means for controlling the driving flow is adapted to the operating condition of the internal combustion engine. By controlling the EGR system with low output loss and heating of the recirculated exhaust gas, and by performing a supercharging operation that takes advantage of the compressor system that is not restricted by the EGR recirculation amount, the power loss is small and wide A supercharger in the feed operation area is created.
第1実施形態(請求項1対応)の過給手段の概念の説明図である。It is explanatory drawing of the concept of the supercharging means of 1st Embodiment (Claim 1 correspondence). (A)は、第1実施形態の変形例1のトランスベクタ型の過給手段の断面図で、(B)は、吸気流による回転駆動手段を備えた清掃機構8uのM矢視図である。(A) is sectional drawing of the transvector type supercharging means of the modification 1 of 1st Embodiment, (B) is M arrow directional view of the cleaning mechanism 8u provided with the rotation drive means by an intake flow. . (C)は、第1実施形態の変形例2のトランスベクタ型の過給手段の断面図で、(D)は、駆動流による回転駆動手段を備えた清掃機構8vのN矢視図である。(C) is sectional drawing of the transvector type supercharging means of the modification 2 of 1st Embodiment, (D) is N arrow view of the cleaning mechanism 8v provided with the rotational drive means by a drive flow. . (E)は、第1実施形態の変形例3のエジェクタ型の過給手段の断面図で、(F)は、G部の拡大図である。(E) is sectional drawing of the ejector type supercharging means of the modification 3 of 1st Embodiment, (F) is an enlarged view of the G section. 第2実施形態(請求項2対応)の過給手段と流体流出機構の概念の説明図である。It is explanatory drawing of the concept of the supercharging means and fluid outflow mechanism of 2nd Embodiment (Claim 2 correspondence). 第2実施形態の変形例1のトランスベクタ型の過給手段の断面図と、気体の流体流出機構の構成図である。It is sectional drawing of the transvector type | mold supercharging means of the modification 1 of 2nd Embodiment, and a block diagram of the gaseous fluid outflow mechanism. 第3実施形態(請求項3対応)のトランスベクタ型の過給手段の断面図と、液体の流体流出機構の構成図である。It is sectional drawing of the transvector type supercharging means of 3rd Embodiment (corresponding to Claim 3), and the block diagram of the fluid outflow mechanism of a liquid. (G)は、第3実施形態の変形例1であるエジェクタ型の過給手段の断面図と、流体流出機構の流体供給部と流体制御部の構成図で、(H)は、J部の拡大図である。(G) is a cross-sectional view of an ejector-type supercharging means that is Modification 1 of the third embodiment, and is a configuration diagram of a fluid supply unit and a fluid control unit of a fluid outflow mechanism. It is an enlarged view. 第3実施形態の変形例2の2流体を流出するトランスベクタ型の過給手段の断面図と、2流体を流出する流体流出機構の構成図である。It is sectional drawing of the transvector type supercharging means which flows out 2 fluids of the modification 2 of 3rd Embodiment, and the block diagram of the fluid outflow mechanism which flows out 2 fluids. 第4実施形態(請求項4対応)の、圧縮機方式とEGR方式の駆動流機構を備えた過給装置の概念の説明図である。It is explanatory drawing of the concept of the supercharging device provided with the drive flow mechanism of a compressor system and an EGR system of 4th Embodiment (Claim 4 correspondence). 第4実施形態の変形例1の2流体を流出する過給装置の構成図である。It is a block diagram of the supercharging device which flows out 2 fluids of the modification 1 of 4th Embodiment. 図11の2流体を流出する過給装置の制御フローチャートである。It is a control flowchart of the supercharging device which flows out 2 fluids of FIG. 図12の制御フローチャートの、流体流出制御対応演算(ステップS080)のサブルーチンフローチャートである。It is a subroutine flowchart of the fluid outflow control corresponding | compatible calculation (step S080) of the control flowchart of FIG. 従来技術の燃料蒸発装置付内燃機関の系統図である。It is a systematic diagram of the internal combustion engine with a fuel evaporation apparatus of a prior art.
本願発明の各実施形態(1~4)の概要を以下に示す。 (実施形態1(請求項1対応)) 内燃機関の過給手段に空気流量増幅器を用いた過給装置において、駆動流の流出部であるノズルは狭窄部であり、特に空気増幅比の大きいリング状ノズルは、ノズルリップ間の隙間が小さいため、ノズルリップへの異物の付着等による過給性能の低下が発生する問題点がある。 この対策として、過給手段である空気流量増幅器のノズルに、回転駆動手段により回転する回転ノズルと、ノズルを構成するノズルリップに溝状の清掃手段を備えたノズル清掃機構を設けた過給装置が、実施形態1(図1~4)である。 (実施形態2(請求項2対応))  The outline of each embodiment (1 to 4) of the present invention is shown below. (Embodiment 1 (corresponding to claim 1)) In a supercharging device using an air flow amplifier as a supercharging means of an internal combustion engine, a nozzle that is an outflow portion of a driving flow is a constricted portion, and particularly a ring having a large air amplification ratio Since the gap between the nozzle lips is small, there is a problem that the supercharging performance is deteriorated due to adhesion of foreign matters to the nozzle lip. As a countermeasure against this, a supercharging device provided with a nozzle cleaning mechanism comprising a nozzle of an air flow rate amplifier which is a supercharging means, a rotating nozzle which is rotated by a rotational driving means, and a groove-like cleaning means on a nozzle lip constituting the nozzle. This is Embodiment 1 (FIGS. 1 to 4). (Embodiment 2 (corresponding to claim 2))
過給手段である空気流量増幅器の駆動流のEGR方式は、EGRガスの浄化、駆動流の過熱、デポジットの堆積、等の問題点がある。 これらの問題とは別に、内燃機関を成層燃焼によるリーンバーンエンジンとするには、渦流(スワールやタンブル)を発生する吸気機構や燃焼室構造等を設ける方法があるが、燃料の混合性状の確保、安定した燃料の層状分布の形成が困難である等の問題点がある。 これらの対策として、前記空気流量増幅器の駆動流または吸気流に燃料、加湿冷却剤等の流体を流出するために、流体流出手段、流体供給手段、流体通路、および流体制御手段を備えた流体流出機構を設けた過給装置が、実施形態2(図5、6)である。 (実施形態3(請求項3対応))  The EGR method of the driving flow of the air flow amplifier that is a supercharging means has problems such as purification of EGR gas, overheating of the driving flow, deposit accumulation, and the like. Apart from these problems, in order to make the internal combustion engine a lean burn engine by stratified combustion, there are methods of providing an intake mechanism or combustion chamber structure that generates eddy currents (swirl and tumble), but ensuring fuel mixing properties There is a problem that it is difficult to form a stable layered distribution of fuel. As these countermeasures, in order to flow a fluid such as fuel, humidified coolant, etc. into the driving flow or intake flow of the air flow amplifier, the fluid outflow includes a fluid outflow means, a fluid supply means, a fluid passage, and a fluid control means. A supercharging device provided with a mechanism is Embodiment 2 (FIGS. 5 and 6). (Embodiment 3 (corresponding to claim 3))
該流体流出機構の流体流出口は、ベルヌーイの定理による負圧で供給する場合は、流体供給用の動力装置が不要であるが、駆動流の圧力降下特性により、該負圧が発生するのは下流側であるノズルの開口部付近、または該開口部となる。 従って、駆動流自体への流体流出による流体の混合や、デポジット除去の促進作用があるノズルリップ面への流体の拡散は困難である。 この対策として、過給手段である空気流量増幅器に設けた前記ノズル清掃機構のノズルリップに設けた溝状の清掃手段に、前記流体流出機構の流体を流出する流体流出手段の流体流出口を設けた過給装置が、実施形態3(図7~9)である。 (実施形態4(請求項4対応))  When supplying the fluid outlet of the fluid outflow mechanism at a negative pressure according to Bernoulli's theorem, a power supply for fluid supply is unnecessary, but the negative pressure is generated due to the pressure drop characteristic of the driving flow. The vicinity of the opening of the nozzle on the downstream side or the opening. Therefore, it is difficult to mix the fluid by the outflow of the fluid to the driving flow itself and to diffuse the fluid to the nozzle lip surface which has an effect of promoting deposit removal. As a countermeasure, a fluid outflow port of the fluid outflow unit for flowing out the fluid of the fluid outflow mechanism is provided in the groove-shaped cleaning unit provided in the nozzle lip of the nozzle cleaning mechanism provided in the air flow rate amplifier which is a supercharging unit. The supercharging device is Embodiment 3 (FIGS. 7 to 9). (Embodiment 4 (corresponding to claim 4))
過給手段である空気流量増幅器の駆動流は、圧縮機方式またはEGR方式であるが、該圧縮機方式は内燃機関の運転領域の全域に対応するが、駆動力により圧縮機を運転するので動力損失が発生し、該EGR方式は、EGRガスの過熱、EGR還流量の制約により過給運転が制限される問題点がある。 この対策として、過給手段である空気流量増幅器に供給する駆動流を、排気還流通路からのEGRガスと、更に圧縮空気通路からの内燃機関により駆動される圧縮機により供給される圧縮空気とし、該排気還流通路と該圧縮空気通路に設けた駆動流を制御する駆動流制御手段を、内燃機関の運転状況に対応して制御することにより、それぞれの駆動流の利点を生かした過給運転を行う過給装置が、実施形態4(図10~13)である。 以上の実施形態(1~4)の詳細を、下記に図面番号(1~13)順に説明する。 (第1実施形態(請求項1対応))  The driving flow of the air flow rate amplifier, which is a supercharging means, is a compressor system or EGR system. The compressor system corresponds to the entire operating region of the internal combustion engine. Loss occurs, and the EGR system has a problem that the supercharging operation is limited due to the restriction of the EGR gas overheating and the EGR recirculation amount. As a countermeasure against this, the driving flow supplied to the air flow rate amplifier as the supercharging means is EGR gas from the exhaust gas recirculation passage, and further compressed air supplied by the compressor driven by the internal combustion engine from the compressed air passage, By controlling the drive flow control means for controlling the drive flow provided in the exhaust gas recirculation passage and the compressed air passage in accordance with the operation state of the internal combustion engine, the supercharging operation utilizing the advantages of the respective drive flows is performed. The supercharging device to perform is Embodiment 4 (FIGS. 10 to 13). Details of the above embodiments (1 to 4) will be described below in the order of the drawing numbers (1 to 13). (First embodiment (corresponding to claim 1))
図1は、第1実施形態の過給手段の概念の説明図である。 図1は、内燃機関の燃焼室に吸気を供給する吸気系統の吸気通路途中である吸気流入通路22kと吸気流出通路23kの間に、吸気を加圧して燃焼室に送り込む過給手段5kを備えた内燃機関の過給装置であって、該過給手段5kは、空気流量増幅器6kと、該空気流量増幅器6kに内燃機関により駆動される圧縮機(図示せず)からの圧縮空気、または排気通路(図示せず)からのEGRガスを該空気流量増幅器6kの駆動流(40)として供給する駆動流通路41kと、更に該空気流量増幅器6kのノズル615に、回動可能な回転ノズル82と、吸気流により回転力を発生する該回転ノズル82に連動する回転駆動手段である羽根車87と、該回転ノズル82と固定ノズル81の片方のノズルのノズルリップである回転ノズルリップ821に設けた溝状の清掃手段である溝882と、を備えたノズル清掃機構8を設けたことを特徴とする空気流量増幅器6kを過給手段5kとする内燃機関の過給装置の過給手段5kの概念の説明図である。 該空気流量増幅器6kの筐体は、ハウジング610とフランジ611で構成される。 該筐体内部には、駆動流通路41kに支持されたノズルケーシング633にベアリング84を介して前記回転ノズル82が回動自在に設けられている。 該ノズルケーシング633と回転ノズル82の間にシール85を設け、該シール85はベアリング84に当接し、回転ノズル82が回転自在である密封要素である。 回転駆動手段である羽根車87は、回転ノズル82に固着され、吸気流により回転力が生じるように羽根を設けている。 溝状の清掃手段である溝882は、回転ノズルリップ821に、放射状に設ける。 清掃面を効率よく清掃するために溝の深さ(D)と幅(W)の関係は、W>1.5Dとし、更に、清掃駆動流とノズル流との圧力差を平準化するために、溝の上流の断面積(Au)と下流の断面積(Ad)は、Au≦Adとするのが望ましい。  FIG. 1 is an explanatory diagram of the concept of supercharging means of the first embodiment. FIG. 1 includes a supercharging means 5k that pressurizes intake air and sends it to a combustion chamber between an intake air inflow passage 22k and an intake air outflow passage 23k that are in the middle of an intake passage of an intake system that supplies intake air to a combustion chamber of an internal combustion engine. The supercharging device for an internal combustion engine, wherein the supercharging means 5k includes an air flow rate amplifier 6k and compressed air or exhaust from a compressor (not shown) driven by the air flow rate amplifier 6k by the internal combustion engine. A driving flow passage 41k for supplying EGR gas from a passage (not shown) as a driving flow (40) of the air flow rate amplifier 6k, and a rotatable nozzle 82 that is rotatable to the nozzle 615 of the air flow rate amplifier 6k. , An impeller 87 which is a rotational driving means interlocking with the rotary nozzle 82 which generates a rotational force by an intake air flow, and a rotary nozzle lip which is a nozzle lip of one of the rotary nozzle 82 and the fixed nozzle 81 And a supercharging device for an internal combustion engine using an air flow amplifier 6k as a supercharging means 5k. It is explanatory drawing of the concept of the means 5k. The casing of the air flow amplifier 6k includes a housing 610 and a flange 611. Inside the casing, the rotary nozzle 82 is rotatably provided via a bearing 84 in a nozzle casing 633 supported by the drive flow passage 41k. A seal 85 is provided between the nozzle casing 633 and the rotary nozzle 82. The seal 85 is in contact with the bearing 84, and is a sealing element in which the rotary nozzle 82 is rotatable. The impeller 87, which is a rotational drive means, is fixed to the rotary nozzle 82 and is provided with blades so that a rotational force is generated by the intake air flow. Grooves 882 as groove-shaped cleaning means are provided radially on the rotating nozzle lip 821. In order to efficiently clean the cleaning surface, the relationship between the depth (D) and the width (W) of the groove is W> 1.5D, and further, to equalize the pressure difference between the cleaning drive flow and the nozzle flow The upstream cross-sectional area (Au) and the downstream cross-sectional area (Ad) of the groove are preferably Au ≦ Ad. *
過給手段5kの作用は、駆動流通路41kから供給される駆動流(40)が、ノズルケーシング633、回転ノズル82、およびシール85で形成される環状空間に導かれ、開口部であるノズル615から吸気流の下流方向に流出し、ベルヌーイの定理による負圧で吸気を引き込んで、駆動流により吸気を加速することにより流量増幅し、その結果、吸気流速度を大きくして、多くの吸気を送り込むことにより過給を行う。 該ノズル615の回転ノズルリップ821には、溝状の清掃手段である溝882が放射状に設けられ、固定ノズルリップ811と回転ノズルリップ821で構成されるノズル隙間より、該溝882の部分は流路が広く流路抵抗が小さいので、強い駆動流が流れる。 従って、該溝882の流路側面である固定ノズルリップ811の該側面が、この強い駆動流により付着物が流されて清掃される。 更に、吸気流入通路22kから流入する吸気は、前記羽根車85に回転力を与えることにより回転ノズル82が回転し、前記清掃作用のある強い駆動流が固定ノズルリップ811を回転移動するので、固定ノズルリップ811が全周清掃されて、過給性能の低下を招くノズル615の付着物による詰まりが防止できる。 なお、溝状の清掃手段である溝を固定ノズルリップ811にも設けて、両側のノズルリップを清掃することもできる。 なお、本願発明の説明に用いる各図は構造の理解が容易なように、ノズルリップの隙間と、溝状の清掃手段を大きく、羽根車の羽根は迎え角(流れに対するねじり角)を大きく図示している。 (第1実施形態(請求項1対応)の変形例1)  The operation of the supercharging means 5k is that the driving flow (40) supplied from the driving flow passage 41k is guided to the annular space formed by the nozzle casing 633, the rotary nozzle 82, and the seal 85, and the nozzle 615 which is an opening. Outflowing from the downstream of the intake flow, drawing in the intake with negative pressure according to Bernoulli's theorem, and accelerating the intake by the drive flow to amplify the flow rate. Supercharge by sending in. The rotary nozzle lip 821 of the nozzle 615 is radially provided with grooves 882 which are groove-shaped cleaning means, and the groove 882 flows from the nozzle gap formed by the fixed nozzle lip 811 and the rotary nozzle lip 821. Since the channel is wide and the channel resistance is small, a strong driving flow flows. Therefore, the side surface of the fixed nozzle lip 811 which is the flow channel side surface of the groove 882 is cleaned by deposits being washed away by this strong driving flow. Further, the intake air flowing in from the intake air inflow passage 22k is fixed because the rotating nozzle 82 rotates by applying a rotational force to the impeller 85, and the strong driving flow having the cleaning action rotates and moves the fixed nozzle lip 811. The nozzle lip 811 is cleaned all around, and clogging due to deposits on the nozzle 615 that causes a decrease in supercharging performance can be prevented. In addition, the groove | channel which is a groove-shaped cleaning means can also be provided in the fixed nozzle lip 811, and the nozzle lip of both sides can also be cleaned. In addition, each figure used for explanation of the present invention has a large nozzle lip clearance and groove-shaped cleaning means so that the structure can be easily understood, and the impeller blade has a large angle of attack (torsion angle with respect to the flow). Show. (Modification 1 of the first embodiment (corresponding to claim 1))
図2の(A)は、第1実施形態の変形例1のトランスベクタ型の過給手段5uの断面図で、(B)は、吸気流による回転駆動手段を備えた清掃機構8uのM矢視図である。 図2の(A)は、内燃機関の燃焼室に吸気を供給する吸気通路途中である吸気流入通路22uと吸気流出通路23uの間に、吸気を加圧して燃焼室に送り込む過給手段5uを備えた内燃機関の過給装置であって、該過給手段5uは、空気流量増幅器6uであるトランスベクタ61uと、該空気流量増幅器6uに内燃機関により駆動される圧縮機からの圧縮空気、または排気通路からのEGRガスを該空気流量増幅器6uの駆動流として供給する駆動流通路41uと、更に該空気流量増幅器6uのノズル615uに、回動可能な回転ノズル82uと、吸気流により回転力を発生する該回転ノズル82uに連動する回転駆動手段である羽根車87uと、該回転ノズル82uと固定ノズル81uの両方のノズルのノズルリップである固定ノズルリップ811uと回転ノズルリップ821uとに設けた溝状の清掃手段である溝882uと溝88uと、を備えたノズル清掃機構8uを設けたことを特徴とする空気流量増幅器6uを過給手段5uとする内燃機関の過給装置の過給手段5uの断面図である。 該空気流量増幅器6uの筐体は、ハウジング610uに螺合するフランジ611uで構成され、該フランジ611uにベアリング84uを介して前記回転ノズル82uが回動自在に設けられている。 該フランジ611uと回転ノズル82uの間にシール85uを設け、該シール85uはベアリング84uに当接し、回転ノズル82uにリップが接触する回転自在な密封要素である。 回転駆動手段である羽根車87uは、回転ノズル82uに固着され、吸気流により回転力が生じる軸流羽根車である。 溝状の清掃手段である固定ノズルリップ811uに設けた溝88uと、回転ノズルリップ821uに設けた溝882uは、該溝(88u、821u)を螺旋状に設け、(B)のM矢視図に示すように、溝88uと溝882uの溝のねじり方向を逆方向にして、等間隔に設けた溝数を、溝88uは2箇所、溝882uは3箇所と異ならせることにより、回転による各溝同士の重なりによる流量干渉の発生を等間に隔分散できる。  2A is a cross-sectional view of the transvector type supercharging means 5u according to the first modification of the first embodiment, and FIG. 2B is an M arrow of the cleaning mechanism 8u provided with a rotation driving means by an intake air flow. FIG. FIG. 2A shows a supercharging means 5u that pressurizes intake air and sends it to the combustion chamber between an intake inflow passage 22u and an intake outflow passage 23u that are in the middle of an intake passage for supplying intake air to the combustion chamber of the internal combustion engine. The supercharging device for an internal combustion engine provided with the supercharging means 5u includes a transvector 61u, which is an air flow rate amplifier 6u, and compressed air from a compressor driven by the internal combustion engine in the air flow rate amplifier 6u, or A driving flow passage 41u for supplying EGR gas from the exhaust passage as a driving flow for the air flow rate amplifier 6u, a rotary nozzle 82u that can rotate to the nozzle 615u of the air flow rate amplifier 6u, and a rotational force by the intake flow. An impeller 87u, which is a rotation driving means interlocking with the generated rotating nozzle 82u, and a fixed nozzle nozzle which is a nozzle lip of both the rotating nozzle 82u and the fixed nozzle 81u. The air flow amplifier 6u is provided with a nozzle cleaning mechanism 8u provided with a groove 882u and a groove 88u, which are groove-shaped cleaning means provided on the nozzle 811u and the rotary nozzle lip 821u. It is sectional drawing of the supercharging means 5u of the supercharging device of the internal combustion engine which performs. The casing of the air flow amplifier 6u is composed of a flange 611u that is screwed into the housing 610u, and the rotary nozzle 82u is rotatably provided on the flange 611u via a bearing 84u. A seal 85u is provided between the flange 611u and the rotary nozzle 82u, and the seal 85u is a rotatable sealing element that contacts the bearing 84u and a lip contacts the rotary nozzle 82u. The impeller 87u, which is a rotation driving means, is an axial flow impeller that is fixed to the rotary nozzle 82u and generates a rotational force by the intake air flow. The groove 88u provided in the fixed nozzle lip 811u, which is a groove-shaped cleaning means, and the groove 882u provided in the rotary nozzle lip 821u are provided in a spiral shape, and FIG. As shown in FIG. 4, the twisting directions of the grooves 88u and 882u are reversed, and the number of grooves provided at equal intervals is different from two in the groove 88u and three in the groove 882u. Generation of flow rate interference due to the overlap of grooves can be evenly distributed. *
過給手段5uの作用は、空気流量増幅器6uであるトランスベクタ61uにより、駆動流通路41uから供給される駆動流が、ハウジング610u、フランジ611u、回転ノズル82u、および
シール85uで形成される環状チャンバ614uに導かれ、環状チャンバ614uに連通する開口部であるノズル615uから吸気流の下流方向に流出して、吸気を加速することにより流量増幅して過給を行う。 回転ノズル82uに固着された前記羽根車87uが、吸気流により回転力が発生して固着されている回転ノズル82uを回転させる。 回転ノズルリップ821uに設けた溝882uは、螺旋方向に駆動流を流出する反力により回転駆動力が得られるので、羽根車87uと同じ回転方向に回転力が得られる。 この反力による回転駆動力で十分に回転する場合は、清掃手段である溝882uを回転駆動手段として、羽根車87uを省略することができる。 該ノズル615uの両側のノズルリップに設けた溝状の清掃手段である溝88uおよび882uの清掃作用は、前記空気流量増幅器6k(図1)で説明した溝882の作用と同じであり、これらの溝を両側に設けているので、固定ノズルリップ811uと回転ノズルリップ821uの両方のノズルリップの全周清掃ができる。 なお、空気流量増幅器6uであるトランスベクタ61uのノズル615uの流出部吸気通路内径は、吸気流入通路22uの内径より大きくして、デフューザとすることにより吸気流速を小さくし、その速度が低下した吸気をノズル615uから流出する駆動流で加速し、該加速した吸気を縮径した吸気流出通路23uに流出するベンチュリ効果により速度が上昇するので 吸気を更に加速して過給が行われる。 (第1実施形態(請求項1対応)の変形例2) 
The supercharging means 5u functions as an annular chamber in which the driving flow supplied from the driving flow passage 41u is formed by the housing 610u, the flange 611u, the rotating nozzle 82u, and the seal 85u by the transformer vector 61u which is an air flow amplifier 6u. It is guided to 614u and flows out from the nozzle 615u, which is an opening communicating with the annular chamber 614u, in the downstream direction of the intake air flow. By accelerating the intake air, the flow rate is amplified and supercharging is performed. The impeller 87u fixed to the rotating nozzle 82u rotates the rotating nozzle 82u fixed by generating a rotational force by the intake air flow. Since the groove 882u provided in the rotary nozzle lip 821u can obtain a rotational driving force by a reaction force that flows the driving flow in the spiral direction, the rotational force can be obtained in the same rotational direction as the impeller 87u. In the case of sufficient rotation by the rotational driving force by the reaction force, the impeller 87u can be omitted by using the groove 882u as the cleaning means as the rotational driving means. The cleaning action of the grooves 88u and 882u, which are groove-shaped cleaning means provided on the nozzle lip on both sides of the nozzle 615u, is the same as the action of the groove 882 described in the air flow amplifier 6k (FIG. 1). Since the grooves are provided on both sides, the entire circumference of both the fixed nozzle lip 811u and the rotating nozzle lip 821u can be cleaned. Note that the inner diameter of the outflow portion intake passage of the nozzle 615u of the transvector 61u, which is the air flow amplifier 6u, is made larger than the inner diameter of the intake inflow passage 22u so that the intake flow velocity is reduced by using a diffuser, and the intake velocity is reduced. Is accelerated by the driving flow that flows out from the nozzle 615u, and the speed is increased by the venturi effect that flows out into the intake flow passage 23u whose diameter is reduced, so that the intake air is further accelerated and supercharging is performed. (Modification 2 of the first embodiment (corresponding to claim 1))
図3の(C)は、第1実施形態の変形例2のトランスベクタ型の過給手段5vの断面図で、(D)は、駆動流による回転駆動手段を備えた清掃機構8vのN矢視図である。 図3の(C)は、前記過給手段5u(図2)と同様に、空気流量増幅器6vであるトランスベクタ61vを設けた過給手段5vであり、該トランスベクタ61vの筐体の構造は前記トランスベクタ61u(図2)と左右が逆であるが、空気流量増幅器6vの流量増幅作用は同じであるので作用等の説明は省略する。 ノズル清掃機構8vは、溝状の清掃手段である溝882vを回転ノズルリップ821vに等間隔の放射状に2本設け、環状チャンバ614vからノズル615vに流出する駆動流により回転駆動力を得られる羽根車87vを設ける。 該羽根車87vは、N矢視図(D)に示すように、羽根を軸芯に対してθv°傾けて設け、回転ノズル82vに圧入、溶接等で固定する。 羽根車87vは、量産性のあるプレス加工でも製作できる。 羽根車87vを空気流量増幅器6vの吸気通路部に設けないので、該吸気通路の通路抵抗が小さく、内燃機関の減速時の羽根車によるインペラ効果により意図せぬ吸気の加速を行うこともない。 (第1実施形態(請求項1対応)の変形例3)  3C is a cross-sectional view of the transvector-type supercharging means 5v according to the second modification of the first embodiment, and FIG. 3D is an N arrow of the cleaning mechanism 8v provided with a rotational driving means using a driving flow. FIG. (C) in FIG. 3 is a supercharging means 5v provided with a transformer vector 61v which is an air flow amplifier 6v, similarly to the supercharging means 5u (FIG. 2). The structure of the casing of the transvector 61v is as follows. Although the left and right sides of the transvector 61u (FIG. 2) are opposite, the flow rate amplification function of the air flow rate amplifier 6v is the same, so the description of the function and the like is omitted. The nozzle cleaning mechanism 8v is provided with two grooves 882v, which are groove-shaped cleaning means, at equal intervals radially on the rotary nozzle lip 821v, and can obtain a rotational driving force by a driving flow flowing out from the annular chamber 614v to the nozzle 615v. 87v is provided. The impeller 87v is provided with the vanes inclined at θv ° with respect to the axis as shown in the arrow N (D), and fixed to the rotary nozzle 82v by press fitting, welding, or the like. The impeller 87v can be manufactured by mass-productive press processing. Since the impeller 87v is not provided in the intake passage portion of the air flow amplifier 6v, the passage resistance of the intake passage is small, and unintended intake acceleration is not performed due to the impeller effect by the impeller when the internal combustion engine is decelerated. (Modification 3 of the first embodiment (corresponding to claim 1))
図4の(E)は、第1実施形態の変形例3のエジェクタ型の過給手段の断面図で、(F)は、G部の拡大図である。 図4の(E)は、内燃機関の燃焼室に吸気を供給する吸気通路途中である吸気流入通路22sと吸気流出通路23sの間に、吸気を加圧して燃焼室に送り込む過給手段5sを備えた内燃機関の過給装置であって、該過給手段5sは、空気流量増幅器6sであるエジェクタ63と、該空気流量増幅器6sに内燃機関により駆動される圧縮機からの圧縮空気、または排気通路からのEGRガスを該空気流量増幅器の駆動流として供給する駆動流通路41sと、更に該空気流量増幅器6sのノズル635sに、回動可能な回転ノズル82sと、駆動流により回転力を発生する該回転ノズル82sに連動する回転駆動手段である羽根車87sと、該固定ノズル81sと回転ノズル82sのノズルリップである固定ノズルリップ811sと回転ノズルリップ821sに設けた溝状の清掃手段である溝88sと溝882sと、を備えたノズル清掃機構8sを設けたことを特徴とする空気流量増幅器6sを過給手段5sとする内燃機関の過給装置の過給手段5sの断面図である。 空気流量増幅器6sであるエジェクタ63の筐体であるハウジング630は、吸気流入通路22s、吸気流出通路23s、およびブッシング639を介して駆動流通路41sと継合する3箇所の開口部を有し、更に該駆動流通路41sに螺合するノズルケーシング633sの開口部である固定ノズル81sが下流となる方向に設ける。 該ノズルケーシング633sの吸気流の上流の開口部に、ベアリング84sを介してノズル軸637を設け、下流の開口部に設けた固定ノズル81sと、該ノズル軸637の下流側の軸端に固着した前記回転ノズル82sによりノズル635sが構成される。 ノズル635sの固定ノズルリップ811sと回転ノズルリップ821sには、溝状の清掃手段である溝88sと溝882sを設ける。 該ノズル軸637には、駆動流の通路に羽根車87sと、前記ベアリング84sの駆動流の通側にシール85s、吸気流の上流側の軸端にナットおよび固定手段(図示せず)を設ける。  FIG. 4E is a cross-sectional view of the ejector-type supercharging means of Modification 3 of the first embodiment, and FIG. 4F is an enlarged view of a G portion. FIG. 4E shows a supercharging means 5s that pressurizes the intake air and sends it to the combustion chamber between the intake inflow passage 22s and the intake outflow passage 23s in the middle of the intake passage for supplying intake air to the combustion chamber of the internal combustion engine. The supercharging device for an internal combustion engine provided with the supercharging means 5s includes an ejector 63, which is an air flow rate amplifier 6s, and compressed air or exhaust from a compressor driven by the air flow rate amplifier 6s by the internal combustion engine. A drive flow passage 41s for supplying EGR gas from the passage as a drive flow of the air flow amplifier, a rotatable nozzle 82s to the nozzle 635s of the air flow amplifier 6s, and a rotational force are generated by the drive flow. An impeller 87s which is a rotation driving means interlocking with the rotary nozzle 82s, a fixed nozzle lip 811s which is a nozzle lip of the fixed nozzle 81s and the rotary nozzle 82s, and a rotary nozzle An overflow of an internal combustion engine having an air flow rate amplifier 6s as a supercharging means 5s, which is provided with a nozzle cleaning mechanism 8s provided with grooves 88s and 882s, which are groove-like cleaning means provided in the nozzle 821s. It is sectional drawing of the supercharging means 5s of a feeder. A housing 630 that is a housing of the ejector 63 that is the air flow amplifier 6s has three openings that are joined to the drive flow passage 41s via the intake inflow passage 22s, the intake outflow passage 23s, and the bushing 639. Further, a fixed nozzle 81s that is an opening of a nozzle casing 633s that is screwed into the drive flow passage 41s is provided in a downstream direction. A nozzle shaft 637 is provided at an opening portion upstream of the intake flow of the nozzle casing 633 s via a bearing 84 s, and is fixed to a fixed nozzle 81 s provided at a downstream opening portion and a shaft end on the downstream side of the nozzle shaft 637. A nozzle 635s is constituted by the rotating nozzle 82s. The fixed nozzle lip 811s and the rotating nozzle lip 821s of the nozzle 635s are provided with a groove 88s and a groove 882s which are groove-shaped cleaning means. The nozzle shaft 637 is provided with an impeller 87s in the drive flow passage, a seal 85s on the drive flow passage side of the bearing 84s, and a nut and fixing means (not shown) at the upstream shaft end of the intake flow. . *
過給手段5sの作用は、空気流量増幅器6sであるエジェクタ63の駆動流通路41sから供給される駆動流が、前記ノズルケーシング633s内の通路を通ることにより、羽根車87sに回転駆動力が発生し、ノズル軸637を介して連動する回転ノズル82sを回転し、駆動流は前記ノズル635sから吸気流に流出して流量増幅して過給を行う。 該ノズル635sの両側のノズルリップに設けた前記溝(88s、882s)の作用は、前記空気流量増幅器6k(図1)で説明した溝882の清掃作用と同じように、該溝(88s、882s)の流路側面であるノズルリップの該側面が、強い駆動流により付着物が流されて清掃され、前記回転ノズル82sの回転により、両側のノズルリップの全周の清掃ができる。 なお、エジェクタ63のハウジング630の吸気通路部の内径は、吸気流入通路22sおよび吸気流出通路23sより大きくして、ノズルケーシング633s等による通路抵抗の増大を防止することにより、非過給時の自然吸気運転に支障が発生しないので、バイパス通路を設ける必要がない。 過給手段5sである空気流量増幅器6sがエジェクタ63であるので、前記トランスベクタ型の空気流量増幅器(6u、6v)より流量増幅比は小さいが、大きな過給圧が必要な過給装置に対応できる。 (第2実施形態(請求項2対応))  The operation of the supercharging means 5s is that the drive flow supplied from the drive flow passage 41s of the ejector 63, which is the air flow amplifier 6s, passes through the passage in the nozzle casing 633s, thereby generating a rotational drive force in the impeller 87s. Then, the rotating nozzle 82s interlocked via the nozzle shaft 637 is rotated, and the drive flow flows out from the nozzle 635s to the intake flow to be amplified and supercharged. The operation of the grooves (88s, 882s) provided in the nozzle lip on both sides of the nozzle 635s is the same as the operation of cleaning the grooves 882 described in the air flow amplifier 6k (FIG. 1). The side surface of the nozzle lip, which is the flow channel side surface), is cleaned by flowing a deposit by a strong driving flow, and the rotation of the rotating nozzle 82s can clean the entire circumference of the nozzle lips on both sides. Note that the inside diameter of the intake passage portion of the housing 630 of the ejector 63 is made larger than the intake inflow passage 22s and the intake outflow passage 23s to prevent the passage resistance from being increased by the nozzle casing 633s and the like. Since no trouble occurs in the intake operation, there is no need to provide a bypass passage. Since the air flow rate amplifier 6s as the supercharging means 5s is the ejector 63, the flow rate amplification ratio is smaller than that of the transvector type air flow rate amplifier (6u, 6v), but it corresponds to a supercharging device that requires a large supercharging pressure. it can. (Second embodiment (corresponding to claim 2))
図5は、第2実施形態の過給手段5pと流体流出機構9の概念の説明図である。 図5は、前記過給装置において、過給手段5pである空気流量増幅器6pと、更に該空気流量増幅器6pのノズル付近に設けた流体を流出する流体流出手段である流体流出部95と、該流体流出手段に流体を供給する流体供給手段である流体供給部91と、該流体供給手段である流体供給部91と前記流体流出手段である流体流出部95に連通する流体通路94と、該流体通路94に設けた流体制御手段である流体制御部93と、を備えた流体流出機構9を設けたことを特徴とする請求項1に記載の内燃機関の過給装置の過給手段5pと流体流出機構9の概念の説明図である。 該流体流出機構9は、流体の貯蔵あるいは供給機能を備えた流体供給部91と、流体供給量を制御する制御弁(図示せず)等の流体制御部93と、前記空気流量増幅器6pの駆動流通路41pから供給された駆動流(40)を流出するノズルまたは、該ノズル付近に流体流出口955を設けた流体流出部95で構成する。 なお、流体供給部91及び流体制御部93の構成は、流体が液体の場合は、従来のキャブレタ方式での供給及び制御方式、流体が気体の場合は、従来のLPG燃料装置等の供給及び制御方式が利用できる。 従って、本願発明での流体流出機構は、液体タンクへの流体供給手段、燃料ポンプ等の説明は省略する。  FIG. 5 is an explanatory diagram of the concept of the supercharging means 5p and the fluid outflow mechanism 9 of the second embodiment. FIG. 5 shows an air flow amplifier 6p that is a supercharging means 5p in the supercharging device, and a fluid outflow portion 95 that is a fluid outflow means for flowing out a fluid provided near the nozzle of the air flow amplifier 6p, A fluid supply unit 91 that is a fluid supply unit that supplies fluid to the fluid outflow unit, a fluid supply unit 91 that is the fluid supply unit, a fluid passage 94 that communicates with the fluid outflow unit 95 that is the fluid outflow unit, and the fluid The supercharging device (5p) and the fluid of the supercharging device for an internal combustion engine according to claim 1, further comprising a fluid outflow mechanism (9) provided with a fluid control section (93) which is a fluid control means provided in the passage (94). It is explanatory drawing of the concept of the outflow mechanism. The fluid outflow mechanism 9 includes a fluid supply unit 91 having a fluid storage or supply function, a fluid control unit 93 such as a control valve (not shown) for controlling a fluid supply amount, and driving of the air flow amplifier 6p. The nozzle is configured to include a nozzle that flows out the driving flow (40) supplied from the flow passage 41p, or a fluid outflow portion 95 provided with a fluid outlet 955 in the vicinity of the nozzle. The fluid supply unit 91 and the fluid control unit 93 are configured to supply and control a conventional carburetor method when the fluid is a liquid, and supply and control a conventional LPG fuel device or the like when the fluid is a gas. A scheme is available. Therefore, in the fluid outflow mechanism in the present invention, description of the fluid supply means to the liquid tank, the fuel pump, etc. is omitted. *
流体流出機構9の作用は、過給手段5pである空気流量増幅器6pのノズルから高速で流出する駆動流、または駆動流に加速された吸気流に流体を流出する流体流出手段である流体流出部95より、駆動流または吸気流によるベルヌーイの定理により発生する負圧、または流出流体の内圧により、流体を流体流出口より流出する。 流出された流体は、駆動流または吸気流に衝突して混合され、流体が液体の場合は、衝突により微粒化し、表面積が大きくなることにより気化が促進されて蒸発し、駆動流がEGRガスの場合は、更に駆動流の熱により気化による蒸発が促進される。 また、空気流量増幅器6v(図3)のように回転ノズル82vを下流に設け、流体流出口955をノズル付近の上流に設けることにより簡素な構造の流体流出機構で、従来のキャブレタ方式の問題点である吸気通路への燃料の付着の問題を解消することができる。 吸気流の速度は内燃機関の回転数により変動し、該吸気流により発生する前記負圧は流速の二乗に比例し、流体が液体の場合は、流出量は該負圧の平方根に比例するので重量混合比は一定となる。 しかし、混合比は、内燃機関の負荷や運転状況により変動する必要があり、流体制御部93にて流体流出量の調節制御を行う。 また、流出する流体として、ガソリン、エタノール、LPG、水素等の燃料、水等の加湿冷却剤、またはEGRガスのNOx低減のための尿素水等の浄化触媒でも良く、流体は気体でも液体でもよい。  The action of the fluid outflow mechanism 9 is a fluid outflow portion that is a fluid outflow means that outflows the fluid into the driving flow that flows out at high speed from the nozzle of the air flow amplifier 6p that is the supercharging device 5p or the intake air flow that is accelerated to the driving flow. From 95, the fluid flows out of the fluid outlet by the negative pressure generated by Bernoulli's theorem by the driving flow or the intake flow or the internal pressure of the outflow fluid. The discharged fluid collides with the driving flow or the intake flow and is mixed. When the fluid is a liquid, it is atomized by the collision, and the surface area is increased to promote vaporization and evaporate. In this case, evaporation due to vaporization is further promoted by the heat of the driving flow. Further, as in the air flow rate amplifier 6v (FIG. 3), the rotary nozzle 82v is provided downstream, and the fluid outlet 955 is provided upstream in the vicinity of the nozzle. It is possible to solve the problem of fuel adhering to the intake passage. The speed of the intake flow varies with the number of revolutions of the internal combustion engine, and the negative pressure generated by the intake flow is proportional to the square of the flow velocity, and when the fluid is liquid, the outflow amount is proportional to the square root of the negative pressure. The weight mixing ratio is constant. However, the mixing ratio needs to fluctuate depending on the load and operating conditions of the internal combustion engine, and the fluid control unit 93 performs adjustment control of the fluid outflow amount. Further, the flowing fluid may be a fuel such as gasoline, ethanol, LPG, hydrogen, a humidifying coolant such as water, or a purification catalyst such as urea water for reducing NOx of EGR gas, and the fluid may be gas or liquid. . *
流体が燃料の場合、筒内燃料噴射装置と併用して流体流出機構9により希薄混合気を燃焼室に供給し、筒内燃料噴射装置により主燃料を供給することにより層状燃焼ができ、更に、駆動流がEGR方式の場合は、ディーゼル機関のPM(粒子状物質)や、ガソリン機関の未燃焼物質等の再燃焼可能物質に燃料が接触することにより、燃焼室での再燃焼を促進することができる。 流出する流体が液体の場合は、清掃機構によるデポジット除去の促進作用、吸気弁のオーバーラップ時の吹き返しによる堆積物を洗い流す清掃作用、および流体流出機構の流体流出口の詰まり防止作用がある。 また、流体流出部の燃料流出量を理論空燃比の希薄側、あるいは理論空燃比以下として、筒内燃料噴射装置から着火性のよい空燃比になるように燃料を噴射することにより、特段の吸気流制御等を必要としない簡素な吸気機構と燃焼室構造で成層燃焼する、リーンバーンエンジン(図11)とするができる。 また、流出する燃料を主燃料と異なる異種燃料として、バイフューエルエンジンとすることもできる。 また、流体流出機構9を複数設けて、複数の流体を流出することもできる。 (第2実施形態(請求項2対応)の変形例1)  When the fluid is fuel, combined with the in-cylinder fuel injection device, the lean gas mixture is supplied to the combustion chamber by the fluid outflow mechanism 9, and the main fuel is supplied by the in-cylinder fuel injection device, so that stratified combustion can be performed. When the driving flow is the EGR system, the fuel comes into contact with recombustible materials such as PM (particulate matter) of diesel engines and unburned materials of gasoline engines, thereby promoting recombustion in the combustion chamber. Can do. When the fluid flowing out is liquid, it has an action of promoting deposit removal by the cleaning mechanism, a cleaning action of washing away deposits by blowing back when the intake valve overlaps, and an action of preventing clogging of the fluid outlet of the fluid outlet mechanism. In addition, by injecting the fuel from the in-cylinder fuel injection device so that the air-fuel ratio has good ignitability by setting the fuel outflow amount of the fluid outflow portion to the lean side of the stoichiometric air-fuel ratio or less than the stoichiometric air-fuel ratio, a special intake air A lean burn engine (FIG. 11) that performs stratified combustion with a simple intake mechanism and combustion chamber structure that does not require flow control or the like can be obtained. Also, the fuel that flows out can be a different fuel different from the main fuel to make a bi-fuel engine. Also, a plurality of fluid outflow mechanisms 9 can be provided to allow a plurality of fluids to flow out. (Modification 1 of the second embodiment (corresponding to claim 2))
図6は、第2実施形態の変形例1のトランスベクタ型の過給手段の断面図と、気体の流体流出機構の構成図である。 図6は、前記過給装置において、過給手段5tである空気流量増幅器6tと、更に該空気流量増幅器6tであるトランスベクタ61tのノズル615t付近に設けた流体を流出する流体流出手段である流体流出部95tと、該流体流出手段に流体を供給する流体供給手段である流体供給部91tと、該流体供給手段と前記流体流出手段に連通する流体通路94tと、該流体通路94tに設けた流体制御手段である流体制御部93tと、を備えた流体流出機構9tを設けたことを特徴とする請求項1に記載の内燃機関の過給装置のトランスベクタ型の過給手段5tの断面図と、気体の流体流出機構9tの構成図である。 過給手段5tである空気流量増幅器6tのトランスベクタ61tは、前記トランスベクタ61u(図2)とノズル清掃機構8tの各部と形状は異なるが構造原理は同じであるので、構成と作用の説明は省略する。 流体流出機構9tは、上流より流体供給部91t、流体制御部93t、流体通路94t、および流体流出部95tから成り、該トランスベクタ61tのノズル615tの下流に流体流出部95tの流体流出口955tを設ける。  FIG. 6 is a cross-sectional view of a transvector supercharger according to a first modification of the second embodiment and a configuration diagram of a gas fluid outflow mechanism. FIG. 6 shows a fluid outflow unit for outflowing a fluid provided in the vicinity of the nozzle 615t of the air flow amplifier 6t as the supercharging unit 5t and the transformer vector 61t as the air flow rate amplifier 6t in the supercharging device. An outflow portion 95t, a fluid supply portion 91t which is a fluid supply means for supplying fluid to the fluid outflow means, a fluid passage 94t communicating with the fluid supply means and the fluid outflow means, and a fluid provided in the fluid passage 94t 2. A cross-sectional view of a transvector type supercharging means 5t of a supercharging device for an internal combustion engine according to claim 1, further comprising a fluid outflow mechanism 9t provided with a fluid control section 93t as a control means. FIG. 6 is a configuration diagram of a gas fluid outflow mechanism 9t. The transformer vector 61t of the air flow rate amplifier 6t, which is the supercharging means 5t, is different in shape from the parts of the transformer vector 61u (FIG. 2) and the nozzle cleaning mechanism 8t, but the structure principle is the same. Omitted. The fluid outflow mechanism 9t includes a fluid supply section 91t, a fluid control section 93t, a fluid passage 94t, and a fluid outflow section 95t from the upstream, and a fluid outlet 955t of the fluid outflow section 95t is provided downstream of the nozzle 615t of the transformer vector 61t. Provide. *
流体流出機構9tの作用は、流体供給部91tにて、逆止弁付継手916から流入する流体であるLPG、水素等の燃料を圧力タンクである流体タンク911tに貯蔵し、流体の内圧により該流体を流体通路94tに供給する。 該流体通路94tに設けた流体制御部93tは、供給される流体の内圧を減圧弁935にて設定値に調整し、ECU(エンジンコントロールユニット)により制御
される流体制御弁932tにて流体の供給量を制御して流体流出部95tに供給する。  流体流出部95tは、流体通路94tから供給される流体制御部93tで制御された流体を、接続リング941とハウジング610tを螺合することにより形成される環状空間である流体チャンバ953に滞留し、該流体チャンバ953に連通する流体流出通路954を通って複数の前記流体流出口955tより、流体の内圧と駆動流等により発生する前記負圧により、同じ圧力差で均等に流出する。 なお、流体がLPG等の液体と気体が供給できる燃料の場合は、流体タンク911tの下部からの液体供給(図示せず)により、筒内燃料噴射装置に液体燃料を供給することができる。 (第3実施形態(請求項3対応)) 
The fluid outflow mechanism 9t functions to store fuel such as LPG, hydrogen, etc. flowing in from the joint 916 with a check valve in the fluid tank 911t, which is a pressure tank. Fluid is supplied to the fluid passage 94t. The fluid control section 93t provided in the fluid passage 94t adjusts the internal pressure of the supplied fluid to a set value by the pressure reducing valve 935, and supplies the fluid by the fluid control valve 932t controlled by the ECU (engine control unit). The amount is controlled and supplied to the fluid outflow portion 95t. The fluid outflow portion 95t stays in the fluid chamber 953, which is an annular space formed by screwing the connection ring 941 and the housing 610t, into the fluid controlled by the fluid control portion 93t supplied from the fluid passage 94t. Through the fluid outflow passages 954 communicating with the fluid chamber 953, the plurality of fluid outflow ports 955 t outflow equally with the same pressure difference due to the negative pressure generated by the fluid internal pressure and the driving flow. When the fluid is a fuel that can supply liquid and gas such as LPG, the liquid fuel can be supplied to the in-cylinder fuel injection device by liquid supply (not shown) from the lower portion of the fluid tank 911t. (Third embodiment (corresponding to claim 3))
図7は、第3実施形態のトランスベクタ型の過給手段の断面図と、液体の流体流出機構の構成図である。 図7は、前記過給装置において、過給手段5rである空気流量増幅器6rのトランスベクタ61rに設けたノズル清掃機構8rのノズルリップである、固定ノズルリップ811rと回転ノズルリップ821rに設けた溝状の清掃手段である溝88rに、流体流出機構9rの流体を流出する流体流出手段である流体流出部95rの流体流出口955rを設けたことを特徴とする請求項2に記載の内燃機関の過給装置の過給手段5rの断面図と、液体の流体流出機構9rの構成図である。 該トランスベクタ61rの羽根車87rは前記トランスベクタ61v(図3)の羽根車87vと、羽根車87rを除くノズル清掃機構8rは前記ノズル清掃機構8t(図6)と各部の形状が異なるが構造原理が同じであるので、ノズル清掃機構8rの構成と作用の説明は省略する。 流体流出機構9rは、液体燃料を供給する従来の予混合内燃機関のキャブレタと同様に、流体供給部91rの流体タンク911rの下流に燃料ポンプ914rを設け、その下流に流体制御部93rの燃料チャンバ931rであるフロートチャンバ(または、ダイアフラムチャンバ)を設け、その下流に流量制御弁932rと、更に、流体センサ934rを設け、流体通路94rの下流に流体チャンバ953r、流体流出通路954r、および前記流体流出口955rを設ける。  FIG. 7 is a cross-sectional view of a transvector type supercharging means of the third embodiment and a configuration diagram of a liquid fluid outflow mechanism. FIG. 7 shows a groove provided in the fixed nozzle lip 811r and the rotating nozzle lip 821r, which are nozzle lips of the nozzle cleaning mechanism 8r provided in the transvector 61r of the air flow amplifier 6r as the supercharging means 5r in the supercharging device. The internal combustion engine according to claim 2, wherein a fluid outlet 955r of a fluid outlet portion 95r, which is a fluid outlet means for discharging the fluid of the fluid outlet mechanism 9r, is provided in the groove 88r, which is a cleaning means having a shape. It is sectional drawing of the supercharging means 5r of a supercharging device, and the block diagram of the fluid outflow mechanism 9r of a liquid. The impeller 87r of the transformer vector 61r is different in shape from the impeller 87v of the transformer vector 61v (FIG. 3) and the nozzle cleaning mechanism 8r except the impeller 87r, although the shape of each part is different from that of the nozzle cleaning mechanism 8t (FIG. 6). Since the principle is the same, description of the configuration and operation of the nozzle cleaning mechanism 8r is omitted. The fluid outflow mechanism 9r is provided with a fuel pump 914r downstream of the fluid tank 911r of the fluid supply unit 91r and a fuel chamber of the fluid control unit 93r downstream thereof, similarly to the carburetor of a conventional premixed internal combustion engine that supplies liquid fuel. A flow chamber (or diaphragm chamber) 931r, a flow rate control valve 932r, and a fluid sensor 934r, a fluid chamber 953r, a fluid outlet passage 954r, and the fluid flow downstream of the fluid passage 94r. An outlet 955r is provided. *
流体流出機構9tの作用は、流体タンク911rから燃料ポンプp914で送られる流体を、燃料チャンバ931rにより供給圧力を一定に制御し、流体制御弁932rにて流量制御して流体通路94rから流体チャンバ953rに流入し、該流体チャンバ953rに連通する流体流出通路954rを通って複数の前記流体流出口955rより、溝88rを流れる駆動流のベルヌーイの定理による負圧により同じ圧力差で均等に流出する。 該溝88rを流れる駆動流は、固定ノズル81rと回転ノズル82rの間のノズル隙間より溝88rの通路抵抗が小さく速い流れとなるので清掃作用が発生し、同時に前記負圧も大きくなるので、該溝88rの中流に流体流出口955rを設けることができる。 従って、流体をノズルリップに拡散流出することができるので、液体によるノズルリップの清掃促進作用が、簡素な構造でできる。 また、流出流体が、ガソリン、エタノール等の液体燃料の場合は、流体センサ934rによる液体燃料の供給量と、後述する過給装置4e(図11)の吸気センサ24や駆動流センサ43eによる吸気量をECUに入力し、ECU出力により流体制御弁932rを制御することにより予混合吸気の空燃比制御を行うことができる。 (第3実施形態(請求項3対応)の変形例1  The operation of the fluid outflow mechanism 9t is to control the supply pressure of the fluid sent from the fluid tank 911r by the fuel pump p914 to a constant value by the fuel chamber 931r, and to control the flow rate by the fluid control valve 932r, from the fluid passage 94r to the fluid chamber 953r. Into the fluid chamber 953r through the fluid outflow passages 954r and uniformly outflow with the same pressure difference from the plurality of fluid outlets 955r by the negative pressure according to Bernoulli's theorem of the driving flow flowing through the grooves 88r. The driving flow that flows in the groove 88r is a rapid flow with a small passage resistance of the groove 88r than the nozzle gap between the fixed nozzle 81r and the rotating nozzle 82r, so that a cleaning action occurs, and at the same time, the negative pressure increases. A fluid outlet 955r can be provided in the middle of the groove 88r. Therefore, since fluid can be diffused and flown out to the nozzle lip, the nozzle lip cleaning promoting action by liquid can be performed with a simple structure. When the outflow fluid is a liquid fuel such as gasoline or ethanol, the supply amount of the liquid fuel by the fluid sensor 934r and the intake amount by the intake sensor 24 or the drive flow sensor 43e of the supercharging device 4e (FIG. 11) described later. Is input to the ECU, and the air-fuel ratio control of the premixed intake air can be performed by controlling the fluid control valve 932r by the ECU output. (Modification 1 of the third embodiment (corresponding to claim 3)
図8の(G)は、第3実施形態の変形例1であるエジェクタ型の過給手段の断面図と、流体流出機構の流体供給部と流体制御部の構成図で、(H)は、J部の拡大図である。 図8は、前記過給装置において、過給手段5fである空気流量増幅器6fのエジェクタ63fに設けた前記ノズル清掃機構8fのノズルリップに設けた溝状の清掃手段である溝882fに、流体流出機構9fの流体を流出する流体流出手段である流体流出部95fの流体流出口955fを設けたことを特徴とする請求項2に記載の内燃機関の過給装置の過給手段5fの断面図と、液体の流体流出機構9fの構成図である。 過給手段5fは、前記過給手段5s(図4)に流体流出機構9fの流体流出部95fと流体通路94fを設けたもので、各部の形状は異なるが過給手段の構造は前記過給手段5sと同じであるので、ノズル清掃機構8fの作用の説明は省略する。 該流体流出機構9fは、前記流体流出機構9r(図7)の流体制御部93rの流体センサ934rを省き、流体流出部95fをエジェクタ型の過給手段5fに対応したものである。 該流体流出部95fは、ノズルケーシング633fと2個のシール944の空間により流体通路94fとノズル軸637fの流体チャンバ953fを連通し、該流体チャンバ953fと前記溝882fに設けた流体流出口955fに連通する体流出通路954fを設ける。  (G) of FIG. 8 is a cross-sectional view of an ejector-type supercharging means that is Modification 1 of the third embodiment, and is a configuration diagram of a fluid supply unit and a fluid control unit of a fluid outflow mechanism. (H) is It is an enlarged view of J section. FIG. 8 shows that in the supercharging device, fluid flows into a groove 882f which is a groove-like cleaning means provided on a nozzle lip of the nozzle cleaning mechanism 8f provided on an ejector 63f of an air flow amplifier 6f which is a supercharging means 5f. 3. A cross-sectional view of a supercharging means 5f of a supercharging device for an internal combustion engine according to claim 2, further comprising a fluid outlet 955f of a fluid outflow portion 95f which is a fluid outflow means for flowing out the fluid of the mechanism 9f. FIG. 9 is a configuration diagram of a fluid outflow mechanism 9f. The supercharging means 5f is provided with a fluid outflow portion 95f and a fluid passage 94f of the fluid outflow mechanism 9f in the supercharging means 5s (FIG. 4). Although the shape of each part is different, the structure of the supercharging means is the above supercharging. Since it is the same as the means 5s, description of the effect | action of the nozzle cleaning mechanism 8f is abbreviate | omitted. The fluid outflow mechanism 9f omits the fluid sensor 934r of the fluid control section 93r of the fluid outflow mechanism 9r (FIG. 7), and the fluid outflow section 95f corresponds to the ejector-type supercharging means 5f. The fluid outflow portion 95f communicates the fluid passage 94f with the fluid chamber 953f of the nozzle shaft 637f through the space of the nozzle casing 633f and the two seals 944, and is connected to the fluid outlet 955f provided in the fluid chamber 953f and the groove 882f. A communicating body outflow passage 954f is provided. *
流体流出機構9fの作用は、流体供給部91fから供給される液体を流体制御部93fにて流量制御して流体通路94fを通って、エジェクタ63fのノズルケーシング633fに回動自在に設けたノズル軸637fの流体チャンバ953fに供給し、該流体チャンバ953fに連通する流体流出通路954fを通って複数の前記流体流出口955fより、溝882fの強い流れの駆動流により発生する前記負圧により同じ圧力差で均等に流出する。 なお、(H)に示すように、前記流体通路94fからスペーサ945を介して、回転するノズル軸637fの外周に流体を供給し、この外周の液体と流体チャンバ953fに連通する連通口をノズル軸637fに設けて流体を供給する。 過給手段5fである空気流量増幅器6fがエジェクタ63fであるので、前記トランスベクタ型の空気流量増幅器(6t、6r)より流量増幅比は小さいが、大きな過給圧が必要な過給装置に適する。 また、回転ノズル82fに設けた流体流出口955fを固定ノズル81fに設けることもできる。 (第3実施形態(請求項3対応)の変形例2)  The action of the fluid outflow mechanism 9f is that the liquid supplied from the fluid supply part 91f is flow-controlled by the fluid control part 93f, passes through the fluid passage 94f, and is provided in a nozzle casing 633f of the ejector 63f so as to be rotatable. 637f is supplied to the fluid chamber 953f, and through the fluid outflow passage 954f communicating with the fluid chamber 953f, from the plurality of fluid outlets 955f, the negative pressure generated by the strong flow of the groove 882f causes the same pressure difference. Will flow out evenly. As shown in (H), fluid is supplied from the fluid passage 94f to the outer periphery of the rotating nozzle shaft 637f via the spacer 945, and the communication port communicating with the liquid on the outer periphery and the fluid chamber 953f is connected to the nozzle shaft. Provided at 637f to supply fluid. Since the air flow rate amplifier 6f which is the supercharging means 5f is the ejector 63f, the flow rate amplification ratio is smaller than that of the transvector type air flow rate amplifier (6t, 6r), but it is suitable for a supercharging device which requires a large supercharging pressure. . Also, the fluid outlet 955f provided in the rotary nozzle 82f can be provided in the fixed nozzle 81f. (Modification 2 of the third embodiment (corresponding to claim 3))
図9は、第3実施形態の変形例2の2流体を流出するトランスベクタ型の過給手段の断面図と、2流体(流体Aと流体B)を流出する流体流出機構の構成図である。 図9は、前記過給装置において、過給手段5gである空気流量増幅器6gに設けた前記ノズル清掃機構8gのノズルリップである固定ノズルリップ811gに設けた溝状の清掃手段である溝88gに、前記流体流出機構9Aの流体を流出する流体流出手段である流体流出部95Aの流体流出口955Aと、下流側の前記流体流出機構9Bの流体を流出する流体流出手段である流体流出部95Bの流体流出口955Bと、を設けたことを特徴とする請求項2に記載の内燃機関の過給装置の過給手段5gの断面図と、2流体を流出する2組の流体流出機構(9A、9B)の構成図である。 該第3実施形態の変形例2は、下流側の前記流体流出機構9Bを除くと、各部の形状および一部の構成が異なるが、供給流体である液体を流出する第3実施形態(図7)と基本構造は同じであるので、ノズル清掃機構8gおよび流体流出機構9Aの作用の説明は省略する。 該第3実施形態(図7)と形状以外の相違点は、流体制御部93rの流体センサ934rを削除し、更に、ノズルの両面を清掃して回転駆動力を発生するために、固定ノズル811gに清掃手段である螺旋状の溝882gを設けていることである。 下流側の前記流体流出機構9Bの流体供給部91Bと流体制御部93Bは、供給流体である気体を流出する実施形態2(図6)と構成および作用は同じである。  FIG. 9 is a cross-sectional view of a transvector type supercharging device that flows out two fluids of Modification 2 of the third embodiment and a configuration diagram of a fluid outflow mechanism that flows out two fluids (fluid A and fluid B). . FIG. 9 shows a groove 88g which is a groove-shaped cleaning means provided in a fixed nozzle lip 811g which is a nozzle lip of the nozzle cleaning mechanism 8g provided in an air flow amplifier 6g which is a supercharging means 5g in the supercharging device. The fluid outlet 955A of the fluid outlet 95A that is the fluid outlet for flowing out the fluid of the fluid outlet mechanism 9A, and the fluid outlet 95B that is the fluid outlet of the fluid outlet mechanism 9B on the downstream side. A sectional view of the supercharging means 5g of the supercharging device for an internal combustion engine according to claim 2, and two sets of fluid outflow mechanisms (9A, It is a block diagram of 9B). In the second modification of the third embodiment, except for the fluid outflow mechanism 9B on the downstream side, the shape and part of the configuration of each part differ, but the third embodiment (FIG. 7) outflows the liquid that is the supply fluid. ) And the basic structure are the same, the description of the action of the nozzle cleaning mechanism 8g and the fluid outflow mechanism 9A will be omitted. The difference from the third embodiment (FIG. 7) except for the shape is that the fluid sensor 934r of the fluid control unit 93r is deleted, and further, the both sides of the nozzle are cleaned to generate a rotational driving force. Is provided with a spiral groove 882g as a cleaning means. The fluid supply unit 91B and the fluid control unit 93B of the fluid outflow mechanism 9B on the downstream side have the same configuration and operation as those of the second embodiment (FIG. 6) that flows out the gas that is the supply fluid. *
流体流出機構(9A,9B)の作用は、それぞれの流体供給部(91A、91B)から供給され、流体制御部(93A、93B)で流量等を制御されて、流体通路(94A、94B)から流体である液体Aと気体Bが、流体チャンバ(953A、953B)に供給され、流体流出通路(954A、954B)を通って、液体Aは清掃手段である溝88gの強い駆動流による前記負圧により、気体Bは該負圧と制御部935Bの減圧弁935Bにより制御された内圧により、流体流出口(954A、954B)より流出して駆動流に拡散し、該駆動流で吸気流を加速することにより均一に混合する。 流体(A、B)は、液体と気体として説明したが、流体流出機構(9A、9B)の構成変更により気体と気体、または液体と液体でもよい。 流体の種類は、目的によりガソリン、エタノール、LPG、水素等の燃料、加湿冷却剤、または添加剤でもよい。 (第4実施形態(請求項4対応))  The action of the fluid outflow mechanism (9A, 9B) is supplied from each fluid supply part (91A, 91B), the flow rate is controlled by the fluid control part (93A, 93B), and from the fluid passage (94A, 94B). Liquid A and gas B, which are fluids, are supplied to the fluid chambers (953A, 953B) and pass through the fluid outflow passages (954A, 954B). As a result, the gas B flows out of the fluid outlet (954A, 954B) and diffuses into the driving flow by the negative pressure and the internal pressure controlled by the pressure reducing valve 935B of the control unit 935B, and the intake flow is accelerated by the driving flow. Mix evenly. The fluid (A, B) has been described as a liquid and a gas, but may be a gas and a gas or a liquid and a liquid by changing the configuration of the fluid outflow mechanism (9A, 9B). The type of fluid may be a fuel such as gasoline, ethanol, LPG, hydrogen, a humidified coolant, or an additive depending on the purpose. (Fourth embodiment (corresponding to claim 4))
図10は、第4実施形態の、圧縮機方式とEGR方式の駆動流機構を備えた過給装置の概念の説明図である。 図10は、前記過給装置において、過給手段5hである空気流量増幅器6hに駆動流を供給する駆動流通路41hに、排気通路31hからのEGRガスを駆動流として供給する排気還流通路32と、更に、内燃機関により駆動される圧縮機45hと、該圧縮機45hからの圧縮空気を駆動流通路41hに供給する圧縮空気通路412と、該排気還流通路32と該圧縮空気通路412に設けた駆動流を制御する駆動流制御手段である制御弁421と制御弁422とを備え、該駆動流制御手段を内燃機関1hの運転状況に応じて制御することを特徴とする請求項1~3のいずれかの内燃機関1hの過給装置4hである。 エアクリーナ21hから吸気流入通路22hを通って過給手段5hに供給される吸気は、駆動流通路41hから供給される駆動流により空気流量増幅器6hにより過給され、吸気流出通路23hより内燃機関1hに供給される。 該吸気流出通路23hに過給センサ46、前記排気通路31hに排気センサ34、駆動流通路41hに駆動流センサ43を設け、圧力、温度、流速等のそれぞれの目的に応じた各センサの計測結果はECUに入力される。 内燃機関1hのブースト圧状態の吸気量を該空気流量増幅器6hの流量増幅比で除した容量に対応する前記圧縮機45hの運転は、内燃機関1hの回転力をクラッチ455で伝達して行う。  FIG. 10 is an explanatory diagram of a concept of a supercharging device including a compressor type and an EGR type driving flow mechanism according to the fourth embodiment. FIG. 10 shows an exhaust gas recirculation passage 32 for supplying EGR gas from the exhaust passage 31h as a driving flow to a driving flow passage 41h for supplying a driving flow to an air flow rate amplifier 6h as a supercharging means 5h in the supercharging device. Furthermore, the compressor 45h driven by the internal combustion engine, the compressed air passage 412 for supplying the compressed air from the compressor 45h to the driving flow passage 41h, the exhaust gas recirculation passage 32 and the compressed air passage 412 are provided. The control valve 421 and the control valve 422 which are driving flow control means for controlling the driving flow are provided, and the driving flow control means is controlled in accordance with the operating condition of the internal combustion engine 1h. This is the supercharging device 4h of any one of the internal combustion engines 1h. The intake air supplied from the air cleaner 21h to the supercharging means 5h through the intake inflow passage 22h is supercharged by the air flow amplifier 6h by the drive flow supplied from the drive flow passage 41h, and is supplied to the internal combustion engine 1h from the intake outflow passage 23h. Supplied. A supercharging sensor 46 is provided in the intake / outflow passage 23h, an exhaust sensor 34 is provided in the exhaust passage 31h, and a driving flow sensor 43 is provided in the driving flow passage 41h. The measurement results of the sensors according to the respective purposes such as pressure, temperature, and flow velocity. Is input to the ECU. The operation of the compressor 45h corresponding to the capacity obtained by dividing the intake air amount in the boost pressure state of the internal combustion engine 1h by the flow rate amplification ratio of the air flow rate amplifier 6h is performed by transmitting the rotational force of the internal combustion engine 1h by the clutch 455. *
過給装置4hの作用は、過給手段5hである空気流量増幅器6hに供給する駆動流を、制御弁421をECUの出力によりONにして動力損失の小さい排気還流通路32からのEGRガスを供給して過給運転を行う。 始動時や低速回転時のEGRガスが駆動流として不足する場合、あるいは内燃機関1hの排気の過熱等によりEGRガスでの過給が困難な場合は、ECUの出力によりクラッチ455をONにして圧縮機45hを運転し、該制御弁421をOFF、前記制御弁422をONにして圧縮機45hの圧縮空気による過給運転を行う。 クラッチ455の替りに、無段変速機を用いて、圧縮機45hの圧縮空気の制御を行うこともできる。また、クラッチ455を省略して、圧縮機あるいは空気圧回路を切換えてアンロード(無負荷)運転とすることもできる。 このように、内燃機関の運転状況により過給手段5hの駆動流を、EGRガスと圧縮機45hの圧縮空気に切換えることにより、動力損失が小さく、内燃機関1hの運転領域全域での過給ができる応答性のよい過給装置4hが、簡素な過給手段5h、小さな容量の圧縮機45h、排気還流通路32、および駆動流の制御手段等にてできる。 (第4実施形態(請求項4対応)の変形例1)  The operation of the supercharging device 4h is to supply the EGR gas from the exhaust gas recirculation passage 32 with a small power loss by turning on the control valve 421 by the output of the ECU for the driving flow supplied to the air flow rate amplifier 6h as the supercharging means 5h. Then perform supercharging operation. When the EGR gas at the time of start-up or low-speed rotation is insufficient as a driving flow, or when it is difficult to supercharge with the EGR gas due to overheating of the exhaust gas of the internal combustion engine 1h, the clutch 455 is turned on by the output of the ECU and compressed. The machine 45h is operated, the control valve 421 is turned off, and the control valve 422 is turned on to perform the supercharging operation using the compressed air of the compressor 45h. It is also possible to control the compressed air of the compressor 45h using a continuously variable transmission instead of the clutch 455. Further, the clutch 455 can be omitted, and the compressor or the pneumatic circuit can be switched to perform an unload (no load) operation. In this way, by switching the driving flow of the supercharging means 5h to the EGR gas and the compressed air of the compressor 45h depending on the operating state of the internal combustion engine, the power loss is small, and supercharging is performed over the entire operating region of the internal combustion engine 1h. A supercharger 4h having good responsiveness can be formed by a simple supercharging means 5h, a small capacity compressor 45h, an exhaust gas recirculation passage 32, a driving flow control means, and the like. (Modification 1 of the fourth embodiment (corresponding to claim 4))
図11は、第4実施形態の変形例1の2流体を流出する過給装置の構成図である。 図11は、前記過給装置4h(図10)と同様に、圧縮機方式とEGR方式の駆動流機構を備え、更に、流体M(加湿冷却剤)を流出する流体流出機構9Mと、流体F(燃料)を流出する流体流出機構9Fを備えた2流体を流出する過給装置4eである。 また、圧縮空気通路412eには下流より、制御弁422e、駆動流センサ432を備えたサージタンク48、駆動流逆止弁442、冷却器492、および圧縮機45eを設け、排気還流通路32eには下流より、駆動流逆止弁441、制御弁421e、駆動流センサ431、冷却器491、およびフィルタ495を設ける。 排気の異物を除去するために設けた該フィルタ495のドレン回路を排気通路31eに連通
する。 エアクリーナ21eからの吸気を吸気副通路28にて圧縮機45eに供給し、吐出圧の過上昇を防止するために、圧縮機45eの吐出側と吸引側に連通するリリーフ弁47を設ける。 排気通路31eとの接続は、図11に示すように動圧を取り込む排気還流通路32eは開口部を上流に向け、静圧によりドレンを流出するドレン回路は開口部を流れに並行に設けて接続する。 前記圧縮空気通路412eに駆動流センサ432、排気還流通路32eに駆動流センサ431、吸気流入通路22eに吸気センサ24、吸気流出通路23eに過給センサ46e、排気通路31eに排気センサ34e、駆動流通路41eに駆動流センサ43eを設けて、圧力、温度、流速等の、それぞれの目的に応じた各センサの計測結果は、ECUに入力される。 
FIG. 11 is a configuration diagram of a supercharging device that discharges two fluids according to Modification 1 of the fourth embodiment. FIG. 11 is similar to the supercharging device 4h (FIG. 10), includes a compressor type and EGR type driving flow mechanism, and further includes a fluid outflow mechanism 9M for flowing out a fluid M (humidified coolant), and a fluid F This is a supercharging device 4e that flows out two fluids and includes a fluid outflow mechanism 9F that flows out (fuel). The compressed air passage 412e is provided with a control valve 422e, a surge tank 48 having a drive flow sensor 432, a drive flow check valve 442, a cooler 492, and a compressor 45e from the downstream, and the exhaust gas recirculation passage 32e. From downstream, a drive flow check valve 441, a control valve 421e, a drive flow sensor 431, a cooler 491, and a filter 495 are provided. A drain circuit of the filter 495 provided for removing foreign substances in the exhaust is communicated with the exhaust passage 31e. In order to supply the intake air from the air cleaner 21e to the compressor 45e through the intake sub-passage 28 and prevent the discharge pressure from rising excessively, a relief valve 47 communicating with the discharge side and the suction side of the compressor 45e is provided. As shown in FIG. 11, the exhaust gas recirculation passage 32e for taking in the dynamic pressure faces the opening upstream, and the drain circuit for discharging the drainage by static pressure is connected to the exhaust passage 31e in parallel with the flow. To do. A driving flow sensor 432 is provided in the compressed air passage 412e, a driving flow sensor 431 is provided in the exhaust recirculation passage 32e, an intake sensor 24 is provided in the intake inflow passage 22e, a supercharge sensor 46e is provided in the intake outflow passage 23e, and an exhaust sensor 34e is provided in the exhaust passage 31e. A drive flow sensor 43e is provided in the path 41e, and the measurement results of the sensors according to the respective purposes, such as pressure, temperature, and flow velocity, are input to the ECU.
過給装置4eの作用は、過給装置4h(図10)と同様に、過給手段5eである空気流量増幅器6eに供給する駆動流として、制御弁421eをECUの出力によりONにして、排気還流通路32eからのEGRガスを供給して、動力損失の小さい過給運転を行う。 始動時や低速回転時のEGRガスが駆動流として不足する場合、あるいは内燃機関1eの排気の過熱、EGR還流量の制約等によりEGRガスでの過給が困難な場合は、ECUの出力によりクラッチ455eをONにして圧縮機45eを運転し、駆動流センサ432の圧力上昇を確認して制御弁422eをON、制御弁421eをOFFにして、圧縮機45eの圧縮空気による過給運転を行う。 更に、圧縮機方式の駆動流を流量制御する制御弁422eとEGR方式の駆動流を流量制御する制御弁421eをECUの出力により調整制御して、両方の駆動流を同時に利用することにより、動力損失が少なく、圧縮機455eの設定容量を小さくできる。 両方の駆動流を使用する場合、圧力の低い方への駆動流の逆流は、前記駆動流逆止弁(442、441)にて防止する。 また、圧縮空気通路412eと排気還流通路32eに設けた、各駆動流を空冷する冷却器(492,491)は、寒冷時、起動時等は冷却を停止して、駆動流の不要な冷却を防止する。 また、2組の流体流出機構(9M、9F)により、それぞれの流体供給部(91M、91F)から供給される流体Mと流体Fを、流体制御部(93M、93F)で流量を制御して流体通路(94M、94F)から流体チャンバ(図示せず)に送られ、流体通路を通って、駆動流による前記負圧により、流体流出口より流出して流速の大きい駆動流に衝突して1次拡散し、該駆動流が吸気を加速すると同時に吸気への2次拡散が行われて均質な予混合気となる。 従って、流体流出機構(9M、9F)を備えることにより、駆動流の過湿冷却による充填効率の向上、燃焼温度の低下による排気性状の良化、およびノズル清掃の促進ができ、更に、均質な予混合ができるので、成層燃焼および均質燃焼が効率よく行える内燃機関1eとなり、筒内燃料噴射装置14eを併用した成層燃焼によるリーンバーンエンジン、また、流体流出機構による異種燃料の供給により、バイフューエルエンジンとすることもできる。  Similar to the supercharging device 4h (FIG. 10), the operation of the supercharging device 4e is as follows: the control valve 421e is turned on by the output of the ECU as a driving flow to be supplied to the air flow rate amplifier 6e as the supercharging means 5e, and the exhaust gas is exhausted. EGR gas from the recirculation passage 32e is supplied to perform a supercharging operation with a small power loss. If the EGR gas at the time of start-up or low-speed rotation is insufficient as the driving flow, or if it is difficult to supercharge with the EGR gas due to overheating of the exhaust gas of the internal combustion engine 1e, restrictions on the EGR recirculation amount, etc. The compressor 45e is operated with the 455e turned on, the pressure increase of the drive flow sensor 432 is confirmed, the control valve 422e is turned on, the control valve 421e is turned off, and the compressor 45e is supercharged with compressed air. Further, the control valve 422e for controlling the flow rate of the compressor type driving flow and the control valve 421e for controlling the flow rate of the EGR type driving flow are adjusted and controlled by the output of the ECU, and both driving flows are used simultaneously. Loss is small and the set capacity of the compressor 455e can be reduced. When using both drive flows, the drive flow check valve (442, 441) prevents the drive flow from flowing backward to a lower pressure. In addition, the coolers (492, 491) provided in the compressed air passage 412e and the exhaust gas recirculation passage 32e for air cooling each drive flow stop cooling during cold times and startup, etc. To prevent. Further, the flow rate of the fluid M and the fluid F supplied from the respective fluid supply units (91M, 91F) is controlled by the fluid control unit (93M, 93F) by the two fluid outflow mechanisms (9M, 9F). The fluid passage (94M, 94F) is sent to a fluid chamber (not shown), and passes through the fluid passage by the negative pressure caused by the driving flow, and then flows out of the fluid outlet and collides with the driving flow having a high flow velocity. Then, the driving flow accelerates the intake air, and at the same time, the second diffusion to the intake air is performed to form a homogeneous premixed gas. Therefore, by providing the fluid outflow mechanism (9M, 9F), it is possible to improve the filling efficiency by overhumidity cooling of the driving flow, improve the exhaust property by lowering the combustion temperature, and promote the nozzle cleaning, and more homogeneous. Since premixing is possible, the internal combustion engine 1e can efficiently perform stratified combustion and homogeneous combustion, and a lean burn engine by stratified combustion combined with the in-cylinder fuel injection device 14e, and by supplying different types of fuel by a fluid outflow mechanism, bi-fuel can be obtained. It can also be an engine. *
図12は、図11の2流体を流出する過給装置4eの制御フローチャートである。 図12の制御フローチャートは、前記圧縮機方式とEGR方式の駆動流機構と、更に、流体M(加湿冷却剤)と流体F(燃料)の2流体を流出する流体流出機構(9M、9F)と、を備えた前記過給装置4e(図11)の制御フローチャートである。 該過給装置4eは、筒内燃料噴射装置14eを備えた内燃機関1eを過給し、更に、駆動流や吸気への流体流出を行うことにより、駆動流の過湿冷却や、予混合と筒内燃料噴射による燃料供給による成層燃焼により、火花点火内燃機関である内燃機関1eをリーンバーンエンジンとする。 図12に示すフローチャートを参照して、前記過給装置4eの制御について説明する。 なお、フローチャートにおける各判断は、ECU(図示せず)に入力された内燃機関1e、過給装置4e等の全入力情報により、運転状況に対応した各判断を行うものとする。 また、以下に説明する過給装置4eの制御は、ECU(図示せず)が起動してから停止するまでの間、繰り返し実行され、本処理ルーチンと各サブルーチンは並行処理されるものとする。  FIG. 12 is a control flowchart of the supercharging device 4e that flows out the two fluids in FIG. The control flow chart of FIG. 12 includes the compressor type and EGR type driving flow mechanisms, and the fluid outflow mechanisms (9M, 9F) for flowing out two fluids, fluid M (humidified coolant) and fluid F (fuel). 12 is a control flowchart of the supercharging device 4e (FIG. 11) provided with. The supercharging device 4e supercharges the internal combustion engine 1e provided with the in-cylinder fuel injection device 14e, and further performs fluid outflow to the driving flow and intake air, thereby cooling the driving flow with excessive humidity and premixing. By stratified combustion by fuel supply by in-cylinder fuel injection, the internal combustion engine 1e, which is a spark ignition internal combustion engine, is a lean burn engine. The control of the supercharging device 4e will be described with reference to the flowchart shown in FIG. It should be noted that each determination in the flowchart is made based on all input information of the internal combustion engine 1e, the supercharger 4e, and the like input to the ECU (not shown). Further, the control of the supercharging device 4e described below is repeatedly executed from when the ECU (not shown) is started until it is stopped, and this processing routine and each subroutine are processed in parallel. *
まず、ECUは、過給装置4eの運転指令がONであるかを判断する(ステップS010)。 ここで、運転指令がONでないと判断した場合は、過給装置の停止制御(ステップS100)を行い、本処理ルーチンを一旦終了する。 具体的には、過装置給4eの停止制御は、流体制御部(93M、93F)による流体の供給停止、EGR方式の制御弁421eの閉鎖、クラッチ455eの0FFを行い、駆動流センサ432によりサージタンク48の残圧の低下を確認して圧縮機方式の制御弁422eを閉鎖し、流体の吸気通路への残留や、排気の機関外部への流出を防止して過給装置4eを停止する。 一方、運転指令がONであると判断した場合には、ECUは、運転状況により過給が必要か否かを判断する(ステップS020)。 ここで、過給が必要でないと判断した場合は、本処理ルーチンを一旦終了する。 一方、過給が必要であると判断した場合には、ECUは、EGRが可能であるかを判断する(ステップS030)。 ここで、EGRが可能であると判断した場合には、ECUは、EGR制御対応演算(ステップS040)を実行して、駆動流が不足であるかを判断する(ステップS050)。 具体的には、EGR制御対応演算は、過給に必要な駆動流を供給するために、内燃機関1eの運転状況に対応したEGR方式の制御弁421eの開度と、その開度でのEGR還流率を演算する。  First, the ECU determines whether the operation command of the supercharging device 4e is ON (step S010). Here, when it is determined that the operation command is not ON, the supercharging device stop control (step S100) is performed, and this processing routine is temporarily ended. Specifically, the stop control of the oversupply 4e is performed by stopping the supply of fluid by the fluid control unit (93M, 93F), closing the EGR type control valve 421e, 0FF of the clutch 455e, and performing a surge by the drive flow sensor 432. After confirming a decrease in the residual pressure in the tank 48, the compressor type control valve 422e is closed to prevent the fluid from remaining in the intake passage and outflow of the exhaust to the outside of the engine to stop the supercharging device 4e. On the other hand, if it is determined that the operation command is ON, the ECU determines whether supercharging is necessary depending on the operation status (step S020). Here, if it is determined that supercharging is not necessary, this processing routine is temporarily terminated. On the other hand, if it is determined that supercharging is necessary, the ECU determines whether EGR is possible (step S030). Here, if it is determined that EGR is possible, the ECU executes an EGR control corresponding operation (step S040) to determine whether the driving flow is insufficient (step S050). Specifically, the EGR control correspondence calculation is performed in order to supply the driving flow necessary for supercharging, and the opening degree of the EGR control valve 421e corresponding to the operation state of the internal combustion engine 1e, and the EGR at that opening degree. Calculate the reflux rate. *
また、駆動流が不足であるかの判断は、上記演算結果が、開度が100%を超える場合、あるいはEGR還流率が管理値を超える場合は、駆動流不足と判断する。 一方、EGRが可能でないと判断した場合は、圧縮機制御対応演算(ステップS060)を実行して、流体流出が必要か否かを判断する(ステップS070)。 具体的には、圧縮機制御対応演算は、EGR方式の駆動流不足を補充する場合、あるいは圧縮機45eのみの駆動流で過給する場合に、内燃機関1eの運転状況に対応した圧縮機方式の制御弁422eの開度を演算する。 また、流体流出が必要であるかの判断は、駆動流あるいは吸気の加湿冷却等が必要であるか、流体F(燃料)の予混合が必要であるかを、内燃機関1eの運転状況に対応して判断する。 また、駆動流が不足であると判断した場合は、前記圧縮機の制御対応演算(ステップS060)を行う。 一方、駆動流が不足でないと判断した場合には、ECUは、前記流体流出が必要か否かを判断する(ステップS070)。 ここで、流体流出が必要であると判断した場合は、流体流出の制御対応演算(ステップS080)を実行し、過給装置の運転制御(ステップS090)を実行して、本処理ルーチンを一旦終了する。 具体的には、流体流出の制御対応演算は、前記各センサ等にて、吸気、駆動流、過給圧、内燃機関1e等の状況に応じて、目的に応じた目標流出量の演算と、目標流出量を流出するための流体制御部の制御弁の開度等を演算する。 なお、流体流出の制御対応演算(ステップS080)の処理ルーチンについては、後述するサブルーチンフローチャート(図13)にて別途説明する。 次に、過給装置の運転制御は、前記の各演算(ステップ040,060,080)の演算結果に従って、ECUの出力により各アクチュエータ等を作動して流体供給部(91M、91F)、流体制御部(93M、93F)、各制御弁(421e、422e)、クラッチ455eを制御する。 一方流体流出が必要でないと判断した場合には、ECUは、前記過給装置の運転制御実行(ステップS090)を実施し、本処理ルーチンを一旦終了する。  Whether the driving flow is insufficient is determined as insufficient driving flow when the calculation result indicates that the opening degree exceeds 100% or the EGR recirculation rate exceeds the control value. On the other hand, if it is determined that EGR is not possible, a compressor control corresponding operation (step S060) is executed to determine whether or not fluid outflow is necessary (step S070). Specifically, the compressor control correspondence calculation is performed when the shortage of the EGR drive flow is supplemented or when the supercharge is performed only by the drive flow of the compressor 45e, the compressor method corresponding to the operation state of the internal combustion engine 1e. The opening degree of the control valve 422e is calculated. In addition, whether the fluid outflow is necessary corresponds to whether the driving flow or humidification / cooling of the intake air is necessary, or whether premixing of the fluid F (fuel) is necessary corresponds to the operation state of the internal combustion engine 1e. To judge. Further, when it is determined that the driving flow is insufficient, the control corresponding operation of the compressor (step S060) is performed. On the other hand, when determining that the driving flow is not insufficient, the ECU determines whether or not the fluid outflow is necessary (step S070). Here, if it is determined that fluid outflow is necessary, the fluid outflow control correspondence calculation (step S080) is executed, the operation control of the supercharging device (step S090) is executed, and this processing routine is temporarily ended. To do. Specifically, the calculation corresponding to the control of the fluid outflow is the calculation of the target outflow amount according to the purpose according to the state of the intake air, the driving flow, the supercharging pressure, the internal combustion engine 1e, etc. The opening degree of the control valve of the fluid control unit for flowing out the target outflow amount is calculated. The processing routine of the fluid outflow control correspondence calculation (step S080) will be described separately in a subroutine flowchart (FIG. 13) described later. Next, the operation control of the supercharger is performed by operating each actuator or the like by the output of the ECU according to the calculation result of each calculation (steps 040, 060, 080), the fluid supply unit (91M, 91F), and the fluid control. Part (93M, 93F), each control valve (421e, 422e), and clutch 455e are controlled. On the other hand, if it is determined that fluid outflow is not necessary, the ECU executes the operation control of the supercharging device (step S090), and ends the present processing routine. *
上記過給装置4eの制御フローチャートに従い、運転指令がONの場合は、圧縮機方式とEGR方式の駆動流機構を最適稼働し、流体流出機構(9M、9F)により運転状況に応じた流体流出を行い、ECUが起動中で運転指令がONでない場合は、機関の停止、あるいは再起動に対応する過給装置4eの停止制御を行う。 従って、駆動流機構の最適稼働として、EGR方式の駆動流を優先して過給を行い、圧縮機方式の駆動流を補完的に使用することにより、動力損失が小さく、運転領域全域に対応できる過給運転ができる。 また、流体流出機構(9M、9F)による流体流出により、駆動流や吸気の加湿冷却や、内燃機関1eの運転状況に対応した任意の空燃比の予混合気の供給ができる。 次に、本処理ルーチンの流体流出の制御対応演算(ステップS080)のサブルーチンフローチャート(図13)を説明する。  According to the control flowchart of the supercharger 4e, when the operation command is ON, the compressor type and EGR type drive flow mechanisms are optimally operated, and the fluid outflow mechanism (9M, 9F) causes the fluid outflow according to the operation status. If the ECU is activated and the operation command is not ON, stop control of the supercharging device 4e corresponding to engine stop or restart is performed. Therefore, as the optimum operation of the drive flow mechanism, supercharging is performed with priority given to the EGR drive flow, and the compressor drive flow is used in a complementary manner, so that power loss is small and the entire operation region can be handled. Supercharged operation is possible. Further, by the fluid outflow by the fluid outflow mechanism (9M, 9F), the humidification and cooling of the driving flow and the intake air and the supply of the pre-mixed gas having an arbitrary air-fuel ratio corresponding to the operation state of the internal combustion engine 1e can be performed. Next, a subroutine flowchart (FIG. 13) of the fluid outflow control correspondence calculation (step S080) of this processing routine will be described. *
図13は、図12の制御フローチャートの、流体流出制御対応演算(ステップS080)のサブルーチンフローチャートである。 前記過給装置4e(図11)は、圧縮機方式とEGR方式の駆動流機構と、更に、流体M(加湿冷却剤)と流体F(燃料)の2流体を流出する流体流出機構(9M、9F)とを備えた内燃機関1eの過給装置である。 従って、筒内燃料噴射装置14eを備えた内燃機関1eを過給し、更に、駆動流や吸気への流体流出を行うことにより、加湿冷却剤を流出して駆動流等の加湿冷却、燃料を流出して予混合と筒内燃料噴射による成層燃焼によるリーンバーンエンジンとすることも、予混合燃焼機関とすることもできる。 なお、以下に説明する流体流出制御対応演算のサブルーチンは、前記制御フローチャート(図12)の実行により、繰り返し実行されるものとする。  FIG. 13 is a subroutine flowchart of the fluid outflow control corresponding calculation (step S080) of the control flowchart of FIG. The supercharger 4e (FIG. 11) includes a compressor-type and EGR-type drive flow mechanism, and a fluid outflow mechanism (9M, 9) that discharges two fluids, a fluid M (humidified coolant) and a fluid F (fuel). 9F) is a supercharging device for the internal combustion engine 1e. Therefore, by supercharging the internal combustion engine 1e equipped with the in-cylinder fuel injection device 14e and further performing fluid outflow to the drive flow and intake air, the humidified coolant such as the drive flow is discharged and the fuel is discharged. The engine can be a lean burn engine by stratified combustion through premixing and in-cylinder fuel injection, or a premixed combustion engine. It should be noted that the fluid outflow control corresponding subroutine described below is repeatedly executed by executing the control flowchart (FIG. 12). *
まず、ECUは、内燃機関1eの燃焼方式が成層燃焼であるかを判断する(ステップS081)。 具体的には、内燃機関1eの回転数、トルク、排気温度、スロットルポジションセンサ等の入力情報により、各燃焼方法のシミュレーションを実行して、運転状況に対応した最適な燃焼方法を選択する、あるいは、事前に燃焼方法の選定因子(トルク、回転数等)による燃焼方法のマップを作成して、そのマップに従って燃焼方法を決定する。 低速回転、低負荷時等は、筒内燃料噴射装置14eの燃料噴射による層状燃焼、高速回転、高負荷時等は、全体を早く燃焼させる予混合燃焼(均質燃焼)、これら以外の時は予混合と筒内燃料噴射装置14eの燃料噴射によるリーン領域である成層燃焼を選択することができる。 ここで、ECUが、成層燃焼でないと判断した場合は、予混合燃焼であるかを判断する(ステップS082)。 一方、成層燃焼であると判断した場合には、ECUは、流体流出量(9F)の演算(ステップS083)を実行して、流体流出(9M)による加湿冷却が必要であるかを判断する(ステップ084)。 具体的には、流体流出量(9F)の演算は、駆動流の流速から発生するベルヌーイの定理による負圧と、流体制御部93Fの制御により流体F(燃料)の流出量を試算する、あるいは、流体制御部に設けた流量センサにて流量計測を行い、吸気流出通路23eへ流出する吸気への流体Fの流出割合(重量比等)を演算する。  First, the ECU determines whether the combustion method of the internal combustion engine 1e is stratified combustion (step S081). Specifically, a simulation of each combustion method is executed based on input information such as the rotational speed, torque, exhaust temperature, throttle position sensor, etc. of the internal combustion engine 1e, and an optimal combustion method corresponding to the operating situation is selected, or A combustion method map based on combustion method selection factors (torque, rotation speed, etc.) is created in advance, and the combustion method is determined according to the map. During low-speed rotation, low load, etc., stratified combustion by fuel injection of the in-cylinder fuel injection device 14e, high-speed rotation, high load, etc., premixed combustion that burns the whole quickly (homogeneous combustion); It is possible to select stratified combustion which is a lean region by mixing and fuel injection by the in-cylinder fuel injection device 14e. Here, if the ECU determines that it is not stratified combustion, it determines whether it is premixed combustion (step S082). On the other hand, if it is determined that stratified combustion is being performed, the ECU calculates the fluid outflow amount (9F) (step S083) and determines whether humidification cooling by the fluid outflow (9M) is necessary (step S083). Step 084). Specifically, the fluid outflow amount (9F) is calculated by calculating the outflow amount of the fluid F (fuel) by Bernoulli's theorem generated from the flow velocity of the driving flow and the control of the fluid control unit 93F, or The flow rate is measured by a flow rate sensor provided in the fluid control unit, and the outflow rate (weight ratio, etc.) of the fluid F to the intake air flowing out to the intake air outflow passage 23e is calculated. *
ここで、ECUが、予混合燃焼でないと判断した場合は、前記加湿冷却が必要であるかを判断する(ステップS084)。 一方、予混合燃焼であると判断した場合には、ECUは、前記流体流出量(9F)の演算(ステップS083)を実行して、流体流出による加湿冷却が必要であるかを判断するステップ084)。 ここで、ECUが、流体流出による加湿冷却が必要であると判断した場合は、流体流出制御(9M)の演算(ステップS085)を実行し、次に、内燃機関1eのエンジン制御プログラムに前記流体流出量(9M、9F)をフィードバック(ステップS086)して、本処理サブルーチンを一旦終了する。 具体的には、流体流出制御(9M)の演算は、前記流体流出量(9F)の流出による駆動流等の加湿冷却では不足の場合、加湿冷却に必要な該流体流出量(9M)の試算を実行し、次に、前記流体流出量(9M、9F)を内燃機関1eのエンジン制御プログラムにフィードバック(ステップS086)することにより、筒内燃料噴射装置14eの
燃料噴射量にフィードバックして、成層燃焼の空燃比管理を行う。 一方、流体流出による加湿冷却が必要でないと判断した場合には、ECUは、前記流出量(9M、9F)のフィードバック(ステップS086)を実行し、本処理サブルーチンを一旦終了する。 
Here, when the ECU determines that the premixed combustion is not performed, it determines whether the humidification cooling is necessary (step S084). On the other hand, when it is determined that the premixed combustion is performed, the ECU executes the calculation of the fluid outflow amount (9F) (step S083) to determine whether humidification cooling due to the fluid outflow is necessary. ). Here, when the ECU determines that humidification / cooling due to fluid outflow is necessary, calculation of the fluid outflow control (9M) (step S085) is executed, and then the fluid is added to the engine control program of the internal combustion engine 1e. The outflow amount (9M, 9F) is fed back (step S086), and this processing subroutine is temporarily ended. Specifically, in the calculation of the fluid outflow control (9M), when the humidification cooling such as the driving flow due to the outflow of the fluid outflow amount (9F) is insufficient, the calculation of the fluid outflow amount (9M) necessary for the humidification cooling is performed. Next, by feeding back the fluid outflow amount (9M, 9F) to the engine control program of the internal combustion engine 1e (step S086), it is fed back to the fuel injection amount of the in-cylinder fuel injection device 14e, and stratified. Control the air-fuel ratio of combustion. On the other hand, if it is determined that humidification / cooling due to fluid outflow is not necessary, the ECU executes feedback (step S086) of the outflow amount (9M, 9F) and ends the present processing subroutine once.
第1~4実施形態に示す過給装置に設けられている機器および補助機器(センサ、フィルタ、サージタンク、冷却器、制御弁等)は、内燃機関の運転条件等により追加削除ができ、第1~4実施形態は、本発明の一例を示すもので本発明を制約するものではなく、当業者により変更および改良ができる。 また、文献2に記載の過給装置に、本願発明の過給装置を設けることができ、例えば、文献2に記載の過給装置に、本願発明のノズル清掃機構や流体流出機構等を設けることができる。 Devices and auxiliary devices (sensors, filters, surge tanks, coolers, control valves, etc.) provided in the supercharging device shown in the first to fourth embodiments can be added and deleted depending on the operating conditions of the internal combustion engine. The first to fourth embodiments show an example of the present invention and do not limit the present invention, and can be changed and improved by those skilled in the art. Moreover, the supercharging device of the present invention can be provided in the supercharging device described in Document 2, for example, the nozzle cleaning mechanism, the fluid outflow mechanism, etc. of the present invention are provided in the supercharging device described in Document 2. Can do.
過給手段に空気流量増幅器を用いる本過給装置は、EGRガスによるデポジットの堆積により、駆動流の流路の狭窄部であるノズルの閉塞が発生する問題点が改善されることにより、従来、吸気を直接加圧するターボ式過給機により出力の向上等を行っている、自動車の内燃機関の過給装置として使用することができる。 This supercharging device using an air flow rate amplifier as a supercharging means has improved the problem of nozzle clogging, which is a constricted portion of the flow path of the driving flow, due to the accumulation of deposits by EGR gas. It can be used as a supercharging device for an internal combustion engine of an automobile in which the output is improved by a turbo-type supercharger that directly pressurizes intake air.
1 内燃機関 4 過給装置 5 過給手段 6 空気流量増幅器 8 ノズル清掃機構 9 流体流出機構 12 点火プラグ 14 筒内燃料噴射装置 20 吸気 21 エアクリーナ 22 吸気流入通路 23 吸気流出通路 24 吸気センサ 28 吸気副通路 31 排気通路 32 排気還流通路 34 排気センサ 38 排気浄化装置 39 消音器 40 駆動流 41 駆動流通路 42 (制御弁) 43 (駆動流センサ) 44 (駆動流逆止弁) 45 圧縮機 46 過給センサ 47 リリーフ弁 48 サージタンク 61 トランスベクタ 63 エジェクタ 81 固定ノズル 82 回転ノズル 84 ベアリング 85 シール 87 羽根車 88 溝(固定ノズル用) 91 流体供給部 93 流体制御部 94 流体通路 95 流体流出部 100 燃料蒸発装置 101 燃料供給装置 102 加熱装置 103 蒸発室 104 吸気通路 105 連結通路 108 過給装置 212 エアクリーナ 222 吸気流入通路 412 圧縮空気通路 421、422 制御弁 431、432 駆動流センサ 441、442 駆動流逆止弁 455 クラッチ 491、492 冷却器 495 フィルタ 610 ハウジング 611 フランジ 614 環状チャンバ 615 ノズル 630 ハウジング 633 ノズルケーシング 635 ノズル 637 ノズル軸 638 ナット 639 ブッシング 811 固定ノズルリップ 821 回転ノズルリップ 882 溝(回転ノズル用) 911 流体タンク 914 燃料ポンプ 916 逆止弁付継手 931 燃料チャンバ 932 流体制御弁 934 流体センサ 935 減圧弁 941 接続リング 942 プレート 943 ブッシング 944 シール 945 スペーサ 953 流体チャンバ 954 流体流出通路 955 流体流出口 1 Internal combustion engine 4 Supercharging device 5 Supercharging means 6 Air flow amplifier 8 Nozzle cleaning mechanism 9 Fluid outflow mechanism 12 Spark plug 14 In-cylinder fuel injection device 20 Intake 21 Air cleaner 22 Intake inflow passage 23 Intake outflow passage 24 Intake sensor 28 Intake sub Passage 31 exhaust passage 32 exhaust recirculation passage 34 exhaust sensor 38 exhaust purification device 39 silencer 40 drive flow 41 drive flow passage 42 (control valve) 43 (drive flow sensor) 44 (drive flow check valve) 45 compressor 46 supercharge Sensor 47 Relief valve 48 Surge tank 61 Transvector 63 Ejector 81 Fixed nozzle 82 Rotating nozzle 84 Bearing 85 Seal 87 Impeller 88 Groove (for fixed nozzle) 91 Fluid supply Section 93 Fluid control section 94 Fluid passage 95 Fluid outflow section 100 Fuel evaporating device 101 Fuel supply device 102 Heating device 103 Evaporating chamber 104 Intake passage 105 Connecting passage 108 Supercharging device 212 Air cleaner 222 Inlet inflow passage 412 Compressed air passage 421, 422 Control Valve 431, 432 Drive flow sensor 441, 442 Drive flow check valve 455 Clutch 491, 492 Cooler 495 Filter 610 Housing 611 Flange 614 Ring chamber 615 Nozzle 630 Housing 633 Nozzle casing 635 Nozzle 637 Nozzle shaft 638 Nut 639 Bushing Lip 821 Rotating nozzle lip 882 groove (Rotating nozzle ) 911 fluid tank 914 fuel pump 916 with a check valve fitting 931 fuel chamber 932 the fluid control valve 934 fluid sensor 935 pressure reducing valve 941 connecting ring 942 plate 943 bushing 944 seal 945 spacer 953 fluid chamber 954 the fluid outflow passage 955 fluid outlet

Claims (4)

  1. 内燃機関の燃焼室に吸気を供給する吸気系統のダクト入口、エアクリーナ、または吸気通路途中に、吸気を加圧して燃焼室に送り込む過給手段を備えた内燃機関の過給装置であって、該過給手段は、空気流量増幅器と、該空気流量増幅器に内燃機関により駆動される圧縮機からの圧縮空気、または排気通路からのEGRガスを該空気流量増幅器の駆動流として供給する駆動流通路と、を備え、更に、該空気流量増幅器のノズルに設けた回動可能な回転ノズルと、駆動流または吸気流により回転力を発生する該回転ノズルに連動する回転駆動手段と、該回転ノズルと固定ノズルの片方または両方のノズルのノズルリップに設けた溝状の清掃手段と、を備えたノズル清掃機構を設けたことを特徴とする空気流量増幅器を過給手段とする内燃機関の過給装置。   An internal combustion engine supercharging device comprising supercharging means for pressurizing intake air into a combustion chamber in the middle of an intake system duct inlet, an air cleaner, or an intake passage for supplying intake air to the combustion chamber of the internal combustion engine, The supercharging means includes an air flow amplifier, and a drive flow passage for supplying compressed air from a compressor driven by an internal combustion engine or EGR gas from an exhaust passage to the air flow amplifier as a drive flow of the air flow amplifier. And a rotatable rotary nozzle provided in the nozzle of the air flow amplifier, a rotary driving means interlocking with the rotary nozzle that generates a rotational force by a drive flow or an intake flow, and the rotary nozzle fixed An internal combustion engine having a supercharger with an air flow amplifier, characterized in that a nozzle cleaning mechanism provided with a groove-shaped cleaning means provided on the nozzle lip of one or both nozzles is provided. Charging device. *
  2. 前記過給装置において、過給手段である空気流量増幅器と、更に、該空気流量増幅器のノズルまたはノズル付近に設けた流体を流出する流体流出手段と、該流体流出手段に流体を供給する流体供給手段と、該流体供給手段と前記流体流出手段に連通する流体通路と、該流体通路に設けた流体制御手段と、を備えた流体流出機構を設けたことを特徴とする請求項1に記載の内燃機関の過給装置。   In the supercharging device, an air flow amplifier as a supercharging means, a fluid outflow means for flowing out a fluid provided in or near the nozzle of the air flow amplifier, and a fluid supply for supplying fluid to the fluid outflow means 2. A fluid outflow mechanism comprising: a means, a fluid passage communicating with the fluid supply means and the fluid outflow means, and a fluid control means provided in the fluid passage. Supercharger for internal combustion engine. *
  3. 前記過給装置において、過給手段である空気流量増幅器に設けた前記ノズル清掃機構のノズルリップに設けた溝状の清掃手段に、前記流体流出機構の流体を流出する流体流出手段の流体流出口を設けたことを特徴とする請求項2に記載の内燃機関の過給装置。   In the supercharging device, the fluid outlet of the fluid outflow means for flowing out the fluid of the fluid outflow mechanism to the groove-shaped cleaning means provided in the nozzle lip of the nozzle cleaning mechanism provided in the air flow amplifier serving as the supercharging means The supercharging device for an internal combustion engine according to claim 2, wherein *
  4. 前記過給装置において、過給手段である空気流量増幅器に駆動流を供給する駆動流通路に、排気通路からのEGRガスを駆動流として供給する排気還流通路と、更に内燃機関により駆動される圧縮機と、該圧縮機からの圧縮空気を駆動流通路に供給する圧縮空気通路と、該排気還流通路と該圧縮空気通路に設けた駆動流を制御する駆動流制御手段とを備え、該駆動流制御手段を内燃機関の運転状況に応じて制御することを特徴とする請求項1~3のいずれか一項に記載の内燃機関の過給装置。   In the supercharging device, an exhaust gas recirculation passage for supplying EGR gas from the exhaust passage as a driving flow to a driving flow passage for supplying a driving flow to an air flow amplifier serving as a supercharging means, and a compression driven by an internal combustion engine A compressor, a compressed air passage for supplying compressed air from the compressor to the drive flow passage, and an exhaust recirculation passage and drive flow control means for controlling the drive flow provided in the compressed air passage. The supercharging device for an internal combustion engine according to any one of claims 1 to 3, wherein the control means is controlled in accordance with an operating state of the internal combustion engine.
PCT/JP2016/057096 2016-03-08 2016-03-08 Supercharging device for internal combustion engine WO2017154090A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/057096 WO2017154090A1 (en) 2016-03-08 2016-03-08 Supercharging device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/057096 WO2017154090A1 (en) 2016-03-08 2016-03-08 Supercharging device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2017154090A1 true WO2017154090A1 (en) 2017-09-14

Family

ID=59789095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057096 WO2017154090A1 (en) 2016-03-08 2016-03-08 Supercharging device for internal combustion engine

Country Status (1)

Country Link
WO (1) WO2017154090A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1802720A (en) * 1928-01-26 1931-04-28 Junkers Hugo Valve
JPS511827A (en) * 1974-06-22 1976-01-09 Toyoda Chuo Kenkyusho Kk NENRYOJOHATSUSOCHITSUKINAINENKIKAN
JPH0347431U (en) * 1989-09-18 1991-05-02
JP2000230460A (en) * 1999-02-08 2000-08-22 Hitachi Ltd Egr system for supercharged engine
JP2012154341A (en) * 2000-08-30 2012-08-16 Varivent Innovations Ab Device for mixing flows of first and second gases
JP5857293B1 (en) * 2015-01-05 2016-02-10 正裕 井尻 Supercharger for internal combustion engine
JP2016027251A (en) * 2014-06-30 2016-02-18 株式会社オティックス Turbocharger
JP5914947B1 (en) * 2015-03-11 2016-05-11 正裕 井尻 Supercharger for internal combustion engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1802720A (en) * 1928-01-26 1931-04-28 Junkers Hugo Valve
JPS511827A (en) * 1974-06-22 1976-01-09 Toyoda Chuo Kenkyusho Kk NENRYOJOHATSUSOCHITSUKINAINENKIKAN
JPH0347431U (en) * 1989-09-18 1991-05-02
JP2000230460A (en) * 1999-02-08 2000-08-22 Hitachi Ltd Egr system for supercharged engine
JP2012154341A (en) * 2000-08-30 2012-08-16 Varivent Innovations Ab Device for mixing flows of first and second gases
JP2016027251A (en) * 2014-06-30 2016-02-18 株式会社オティックス Turbocharger
JP5857293B1 (en) * 2015-01-05 2016-02-10 正裕 井尻 Supercharger for internal combustion engine
JP5914947B1 (en) * 2015-03-11 2016-05-11 正裕 井尻 Supercharger for internal combustion engine

Similar Documents

Publication Publication Date Title
JP5914947B1 (en) Supercharger for internal combustion engine
US8056340B2 (en) EGR mixer for high-boost engine systems
US6941755B2 (en) Integrated bypass and variable geometry configuration for an exhaust gas turbocharger
US20080216476A1 (en) Turbocharged internal combustion engine with egr system having reverse flow
CN107339168B (en) Engine system
EP2984300A1 (en) Asymmetric double-entry turbine
JP2002155751A (en) Turbo-charger with exhaust gas recirculation
WO2006129371A1 (en) Egr gas mixer
JP2009156264A5 (en)
KR20220121876A (en) Manual pumping for exhaust gas recirculation
KR100757293B1 (en) Automobile engine output augmentation system
WO2009028802A2 (en) Turbo charger
US6701964B1 (en) Vortex generating airfoil fuel saver
SE545036C2 (en) Turbine Outlet Assembly for a Turbo Device comprising an exhaust additive dosing unit
EP3808966B1 (en) Air intake device for engine
WO2017154090A1 (en) Supercharging device for internal combustion engine
KR200398586Y1 (en) Automobile engine output augmentation system
KR20120003546A (en) A fuel economizer of automobile engine
KR200349448Y1 (en) Automobile engine output augmentation system
US11821390B2 (en) Intake system for natural gas engine
CN212225409U (en) Double-throat-pipe fan blade type fuel atomization air mixer
CN204299724U (en) A kind of marine engine LNG/ diesel dual-fuel blender
JPH05202820A (en) Intake device for engine
JP4524653B2 (en) Engine supercharger
KR20240027276A (en) Compressor Exit Connecting EGR Line type Low Pressure Exhaust Gas Recirculation System

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893422

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16893422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP