WO2017152709A1 - 流体通道及其固液分离设备 - Google Patents
流体通道及其固液分离设备 Download PDFInfo
- Publication number
- WO2017152709A1 WO2017152709A1 PCT/CN2017/000239 CN2017000239W WO2017152709A1 WO 2017152709 A1 WO2017152709 A1 WO 2017152709A1 CN 2017000239 W CN2017000239 W CN 2017000239W WO 2017152709 A1 WO2017152709 A1 WO 2017152709A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluid passage
- unit
- locking
- stator
- unit support
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
Definitions
- the invention relates to a fluid channel and a direct-drive solid-liquid separation device thereof, and the solid-liquid separation device belongs to the field of centrifuges.
- the commonly used centrifuges are separated and reassembled by a driving device (mainly a motor) and a solid-liquid separating device (mainly a liquid collecting chamber and a driven centrifugal unit), and the centrifugal rotating drum (equivalent to driven centrifugal centrifugation)
- a driving device mainly a motor
- a solid-liquid separating device mainly a liquid collecting chamber and a driven centrifugal unit
- the centrifugal rotating drum equivalent to driven centrifugal centrifugation
- the unit is mechanically fixed on the drive shaft, which makes it difficult to disassemble the centrifugal drum and clean the centrifugal equipment.
- the equipment is too complicated and heavy, the noise and vibration are too large, the manufacturing process is complicated, and the maintenance is inconvenient. Defects or drawbacks cannot fully meet the need for complete separation of solid and liquid mixtures in laboratory pilot and pilot tests.
- the present invention provides an integrated electrical insulation of solid-liquid centrifugal separation and liquid collection and transportation with either or both of the rotor and stator of the motor.
- the designed fluid passage and its direct drive type solid-liquid separation device a main feature of the structure of the solid-liquid separation device is that it has a fluid transport passage composed of a fluid passage rotating portion and a stationary portion. The present invention will be described in detail below.
- the fluid channel of the present invention it comprises:
- a fluid passage rotating portion wherein the fluid passage rotating portion is disposed in a cavity surrounded by the stator assembly via an air gap, and includes:
- At least one rotor unit that causes a rotational movement of the fluid passage rotating portion about the motor shaft by a rotational force generated by electromagnetic interaction with the adapted stator unit;
- a rotor unit support comprising:
- a substantially cylindrical body portion (such as the position indicated by 101 or 107) carrying the rotor unit;
- a cover portion at the top end of the main body portion and having a liquid inlet at the center;
- the rotor unit support or the fluid passage rotating portion is related to the motor shaft by any one of the following shaft connection methods:
- mounting bracket (202) By mounting bracket (202), the mounting bracket is fixedly connected to the bottom and the motor shaft, or integrated with the bottom and/or the motor shaft;
- the motor shaft is integrated with the rotor unit support or the fluid passage rotating portion (Figs. 9 and 10);
- the bottom of the rotor unit support at a position corresponding to the annular recess of the fluid passage stationary portion A has a conductive flow hole for guiding the fluid to the annular concave cavity a flow guiding structure, the guiding flow hole also serves as a locking structure for locking the driven centrifugal unit;
- Fluid passage stationary portion A (Fig. 3): includes an annular cavity of a U-shaped vertical section surrounded by two cylinders of an annular cavity inner ring (304) and an annular cavity outer ring (301) (310) And a drain conduit (309) at the bottom of the annular cavity for flowing liquid to the liquid collection bottle, the open end of the annular cavity being located on the bottom of the rotor unit support for directing fluid to the fluid passage stationary portion A a flow guiding structure of the annular cavity having a flow-through hole (102);
- Fluid passage stationary portion B (Fig. 4): includes a funnel opening for collecting liquid guided by the liquid collection chamber and a funnel neck for flowing liquid to the liquid collection bottle, the funnel opening edge being sealingly connected to the inner wall (101) of the liquid collection chamber
- the funnel neck passes through the hollow shaft of the motor and its end is fixed to any one of the stator unit support base portion, the bearing seat and the end cover;
- the fluid passage stationary portion A is located on one of the stator unit support base portion, the motor bearing housing, and the end cover, or is integrally formed with any one of them, such as metal aluminum or steel, iron, etc.
- the part A is integrally cast or stamped with the motor bearing housing, the stator unit support base portion and/or the stator unit support housing portion (Fig. 8), and more preferably the fluid passage stationary portion A and the stator unit are integrally molded into
- the stator assembly (Fig. 10) is more conducive to the plastic molding of the stator assembly and the improvement of the insulation level, and is particularly effective for the centrifugal separation of the flammable and explosive solid-liquid mixture.
- the fluid passage is composed of a rotating portion of the centrifugal liquid collecting chamber and a flow guiding structure on the bottom portion of the annular concave cavity and the annular concave cavity in the stationary portion A, and is formed by centrifugally abutting the liquid collecting chamber.
- the liquid is transported by itself to the annular cavity (310) of the stationary portion A through the conductive flow hole (102) on the bottom of the rotor unit support, and finally passes through the pipe (309) located at the bottom of the annular cavity. The liquid is allowed to flow to the liquid collection bottle.
- the fluid passage is composed of a rotating portion of the liquid collecting chamber of the rotating portion and the edge of the funnel opening of the stationary portion B, and the centrifugal liquid enriched by the liquid collecting chamber passes through the funnel opening under the action of its own gravity (402, 406 And the communication port (403) is delivered into the funnel neck (405) and finally the liquid is passed through the funnel neck to the liquid collection bottle.
- the funnel opening in the stationary portion B of the portion includes two forms of a disc shape (402) or a funnel shape (406), preferably a funnel-shaped structure, so that the flow of liquid is more favorable under the action of gravity.
- 4A shows a stationary portion B having a disk-shaped funnel opening
- FIG. 4B illustrates a stationary portion B having a funnel-shaped funnel opening.
- the rotor unit thereof includes, but is not limited to, any one of the four structures selected from the following (1) to (4):
- the permanent magnets include, but are not limited to, any one of a neodymium iron boron magnet, a samarium cobalt magnet, an alnico magnet, a ferrite magnet, a plastic magnet, or a combination of two or more thereof.
- the rotor unit structure is preferably a combination of a core and a permanent magnet, and a combination of a secondary rotor bar, an end ring and an iron core.
- the two combined structures are more convenient to produce than other structures, and have a coreless conductive winding.
- the rotor unit is more suitable for the manufacture of microcentrifuges, and rotor units of other configurations are also available.
- the funnel opening of the stationary portion B facing the open end side of the liquid collecting chamber has a projection (401) and/or a groove extending from the edge thereof toward the center thereof, specifically, Including linear protrusions and/or grooves and curved protrusions and/or grooves, these protrusions and/or grooves can quickly reduce the centrifugal force that causes the liquid to rotate, thereby making the liquid Faster through the funnel neck to the liquid collection bottle, increasing the efficiency of liquid discharge, and Figure 4 (including Figures 4A and 4B) illustrates such a projection and a groove between adjacent projections.
- the bottom of the rotor unit support corresponding to the annular cavity of the fluid passage stationary portion A has an axis centered on the motor shaft, including but not limited to the following (5) ⁇ (8) any of the four flow guiding structures:
- the conductive flow hole which is circumferentially distributed with the center line of the motor shaft as an axis is circumferentially distributed on any one of the above four flow guiding structures, and the outermost guiding flow hole is located at the main body portion and the bottom of the rotor unit support. At the approximate junction, the flow-through hole can also serve as a locking structure for the driven centrifugal unit.
- FIG. 6A A fluid passage rotating portion having a conical boss, a motor shaft mounting hole, and a through hole is shown
- FIG. 6B is an isometric view of FIG. 6A rotated by 180°, which illustrates an annular inner groove and an annular outer groove. The fluid passage rotation at the bottom.
- a solid-liquid separation device with a fluid passage comprising at least the components described in the following 1 to 5:
- the fluid passage rotating portion according to claim 1, wherein the fluid passage rotating portion is disposed in a cavity surrounded by the stator assembly via a rotation supporting unit via an air gap;
- a stator assembly comprising:
- At least one stator unit adapted to the rotor unit, the stator unit and the rotor unit forming an electric machine capable of generating a rotary motion by electromagnetic interaction;
- stator unit support comprising:
- the rotation support unit includes at least a motor shaft, a bearing chamber, and a bearing, and the motor shaft, the bearing chamber, and the bearing are located in any one of a stator unit support base portion, a motor bearing housing, and an end cover that constitute the stator assembly. central;
- the driven centrifugal unit is locked by the locking structure and/or the locking unit and rotates coaxially with the fluid passage rotating portion at the same speed.
- the stator assembly has a circumferential direction distributed around the center axis of the motor shaft, and is located inside the annular cavity inner ring (304) and/or the annular cavity outer ring (301). At least one of the three structures described in the following (9) to (11):
- (11) a mounting hole for mounting a sealing member for sealing a fluid
- the drain hole, the vent hole and the mounting hole can be used together, but the functions are different.
- FIGS. 3A and 3B and FIGS. 5A and 5B illustrate a stator assembly having an annular cavity (310) and a pipe (309) with a stationary portion A and a drain hole (305) and a vent hole (302).
- the sealing element between the annular cavity of the stationary portion A and the flow guiding structure of the rotating portion is damaged, the leaked liquid can be discharged through the vent hole and/or the liquid discharging hole, and can also be conveniently Observe the sealing of the sealing element so that the sealing element can be replaced in time to prevent leakage of liquid.
- the driven centrifugal unit seals the open end of the fluid passage rotating portion (ie, seals the top of the centrifugal liquid collecting chamber) through a sealing surface and/or a sealing member, and is driven at this time.
- the centrifugal unit performs the function of the cover portion of the rotor unit support member, thereby avoiding the step of making the cover portion sealing the open end of the centrifugal liquid collection chamber, reducing the manufacturing process and equipment components, and reducing the manufacturing cost.
- the fluid passage rotating portion having two or more rotor units whose rotor unit is axially or radially along the center line of the motor shaft Parallel
- the stator assembly having two or more stator units, the stator units being axially aligned or radially juxtaposed with the motor shaft centerline as an axis, the axial array of rotor units and stator units
- the specifications are the same, and the radial parallel rotor unit and stator unit have different specifications.
- the fluid passage rotating portion and/or the stator assembly of the present invention has at least one of the three electrical insulation measures described in the following (I) to (III):
- At least one of the stator unit and the rotor unit, or at least the surface facing the air gap, is coated with a non-conductive insulating material layer after being processed by a suitable process;
- stator unit, the rotor unit or both are electrically insulated from the adjacent stator unit support and the rotor unit support by a non-conductive insulating material layer;
- the target substance and its respective constituents refer to a mixture to be centrifuged and various constituents constituting the mixture to be centrifuged, the insulating material layer including but not limited to the electrically insulating polymer material layer, which is located at the first place.
- a non-conductive ceramic layer composed of a metal oxide on the surface of the fourth metal member, an electrically insulating skeleton for the iron core, and/or an electrically insulating coating.
- the selection of the electrical insulation measure is determined by the structure of the rotor unit, the structure of the first or second metal member, the connection of the first and second metal members, or the structure of the rotor unit support. At the same time, it is based on the principle of convenient production and reduced product cost.
- the selection of the electrical insulation measure is determined by the structure of the stator unit, the structure of the third or fourth metal component, the connection of the third and fourth metal components, or the structure of the stator unit support. At the same time, it is based on the principle of facilitating production and reducing product cost.
- a second electrical insulation measure of number is preferred, for which the electrical insulation means is electrically insulated from the non-conductive insulating material layer between the stator unit and the third and/or fourth metal component. Isolation also corresponds to the isolation of the rotor unit from the first and/or second metal component by a non-conductive layer of insulating material.
- This electrical insulation measure can expand the selectable range of the first or second metal component structure, The selectable range of the first and second metal component connections, or the selectable range of the rotor unit support structure, is preferred.
- the non-electrically insulating metal component of the rotor unit is carried, at least the surface of which the target substance and its constituent components are in contact with each other is covered with an electrically insulating polymer material to ensure that it is located in the rotor unit support and/or Or electrical insulation of the target substance to ensure the safety of the equipment.
- the rotor unit support member includes at least one of the following (12) to (14):
- the rotor unit support comprises any one, two or three of a first metal component, a second metal component, a component molded from a polymeric material relative to the metal component.
- the first metal member includes, but is not limited to, any one of the five structures selected from the following (15) to (19):
- a rotor insert having an inner shaft mounting structure and an outer joint structure for reinforcing a joint strength between the rotor insert and the second metal member or the rotor unit;
- a first metal component having a locking structure and/or a locking unit.
- the second metal member includes, but is not limited to, any one of the six structures selected from the following (20) to (25):
- a substantially cylindrical second metal member having a circumferentially spaced through hole through the through hole, the structure can reduce the weight of the rotating portion of the fluid passage without impairing the structural strength thereof;
- (22) a second metal member composed of a plurality of substantially strip-shaped or columnar metal bodies distributed along the peripheral wall of the main body portion, the structure further reducing the weight of the rotating portion of the fluid passage without impairing the structural strength thereof;
- a second metal member having a bottom and a substantially cylindrical tubular portion and having a barrel-like structure as a whole, the structure combining the first metal member and the second metal member into one;
- a second metal member having a body portion and a bottom portion of the bottom end of the closed or semi-closed body portion, the structure substantially corresponding to the rotor unit support member (shown generally in Figures 1 and 2);
- (25) a second metal part having a partial spacer and a locking structure and/or a locking unit.
- the first and/or second metal members are preferably made of the same material as the rotor unit core (the two are combined) and manufactured by a suitable manufacturing process.
- the preferable manufacturing process preferably includes at least one of a molding process, a dicing process, a bending process, and a press process to reduce the manufacturing process and reduce the cost.
- the fluid passage rotating portion has a radial reinforcing rib and/or a circumferential reinforcing rib serving as a shaft center line of the motor shaft for reinforcing the structural strength thereof, the reinforcing rib being located at the fluid At least one of the bottom inner side, the bottom outer side, and the inner side of the main body portion of the passage rotating portion, the reinforcing rib located on the inner side of the bottom portion and/or the inner side of the main body portion also serves as a locking structure for locking the driven centrifugal unit.
- the stator unit support member includes, but is not limited to, at least one selected from the group consisting of (26) to (28):
- the third metal member includes, but is not limited to, any one of the four structures selected from the following (29) to (32):
- (31) a third metal part having a part or all of the base portion
- (32) a third metal member having a substantially circular cylindrical portion and a bottom portion having a barrel-like structure as a whole;
- the fourth metal member includes, but is not limited to, any one of two structures selected from the group consisting of (33) or (34) below:
- the first metal member, the second metal member, the third metal member, and the fourth metal member have an axial center line of the motor shaft and are spaced apart for
- the structural strength and/or the connection for reinforcement includes, but is not limited to, at least one selected from the four structures described in (35) to (38) below:
- the distribution pattern of the (35) to (38) structures is selected from at least one of the following two modes: (39) or (40):
- the structures are used to enhance the structural strength of the fluid passage rotating portion or the stator assembly, or for a fixed connection between the first and second metal parts, or for a fixed connection between the third and fourth metal parts .
- the fluid passage rotating portion having both the first metal member and the second metal member, the first metal member and the second metal member are fixedly connected by non-electrically insulating or by the polymer
- the material is molded and electrically isolated.
- the above-described (35) to (38) structures in the first metal member and the second metal member are viewed from the axial direction, and the connecting arms (1102, 1104) have overlap in the radial direction (Fig. 12). ), cross (Fig. 11, Fig. 13), ⁇ (Fig.
- the two connecting arms are arranged opposite each other through the molded polymer material, misalignment (relative to the confrontation, the two connecting arms are offset by a certain angle) in four states
- the first metal component and the second metal component are fixedly connected by non-electrically insulating or molded by a polymer material
- the fixed connection includes, but is not limited to, soldering, welding, Any of a snap-fit, snap-fit, crimp, plug, interference, bolted, fastener connection, or combination of two or more thereof, preferably an electrically insulated molded connection.
- the present invention is further enhanced to further enhance the structural strength of the rotor unit support or fluid passage rotating portion described in the present invention against its potential insecurity at the fracture of the polymeric material joint of the first and second metal members.
- the first and second metal members are preferably connected or plugged in, and are preferably molded with a polymer material to fill the connection gap between the first and second metal members to electrically isolate the first and Second metal part.
- the rotor unit support or the fluid passage rotating portion has at least one of the following three structures described in (41) to (43) "further detail":
- the end of the connecting arm of one of the first metal member and the second metal member has an axially extending axial projection (1301), and the corresponding one has a socket (1105) and/or a card slot for axial projection insertion;
- the connecting arm of one of the first metal member and the second metal member is surrounded by two axially extending axial projections 1 (1202) a groove or a card slot (1203), and the other one has a connecting arm (1201) that is snapped into the groove or the card slot and has an end substantially "T" shaped;
- the radial projections, the connecting arms, and the axial projections in the first metal member and the second metal member have through-holes (1103 and 1302) penetrating in the thickness direction thereof, and concave At least one of a groove and a card groove, the polymer material is molded to fill the through hole, the groove or the card slot.
- the stator unit support member having both the third metal member and the fourth metal member, the third metal member and the fourth metal member are fixedly connected or polymerized in a non-electrically insulating manner
- the material is molded and electrically isolated.
- the above-described (35) to (38) structures in the third metal member and the fourth metal member are overlapped and crossed in the radial direction as viewed in the axial direction (the connecting arms (1501, 1502).
- Figure 15 at least one of the four states of the ⁇ (Fig. 14), the misalignment (relative to the confrontation, the two connecting arms are offset by a certain angle)
- the third metal component and the fourth metal component are non-electrically insulated Fixedly connected or electrically insulated by molded connection of polymer material, including but not limited to welding, welding, snapping, snapping, crimping, plugging, interference bonding, bolting, fastening
- Any of the connections, or a combination between two or more thereof, is preferably an electrically insulated molded connection.
- the rotor unit support or the fluid passage rotating portion is preferably made of any one of the following three manufacturing methods (44) to (46):
- the type is a fluid passage rotating portion
- the suitable manufacturing process in the methods (44) to (46) preferably includes at least one of the molding, cutting, bending, and press forming processes.
- the rotor unit is molded together with the first and/or second metal part as a fluid passage rotating portion (Fig. 9, Fig. 10), and it is particularly preferable to place the rotor unit and metal splines of various specifications. Molded in a mold with a polymer material The fluid passage rotating portion simultaneously forms a locking structure and/or a locking unit of the driven centrifugal unit.
- the stator unit support or the stator assembly is preferably produced by any one of the following three manufacturing methods (47) to (49):
- stator unit support outer casing portion assembling at least one of the stator unit support outer casing portion, the base portion, and the fluid passage stationary portion A by a suitable manufacturing process, and molding the molded component together with the stator unit and/or molding Being a stator assembly;
- stator unit directly placing in a mold into a stator assembly having at least a bearing chamber or at least a bearing chamber and a fluid passage stationary portion A;
- the suitable manufacturing process in the methods (47) to (49) preferably includes at least one of the molding, cutting, bending, and press forming processes.
- At least one of the stator unit support outer casing portion, the base portion, and the fluid passage stationary portion A in the present invention is manufactured by molding a molding process including at least a molding or bending forming process.
- the unit is assembled or molded together into a stator assembly (Fig. 3, Fig. 5), or either or both of the third metal member, the fourth metal member, and the fluid passage stationary portion A are molded.
- the stator unit is molded together with the stator assembly (Fig. 8), or directly by placing the stator unit in a mold into a bearing chamber and/or a fluid passage stationary portion A. Stator assembly.
- the locking and/or unlocking structure is centered on the motor shaft center line and spaced apart from the fluid channel rotating portion and the driven centrifugal unit (Fig. 6, Figure 16) includes, but is not limited to, at least one selected from the five structures described in (50) to (54) below:
- arc-shaped projections (601, 1604, 1606, 1609) pivotally axially locked, the single arcuate projections having a smooth bevel that gently lowers the height from one end to the other;
- the locking and/or unlocking structures on the fluid channel rotating portion, the driven centrifugal unit are adapted to each other for blocking between the driven centrifugal unit and the fluid passage rotating portion and/or between the components of the driven centrifugal unit A circumferential and/or axial movement is produced and used to release the locked state.
- the fluid passage rotating portion and the driven centrifugal unit are configured to block between the driven centrifugal unit and the fluid passage rotating portion and/or the driven centrifugal unit.
- the circumferential and/or axial movement between the component parts and the locking and/or unlocking unit (Fig. 16) for releasing the locked state comprises:
- the locking and/or unlocking structure is located on the fluid passage rotating portion, the driven centrifugal unit, the locking column, the locking cylinder;
- the locking post or locking cylinder and the locking and/or unlocking structure located thereon are preferably integrally formed with the fluid passage rotating portion, preferably at the bottom Central, wherein the fluid passage rotating portion and the driven centrifugal unit can also serve as a locking cylinder;
- the elastic member includes, but is not limited to, a sealing rubber ring and a metal spring (1607) that provides a sealing or axial locking force;
- Locking and/or unlocking between the fluid passage rotating portion and the driven centrifugal unit is achieved either by axial and/or radial linear movement (such as pulling, inserting, pressing) of the locking member on the locking post or locking cylinder.
- the locking of the driven centrifugal unit inside the fluid passage rotating portion includes both unlockable locking and non-unlockable locking, preferably an unlockable locking manner, and particularly preferably an unlockable locking that can be easily switched between locking and unlocking Square
- the unlockable lock makes the insertion and replacement of the driven centrifugal unit very simple, facilitating centrifugation and equipment cleaning verification.
- the polymer material is selected from the group consisting of polyolefins (including polypropylene (PP), polyethylene (PE), polybutene-1 (PB-1)), Halogen substituted polyolefin, polycycloolefin, polysulfone, polyether ketone, polyester, polyacrylate, polymethacrylate, polyamide (PA), polyimide, polycarbonate (PC), polyurethane, poly Any of acetal, polystyrene (PS), acrylonitrile/butadiene styrene (ABS), liquid crystal polymer (LCP), and polyphenylene sulfide (PPS), or A copolymer of two or more of them, preferably a polymer material which is relatively resistant to acid, alkali and organic solvents.
- polyolefins including polypropylene (PP), polyethylene (PE), polybutene-1 (PB-1)
- Halogen substituted polyolefin including polycycloolefin, polysulfone, poly
- the polymer material is preferably a reinforced polymer material, and the reinforced polymer material comprises at least 5% to 50% by weight, preferably
- the fiber-reinforced filler is 7% to 40% by weight, and particularly preferably reinforced polyolefin having 7 to 12% by weight of the glass fiber filler widely used in the washing machine industry.
- the solid-liquid separation device with a fluid passage rotating portion and a stationary portion provided by the present invention has the advantages of:
- Solid-liquid centrifugal separation and liquid collection and transportation are designed with integrated electrical insulation of the rotor and/or stator of the motor.
- the safety of the equipment is high, and its manufacture and installation are simple;
- the equipment is stable, quiet and energy-saving, avoiding the vibration and noise caused by the deviation of the coaxiality of the conventional solid-liquid separation equipment;
- Figure 1 is a schematic view showing the structure of a rotor unit support having a through-flow hole
- Figure 2 is a schematic structural view of a rotor unit support member with a mounting bracket
- Figure 3 is a schematic view showing the structure of the fluid passage stationary portion A
- Figure 4 is a schematic view showing the structure of the fluid passage stationary portion B
- Figure 5 is a schematic structural view of a stator assembly of a solid-liquid separation device
- Figure 6 is a schematic structural view of a rotating portion of a fluid passage
- Figure 7 is a schematic view showing the structure of a first metal member having various flow-through holes
- Figure 8 is a schematic view showing the structure of a metal base portion having a fluid passage stationary portion A;
- Figure 9 is a schematic structural view of a solid-liquid separation device having a fluid passage rotating portion and a stationary portion A;
- Figure 10 is a schematic structural view of a solid-liquid separation device having a fluid passage rotating portion and a stationary portion B;
- Figure 11 is a first metal member and a second metal member structure schematic 1;
- Figure 12 is a schematic view 2 of the first metal part and the second metal part
- Figure 13 is a schematic view 3 of the first metal part and the second metal part
- Figure 14 is a schematic view 1 of a third metal member and a fourth metal member
- Figure 15 is a schematic structural view 2 of the third metal member and the fourth metal member;
- Figure 16 is a schematic structural view of a locking unit
- Ventilation hole 303, shaft hole; 304, annular cavity inner ring;
- sealing component mounting hole 405, funnel neck; 406, funnel-like funnel opening;
- annular inner groove 701, annular annular boss; 702, card slot;
- 1501 a third connecting arm; 1502, a fourth connecting arm; 1601, a locking member B;
- “Circumferential direction” means the circumferential direction of a circle formed by a point on the center line of the motor shaft perpendicular to the center line of the motor shaft;
- Axial means the direction that coincides or is parallel to the centerline of the motor shaft
- Ring means the radial direction perpendicular to the centerline of the motor shaft and passing through the center of the circle on the centerline;
- Interference connection refers to the use of the interference between the parts to achieve the connection between the two parts, the assembly method includes the press-in method, the thermal expansion method, the shrink-fitting method, etc.;
- Cartridge means that the relative displacement between the two parts is restricted by the intertwined grooves and projections on the two parts, the slot/card hole/bayonet and the snap connection between the buckle or the dovetail groove and the dovetail. Connection method;
- Molding refers to a process of obtaining an object of a target geometry by using a mold in a production process, including but not limited to press forming, casting molding, injection molding, etc., and the “welding” is “molding” a special form;
- Cutting refers to the process of obtaining a target geometric object other than “molding”, including but not limited to, turning, milling, milling, drilling, grinding, cutting, etc.;
- “Bending forming” refers to the process of obtaining an object of a target geometry by processes including, but not limited to, rolling, winding, bending, etc., such as rolling or winding an object into a cylindrical object or bending it into any angle.
- This embodiment is a stator assembly of a solid-liquid separation device having a fluid passage stationary portion A, and a metal base portion having a fluid passage stationary portion A as shown in Fig. 8 is employed.
- the integrally molded base portion having a fluid passage stationary portion A includes a bottomed annular cavity (310) formed by an annular cavity outer ring (301) and an annular cavity inner ring (304). Annular cavity and pipe at the bottom of the annular cavity (309) The fluid passage stationary portion A is formed.
- the annular inner cavity has a liquid discharge hole (305) on the inner side thereof, and the annular outer cavity outer ring has a ventilation hole (302).
- the outer side of the ventilation hole has a positioning hole for positioning the stator unit and a card slot.
- FIG. 5 After positioning the base portion of the fluid passage stationary portion A and the stator unit (not in contact with each other) in the mold, the stator assembly of the solid-liquid separation device having the fluid passage stationary portion A injection molded by the molding compound is as shown in FIG. 5 ( 5A and 5B), the top has a liquid retaining boss (307) for preventing the inflow of liquid, and the bottom has a foot (308) for increasing the contact surface, wherein FIG. 5A is an isometric view of the stator assembly.
- FIG. 5B is a view of FIG. 5A flipped by 180° to facilitate observation of the drain hole (305) and the vent hole (302).
- This embodiment is a stator assembly of a solid-liquid separation device, and employs a third metal member (1402) and a fourth metal member (1401) as shown in FIG.
- the third metal member (1402) has a centrally located bearing chamber for mounting the motor shaft and the bearing, and a radially outwardly extending first connecting arm with a radial slot (1403) on the outer side.
- a fourth metal member (1401) having a radially inwardly extending second connecting arm with a through-hole corresponding to the first connecting arm, the first connecting arm and the second connecting arm being facing in a radial direction status.
- This embodiment is a stator assembly of a solid-liquid separation device, and a third metal member (1402) and a fourth metal member (1401) shown in Fig. 15 are employed.
- the third metal member (1402) has a centrally located bearing chamber for mounting the motor shaft and the bearing, and a radially outwardly extending first connecting arm with a radial slot (1403) on the outer side.
- the fourth metal component (1401) has a radially inwardly extending second connecting arm (1502) with a through-hole corresponding to the first connecting arm, the first connecting arm and the second connecting arm being It is in a crossed state in the radial direction.
- This embodiment is a fluid passage rotating portion, and the rotor unit support member having the flow through hole shown in FIG. 2 is used.
- the integrally molded rotor unit support having a flow-through hole (102) includes a cylindrical body portion (101+107) carrying the rotor unit and a bottom portion of the bottom end of the semi-closed body portion, wherein the fluid passage rotating portion
- the bottom has: a mounting bracket fixing hole (201), a liquid distribution plate at the center of the bottom, an annular boss A (203) at the boundary of the liquid collecting chamber wall and the bottom, and a through hole (102) thereon. And a positioning projection (204) located outside the wall of the liquid collection chamber that prevents circumferential movement of the rotor unit.
- This embodiment is a fluid passage rotating portion using the first metal member (1106) and the second metal member (1101) shown in FIG.
- the second metal member (1101) has a second connecting arm (1102) extending radially inwardly and an axial projection (1301) at the end of the second connecting arm and on the axial projection.
- the first metal member (1106) has a first connecting arm (1104) extending radially outward and a through hole (1105) on the first connecting arm.
- a fluid passage rotating portion adopts a first metal member having a conductive flow hole structure as shown in FIG. 7A.
- the first metal part has the entire bottom of the rotor unit support.
- the integrally molded first metal member having a flow-through hole structure has a conical boss (105) having a motor shaft mounting hole (104) in the center of the first metal member, and a fluid passage stationary portion A a circular annular boss (701) corresponding to a center axis of the motor shaft corresponding to the annular cavity, and a conductive flow hole (102) disposed at equal intervals in the circumferential direction on the annular boss a card slot (702) at the edge of the metal member, and a card-shaped protrusion forming the card slot and a positioning hole (703) on the card-shaped protrusion.
- This embodiment is a solid-liquid separation device (without a driven centrifugal unit) having a fluid passage rotating portion and a stationary portion A, and the structural schematic view is shown in FIG. 9, the fluid passage stationary portion A and the stator unit support base portion (910).
- One-piece molding is shown in FIG. 9, the fluid passage stationary portion A and the stator unit support base portion (910).
- the mold assembly is integrally molded into a solid-liquid separation device stator assembly, and the stator assembly is enclosed for housing.
- the bottom of the cavity of the fluid passage rotating portion has a bearing chamber on which the bearing and the motor shaft are mounted, a stationary portion A annular cavity (310) surrounded by the annular cavity outer ring (301) and the annular cavity inner ring (304), and a drain pipe (309) located at the bottom of the annular cavity, a venting hole (302) located outside the annular cavity outer ring (301), and a drain opening (305) located inside the annular cavity inner ring (304), total stator
- the top end has a liquid retaining boss (307).
- the molding compound is integrally molded into a fluid passage rotating portion having a motor shaft (903).
- the top inner side has an arcuate projection (601) that locks the driven centrifugal unit, and the outer end radius of the open end face (909) is greater than or equal to the outer radius of the liquid retaining boss (307) at the top of the stator assembly.
- the fluid passage rotating portion is sleeved on the front bearing and then positioned in the bearing chamber, and then the rear bearing is sleeved and fixed to the stator assembly through the shaft fixing nut (906), so that the fluid passage is rotated.
- the air gap is fixed in a cavity surrounded by the stator assembly, and the annular boss (203) having the flow passage hole (102) is sealingly connected with the annular cavity (310) of the stationary portion A.
- This embodiment is a solid-liquid separation device (without a driven centrifugal unit) having a fluid passage rotating portion and a stationary portion B, and a schematic structural view is shown in FIG.
- the molding compound is integrally molded into a base portion (910), a bearing chamber, and a vent hole.
- the motor hollow shaft (903) is positioned in the rear bearing chamber through the rear bearing, and is then fixed in the cavity in the center of the base (910) via the front bearing and the front end cover (906), and the internal cavity enclosed by the stator assembly A fluid passage rotating portion is disposed across the air gap.
- the molding compound is integrally molded into a motor hollow shaft and a fan blade (1003).
- the fluid passage rotating portion has an arcuate projection (601) locking the driven centrifugal unit at the top inner side.
- the fluid passage rotating portion is sleeved on the front bearing and then positioned in the bearing chamber, and then the rear bearing is sleeved and fixed to the stator assembly through the shaft fixing nut (906), so that the fluid passage rotating portion is interposed
- the air gap is fixed in a cavity surrounded by the stator assembly.
- a fluid passage stationary portion B (1004) having a radial projection (401) composed of a funnel opening and a funnel neck passing through the hollow shaft of the motor (1002) is fixed to the stator by the stationary portion fixing member (1001) through the funnel neck.
- the edge of the funnel of the fluid passage stationary portion B is sealingly connected to the inner wall of the liquid collecting chamber.
Landscapes
- Health & Medical Sciences (AREA)
- Clinical Laboratory Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Centrifugal Separators (AREA)
Abstract
一种流体通道及其直驱式固液分离设备,固液分离设备至少包括流体通道旋转部、流体通道静止部、从动离心单元、定子总成(306)以及旋转支持单元,其中流体旋转部包括离心液体分离收集腔、转子单元支撑件以及至少一个转子单元。该设备的固液离心分离以及液体的收集、输送与电机转子和/或定子为一体化电绝缘设计,设备安全性高。
Description
本发明涉及一种流体通道及其直驱式固液分离设备,该固液分离设备属于离心机领域。
在实验室小试和中试研究过程中,最常用的固液分离设备主要是布氏漏斗加抽滤瓶的组合以及各种规格的离心机,其中布氏漏斗加抽滤瓶的组合仅适合实验室小试研究,为了模拟生产中的实际情况,并为生产提供必要的离心分离操作数据,更值得推荐的是离心机。
目前常用的离心机都是采用驱动装置(主要是电机)和固液分离装置(主要是液体收集腔和从动离心单元)分置、再组装而成,其离心转鼓(相当于从动离心单元)都是机械固定于传动轴上,导致离心转鼓的拆装以及离心设备的清洁验证比较困难,而且设备显得过于复杂笨重、噪音和振动太大、制造工艺复杂、维修不方便等各种缺陷或弊端,不能完全满足实验室小试和中试中固液混合物彻底分离的需要。
发明内容
发明目的:
本发明的目的在于提供一种固液离心分离和液体的收集、输送与电机转子、定子中的任一者或两者为一体化电绝缘设计的流体通道及其直驱式固液分离设备。
技术方案:
为了克服现有固液分离设备存在的各种缺陷或弊端,本发明提供了一种固液离心分离和液体的收集、输送与电机转子、定子中的任一者或两者为一体化电绝缘设计的流体通道及其直驱式固液分离设备,该固液分离设备结构上的一个主要特点是具有一个由流体通道旋转部与静止部组成的流体输送通道,以下对本发明作详细说明。
根据本发明所述的流体通道,其包括:
(1)流体通道旋转部,所述流体通道旋转部隔着气隙布置于定子总成所围成的空腔内,其包括:
至少一个转子单元,所述转子单元通过与适配的定子单元之间的电磁相互作用产生的旋转力使流体通道旋转部绕电机轴作旋转运动;
由转子单元支撑件的腔壁所围成的大致为桶状的离心液体收集腔;以及
转子单元支撑件,所述转子单元支撑件包括:
从动离心单元锁定结构和/或锁定单元,用于锁定和/或解锁从动离心单元并使从动离心单元与流体通道旋转部同速同轴旋转;
承载转子单元的大致为圆筒状的主体部(如101或107所指示位置);
封闭或半封闭主体部底端的底部(103);
作为可选结构、位于主体部顶端且中央具料液入口的盖部;
所述转子单元支撑件或流体通道旋转部通过如下轴连接结方式中的任一种与电机轴发生关系:
通过位于转子单元支撑件底部中央的电机轴安装孔(104);
通过安装支架(202),所述安装支架与底部和电机轴固定连接,或与底部和/或电机轴为一体结构;
电机轴与转子单元支撑件或流体通道旋转部为一体结构(图9和图10);
其中与流体通道静止部A相适配的流体通道旋转部,其转子单元支撑件底部与流体通道静止部A环形凹腔相对应的位置具有用于将流体引导至环形凹腔的具导流通孔的导流结构,所述导流通孔兼作锁定从动离心单元的锁定结构;
(2)流体通道静止部,其选自如下所述A、B中的任一种:
流体通道静止部A(图3):包括由环形凹腔内环(304)和环形凹腔外环(301)两个圆筒所围成的竖截面为“U”型的环形凹腔(310)以及位于该环形凹腔底部的使液体流向液体收集瓶的排液管道(309),所述环形凹腔敞口端与位于转子单元支撑件底部上用于将流体引导至流体通道静止部A环形凹腔的具有导流通孔(102)的导流结构密封连接;
流体通道静止部B(图4):包括收集由液体收集腔引导而来的液体的漏斗口和使液体流向液体收集瓶的漏斗颈,所述漏斗口边缘与液体收集腔内壁(101)密封连接,所述漏斗颈穿过电机空心轴并且其末端固定于定子单元支撑件基座部、轴承座、端盖三者中任一者上;
所述流体通道静止部A位于定子单元支撑件基座部、电机轴承座、端盖三者中任一者上或与其中任一者一体成型,比如采用金属铝或钢、铁等材料将静止部A与电机轴承座、定子单元支撑件基座部和/或定子单元支撑件外壳部一体铸造或冲压成型(图8),更优选将流体通道静止部A与定子单元一体模制成型为定子总成(图10),这样更有利于定子总成的塑封成型以及绝缘等级的提高,对易燃易爆固液混合物的离心分离特别有效。
具体地,所述流体通道由旋转部离心液体收集腔及其底部上正对环形凹腔位置的导流结构与静止部A中的环形凹腔经过密封对接组成,由液体收集腔富集的离心液体在自身重力的作用下,经过转子单元支撑件底部上的导流通孔(102)被输送至静止部A的环形凹腔(310)内,最后通过位于该环形凹腔底部的管道(309)使液体流向液体收集瓶。
具体地,所述流体通道由旋转部液体收集腔与静止部B中的漏斗口边缘经过密封对接组成,由液体收集腔富集的离心液体在自身重力的作用下,经过漏斗口(402、406)和连通口(403)被输送至漏斗颈(405)内,最后通过漏斗颈使液体流向液体收集瓶。所述部静止部B中的漏斗口包括呈圆盘状(402)或漏斗状(406)两种结构形式,优选漏斗口状的结构形式,这样在重力作用下更有利于液体的流出,图4A图示了具圆盘状漏斗口的静止部B,图4B图示了具漏斗状漏斗口的静止部B。
根据本发明所述的流体通道,依据转子单元的构造方式,其转子单元包括但不限于选自如下(1)~(4)所述四种结构中的任一种:
(1)导电绕组或铁芯与导电绕组的组合;
(2)铁芯及永磁体的组合;
(3)转子导条、端环以及铁芯的组合;
(4)永磁体、转子导条、端环以及铁芯的组合;
其中所述永磁体包括但不限于钕铁硼磁铁、钐钴磁铁、铝镍钴磁铁、铁氧体磁铁、塑磁磁铁中的任一种或它们两者或多者之间的组合。所述转子单元结构优选铁芯及永磁体的组合,次选转子导条、端环以及铁芯的组合,此两种组合结构相较于其它结构更方便生产,而具无铁芯导电绕组的转子单元比较适合微量离心机的制造,也可选择其它结构的转子单元。
根据本发明所述的流体通道,所述静止部B面向液体收集腔敞口端一侧的漏斗口具有从其边缘向其中心延伸的凸起(401)和/或凹槽,具体而言,包括直线状的凸起和/或凹槽以及曲线状的凸起和/或凹槽两种情况,这些凸起和/或凹槽可以快速降低使液体作旋转运动的离心力的作用,从而使液体更快经由漏斗颈到达液体收集瓶,提高液体的排出效率,图4(包括图4A和图4B)图示了这种凸起以及位于相邻凸起之间的凹槽。
根据本发明所述的流体通道,所述转子单元支撑件底部与流体通道静止部A环形凹腔相对应的位置具有以电机轴中心线为轴心的,包括但不限于选自如下(5)~(8)所述四种导流结构中的任一种:
(5)圆环形凸台(701)(图7A);
(6)圆环形凹槽(704)(图7B);
(7)由内、外圆环所围成的位于转子单元支撑件底部外侧的环形凹腔(706)(图7C);
(8)正对流体通道静止部A环形凹腔内环和外环位置且位于转子单元支撑件底部的环形内凹槽和环形外凹槽以及位于环形内凹槽和环形外凹槽之间的底部(图7D);
其中所述以电机轴中心线为轴心沿圆周方向间隔分布的导流通孔位于上述四种导流结构中的任一种上,最外缘的导流通孔位于转子单元支撑件主体部和底部的大致交界处,所述导流通孔也可以兼作从动离心单元的锁定结构。由于位于底部中央圆锥形凸台的阻隔以及离心力的作用,液体会被甩向液体收集腔内侧壁,并在自身重力作用下通过导流通孔流向流体通道静止部A的环形凹腔,图6A图示了具圆锥形凸台、电机轴安装孔和导流通孔的流体通道旋转部,图6B为图6A旋转180°后的轴测图,其图示了具环形内凹槽和环形外凹槽底部的流体通道旋转部。
根据本发明所述的具流体通道的固液分离设备,其至少包括如下①~⑤所述的部件:
①、流体通道旋转部:
权利要求1所述的流体通道旋转部,所述流体通道旋转部通过旋转支持单元隔着气隙布置于定子总成所围成的空腔内;
②、流体通道静止部:
权利要求1所述的任一种流体通道静止部;
③、定子总成,所述定子总成包括:
至少一个与转子单元相适配的定子单元,所述定子单元与转子单元通过电磁相互作用构成可产生旋转运动的电机器;以及
定子单元支撑件,所述定子单元支撑件包括:
承载定子单元、顶端为敞口且大致为圆筒状的外壳部;以及
封闭外壳部底端的基座部,所述基座部中心具安装电机轴及其轴承的轴承室;
④、旋转支持单元:
所述旋转支持单元至少包括电机轴、轴承室以及轴承,所述电机轴、轴承室以及轴承位于构成定子总成的定子单元支撑件基座部、电机轴承座、端盖三者中任一者中央;
⑤、从动离心单元:
所述从动离心单元被锁定结构和/或锁定单元锁定后随流体通道旋转部同速同轴旋转。
根据本发明所述的固液分离设备,其定子总成具有以电机轴中心线为轴心沿圆周方向分布的,位于环形凹腔内环(304)内侧和/或环形凹腔外环(301)外侧的如下(9)~(11)所述三种结构中的至少一种:
(9)排液孔(305),所述排液孔排出泄漏的离心液体;
(10)通风孔(302),所述通风孔用于气隙通风冷却;
(11)安装孔,所述安装孔用于安装密封流体的密封元件;
其中所述排液孔、通风孔、安装孔可以互相兼用,只是功能不同而已。
具体地,图3A和图3B以及图5A和图5B图示了具静止部A的环形凹腔(310)和管道(309)以及排液孔(305)和通风孔(302)的定子总成,这种结构安排,即使位于静止部A环形凹腔与旋转部导流结构之间的密封元件损坏,泄漏出的液体也可以通过通风孔和/或排液孔排出,同时也可以很方便地观察密封元件的密封情况,从而及时更换密封元件,阻止液体的泄漏。
根据本发明所述的固液分离设备,所述从动离心单元通过密封面和/或密封元件密封所述流体通道旋转部的敞口端(即密封离心液体收集腔顶端),此时从动离心单元行使转子单元支撑件盖部的功能,这样可以避免制作密封离心液体收集腔敞口端的盖部的步骤,减少制造工序和设备零部件,降低制造成本。
根据本发明所述的流体通道或固液分离设备,所述具有两个或两个以上转子单元的流体通道旋转部,其转子单元以电机轴中心线为轴心沿轴向阵列或沿径向并列,所述具有两个或两个以上定子单元的定子总成,其定子单元以电机轴中心线为轴心沿轴向阵列或沿径向并列,所述轴向阵列的转子单元、定子单元其规格大小一致,而径向并列的转子单元、定子单元其规格大小不一致。
根据本发明所述的流体通道或固液分离设备,为了确保在任何情况下定子单元与转子单
元之间的电绝缘,更为了确保定子单元和/或转子单元与电机轴之间的电绝缘,特别是为了确保位于流体通道旋转部和流体通道静止部内的目标物质及其各组成成分的电绝缘,从而提高设备的安全性,本发明中所述流体通道旋转部和/或定子总成具有如下(I)~(III)所述三种电绝缘措施中的至少一种:
(I)所述定子单元、转子单元中任一者或两者至少面向气隙的表面被适宜的工序处理后覆有非导电的绝缘材料层;
(II)所述定子单元、转子单元中任一者或两者与邻接的定子单元支撑件、转子单元支撑件的各部分之间被非导电的绝缘材料层电绝缘地隔离;
(III)所述非电绝缘地承载着定子单元或转子单元的金属部件,其与定子单元单元支撑件或转子单元支撑件的其余部分之间以及位于定子单元单元支撑件内和/或转子单元支撑件内的目标物质及其各组成成分之间被非导电的绝缘材料电绝缘地隔离;
所述目标物质及其各组成成分指的是待离心分离的混合物以及构成待离心分离混合物的各个组成成分,所述绝缘材料层包括但不限于电绝缘的聚合物材料层、由位于第一~第四金属部件表面的金属氧化物构成的不导电的陶瓷层、用于铁芯的电绝缘骨架和/或电绝缘涂层。对于流体通道旋转部而言,所述电绝缘措施的选择由转子单元的结构、第一或第二金属部件的结构、第一和第二金属部件的连接方式、或转子单元支撑件的结构决定,同时以方便生产与降低产品成本为准则。对于定子总成而言,所述电绝缘措施的选择由定子单元的结构、第三或第四金属部件的结构、第三和第四金属部件的连接方式、或定子单元支撑件的结构决定,同时以方便生产与降低产品成本为准则。
具体地,优选编号(II)的第二种电绝缘措施,对于该电绝缘措施而言,相当于定子单元与第三和/或第四金属部件之间被非导电的绝缘材料层电绝缘地隔离,也相当于转子单元与第一和/或第二金属部件之间被非导电的绝缘材料层电绝缘地隔离,本电绝缘措施可以扩大第一或第二金属部件结构的可选择范围、第一和第二金属部件连接方式的可选择范围、或转子单元支撑件结构的可选择范围,故为首选。
具体地,所述非电绝缘地承载着转子单元的金属部件,至少其与目标物质及其各组成成分接触的表面被电绝缘的聚合物材料所覆盖,以确保位于转子单元支撑件内和/或外的目标物质的电绝缘,从而保证设备的安全性。
根据本发明所述的流体通道,其转子单元支撑件包括如下(12)~(14)所述三者中的至少一者:
(12)位于其内侧底部位置与电机轴固定连接的的第一金属部件(1106);
(13)位于其外侧主体部位置的第二金属部件(1101);
(14)使转子单元支撑件或流体通道旋转部拥有完整结构与功能的由聚合物材料模制成型的模制部件。
具体地,所述转子单元支撑件包括第一金属部件、第二金属部件、相对于金属部件而言的由聚合物材料模制成型的部件中的任一者、任两者或三者。
根据本发明所述的流体通道,所述第一金属部件包括但不限于选自如下(15)~(19)所述五种结构中的任一种:
(15)各种结构的花键;
(16)各种结构的电机轴;
(17)具内侧轴安装结构和外侧连接结构的转子嵌件,所述外侧连接结构用于增强转子嵌件与第二金属部件或转子单元之间的连接强度;
(18)具部分或全部转子单元支撑件底部的第一金属部件;
(19)具锁定结构和/或锁定单元的第一金属部件。
根据本发明所述的流体通道,所述第二金属部件包括但不限于选自如下(20)~(25)所述六种结构中的任一种:
(20)大致为圆筒状的第二金属部件,本部件结构简单,制造方便;
(21)周壁具间隔分布的贯穿通孔的大致为圆筒状的第二金属部件,本结构可以减轻流体通道旋转部的重量但不削弱其结构强度;
(22)沿主体部周壁间隔分布的由多个大致为条状或柱状的金属体构成的第二金属部件,本结构进一步减轻流体通道旋转部的重量但不削弱其结构强度;
(23)具底部和大致圆筒状的筒状部且整体呈桶状结构的第二金属部件,本结构将第一金属部件和第二金属部件合二为一;
(24)具主体部及封闭或半封闭主体部底端的底部的第二金属部件,本结构实际上相当于转子单元支撑件(大致如图1和图2所示);
(25)具部分间隔部和锁定结构和/或锁定单元的第二金属部件。
根据本发明所述的流体通道,所述第一和/或第二金属部件,优选选用与转子单元铁芯相同的材料(二者合二为一)并采用适宜的制造工序制造而成,所述适宜的制造工序优选包含模制工序、切割工序、弯折工序、冲压工序中的至少一种制造工序,以减少制造工序和降低成本。
根据本发明所述的流体通道,所述流体通道旋转部具有以电机轴中心线为轴心的用作加强其结构强度的径向加强筋和/或周向加强筋,所述加强筋位于流体通道旋转部的底部内侧、底部外侧、主体部内侧三者中的至少一者上,所述位于底部内侧和/或主体部内侧的加强筋兼作锁定从动离心单元的锁定结构。
根据本发明中所述的固液分离设备,其定子单元支撑件包括但不限于选自如下(26)~(28)所述三者的至少一者:
(26)位于定子单元支撑件内侧基座部的第三金属部件(1402);
(27)位于定子单元支撑件外侧外壳部的大致为圆筒状的第四金属部件(1401);
(28)使定子单元支撑件或定子总成拥有完整结构与功能的由聚合物材料模制成型的部件。
根据本发明中所述的固液分离设备,所述第三金属部件包括但不限于选自如下(29)~(32)所述四种结构中的任一种:
(29)金属轴承座;
(30)金属端盖;
(31)具部分或全部基座部的第三金属部件;
(32)具大致圆形的筒状部和底部的整体呈桶状结构的第三金属部件;
根据本发明中所述的固液分离设备,所述第四金属部件包括但不限于选自如下(33)或(34)所述两种结构中的任一种:
(33)大致圆筒状的金属件;
(34)承载定子单元的外壳部。
根据本发明所述的流体通道或固液分离设备,所述第一金属部件、第二金属部件、第三金属部件、第四金属部件具有以电机轴中心线为轴心并间隔分布的用于增强结构强度和/或用于连接的包括但不限于选自如下(35)~(38)所述四种结构中的至少一种:
(35)凹槽或卡槽;
(36)通孔或卡孔;
(37)卡扣连接结构或卡止连接结构;
(38)凸起或卡状凸起;
所述(35)~(38)结构的分布方式选自如下(39)或(40)所述两种方式中的至少一种:
(39)沿周向和径向;
(40)沿周向和轴向;
所述这些结构用于增强流体通道旋转部或定子总成的结构强度,或用于第一和第二金属部件之间的固定连接,或用于第三和第四金属部件之间的固定连接。
根据本发明中所述的流体通道,所述同时具有第一金属部件和第二金属部件的流体通道旋转部,其第一金属部件和第二金属部件被非电绝缘地固定连接或被聚合物材料模制连接而电绝缘地隔离。
进一步详细地,所述第一金属部件和第二金属部件中的上述(35)~(38)结构从轴向方向观察,其连接臂(1102、1104)在径向方向上具有重叠(图12)、交叉(图11、图13)、对峙(图11)(两连接臂隔着模塑成型的聚合物材料相对设置)、错位(相对于对峙,两连接臂错开一定角度)四种状态中的至少一种,所述第一金属部件和第二金属部件被非电绝缘地固定连接或被聚合物材料模制连接而电绝缘地隔离,所述固定连接方式包括但不限于焊接、熔接、卡接、扣接、压接、插接、过盈连接、螺栓连接、紧固件连接中的任一种、或它们两者或多者之间的联合,优选电绝缘的模制连接方式。
为进一步增强本发明中所述的转子单元支撑件或流体通道旋转部的结构强度,防止其在第一和第二金属部件的聚合物材料连接处的断裂所引起的潜在不安全性,本发明中所述第一和第二金属部件优选的连接方式为卡接或插接,同时优选以聚合物材料模制填充第一和第二金属部件之间的连接空隙以电绝缘地隔离第一和第二金属部件。
具体地,所述转子单元支撑件或流体通道旋转部具有如下(41)~(43)“更进一步详细地”所述的三种结构中的至少一种:
(41)更进一步详细地(图13),所述第一金属部件和第二金属部件中的其中一个的连接臂末端具有轴向延伸的轴向凸起(1301),相对应的另一个具有供轴向凸起插入的插孔(1105)和/或卡槽;
(42)更进一步详细地(图12),所述第一金属部件和第二金属部件中的其中一个的连接臂上具有由两个轴向延伸的轴向凸起1(1202)所围成的凹槽或卡槽(1203),相对应的另一个具有卡入前述凹槽或卡槽且其末端大致为“T”型的连接臂(1201);
(43)更进一步详细地,所述第一金属部件和第二金属部件中的径向凸起、连接臂、轴向凸起具有在其厚度方向贯穿的贯穿通孔(1103和1302)、凹槽、卡槽中的至少一种,所述聚合物材料模制成型地填充所述贯穿通孔、凹槽或卡槽。
根据本发明所述的固液分离设备,所述同时具有第三金属部件和第四金属部件的定子单元支撑件,其第三金属部件和第四金属部件被非电绝缘地固定连接或被聚合物材料模制连接而电绝缘地隔离。
进一步详细地,所述第三金属部件和第四金属部件中的上述(35)~(38)结构从轴向方向观察,其连接臂(1501、1502)在径向方向上具有重叠、交叉(图15)、对峙(图14)、错位(相对于对峙,所述两连接臂错开一定角度)四种状态中的至少一种,所述第三金属部件和第四金属部件被非电绝缘地固定连接或被聚合物材料模制连接而电绝缘地隔离,所述固定连接方式包括但不限于焊接、熔接、卡接、扣接、压接、插接、过盈连接、螺栓连接、紧固件连接中的任一种、或它们两者或多者之间的联合,优选电绝缘的模制连接方式。
根据本发明所述的流体通道或固液分离设备,其转子单元支撑件或流体通道旋转部优选采用如下(44)~(46)所述三种制造方法中的任一种制成:
(44)将转子单元支撑件主体部、底部、具导流通孔的导流结构三者中的至少一者通过适宜的制造工序制造成型后的部件与转子单元一起组装成型和/或模制成型为流体通道旋转部;
(45)将通过适宜的制造工序制造成型的第一金属部件、第二金属部件中的任一者或两者与转子单元一起模制成型为所需结构的流体通道旋转部;
(46)直接将转子单元置于模具中模制成型为所需结构的流体通道旋转部;
所述方法(44)~(46)中适宜的制造工序优选包括模制、切割、弯折、冲压成型工序中的至少一种制造工序。
具体地,优选将转子单元与第一和/或第二金属部件一起模制成型为流体通道旋转部(图9、图10),特别优选将转子单元和各种规格的金属花键置于模具中以聚合物材料模制成型为
流体通道旋转部,同时形成从动离心单元的锁定结构和/或锁定单元。
根据本发明中所述的固液分离设备,其定子单元支撑件或定子总成优选采用如下(47)~(49)所述三种制造方法中的任一种制成:
(47)将定子单元支撑件外壳部、基座部和流体通道静止部A三者中的至少一者通过适宜的制造工序制造成型后的部件与定子单元一起组装成型和/或模制成型为定子总成;
(48)将通过适宜的制造工序制造成型的第三金属部件、第四金属部件中的任一者或两者与定子单元一起模制成型为至少具轴承室或至少具轴承室和流体通道静止部A的定子总成;
(49)直接将定子单元置于模具中模制成型为至少具轴承室或至少具轴承室和流体通道静止部A的定子总成;
所述方法(47)~(49)中适宜的制造工序优选包括模制、切割、弯折、冲压成型工序中的至少一种制造工序。
具体地,本发明中所述定子单元支撑件外壳部、基座部、流体通道静止部A三者中的至少一者通过至少包含模制成型或弯折成型的制造工序制造成型后与定子单元一起组装成型或模制成型为定子总成(图3、图5),或者第三金属部件、第四金属部件、流体通道静止部A三者中的任两者或三者通过模制和/或切割成型后与定子单元一起模制成型为定子总成(图8),或者直接通过将定子单元置于模具中模制成型为具轴承室和/或流体通道静止部A的定子总成。
根据本发明所述的流体通道或固液分离设备,所述以电机轴中心线为轴心并间隔分布于流体通道旋转部、从动离心单元上的、锁定和/或解锁结构(图6、图16)包括但不限于选自如下(50)~(54)所述五种结构中的至少一种:
(50)凹槽或卡槽;
(51)通孔或卡孔;
(52)卡扣连接结构或卡止连接结构;
(53)凸起或卡状凸起;
(54)可枢转地进行轴向锁定的圆弧状凸起(601、1604、1606、1609),所述单个圆弧状凸起具有从其中一端到另一端平缓降低高度的光滑斜面;
所述位于流体通道旋转部、从动离心单元上的锁定和/或解锁结构相互适配从而用于阻止从动离心单元与流体通道旋转部之间和/或从动离心单元各组成部件之间产生周向和/或轴向运动以及用于解除所述锁定状态。
根据本发明所述的流体通道或固液分离设备,所述位于流体通道旋转部、从动离心单元上的用于阻止从动离心单元与流体通道旋转部之间和/或从动离心单元各组成部件之间产生周向和/或轴向运动以及用于解除所述锁定状态的锁定和/或解锁单元(图16)包括:
包括但不限于上述(50)~(54)所述的锁定和/或解锁结构,所述锁定和/或解锁结构位于流体通道旋转部、从动离心单元、锁定柱、锁定筒上;
锁定柱(1605)或锁定筒(1603),所述锁定柱或锁定筒及位于其上的锁定和/或解锁结构优选与流体通道旋转部一体成型形成,所述锁定柱或锁定筒优选位于底部中央,其中流体通道旋转部、从动离心单元也可作为锁定筒;
作为可选结构的弹性件,所述弹性件包括但不限于密封橡胶圈和金属弹簧(1607),其提供密封或轴向的锁紧力;
锁定件(1601、1608),所述锁定件上的锁定和/或解锁结构与锁定柱或锁定筒上的锁定和/或解锁结构相互配合,通过锁定件绕锁定柱或锁定筒的旋转运动,或通过锁定件在锁定柱或锁定筒上的轴向和/或径向的线性运动(比如拔、插、按压)实现流体通道旋转部和从动离心单元之间的锁定和/或解锁。
具体地,所述从动离心单元在流体通道旋转部内侧的锁定包括可解锁锁定和不可解锁锁定两种情况,优选可解锁锁定方式,特别优选可在锁定和解锁之间轻易转换的可解锁锁定方
式,所述可解锁锁定使得从动离心单元的置入和更换变得非常简单,方便离心操作和设备清洁验证。
根据本发明所述的流体通道或固液分离设备,所述聚合物材料是选自聚烯烃(包括聚丙烯(PP)、聚乙烯(PE)、聚丁烯-1(PB-1))、卤素取代聚烯烃、聚环烯烃、聚砜、聚醚酮、聚酯、聚丙烯酸酯、聚甲基丙烯酸酯、聚酰胺(PA)、聚酰亚胺、聚碳酸酯(PC)、聚氨酯、聚缩醛、聚苯乙烯(PS)、丙烯晴/丁二烯苯乙烯共聚物(ABS)、液晶聚合物(LCP)、以及聚苯硫醚(PPS)中的任一种,或者是这些中的两者或多者的共聚物,其中优选耐酸、碱及有机溶剂都比较强的聚合物材料。
进一步详细地,本发明所述的流体通道或固液分离设备,其所述聚合物材料优选为增强聚合物材料,所述增强聚合物材料至少包括按重量计占5%到50%,优选是按重量计占7%到40%的纤维增强填料,特别优选的是洗衣机行业广泛使用的按重量计玻璃纤维填料占7~12%的增强聚烯烃。
与现有技术相比,本发明提供的具流体通道旋转部和静止部的固液分离设备,其优点是:
(1)、液体排出固液分离设备时不会受到离心力的干扰;
(2)、固液离心分离以及液体的收集、输送与电机转子和/或定子为一体化电绝缘设计,设备安全性高,其制造和安装很简单;
(3)、整机重量大大减少,便于搬运;
(4)、直接驱动,设备运转稳定、安静且节能,避免了常规固液分离设备由于同轴度偏差引起的震动和噪音;
(5)、可以简化从动离心单元的结构和制造工艺,并方便其使用;
(6)、从动离心单元的更换、设备的清洁验证非常容易。
附图及附图说明
附图1为具导流通孔的转子单元支撑件结构示意图;
附图2为具安装支架的转子单元支撑件结构示意图;
附图3为流体通道静止部A结构示意图;
附图4为流体通道静止部B结构示意图;
附图5为固液分离设备定子总成结构示意图;
附图6为流体通道旋转部结构示意图;
附图7为具各种导流通孔结构的第一金属部件结构示意图;
附图8为具流体通道静止部A的金属基座部结构示意图;
附图9为具流体通道旋转部和静止部A的固液分离设备结构示意图;
附图10为具流体通道旋转部和静止部B的固液分离设备结构示意图;
附图11为第一金属部件和第二金属部件结构示意图1;
附图12为第一金属部件和第二金属部件结构示意图2;
附图13为第一金属部件和第二金属部件结构示意图3;
附图14为第三金属部件和第四金属部件结构示意图1;
附图15为第三金属部件和第四金属部件结构示意图2;
附图16为锁定单元结构示意图;
其中:
101、液体收集腔内壁; 102、导流通孔; 103、转子单元支撑件底部;
104、电机轴安装孔; 105、圆锥形凸台; 106、转子单元安装孔;
107、液体收集腔外壁; 201、安装支架固定孔; 202、安装支架;
203、圆环形凸台; 204、定位凸起; 301、环形凹腔外环;
302、通风孔; 303、轴孔; 304、环形凹腔内环;
305、排液孔; 306、定子总成; 307、挡液凸台;
308、底脚; 309、管道; 310、环形凹腔;
401、凸起; 402、圆盘状漏斗口; 403、联通口;
404、密封元件安装孔; 405、漏斗颈; 406、漏斗状漏斗口;
601、圆弧状凸起A; 602、转子总成; 603、环形外凹槽;
604、环形内凹槽; 701、圆环形凸台; 702、卡槽;
703、定位孔; 704、圆环形凹槽; 705、外圆环;
706、底部环形凹腔; 707、内圆环; 901、减震底脚;
902、轴承; 903、电机轴; 904、后端盖固定螺钉;
905、后端盖; 906、轴固定螺母; 907、定子单元;
908、转子单元; 909、敞口端面; 910、基座部;
1001、静止部固定元件; 1002、电机空心轴; 1003、风扇扇叶;
1004、静止部B; 1101、第二金属部件; 1102、第二连接臂;
1103、贯穿通孔1; 1104、第一连接臂; 1105、插孔;
1106、第一金属部件; 1201、“T”型连接臂; 1202、轴向凸起1;
1203、轴向卡槽; 1301、轴向凸起2; 1302、贯穿通孔2;
1401、第四金属部件; 1402、第三金属部件; 1403、径向卡槽;
1501、第三连接臂; 1502、第四连接臂; 1601、锁定件B;
1602、锁定头; 1603、锁定筒; 1604、圆弧状凸起B;
1605、锁定柱; 1606、圆弧状凸起C; 1607、弹簧;
1608、锁定件D; 1609、圆弧状凸起D。
下面结合附图说明本发明的流体通道旋转部、流体通道静止部以及至少具有流体通道旋转部的固液分离设备的示例性实施例,其中,相同的部件用相同的附图标记表示。
本专利中各术语的基本含义如下:
“周向”即圆周方向,是指以电机轴中心线上一点为圆心所形成的垂直于电机轴中心线的圆的圆周方向;
“轴向”是指与电机轴中心线重合或平行的方向;
“径向”是指垂直于电机轴中心线并通过位于中心线上的圆心的半径方向;
“过盈连接”是指利用零件间的配合过盈来实现两个零件间的连接,其装配方法包括压入法、热胀配合法、冷缩配合法等;
“卡接”是指通过两零件上相互配合的凹槽与凸起、卡槽/卡孔/卡口与卡扣或燕尾槽与燕尾榫之间的镶嵌连接从而限制两零件之间产生相对位移的连接方式;
“模制成型”是指生产工序中通过使用模具获得目标几何形状的物体的过程,包括但不限于冲压成型、铸造成型、注塑成型等方式,所述“熔接”为“模制成型”的一种特殊形式;
“切割成型”是指采用除“模制成型”以外的,包括但不限于车、刨、铣、钻、磨、切(割)等工艺获得目标几何形状物体的过程;
“弯折成型”是指采用包括但不限于卷制、绕制、弯曲等工艺获得目标几何形状物体的过程,比如将某种物体卷制或绕制成圆筒状物体或将其弯曲成任意角度。
实施例1
本实施例为具流体通道静止部A的固液分离设备的定子总成,采用图8所示的具流体通道静止部A的金属基座部。
该一体模制成型的具流体通道静止部A的基座部包括:由环形凹腔外环(301)和环形凹腔内环(304)构成有底的环形凹腔(310),由该环形凹腔和位于环形凹腔底部的管道(309)
构成流体通道静止部A,环形凹腔内环内侧具排液孔(305),环形凹腔外环外侧具通风孔(302),通风孔外侧具有用于定位定子单元的定位孔和卡槽。
将具流体通道静止部A的基座部与定子单元(二者不接触)定位于模具中后,以塑封料注塑成型的具流体通道静止部A的固液分离设备定子总成如图5(包括图5A和图5B)所示,其顶部具有防止液体流入的挡液凸台(307),底部具有增大接触面的底脚(308),其中图5A为该定子总成的轴测图,图5B为图5A翻转180°后以方便观察排液孔(305)和通风孔(302)。
实施例2
本实施例为固液分离设备的定子总成,采用图14所示的第三金属部件(1402)和第四金属部件(1401)。
如图14所示,第三金属部件(1402)具有位于中央的用于安装电机轴和轴承的轴承室以及位于外侧的带径向卡槽(1403)的径向向外延伸的第一连接臂,第四金属部件(1401)具有与第一连接臂相对应的带通孔的径向向内延伸的第二连接臂,所述第一连接臂和第二连接臂在径向方向上处于对峙状态。将第三金属部件和第四金属部件按照如图14所示放置并将定子单元定位于模具中后(定子单元与第四金属部件不接触),以塑封料注塑成型的固液分离设备定子总成大致如图5(包括图5A和图5B)所示。
实施例3
本实施例为固液分离设备的定子总成,采用图15所示的第三金属部件(1402)和第四金属部件(1401)。
如图15所示,第三金属部件(1402)具有位于中央的用于安装电机轴和轴承的轴承室以及位于外侧的带径向卡槽(1403)的径向向外延伸的第一连接臂(1501),第四金属部件(1401)具有与第一连接臂相对应的带通孔的径向向内延伸的第二连接臂(1502),所述第一连接臂和第二连接臂在径向方向上处于交叉状态。将第三金属部件和第四金属部件按照如图15所示放置并将定子单元定位于模具中后(定子单元与第四金属部件不接触),以塑封料注塑成型的固液分离设备定子总成大致如图5(包括图5A和图5B)所示。
实施例4
本实施例为一种流体通道旋转部,采用图2所示的具导流通孔的转子单元支撑件。
该一体模制成型的具导流通孔(102)的转子单元支撑件包括承载转子单元的圆筒状主体部(101+107)和半封闭主体部底端的底部两部分,其中流体通道旋转部底部具有:安装支架固定孔(201)、位于底部中央的料液分配盘、位于液体收集腔腔壁和底部交界处的圆环形凸台A(203)及其上的导流通孔(102)以及位于液体收集腔腔壁外侧的阻止转子单元产生周向运动的定位凸起(204)。
将转子单元注塑成型并充磁后,通过喷涂工艺使面向气隙的表面形成电绝缘层,然后将此部件通过转子单元安装孔(106)固定,最后将固定于电机轴的安装支架(202)通过安装支架固定孔(201)固定于转子单元支撑件底部,从而获得具导流通孔的流体通道旋转部。
实施例5
本实施例为一种流体通道旋转部,采用图13所示的第一金属部件(1106)和第二金属部件(1101)。
如图13B所示,第二金属部件(1101)具有径向向内延伸的第二连接臂(1102)和位于第二连接臂末端的轴向凸起(1301)以及位于轴向凸起上的贯穿通孔(1302);第一金属部件(1106)具有径向向外延伸的第一连接臂(1104)和位于第一连接臂上的通孔(1105)。
将第二连接臂末端的轴向凸起(1301)插入第一连接臂上的通孔(1105)(二者不接触)后,与转子单元一起置于模具中且定位后(转子单元与第一金属部件不接触),注塑成型为大致如图6所示的具导流通孔的流体通道旋转部(图6A和图6B),该流体通道旋转部敞口端内侧具有锁定从动离心单元的圆弧状凸起(601)。
实施例6
本实施例为一种流体通道旋转部,采用图7A所示的具导流通孔结构的第一金属部件,该
第一金属部件具有转子单元支撑件的全部底部。
该一体模制成型的具导流通孔结构的第一金属部件具有:位于该第一金属部件中央的具电机轴安装孔(104)的圆锥形凸台(105),与流体通道静止部A环形凹腔相对应的以电机轴中心线为轴心的圆环形凸台(701)和位于该圆环形凸台上的沿圆周方向等间距间隔分布的导流通孔(102),位于第一金属部件边缘的卡槽(702)以及形成该卡槽的卡状凸起和位于该卡状凸起上的定位孔(703)。
将转子单元和第一金属部件(二者不接触)置于模具中并定位后,注塑成型为具导流通孔的流体通道旋转部(图6,包括图6A和图6B),该流体通道旋转部敞口端内侧具有锁定从动离心单元的圆弧状凸起(601)。
实施例7
本实施例为具流体通道旋转部和静止部A的固液分离设备(不含从动离心单元),结构示意图见图9,其流体通道静止部A与定子单元支撑件基座部(910)一体模制成型。
如图9所示,将电机定子单元(907)及其附件定位于模具中后,以塑封料一体模制成型为固液分离设备定子总成,该定子总成所围成的用于容纳流体通道旋转部的空腔底部中央具安装轴承和电机轴的轴承室、由环形凹腔外环(301)和环形凹腔内环(304)围成的静止部A环形凹腔(310)以及位于环形凹腔底部的排液管(309)、位于环形凹腔外环(301)外侧的通风孔(302)、位于环形凹腔内环(304)内侧的排液口(305),定子总成顶端具挡液凸台(307)。
如图9所示,将电机转子单元(908)及其附件和电机轴(903)定位于模具中后,以塑封料一体模制成型为具电机轴(903)的流体通道旋转部,其顶部内侧具有锁定从动离心单元的圆弧状凸起(601),且其敞口端面(909)外半径大于或等于定子总成顶部的挡液凸台(307)外半径。
如图9所示,将流体通道旋转部套上前轴承后定位于轴承室内,再套上后轴承并通过轴固定螺母(906)固定于定子总成上,如此则该流体通道旋转部隔着气隙固定于定子总成围成的空腔内,具导流通孔(102)的圆环形凸台(203)与静止部A的环形凹腔(310)密封连接。
实施例8
本实施例为具流体通道旋转部和静止部B的固液分离设备(不含从动离心单元),结构示意图见图10。
如图10所示,将定子单元(907)及其附件和后端盖(905)定位于模具中后,以塑封料一体模制成型为具基座部(910)、轴承室以及通风孔(302)的固液分离设备定子总成,其顶端具挡液凸台。电机空心轴(903)通过后轴承定位于后轴承室内,再经由前轴承和前端盖(906)卡紧固定于基座(910)中央的空腔内,由定子总成围成的内部空腔隔着气隙布置有流体通道旋转部。
如图10所示,将电机转子单元(908)及其附件和电机空心轴(1002)定位于模具中后,以塑封料一体模制成型为具电机空心轴和风扇扇叶(1003)的流体通道旋转部,其顶部内侧具有锁定从动离心单元的圆弧状凸起(601)。
如图10所示,将流体通道旋转部套上前轴承后定位于轴承室内,再套上后轴承并通过轴固定螺母(906)固定于定子总成上,如此则该流体通道旋转部隔着气隙固定于定子总成围成的空腔内。最后将由漏斗口和穿过电机空心轴(1002)的漏斗颈组成的具径向凸起(401)的流体通道静止部B(1004)通过漏斗颈由静止部固定元件(1001)固定于定子总成基座部,流体通道静止部B漏斗口边缘与液体收集腔内壁密封连接。
上述对实施例的描述是为了便于本技术领域的普通技术人员能理解和应用本发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其它实施例中而不必经过创造性的劳动。因此,本发明不限于这里的实施例,本领域技术人员根据本发明的揭示,对于本发明做出的任何改进和修改都应该在本发明的保护范围内。
Claims (20)
- 一种流体通道,其特征在于,包括:(1)、流体通道旋转部,所述流体通道旋转部包括:至少一个转子单元,所述转子单元通过与适配的定子单元之间的电磁相互作用产生的旋转力使流体通道旋转部绕电机轴作旋转运动;由转子单元支撑件的腔壁所围成的大致为桶状的离心液体收集腔;以及转子单元支撑件,所述转子单元支撑件包括:从动离心单元锁定结构和/或锁定单元,用于锁定和/或解锁从动离心单元并使从动离心单元与流体通道旋转部同速同轴旋转;承载转子单元的大致为圆筒状的主体部;封闭或半封闭主体部底端的底部;作为可选结构、位于主体部顶端且中央具加料口的盖部;所述转子单元支撑件或流体通道旋转部通过如下轴连接方式中的任一种与电机轴发生关系:通过位于转子单元支撑件底部中央的电机轴安装孔;通过安装支架,所述安装支架与底部和电机轴固定连接,或与底部和/或电机轴为一体结构;电机轴与转子单元支撑件或流体通道旋转部为一体结构;其中与流体通道静止部A相适配的流体通道旋转部,其转子单元支撑件底部与流体通道静止部A环形凹腔相对应的位置具有用于将流体引导至环形凹腔的具导流通孔的导流结构,所述导流通孔兼作锁定从动离心单元的锁定结构;(2)、流体通道静止部,所述流体通道静止部选自如下A、B中的任一种:流体通道静止部A:包括由环形凹腔内环和环形凹腔外环所围成的竖截面大致为“U”型的环形凹腔以及位于该环形凹腔底部的使液体流向液体收集瓶的排液管道,所述环形凹腔的敞口端与位于流体通道旋转部转子单元支撑件底部上用于将流体引导至静止部A环形凹腔的具有导流通孔的导流结构密封连接;流体通道静止部B:包括收集由旋转部液体收集腔引导而来的液体的漏斗口和使液体流向液体收集瓶的漏斗颈,所述漏斗口边缘与液体收集腔腔壁内侧密封连接,所述漏斗颈穿过电机空心轴并且其末端固定于定子单元支撑件基座部、轴承座、端盖三者中任一者上;其中流体通道静止部A位于定子单元支撑件基座部、电机轴承座、端盖三者中任一者上或与其中任一者一体成型。
- 根据权利要求1所述的流体通道,其特征在于:所述转子单元选自如下所述结构中的任一种:导电绕组或铁芯与导电绕组的组合;铁芯及永磁体的组合;转子导条、端环以及铁芯的组合;永磁体、转子导条、端环以及铁芯的组合;所述永磁体选自钕铁硼磁铁、钐钴磁铁、铝镍钴磁铁、铁氧体磁铁、塑磁磁铁中的任一种或它们两者或多者之间的组合。
- 根据权利要求1所述的流体通道,其特征在于:所述流体通道静止部B面向液体收集腔敞口端一侧的漏斗口具有从其边缘向其中心延伸的凸起和/或凹槽。
- 根据权利要求1所述的流体通道,其特征在于:所述转子单元支撑件底部与流体通道静止部A环形凹腔相对应的位置具有以电机轴中心线为轴心的选自如下所述导流结构中的任一种:圆环形凸台;圆环形凹槽;由内、外圆环所围成的位于转子单元支撑件底部外侧的环形凹腔;正对流体通道静止部A环形凹腔内环和外环位置且位于转子单元支撑件底部的环形内凹槽和环形外凹槽以及位于环形内凹槽和环形外凹槽之间的底部;所述以电机轴中心线为轴心沿圆周方向间隔分布的导流通孔位于上述四种导流结构中的任一种上,所述导流通孔兼作从动离心单元的锁定结构。
- 具流体通道的固液分离设备,其特征在于,包括:①、流体通道旋转部:权利要求1所述的流体通道旋转部,所述流体通道旋转部通过旋转支持单元隔着气隙布置于定子总成所围成的空腔内;②、流体通道静止部:权利要求1所述的任一种流体通道静止部;③、定子总成,所述定子总成包括:至少一个与转子单元相适配的定子单元,所述定子单元与转子单元通过电磁相互作用构成可产生旋转运动的电机器;以及定子单元支撑件,所述定子单元支撑件包括:承载定子单元、顶端为敞口且大致为圆筒状的外壳部;以及封闭外壳部底端的基座部,所述基座部中心具安装电机轴及其轴承的轴承室;④、旋转支持单元:所述旋转支持单元包括电机轴、轴承室以及轴承,所述电机轴、轴承室以及轴承位于构成定子总成的定子单元支撑件基座部、电机轴承座、端盖三者中任一者中央;⑤、从动离心单元:所述从动离心单元被锁定结构和/或锁定单元锁定后随流体通道旋转部同速同轴旋转。
- 根据权利要求5所述的固液分离设备,其特征在于:所述定子总成具有以电机轴中心线为轴心沿圆周方向分布的,位于环形凹腔内环内侧和/或环形凹腔外环外侧的如下所述结构中的至少一种:排液孔,所述排液孔排出泄漏的离心液体;通风孔,所述通风孔用于气隙通风冷却;安装孔,所述安装孔用于安装密封流体的密封元件;其中所述排液孔、通风孔、安装孔可以互相兼用。
- 根据权利要求5所述的固液分离设备,其特征在于:所述从动离心单元通过密封面和/或密封元件密封所述流体通道旋转部的敞口端。
- 根据权利要求1所述的流体通道或权利要求5所述的固液分离设备,其特征在于:所述具有两个或两个以上转子单元的流体通道旋转部,其转子单元以电机轴中心线为轴心沿轴向阵列或沿径向并列;所述具有两个或两个以上定子单元的定子总成,其定子单元以电机轴中心线为轴心沿轴向阵列或沿径向并列。
- 根据权利要求1所述的流体通道或权利要求5所述的固液分离设备,其特征在于:所述流体通道和/或固液分离设备具有如下所述电绝缘措施中的至少一种:所述定子单元、转子单元中任一者或两者至少面向气隙的表面被适宜的工序处理后覆有非导电的绝缘材料层;所述定子单元、转子单元中任一者或两者与邻接的定子单元支撑件、转子单元支撑件的各部分之间被非导电的绝缘材料层电绝缘地隔离;所述非电绝缘地承载着定子单元或转子单元的金属部件,其与定子单元单元支撑件或转子单元支撑件的其余部分之间以及位于定子单元单元支撑件内和/或转子单元支撑件内的目标物质及其各组成成分之间被非导电的绝缘材料电绝缘地隔离。
- 根据权利要求9所述的流体通道或固液分离设备,其特征在于:所述转子单元支撑件包括如下所述三者的至少一者:位于转子单元支撑件内侧底部位置的第一金属部件;位于转子单元支撑件外侧主体部位置的第二金属部件;使转子单元支撑件或流体通道旋转部拥有完整结构与功能的由聚合物材料模制成型的模制部件;所述定子单元支撑件包括如下所述三者中的至少一者:位于定子单元支撑件内侧基座部的第三金属部件;位于定子单元支撑件外侧外壳部的大致为圆筒状的第四金属部件;使定子单元支撑件或定子总成拥有完整结构与功能的由聚合物材料模制成型的模制部件。
- 根据权利要求10所述的流体通道,其特征在于:所述第一金属部件选自如下所述结构中的任一种:花键;电机轴;具内侧轴安装结构和外侧连接结构的转子嵌件;具部分或全部转子单元支撑件底部的第一金属部件;具锁定结构和/或锁定单元的第一金属部件;所述第二金属部件选自如下所述结构中的任一种:大致为圆筒状的第二金属部件;周壁具间隔分布的贯穿通孔的大致为圆筒状的第二金属部件;沿主体部周壁间隔分布的由多个大致为条状或柱状的金属体所构成的第二金属部件;具底部和大致圆筒状的筒状部且整体呈桶状结构的第二金属部件;具主体部及封闭或半封闭主体部底端的底部的第二金属部件;具部分间隔部和锁定结构和/或锁定单元的第二金属部件。
- 根据权利要求11所述的流体通道,其特征在于:所述第一和/或第二金属部件选用与转子单元铁芯相同的材料并采用适宜的制造工序制造而成,所述适宜的制造工序包含模制工序、切割工序、弯折工序、冲裁工序中的至少一种制造工序。
- 根据权利要求10所述的流体通道,其特征在于:所述流体通道旋转部具有以电机轴中心线为轴心的用作加强其结构强度的径向加强筋和/或周向加强筋,所述加强筋位于流体通道旋转部的底部内侧、底部外侧、主体部内侧三者中的至少一者上,所述位于底部内侧和/或主体部内侧的加强筋兼作锁定从动离心单元的锁定结构。
- 根据权利要求10所述的固液分离设备,其特征在于:所述第三金属部件选自如下所述结构中的任一种:金属轴承座;金属端盖;具部分或全部基座部的第三金属部件;具大致圆筒状的筒状部以及封闭筒状部底部的整体呈桶状结构的第三金属部件;所述第四金属部件选自如下所述结构中的任一种:大致圆筒状的金属件;承载定子单元的外壳部。
- 根据权利要求11所述的流体通道或权利要求14所述的固液分离设备,其特征在于:所述第一金属部件、第二金属部件、第三金属部件、第四金属部件具有以电机轴中心线为轴心并间隔分布的用于增强结构强度和/或用于连接的下述结构中的至少一种结构:凹槽或卡槽;通孔或卡孔;卡扣连接结构或卡止连接结构;凸起或卡状凸起;所述结构的分布方式选自如下所述两种方式中的至少一种:沿周向和径向;沿周向和轴向;其中同时具有第一和第二金属部件的转子单元支撑件,从轴向方向观察,所述金属部件中的结构在径向方向上具有重叠、交叉、对峙、错位四种状态中的至少一种,所述第一和第二金属部件被非电绝缘地固定连接或被聚合物材料模制连接而电绝缘地隔离;其中同时具有第三和第四金属部件的定子单元支撑件,从轴向方向观察,所述金属部件中的结构在径向方向上具有重叠、交叉、对峙、错位四种状态中的至少一种,所述第三和第四金属部件被非电绝缘地固定连接或被聚合物材料模制连接而电绝缘地隔离。
- 根据权利要求10所述的流体通道,其特征在于:所述转子单元支撑件或流体通道旋转部选自如下所述方法中的任一种制成:将转子单元支撑件主体部、底部、具导流通孔的导流结构三者中的至少一者通过适宜的制造工序制造成型后的部件与转子单元一起组装成型和/或模制成型为流体通道旋转部;将通过适宜的制造工序制造成型的第一金属部件、第二金属部件中的任一者或两者与转子单元一起模制成型所需结构的流体通道旋转部;直接将转子单元置于模具中模制成型为所需结构的流体通道旋转部;所述适宜的制造工序包括模制、切割、弯折、冲压成型工序中的至少一种制造工序。
- 根据权利要求10所述的固液分离设备,其特征在于:所述定子单元支撑件或定子总成选自如下所述方法中的任一种制成:将通过适宜的制造工序制造成型的包含定子单元支撑件外壳部、基座部和流体通道静止部A三者中至少一者的部件与定子单元一起组装成型和/或模制成型为定子总成;将通过适宜的制造工序制造成型的第三金属部件和第四金属部件中的至少一者与定子单元一起模制成型为至少具轴承室或至少具轴承室和流体通道静止部A的定子总成;直接通过将定子单元置于模具中模制成型为至少具轴承室或至少具轴承室和流体通道静止部A的定子总成;所述适宜的制造工序优选包括模制、切割、弯折、冲裁成型工序中的至少一种制造工序。
- 根据权利要求1所述的流体通道或权利要求5所述的固液分离设备,其特征在于:所述以电机轴中心线为轴心并间隔分布于流体通道旋转部、从动离心单元上的锁定和/或解锁结构选自如下所述结构中的至少一种:凹槽或卡槽;通孔或卡孔;卡扣连接结构或卡止连接结构;凸起或卡状凸起;可枢转地进行轴向锁定的圆弧状凸起,所述单个圆弧状凸起具有从其中一端到另一端平缓降低高度的光滑斜面;所述位于流体通道旋转部、从动离心单元上的锁定和/或解锁结构相互适配从而用于阻止从动离心单元与流体通道旋转部之间或从动离心单元各组成部分之间产生周向和/或轴向运动以及用于解除所述锁定状态。
- 根据权利要求1所述的流体通道或权利要求5所述的固液分离设备,其特征在于:所述位于流体通道旋转部、从动离心单元上的用于阻止从动离心单元与流体通道旋转部之间或从动离心单元各组成部分之间产生周向和/或轴向运动以及用于解除所述锁定状态的锁定和/或解锁单元包括:权利要求18所述的锁定和/或解锁结构,所述锁定和/或解锁结构位于流体通道旋转部、从动离心单元、锁定柱、锁定筒上;锁定柱或锁定筒;作为可选结构的弹性件,所述弹性件提供密封或轴向的锁紧力;锁定件,所述锁定件上的锁定和/或解锁结构与锁定柱或锁定筒上的锁定和/或解锁结构 相互配合,通过锁定件绕锁定柱或锁定筒的旋转运动,或通过锁定件在锁定柱或锁定筒上的轴向和/或径向的线性运动实现流体通道旋转部和从动离心单元之间的锁定和/或解锁。
- 根据权利要求1所述的流体通道或权利要求5所述的固液离心分离设备,其特征在于:所述聚合物材料是选自如下所述材料中的任一种或它们两者或多者的共聚物,或其中至少一种与增强填料特别是纤维增强填料,更特别是玻璃纤维增强填料的共聚物:聚烯烃(包括聚丙烯(PP)、聚乙烯(PE)、聚丁烯-1(PB-1))或卤代聚烯烃;聚环烯烃;聚砜;聚醚酮;聚酯;聚丙烯酸酯;聚甲基丙烯酸酯;聚酰胺(PA);聚酰亚胺;聚碳酸酯(PC);聚氨酯;聚缩醛;聚苯乙烯(PS);丙烯晴/丁二烯苯乙烯共聚物(ABS);液晶聚合物(LCP);聚苯硫醚(PPS)。
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610123714.0 | 2016-03-07 | ||
CN201610123714.0A CN107159319B (zh) | 2016-03-07 | 2016-03-07 | 流体通道及其电机和固液分离系统 |
CN201610254946.X | 2016-04-25 | ||
CN201610254946.XA CN107303514A (zh) | 2016-04-25 | 2016-04-25 | 具流体通道旋转部与静止部的电机及其固液分离设备 |
CN201710118855.8A CN106890731B (zh) | 2017-02-28 | 2017-02-28 | 具流体通道的固液分离设备 |
CN201710118855.8 | 2017-02-28 | ||
CN201710118853.9 | 2017-02-28 | ||
CN201710118853.9A CN106861933A (zh) | 2017-02-28 | 2017-02-28 | 流体通道及其固液分离设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017152709A1 true WO2017152709A1 (zh) | 2017-09-14 |
Family
ID=59788968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/000239 WO2017152709A1 (zh) | 2016-03-07 | 2017-03-20 | 流体通道及其固液分离设备 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017152709A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109738261A (zh) * | 2019-02-28 | 2019-05-10 | 东莞市丰易仪器有限公司 | 自动浸润仪器 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1137105A (zh) * | 1996-02-02 | 1996-12-04 | 清华大学 | 一种运转稳定可靠的立式高速转动系统 |
WO2004047993A1 (en) * | 2002-11-27 | 2004-06-10 | Young-Rae Kim | Vacuum centrifugal concentrator |
CN103071600A (zh) * | 2012-12-04 | 2013-05-01 | 李少龙 | 转鼓带电机转子的离心机 |
CN105251624A (zh) * | 2015-03-23 | 2016-01-20 | 唐凌霄 | 一种直驱式离心分离设备 |
-
2017
- 2017-03-20 WO PCT/CN2017/000239 patent/WO2017152709A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1137105A (zh) * | 1996-02-02 | 1996-12-04 | 清华大学 | 一种运转稳定可靠的立式高速转动系统 |
WO2004047993A1 (en) * | 2002-11-27 | 2004-06-10 | Young-Rae Kim | Vacuum centrifugal concentrator |
CN103071600A (zh) * | 2012-12-04 | 2013-05-01 | 李少龙 | 转鼓带电机转子的离心机 |
CN105251624A (zh) * | 2015-03-23 | 2016-01-20 | 唐凌霄 | 一种直驱式离心分离设备 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109738261A (zh) * | 2019-02-28 | 2019-05-10 | 东莞市丰易仪器有限公司 | 自动浸润仪器 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102099120B (zh) | 离心分离器 | |
CN108607693B (zh) | 一种直驱式离心分离设备 | |
CN106536940B (zh) | 包括转子、定子和电子器件壳体的电动机以及用于电动机的风扇叶轮 | |
CN104081058B (zh) | 机动车辆的散热器风扇 | |
WO2016186427A1 (ko) | 모터 및 그 제작방법 | |
KR20130069644A (ko) | 유체 분리 특징을 갖는 폐쇄형 챔버 | |
WO2017152709A1 (zh) | 流体通道及其固液分离设备 | |
CN207968113U (zh) | 一种轴向磁场电机转子总成 | |
CN103071600A (zh) | 转鼓带电机转子的离心机 | |
CN107836074A (zh) | 用于电动机的磁式的探测器磁轮 | |
CN211351856U (zh) | 一种外转子电机 | |
CN106890731B (zh) | 具流体通道的固液分离设备 | |
WO2017173864A1 (zh) | 具离心单元的主动驱动单元及其固液分离设备 | |
KR20140044495A (ko) | 인휠 모터 | |
CN106655619B (zh) | 具有离心单元的主动驱动单元及其固液分离设备 | |
CN108452954A (zh) | 从动离心单元、其制造方法和使用方法及其固液分离设备 | |
CN107303514A (zh) | 具流体通道旋转部与静止部的电机及其固液分离设备 | |
CN107159319B (zh) | 流体通道及其电机和固液分离系统 | |
CN106849485B (zh) | 主动驱动单元 | |
CN209952380U (zh) | 一种新型滤芯组件及净水设备 | |
CN111934456A (zh) | 一种内嵌式永磁变频电机转子 | |
CN205253347U (zh) | 一种磁选机 | |
CN218962960U (zh) | 一种低噪声医用离心机 | |
CN117997040B (zh) | 井下磁悬浮发电装置 | |
CN106861933A (zh) | 流体通道及其固液分离设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17762395 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17762395 Country of ref document: EP Kind code of ref document: A1 |