WO2017152800A1 - 一种用于用户设备、基站中的用于低延迟通信的方法和装置 - Google Patents

一种用于用户设备、基站中的用于低延迟通信的方法和装置 Download PDF

Info

Publication number
WO2017152800A1
WO2017152800A1 PCT/CN2017/075352 CN2017075352W WO2017152800A1 WO 2017152800 A1 WO2017152800 A1 WO 2017152800A1 CN 2017075352 W CN2017075352 W CN 2017075352W WO 2017152800 A1 WO2017152800 A1 WO 2017152800A1
Authority
WO
WIPO (PCT)
Prior art keywords
signaling
occupied
positive integer
duration
prb
Prior art date
Application number
PCT/CN2017/075352
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2017152800A1 publication Critical patent/WO2017152800A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to transmission schemes in wireless communication systems, and more particularly to methods and apparatus for control channels based on low frequency transmission of cellular networks.
  • the delay of the LTE network includes air interface delay, signal processing delay, and transmission delay between nodes. With the upgrade of the radio access network and the core network, the transmission delay is effectively reduced. With the application of new semiconductors with higher processing speeds, signal processing delays are also significantly reduced.
  • a TTI Transmission Time Interval
  • a subframe or a Physical Resource Block (PB) corresponds to one ms (milli-second) in time.
  • An LTE subframe includes two time slots (Time Slots) - a first time slot and a second time slot, respectively.
  • the PDCCH Physical Downlink Control Channel
  • a OFDM Orthogonal Frequency Division Multiplexing
  • PCFICH Physical Control Format Indicator Channel
  • the LTE Release-10 system introduces an EPDCCH (Enhanced Physical Downlink Control Channel), which occupies the PRB pair from the Bth OFDM symbol to the last OFDM symbol of the PRB pair, and the B is a high-level letter.
  • EPDCCH Enhanced Physical Downlink Control Channel
  • a and PCFICH indicate a joint decision.
  • Reducing the air interface delay is one of the effective means to reduce the delay of the LTE network.
  • an intuitive method is to design sTTI (Short-TTI, less than 1ms) to replace the existing LTE subframe.
  • sTTI Short-TTI, less than 1ms
  • the present invention provides a solution. It should be noted that, in the case of no conflict, the features in the embodiments and embodiments in the UE (User Equipment) of the present application can be applied to the base station, and vice versa. Further, the features of the embodiments and the embodiments of the present application may be combined with each other arbitrarily without conflict.
  • an intuitive method is to use the existing PDCCH for the scheduling of sTTI.
  • the inventors found through research that the above intuitive method leads to the lack of scheduling flexibility, and the PDCCH cannot accommodate a large number of sTTI-based scheduling, thereby losing the advantage of low latency of the sTTI system.
  • Another intuitive method is to use the existing EPDCCH for the scheduling of the sTTI.
  • the EPDCCH does not have the problem of capacity limitation of the PDCCH, since the EPDCCH covers all OFDM symbols of one LTE subframe, the decoded EPDCCH must wait for one LTE sub- The last OFDM symbol of the frame, which will bring a large delay, does not meet the original intention of the sTTI system.
  • the invention discloses a method in a base station supporting low-latency wireless communication, which comprises the following steps:
  • Step A Send a first signaling, the first signaling indicating a set of first PRB pairs.
  • Step B Sending second signaling, the second signaling including scheduling information of the first data.
  • Step C Send the first data or receive the first data.
  • the second signaling is physical layer signaling, and the second signaling is located in the first PRB pair set in the frequency domain.
  • the first set of PRB pairs includes a subset of M PRB pairs.
  • the PRB pair subset contains K PRB pairs.
  • the M is a positive integer greater than 1
  • the K is a positive integer greater than one.
  • the second signaling is transmitted in a first time interval in an LTE subframe in the time domain. The duration of the first time interval in the time domain does not exceed 0.5 ms.
  • the essence of the above design is to allocate independent PRB pair resources in the frequency domain for the control channel of the LTE system sTTI.
  • the PRB is used for the part of the resource that belongs to the first time interval in the time domain.
  • the method can compress the control signaling of the sTTI into the first time interval instead of transmitting on an LTE subframe like the EPDCCH, thereby advancing the blind decoding time of the control channel completing the sTTI, thereby speeding up the control signaling indication.
  • the detection of data signaling reduces the overall latency of the system.
  • the first signaling is high layer signaling.
  • the first signaling is user-specific (UE-specific) signaling of RRC (Radio Resource Control).
  • RRC Radio Resource Control
  • the first signaling is cell-specific signaling of RRC (Radio Resource Control).
  • RRC Radio Resource Control
  • the first signaling is RRC (Radio Resource Control) sTTI-specific (Cell-specific) signaling.
  • the second signaling corresponding to the sTTI of the same duration shares the same set of first PRB pairs.
  • the essence of the above embodiment is to allocate the same PRB set for the control channel of the sTTI of the same duration to save the overhead of control signaling.
  • the second signaling is DCI (Downlink Control Information) for downlink scheduling (Downlink Grant).
  • DCI Downlink Control Information
  • Downlink Grant Downlink Grant
  • the second signaling is one of DCI formats ⁇ 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 2C, 2D ⁇ .
  • the second signaling is a DCI for downlink scheduling
  • the base station sends the first data in step C.
  • the first signaling is a DCI for Uplink Grant.
  • the first signaling is one of DCI formats ⁇ 0, 4 ⁇ .
  • the second signaling is a DCI for uplink scheduling
  • the base station receives the first data in step C.
  • the first data corresponds to a transmission of a DL-SCH (Downlink Shared Channel).
  • DL-SCH Downlink Shared Channel
  • the first data corresponds to a transmission of an UL-SCH (Uplink Shared Channel).
  • UL-SCH Uplink Shared Channel
  • the first signaling further indicates K.
  • the duration of the first time interval in the time domain is not less than 2192 Ts, and the Ts is 1/30720 milliseconds.
  • the duration of the first time interval in the time domain is ⁇ 0.5 milliseconds, 1/4 millisecond, 2/7 millisecond, 3/14 millisecond, 1/7 millisecond, 1/14 millisecond ⁇ One.
  • the duration of the first time interval in the time domain is one of ⁇ 0.5 milliseconds, 8768 Ts, 6576 Ts, 4384 Ts, 2192 Ts ⁇ , and the Ts is 1/30720 milliseconds.
  • the first PRB pair set includes M*K PRB pairs.
  • the M*K PRB pairs belong to one LTE system bandwidth.
  • the M*K PRB pairs are contiguous in the frequency domain.
  • the M*K PRB pairs are discrete in the frequency domain.
  • the K PRB pairs occupied by a given PRB pair subset are consecutive in the frequency domain, and the M PRB pair subsets are discrete in the frequency domain.
  • the given PRB pair subset is any one of the M PRB pair subsets.
  • the K PRB pairs occupied by a given PRB pair are discrete in the frequency domain.
  • the given PRB pair subset is any one of the M PRB pair subsets.
  • the step B further includes the following steps:
  • the T time intervals belong to one LTE subframe. Any two of the T time intervals have no overlap in the time domain. The duration of the time interval in the time domain does not exceed 0.5 ms.
  • the T is a positive integer greater than one.
  • the advantage of the above steps is that the base station can limit the transmission of the second signaling to the first time interval, that is, the shorter time window, thereby ensuring that the user can start and end the blind decoding of the control signaling as early as possible, thereby reducing the data. Delay in channel reception.
  • the T is equal to one of ⁇ 2, 3, 4, 7, 14 ⁇ .
  • the T is indicated by higher layer signaling.
  • the T time intervals are continuous in time.
  • the duration of each time interval is the same.
  • the duration of at least two time intervals in the T time intervals is different.
  • the duration of each time interval is ⁇ 0.5 milliseconds, 1/4 millisecond, 2/7 millisecond, 3/14 millisecond, 1/7 millisecond, 1/14 millisecond ⁇ One of them.
  • the duration of each time interval is one of ⁇ 0.5 milliseconds, 8768Ts, 6576Ts, 4384Ts, 2192Ts ⁇ , and the Ts is 1/30720 milliseconds.
  • the step A further includes the following steps:
  • Step A1 Receive third signaling, the third signaling indicating the duration of the shortest sTTI that the UE can support.
  • the third signaling is high layer signaling.
  • the duration of the sTTI corresponding to the first data is greater than or equal to the duration of the shortest sTTI that the UE can support.
  • the third signaling is user-specific signaling of RRC.
  • the duration of the shortest sTTI that the UE can support includes at least one of the following information:
  • the shortest time window occupied by the physical layer channel corresponding to the DL-SCH received by the UE is the shortest time window occupied by the physical layer channel corresponding to the DL-SCH received by the UE.
  • the shortest time window occupied by the physical layer channel corresponding to the DL-SCH is different from the shortest time window occupied by the physical layer channel corresponding to the UL-SCH.
  • the shortest time window occupied by the physical layer channel corresponding to the DL-SCH is the same as the shortest time window occupied by the physical layer channel corresponding to the UL-SCH.
  • the duration of the shortest time window is ⁇ 0.5 milliseconds, 1/4 millisecond, 2/7 millisecond, 3/14 millisecond, 1/7 millisecond, 1/14 millisecond ⁇ One.
  • the duration of the shortest time window is One of ⁇ 0.5 milliseconds, 8768Ts, 6576Ts, 4384Ts, 2192Ts ⁇ , the Ts is 1/30720 milliseconds.
  • the RE (Resource Element) occupied by the second signaling is composed of Q improved EREGs (Enhanced Resource Element Groups).
  • Q is a positive integer.
  • the REs occupied by one of the improved EREGs are distributed over P pairs of PRBs included in a subset of PRB pairs.
  • P is a positive integer not greater than K and greater than one.
  • the method has the advantages that the PRB occupied by the second signaling is evenly distributed in the first PRB pair set to implement the frequency domain diversity gain.
  • the improved EREG occupies 9 REs under an N-CP (Normal Cyclic Prefix).
  • the K is less than 10, and the RE occupied by the one improved EREG is distributed over all PRB pairs included in a subset of PRB pairs.
  • the improved EREG occupies 8 REs under an E-CP (Extended Cyclic Prefix).
  • the K is less than 9, and the RE occupied by the one improved EREG is distributed over all PRB pairs included in a subset of PRB pairs.
  • the improved EREG is an EREG.
  • the Q is a positive integer multiple of four.
  • the P is equal to the K.
  • the RE occupied by the second signaling is composed of Q improved EREGs.
  • Q is a positive integer.
  • the RE occupied by one of the improved EREGs is mapped into the first PRB pair set according to the mapping of ⁇ frequency domain first, time domain second ⁇ .
  • the improved EREG occupies 9 REs under an N-CP (Normal Cyclic Prefix).
  • the improved EREG occupies 8 REs under an E-CP (Extended Cyclic Prefix).
  • the improved EREG is an EREG.
  • the Q is a positive integer multiple of four.
  • the Q improved EREGs are in accordance with the modified EREG number
  • the second mapping is mapped to the first PRB pair subset, and follows the mapping manner of ⁇ frequency domain first, time domain second ⁇ .
  • the K is fixed, or the K is configured by higher layer signaling.
  • the K is related to the duration of the shortest sTTI that the UE indicated by the third signaling can support.
  • the K is equal to 2
  • the duration of the shortest sTTI is 0.5 (ms).
  • the K is equal to one of ⁇ 3, 4 ⁇ , and the duration of the shortest sTTI is 2/7 (ms).
  • the K is equal to one of ⁇ 3, 4 ⁇ , and the duration of the shortest sTTI is 1/4 (ms).
  • the K is equal to one of ⁇ 3, 4 ⁇ , and the duration of the shortest sTTI is 3/14 (ms).
  • the K is equal to 6, and the duration of the shortest sTTI is 1/7 (ms).
  • the K is equal to 12 and the duration of the shortest sTTI is 1/14 (ms).
  • the K is equal to one of ⁇ 3, 4 ⁇ , and the duration of the shortest sTTI is 8768 Ts.
  • the Ts is 1/30720 milliseconds.
  • the K is equal to one of ⁇ 3, 4 ⁇ , and the duration of the shortest sTTI is 6576 Ts.
  • the Ts is 1/30720 milliseconds.
  • the K is equal to 6, and the duration of the shortest sTTI is 4384 Ts.
  • the Ts is 1/30720 milliseconds.
  • the K is equal to 12 and the duration of the shortest sTTI is 2192 Ts.
  • the Ts is 1/30720 milliseconds.
  • the K is implicitly configured by higher layer signaling.
  • the K is equal to 2
  • the high layer signaling explicitly indicates that the duration of the first time interval is 0.5 ms.
  • the K is equal to one of ⁇ 3, 4 ⁇ , and the high layer signaling explicitly indicates that the duration of the first time interval is 2/7 (ms).
  • the K is equal to one of ⁇ 3, 4 ⁇ , and
  • the high layer signaling explicitly indicates that the duration of the first time interval is 1/4 (ms).
  • the K is equal to one of ⁇ 3, 4 ⁇ , and the high layer signaling explicitly indicates that the duration of the first time interval is 3/14 (ms).
  • the K is equal to 6, and the high layer signaling explicitly indicates that the duration of the first time interval is 1/7 (ms).
  • the K is equal to 12
  • the high layer signaling explicitly indicates that the duration of the first time interval is 1/14 (ms).
  • the K is equal to one of ⁇ 3, 4 ⁇ , and the high layer signaling explicitly indicates that the duration of the first time interval is 8768 Ts.
  • the Ts is 1/30720 milliseconds.
  • the K is equal to one of ⁇ 3, 4 ⁇ , and the high layer signaling explicitly indicates that the duration of the first time interval is 6576 Ts.
  • the Ts is 1/30720 milliseconds.
  • the K is equal to 6, and the high layer signaling explicitly indicates that the duration of the first time interval is 4384 Ts.
  • the Ts is 1/30720 milliseconds.
  • the K is equal to 12
  • the high layer signaling explicitly indicates that the duration of the first time interval is 2192 Ts.
  • the Ts is 1/30720 milliseconds.
  • the K is related to the T.
  • the K is equal to 2 and the T is equal to 2.
  • the K is equal to one of ⁇ 3, 4 ⁇
  • the T is equal to one of ⁇ 3, 4 ⁇ .
  • the K is equal to 6, and the T is equal to 7.
  • the K is equal to 12 and the T is equal to 14.
  • the above-mentioned design has the advantage that the base station can flexibly configure the number of time intervals and the duration of the time interval in one LTE subframe according to the shortest duration of the sTTI supported by the UE, and the number and load of the UE.
  • the time, and then the size of the first set of PRB pairs occupied by the control channel corresponding to the sTTI is flexibly configured to implement overall resource optimization of the system.
  • the EREG occupies RE is shown as a square filled with a number X in a picture in FIGS. 4 to 12, and the X is a positive integer not less than 0 and not more than 15.
  • the invention discloses a method for a user supporting low-latency wireless communication, which comprises the following steps:
  • Step A Receive first signaling, the first signaling indicating a set of first PRB pairs.
  • Step B Receive second signaling, where the second signaling includes scheduling information of the first data.
  • Step C Receive the first data or send the first data.
  • the second signaling is physical layer signaling, and the second signaling is located in the first PRB pair set in the frequency domain.
  • the first set of PRB pairs includes a subset of M PRB pairs.
  • the PRB pair subset contains K PRB pairs.
  • the M is a positive integer greater than 1
  • the K is a positive integer greater than one.
  • the second signaling is transmitted in a first time interval in an LTE subframe in the time domain. The duration of the first time interval in the time domain does not exceed 0.5 ms.
  • the step B further includes the following steps:
  • the T time intervals belong to one LTE subframe. Any two of the T time intervals are non-overlapping in the time domain. The duration of the time interval in the time domain does not exceed 0.5 ms.
  • the T is a positive integer greater than one.
  • the step A further includes the following steps:
  • Step A1 Send third signaling, the third signaling indicating the duration of the shortest sTTI that the UE can support.
  • the third signaling is high layer signaling.
  • the duration of the sTTI corresponding to the first data is greater than or equal to the duration of the shortest sTTI that the UE can support.
  • the RE occupied by the second signaling is composed of Q improved EREGs.
  • Q is a positive integer.
  • the REs occupied by one of the improved EREGs are distributed over P pairs of PRBs included in a subset of PRB pairs.
  • P is a positive integer not greater than K and greater than one.
  • the RE occupied by the second signaling is composed of Q improved EREGs.
  • Q is a positive integer.
  • One of the improvements The RE occupied by the EREG is mapped to the first PRB pair set according to the mapping mode of ⁇ frequency domain first, time domain second ⁇ .
  • the K is fixed, or the K is configured by higher layer signaling.
  • the RE occupied by the EREG is represented by a square filled with a number X in a picture in FIGS. 4 to 12, and the X is not less than 0 and A positive integer not greater than 15.
  • the invention discloses a base station device supporting low-latency wireless communication, which comprises the following modules:
  • a first sending module for transmitting the first signaling, the first signaling indicating the first PRB pair set. And for transmitting the second signaling, where the second signaling includes scheduling information of the first data.
  • the second signaling is physical layer signaling, and the second signaling is located in the first PRB pair set in the frequency domain.
  • the first set of PRB pairs includes a subset of M PRB pairs.
  • the PRB pair subset contains K PRB pairs.
  • the M is a positive integer greater than 1
  • the K is a positive integer greater than one.
  • the second signaling is transmitted in a first time interval in an LTE subframe in the time domain. The duration of the first time interval in the time domain does not exceed 0.5 ms.
  • a first receiving module for receiving third signaling, the third signaling indicating a duration of a shortest sTTI that the UE can support.
  • the third signaling is high layer signaling.
  • the duration of the sTTI corresponding to the first data is greater than or equal to the duration of the shortest sTTI that the UE can support.
  • a first processing module for transmitting the first data or for receiving the first data.
  • the foregoing base station device is characterized in that the RE occupied by the second signaling is composed of Q modified EREGs, and the Q is a positive integer.
  • the RE occupied by one of the improved EREGs is distributed over P pairs of PRBs included in a subset of PRB pairs, P is a positive integer not greater than K and greater than 1; or an RE occupied by the improved EREG is in accordance with ⁇
  • the mapping mode of the frequency domain first, the time domain second ⁇ is mapped to the first PRB pair set.
  • the foregoing base station device is characterized in that the RE occupied by the EREG is as indicated by a square filled with a number X in a picture in FIGS. 4 to 12, and the X is not less than 0 and not greater than A positive integer of 15.
  • the invention discloses a user equipment supporting low-latency wireless communication, which comprises the following modules:
  • a second receiving module for receiving the first signaling, the first signaling indicating the first PRB pair set. And for receiving the second signaling, where the second signaling includes scheduling information of the first data.
  • the second signaling is physical layer signaling, and the second signaling is located in the first PRB pair set in the frequency domain.
  • the first set of PRB pairs includes a subset of M PRB pairs.
  • the PRB pair subset contains K PRB pairs.
  • the M is a positive integer greater than 1
  • the K is a positive integer greater than one.
  • the second signaling is transmitted in a first time interval in an LTE subframe in the time domain. The duration of the first time interval in the time domain does not exceed 0.5 ms.
  • a second sending module for transmitting third signaling, the third signaling indicating a duration of a shortest sTTI that the UE can support.
  • the third signaling is high layer signaling.
  • the duration of the sTTI corresponding to the first data is greater than or equal to the duration of the shortest sTTI that the UE can support.
  • a second processing module for receiving the first data or for transmitting the first data.
  • the foregoing user equipment is characterized in that the RE occupied by the second signaling is composed of Q modified EREGs, and the Q is a positive integer.
  • the RE occupied by one of the improved EREGs is distributed over P pairs of PRBs included in a subset of PRB pairs, P is a positive integer not greater than K and greater than 1; or an RE occupied by the improved EREG is in accordance with ⁇
  • the mapping mode of the frequency domain first, the time domain second ⁇ is mapped to the first PRB pair set.
  • the foregoing user equipment is characterized in that the RE occupied by the EREG is as indicated by a square filled with a number X in a picture in FIGS. 4 to 12, and the X is not less than 0 and not greater than A positive integer of 15.
  • the present invention has the following technical advantages:
  • the performance of the frequency domain diversity is fully considered, and the RE corresponding to one control signaling is evenly distributed in the configured first PRB pair set.
  • the base station flexibly configures the number and timing of time intervals in one LTE subframe according to the shortest duration of the sTTI supported by the UE, and the number and load of the UE.
  • the duration of the interval is further configured to flexibly configure the size of the first PRB pair set occupied by the control channel corresponding to the sTTI to implement overall optimization of system resources.
  • FIG. 1 shows a flow chart of a downlink transmission in accordance with an embodiment of the present invention
  • FIG. 2 shows an upstream transmission flow diagram in accordance with an embodiment of the present invention
  • FIG. 3 shows a schematic diagram of an embodiment of a first set of PRB pairs in accordance with the present invention
  • FIG. 4 is a diagram showing an embodiment in which the RE occupied by the improved EREG is mapped to a subset of PRB pairs when both K and P are equal to 2 according to the present invention
  • FIG. 5 is a diagram showing another embodiment of mapping of REs occupied by the improved EREG to a subset of PRB pairs when both K and P are equal to 2 in accordance with the present invention
  • FIG. 6 is a diagram showing an embodiment in which an RE occupied by the improved EREG is mapped to a subset of PRB pairs when both K and P are equal to 3 according to the present invention
  • FIG. 7 is a diagram showing another embodiment of mapping of REs occupied by the improved EREG to a subset of PRB pairs when both K and P are equal to 3 in accordance with the present invention
  • FIG. 8 is a diagram showing an embodiment in which an RE occupied by the improved EREG is mapped to a subset of PRB pairs when both K and P are equal to 4 according to the present invention
  • FIG. 9 is a diagram showing another embodiment of mapping of REs occupied by the improved EREG to a subset of PRB pairs when both K and P are equal to 4 in accordance with the present invention.
  • Figure 10 is a diagram showing an embodiment in which the RE occupied by the improved EREG is mapped to a subset of PRB pairs when both K and P are equal to 6 in accordance with the present invention
  • FIG. 11 is a diagram showing another embodiment of mapping the RE occupied by the improved EREG to a subset of PRB pairs when both K and P are equal to 6 in accordance with the present invention
  • Figure 12 is a diagram showing an embodiment in which the RE occupied by the improved EREG is mapped to a subset of PRB pairs when a K is equal to 12 in accordance with the present invention
  • FIG. 13 is a schematic diagram showing an embodiment in which an RE occupied by an EREG is mapped to a first PRB pair set according to a mapping manner of ⁇ frequency domain first, time domain second ⁇ according to the present invention
  • FIG. 14 is a schematic diagram showing another embodiment in which an RE occupied by an EREG is mapped to a first PRB pair set according to a mapping manner of ⁇ frequency domain first, time domain second ⁇ according to the present invention
  • FIG. 15 is a schematic diagram showing still another embodiment of mapping an RE occupied by an EREG to a first PRB pair set according to a mapping manner of ⁇ frequency domain first, time domain second ⁇ according to the present invention
  • Figure 16 is a block diagram showing the structure of a processing device in a base station according to an embodiment of the present invention.
  • Figure 17 is a block diagram showing the structure of a processing device in a UE according to an embodiment of the present invention.
  • Embodiment 1 illustrates a downlink transmission flow chart according to one of the present invention, as shown in FIG.
  • base station N1 is the maintenance base station of the serving cell of UE U2
  • the step identified in block F1 is an optional step.
  • the third signaling is sent in step S21.
  • the third signaling indicates the duration of the shortest sTTI that the UE can support.
  • the third signaling is high layer signaling.
  • the duration of the sTTI corresponding to the first data is greater than or equal to the duration of the shortest sTTI that the UE can support.
  • the third signaling is received in step S11.
  • the first signaling is sent in step S12.
  • the first signaling indicates a set of first PRB pairs.
  • the first PRB pair set includes M PRB pair subsets.
  • the PRB pair subset contains K PRB pairs.
  • the M is a positive integer greater than 1
  • the K is a positive integer greater than one.
  • the first signaling is received in step S22.
  • the first signaling indicates a set of first PRB pairs.
  • the first time interval is selected from the T time intervals in step S13.
  • the T time intervals belong to one LTE subframe. Any two of the T time intervals have no overlap in the time domain. The duration of the time interval in the time domain does not exceed 0.5 ms.
  • the T is a positive integer greater than one.
  • the second signaling is sent in step S14, and the second signaling includes scheduling information of the first data.
  • the second signaling is physical layer signaling, and the second signaling is located in the first PRB pair set in the frequency domain.
  • the second signaling is transmitted in a first time interval in an LTE subframe in the time domain.
  • the duration of the first time interval in the time domain does not exceed 0.5 ms.
  • the second signaling is one of DCI formats ⁇ 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 2C, 2D ⁇ ; or a newly designed DCI format , scheduling the transmission of the first data.
  • the second signaling is blindly decoded from T time intervals in step S23.
  • the second signaling is received in step S24.
  • the first data is transmitted in step S15.
  • the first data is received in step S25.
  • Embodiment 2 illustrates an upstream transmission flow chart according to the present invention, as shown in FIG.
  • the base station N1 is a maintenance base station of the serving cell of the UE U2.
  • the first data is transmitted in step S26.
  • the first data is received in step S16.
  • Embodiment 3 illustrates a schematic diagram of a first PRB pair set of the present invention.
  • the first PRB pair pair occupies M*K PRB pairs, and the M*K PRB pairs are divided into M PRB pair subsets, and the M PRB pair subsets are in the figure.
  • the middle identifier is PRB pair subset #1 to PRB pair subset #M.
  • the M PRB pairs are subsets, and each PRB pair subset occupies K PRB pairs.
  • M and K are both positive integers greater than one.
  • j is a positive integer greater than 1 and less than M.
  • the K PRB pairs occupied by any PRB pair subset in the first PRB pair set are consecutive in the frequency domain, and the M PRB pair subsets are in the frequency.
  • the domain is discrete.
  • Embodiment 4 exemplifies a schematic diagram of the RE occupied by the improved EREG mapped to a subset of PRB pairs when one K and P of the present invention are equal to 2, as shown in FIG.
  • the RE occupied by the improved EREG is distributed to two PRB pairs occupied by a subset of PRB pairs.
  • the number label corresponds to the sequence number of the improved EREG. For example, "0" indicates that the RE at its location belongs to the modified EREG#0, “1” indicates that the RE at its location belongs to the modified EREG#1, and so on, and "X” indicates The RE at its location belongs to the improved EREG#X (X is 2 to 15) Positive integer). All REs identified as “0” (a total of 9 REs) in the figure constitute the improved EREG#0, all REs identified as "1” constitute the modified EREG#1, and so on, all REs identified as "X” Improved EREG#X.
  • a subset of PRB pairs contains a total of 16 modified EREGs during the first time interval.
  • An RE occupied by an improved EREG is distributed in the frequency domain to a subband corresponding to a subset of a given PRB pair, the set of PRB pairs comprising PRB pair #1 and PRB pair #2 in the frequency domain, and
  • the PRB pair #1 corresponds to subband #1 in the frequency domain
  • the PRB pair #2 corresponds to subband #2 in the frequency domain.
  • the PRB pair #1 and the PRB pair #2 are any two PRB pairs belonging to the first PRB pair set.
  • the REs corresponding to the 16 modified EREGs are mapped to subband #1 and subband #2 in the manner of ⁇ frequency domain first, time domain second, subband third ⁇ .
  • the REs occupied by an improved EREG are distributed over the first time interval in the time domain.
  • the shaded portion in the figure corresponds to the RE occupied by the DM-RS (Demodulation Reference Signal), and the oblique line portion does not map the improved EREG.
  • Embodiment 5 exemplifies a schematic diagram of the RE occupied by the improved EREG being mapped to a subset of PRB pairs when another K and P of the present invention are equal to 2, as shown in FIG.
  • the RE occupied by the improved EREG is distributed to two PRB pairs occupied by a subset of PRB pairs.
  • the number label corresponds to the sequence number of the improved EREG. For example, "0" indicates that the RE at its location belongs to the modified EREG#0, “1” indicates that the RE at its location belongs to the modified EREG#1, and so on, and "X” indicates The RE at its location belongs to the improved EREG#X (X is a positive integer from 2 to 15). All REs identified as "0" (a total of 9 REs) in the figure constitute the improved EREG#0, all REs identified as "1” constitute the modified EREG#1, and so on, all REs identified as "X” Improved EREG#X.
  • a subset of PRB pairs contains a total of 16 modified EREGs during the first time interval.
  • An RE occupied by an improved EREG is distributed in the frequency domain to a subband corresponding to a subset of a given PRB pair, the set of PRB pairs comprising PRB pair #1 and PRB pair #2 in the frequency domain, and
  • the PRB pair #1 corresponds to subband #1 in the frequency domain
  • the PRB pair #2 corresponds to subband #2 in the frequency domain.
  • the PRB pair #1 and the PRB pair #2 are any two PRB pairs belonging to the first PRB pair set.
  • the REs corresponding to the 16 modified EREGs are mapped to subband #1 and subband #2 in the manner of ⁇ frequency domain first, subband second, time domain third ⁇ .
  • the REs occupied by an improved EREG are distributed over the first time interval in the time domain.
  • the shaded portion in the figure corresponds to the RE occupied by the DM-RS (Demodulation Reference Signal), and the oblique line portion does not map the improved EREG.
  • Embodiment 6 exemplifies a schematic diagram of the RE occupied by the improved EREG mapped to a subset of PRB pairs when one K and P of the present invention are equal to 3, as shown in FIG. 6.
  • the REs occupied by the improved EREG are distributed to three PRB pairs occupied by a subset of PRB pairs.
  • the number label corresponds to the sequence number of the improved EREG. For example, "0" indicates that the RE at its location belongs to the modified EREG#0, “1” indicates that the RE at its location belongs to the modified EREG#1, and so on, and "X” indicates The RE at its location belongs to the improved EREG#X (X is a positive integer from 2 to 15). All REs identified as "0” (a total of 9 REs) in the figure constitute the improved EREG#0, all REs identified as "1” constitute the modified EREG#1, and so on, all REs identified as "X” Improved EREG#X.
  • a subset of PRB pairs contains a total of 16 modified EREGs during the first time interval.
  • the REs occupied by a modified EREG are distributed in the frequency domain to subbands corresponding to a subset of a given PRB pair, the set of PRB pairs comprising PRB pair #1 to PRB pair #3 in the frequency domain, and
  • the PRB pair #1 to PRB pair #3 respectively correspond to subband #1 to subband #3 in the frequency domain.
  • the PRB pair #1 to PRB pair #3 is any three PRB pairs belonging to the first PRB pair set.
  • the REs corresponding to the 16 modified EREGs are mapped to subband #1 to subband #3 in the manner of ⁇ frequency domain first, time domain second, subband third ⁇ .
  • the REs occupied by an improved EREG are distributed over the first time interval in the time domain.
  • ⁇ CRS Cell-Specific Reference Signal
  • DM-RS ⁇ Cell-Specific Reference Signal
  • Embodiment 7 exemplifies a schematic diagram of the RE occupied by the improved EREG mapped to a subset of PRB pairs when another K and P of the present invention are equal to 3, as shown in FIG.
  • the REs occupied by the improved EREG are distributed to three PRB pairs occupied by a subset of PRB pairs.
  • the number label corresponds to the sequence number of the improved EREG. For example, "0" indicates that the RE at its location belongs to the modified EREG#0, “1” indicates that the RE at its location belongs to the modified EREG#1, and so on, and "X” indicates The RE at its location belongs to the improved EREG#X (X is a positive integer from 2 to 15). All REs identified as "0” (a total of 9 REs) in the figure constitute the improved EREG#0, all REs identified as "1” constitute the modified EREG#1, and so on, all REs identified as "X” Improved EREG#X.
  • a PRB pair subset includes a total of 16 improvements in the first time interval.
  • EREG The REs occupied by a modified EREG are distributed in the frequency domain to subbands corresponding to a subset of a given PRB pair, the set of PRB pairs comprising PRB pair #1 to PRB pair #3 in the frequency domain, and The PRB pair #1 to PRB pair #3 respectively correspond to subband #1 to subband #3 in the frequency domain.
  • the PRB pair #1 to PRB pair #3 is any three PRB pairs belonging to the first PRB pair set.
  • the REs corresponding to the 16 modified EREGs are mapped to subband #1 to subband #3 in the manner of ⁇ frequency domain first, subband second, time domain third ⁇ .
  • the REs occupied by an improved EREG are distributed over the first time interval in the time domain.
  • ⁇ CRS Cell-Specific Reference Signal
  • DM-RS ⁇ Cell-Specific Reference Signal
  • Embodiment 8 exemplifies a schematic diagram of the RE occupied by the improved EREG mapped to a subset of PRB pairs when one K and P of the present invention are equal to 4, as shown in FIG.
  • the REs occupied by the improved EREG are distributed to four PRB pairs occupied by a subset of PRB pairs.
  • the number label corresponds to the sequence number of the improved EREG. For example, "0" indicates that the RE at its location belongs to the modified EREG#0, “1” indicates that the RE at its location belongs to the modified EREG#1, and so on, and "X” indicates The RE at its location belongs to the improved EREG#X (X is a positive integer from 2 to 15). All REs identified as "0" (a total of 9 REs) in the figure constitute the improved EREG#0, all REs identified as "1” constitute the modified EREG#1, and so on, all REs identified as "X” Improved EREG#X.
  • a subset of PRB pairs contains a total of 16 modified EREGs during the first time interval.
  • An RE occupied by an improved EREG is distributed in the frequency domain to a subband corresponding to a subset of a given PRB pair, the subset of the given PRB including PRB pair #1 to PRB pair #4 in the frequency domain, and
  • the PRB pair #1 to PRB pair #4 respectively correspond to subband #1 to subband #4 in the frequency domain.
  • the PRB pair #1 to PRB pair #4 is any four PRB pairs belonging to the first PRB pair set.
  • the REs corresponding to the 16 modified EREGs are mapped to subband #1 to subband #4 in a manner of ⁇ frequency domain first, time domain second, subband third ⁇ .
  • the REs occupied by an improved EREG are distributed over the first time interval in the time domain.
  • ⁇ CRS Cell-Specific Reference Signal
  • DM-RS ⁇ Cell-Specific Reference Signal
  • Example 9 illustrates that the improved EREG is when another K and P of the present invention are equal to four.
  • the REs occupied by the improved EREG are distributed to four PRB pairs occupied by a subset of PRB pairs.
  • the number label corresponds to the sequence number of the improved EREG. For example, "0" indicates that the RE at its location belongs to the modified EREG#0, “1” indicates that the RE at its location belongs to the modified EREG#1, and so on, and "X” indicates The RE at its location belongs to the improved EREG#X (X is a positive integer from 2 to 15). All REs identified as "0" (a total of 9 REs) in the figure constitute the improved EREG#0, all REs identified as "1” constitute the modified EREG#1, and so on, all REs identified as "X” Improved EREG#X.
  • a subset of PRB pairs contains a total of 16 modified EREGs during the first time interval.
  • An RE occupied by an improved EREG is distributed in the frequency domain to a subband corresponding to a subset of a given PRB pair, the subset of the given PRB including PRB pair #1 to PRB pair #4 in the frequency domain, and
  • the PRB pair #1 to PRB pair #4 respectively correspond to subband #1 to subband #4 in the frequency domain.
  • the PRB pair #1 to PRB pair #4 is any four PRB pairs belonging to the first PRB pair set.
  • the REs corresponding to the 16 modified EREGs are mapped to subband #1 to subband #4 in the manner of ⁇ frequency domain first, subband second, time domain third ⁇ .
  • the REs occupied by an improved EREG are distributed over the first time interval in the time domain.
  • ⁇ CRS Cell-Specific Reference Signal
  • DM-RS ⁇ Cell-Specific Reference Signal
  • Embodiment 10 exemplifies a schematic diagram of the RE occupied by the improved EREG mapped to a subset of PRB pairs when one K and P of the present invention are equal to 6, as shown in FIG.
  • the time window T2 corresponds to the first time interval, and the RE occupied by the improved EREG is distributed to 6 PRB pairs occupied by a PRB pair subset.
  • the number label corresponds to the sequence number of the improved EREG. For example, "0" indicates that the RE at its location belongs to the modified EREG#0, "1" indicates that the RE at its location belongs to the modified EREG#1, and so on, and "X" indicates The RE at its location belongs to the improved EREG#X (X is a positive integer from 2 to 15).
  • a subset of PRB pairs contains a total of 16 modified EREGs during the first time interval.
  • An RE occupied by an improved EREG is distributed in the frequency domain to a subband corresponding to a subset of a given PRB pair, the subset of the given PRB including PRB pair #1 to PRB pair #6 in the frequency domain, and Place The PRB pair #1 to PRB pair #6 correspond to subband #1 to subband #4 in the frequency domain, respectively.
  • the PRB pair #1 to PRB pair #6 is any six PRB pairs belonging to the first PRB pair set.
  • the REs corresponding to the 16 modified EREGs are mapped to subband #1 to subband #6 in the manner of ⁇ frequency domain first, time domain second, subband third ⁇ .
  • the REs occupied by an improved EREG are distributed over the first time interval in the time domain.
  • ⁇ CRS Cell-Specific Reference Signal
  • DM-RS ⁇ Cell-Specific Reference Signal
  • Embodiment 11 exemplifies a schematic diagram of the RE occupied by the improved EREG being mapped to a subset of PRB pairs when another K and P of the present invention are equal to 6, as shown in FIG.
  • the time window T2 corresponds to the first time interval, and the RE occupied by the improved EREG is distributed to 6 PRB pairs occupied by a PRB pair subset.
  • the number label corresponds to the sequence number of the improved EREG. For example, "0" indicates that the RE at its location belongs to the modified EREG#0, "1" indicates that the RE at its location belongs to the modified EREG#1, and so on, and "X" indicates The RE at its location belongs to the improved EREG#X (X is a positive integer from 2 to 15).
  • a subset of PRB pairs contains a total of 16 modified EREGs during the first time interval.
  • An RE occupied by an improved EREG is distributed in the frequency domain to a subband corresponding to a subset of a given PRB pair, the subset of the given PRB including PRB pair #1 to PRB pair #6 in the frequency domain, and
  • the PRB pair #1 to PRB pair #6 respectively correspond to subband #1 to subband #4 in the frequency domain.
  • the PRB pair #1 to PRB pair #6 is any six PRB pairs belonging to the first PRB pair set.
  • the REs corresponding to the 16 modified EREGs are mapped to subband #1 to subband #6 in the manner of ⁇ frequency domain first, subband second, time domain third ⁇ .
  • the REs occupied by an improved EREG are distributed over the first time interval in the time domain.
  • ⁇ CRS Cell-Specific Reference Signal
  • DM-RS ⁇ Cell-Specific Reference Signal
  • Embodiment 12 exemplifies a schematic diagram of the RE occupied by the improved EREG mapped to a subset of PRB pairs when one K and P of the present invention are equal to 12, as shown in FIG.
  • the time window T3 corresponds to the first time interval, and the RE of the improved EREG is occupied. Distributed to 9 PRB pairs of 12 PRB pairs occupied by a PRB pair subset.
  • the number label corresponds to the sequence number of the improved EREG. For example, "0" indicates that the RE at its location belongs to the modified EREG#0, "1" indicates that the RE at its location belongs to the modified EREG#1, and so on, and "X" indicates The RE at its location belongs to the improved EREG#X (X is a positive integer from 2 to 9).
  • a subset of PRB pairs contains a total of 16 modified EREGs during the first time interval.
  • An RE occupied by an improved EREG is distributed in the frequency domain to a subband corresponding to a subset of a given PRB pair, the subset of the given PRB including PRB pair #1 to PRB pair #12 in the frequency domain, and
  • the PRB pair #1 to PRB pair #12 respectively correspond to subband #1 to subband #12 in the frequency domain.
  • the PRB pair #1 to PRB pair #12 is any 12 PRB pairs belonging to the first PRB pair set.
  • the REs corresponding to the 16 modified EREGs are mapped to subband #1 to subband #12 in the manner of ⁇ frequency domain first, subband second ⁇ .
  • the REs occupied by an improved EREG are distributed over the first time interval in the time domain.
  • ⁇ CRS Cell-Specific Reference Signal
  • DM-RS ⁇ Cell-Specific Reference Signal
  • Embodiment 13 exemplifies a schematic diagram in which an RE occupied by one EREG of the present invention is mapped to a first PRB pair set according to a mapping manner of ⁇ frequency domain first, time domain second ⁇ .
  • T1 corresponds to the duration of one RE
  • the portion indicated by the thick line box corresponds to the RE occupied by a modified EREG.
  • One of the improved EREGs occupies Z REs, and Z is equal to one of ⁇ 8, 9 ⁇ .
  • the frequency band occupied by the one improved EREG is located in subband #a, which corresponds to the subband occupied by PRB pair #a.
  • the PRB pair #a is any one of the first PRB pair sets.
  • the embodiment 14 illustrates a schematic diagram in which the RE occupied by the EREG of the present invention is mapped to the first PRB pair set according to the mapping manner of ⁇ frequency domain first, time domain second ⁇ .
  • T1 corresponds to the duration of one RE
  • the portion indicated by the thick line box corresponds to the RE occupied by a modified EREG.
  • One of the improved EREGs occupies Z REs, and Z is equal to one of ⁇ 8, 9 ⁇ .
  • the frequency band occupied by the improved EREG is located in subband #a and subband #(a+1), the subband #a and the subband #(a+1) correspond to the subbands occupied by the PRB pair #a and the PRB pair #(a+1), respectively.
  • the PRB pair #a and the PRB pair #(a+1) are any two PRB pairs adjacent to each other in the frequency domain in the first PRB pair set.
  • the embodiment 15 illustrates a schematic diagram in which the RE occupied by the EREG of the present invention is mapped to the first PRB pair set according to the mapping manner of ⁇ frequency domain first, time domain second ⁇ .
  • T1 corresponds to the duration of one RE
  • the portion indicated by the thick line box corresponds to the RE occupied by a modified EREG.
  • One of the improved EREGs occupies Z REs, and Z is equal to one of ⁇ 8, 9 ⁇ .
  • the frequency band occupied by the improved EREG is located in subband #1 and subband #(M*K), and the subband #1 and subband #(M*K) correspond to PRB pair #1 and respectively.
  • the PRB pair #1 is a PRB pair having the lowest center frequency point in the frequency domain in the first PRB pair set.
  • the PRB pair #(M*K) is a PRB pair having the highest center frequency point in the frequency domain in the first PRB pair set.
  • Embodiment 16 shows a structural block diagram of a processing device in a base station according to an embodiment of the present invention; as shown in FIG.
  • the base station processing apparatus 200 is mainly composed of a first sending module 201, a first receiving module 202, and a first processing module 203.
  • the first sending module 201 is configured to send the first signaling, where the first signaling indicates the first PRB pair set. And for transmitting the second signaling, where the second signaling includes scheduling information of the first data.
  • the second signaling is physical layer signaling, and the second signaling is located in the first PRB pair set in the frequency domain.
  • the first set of PRB pairs includes a subset of M PRB pairs.
  • the PRB pair subset contains K PRB pairs.
  • the M is a positive integer greater than 1
  • the K is a positive integer greater than one.
  • the second signaling is transmitted in a first time interval in an LTE subframe in the time domain. The duration of the first time interval in the time domain does not exceed 0.5 ms.
  • a first receiving module 202 for receiving third signaling, the third signaling indicating a duration of a shortest sTTI that the UE can support.
  • the third signaling is high layer signaling.
  • the duration of the sTTI corresponding to the first data is greater than or equal to the duration of the shortest sTTI that the UE can support.
  • a first processing module 203 for transmitting the first data or for receiving the first data.
  • Embodiment 17 shows a structure of a processing device in a UE according to an embodiment of the present invention.
  • Block diagram as shown in Figure 17.
  • the UE processing apparatus 300 is mainly composed of a second receiving module 301, a second sending module 302, and a second processing module 303.
  • the second receiving module 301 is configured to receive the first signaling, where the first signaling indicates the first PRB pair set. And for receiving the second signaling, where the second signaling includes scheduling information of the first data.
  • the second signaling is physical layer signaling, and the second signaling is located in the first PRB pair set in the frequency domain.
  • the first set of PRB pairs includes a subset of M PRB pairs.
  • the PRB pair subset contains K PRB pairs.
  • the M is a positive integer greater than 1
  • the K is a positive integer greater than one.
  • the second signaling is transmitted in a first time interval in an LTE subframe in the time domain. The duration of the first time interval in the time domain does not exceed 0.5 ms.
  • a second sending module 302 for transmitting third signaling, the third signaling indicating a duration of a shortest sTTI that the UE can support.
  • the third signaling is high layer signaling.
  • the duration of the sTTI corresponding to the first data is greater than or equal to the duration of the shortest sTTI that the UE can support.
  • a second processing module 303 for receiving the first data or for transmitting the first data.
  • each module unit in the above embodiment may be implemented in hardware form or in the form of a software function module.
  • the application is not limited to any specific combination of software and hardware.
  • the UE and the terminal in the present invention include but are not limited to RFID, IoT terminal equipment, MTC (Machine Type Communication) terminal, vehicle communication device, wireless sensor, network card, mobile phone, tablet computer, notebook and other wireless communication devices.
  • the base station and the base station device in the present invention include, but are not limited to, a macro communication base station, a micro cell base station, a home base station, a relay base station, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种用于用户设备、基站中的用于低延迟通信的方法和装置。基站发送第一信令,第一信令指示第一PRB对集合。基站发送第二信令,第二信令中包括第一数据的调度信息。其中第二信令在频域上位于第一PRB对集合中。第一PRB对集合包括M个PRB对子集。第一信令由改进的EREG组成。一个所述改进的EREG所占用的RE分布在一个所述PRB对子集所占用的PRB对上。本发明通过设计控制信令的新的映射方式,保证了将控制信令所占用的RE映射到较短的时间间隔上。该方法保证了用户可以更早的检测出控制信令,进而更早的发送或接收控制信令所指示的数据信道,降低系统延迟,保证系统低延迟所带来的性能增益。

Description

一种用于用户设备、基站中的用于低延迟通信的方法和装置 技术领域
本发明涉及无线通信系统中的传输方案,特别是涉及基于蜂窝网的低延迟传输的控制信道的方法和装置。
背景技术
在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#63次全会上,降低长期演进(LTE-Long Term Evolution)网络的延迟这一课题被讨论。LTE网络的延迟包括空口延迟,信号处理延时,节点之间的传输延时等。随着无线接入网和核心网的升级,传输延时被有效降低。随着具备更高处理速度的新的半导体的应用,信号处理延时也被显著降低。
LTE中,TTI(Transmission Time Interval,传输时间间隔)或者子帧或者PRB(Physical Resource Block)对(Pair)在时间上对应一个ms(milli-second,毫秒)。一个LTE子帧包括两个时隙(Time Slot)-分别是第一时隙和第二时隙。PDCCH(Physical Downlink Control Channel,物理下行控制信道)占用PRB对的前A个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号,所述A是小于5的正整数,所述A由PCFICH(Physical Control Format Indicator Channel,物理控制格式指示信道)配置。LTE Release-10系统引入了EPDCCH(Enhanced Physical Downl ink Control Channel,增强的物理下行控制信道),其占用PRB对自第B个OFDM符号至该PRB对的最后一个OFDM符号,所述B由高层信令和PCFICH指示的A共同决定。降低空口延时是降低LTE网络延时的有效手段之一。为了降低空口延时,一个直观的方法是设计sTTI(Short-TTI,小于1ms)来替代现有的LTE子帧。3GPP RAN1#84次会议中,进一步提出了通过让UE支持不同的sTTI的持续时间,以保证系统调度和配置的灵活性。
对于sTTI,一个需要研究的问题是如何为其设计对应的控制信道,以实现在sTTI上的数据调度。传统的PDCCH只在每一个子帧的第一时 隙存在,且调度的数据覆盖整个子帧的两个时隙,而EPDCCH通常会覆盖整个子帧的两个时隙。因此在保证与现有系统兼容的条件下,如何为较短的TTI设计独立的控制信令,以实现其独立的数据传输,将会是低延迟传输需要解决的问题之一。
针对上述问题,本发明提供了解决方案。需要说明的是,在不冲突的情况下,本申请的UE(User Equipment,用户设备)中的实施例和实施例中的特征可以应用到基站中,反之亦然。进一步的,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
发明内容
针对sTTI中的控制信令设计方案,一个直观的方法是将现有的PDCCH用于sTTI的调度。然而发明人通过研究发现,上述直观的方法会导致调度灵活性的缺失,并且PDCCH无法容纳数量较多的基于sTTI的调度,进而失去了sTTI系统的低延时的优点。另一个直观的方法是将现有的EPDCCH用于sTTI的调度,虽然EPDCCH不存在PDCCH的容量受限的问题,但因为EPDCCH覆盖一个LTE子帧的所有OFDM符号,译码EPDCCH必须等到一个LTE子帧的最后一个OFDM符号,这样会带来较大的延迟,不符合sTTI系统的设计初衷。
本发明中的解决方案充分考虑了上述问题。
本发明公开了一种支持低延迟无线通信的基站中的方法,其中,包括如下步骤:
-步骤A.发送第一信令,第一信令指示第一PRB对集合。
-步骤B.发送第二信令,第二信令中包括第一数据的调度信息。
-步骤C.发送第一数据,或者接收第一数据。
其中,所述第二信令是物理层信令,所述第二信令在频域上位于第一PRB对集合中。所述第一PRB对集合包括M个PRB对子集。所述PRB对子集包含K个PRB对。所述M是大于1的正整数,所述K是大于1的正整数。所述第二信令在时域上在LTE子帧中的第一时间间隔中传输。所述第一时间间隔在时域上的持续时间不超过0.5ms。
上述设计的本质是:为LTE系统sTTI的控制信道在频域上分配独立的PRB对资源。所述PRB对资源在时域上属于第一时间间隔的部分用 于控制信令的传输。此方法可以将sTTI的控制信令压缩到第一时间间隔中,而非像EPDCCH一样在一个LTE子帧上传输,从而将完成sTTI的控制信道的盲译码时间提前,进而加快控制信令指示的数据信令的检测,降低系统的整体延迟。
作为一个实施例,所述第一信令是高层信令。
作为一个实施例,所述第一信令是RRC(Radio Resource Control,无线资源管理)的用户专属(UE-specific)信令。
作为一个实施例,所述第一信令是RRC(Radio Resource Control,无线资源管理)的小区专属(Cell-specific)信令。
作为一个实施例,所述第一信令是RRC(Radio Resource Control,无线资源管理)的sTTI专属(Cell-specific)信令。
作为该实施例的一个子实施例,相同持续时间的sTTI对应的所述第二信令共享相同的第一PRB对集合。
上述实施例的本质在于为相同持续时间的sTTI的控制信道分配相同的PRB集合,以节约控制信令的开销。
作为一个实施例,所述第二信令是用于下行调度(Downlink Grant)的DCI(Downlink Control Information,下行控制信息)。
作为上述实施例的一个子实施例,所述第二信令是DCI格式{1,1A,1B,1C,1D,2,2A,2B,2C,2D}中的一种。
作为上述实施例的一个子实施例,所述第二信令是用于下行调度的DCI,且基站在步骤C发送所述第一数据。
作为一个实施例,所述第一信令是用于上行调度(Uplink Grant)的DCI。
作为上述实施例的一个子实施例,所述第一信令是DCI格式{0,4}中的一种。
作为上述实施例的一个子实施例,所述第二信令是用于上行调度的DCI,且基站在步骤C接收所述第一数据。
作为一个实施例,所述第一数据对应DL-SCH(Downlink Shared Channel,下行共享信道)的传输。
作为一个实施例,所述第一数据对应UL-SCH(Uplink Shared Channel,上行共享信道)的传输。
作为一个实施例,所述第一信令还指示K。
作为一个实施例,所述第一时间间隔在时域上的持续时间不小于2192Ts,所述Ts是1/30720毫秒。
作为一个实施例,所述第一时间间隔在时域上的持续时间是{0.5毫秒,1/4毫秒,2/7毫秒,3/14毫秒,1/7毫秒,1/14毫秒}中的一种。
作为一个实施例,所述第一时间间隔在时域上的持续时间是{0.5毫秒,8768Ts,6576Ts,4384Ts,2192Ts}中的一种,所述Ts是1/30720毫秒。
作为一个实施例,所述第一PRB对集合包含M*K个PRB对。
作为该实施例的一个子实施例,所述M*K个PRB对均属于一个LTE系统带宽内。
作为该实施例的一个子实施例,所述M*K个PRB对在频域上是连续的。
作为该实施例的一个子实施例,所述M*K个PRB对在频域上是离散的。
作为该实施例的一个子实施例,给定PRB对子集所占用的K个PRB对在频域上是连续的,且所述M个PRB对子集在频域上是离散的。其中,所述给定PRB对子集是所述M个PRB对子集中的任意一个。
作为该实施例的一个子实施例,给定PRB对子集所占用的K个PRB对在频域上是离散的。其中,所述给定PRB对子集是所述M个PRB对子集中的任意一个。
具体的,根据本发明的一个方面,其特征在于,所述步骤B还包括如下步骤:
-B0.从T个时间间隔中选择第一时间间隔。
其中,所述T个时间间隔属于一个LTE子帧。所述T个时间间隔中的任意两个时间间隔在时域上没有重叠。所述时间间隔在时域上的持续时间不超过0.5ms。所述T是大于1的正整数。
上述步骤的好处在于,基站可以将第二信令的发送限制在第一时间间隔,即较短的时间窗口中,从而保证用户可以尽早的开始和结束控制信令的盲译码,进而降低数据信道接收的延迟。
作为一个实施例,所述T等于{2,3,4,7,14}中的之一。
作为一个实施例,所述T由高层信令指示。
作为一个实施例,所述T个时间间隔在时间上是连续的。
作为一个实施例,所述T个时间间隔中,每个时间间隔的持续时间是相同的。
作为一个实施例,所述T个时间间隔中,至少有两个时间间隔的持续时间是不同的。
作为一个实施例,所述T个时间间隔中,每个时间间隔的持续时间是{0.5毫秒,1/4毫秒,2/7毫秒,3/14毫秒,1/7毫秒,1/14毫秒}中的一种。
作为一个实施例,所述T个时间间隔中,每个时间间隔的持续时间是{0.5毫秒,8768Ts,6576Ts,4384Ts,2192Ts}中的一种,所述Ts是1/30720毫秒。
具体的,根据本发明的一个方面,其特征在于,所述步骤A还包括如下步骤:
-步骤A1.接收第三信令,第三信令指示所述UE所能支持的最短sTTI的持续时间。
其中,所述第三信令是高层信令。所述第一数据所对应的sTTI的持续时间大于或等于所述UE所能支持的最短sTTI的持续时间。
作为一个实施例,所述第三信令是RRC的用户专属信令。
作为一个实施例,所述UE所能支持的最短sTTI的持续时间包括以下至少之一信息:
-UE接收的DL-SCH对应的物理层信道所占用的最短时间窗口。
-UE发送的UL-SCH对应的物理层信道所占用的最短时间窗口。
作为该实施例的一个子实施例,所述DL-SCH对应的物理层信道所占用的最短时间窗口与所述UL-SCH对应的物理层信道所占用的最短时间窗口是不同的。
作为该实施例的一个子实施例,所述DL-SCH对应的物理层信道所占用的最短时间窗口与所述UL-SCH对应的物理层信道所占用的最短时间窗口是相同的。
作为该实施例的一个子实施例,所述最短时间窗口的持续时间是{0.5毫秒,1/4毫秒,2/7毫秒,3/14毫秒,1/7毫秒,1/14毫秒}中的一种。
作为该实施例的一个子实施例,所述最短时间窗口的持续时间是 {0.5毫秒,8768Ts,6576Ts,4384Ts,2192Ts}中的一种,所述Ts是1/30720毫秒。
具体的,根据本发明的一个方面,其特征在于,所述第二信令占用的RE(Resource Element,资源单元)由Q个改进的EREG(Enhanced Resource Element Group,增强的资源单元组)组成。其中,所述Q为正整数。一个所述改进的EREG所占用的RE分布在一个PRB对子集包含的P个PRB对上。P是不大于K,且大于1的正整数。
上述方法的好处在于将第二信令占用的PRB均匀分布在第一PRB对集合中,以实现频域分集增益。
作为一个实施例,所述改进的EREG在N-CP(Normal Cyclic Prefix,正常循环前缀)下占用9个RE。
作为该实施例的一个子实施例,所述K小于10,且所述一个改进的EREG所占用的RE分布在一个PRB对子集包含的所有PRB对上。
作为一个实施例,所述改进的EREG在E-CP(Extended Cyclic Prefix,扩展循环前缀)下占用8个RE。
作为该实施例的一个子实施例,所述K小于9,且所述一个改进的EREG所占用的RE分布在一个PRB对子集包含的所有PRB对上。
作为一个实施例,所述改进的EREG是EREG。
作为一个实施例,所述Q是4的正整数倍。
作为一个实施例,所述P等于所述K。
具体的,根据本发明的一个方面,其特征在于,所述第二信令占用的RE由Q个改进的EREG组成。其中,所述Q为正整数。一个所述改进的EREG所占用的RE按照{频域第一,时域第二}的映射方式映射到第一PRB对集合中。
作为一个实施例,所述改进的EREG在N-CP(Normal Cyclic Prefix,正常循环前缀)下占用9个RE。
作为一个实施例,所述改进的EREG在E-CP(Extended Cyclic Prefix,扩展循环前缀)下占用8个RE。
作为一个实施例,所述改进的EREG是EREG。
作为一个实施例,所述Q是4的正整数倍。
作为一个实施例,所述Q个改进的EREG按照改进的EREG的序号依 次映射到第一PRB对子集中,且遵循{频域第一,时域第二}的映射方式。
具体的,根据本发明的一个方面,其特征在于,所述K是固定的,或者所述K是由高层信令配置的。
作为一个实施例,所述K与第三信令指示的所述UE所能支持的最短sTTI的持续时间有关。
作为该实施例的一个子实施例,所述K等于2,且所述最短sTTI的持续时间是0.5(ms)。
作为该实施例的一个子实施例,所述K等于{3,4}中的之一,且所述最短sTTI的持续时间是2/7(ms)。
作为该实施例的一个子实施例,所述K等于{3,4}中的之一,且所述最短sTTI的持续时间是1/4(ms)。
作为该实施例的一个子实施例,所述K等于{3,4}中的之一,且所述最短sTTI的持续时间是3/14(ms)。
作为该实施例的一个子实施例,所述K等于6,且所述最短sTTI的持续时间是1/7(ms)。
作为该实施例的一个子实施例,所述K等于12,且所述最短sTTI的持续时间是1/14(ms)。
作为该实施例的一个子实施例,所述K等于{3,4}中的之一,且所述最短sTTI的持续时间是8768Ts。所述Ts是1/30720毫秒。
作为该实施例的一个子实施例,所述K等于{3,4}中的之一,且所述最短sTTI的持续时间是6576Ts。所述Ts是1/30720毫秒。
作为该实施例的一个子实施例,所述K等于6,且所述最短sTTI的持续时间是4384Ts。所述Ts是1/30720毫秒。
作为该实施例的一个子实施例,所述K等于12,且所述最短sTTI的持续时间是2192Ts。所述Ts是1/30720毫秒。
作为一个实施例,所述K由高层信令隐性配置。
作为该实施例的一个子实施例,所述K等于2,且所述高层信令显性指示所述第一时间间隔的持续时间是0.5ms。
作为该实施例的一个子实施例,所述K等于{3,4}中的之一,且所述高层信令显性指示所述第一时间间隔的持续时间是2/7(ms)。
作为该实施例的一个子实施例,所述K等于{3,4}中的之一,且所 述高层信令显性指示所述第一时间间隔的持续时间是1/4(ms)。
作为该实施例的一个子实施例,所述K等于{3,4}中的之一,且所述高层信令显性指示所述第一时间间隔的持续时间是3/14(ms)。
作为该实施例的一个子实施例,所述K等于6,且所述高层信令显性指示所述第一时间间隔的持续时间是1/7(ms)。
作为该实施例的一个子实施例,所述K等于12,且所述高层信令显性指示所述第一时间间隔的持续时间是1/14(ms)。
作为该实施例的一个子实施例,所述K等于{3,4}中的之一,且所述高层信令显性指示所述第一时间间隔的持续时间是8768Ts。所述Ts是1/30720毫秒。
作为该实施例的一个子实施例,所述K等于{3,4}中的之一,且所述高层信令显性指示第一时间间隔的持续时间是6576Ts。所述Ts是1/30720毫秒。
作为该实施例的一个子实施例,所述K等于6,且所述高层信令显性指示所述第一时间间隔的持续时间是4384Ts。所述Ts是1/30720毫秒。
作为该实施例的一个子实施例,所述K等于12,且所述高层信令显性指示所述第一时间间隔的持续时间是2192Ts。所述Ts是1/30720毫秒。
作为一个实施例,所述K与所述T有关。
作为该实施例的一个子实施例,所述K等于2,且所述T等于2。
作为该实施例的一个子实施例,所述K等于{3,4}中的之一,且所述T等于{3,4}中的之一。
作为该实施例的一个子实施例,所述K等于6,且所述T等于7。
作为该实施例的一个子实施例,所述K等于12,且所述T等于14。
上述设计的好处在于,基站可以根据其调度的UE所支持的sTTI的最短持续时间,以及所述UE的个数和负载,灵活的配置一个LTE子帧中时间间隔的个数和时间间隔的持续时间,进而灵活配置sTTI对应的控制信道所占用的第一PRB对集合的大小,以实现系统整体优化的资源调度。
具体的,根据本发明的一个方面,其特征在于,所述EREG所占用的 RE如附图4~12中的一张图中的填充了数字X的方格所示,所述X是不小于0且不大于15的正整数。
本发明公开了一种支持低延迟无线通信的用户中的方法,其中,包括如下步骤:
-步骤A.接收第一信令,第一信令指示第一PRB对集合。
-步骤B.接收第二信令,第二信令中包括第一数据的调度信息。
-步骤C.接收第一数据,或者发送第一数据。
其中,所述第二信令是物理层信令,所述第二信令在频域上位于第一PRB对集合中。所述第一PRB对集合包括M个PRB对子集。所述PRB对子集包含K个PRB对。所述M是大于1的正整数,所述K是大于1的正整数。所述第二信令在时域上在LTE子帧中的第一时间间隔中传输。所述第一时间间隔在时域上的持续时间不超过0.5ms。
具体的,根据本发明的一个方面,其特征在于,所述步骤B还包括如下步骤:
-B0.从T个时间间隔中盲译码第二信令。
其中,所述T个时间间隔属于一个LTE子帧。所述T个时间间隔中的任意两个时间间隔在时域上是没有重叠的。所述时间间隔在时域上的持续时间不超过0.5ms。所述T是大于1的正整数。
具体的,根据本发明的一个方面,其特征在于,所述步骤A还包括如下步骤:
-步骤A1.发送第三信令,第三信令指示所述UE所能支持的最短sTTI的持续时间。
其中,所述第三信令是高层信令。所述第一数据所对应的sTTI的持续时间大于或等于所述UE所能支持的最短sTTI的持续时间。
具体的,根据本发明的一个方面,其特征在于,所述第二信令占用的RE由Q个改进的EREG组成。其中,所述Q为正整数。一个所述改进的EREG所占用的RE分布在一个PRB对子集包含的的P个PRB对上。P是不大于K,且大于1的正整数。
具体的,根据本发明的一个方面,其特征在于,所述第二信令占用的RE由Q个改进的EREG组成。其中,所述Q为正整数。一个所述改进 的EREG所占用的RE按照{频域第一,时域第二}的映射方式映射到第一PRB对集合中。
具体的,根据本发明的一个方面,其特征在于,所述K是固定的,或者所述K是由高层信令配置的。
具体的,根据本发明的一个方面,其特征在于,所述EREG所占用的RE如附图4~12中的一张图中的填充了数字X的方格所示,所述X是不小于0且不大于15的正整数。
本发明公开了一种支持低延迟无线通信的基站设备,其中,包括如下模块:
-第一发送模块:用于发送第一信令,第一信令指示第一PRB对集合。以及用于发送第二信令,第二信令中包括第一数据的调度信息。
其中,所述第二信令是物理层信令,所述第二信令在频域上位于第一PRB对集合中。所述第一PRB对集合包括M个PRB对子集。所述PRB对子集包含K个PRB对。所述M是大于1的正整数,所述K是大于1的正整数。所述第二信令在时域上在LTE子帧中的第一时间间隔中传输。所述第一时间间隔在时域上的持续时间不超过0.5ms。
-第一接收模块:用于接收第三信令,第三信令指示所述UE所能支持的最短sTTI的持续时间。
其中,所述第三信令是高层信令。所述第一数据所对应的sTTI的持续时间大于或等于所述UE所能支持的最短sTTI的持续时间。
-第一处理模块:用于发送第一数据,或者用于接收第一数据。
作为一个实施例,上述基站设备的特征在于,所述第二信令占用的RE由Q个改进的EREG组成,所述Q为正整数。一个所述改进的EREG所占用的RE分布在一个PRB对子集包含的P个PRB对上,P是不大于K且大于1的正整数;或者一个所述改进的EREG所占用的RE按照{频域第一,时域第二}的映射方式映射到第一PRB对集合中。
作为一个实施例,上述基站设备的特征在于,所述EREG所占用的RE如附图4~12中的一张图中的填充了数字X的方格所示,所述X是不小于0且不大于15的正整数。
本发明公开了一种支持低延迟无线通信的用户设备,其中,包括如下模块:
-第二接收模块:用于接收第一信令,第一信令指示第一PRB对集合。以及用于接收第二信令,第二信令中包括第一数据的调度信息。
其中,所述第二信令是物理层信令,所述第二信令在频域上位于第一PRB对集合中。所述第一PRB对集合包括M个PRB对子集。所述PRB对子集包含K个PRB对。所述M是大于1的正整数,所述K是大于1的正整数。所述第二信令在时域上在LTE子帧中的第一时间间隔中传输。所述第一时间间隔在时域上的持续时间不超过0.5ms。
-第二发送模块:用于发送第三信令,第三信令指示所述UE所能支持的最短sTTI的持续时间。
其中,所述第三信令是高层信令。所述第一数据所对应的sTTI的持续时间大于或等于所述UE所能支持的最短sTTI的持续时间。
-第二处理模块:用于接收第一数据,或者用于发送第一数据。
作为一个实施例,上述用户设备的特征在于,所述第二信令占用的RE由Q个改进的EREG组成,所述Q为正整数。一个所述改进的EREG所占用的RE分布在一个PRB对子集包含的P个PRB对上,P是不大于K且大于1的正整数;或者一个所述改进的EREG所占用的RE按照{频域第一,时域第二}的映射方式映射到第一PRB对集合中。
作为一个实施例,上述用户设备的特征在于,所述EREG所占用的RE如附图4~12中的一张图中的填充了数字X的方格所示,所述X是不小于0且不大于15的正整数。
相比现有公开技术,本发明具有如下技术优势:
-.为sTTI场景设计新的控制信令的映射方式,以保证针对sTTI进行动态调度时,用户可以提前控制信令的盲译码,进而最大化低延迟带来的特性。
-.在进行控制信令映射时,充分考虑频域分集带来的性能,将一个控制信令对应的RE均匀分布在配置的第一PRB对集合中。
-.基站根据其调度的UE所支持的sTTI的最短持续时间,以及所述UE的个数和负载,灵活的配置一个LTE子帧中时间间隔的个数和时 间间隔的持续时间,进而灵活配置sTTI对应的控制信道所占用的第一PRB对集合的大小,以实现系统资源的整体优化。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更加明显:
图1示出了根据本发明的一个的实施例的下行传输流程图;
图2示出了根据本发明的一个的实施例的上行传输流程图;
图3示出了根据本发明的一个第一PRB对集合的实施例的示意图;
图4示出了根据本发明的一个K与P均等于2时,所述改进的EREG所占用的RE映射到一个PRB对子集的实施例的示意图;
图5示出了根据本发明的一个K与P均等于2时,所述改进的EREG所占用的RE映射到一个PRB对子集的另一个实施例的示意图;
图6示出了根据本发明的一个K与P均等于3时,所述改进的EREG所占用的RE映射到一个PRB对子集的实施例的示意图;
图7示出了根据本发明的一个K与P均等于3时,所述改进的EREG所占用的RE映射到一个PRB对子集的另一个实施例的示意图;
图8示出了根据本发明的一个K与P均等于4时,所述改进的EREG所占用的RE映射到一个PRB对子集的实施例的示意图;
图9示出了根据本发明的一个K与P均等于4时,所述改进的EREG所占用的RE映射到一个PRB对子集的另一个实施例的示意图;
图10示出了根据本发明的一个K与P均等于6时,所述改进的EREG所占用的RE映射到一个PRB对子集的实施例的示意图;
图11示出了根据本发明的一个K与P均等于6时,所述改进的EREG所占用的RE映射到一个PRB对子集的另一个实施例的示意图;
图12示出了根据本发明的一个K等于12时,所述改进的EREG所占用的RE映射到一个PRB对子集的实施例的示意图;
图13示出了根据本发明的一个所述EREG所占用的RE按照{频域第一,时域第二}的映射方式映射到第一PRB对集合中的实施例的示意图;
图14示出了根据本发明的一个所述EREG所占用的RE按照{频域第一,时域第二}的映射方式映射到第一PRB对集合中的另一个实施例的示意图;
图15示出了根据本发明的一个所述EREG所占用的RE按照{频域第一,时域第二}的映射方式映射到第一PRB对集合中的又一个实施例的示意图;
图16示出了根据本发明的一个实施例的基站中的处理装置的结构框图;
图17示出了根据本发明的一个实施例的UE中的处理装置的结构框图;
具体实施方式
下文将结合附图对本发明的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本发明的一个的下行传输流程图,如附图1所示。附图1中,基站N1是UE U2的服务小区的维持基站,方框F1中标识的步骤是可选步骤。
对于UE U2,在步骤S21中发送第三信令。第三信令指示所述UE所能支持的最短sTTI的持续时间。
其中,所述第三信令是高层信令。所述第一数据所对应的sTTI的持续时间大于或等于所述UE所能支持的最短sTTI的持续时间。
对于基站N1,在步骤S11中接收第三信令。
对于基站N1,在步骤S12中发送第一信令。第一信令指示第一PRB对集合。
其中,所述第一PRB对集合包括M个PRB对子集。所述PRB对子集包含K个PRB对。所述M是大于1的正整数,所述K是大于1的正整数。
对于UE U2,在步骤S22中接收第一信令。第一信令指示第一PRB对集合。
对于基站N1,在步骤S13中从T个时间间隔中选择第一时间间隔。
其中,所述T个时间间隔属于一个LTE子帧。所述T个时间间隔中的任意两个时间间隔在时域上没有重叠。所述时间间隔在时域上的持续时间不超过0.5ms。所述T是大于1的正整数。
对于基站N1,在步骤S14中发送第二信令,第二信令中包括第一数据的调度信息。
其中,所述第二信令是物理层信令,所述第二信令在频域上位于第一PRB对集合中。所述第二信令在时域上在LTE子帧中的第一时间间隔中传输。所述第一时间间隔在时域上的持续时间不超过0.5ms。
作为实施例1的子实施例,所述第二信令是DCI格式{1,1A,1B,1C,1D,2,2A,2B,2C,2D}中的一种;或新设计的DCI格式,调度第一数据的传输。
对于UE U2,在步骤S23中从T个时间间隔中盲译码第二信令。
对于UE U2,在步骤S24中接收第二信令。
对于基站N1,在步骤S15中发送第一数据。
对于UE U2,在步骤S25中接收第一数据。
实施例2
实施例2示例了根据本发明的一个上行传输流程图,如附图2所示。附图2中,基站N1是UE U2的服务小区的维持基站。
对于UE U2,在步骤S26中发送第一数据。
对于基站N1,在步骤S16中接收第一数据。
实施例3
实施例3示例了本发明的一个第一PRB对集合的示意图。如附图3所示,所述第一PRB对集合共占用M*K个PRB对,所述M*K个PRB对被分成M个PRB对子集,所述M个PRB对子集在图中标识为PRB对子集#1至PRB对子集#M。所述M个PRB对子集中,每个PRB对子集均占用K个PRB对。其中,M和K均是大于1的正整数。j是大于1小于M的正整数。
作为实施例3的一个子实施例,所述第一PRB对集合中的任意PRB对子集所占用的K个PRB对在频域上是连续的,且所述M个PRB对子集在频域上是离散的。
实施例4
实施例4示例了本发明的一个K与P均等于2时,所述改进的EREG所占用的RE映射到一个PRB对子集的示意图,如附图4所示。
图中,所述改进的EREG所占用的RE分布到一个PRB对子集所占据的2个PRB对上。数字标号对应改进的EREG的序号,如“0”表示其所在位置的RE属于改进的EREG#0,“1”表示其所在位置的RE属于改进的EREG#1,以此类推,“X”表示其所在位置的RE属于改进的EREG#X(X为2至15的 正整数)。图中所有标识为“0”的RE(共9个RE)组成改进的EREG#0,所有标识为“1”的RE组成改进EREG#1,以此类推,所有标识为“X”的RE组成改进的EREG#X。
附图中,一个PRB对子集在所述第一时间间隔内共包含16个改进的EREG。一个改进的EREG所占用的RE在频域上分布到给定PRB对子集对应的子带中,所述给定PRB对子集在频域上包含PRB对#1和PRB对#2,且所述PRB对#1在频域对应子带#1,所述PRB对#2在频域对应子带#2。所述PRB对#1和PRB对#2是属于所述第一PRB对集合的任意两个PRB对。所述16个改进的EREG对应的RE按照{频域第一,时域第二,子带第三}的方式映射到子带#1和子带#2中。一个改进的EREG所占用的RE在时域上分布在第一时间间隔内。图中斜线部分对应DM-RS(Demodulation Reference Signal,解调参考信号)所占用的RE,所述斜线部分不映射改进的EREG。
实施例5
实施例5示例了本发明的另一个K与P均等于2时,所述改进的EREG所占用的RE映射到一个PRB对子集的示意图,如附图5所示。
图中,所述改进的EREG所占用的RE分布到一个PRB对子集所占据的2个PRB对上。数字标号对应改进的EREG的序号,如“0”表示其所在位置的RE属于改进的EREG#0,“1”表示其所在位置的RE属于改进的EREG#1,以此类推,“X”表示其所在位置的RE属于改进的EREG#X(X为2至15的正整数)。图中所有标识为“0”的RE(共9个RE)组成改进的EREG#0,所有标识为“1”的RE组成改进EREG#1,以此类推,所有标识为“X”的RE组成改进的EREG#X。
附图中,一个PRB对子集在所述第一时间间隔内共包含16个改进的EREG。一个改进的EREG所占用的RE在频域上分布到给定PRB对子集对应的子带中,所述给定PRB对子集在频域上包含PRB对#1和PRB对#2,且所述PRB对#1在频域对应子带#1,所述PRB对#2在频域对应子带#2。所述PRB对#1和PRB对#2是属于所述第一PRB对集合的任意两个PRB对。所述16个改进的EREG对应的RE按照{频域第一,子带第二,时域第三}的方式映射到子带#1和子带#2中。一个改进的EREG所占用的RE在时域上分布在第一时间间隔内。图中斜线部分对应DM-RS(Demodulation Reference Signal,解调参考信号)所占用的RE,所述斜线部分不映射改进的EREG。
实施例6
实施例6示例了本发明的一个K与P均等于3时,所述改进的EREG所占用的RE映射到一个PRB对子集的示意图,如附图6所示。
图中,所述改进的EREG所占用的RE分布到一个PRB对子集所占据的3个PRB对上。数字标号对应改进的EREG的序号,如“0”表示其所在位置的RE属于改进的EREG#0,“1”表示其所在位置的RE属于改进的EREG#1,以此类推,“X”表示其所在位置的RE属于改进的EREG#X(X为2至15的正整数)。图中所有标识为“0”的RE(共9个RE)组成改进的EREG#0,所有标识为“1”的RE组成改进EREG#1,以此类推,所有标识为“X”的RE组成改进的EREG#X。
附图中,一个PRB对子集在所述第一时间间隔内共包含16个改进的EREG。一个改进的EREG所占用的RE在频域上分布到给定PRB对子集对应的子带中,所述给定PRB对子集在频域上包含PRB对#1至PRB对#3,且所述PRB对#1至PRB对#3在频域分别对应子带#1至子带#3。所述PRB对#1至PRB对#3是属于所述第一PRB对集合的任意三个PRB对。所述16个改进的EREG对应的RE按照{频域第一,时域第二,子带第三}的方式映射到子带#1至子带#3中。一个改进的EREG所占用的RE在时域上分布在第一时间间隔内。当属于改进的EREG的RE映射到{CRS(Cell-Specific Reference Signal,小区参考信号),DM-RS}中至少之一所占用的RE时,所述被映射为改进的EREG的RE将被打孔(Puncture)。
实施例7
实施例7示例了本发明的另一个K与P均等于3时,所述改进的EREG所占用的RE映射到一个PRB对子集的示意图,如附图7所示。
图中,所述改进的EREG所占用的RE分布到一个PRB对子集所占据的3个PRB对上。数字标号对应改进的EREG的序号,如“0”表示其所在位置的RE属于改进的EREG#0,“1”表示其所在位置的RE属于改进的EREG#1,以此类推,“X”表示其所在位置的RE属于改进的EREG#X(X为2至15的正整数)。图中所有标识为“0”的RE(共9个RE)组成改进的EREG#0,所有标识为“1”的RE组成改进EREG#1,以此类推,所有标识为“X”的RE组成改进的EREG#X。
附图中,一个PRB对子集在所述第一时间间隔内共包含16个改进的 EREG。一个改进的EREG所占用的RE在频域上分布到给定PRB对子集对应的子带中,所述给定PRB对子集在频域上包含PRB对#1至PRB对#3,且所述PRB对#1至PRB对#3在频域分别对应子带#1至子带#3。所述PRB对#1至PRB对#3是属于所述第一PRB对集合的任意三个PRB对。所述16个改进的EREG对应的RE按照{频域第一,子带第二,时域第三}的方式映射到子带#1至子带#3中。一个改进的EREG所占用的RE在时域上分布在第一时间间隔内。当属于改进的EREG的RE映射到{CRS(Cell-Specific Reference Signal,小区参考信号),DM-RS}中至少之一所占用的RE时,所述被映射为改进的EREG的RE将被打孔(Puncture)。
实施例8
实施例8示例了本发明的一个K与P均等于4时,所述改进的EREG所占用的RE映射到一个PRB对子集的示意图,如附图8所示。
图中,所述改进的EREG所占用的RE分布到一个PRB对子集所占据的4个PRB对上。数字标号对应改进的EREG的序号,如“0”表示其所在位置的RE属于改进的EREG#0,“1”表示其所在位置的RE属于改进的EREG#1,以此类推,“X”表示其所在位置的RE属于改进的EREG#X(X为2至15的正整数)。图中所有标识为“0”的RE(共9个RE)组成改进的EREG#0,所有标识为“1”的RE组成改进EREG#1,以此类推,所有标识为“X”的RE组成改进的EREG#X。
附图中,一个PRB对子集在所述第一时间间隔内共包含16个改进的EREG。一个改进的EREG所占用的RE在频域上分布到给定PRB对子集对应的子带中,所述给定PRB对子集在频域上包含PRB对#1至PRB对#4,且所述PRB对#1至PRB对#4在频域分别对应子带#1至子带#4。所述PRB对#1至PRB对#4是属于所述第一PRB对集合的任意4个PRB对。所述16个改进的EREG对应的RE按照{频域第一,时域第二,子带第三}的方式映射到子带#1至子带#4中。一个改进的EREG所占用的RE在时域上分布在第一时间间隔内。当属于改进的EREG的RE映射到{CRS(Cell-Specific Reference Signal,小区参考信号),DM-RS}中至少之一所占用的RE时,所述被映射为改进的EREG的RE将被打孔(Puncture)。
实施例9
实施例9示例了本发明的另一个K与P均等于4时,所述改进的EREG 所占用的RE映射到一个PRB对子集的示意图,如附图9所示。
图中,所述改进的EREG所占用的RE分布到一个PRB对子集所占据的4个PRB对上。数字标号对应改进的EREG的序号,如“0”表示其所在位置的RE属于改进的EREG#0,“1”表示其所在位置的RE属于改进的EREG#1,以此类推,“X”表示其所在位置的RE属于改进的EREG#X(X为2至15的正整数)。图中所有标识为“0”的RE(共9个RE)组成改进的EREG#0,所有标识为“1”的RE组成改进EREG#1,以此类推,所有标识为“X”的RE组成改进的EREG#X。
附图中,一个PRB对子集在所述第一时间间隔内共包含16个改进的EREG。一个改进的EREG所占用的RE在频域上分布到给定PRB对子集对应的子带中,所述给定PRB对子集在频域上包含PRB对#1至PRB对#4,且所述PRB对#1至PRB对#4在频域分别对应子带#1至子带#4。所述PRB对#1至PRB对#4是属于所述第一PRB对集合的任意4个PRB对。所述16个改进的EREG对应的RE按照{频域第一,子带第二,时域第三}的方式映射到子带#1至子带#4中。一个改进的EREG所占用的RE在时域上分布在第一时间间隔内。当属于改进的EREG的RE映射到{CRS(Cell-Specific Reference Signal,小区参考信号),DM-RS}中至少之一所占用的RE时,所述被映射为改进的EREG的RE将被打孔(Puncture)。
实施例10
实施例10示例了本发明的一个K与P均等于6时,所述改进的EREG所占用的RE映射到一个PRB对子集的示意图,如附图10所示。
图中,时间窗口T2对应第一时间间隔,所述改进的EREG所占用的RE分布到一个PRB对子集所占据的6个PRB对上。数字标号对应改进的EREG的序号,如“0”表示其所在位置的RE属于改进的EREG#0,“1”表示其所在位置的RE属于改进的EREG#1,以此类推,“X”表示其所在位置的RE属于改进的EREG#X(X为2至15的正整数)。图中所有标识为“0”的RE(共9个RE)组成改进的EREG#0,所有标识为“1”的RE组成改进EREG#1,以此类推,所有标识为“X”的RE组成改进的EREG#X。
附图中,一个PRB对子集在所述第一时间间隔内共包含16个改进的EREG。一个改进的EREG所占用的RE在频域上分布到给定PRB对子集对应的子带中,所述给定PRB对子集在频域上包含PRB对#1至PRB对#6,且所 述PRB对#1至PRB对#6在频域分别对应子带#1至子带#4。所述PRB对#1至PRB对#6是属于所述第一PRB对集合的任意6个PRB对。所述16个改进的EREG对应的RE按照{频域第一,时域第二,子带第三}的方式映射到子带#1至子带#6中。一个改进的EREG所占用的RE在时域上分布在第一时间间隔内。当属于改进的EREG的RE映射到{CRS(Cell-Specific Reference Signal,小区参考信号),DM-RS}中至少之一所占用的RE时,所述被映射为改进的EREG的RE将被打孔(Puncture)。
实施例11
实施例11示例了本发明的另一个K与P均等于6时,所述改进的EREG所占用的RE映射到一个PRB对子集的示意图,如附图11所示。
图中,时间窗口T2对应第一时间间隔,所述改进的EREG所占用的RE分布到一个PRB对子集所占据的6个PRB对上。数字标号对应改进的EREG的序号,如“0”表示其所在位置的RE属于改进的EREG#0,“1”表示其所在位置的RE属于改进的EREG#1,以此类推,“X”表示其所在位置的RE属于改进的EREG#X(X为2至15的正整数)。图中所有标识为“0”的RE(共9个RE)组成改进的EREG#0,所有标识为“1”的RE组成改进EREG#1,以此类推,所有标识为“X”的RE组成改进的EREG#X。
附图中,一个PRB对子集在所述第一时间间隔内共包含16个改进的EREG。一个改进的EREG所占用的RE在频域上分布到给定PRB对子集对应的子带中,所述给定PRB对子集在频域上包含PRB对#1至PRB对#6,且所述PRB对#1至PRB对#6在频域分别对应子带#1至子带#4。所述PRB对#1至PRB对#6是属于所述第一PRB对集合的任意6个PRB对。所述16个改进的EREG对应的RE按照{频域第一,子带第二,时域第三}的方式映射到子带#1至子带#6中。一个改进的EREG所占用的RE在时域上分布在第一时间间隔内。当属于改进的EREG的RE映射到{CRS(Cell-Specific Reference Signal,小区参考信号),DM-RS}中至少之一所占用的RE时,所述被映射为改进的EREG的RE将被打孔(Puncture)。
实施例12
实施例12示例了本发明的一个K与P均等于12时,所述改进的EREG所占用的RE映射到一个PRB对子集的示意图,如附图12所示。
图中,时间窗口T3对应第一时间间隔,所述改进的EREG所占用的RE 分布到一个PRB对子集所占据的12个PRB对中的9个PRB对上。数字标号对应改进的EREG的序号,如“0”表示其所在位置的RE属于改进的EREG#0,“1”表示其所在位置的RE属于改进的EREG#1,以此类推,“X”表示其所在位置的RE属于改进的EREG#X(X为2至9的正整数)。图中所有标识为“0”的RE(共9个RE)组成改进的EREG#0,所有标识为“1”的RE组成改进EREG#1,以此类推,所有标识为“X”的RE组成改进的EREG#X(X为2至9的正整数)。
附图中,一个PRB对子集在所述第一时间间隔内共包含16个改进的EREG。一个改进的EREG所占用的RE在频域上分布到给定PRB对子集对应的子带中,所述给定PRB对子集在频域上包含PRB对#1至PRB对#12,且所述PRB对#1至PRB对#12在频域分别对应子带#1至子带#12。所述PRB对#1至PRB对#12是属于所述第一PRB对集合的任意12个PRB对。所述16个改进的EREG对应的RE按照{频域第一,子带第二}的方式映射到子带#1至子带#12中。一个改进的EREG所占用的RE在时域上分布在第一时间间隔内。当属于改进的EREG的RE映射到{CRS(Cell-Specific Reference Signal,小区参考信号),DM-RS}中至少之一所占用的RE时,所述被映射为改进的EREG的RE将被打孔(Puncture)。
实施例13
实施例13示例了本发明的一个所述EREG所占用的RE按照{频域第一,时域第二}的映射方式映射到第一PRB对集合中的示意图。图中T1对应一个RE所持续的时间,粗线框标识的部分对应一个改进的EREG所占据的RE。一个所述改进的EREG占据Z个RE,Z等于{8,9}中的之一。
如图13所示,所述一个改进的EREG占据的频带位于子带#a,所述子带#a对应PRB对#a所占据的子带。所述PRB对#a是第一PRB对集合中的任意一个PRB对。
实施例14
实施例14示例了本发明的一个所述EREG所占用的RE按照{频域第一,时域第二}的映射方式映射到第一PRB对集合中的示意图。图中T1对应一个RE所持续的时间,粗线框标识的部分对应一个改进的EREG所占据的RE。一个所述改进的EREG占据Z个RE,Z等于{8,9}中的之一。
如图14所示,所述一个改进的EREG占据的频带位于子带#a和子带 #(a+1),所述子带#a和子带#(a+1)分别对应PRB对#a和PRB对#(a+1)所占据的子带。所述PRB对#a和PRB对#(a+1)是第一PRB对集合中任意两个在频域上相邻的PRB对。
实施例15
实施例15示例了本发明的一个所述EREG所占用的RE按照{频域第一,时域第二}的映射方式映射到第一PRB对集合中的示意图。图中T1对应一个RE所持续的时间,粗线框标识的部分对应一个改进的EREG所占据的RE。一个所述改进的EREG占据Z个RE,Z等于{8,9}中的之一。
如图15所示,所述一个改进的EREG占据的频带位于子带#1和子带#(M*K),所述子带#1和子带#(M*K)分别对应PRB对#1和PRB对#(M*K)所占据的子带。所述PRB对#1是第一PRB对集合中的在频域上中心频点最低的PRB对。所述PRB对#(M*K)是第一PRB对集合中的在频域上中心频点最高的PRB对。
实施例16
实施例16示出了根据本发明的一个实施例的基站中的处理装置的结构框图;如附图16所示。附图16中,基站处理装置200主要由第一发送模块201,第一接收模块202和第一处理模块203。
-第一发送模块201:用于发送第一信令,第一信令指示第一PRB对集合。以及用于发送第二信令,第二信令中包括第一数据的调度信息。
其中,所述第二信令是物理层信令,所述第二信令在频域上位于第一PRB对集合中。所述第一PRB对集合包括M个PRB对子集。所述PRB对子集包含K个PRB对。所述M是大于1的正整数,所述K是大于1的正整数。所述第二信令在时域上在LTE子帧中的第一时间间隔中传输。所述第一时间间隔在时域上的持续时间不超过0.5ms。
-第一接收模块202:用于接收第三信令,第三信令指示所述UE所能支持的最短sTTI的持续时间。
其中,所述第三信令是高层信令。所述第一数据所对应的sTTI的持续时间大于或等于所述UE所能支持的最短sTTI的持续时间。
-第一处理模块203:用于发送第一数据,或者用于接收第一数据。
实施例17
实施例17示出了根据本发明的一个实施例的UE中的处理装置的结构 框图;如附图17所示。附图17中,UE处理装置300主要由第二接收模块301,第二发送模块302和第二处理模块303组成。
-第二接收模块301:用于接收第一信令,第一信令指示第一PRB对集合。以及用于接收第二信令,第二信令中包括第一数据的调度信息。
其中,所述第二信令是物理层信令,所述第二信令在频域上位于第一PRB对集合中。所述第一PRB对集合包括M个PRB对子集。所述PRB对子集包含K个PRB对。所述M是大于1的正整数,所述K是大于1的正整数。所述第二信令在时域上在LTE子帧中的第一时间间隔中传输。所述第一时间间隔在时域上的持续时间不超过0.5ms。
-第二发送模块302:用于发送第三信令,第三信令指示所述UE所能支持的最短sTTI的持续时间。
其中,所述第三信令是高层信令。所述第一数据所对应的sTTI的持续时间大于或等于所述UE所能支持的最短sTTI的持续时间。
-第二处理模块303:用于接收第一数据,或者用于发送第一数据。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本发明中的UE和终端包括但不限于RFID,物联网终端设备,MTC(Machine Type Communication,机器类型通信)终端,车载通信设备,无线传感器,上网卡,手机,平板电脑,笔记本等无线通信设备。本发明中的基站和基站设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站等无线通信设备。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本发明的保护范围之内。

Claims (20)

  1. 一种支持低延迟无线通信的基站中的方法,其中,包括如下步骤:
    -步骤A.发送第一信令,第一信令指示第一PRB对集合。
    -步骤B.发送第二信令,第二信令中包括第一数据的调度信息。
    -步骤C.发送第一数据,或者接收第一数据。
    其中,所述第二信令是物理层信令,所述第二信令在频域上位于第一PRB对集合中。所述第一PRB对集合包括M个PRB对子集。所述PRB对子集包含K个PRB对。所述M是大于1的正整数,所述K是大于1的正整数。所述第二信令在时域上在LTE子帧中的第一时间间隔中传输。所述第一时间间隔在时域上的持续时间不超过0.5ms。
  2. 根据权利要求1所述的方法,其特征在于,所述步骤B还包括如下步骤:
    -B0.从T个时间间隔中选择第一时间间隔。
    其中,所述T个时间间隔属于一个LTE子帧。所述T个时间间隔中的任意两个时间间隔在时域上没有重叠。所述时间间隔在时域上的持续时间不超过0.5ms。所述T是大于1的正整数。
  3. 根据权利要求1,2所述的方法,其特征在于,所述步骤A还包括如下步骤:
    -步骤A1.接收第三信令,第三信令指示所述UE所能支持的最短sTTI的持续时间。
    其中,所述第三信令是高层信令。所述第一数据所对应的sTTI的持续时间大于或等于所述UE所能支持的最短sTTI的持续时间。
  4. 根据权利要求1-3所述的方法,其特征在于,所述第二信令占用的RE由Q个改进的EREG组成。其中,所述Q为正整数。一个所述改进的EREG所占用的RE分布在一个PRB对子集包含的P个PRB对上。P是不大于K,且大于1的正整数。
  5. 根据权利要求1-4所述的方法,其特征在于,所述第二信令占用的RE由Q个改进的EREG组成。其中,所述Q为正整数。一个所述改进的EREG所占用的RE按照{频域第一,时域第二}的映射方式映射到第一PRB对集合中。
  6. 根据权利要求1-5所述的方法,其特征在于,所述K是固定的,或者所述K是由高层信令配置的。
  7. 根据权利要求4,5,6所述的方法,其特征在于,所述EREG所占用的RE如附图4~12中的一张图中的填充了数字X的方格所示,所述X是不小于0且不 大于15的正整数。
  8. 一种支持低延迟无线通信的UE中的方法,其中,包括如下步骤:
    -步骤A.接收第一信令,第一信令指示第一PRB对集合。
    -步骤B.接收第二信令,第二信令中包括第一数据的调度信息。
    -步骤C.接收第一数据,或者发送第一数据。
    其中,所述第二信令是物理层信令,所述第二信令在频域上位于第一PRB对集合中。所述第一PRB对集合包括M个PRB对子集。所述PRB对子集包含K个PRB对。所述M是大于1的正整数,所述K是大于1的正整数。所述第二信令在时域上在LTE子帧中的第一时间间隔中传输。所述第一时间间隔在时域上的持续时间不超过0.5ms。
  9. 根据权利要求8所述的方法,其特征在于,所述步骤B还包括如下步骤:
    -B0.从T个时间间隔中盲译码第二信令。
    其中,所述T个时间间隔属于一个LTE子帧。所述T个时间间隔中的任意两个时间间隔在时域上是没有重叠的。所述时间间隔在时域上的持续时间不超过0.5ms。所述T是大于1的正整数。
  10. 根据权利要求8,9所述的方法,其特征在于,所述步骤A还包括如下步骤:
    -步骤A1.发送第三信令,第三信令指示所述UE所能支持的最短sTTI的持续时间。
    其中,所述第三信令是高层信令。所述第一数据所对应的sTTI的持续时间大于或等于所述UE所能支持的最短sTTI的持续时间。
  11. 根据权利要求8-10所述的方法,其特征在于,所述第二信令占用的RE由Q个改进的EREG组成。其中,所述Q为正整数。一个所述改进的EREG所占用的RE分布在一个PRB对子集包含的P个PRB对上。P是不大于K,且大于1的正整数。
  12. 根据权利要求8-11所述的方法,其特征在于,所述第二信令占用的RE由Q个改进的EREG组成。其中,所述Q为正整数。一个所述改进的EREG所占用的RE按照{频域第一,时域第二}的映射方式映射到第一PRB对集合中。
  13. 根据权利要求8-12所述的方法,其特征在于,所述K是固定的,或者所述K是由高层信令配置的。
  14. 根据权利要求11,12,13所述的方法,其特征在于,所述EREG所占用 的RE如附图4~12中的一张图中的填充了数字X的方格所示,所述X是不小于0且不大于15的正整数。
  15. 一种支持低延迟无线通信的基站设备,其中,包括如下模块:
    -第一发送模块:用于发送第一信令,所述第一信令指示第一PRB对集合。以及用于发送第二信令,第二信令中包括第一数据的调度信息。
    其中,所述第二信令是物理层信令,所述第二信令在频域上位于第一PRB对集合中。所述第一PRB对集合包括M个PRB对子集。所述PRB对子集包含K个PRB对。所述M是大于1的正整数,所述K是大于1的正整数。所述第二信令在时域上在LTE子帧中的第一时间间隔中传输。所述第一时间间隔在时域上的持续时间不超过0.5ms。
    -第一接收模块:用于接收第三信令,第三信令指示所述UE所能支持的最短sTTI的持续时间。
    其中,所述第三信令是高层信令。所述第一数据所对应的sTTI的持续时间大于或等于所述UE所能支持的最短sTTI的持续时间。
    -第一处理模块:用于发送第一数据,或者用于接收第一数据。
  16. 根据权利要求15所述的基站设备,其特征在于,所述第二信令占用的RE由Q个改进的EREG组成,所述Q为正整数。一个所述改进的EREG所占用的RE分布在一个PRB对子集包含的P个PRB对上,P是不大于K且大于1的正整数;或者一个所述改进的EREG所占用的RE按照{频域第一,时域第二}的映射方式映射到第一PRB对集合中。
  17. 根据权利要求15,16所述的基站设备,其特征在于,所述EREG所占用的RE如附图4~12中的一张图中的填充了数字X的方格所示,所述X是不小于0且不大于15的正整数。
  18. 一种支持低延迟无线通信的用户设备,其中,包括如下模块:
    -第二接收模块:用于接收第一信令,第一信令指示第一PRB对集合。以及用于接收第二信令,第二信令中包括第一数据的调度信息。
    其中,所述第二信令是物理层信令,所述第二信令在频域上位于第一PRB对集合中。所述第一PRB对集合包括M个PRB对子集。所述PRB对子集包含K个PRB对。所述M是大于1的正整数,所述K是大于1的正整数。所述第二信令在时域上在LTE子帧中的第一时间间隔中传输。所述第一时间间隔在时域上的持续时间不超过0.5ms。
    -第二发送模块:用于发送第三信令,第三信令指示所述UE所能支持的最短sTTI的持续时间。
    其中,所述第三信令是高层信令。所述第一数据所对应的sTTI的持续时间大于或等于所述UE所能支持的最短sTTI的持续时间。
    -第二处理模块:用于接收第一数据,或者用于发送第一数据。
  19. 根据权利要求18所述的用户设备,其特征在于,所述第二信令占用的RE由Q个改进的EREG组成,所述Q为正整数。一个所述改进的EREG所占用的RE分布在一个PRB对子集包含的P个PRB对上,P是不大于K且大于1的正整数;或者一个所述改进的EREG所占用的RE按照{频域第一,时域第二}的映射方式映射到第一PRB对集合中。
  20. 根据权利要求18,19所述的用户设备,其特征在于,所述EREG所占用的RE如附图4~12中的一张图中的填充了数字X的方格所示,所述X是不小于0且不大于15的正整数。
PCT/CN2017/075352 2016-03-05 2017-03-01 一种用于用户设备、基站中的用于低延迟通信的方法和装置 WO2017152800A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610125585.9 2016-03-05
CN201610125585.9A CN107155219B (zh) 2016-03-05 2016-03-05 一种降低网络延时的无线通信方法和装置

Publications (1)

Publication Number Publication Date
WO2017152800A1 true WO2017152800A1 (zh) 2017-09-14

Family

ID=59788985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075352 WO2017152800A1 (zh) 2016-03-05 2017-03-01 一种用于用户设备、基站中的用于低延迟通信的方法和装置

Country Status (2)

Country Link
CN (1) CN107155219B (zh)
WO (1) WO2017152800A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130294366A1 (en) * 2012-05-03 2013-11-07 Samsung Electronics Co., Ltd. Reference signals and common search space for enhanced control channels
CN104247536A (zh) * 2013-01-09 2014-12-24 华为技术有限公司 传输信号的方法、网络设备和用户设备
CN104969502A (zh) * 2012-09-28 2015-10-07 瑞典爱立信有限公司 包括区分PRB对的集合的处理ePDCCH信息
WO2016029455A1 (zh) * 2014-08-29 2016-03-03 华为技术有限公司 一种资源分配方法和设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102711253B (zh) * 2012-03-21 2015-02-18 电信科学技术研究院 E-pdcch的资源映射方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130294366A1 (en) * 2012-05-03 2013-11-07 Samsung Electronics Co., Ltd. Reference signals and common search space for enhanced control channels
CN104969502A (zh) * 2012-09-28 2015-10-07 瑞典爱立信有限公司 包括区分PRB对的集合的处理ePDCCH信息
CN104247536A (zh) * 2013-01-09 2014-12-24 华为技术有限公司 传输信号的方法、网络设备和用户设备
WO2016029455A1 (zh) * 2014-08-29 2016-03-03 华为技术有限公司 一种资源分配方法和设备

Also Published As

Publication number Publication date
CN107155219B (zh) 2020-02-18
CN107155219A (zh) 2017-09-12

Similar Documents

Publication Publication Date Title
JP6827528B2 (ja) トラフィックを多重化するためのシステムおよび方法
CN110740519B (zh) 一种无线传输中的方法和装置
CN107483166B (zh) 一种无线通信中的方法和装置
EP3335489B1 (en) Flexible multiplexing of users with different requirements in a 5g frame structure
US10506624B2 (en) Scheduling method and device in UE and base station
KR20190102056A (ko) 불연속 수신 모드 및/또는 협대역 동작에 대한 다운링크 제어 채널 모니터링 최적화 기법
EP3554110B1 (en) Information sending method, information receiving method, apparatus and system
US10531480B2 (en) Method and device for narrow band communication in UE and base station
CN106922031B (zh) 一种无线通信中的调度方法和装置
WO2018068642A1 (zh) 一种支持多载波通信的用户设备、基站中的方法和设备
CN107801247B (zh) 一种支持可变的子载波间距的ue、基站中的方法和设备
WO2019179343A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US10681623B2 (en) Methods and apparatus for cell access via anchor carrier
JP2018160902A (ja) 通信装置及び通信方法
WO2020048378A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN110636622A (zh) 一种无线通信中的方法和装置
US11445526B2 (en) Method and device in nodes used for wireless communication
WO2018161227A1 (zh) 一种被用于动态调度的用户设备、基站中的方法和装置
WO2019174490A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2017148381A1 (zh) 一种用户设备、终端中的用于低延迟通信的方法和装置
CN107027189B (zh) 一种调度方法和装置
WO2017152800A1 (zh) 一种用于用户设备、基站中的用于低延迟通信的方法和装置
WO2020024782A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024088393A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024020891A1 (en) Methods and apparatuses for determining dmrs port mode

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17762486

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17762486

Country of ref document: EP

Kind code of ref document: A1