WO2017154064A1 - Scroll compressor and refrigeration cycle device - Google Patents

Scroll compressor and refrigeration cycle device Download PDF

Info

Publication number
WO2017154064A1
WO2017154064A1 PCT/JP2016/056933 JP2016056933W WO2017154064A1 WO 2017154064 A1 WO2017154064 A1 WO 2017154064A1 JP 2016056933 W JP2016056933 W JP 2016056933W WO 2017154064 A1 WO2017154064 A1 WO 2017154064A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
relief
fixed
port
ports
Prior art date
Application number
PCT/JP2016/056933
Other languages
French (fr)
Japanese (ja)
Inventor
誠 伊勢野
圭亮 鳴海
茗ヶ原 将史
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/056933 priority Critical patent/WO2017154064A1/en
Publication of WO2017154064A1 publication Critical patent/WO2017154064A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents

Definitions

  • the present invention relates to a scroll compressor and a refrigeration cycle apparatus provided with a relief mechanism for relieving a refrigerant in the middle of compression that has become a discharge pressure or higher under pressure conditions of a low compression ratio from a compression chamber.
  • a conventional scroll compressor is disclosed in Patent Document 1.
  • a compression mechanism section is provided in a sealed container.
  • the compression mechanism section has a fixed scroll and an orbiting scroll each including a standing wall-shaped spiral body formed along an involute spiral on the base plate.
  • the spiral bodies of the fixed scroll and the swing scroll are combined so as to face each other.
  • the fixed scroll is fixed to the sealed container.
  • the swing scroll is held by a frame fixed in the hermetic container.
  • the rocking scroll is rocked by an eccentric crankshaft while its posture is maintained by an Oldham ring having a claw shape for restricting the scroll from rotating.
  • the two scroll parts facing each other form a compression chamber from the outside of the spiral shape by combining the spiral bodies of each other.
  • the refrigerant is sucked from a suction port provided in the compression mechanism part, transferred and compressed in the center in the compression chamber, and discharged from the compression mechanism part into the sealed container by the discharge port provided in the spiral center part.
  • the overcompressed state is a state in which the refrigerant pressure in the middle of compression exceeds the discharge pressure, and the energy consumed for compression above the discharge pressure is lost.
  • a relief mechanism having a relief hole for relieving the refrigerant to the discharge pressure space and a relief valve for preventing a backflow from the relief hole.
  • the refrigerant that has been overcompressed until the compression chamber formed between the two spiral bodies moves to the center is relieved from the relief hole to the discharge pressure space.
  • the refrigerant that flows backward from the discharge pressure space to the compression chamber is prevented from flowing back into the relief hole by the relief valve.
  • the compression chamber is prevented from being over-compressed, and the over-compression loss is reduced.
  • Compressor chamber capacity must be secured when performing scroll compressor volume expansion or downsizing.
  • One of the main methods for securing the capacity of the compression chamber is to reduce the thickness of the spiral body.
  • the thickness of the spiral body is smaller than the diameter of the relief hole, the internal and external compression chambers on both sides of the spiral body communicate with each other through the relief hole when the spiral body overlaps the relief hole. .
  • a reverse flow of the refrigerant occurs from the high pressure side compression chamber to the low pressure side compression chamber.
  • reducing the thickness of the spiral body has a limitation on the diameter of the relief hole.
  • a relief hole with a plurality of relief ports that open to the compression chamber and a merge port that joins the relief ports and opens to the discharge pressure space.
  • one relief valve that opens and closes the opening of the junction port is provided, so that an increase in the number of parts can be suppressed, costs can be suppressed, and man-hours can be suppressed.
  • the force applied to the relief valve causes the free end and fixed end of the relief valve to There is a possibility that the relief valve is twisted and broken, not evenly on both sides with respect to the connecting center line.
  • the present invention is for solving the above-mentioned problems.
  • the force applied to the relief valve is equal on both sides with respect to the center line, and the relief valve is difficult to break without being twisted.
  • An object of the present invention is to provide a scroll compressor and a refrigeration cycle apparatus in which improvement is achieved.
  • a scroll compressor includes a hermetic container and a spiral body provided in the hermetic container, each of which is provided on a base plate, and the mutual spiral bodies are combined to form a compression chamber.
  • a compression mechanism having a scroll and an orbiting scroll; an electric mechanism for driving the orbiting scroll; and a rotating shaft for transmitting the rotational force of the electric mechanism to the orbiting scroll so as to be in an orbiting motion;
  • the base plate of the fixed scroll is provided with a relief hole that communicates the compression chamber and a discharge pressure space on the opposite side of the fixed scroll having the spiral body, and the relief hole includes A plurality of relief ports opened in the compression chamber, and a merge port opened in the discharge pressure space by joining the plurality of relief ports, and the fixed scroll
  • On the surface of the base plate on the discharge pressure space side there is provided a relief valve that connects a free end portion that opens and closes the opening portion of the merging port and a fixed end portion that is fixed to the base plate of the fixed scroll.
  • a refrigeration cycle apparatus includes the scroll compressor described above.
  • the opening portion of the merge port is formed in a line-symmetric shape with respect to the center line connecting the free end portion and the fixed end portion of the relief valve.
  • FIG. 2B is an explanatory view showing the AA cross section of FIG. 2A of the relief mechanism of the scroll compressor according to the first embodiment of the present invention.
  • 2B is an explanatory diagram showing a BB cross section of FIG. 2A of the relief mechanism of the scroll compressor according to the first embodiment of the present invention.
  • FIG. It is explanatory drawing which shows the valve closing state of the relief valve of the scroll compressor which concerns on Embodiment 1 of this invention.
  • movement of (theta) 270 degrees among 1 rotation of the rocking
  • FIG. 1 is an explanatory diagram showing a schematic configuration of a scroll compressor 100 according to Embodiment 1 of the present invention.
  • the scroll compressor 100 is a high-pressure shell type scroll compressor.
  • the compression mechanism unit 1 is accommodated in the upper part of the sealed container 18.
  • An electric mechanism 19 is housed in the lower part of the sealed container 18.
  • the compression mechanism unit 1 includes a fixed scroll 2, an orbiting scroll 3, a guide frame 4, a compliant frame 5, and an Oldham ring 6 as main components.
  • a relief mechanism 20 is provided in the compression mechanism unit 1.
  • the electric mechanism part 19 has the stator 10, the rotor 8, the balance weight 9, and the cup 12 as main components.
  • the electric mechanism unit 19 drives the swing scroll 3.
  • the compression mechanism unit 1 and the electric mechanism unit 19 are connected by a rotating shaft 7.
  • the rotating shaft 7 connects the swing scroll 3 eccentrically from the electric mechanism portion 19 and transmits the rotational force of the electric mechanism portion 19 to the swing scroll 3 so as to be in a swing motion.
  • the fixed scroll 2 in the compression mechanism unit 1 is fixed to the guide frame 4 with bolts.
  • the guide frame 4 is fixed to the sealed container 18 by welding.
  • the swing scroll 3 is held by a compliant frame 5.
  • the compliant frame 5 is held by the guide frame 4.
  • the claw shape of the Oldham ring 6 is applied to the groove shape provided in the fixed scroll 2 and the orbiting scroll 3, and the position of the orbiting scroll 3 is set so that the orbiting scroll 3 does not rotate with respect to the fixed scroll 2. It is regulated.
  • a discharge port 16 for discharging the refrigerant from the compression mechanism unit 1 is provided at the center of the fixed scroll 2.
  • a suction port 14 for sucking refrigerant into the compression mechanism 1 is provided below and outside the fixed scroll 2.
  • the fixed scroll 2 and the orbiting scroll 3 are provided in the hermetic container 18, and are provided on the base plates 2a and 3a, respectively.
  • the fixed spiral body 2b and the swinging spiral body 3b are combined, and the fixed spiral body 2b and the swinging spiral body 3b are combined to form a compression chamber.
  • the fixed scroll 2 having the standing wall-shaped fixed spiral body 2b formed along the involute spiral on the base plate 2a and the standing wall-shaped swinging spiral body 3b having the same shape as the fixed spiral body 2b of the fixed scroll 2 are provided.
  • the oscillating scroll 3 that is provided is combined so as to face each other.
  • the rocking scroll 3 is rocked by the power obtained from the electric mechanism unit 19 by the eccentric rotating shaft 7.
  • the claw shape of the Oldham ring 6 moves in parallel along the groove shapes provided at right angles to the fixed scroll 2 and the orbiting scroll 3, and the rotational movement of the orbiting scroll 3 relative to the fixed scroll 2 is restricted.
  • the fixed scroll 2 and the oscillating scroll 3 combined in opposition to each other make the compression chamber 31 from the outside of the spiral shape by the mutual contact between the fixed vortex body 2b and the oscillating spiral body 3b.
  • the refrigerant is sucked from the suction port 14 by the swing motion of the swing scroll 3, transported and compressed toward the center of the fixed spiral body 2 b and the swing spiral body 3 b, and the discharge port provided at the center of the compression mechanism unit 1. 16 is discharged into the sealed container 18.
  • the high-pressure refrigerant discharged into the sealed container 18 flows out from the discharge pipe 15 to the refrigeration cycle circuit.
  • FIG. 2A is a top view showing relief mechanism 20 of scroll compressor 100 according to Embodiment 1 of the present invention.
  • FIG. 2B is an explanatory diagram showing the AA cross section of FIG. 2A of the relief mechanism 20 of the scroll compressor 100 according to Embodiment 1 of the present invention.
  • FIG. 2C is an explanatory view showing a BB cross section of FIG. 2A of the relief mechanism 20 of the scroll compressor 100 according to Embodiment 1 of the present invention.
  • a relief mechanism 20 is provided in the compression mechanism unit 1 of the scroll compressor 100.
  • the relief mechanism 20 includes a relief hole 21, a relief valve 22, a stopper 23, and a bolt 24.
  • the relief hole 21 is provided in the base plate 2a of the fixed scroll 2 so as to communicate the compression chamber 31 and the discharge pressure space 30 on the opposite side of the fixed scroll 2 from the side having the fixed spiral body 2b.
  • a confluence port 21b is provided in the base plate 2a of the fixed scroll 2 so as to communicate the compression chamber 31 and the discharge pressure space 30 on the opposite side of the fixed scroll 2 from the side having the fixed spiral body 2b.
  • the two relief ports 21a are circular in cross section, and two are formed as a set with the same hole diameter in the thickness direction of the base plate 2a of the fixed scroll 2.
  • the two relief ports 21 a are formed with openings that open to the compression chamber 31 in a region adjacent to the fixed spiral body 2 b of the fixed scroll 2.
  • the hole diameters of the two relief ports 21 a are smaller than the thickness of the swinging spiral body 3 b of the swinging scroll 3.
  • the merge port 21b has a circular cross section, and the two relief ports 21a, which are a set of two, merge.
  • the merge port 21 b is provided with the same hole diameter in the thickness direction of the base plate 2 a of the fixed scroll 2.
  • the opening part opened to the discharge pressure space 30 of the merging port 21b is formed in the range including the opening part joined to the merging port 21b of the two relief ports 21a.
  • the relief valve 22 includes a free end 22a that opens and closes an opening opened in the discharge pressure space 30 of the merge port 21b on the surface of the base plate 2a of the fixed scroll 2 on the discharge pressure space 30 side, and a base plate of the fixed scroll 2 And a fixed end 22b fixed to 2a. That is, one relief valve 22 is arranged corresponding to one of the merging ports 21b.
  • the free end 22a of the relief valve 22 has a larger area than the opening so as to close the opening that opens to the discharge pressure space 30 of the merging port 21b.
  • the fixed end 22 b of the relief valve 22 is fixed by screwing the bolt 24 to the base plate 2 a of the fixed scroll 2.
  • the bolt 24 also fixes the stopper 23 together with the relief valve 22.
  • the relief valve 22 has a free end portion 22a and a fixed end portion 22b that are wider than their intermediate portions.
  • the relief valve 22 extends straight along a center line 25 connecting the free end 22a and the fixed end 22b.
  • the stopper 23 presses the relief valve 22 from the rear so that it does not bend too much into the discharge pressure space 30 when the relief valve 22 is opened.
  • the stopper 23 has a rectangular shape that is slightly larger than the relief valve 22, and is configured such that the free end 22 a side of the relief valve 22 is bent from the beginning to the discharge pressure space 30 side.
  • the stopper 23 is fixed using a bolt 24 together with the fixed end 22 b of the relief valve 22.
  • the opening opened to the discharge pressure space 30 of the merging port 21b is a circle symmetrical with respect to the center line 25 connecting the free end 22a and the fixed end 22b of the relief valve 22. It is formed into a shape.
  • the opening joined to the joining port 21b of the two relief ports 21a is symmetrical with respect to the center line 25 connecting the free end portion 22a and the fixed end portion 22b of the relief valve 22 with respect to the center line 25.
  • the center of the opening joined to the joining port 21b of the two relief ports 21a is located on the orthogonal line 26 orthogonal to the center line 25 of the relief valve 22.
  • the center position of the opening joined to the joining port 21b of the two relief ports 21a is separated from the intersection of the center line 25 and the orthogonal line 26 by an equal distance.
  • FIG. 3A is an explanatory diagram showing a closed state of the relief valve 22 of the scroll compressor 100 according to Embodiment 1 of the present invention.
  • FIG. 3B is an explanatory diagram showing the opened state of the relief valve 22 of the scroll compressor 100 according to Embodiment 1 of the present invention.
  • the compression chamber 31 formed by the fixed scroll 2 and the fixed scroll 2 b and the swing scroll 3 b of the fixed scroll 2 takes in the refrigerant from the suction port 14, and the end of the swing scroll of the swing scroll 3 is the fixed scroll.
  • the compression is performed from the point of time when the compression chamber 31 is closed in contact with the two fixed spiral bodies 2b. With the swinging motion of the swing scroll 3, the compression chamber 31 moves toward the center of the fixed spiral body 2b and the swing spiral body 3b.
  • the relief mechanism 20 is shown as an opening that opens into the compression chambers 31 of the two relief ports 21a.
  • the two relief ports 21 a are formed with openings that open to the compression chamber 31 in a region adjacent to the fixed spiral body 2 b of the fixed scroll 2.
  • the hole diameters of the two relief ports 21 a are smaller than the thickness of the swinging spiral body 3 b of the swinging scroll 3.
  • the two relief ports 21a are fixed to the fixed scroll 2 at a position where the orbiting scroll 3 and the orbiting spiral body 3b of the orbiting scroll 3 overlap with the openings opened in the compression chambers 31 of the two relief ports 21a.
  • the openings opened in the compression chambers 31 of the two relief ports 21a are closed by the thickness of the rocking spiral body 3b of the rocking scroll 3.
  • the three relief mechanisms 20 represented by the two relief ports 21a are arranged so that any one of the compression chambers 31 from the start of compression to the discharge from the discharge port 16 has one relief.
  • the state communicating with the mechanism 20 is ensured, and the compression chamber 31 is always suppressed from being overcompressed.
  • the relief amount equal to or larger than the conventional one is secured by providing two relief ports 21a. is doing. Further, the two relief ports 21 a join the flow paths to the merge port 21 b until the relief to the discharge pressure space 30, and the opening to the discharge pressure space 30 of the merge port 21 b is closed by one relief valve 22. By doing so, an increase in the number of parts can be suppressed.
  • merging port 21b is formed in the circular shape symmetrical with respect to the centerline 25 which connects the free end part 22a of the relief valve 22, and the fixed end part 22b.
  • the opening joined to the joining port 21b of the two relief ports 21a is symmetrical with respect to the center line 25 connecting the free end portion 22a and the fixed end portion 22b of the relief valve 22 with respect to the center line 25.
  • the force applied to the relief valve 22 becomes equal on both sides with respect to the center line 25.
  • the relief valve 22 is not easily broken without being twisted, and the use durability is improved. Further, the dead volume can be minimized in accordance with the position phase of the relief valve 22, and the compressor efficiency can be maintained and improved together with securing the relief amount.
  • FIG. 5 is a top view showing the relief mechanism 20 of Modification 1 according to Embodiment 1 of the present invention.
  • FIG. 6 is a top view showing the relief mechanism 20 of Modification 2 according to Embodiment 1 of the present invention.
  • FIG. 7 is a top view showing the relief mechanism 20 of Modification 3 according to Embodiment 1 of the present invention.
  • the opening portion opened to the discharge pressure space 30 of the merging port 21b is axisymmetric with respect to the center line 25 connecting the free end portion 22a and the fixed end portion 22b of the relief valve 22. It is formed into a shape. Further, the opening joined to the joining port 21b of the two or three relief ports 21a is arranged symmetrically with respect to the center line 25 connecting the free end 22a and the fixed end 22b of the relief valve 22. . Furthermore, the opening part opened to the discharge pressure space 30 of the merging port 21b is formed in the range including the opening part merged with the merging port 21b of two or three relief ports. In the first modification shown in FIG.
  • the opening joined to the joining port 21b of the two relief ports 21a is the center connecting the free end 22a and the fixed end 22b of the relief valve 22. They are arranged symmetrically with respect to the line 25 on both sides of the center line.
  • the opening joined to the merge port 21 b of the two or three relief ports 21 a is formed by a free end 22 a and a fixed end 22 b of the relief valve 22.
  • the same effects as those of the first embodiment can be obtained.
  • FIG. 8 is a top view showing the relief mechanism 20 of Modification 4 according to Embodiment 1 of the present invention.
  • FIG. 9 is a top view showing the relief mechanism 20 of Modification 5 according to Embodiment 1 of the present invention.
  • FIG. 10 is a top view showing the relief mechanism 20 of Modification 6 according to Embodiment 1 of the present invention.
  • FIG. 11 is a top view showing the relief mechanism 20 of Modification 7 according to Embodiment 1 of the present invention.
  • the opening opened to the discharge pressure space 30 of the merging port 21b is axisymmetric with respect to the center line 25 connecting the free end 22a and the fixed end 22b of the relief valve 22. It is formed into a shape. However, the opening joined to the joining port 21b of the two or three relief ports 21a is not arranged symmetrically with respect to the center line 25 connecting the free end 22a and the fixed end 22b of the relief valve 22. . However, the opening part opened to the discharge pressure space 30 of the merging port 21b is formed in the range including the opening part merged with the merging port 21b of the two or three relief ports 21a.
  • the opening joined to the joining port 21b of the two or three relief ports 21a is in relation to the center line 25 connecting the free end 22a and the fixed end 22b of the relief valve 22.
  • the balance in which the force applied to the relief valve 22 is equal on both sides with respect to the center line 25 is slightly weakened, but the same effect as in the first embodiment can be obtained.
  • FIG. FIG. 12 is a refrigerant circuit diagram showing a refrigeration cycle apparatus 200 to which the scroll compressor 100 according to Embodiment 2 of the present invention is applied.
  • the refrigeration cycle apparatus 200 includes a scroll compressor 100, a condenser 80, an expansion valve 81, and an evaporator 82.
  • the scroll compressor 100, the condenser 80, the expansion valve 81, and the evaporator 82 are connected by a refrigerant pipe to form a refrigeration cycle circuit. Then, the refrigerant flowing out of the evaporator 82 is sucked into the scroll compressor 100 and becomes high temperature and pressure.
  • the high-temperature and high-pressure refrigerant is condensed in the condenser 80 to become a liquid.
  • the refrigerant that has become liquid is decompressed and expanded by the expansion valve 81 to become a low-temperature and low-pressure gas-liquid two-phase, and the gas-liquid two-phase refrigerant is heat-exchanged in the evaporator 82.
  • the scroll compressor 100 according to Embodiment 1 and Modifications 1 to 7 can be applied to such a refrigeration cycle apparatus 200.
  • the refrigeration cycle apparatus 200 include an air conditioner, a refrigeration apparatus, and a water heater.
  • the scroll compressor 100 includes the sealed container 18.
  • the fixed spiral body 2b and the swing spiral body 3b which are provided in the sealed container 18 and are respectively provided on the base plates 2a and 3a, are compressed by combining the fixed spiral body 2b and the swing spiral body 3b.
  • a compression mechanism 1 having a fixed scroll 2 and a swinging scroll 3 forming a chamber 31 is provided.
  • An electric mechanism unit 19 for driving the orbiting scroll 3 is provided.
  • a rotating shaft 7 is provided for transmitting the rotational force of the electric mechanism section 19 to the orbiting scroll 3 so as to be in an oscillating motion.
  • the base plate 2a of the fixed scroll 2 is provided with a relief hole 21 for communicating the compression chamber 31 with the discharge pressure space 30 on the opposite side of the fixed scroll 2 from the side having the fixed spiral body 2b.
  • the relief hole 21 is provided with two or three relief ports 21a opened in the compression chamber 31, and a merge port 21b opened in the discharge pressure space 30 by joining the two or three relief ports 21a. Yes.
  • a surface of the base plate 2a of the fixed scroll 2 on the discharge pressure space 30 side is connected with a free end portion 22a that opens and closes the opening of the merging port 21b and a fixed end portion 22b fixed to the base plate 2a of the fixed scroll 2.
  • a relief valve 22 is provided.
  • the opening of the merging port 21b is formed in a line-symmetric shape with respect to the center line 25 connecting the free end 22a and the fixed end 22b of the relief valve 22. According to this configuration, when the refrigerant is relieved from the opening of the confluence port 21 b of the relief hole 21 to the discharge pressure space 30, the force applied to the relief valve 22 is equal on both sides with respect to the center line 25. It is difficult to break without being twisted, and durability is improved.
  • the opening joined to the joining port 21b of the two or three relief ports 21a is arranged symmetrically with respect to the center line 25 connecting the free end 22a and the fixed end 22b of the relief valve 22. According to this configuration, when the refrigerant is relieved from the opening of the junction port 21 b of the relief hole 21 to the discharge pressure space 30, the effect that the force applied to the relief valve 22 is equal on both sides with respect to the center line 25 is improved. In addition, the relief valve 22 is not easily broken without being twisted, and the use durability is improved.
  • the opening portion of the merge port 21b is formed in a range including the opening portion that merges with the merge port 21b of the two or three relief ports 21a. According to this configuration, the overcompressed refrigerant can be ejected without the opening joined to the joining port 21b of the two or three relief ports 21a being narrowed by the joining port 21b. For this reason, when the refrigerant from the two or three relief ports 21a merges with the merge port 21b, the refrigerant is not disturbed excessively.
  • the merge port 21b is formed in a counterbore hole, and the two or three relief ports 21a can be directly formed through the merge port 21b so that the relief hole 21 can be easily processed. Man-hours are reduced and costs can be reduced.
  • the two or three relief ports 21 a are provided with the same hole diameter in the thickness direction of the base plate 2 a of the fixed scroll 2.
  • the merge port 21 b is provided with the same hole diameter in the thickness direction of the base plate 2 a of the fixed scroll 2.
  • the two or three relief ports 21a and the merging port 21b may be formed as through holes that penetrate straight in the thickness direction of the base plate 2a of the fixed scroll 2, and the relief holes 21 can be easily processed. It is possible to reduce the man-hours and costs.
  • the two or three relief ports 21 a are formed with openings that open to the compression chamber 31 in a region adjacent to the fixed spiral body 2 b of the fixed scroll 2.
  • the fixed scroll 2 of the fixed scroll 2 is moved at a position where the swing scroll 3 is swung so that the swing scroll 3b of the swing scroll 3 overlaps the openings of the two or three relief ports 21a opened in the compression chambers 31.
  • the openings of the two or three relief ports 21a opened in the compression chamber 31 are closed by the thickness of the oscillating spiral body 3b of the oscillating scroll 3. According to this configuration, the two or three relief ports 21a do not communicate with the inner and outer compression chambers 31 on both sides of the swing scroll 3b of the swing scroll 3.
  • the refrigeration cycle apparatus 200 includes a scroll compressor 100. According to this configuration, when the refrigeration cycle apparatus 200 including the scroll compressor 100 relieves the refrigerant from the opening of the merge port 21 b of the relief hole 21 to the discharge pressure space 30, the force applied to the relief valve 22 is reduced. It becomes equal on both sides with respect to the center line 25, and the relief valve 22 is not twisted and is not easily broken, so that the use durability is improved.
  • the number of relief ports formed in one relief hole is not limited to the above two or three.
  • the number of relief ports formed in one relief hole may be four or more as long as it is plural.
  • 1 compression mechanism section 2 fixed scroll, 2a base plate, 2b fixed spiral body, 3 swing scroll, 3a base plate, 3b swing spiral body, 4 guide frame, 5 compliant frame, 6 Oldham ring, 7 rotating shaft, 8 rotor, 9 balance weight, 10 stator, 12 cup, 14 suction port, 15 discharge pipe, 16 discharge port, 18 sealed container, 19 electric mechanism, 20 relief mechanism, 21 relief hole, 21a relief port, 21b merge port, 22 relief valve, 22a free end, 22b fixed end, 23 stopper, 24 bolt, 25 center line, 26 orthogonal line, 30 discharge pressure space, 31 compression chamber, 80 condenser, 81 expansion valve, 82 evaporator, 100 Scroll compressor, 200 refrigeration cycle Location.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

Provided is a scroll compressor wherein, in the relieving of a refrigerant, force acting on a relief valve is equal on both sides of a centerline and therefore the relief valve is not twisted, so that the relief valve is unlikely to break and has improved durability in use. A scroll compressor is provided with an enclosed container, a compression mechanism, an electric drive mechanism, and a rotating shaft. The base plate of a stationary scroll is provided with a relief hole. The relief hole is provided with a plurality of relief ports and a flow combining port. A surface of the base plate of the stationary scroll, the surface facing a discharge pressure space, is provided with a relief valve. The opening of the flow combining port is formed in a shape which is symmetric with respect to the centerline which connects the free end and stationary end of the relief valve.

Description

スクロール圧縮機および冷凍サイクル装置Scroll compressor and refrigeration cycle apparatus
 本発明は、低圧縮比の圧力条件において吐出圧力以上になった圧縮途中の冷媒を圧縮室からリリーフするリリーフ機構が設けられたスクロール圧縮機および冷凍サイクル装置に関する。 The present invention relates to a scroll compressor and a refrigeration cycle apparatus provided with a relief mechanism for relieving a refrigerant in the middle of compression that has become a discharge pressure or higher under pressure conditions of a low compression ratio from a compression chamber.
 従来のスクロール圧縮機としては、特許文献1に開示されたものがある。
 特許文献1に開示されたスクロール圧縮機では、密閉容器内に圧縮機構部が設けられている。圧縮機構部では、それぞれが台板上にインボリュート渦巻に沿って形成された立壁形状の渦巻体を含む固定スクロールおよび揺動スクロールを有している。これら固定スクロールおよび揺動スクロールの渦巻体は、対向して組み合わされている。固定スクロールは、密閉容器に固定されている。揺動スクロールは、密閉容器内に固定されたフレームに保持されている。揺動スクロールは、自転しないように規制するための爪形状を有するオルダムリングによってその姿勢を保持されたまま、偏心したクランクシャフトによって揺動運動する。
A conventional scroll compressor is disclosed in Patent Document 1.
In the scroll compressor disclosed in Patent Document 1, a compression mechanism section is provided in a sealed container. The compression mechanism section has a fixed scroll and an orbiting scroll each including a standing wall-shaped spiral body formed along an involute spiral on the base plate. The spiral bodies of the fixed scroll and the swing scroll are combined so as to face each other. The fixed scroll is fixed to the sealed container. The swing scroll is held by a frame fixed in the hermetic container. The rocking scroll is rocked by an eccentric crankshaft while its posture is maintained by an Oldham ring having a claw shape for restricting the scroll from rotating.
 このとき、対向した2つのスクロール部品は、互いの渦巻体を組み合わせることによって渦巻形状の外側から圧縮室を作る。冷媒は、圧縮機構部に設けられた吸入ポートから吸入され、圧縮室内で中央に移送圧縮され、渦巻中心部に設けられた吐出ポートによって圧縮機構部内から密閉容器内へ吐出される。 At this time, the two scroll parts facing each other form a compression chamber from the outside of the spiral shape by combining the spiral bodies of each other. The refrigerant is sucked from a suction port provided in the compression mechanism part, transferred and compressed in the center in the compression chamber, and discharged from the compression mechanism part into the sealed container by the discharge port provided in the spiral center part.
 ここで、移送圧縮途中における対向する2つのスクロール部品の渦巻形状によって決まる組込圧縮比よりも運転条件の圧縮比が小さい場合に、冷媒が過圧縮状態になる。過圧縮状態とは、圧縮途中の冷媒圧力が吐出圧力を上回っており、吐出圧力以上の圧縮に費やされる分のエネルギーがロスになる状態である。 Here, when the compression ratio of the operating condition is smaller than the built-in compression ratio determined by the spiral shape of the two scroll parts facing each other during the transfer compression, the refrigerant is overcompressed. The overcompressed state is a state in which the refrigerant pressure in the middle of compression exceeds the discharge pressure, and the energy consumed for compression above the discharge pressure is lost.
 この過圧縮状態を解消するために冷媒を吐出圧力空間にリリーフするリリーフ孔およびそのリリーフ孔からの逆流を防ぐリリーフ弁を有するリリーフ機構を設ける。2つの渦巻体の間に形成されている圧縮室が中心に移動していくまでの間に過圧縮状態になった冷媒は、リリーフ孔から吐出圧力空間にリリーフされる。また、吐出圧力空間から圧縮室へ逆流する冷媒は、リリーフ弁でリリーフ孔への逆流を防止される。これにより、圧縮室内が過圧縮状態になるのを抑制し、過圧縮ロスが削減されている。 In order to eliminate this overcompressed state, a relief mechanism having a relief hole for relieving the refrigerant to the discharge pressure space and a relief valve for preventing a backflow from the relief hole is provided. The refrigerant that has been overcompressed until the compression chamber formed between the two spiral bodies moves to the center is relieved from the relief hole to the discharge pressure space. The refrigerant that flows backward from the discharge pressure space to the compression chamber is prevented from flowing back into the relief hole by the relief valve. As a result, the compression chamber is prevented from being over-compressed, and the over-compression loss is reduced.
特開2008-286095号公報JP 2008-286095 A
 スクロール圧縮機のストロークボリューム拡大あるいはダウンサイジングを行う際には、圧縮室の容量が確保されなければならない。その圧縮室の容量を確保する主な手法の一つとして渦巻体の厚み削減がある。しかし、従来のスクロール圧縮機では、渦巻体の厚みがリリーフ孔の孔径よりも薄くなると、渦巻体がリリーフ孔に重なる際に渦巻体における両側の内外の圧縮室同士がリリーフ孔を介して連通する。このため、高圧側の圧縮室から低圧側の圧縮室へ冷媒の逆流が生じてしまう。このようなことから、渦巻体の厚みを薄くすることには、リリーフ孔の孔径に対する制限があった。また、リリーフ孔の孔径は、過圧縮ロスを最低限に抑制するためのリリーフ量を確保する必要がある。このため、リリーフ孔の孔径は、容易に縮小できなかった。 Compressor chamber capacity must be secured when performing scroll compressor volume expansion or downsizing. One of the main methods for securing the capacity of the compression chamber is to reduce the thickness of the spiral body. However, in the conventional scroll compressor, when the thickness of the spiral body is smaller than the diameter of the relief hole, the internal and external compression chambers on both sides of the spiral body communicate with each other through the relief hole when the spiral body overlaps the relief hole. . For this reason, a reverse flow of the refrigerant occurs from the high pressure side compression chamber to the low pressure side compression chamber. For this reason, reducing the thickness of the spiral body has a limitation on the diameter of the relief hole. Moreover, it is necessary to ensure the relief amount for the hole diameter of a relief hole to suppress an overcompression loss to the minimum. For this reason, the hole diameter of the relief hole cannot be easily reduced.
 一方、リリーフ孔の数を増加させることで、リリーフ孔の孔径を縮小しながらもリリーフ量を確保することはできる。しかしその場合には、部品点数が多くなり、コストが増加し、工数が増加する。 On the other hand, by increasing the number of relief holes, it is possible to secure the relief amount while reducing the diameter of the relief holes. However, in that case, the number of parts increases, the cost increases, and the man-hour increases.
 そこで、リリーフ孔に、圧縮室に開口した複数のリリーフポートと、複数のリリーフポートを合流させて吐出圧力空間に開口した合流ポートと、を設ける構成とすることが考えられる。この場合には、合流ポートの開口部を開閉する1つのリリーフ弁が設けられ、部品点数の増加が抑制でき、コストが抑制でき、工数が抑制できる。しかし、単純に複数のリリーフポートを合流ポートで合流させただけでは、リリーフ孔から冷媒を吐出圧力空間にリリーフする際に、リリーフ弁にかかる力がリリーフ弁の自由端部と固定端部とを結ぶ中心線に対して両側で均等ではなく、リリーフ弁がねじれて破壊されるおそれがあった。 Therefore, it is conceivable to provide a relief hole with a plurality of relief ports that open to the compression chamber and a merge port that joins the relief ports and opens to the discharge pressure space. In this case, one relief valve that opens and closes the opening of the junction port is provided, so that an increase in the number of parts can be suppressed, costs can be suppressed, and man-hours can be suppressed. However, simply by merging a plurality of relief ports at the merge port, when the refrigerant is relieved from the relief hole to the discharge pressure space, the force applied to the relief valve causes the free end and fixed end of the relief valve to There is a possibility that the relief valve is twisted and broken, not evenly on both sides with respect to the connecting center line.
 本発明は、上記課題を解決するためのものであり、冷媒をリリーフする際に、リリーフ弁にかかる力が中心線に対して両側で均等となり、リリーフ弁がねじれずに破壊され難く使用耐久性が向上するスクロール圧縮機および冷凍サイクル装置を提供することを目的とする。 The present invention is for solving the above-mentioned problems. When a refrigerant is relieved, the force applied to the relief valve is equal on both sides with respect to the center line, and the relief valve is difficult to break without being twisted. An object of the present invention is to provide a scroll compressor and a refrigeration cycle apparatus in which improvement is achieved.
 本発明に係るスクロール圧縮機は、密閉容器と、前記密閉容器内に設けられ、それぞれが台板上に設けられた渦巻体を含み、相互の前記渦巻体が組み合わされて圧縮室を形成する固定スクロールおよび揺動スクロールを有する圧縮機構部と、前記揺動スクロールを駆動する電動機構部と、前記電動機構部の回転力を前記揺動スクロールに揺動運動となるように伝達する回転軸と、を備え、前記固定スクロールの前記台板には、前記圧縮室と前記固定スクロールの前記渦巻体を有する側とは反対側の吐出圧力空間とを連通させるリリーフ孔が設けられ、前記リリーフ孔には、前記圧縮室に開口した複数のリリーフポートと、前記複数のリリーフポートを合流させて前記吐出圧力空間に開口した合流ポートと、が設けられ、前記固定スクロールの前記台板における前記吐出圧力空間側の表面には、前記合流ポートの開口部を開閉する自由端部と前記固定スクロールの前記台板に固定された固定端部とを繋げたリリーフ弁が設けられ、前記合流ポートの開口部は、前記リリーフ弁の前記自由端部と前記固定端部とを結ぶ中心線に対して線対称な形状に形成されたものである。 A scroll compressor according to the present invention includes a hermetic container and a spiral body provided in the hermetic container, each of which is provided on a base plate, and the mutual spiral bodies are combined to form a compression chamber. A compression mechanism having a scroll and an orbiting scroll; an electric mechanism for driving the orbiting scroll; and a rotating shaft for transmitting the rotational force of the electric mechanism to the orbiting scroll so as to be in an orbiting motion; The base plate of the fixed scroll is provided with a relief hole that communicates the compression chamber and a discharge pressure space on the opposite side of the fixed scroll having the spiral body, and the relief hole includes A plurality of relief ports opened in the compression chamber, and a merge port opened in the discharge pressure space by joining the plurality of relief ports, and the fixed scroll On the surface of the base plate on the discharge pressure space side, there is provided a relief valve that connects a free end portion that opens and closes the opening portion of the merging port and a fixed end portion that is fixed to the base plate of the fixed scroll. The opening portion of the junction port is formed in a line-symmetric shape with respect to a center line connecting the free end portion and the fixed end portion of the relief valve.
 本発明に係る冷凍サイクル装置は、上記のスクロール圧縮機を備えたものである。 A refrigeration cycle apparatus according to the present invention includes the scroll compressor described above.
 本発明に係るスクロール圧縮機および冷凍サイクル装置によれば、合流ポートの開口部は、リリーフ弁の自由端部と固定端部とを結ぶ中心線に対して線対称な形状に形成された。このため、リリーフ孔の合流ポートの開口部から冷媒を吐出圧力空間にリリーフする際に、リリーフ弁にかかる力が中心線に対して両側で均等となり、リリーフ弁がねじれずに破壊され難く使用耐久性が向上する。 According to the scroll compressor and the refrigeration cycle apparatus according to the present invention, the opening portion of the merge port is formed in a line-symmetric shape with respect to the center line connecting the free end portion and the fixed end portion of the relief valve. For this reason, when the refrigerant is relieved from the opening of the confluence port of the relief hole to the discharge pressure space, the force applied to the relief valve is equal on both sides with respect to the center line, and the relief valve is difficult to break without twisting. Improves.
本発明の実施の形態1に係るスクロール圧縮機の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the scroll compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクロール圧縮機のリリーフ機構を示す上面図である。It is a top view which shows the relief mechanism of the scroll compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクロール圧縮機のリリーフ機構の図2AのA-A断面を示す説明図である。FIG. 2B is an explanatory view showing the AA cross section of FIG. 2A of the relief mechanism of the scroll compressor according to the first embodiment of the present invention. 本発明の実施の形態1に係るスクロール圧縮機のリリーフ機構の図2AのB-B断面を示す説明図である。2B is an explanatory diagram showing a BB cross section of FIG. 2A of the relief mechanism of the scroll compressor according to the first embodiment of the present invention. FIG. 本発明の実施の形態1に係るスクロール圧縮機のリリーフ弁の閉弁状態を示す説明図である。It is explanatory drawing which shows the valve closing state of the relief valve of the scroll compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクロール圧縮機のリリーフ弁の開弁状態を示す説明図である。It is explanatory drawing which shows the valve opening state of the relief valve of the scroll compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクロール圧縮機における揺動渦巻体の1回転中のうちθ=0°の動作を示す圧縮工程図である。It is a compression process figure which shows the operation | movement of (theta) = 0 degree among 1 rotation of the rocking | swirling spiral body in the scroll compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクロール圧縮機における揺動渦巻体の1回転中のうちθ=90°の動作を示す圧縮工程図である。It is a compression process figure which shows the operation | movement of (theta) = 90 degrees among 1 rotation of the rocking | swirling spiral body in the scroll compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクロール圧縮機における揺動渦巻体の1回転中のうちθ=180°の動作を示す圧縮工程図である。It is a compression process figure which shows the operation | movement of (theta) = 180 degrees among 1 rotation of the rocking | swirling spiral body in the scroll compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクロール圧縮機における揺動渦巻体の1回転中のうちθ=270°の動作を示す圧縮工程図である。It is a compression process figure which shows the operation | movement of (theta) = 270 degrees among 1 rotation of the rocking | swirling spiral body in the scroll compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る変形例1のリリーフ機構を示す上面図である。It is a top view which shows the relief mechanism of the modification 1 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る変形例2のリリーフ機構を示す上面図である。It is a top view which shows the relief mechanism of the modification 2 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る変形例3のリリーフ機構を示す上面図である。It is a top view which shows the relief mechanism of the modification 3 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る変形例4のリリーフ機構を示す上面図である。It is a top view which shows the relief mechanism of the modification 4 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る変形例5のリリーフ機構を示す上面図である。It is a top view which shows the relief mechanism of the modification 5 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る変形例6のリリーフ機構を示す上面図である。It is a top view which shows the relief mechanism of the modification 6 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る変形例7のリリーフ機構を示す上面図である。It is a top view which shows the relief mechanism of the modification 7 which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係るスクロール圧縮機を適用した冷凍サイクル装置を示す冷媒回路図である。It is a refrigerant circuit figure which shows the refrigerating-cycle apparatus to which the scroll compressor which concerns on Embodiment 2 of this invention is applied.
 以下、図面に基づいて本発明の実施の形態について説明する。
 なお、各図において、同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。
 さらに、明細書全文に示されている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In addition, in each figure, what attached | subjected the same code | symbol is the same or it corresponds, and this is common in the whole text of a specification.
Furthermore, the forms of the constituent elements shown in the entire specification are merely examples and are not limited to these descriptions.
実施の形態1.
 図1は、本発明の実施の形態1に係るスクロール圧縮機100の概略構成を示す説明図である。スクロール圧縮機100は、高圧シェル方式のスクロール圧縮機である。
Embodiment 1 FIG.
FIG. 1 is an explanatory diagram showing a schematic configuration of a scroll compressor 100 according to Embodiment 1 of the present invention. The scroll compressor 100 is a high-pressure shell type scroll compressor.
 スクロール圧縮機100では、密閉容器18内の上部に圧縮機構部1が収納されている。また、密閉容器18内の下部に電動機構部19が収納されている。 In the scroll compressor 100, the compression mechanism unit 1 is accommodated in the upper part of the sealed container 18. An electric mechanism 19 is housed in the lower part of the sealed container 18.
 圧縮機構部1は、固定スクロール2、揺動スクロール3、ガイドフレーム4、コンプライアントフレーム5およびオルダムリング6を主要構成要素として有している。また、圧縮機構部1内には、リリーフ機構20が設けられている。 The compression mechanism unit 1 includes a fixed scroll 2, an orbiting scroll 3, a guide frame 4, a compliant frame 5, and an Oldham ring 6 as main components. A relief mechanism 20 is provided in the compression mechanism unit 1.
 電動機構部19は、ステータ10、ロータ8、バランスウェイト9およびカップ12を主要構成要素として有している。電動機構部19は、揺動スクロール3を駆動する。 The electric mechanism part 19 has the stator 10, the rotor 8, the balance weight 9, and the cup 12 as main components. The electric mechanism unit 19 drives the swing scroll 3.
 圧縮機構部1と電動機構部19とは、回転軸7によって繋がっている。回転軸7は、電動機構部19から揺動スクロール3を偏心させて連結し、電動機構部19の回転力を揺動スクロール3に揺動運動となるように伝達する。 The compression mechanism unit 1 and the electric mechanism unit 19 are connected by a rotating shaft 7. The rotating shaft 7 connects the swing scroll 3 eccentrically from the electric mechanism portion 19 and transmits the rotational force of the electric mechanism portion 19 to the swing scroll 3 so as to be in a swing motion.
 圧縮機構部1内の固定スクロール2は、ボルトによってガイドフレーム4に固定されている。ガイドフレーム4は、密閉容器18に溶接によって固定されている。揺動スクロール3は、コンプライアントフレーム5によって保持されている。コンプライアントフレーム5は、ガイドフレーム4に保持されている。 The fixed scroll 2 in the compression mechanism unit 1 is fixed to the guide frame 4 with bolts. The guide frame 4 is fixed to the sealed container 18 by welding. The swing scroll 3 is held by a compliant frame 5. The compliant frame 5 is held by the guide frame 4.
 オルダムリング6の持つ爪形状は、固定スクロール2および揺動スクロール3に設けられた溝形状にかかり、揺動スクロール3が固定スクロール2に対して回転運動をしないように揺動スクロール3の姿勢を規制している。 The claw shape of the Oldham ring 6 is applied to the groove shape provided in the fixed scroll 2 and the orbiting scroll 3, and the position of the orbiting scroll 3 is set so that the orbiting scroll 3 does not rotate with respect to the fixed scroll 2. It is regulated.
 また、固定スクロール2の中心には、圧縮機構部1より冷媒を吐出する吐出ポート16が設けられている。固定スクロール2の下部かつ外側には、圧縮機構部1に冷媒を吸入する吸入ポート14が設けられている。 Further, a discharge port 16 for discharging the refrigerant from the compression mechanism unit 1 is provided at the center of the fixed scroll 2. A suction port 14 for sucking refrigerant into the compression mechanism 1 is provided below and outside the fixed scroll 2.
 このように構成された高圧シェル方式のスクロール圧縮機100における圧縮機構部1では、固定スクロール2および揺動スクロール3は、密閉容器18内に設けられ、それぞれが台板2a、3a上に設けられた固定渦巻体2bおよび揺動渦巻体3bを含み、相互の固定渦巻体2bおよび揺動渦巻体3bが組み合わされて圧縮室を形成する。 In the compression mechanism unit 1 in the high-pressure shell type scroll compressor 100 configured as described above, the fixed scroll 2 and the orbiting scroll 3 are provided in the hermetic container 18, and are provided on the base plates 2a and 3a, respectively. The fixed spiral body 2b and the swinging spiral body 3b are combined, and the fixed spiral body 2b and the swinging spiral body 3b are combined to form a compression chamber.
 すなわち、台板2a上にインボリュート渦巻に沿って形成された立壁形状の固定渦巻体2bを有する固定スクロール2と、固定スクロール2の固定渦巻体2bと同形状の立壁形状の揺動渦巻体3bを有する揺動スクロール3と、を対向して組合せている。そして、揺動スクロール3は、偏心した回転軸7によって電動機構部19から得た動力によって揺動運動させられる。 That is, the fixed scroll 2 having the standing wall-shaped fixed spiral body 2b formed along the involute spiral on the base plate 2a and the standing wall-shaped swinging spiral body 3b having the same shape as the fixed spiral body 2b of the fixed scroll 2 are provided. The oscillating scroll 3 that is provided is combined so as to face each other. The rocking scroll 3 is rocked by the power obtained from the electric mechanism unit 19 by the eccentric rotating shaft 7.
 このとき、オルダムリング6が持つ爪形状は、固定スクロール2および揺動スクロール3に互いに直角に設けられた溝形状に沿って平行運動し、揺動スクロール3の固定スクロール2に対する回転運動が規制される。 At this time, the claw shape of the Oldham ring 6 moves in parallel along the groove shapes provided at right angles to the fixed scroll 2 and the orbiting scroll 3, and the rotational movement of the orbiting scroll 3 relative to the fixed scroll 2 is restricted. The
 ここで、対向して組み合わされた固定スクロール2と揺動スクロール3とは、互いの固定渦巻体2bおよび揺動渦巻体3bが接触することによって渦巻形状の外側から圧縮室31を作る。冷媒は、揺動スクロール3の揺動運動によって吸入ポート14から吸入され、固定渦巻体2bおよび揺動渦巻体3bの中心に向かって移送圧縮され、圧縮機構部1の中心に設けられた吐出ポート16から密閉容器18内に吐出される。密閉容器18内に吐出された高圧の冷媒は、吐出管15から冷凍サイクル回路へ流出する。 Here, the fixed scroll 2 and the oscillating scroll 3 combined in opposition to each other make the compression chamber 31 from the outside of the spiral shape by the mutual contact between the fixed vortex body 2b and the oscillating spiral body 3b. The refrigerant is sucked from the suction port 14 by the swing motion of the swing scroll 3, transported and compressed toward the center of the fixed spiral body 2 b and the swing spiral body 3 b, and the discharge port provided at the center of the compression mechanism unit 1. 16 is discharged into the sealed container 18. The high-pressure refrigerant discharged into the sealed container 18 flows out from the discharge pipe 15 to the refrigeration cycle circuit.
 図2Aは、本発明の実施の形態1に係るスクロール圧縮機100のリリーフ機構20を示す上面図である。図2Bは、本発明の実施の形態1に係るスクロール圧縮機100のリリーフ機構20の図2AのA-A断面を示す説明図である。図2Cは、本発明の実施の形態1に係るスクロール圧縮機100のリリーフ機構20の図2AのB-B断面を示す説明図である。
 スクロール圧縮機100の圧縮機構部1内には、リリーフ機構20が設けられている。
 リリーフ機構20は、リリーフ孔21と、リリーフ弁22と、ストッパー23と、ボルト24と、を含んで構成されている。
FIG. 2A is a top view showing relief mechanism 20 of scroll compressor 100 according to Embodiment 1 of the present invention. FIG. 2B is an explanatory diagram showing the AA cross section of FIG. 2A of the relief mechanism 20 of the scroll compressor 100 according to Embodiment 1 of the present invention. FIG. 2C is an explanatory view showing a BB cross section of FIG. 2A of the relief mechanism 20 of the scroll compressor 100 according to Embodiment 1 of the present invention.
A relief mechanism 20 is provided in the compression mechanism unit 1 of the scroll compressor 100.
The relief mechanism 20 includes a relief hole 21, a relief valve 22, a stopper 23, and a bolt 24.
 リリーフ孔21は、固定スクロール2の台板2aに、圧縮室31と固定スクロール2の固定渦巻体2bを有する側とは反対側の吐出圧力空間30とを連通させるように設けられている。
 リリーフ孔21には、圧縮室31に開口した2つのリリーフポート21aと、2つのリリーフポート21aを固定スクロール2の台板2a内の途中で合流させて吐出圧力空間30に開口した1つのザグリ孔である合流ポート21bと、が設けられている。
The relief hole 21 is provided in the base plate 2a of the fixed scroll 2 so as to communicate the compression chamber 31 and the discharge pressure space 30 on the opposite side of the fixed scroll 2 from the side having the fixed spiral body 2b.
In the relief hole 21, two relief ports 21 a opened in the compression chamber 31 and one counterbore hole opened in the discharge pressure space 30 by joining the two relief ports 21 a in the middle of the base plate 2 a of the fixed scroll 2. And a confluence port 21b.
 2つのリリーフポート21aは、断面円形状であり、2つで一組となり、固定スクロール2の台板2aの厚み方向に向かって同一の孔径で設けられている。2つのリリーフポート21aは、固定スクロール2の固定渦巻体2bに隣接する領域にて圧縮室31に開口した開口部が形成されている。2つのリリーフポート21aの孔径は、揺動スクロール3の揺動渦巻体3bの厚みよりも小さい。 The two relief ports 21a are circular in cross section, and two are formed as a set with the same hole diameter in the thickness direction of the base plate 2a of the fixed scroll 2. The two relief ports 21 a are formed with openings that open to the compression chamber 31 in a region adjacent to the fixed spiral body 2 b of the fixed scroll 2. The hole diameters of the two relief ports 21 a are smaller than the thickness of the swinging spiral body 3 b of the swinging scroll 3.
 合流ポート21bは、断面円形状であり、2つで一組となった2つのリリーフポート21aを合流させる。合流ポート21bは、固定スクロール2の台板2aの厚み方向に向かって同一の孔径で設けられている。
 合流ポート21bの吐出圧力空間30に開口した開口部は、2つのリリーフポート21aの合流ポート21bに合流した開口部を含んだ範囲に形成されている。
The merge port 21b has a circular cross section, and the two relief ports 21a, which are a set of two, merge. The merge port 21 b is provided with the same hole diameter in the thickness direction of the base plate 2 a of the fixed scroll 2.
The opening part opened to the discharge pressure space 30 of the merging port 21b is formed in the range including the opening part joined to the merging port 21b of the two relief ports 21a.
 リリーフ弁22は、固定スクロール2の台板2aにおける吐出圧力空間30側の表面に、合流ポート21bの吐出圧力空間30に開口した開口部を開閉する自由端部22aと、固定スクロール2の台板2aに固定された固定端部22bと、を繋げて設けられている。つまり、合流ポート21bの1つに対応してリリーフ弁22が1つ配置されている。
 リリーフ弁22の自由端部22aは、合流ポート21bの吐出圧力空間30に開口した開口部を塞げるように、当該開口部よりも大きな面積を有している。
 リリーフ弁22の固定端部22bは、ボルト24を固定スクロール2の台板2aに螺合することで固定されている。また、ボルト24は、リリーフ弁22と共にストッパー23も固定している。
 リリーフ弁22は、自由端部22aと固定端部22bとをそれらの中間部よりも広い幅に形成されている。リリーフ弁22は、自由端部22aと固定端部22bとを結ぶ中心線25に沿って真っすぐ延びている。
The relief valve 22 includes a free end 22a that opens and closes an opening opened in the discharge pressure space 30 of the merge port 21b on the surface of the base plate 2a of the fixed scroll 2 on the discharge pressure space 30 side, and a base plate of the fixed scroll 2 And a fixed end 22b fixed to 2a. That is, one relief valve 22 is arranged corresponding to one of the merging ports 21b.
The free end 22a of the relief valve 22 has a larger area than the opening so as to close the opening that opens to the discharge pressure space 30 of the merging port 21b.
The fixed end 22 b of the relief valve 22 is fixed by screwing the bolt 24 to the base plate 2 a of the fixed scroll 2. The bolt 24 also fixes the stopper 23 together with the relief valve 22.
The relief valve 22 has a free end portion 22a and a fixed end portion 22b that are wider than their intermediate portions. The relief valve 22 extends straight along a center line 25 connecting the free end 22a and the fixed end 22b.
 ストッパー23は、リリーフ弁22が開弁したときに吐出圧力空間30に曲がりすぎないようにリリーフ弁22を後方から押える。ストッパー23は、リリーフ弁22よりも一回り大きな矩形形状であり、リリーフ弁22の自由端部22a側を初めから吐出圧力空間30側に曲げた形状に構成されている。ストッパー23は、リリーフ弁22の固定端部22bと共にボルト24を用いて固定されている。 The stopper 23 presses the relief valve 22 from the rear so that it does not bend too much into the discharge pressure space 30 when the relief valve 22 is opened. The stopper 23 has a rectangular shape that is slightly larger than the relief valve 22, and is configured such that the free end 22 a side of the relief valve 22 is bent from the beginning to the discharge pressure space 30 side. The stopper 23 is fixed using a bolt 24 together with the fixed end 22 b of the relief valve 22.
 そして、図2Aに示すように、合流ポート21bの吐出圧力空間30に開口した開口部は、リリーフ弁22の自由端部22aと固定端部22bとを結ぶ中心線25に対して線対称な円形状に形成されている。
 また、2つのリリーフポート21aの合流ポート21bに合流した開口部は、リリーフ弁22の自由端部22aと固定端部22bとを結ぶ中心線25に対して線対称に、中心線25に対して両側に配置されている。つまり、リリーフ弁22の中心線25に直交する直交線26上に2つのリリーフポート21aの合流ポート21bに合流した開口部の中心が位置する。また、2つのリリーフポート21aの合流ポート21bに合流した開口部の中心位置は、中心線25と直交線26との交点から等距離だけ離れている。
As shown in FIG. 2A, the opening opened to the discharge pressure space 30 of the merging port 21b is a circle symmetrical with respect to the center line 25 connecting the free end 22a and the fixed end 22b of the relief valve 22. It is formed into a shape.
The opening joined to the joining port 21b of the two relief ports 21a is symmetrical with respect to the center line 25 connecting the free end portion 22a and the fixed end portion 22b of the relief valve 22 with respect to the center line 25. Located on both sides. That is, the center of the opening joined to the joining port 21b of the two relief ports 21a is located on the orthogonal line 26 orthogonal to the center line 25 of the relief valve 22. In addition, the center position of the opening joined to the joining port 21b of the two relief ports 21a is separated from the intersection of the center line 25 and the orthogonal line 26 by an equal distance.
 図3Aは、本発明の実施の形態1に係るスクロール圧縮機100のリリーフ弁22の閉弁状態を示す説明図である。図3Bは、本発明の実施の形態1に係るスクロール圧縮機100のリリーフ弁22の開弁状態を示す説明図である。 FIG. 3A is an explanatory diagram showing a closed state of the relief valve 22 of the scroll compressor 100 according to Embodiment 1 of the present invention. FIG. 3B is an explanatory diagram showing the opened state of the relief valve 22 of the scroll compressor 100 according to Embodiment 1 of the present invention.
 固定スクロール2と揺動スクロール3の固定渦巻体2bおよび揺動渦巻体3bによって作られた圧縮室31は、吸入ポート14から冷媒を取り入れ、揺動スクロール3の揺動渦巻体終端部が固定スクロール2の固定渦巻体2bに接触して圧縮室31が閉じ込まれた時点から圧縮が行われる。
 揺動スクロール3の揺動運動に伴い圧縮室31は、固定渦巻体2bおよび揺動渦巻体3bの中心に向かって移動していく。
The compression chamber 31 formed by the fixed scroll 2 and the fixed scroll 2 b and the swing scroll 3 b of the fixed scroll 2 takes in the refrigerant from the suction port 14, and the end of the swing scroll of the swing scroll 3 is the fixed scroll. The compression is performed from the point of time when the compression chamber 31 is closed in contact with the two fixed spiral bodies 2b.
With the swinging motion of the swing scroll 3, the compression chamber 31 moves toward the center of the fixed spiral body 2b and the swing spiral body 3b.
 図3Aに示すように、移動する圧縮室31が固定スクロール2に設けられたリリーフ孔21と連通した際に、冷媒圧力が吐出圧力以下の場合には、リリーフ弁22は開弁せず、そのまま圧縮が続けられる。
 一方、図3Bに示すように、移動する圧縮室31が固定スクロール2に設けられたリリーフ孔21と連通した際に、その時点での圧縮室31内の冷媒圧力が吐出圧力以上となっている場合には、圧縮室31と吐出圧力空間30との圧力差によってリリーフ弁22が開弁し、冷媒が吐出圧力空間30にリリーフされる。
As shown in FIG. 3A, when the moving compression chamber 31 communicates with the relief hole 21 provided in the fixed scroll 2, if the refrigerant pressure is equal to or lower than the discharge pressure, the relief valve 22 does not open and remains as it is. Compression continues.
On the other hand, as shown in FIG. 3B, when the moving compression chamber 31 communicates with the relief hole 21 provided in the fixed scroll 2, the refrigerant pressure in the compression chamber 31 at that time is equal to or higher than the discharge pressure. In this case, the relief valve 22 is opened by the pressure difference between the compression chamber 31 and the discharge pressure space 30, and the refrigerant is relieved to the discharge pressure space 30.
 図4Aは、本発明の実施の形態1に係るスクロール圧縮機100における揺動渦巻体3bの1回転中のうちθ=0°の動作を示す圧縮工程図である。図4Bは、本発明の実施の形態1に係るスクロール圧縮機100における揺動渦巻体3bの1回転中のうちθ=90°の動作を示す圧縮工程図である。図4Cは、本発明の実施の形態1に係るスクロール圧縮機100における揺動渦巻体3bの1回転中のうちθ=180°の動作を示す圧縮工程図である。図4Dは、本発明の実施の形態1に係るスクロール圧縮機100における揺動渦巻体3bの1回転中のうちθ=270°の動作を示す圧縮工程図である。 FIG. 4A is a compression process diagram illustrating an operation of θ = 0 ° during one rotation of the oscillating spiral body 3b in the scroll compressor 100 according to Embodiment 1 of the present invention. FIG. 4B is a compression process diagram illustrating an operation of θ = 90 ° during one rotation of the oscillating spiral body 3b in the scroll compressor 100 according to Embodiment 1 of the present invention. FIG. 4C is a compression process diagram illustrating an operation of θ = 180 ° during one rotation of the oscillating spiral body 3b in the scroll compressor 100 according to Embodiment 1 of the present invention. FIG. 4D is a compression process diagram illustrating an operation of θ = 270 ° during one rotation of the oscillating spiral body 3b in the scroll compressor 100 according to Embodiment 1 of the present invention.
 図4A~図4Dに示すように、リリーフ機構20は、固定渦巻体2bおよび揺動渦巻体3bの外側から内側に向かって3つ配置されている。図4A~図4Dでは、リリーフ機構20を2つのリリーフポート21aの圧縮室31に開口した開口部で示している。2つのリリーフポート21aは、固定スクロール2の固定渦巻体2bに隣接する領域にて圧縮室31に開口した開口部が形成されている。2つのリリーフポート21aの孔径は、揺動スクロール3の揺動渦巻体3bの厚みよりも小さい。 4A to 4D, three relief mechanisms 20 are arranged from the outside to the inside of the fixed spiral body 2b and the swing spiral body 3b. 4A to 4D, the relief mechanism 20 is shown as an opening that opens into the compression chambers 31 of the two relief ports 21a. The two relief ports 21 a are formed with openings that open to the compression chamber 31 in a region adjacent to the fixed spiral body 2 b of the fixed scroll 2. The hole diameters of the two relief ports 21 a are smaller than the thickness of the swinging spiral body 3 b of the swinging scroll 3.
 2つのリリーフポート21aは、揺動スクロール3が揺動運動して揺動スクロール3の揺動渦巻体3bが2つのリリーフポート21aの圧縮室31に開口した開口部に重なる位置にて固定スクロール2の固定渦巻体2bに接触したときに、2つのリリーフポート21aの圧縮室31に開口した開口部が揺動スクロール3の揺動渦巻体3bの厚みで塞がれる。 The two relief ports 21a are fixed to the fixed scroll 2 at a position where the orbiting scroll 3 and the orbiting spiral body 3b of the orbiting scroll 3 overlap with the openings opened in the compression chambers 31 of the two relief ports 21a. When the fixed spiral body 2b is contacted, the openings opened in the compression chambers 31 of the two relief ports 21a are closed by the thickness of the rocking spiral body 3b of the rocking scroll 3.
 図4A~図4Dに示すように、2つのリリーフポート21aで現される3つのリリーフ機構20は、圧縮開始後から、吐出ポート16から吐出されるまでに、圧縮室31がどれか1つのリリーフ機構20に連通している状態を確保し、圧縮室31が過圧縮状態になるのを常時抑制している。 As shown in FIGS. 4A to 4D, the three relief mechanisms 20 represented by the two relief ports 21a are arranged so that any one of the compression chambers 31 from the start of compression to the discharge from the discharge port 16 has one relief. The state communicating with the mechanism 20 is ensured, and the compression chamber 31 is always suppressed from being overcompressed.
 従来のスクロール圧縮機では、リリーフ機構でのリリーフ量を増加または確保するためには、リリーフ孔の孔径を拡大するか、リリーフ孔の個数を増やす必要があった。しかし、その実現のためには、揺動スクロールの揺動渦巻体の厚みにおける両側の内外の圧縮室の連通を防止するために揺動渦巻体の厚みの増加あるいは複数のリリーフ孔を塞ぐリリーフ弁の部品点数の増加を行う必要があった。このため、これらがストロークボリューム拡大の阻害要因、コストの増加あるいは工数の増加の要因となっていた。
 実施の形態1では、揺動渦巻体3bの厚み削減によってリリーフ孔21のリリーフポート21aの孔径が従来以下となっても、リリーフポート21aを2つ設けることで、従来同等以上のリリーフ量を確保している。さらに、2つのリリーフポート21aは、吐出圧力空間30へのリリーフまでに流路を合流ポート21bに合流させ、この合流ポート21bの吐出圧力空間30への開口部を1つのリリーフ弁22で閉弁することで、部品点数の増加を抑えることができる。
 また、合流ポート21bの吐出圧力空間30に開口した開口部は、リリーフ弁22の自由端部22aと固定端部22bとを結ぶ中心線25に対して線対称な円形状に形成されている。また、2つのリリーフポート21aの合流ポート21bに合流した開口部は、リリーフ弁22の自由端部22aと固定端部22bとを結ぶ中心線25に対して線対称に、中心線25に対して両側に配置されている。このため、リリーフ孔21の合流ポート21bの吐出圧力空間30に開口した開口部から冷媒を吐出圧力空間30にリリーフする際に、リリーフ弁22にかかる力が中心線25に対して両側で均等となり、リリーフ弁22がねじれずに破壊され難く使用耐久性が向上する。また、リリーフ弁22の位置位相に合わせて死容積を最小化することができ、リリーフ量の確保と併せて圧縮機効率を維持、向上させることができる。
In the conventional scroll compressor, in order to increase or secure the relief amount in the relief mechanism, it is necessary to enlarge the diameter of the relief holes or increase the number of relief holes. However, in order to realize this, a relief valve that increases the thickness of the oscillating spiral body or blocks a plurality of relief holes to prevent communication between the inner and outer compression chambers on both sides in the thickness of the oscillating scroll body of the oscillating scroll. It was necessary to increase the number of parts. For this reason, these are factors that hinder stroke volume expansion, increase costs, and increase man-hours.
In the first embodiment, even if the hole diameter of the relief port 21a of the relief hole 21 is smaller than the conventional diameter by reducing the thickness of the oscillating spiral body 3b, the relief amount equal to or larger than the conventional one is secured by providing two relief ports 21a. is doing. Further, the two relief ports 21 a join the flow paths to the merge port 21 b until the relief to the discharge pressure space 30, and the opening to the discharge pressure space 30 of the merge port 21 b is closed by one relief valve 22. By doing so, an increase in the number of parts can be suppressed.
Moreover, the opening part opened to the discharge pressure space 30 of the confluence | merging port 21b is formed in the circular shape symmetrical with respect to the centerline 25 which connects the free end part 22a of the relief valve 22, and the fixed end part 22b. The opening joined to the joining port 21b of the two relief ports 21a is symmetrical with respect to the center line 25 connecting the free end portion 22a and the fixed end portion 22b of the relief valve 22 with respect to the center line 25. Located on both sides. For this reason, when the refrigerant is relieved to the discharge pressure space 30 from the opening portion opened to the discharge pressure space 30 of the confluence port 21 b of the relief hole 21, the force applied to the relief valve 22 becomes equal on both sides with respect to the center line 25. In addition, the relief valve 22 is not easily broken without being twisted, and the use durability is improved. Further, the dead volume can be minimized in accordance with the position phase of the relief valve 22, and the compressor efficiency can be maintained and improved together with securing the relief amount.
(変形例1~3)
 図5は、本発明の実施の形態1に係る変形例1のリリーフ機構20を示す上面図である。図6は、本発明の実施の形態1に係る変形例2のリリーフ機構20を示す上面図である。図7は、本発明の実施の形態1に係る変形例3のリリーフ機構20を示す上面図である。
(Modifications 1 to 3)
FIG. 5 is a top view showing the relief mechanism 20 of Modification 1 according to Embodiment 1 of the present invention. FIG. 6 is a top view showing the relief mechanism 20 of Modification 2 according to Embodiment 1 of the present invention. FIG. 7 is a top view showing the relief mechanism 20 of Modification 3 according to Embodiment 1 of the present invention.
 図5~図7に示すように、合流ポート21bの吐出圧力空間30に開口した開口部は、リリーフ弁22の自由端部22aと固定端部22bとを結ぶ中心線25に対して線対称な形状に形成されている。また、2つまたは3つのリリーフポート21aの合流ポート21bに合流した開口部は、リリーフ弁22の自由端部22aと固定端部22bとを結ぶ中心線25に対して線対称に配置されている。さらに、合流ポート21bの吐出圧力空間30に開口した開口部は、2つまたは3つのリリーフポートの合流ポート21bに合流した開口部を含んだ範囲に形成されている。
 図5に示す変形例1では、実施の形態1と同様に、2つのリリーフポート21aの合流ポート21bに合流した開口部は、リリーフ弁22の自由端部22aと固定端部22bとを結ぶ中心線25に対して線対称に、中心線の両側に配置されている。図6に示す変形例2および図7に示す変形例3では、2つまたは3つのリリーフポート21aの合流ポート21bに合流した開口部は、リリーフ弁22の自由端部22aと固定端部22bとを結ぶ中心線25に対して線対称に、中心に開口部を有して配置されている。
 このような変形例1~3であっても、実施の形態1と同様な効果を奏する。
As shown in FIGS. 5 to 7, the opening portion opened to the discharge pressure space 30 of the merging port 21b is axisymmetric with respect to the center line 25 connecting the free end portion 22a and the fixed end portion 22b of the relief valve 22. It is formed into a shape. Further, the opening joined to the joining port 21b of the two or three relief ports 21a is arranged symmetrically with respect to the center line 25 connecting the free end 22a and the fixed end 22b of the relief valve 22. . Furthermore, the opening part opened to the discharge pressure space 30 of the merging port 21b is formed in the range including the opening part merged with the merging port 21b of two or three relief ports.
In the first modification shown in FIG. 5, as in the first embodiment, the opening joined to the joining port 21b of the two relief ports 21a is the center connecting the free end 22a and the fixed end 22b of the relief valve 22. They are arranged symmetrically with respect to the line 25 on both sides of the center line. In Modification 2 shown in FIG. 6 and Modification 3 shown in FIG. 7, the opening joined to the merge port 21 b of the two or three relief ports 21 a is formed by a free end 22 a and a fixed end 22 b of the relief valve 22. Are arranged symmetrically with respect to the center line 25 connecting the two, with an opening at the center.
Even in the first to third modifications, the same effects as those of the first embodiment can be obtained.
(変形例4~7)
 図8は、本発明の実施の形態1に係る変形例4のリリーフ機構20を示す上面図である。図9は、本発明の実施の形態1に係る変形例5のリリーフ機構20を示す上面図である。図10は、本発明の実施の形態1に係る変形例6のリリーフ機構20を示す上面図である。図11は、本発明の実施の形態1に係る変形例7のリリーフ機構20を示す上面図である。
(Modifications 4 to 7)
FIG. 8 is a top view showing the relief mechanism 20 of Modification 4 according to Embodiment 1 of the present invention. FIG. 9 is a top view showing the relief mechanism 20 of Modification 5 according to Embodiment 1 of the present invention. FIG. 10 is a top view showing the relief mechanism 20 of Modification 6 according to Embodiment 1 of the present invention. FIG. 11 is a top view showing the relief mechanism 20 of Modification 7 according to Embodiment 1 of the present invention.
 図8~図11に示すように、合流ポート21bの吐出圧力空間30に開口した開口部は、リリーフ弁22の自由端部22aと固定端部22bとを結ぶ中心線25に対して線対称な形状に形成されている。しかしながら、2つまたは3つのリリーフポート21aの合流ポート21bに合流した開口部は、リリーフ弁22の自由端部22aと固定端部22bとを結ぶ中心線25に対して線対称に配置されていない。ただし、合流ポート21bの吐出圧力空間30に開口した開口部は、2つまたは3つのリリーフポート21aの合流ポート21bに合流した開口部を含んだ範囲に形成されている。
 このような変形例4~7では、2つまたは3つのリリーフポート21aの合流ポート21bに合流した開口部は、リリーフ弁22の自由端部22aと固定端部22bとを結ぶ中心線25に対して線対称に配置されていない。このため、リリーフする際に、リリーフ弁22にかかる力が中心線25に対して両側で均等となるバランスが若干弱まるが、実施の形態1と同様な効果を奏する。
As shown in FIGS. 8 to 11, the opening opened to the discharge pressure space 30 of the merging port 21b is axisymmetric with respect to the center line 25 connecting the free end 22a and the fixed end 22b of the relief valve 22. It is formed into a shape. However, the opening joined to the joining port 21b of the two or three relief ports 21a is not arranged symmetrically with respect to the center line 25 connecting the free end 22a and the fixed end 22b of the relief valve 22. . However, the opening part opened to the discharge pressure space 30 of the merging port 21b is formed in the range including the opening part merged with the merging port 21b of the two or three relief ports 21a.
In such modifications 4 to 7, the opening joined to the joining port 21b of the two or three relief ports 21a is in relation to the center line 25 connecting the free end 22a and the fixed end 22b of the relief valve 22. Are not arranged symmetrically. For this reason, when relief is performed, the balance in which the force applied to the relief valve 22 is equal on both sides with respect to the center line 25 is slightly weakened, but the same effect as in the first embodiment can be obtained.
実施の形態2.
 図12は、本発明の実施の形態2に係るスクロール圧縮機100を適用した冷凍サイクル装置200を示す冷媒回路図である。
 図12に示すように、冷凍サイクル装置200は、スクロール圧縮機100、凝縮器80、膨張弁81および蒸発器82を備えている。これらスクロール圧縮機100、凝縮器80、膨張弁81および蒸発器82が冷媒配管で接続されて冷凍サイクル回路を形成している。そして、蒸発器82から流出した冷媒は、スクロール圧縮機100に吸入されて高温高圧となる。高温高圧となった冷媒は、凝縮器80において凝縮されて液体になる。液体となった冷媒は、膨張弁81で減圧膨張されて低温低圧の気液二相となり、気液二相の冷媒が蒸発器82において熱交換される。
 実施の形態1および変形例1~7のスクロール圧縮機100は、このような冷凍サイクル装置200に適用できる。なお、冷凍サイクル装置200としては、たとえば空気調和機、冷凍装置および給湯器などが挙げられる。
Embodiment 2. FIG.
FIG. 12 is a refrigerant circuit diagram showing a refrigeration cycle apparatus 200 to which the scroll compressor 100 according to Embodiment 2 of the present invention is applied.
As shown in FIG. 12, the refrigeration cycle apparatus 200 includes a scroll compressor 100, a condenser 80, an expansion valve 81, and an evaporator 82. The scroll compressor 100, the condenser 80, the expansion valve 81, and the evaporator 82 are connected by a refrigerant pipe to form a refrigeration cycle circuit. Then, the refrigerant flowing out of the evaporator 82 is sucked into the scroll compressor 100 and becomes high temperature and pressure. The high-temperature and high-pressure refrigerant is condensed in the condenser 80 to become a liquid. The refrigerant that has become liquid is decompressed and expanded by the expansion valve 81 to become a low-temperature and low-pressure gas-liquid two-phase, and the gas-liquid two-phase refrigerant is heat-exchanged in the evaporator 82.
The scroll compressor 100 according to Embodiment 1 and Modifications 1 to 7 can be applied to such a refrigeration cycle apparatus 200. Note that examples of the refrigeration cycle apparatus 200 include an air conditioner, a refrigeration apparatus, and a water heater.
 以上の実施の形態1、2によると、スクロール圧縮機100は、密閉容器18を備えている。密閉容器18内に設けられ、それぞれが台板2a、3a上に設けられた固定渦巻体2bおよび揺動渦巻体3bを含み、相互の固定渦巻体2bおよび揺動渦巻体3bが組み合わされて圧縮室31を形成する固定スクロール2および揺動スクロール3を有する圧縮機構部1を備えている。揺動スクロール3を駆動する電動機構部19を備えている。電動機構部19の回転力を揺動スクロール3に揺動運動となるように伝達する回転軸7を備えている。固定スクロール2の台板2aには、圧縮室31と固定スクロール2の固定渦巻体2bを有する側とは反対側の吐出圧力空間30とを連通させるリリーフ孔21が設けられている。リリーフ孔21には、圧縮室31に開口した2つまたは3つのリリーフポート21aと、2つまたは3つのリリーフポート21aを合流させて吐出圧力空間30に開口した合流ポート21bと、が設けられている。固定スクロール2の台板2aにおける吐出圧力空間30側の表面には、合流ポート21bの開口部を開閉する自由端部22aと固定スクロール2の台板2aに固定された固定端部22bとを繋げたリリーフ弁22が設けられている。合流ポート21bの開口部は、リリーフ弁22の自由端部22aと固定端部22bとを結ぶ中心線25に対して線対称な形状に形成されている。
 この構成によれば、リリーフ孔21の合流ポート21bの開口部から冷媒を吐出圧力空間30にリリーフする際に、リリーフ弁22にかかる力が中心線25に対して両側で均等となり、リリーフ弁22がねじれずに破壊され難く使用耐久性が向上する。
According to the first and second embodiments, the scroll compressor 100 includes the sealed container 18. The fixed spiral body 2b and the swing spiral body 3b, which are provided in the sealed container 18 and are respectively provided on the base plates 2a and 3a, are compressed by combining the fixed spiral body 2b and the swing spiral body 3b. A compression mechanism 1 having a fixed scroll 2 and a swinging scroll 3 forming a chamber 31 is provided. An electric mechanism unit 19 for driving the orbiting scroll 3 is provided. A rotating shaft 7 is provided for transmitting the rotational force of the electric mechanism section 19 to the orbiting scroll 3 so as to be in an oscillating motion. The base plate 2a of the fixed scroll 2 is provided with a relief hole 21 for communicating the compression chamber 31 with the discharge pressure space 30 on the opposite side of the fixed scroll 2 from the side having the fixed spiral body 2b. The relief hole 21 is provided with two or three relief ports 21a opened in the compression chamber 31, and a merge port 21b opened in the discharge pressure space 30 by joining the two or three relief ports 21a. Yes. A surface of the base plate 2a of the fixed scroll 2 on the discharge pressure space 30 side is connected with a free end portion 22a that opens and closes the opening of the merging port 21b and a fixed end portion 22b fixed to the base plate 2a of the fixed scroll 2. A relief valve 22 is provided. The opening of the merging port 21b is formed in a line-symmetric shape with respect to the center line 25 connecting the free end 22a and the fixed end 22b of the relief valve 22.
According to this configuration, when the refrigerant is relieved from the opening of the confluence port 21 b of the relief hole 21 to the discharge pressure space 30, the force applied to the relief valve 22 is equal on both sides with respect to the center line 25. It is difficult to break without being twisted, and durability is improved.
 2つまたは3つのリリーフポート21aの合流ポート21bに合流した開口部は、リリーフ弁22の自由端部22aと固定端部22bとを結ぶ中心線25に対して線対称に配置されている。
 この構成によれば、リリーフ孔21の合流ポート21bの開口部から冷媒を吐出圧力空間30にリリーフする際に、リリーフ弁22にかかる力が中心線25に対して両側で均等となる効果が向上し、リリーフ弁22がねじれずに破壊され難く使用耐久性が向上する。
The opening joined to the joining port 21b of the two or three relief ports 21a is arranged symmetrically with respect to the center line 25 connecting the free end 22a and the fixed end 22b of the relief valve 22.
According to this configuration, when the refrigerant is relieved from the opening of the junction port 21 b of the relief hole 21 to the discharge pressure space 30, the effect that the force applied to the relief valve 22 is equal on both sides with respect to the center line 25 is improved. In addition, the relief valve 22 is not easily broken without being twisted, and the use durability is improved.
 合流ポート21bの開口部は、2つまたは3つのリリーフポート21aの合流ポート21bに合流した開口部を含んだ範囲に形成されている。
 この構成によれば、2つまたは3つのリリーフポート21aの合流ポート21bに合流した開口部が合流ポート21bで狭められずに過圧縮状態の冷媒を噴出できる。このため、2つまたは3つのリリーフポート21aからの冷媒が合流ポート21bに合流した際に、冷媒に余計な流れの乱れが生じない。
 また、合流ポート21bは、ザグリ孔に形成されると共に、2つまたは3つのリリーフポート21aは、合流ポート21bから真下に貫通させて直接形成することができ、リリーフ孔21が簡単に加工でき、工数が抑制され、コストが抑制できる。
The opening portion of the merge port 21b is formed in a range including the opening portion that merges with the merge port 21b of the two or three relief ports 21a.
According to this configuration, the overcompressed refrigerant can be ejected without the opening joined to the joining port 21b of the two or three relief ports 21a being narrowed by the joining port 21b. For this reason, when the refrigerant from the two or three relief ports 21a merges with the merge port 21b, the refrigerant is not disturbed excessively.
In addition, the merge port 21b is formed in a counterbore hole, and the two or three relief ports 21a can be directly formed through the merge port 21b so that the relief hole 21 can be easily processed. Man-hours are reduced and costs can be reduced.
 2つまたは3つのリリーフポート21aは、固定スクロール2の台板2aの厚み方向に向かって同一の孔径で設けられている。合流ポート21bは、固定スクロール2の台板2aの厚み方向に向かって同一の孔径で設けられている。
 この構成によれば、2つまたは3つのリリーフポート21aおよび合流ポート21bを固定スクロール2の台板2aの厚み方向に向かって真っすぐ貫通する貫通孔に形成すればよく、リリーフ孔21を簡単に加工することができ、工数が抑制され、コストが抑制できる。
The two or three relief ports 21 a are provided with the same hole diameter in the thickness direction of the base plate 2 a of the fixed scroll 2. The merge port 21 b is provided with the same hole diameter in the thickness direction of the base plate 2 a of the fixed scroll 2.
According to this configuration, the two or three relief ports 21a and the merging port 21b may be formed as through holes that penetrate straight in the thickness direction of the base plate 2a of the fixed scroll 2, and the relief holes 21 can be easily processed. It is possible to reduce the man-hours and costs.
 2つまたは3つのリリーフポート21aは、固定スクロール2の固定渦巻体2bに隣接する領域にて圧縮室31に開口した開口部が形成されている。揺動スクロール3が揺動運動して揺動スクロール3の揺動渦巻体3bが2つまたは3つのリリーフポート21aの圧縮室31に開口した開口部に重なる位置にて固定スクロール2の固定渦巻体2bに接触したときに、2つまたは3つのリリーフポート21aの圧縮室31に開口した開口部が揺動スクロール3の揺動渦巻体3bの厚みで塞がれる。
 この構成によれば、2つまたは3つのリリーフポート21aは、揺動スクロール3の揺動渦巻体3bの両側における内外の圧縮室31に連通してしまうことがない。
The two or three relief ports 21 a are formed with openings that open to the compression chamber 31 in a region adjacent to the fixed spiral body 2 b of the fixed scroll 2. The fixed scroll 2 of the fixed scroll 2 is moved at a position where the swing scroll 3 is swung so that the swing scroll 3b of the swing scroll 3 overlaps the openings of the two or three relief ports 21a opened in the compression chambers 31. When contacting 2b, the openings of the two or three relief ports 21a opened in the compression chamber 31 are closed by the thickness of the oscillating spiral body 3b of the oscillating scroll 3.
According to this configuration, the two or three relief ports 21a do not communicate with the inner and outer compression chambers 31 on both sides of the swing scroll 3b of the swing scroll 3.
 冷凍サイクル装置200は、スクロール圧縮機100を備えている。
 この構成によれば、スクロール圧縮機100を備えている冷凍サイクル装置200は、リリーフ孔21の合流ポート21bの開口部から冷媒を吐出圧力空間30にリリーフする際に、リリーフ弁22にかかる力が中心線25に対して両側で均等となり、リリーフ弁22がねじれずに破壊され難く使用耐久性が向上する。
The refrigeration cycle apparatus 200 includes a scroll compressor 100.
According to this configuration, when the refrigeration cycle apparatus 200 including the scroll compressor 100 relieves the refrigerant from the opening of the merge port 21 b of the relief hole 21 to the discharge pressure space 30, the force applied to the relief valve 22 is reduced. It becomes equal on both sides with respect to the center line 25, and the relief valve 22 is not twisted and is not easily broken, so that the use durability is improved.
 なお、1つのリリーフ孔に形成されるリリーフポートの数は、上記の2つまたは3つに限られない。1つのリリーフ孔に形成されるリリーフポートの数は、複数であれば4つ以上であってもよい。 Note that the number of relief ports formed in one relief hole is not limited to the above two or three. The number of relief ports formed in one relief hole may be four or more as long as it is plural.
 1 圧縮機構部、2 固定スクロール、2a 台板、2b 固定渦巻体、3 揺動スクロール、3a 台板、3b 揺動渦巻体、4 ガイドフレーム、5 コンプライアントフレーム、6 オルダムリング、7 回転軸、8 ロータ、9 バランスウェイト、10 ステータ、12 カップ、14 吸入ポート、15 吐出管、16 吐出ポート、18 密閉容器、19 電動機構部、20 リリーフ機構、21 リリーフ孔、21a リリーフポート、21b 合流ポート、22 リリーフ弁、22a 自由端部、22b 固定端部、23 ストッパー、24 ボルト、25 中心線、26 直交線、30 吐出圧力空間、31 圧縮室、80 凝縮器、81 膨張弁、82 蒸発器、100 スクロール圧縮機、200 冷凍サイクル装置。 1 compression mechanism section, 2 fixed scroll, 2a base plate, 2b fixed spiral body, 3 swing scroll, 3a base plate, 3b swing spiral body, 4 guide frame, 5 compliant frame, 6 Oldham ring, 7 rotating shaft, 8 rotor, 9 balance weight, 10 stator, 12 cup, 14 suction port, 15 discharge pipe, 16 discharge port, 18 sealed container, 19 electric mechanism, 20 relief mechanism, 21 relief hole, 21a relief port, 21b merge port, 22 relief valve, 22a free end, 22b fixed end, 23 stopper, 24 bolt, 25 center line, 26 orthogonal line, 30 discharge pressure space, 31 compression chamber, 80 condenser, 81 expansion valve, 82 evaporator, 100 Scroll compressor, 200 refrigeration cycle Location.

Claims (6)

  1.  密閉容器と、
     前記密閉容器内に設けられ、それぞれが台板上に設けられた渦巻体を含み、相互の前記渦巻体が組み合わされて圧縮室を形成する固定スクロールおよび揺動スクロールを有する圧縮機構部と、
     前記揺動スクロールを駆動する電動機構部と、
     前記電動機構部の回転力を前記揺動スクロールに揺動運動となるように伝達する回転軸と、
    を備え、
     前記固定スクロールの前記台板には、前記圧縮室と前記固定スクロールの前記渦巻体を有する側とは反対側の吐出圧力空間とを連通させるリリーフ孔が設けられ、
     前記リリーフ孔には、前記圧縮室に開口した複数のリリーフポートと、前記複数のリリーフポートを合流させて前記吐出圧力空間に開口した合流ポートと、が設けられ、
     前記固定スクロールの前記台板における前記吐出圧力空間側の表面には、前記合流ポートの開口部を開閉する自由端部と前記固定スクロールの前記台板に固定された固定端部とを繋げたリリーフ弁が設けられ、
     前記合流ポートの開口部は、前記リリーフ弁の前記自由端部と前記固定端部とを結ぶ中心線に対して線対称な形状に形成されたスクロール圧縮機。
    A sealed container;
    A compression mechanism having a fixed scroll and an orbiting scroll that are provided in the sealed container, each including a spiral body provided on a base plate, and each of the spiral bodies is combined to form a compression chamber;
    An electric mechanism for driving the orbiting scroll;
    A rotating shaft that transmits the rotational force of the electric mechanism unit to the orbiting scroll so as to be in an oscillating motion;
    With
    The base plate of the fixed scroll is provided with a relief hole for communicating the compression chamber and a discharge pressure space on the side opposite to the side of the fixed scroll having the spiral body,
    The relief hole is provided with a plurality of relief ports opened in the compression chamber, and a merge port opened in the discharge pressure space by joining the plurality of relief ports,
    A relief in which a free end portion that opens and closes the opening of the merging port and a fixed end portion fixed to the base plate of the fixed scroll are connected to the surface of the base plate of the fixed scroll on the discharge pressure space side. A valve is provided,
    The opening of the merging port is a scroll compressor formed in a line symmetric shape with respect to a center line connecting the free end portion and the fixed end portion of the relief valve.
  2.  前記複数のリリーフポートの前記合流ポートに合流した開口部は、前記リリーフ弁の前記自由端部と前記固定端部とを結ぶ中心線に対して線対称に配置された請求項1に記載のスクロール圧縮機。 2. The scroll according to claim 1, wherein the openings joined to the joining ports of the plurality of relief ports are arranged in line symmetry with respect to a center line connecting the free end portion and the fixed end portion of the relief valve. Compressor.
  3.  前記合流ポートの開口部は、前記複数のリリーフポートの前記合流ポートに合流した開口部を含んだ範囲に形成された請求項1または2に記載のスクロール圧縮機。 The scroll compressor according to claim 1 or 2, wherein the opening of the merging port is formed in a range including an opening merging with the merging port of the plurality of relief ports.
  4.  前記複数のリリーフポートは、前記固定スクロールの前記台板の厚み方向に向かって同一の孔径で設けられ、
     前記合流ポートは、前記固定スクロールの前記台板の厚み方向に向かって同一の孔径で設けられた請求項1~3のいずれか1項に記載のスクロール圧縮機。
    The plurality of relief ports are provided with the same hole diameter in the thickness direction of the base plate of the fixed scroll,
    The scroll compressor according to any one of claims 1 to 3, wherein the merging port is provided with the same hole diameter in a thickness direction of the base plate of the fixed scroll.
  5.  前記複数のリリーフポートは、前記固定スクロールの前記渦巻体に隣接する領域にて前記圧縮室に開口した開口部が形成され、前記揺動スクロールが揺動運動して前記揺動スクロールの前記渦巻体が前記複数のリリーフポートの前記圧縮室に開口した開口部に重なる位置にて前記固定スクロールの前記渦巻体に接触したときに、前記複数のリリーフポートの前記圧縮室に開口した開口部が前記揺動スクロールの前記渦巻体の厚みで塞がれる請求項1~4のいずれか1項に記載のスクロール圧縮機。 The plurality of relief ports are formed with openings that are open to the compression chamber in a region adjacent to the spiral body of the fixed scroll, and the swing body of the swing scroll is moved by the swing motion of the swing scroll. When the plurality of relief ports contact the spiral body of the fixed scroll at a position overlapping with the openings opened to the compression chambers of the plurality of relief ports, the openings opened to the compression chambers of the plurality of relief ports The scroll compressor according to any one of claims 1 to 4, wherein the scroll compressor is closed by a thickness of the spiral body of the dynamic scroll.
  6.  請求項1~5のいずれか1項に記載のスクロール圧縮機を備えた冷凍サイクル装置。 A refrigeration cycle apparatus comprising the scroll compressor according to any one of claims 1 to 5.
PCT/JP2016/056933 2016-03-07 2016-03-07 Scroll compressor and refrigeration cycle device WO2017154064A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/056933 WO2017154064A1 (en) 2016-03-07 2016-03-07 Scroll compressor and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/056933 WO2017154064A1 (en) 2016-03-07 2016-03-07 Scroll compressor and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2017154064A1 true WO2017154064A1 (en) 2017-09-14

Family

ID=59789109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056933 WO2017154064A1 (en) 2016-03-07 2016-03-07 Scroll compressor and refrigeration cycle device

Country Status (1)

Country Link
WO (1) WO2017154064A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04255589A (en) * 1991-02-08 1992-09-10 Toshiba Corp Scroll type compressor
JP2008286095A (en) * 2007-05-17 2008-11-27 Daikin Ind Ltd Scroll compressor
JP2011149376A (en) * 2010-01-22 2011-08-04 Daikin Industries Ltd Scroll compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04255589A (en) * 1991-02-08 1992-09-10 Toshiba Corp Scroll type compressor
JP2008286095A (en) * 2007-05-17 2008-11-27 Daikin Ind Ltd Scroll compressor
JP2011149376A (en) * 2010-01-22 2011-08-04 Daikin Industries Ltd Scroll compressor

Similar Documents

Publication Publication Date Title
KR101316247B1 (en) 2 stage rotary compressor
WO2013145713A1 (en) Compressor
WO2014178189A1 (en) Scroll compressor
US20080298992A1 (en) Scroll Expander
CN103742410A (en) Rotary compressor, and compression unit and air conditioner thereof
JP4022554B2 (en) Variable capacity rotary compressor
JP2011089499A (en) Scroll compressor
JP5187418B2 (en) Scroll compressor
JP6320562B2 (en) Scroll compressor
KR102409675B1 (en) Compressor having enhanced discharge structure
CN103582762A (en) Hermetically sealed compressor and refrigeration cycle device
WO2017154064A1 (en) Scroll compressor and refrigeration cycle device
JP5771739B2 (en) Scroll compressor
JP5506839B2 (en) Scroll compressor and air conditioner
JP4423024B2 (en) Scroll compressor
JP2009036140A (en) Scroll compressor and air conditioner
WO2018021234A1 (en) Scroll compressor
JP2011047382A (en) Scroll compressor
JP6742567B1 (en) Scroll compressor and refrigeration cycle device
JP5789581B2 (en) Scroll compressor
JP6926635B2 (en) Scroll compressor
JPH0727065A (en) Scroll type fluid machine
JP4752812B2 (en) Pressure vessel
JP2020008009A (en) Scroll compressor
JP6943345B2 (en) Multi-stage compressor

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893396

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16893396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP