WO2017152346A1 - Tubeless fluid delivery system - Google Patents

Tubeless fluid delivery system Download PDF

Info

Publication number
WO2017152346A1
WO2017152346A1 PCT/CN2016/075787 CN2016075787W WO2017152346A1 WO 2017152346 A1 WO2017152346 A1 WO 2017152346A1 CN 2016075787 W CN2016075787 W CN 2016075787W WO 2017152346 A1 WO2017152346 A1 WO 2017152346A1
Authority
WO
WIPO (PCT)
Prior art keywords
connector
fluid delivery
delivery system
connector housing
socket
Prior art date
Application number
PCT/CN2016/075787
Other languages
French (fr)
Inventor
Cuijun YANG
Original Assignee
Medtrum Technologies Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtrum Technologies Inc. filed Critical Medtrum Technologies Inc.
Priority to PCT/CN2016/075787 priority Critical patent/WO2017152346A1/en
Publication of WO2017152346A1 publication Critical patent/WO2017152346A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14244Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
    • A61M5/14248Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body of the skin patch type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/502User interfaces, e.g. screens or keyboards
    • A61M2205/505Touch-screens; Virtual keyboard or keypads; Virtual buttons; Soft keys; Mouse touches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/58Means for facilitating use, e.g. by people with impaired vision
    • A61M2205/581Means for facilitating use, e.g. by people with impaired vision by audible feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/58Means for facilitating use, e.g. by people with impaired vision
    • A61M2205/582Means for facilitating use, e.g. by people with impaired vision by tactile feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/58Means for facilitating use, e.g. by people with impaired vision
    • A61M2205/583Means for facilitating use, e.g. by people with impaired vision by visual feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/60General characteristics of the apparatus with identification means
    • A61M2205/6018General characteristics of the apparatus with identification means providing set-up signals for the apparatus configuration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/60General characteristics of the apparatus with identification means
    • A61M2205/6036General characteristics of the apparatus with identification means characterised by physical shape, e.g. array of activating switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/60General characteristics of the apparatus with identification means
    • A61M2205/6063Optical identification systems

Definitions

  • the present invention relates to a medical device, and more particularly, a tubeless fluid delivery system.
  • a fluid delivery device is a medical device which can treat disease by continuously delivering a fluid into a patient.
  • the fluid delivery device is widely used in the treatment of diabetes.
  • the fluid delivery device continuously delivers insulin to a subcutaneous tissue of a patient based on a dosage required by the patient, so as to simulate the secretion function of the pancreas and stabilize glucose of the patient.
  • the fluid is usually stored in a reservoir, and a conventional fluid delivery device usually delivers the fluid into a patient via a tubing connected to the reservoir.
  • the tubing when it is used, is not only an obstruction for the patient's activities, but also not pleasant to the eye.
  • a tubeless fluid delivery device which has a patch pump stuck to the patient's body using pharmaceutical tape, and an indwelling cannula implanted in a subcutaneous tissue of the patient to deliver a fluid.
  • the tubeless fluid delivery device integrates the reservoir and a wireless control module in a box, and remotely controls fluid delivery by a wireless handheld device.
  • the patient is required at least to wear a patch pump and carry a wireless handheld device, at the same time, the existing tubeless fluid delivery device has other shortages such as radio interference and high cost.
  • the current fluid delivery system uses a wireless remote control to switch operating modes, it is with high risk of being hacked and reprogrammed of the instructions by hackers which brings safety risk to the user.
  • the present invention provides a tubeless fluid delivery system for solving the problems such as the inconvenience of carrying both a patch pump and a wireless handheld device, possible radio interference, attacks from hackers, program tampering, and other safety risks; at the same time, the inconvenience of selecting operating modes of the tubeless fluid delivery system caused by hard pulling out of connectors from the socket resulting in untimely fluid delivery to the user is also taken care of by the present invention.
  • the present invention provides a tubeless fluid delivery system, comprising: a pump base configured to store fluid; a controller electrically connected to the pump base, comprising a switch unit and a control unit; the switch unit comprises a connector and a socket; the connector is alternatively selected from a couple of connectors, and each one of the connectors corresponds to one certain preprogrammed operating instruction; when a fluid delivery is needed, the user selects an operating instruction, and inserts the one and only connector corresponding to the operating instruction into the socket, the selected connector then sends a selection instruction to the control unit under its corresponding operating instruction, and the control unit receives the selection instruction and sends a delivery instruction to the pump base, so as to control the pump base to deliver the fluid to the user or suspend fluid delivery; furthermore, the operating instruction consists of one operating mode or a combination of several operating modes.
  • the connector comprises: a connector housing; a plug located on the connector housing, configured to realize electrical connection between the connector and the socket; a separating device located on the connector housing, configured to separate the connector from the socket.
  • the socket comprises: a plug receiving cavity, configured to receive the plug; a connector housing receiving cavity, configured to receive the connector housing; the centerline of the plug receiving cavity and the centerline of the plug lie on the same straight line; the centerline of the connector housing receiving cavity and the centerline of the connector housing lie on the same straight line.
  • the operating mode is selected from a group consisting of a basal rate delivery mode, a programmable basal rate delivery mode, a delivery suspend mode, a system locking mode and a wireless control mode.
  • the connector comprises: a connector housing, a plug located on the connector housing, a built-in electric circuit located inside the connector housing, and an O-shaped sealing ring circumferentially set on the connector housing.
  • the built-in electric circuit is an analog circuit comprising resistor, capacitor or a combination thereof, or a digital integrated circuit including Flash, EEROM, or One Time Programmable (OTP) memory device, or a digital integrated circuit with identity recognition function, or a digital integrated circuit with an authentication function, an encryption function or a combination thereof, or a digital-analog hybrid integrated circuit, or an LED displaying status or information; or an accelerometer with motion detection function.
  • an analog circuit comprising resistor, capacitor or a combination thereof, or a digital integrated circuit including Flash, EEROM, or One Time Programmable (OTP) memory device, or a digital integrated circuit with identity recognition function, or a digital integrated circuit with an authentication function, an encryption function or a combination thereof, or a digital-analog hybrid integrated circuit, or an LED displaying status or information; or an accelerometer with motion detection function.
  • OTP One Time Programmable
  • the socket includes a slot and an adapter set in the slot, and the adapter is electrically connected with the built-in electric circuit, wherein an O-shaped sealing ring is set on the surface on which the adapter is attached with the socket, and the plug is inserted into the adapter and thus electrically connected with the adapter when the connector is inserted into the socket.
  • a sensor circuit is located in the socket, and the connector is a sensor connector; the sensor connector includes a connector housing and a sensor circuit located inside of the connector housing.
  • the sensor circuit includes a magnetic sensor, an optical sensor, a near field communication (NFC) tag or a radio frequency identification (RFID) tag.
  • NFC near field communication
  • RFID radio frequency identification
  • the separating device is a handle.
  • the connector housing has a cylindrical shape, and a groove is set on one end of the connector housing in the longitudinal direction; the handle is set inside the groove and fixedly connected with the groove.
  • the centerline of the connector housing and the centerline of the plug do not lie on the same straight line, configured to prevent the connector from being inserted reversely into the socket.
  • the controller further comprises a button unit, the button unit comprises physical buttons and/or touch buttons, configured to receive button instructions from the user; the control unit sends a delivery instruction to the pump base when receiving a button instruction or a selection instruction, so as to control the pump base to deliver the fluid to the user or suspend fluid delivery.
  • the button unit comprises physical buttons and/or touch buttons, configured to receive button instructions from the user; the control unit sends a delivery instruction to the pump base when receiving a button instruction or a selection instruction, so as to control the pump base to deliver the fluid to the user or suspend fluid delivery.
  • buttons and/or touch buttons are designed with functions of event input, instruction input or alarm clearance.
  • the tubeless fluid delivery system is an insulin pump and the fluid stored in the pump base is insulin.
  • the present invention has advantages in following ways.
  • the tubeless fluid delivery system provided in the present invention uses an independent control structure to enhance convenience of using and wearing.
  • the control unit and the switch unit are set in the same device, with the control unit configured to process user instructions, coordinate and manage device operations, while the switch unit configured to realize communications between the user and the device via connecting or separating the connector from the socket.
  • the connector to be inserted into the socket is selected from a multiple connectors, and different connectors correspond to different operating instructions, and each connector corresponds to one certain preprogrammed operating instruction.
  • One operating instruction consists of one operating mode or a combination of several operating modes such as basal rate delivery mode, programmable basal rate delivery mode, delivery suspend mode, system locking mode and wireless control mode; when a fluid delivery is needed, the user selects an operating instruction, and inserts the certain connector corresponding to the operating instruction into the socket, so the selected connector sends a selection instruction to the control unit under its corresponding operating instruction, then the control unit receives the selection instruction and sends a delivery instruction to the pump base, so as to control the pump base to deliver the fluid to the user or suspend fluid delivery.
  • the switch unit in the present invention replaced the wireless remote control device used in prior arts, and different requirements of delivery patterns are satisfied by different selections of hardware which means the connectors in the present invention instead of wireless remote controlling in prior arts.
  • one connector corresponds to one certain operating instruction, in other word, to certain operating mode or certain combination of operating modes, and the operating modes are preprogrammed and un-rewritable, which effectively prevents the program of the system being remote tampered, so as to make the device safer to use.
  • the connector of the present invention comprises a separating device set on the connector housing, configured to separate the connector from the socket.
  • a separating device set on the connector housing, configured to separate the connector from the socket.
  • FIG. 1 illustrates a block diagram of a tubeless fluid delivery system in the present invention.
  • FIG. 2 illustrates a perspective view of the tubeless fluid delivery system in the present invention.
  • FIG. 3 illustrates a perspective exploded view of the tubeless fluid delivery system in the present invention.
  • FIG. 4 illustrates a perspective view of a controller of the tubeless fluid delivery system in the present invention.
  • FIG. 5 illustrates an enlarged view of the A part of FIG. 4.
  • FIG. 6 illustrates a first schematic diagram of the connection of a socket and a connector of the tubeless fluid delivery system in the embodiment of the present invention.
  • FIG. 7 illustrates a perspective exploded view of a connector of a switch unit of the tubeless fluid delivery system in the embodiment of the present invention.
  • FIG. 8 illustrates a first perspective view of a connector of a switch unit of the tubeless fluid delivery system in the embodiment of the present invention.
  • FIG. 9 illustrates an enlarged view of the B part of FIG. 4.
  • FIG. 10 illustrates a second schematic diagram of the connection of the socket and the connector of the tubeless fluid delivery system in the embodiment of the present invention.
  • FIG. 11 illustrates a schematic diagram of the connection of the controller and a buzzer, a vibration motor and an indicator light of the tubeless fluid delivery system in the embodiment of the present invention.
  • FIG. 12 illustrates a schematic diagram of how the buzzer, the vibration motor and the indicator light are integrated in the controller of the tubeless fluid delivery system in the embodiment of the present invention.
  • FIG. 13 illustrates a first plan view of the connector of the switch unit of the tubeless fluid delivery system in the embodiment of the present invention when the plug is vertically downward.
  • FIG. 14 illustrates a second plan view of the connector of the switch unit of the tubeless fluid delivery system in the embodiment of the present invention when the plug is vertically downward.
  • FIG. 15 illustrates a third plan view of the connector of the switch unit of the tubeless fluid delivery system in the embodiment of the present invention when the plug is vertically downward.
  • FIG. 16 illustrates a first schematic diagram of the socket of the tubeless fluid delivery system in the embodiment of the present invention.
  • FIG. 17 illustrates a first schematic diagram of the connector of the tubeless fluid delivery system in the embodiment of the present invention.
  • FIG. 18 illustrates a first schematic diagram of how the connector is inserted in the socket of the tubeless fluid delivery system in the embodiment of the present invention.
  • FIG. 19 illustrates a second schematic diagram of the connector of the tubeless fluid delivery system in the embodiment of the present invention.
  • FIG. 20 illustrates a second schematic diagram of how the connector is correctly inserted in the socket of the tubeless fluid delivery system in the embodiment of the present invention.
  • FIG. 21 illustrates a third schematic diagram of how the connector is incorrectly inserted in the socket of the tubeless fluid delivery system in the embodiment of the present invention.
  • a tubeless fluid delivery system 1 of the present invention comprising: pump base 102, fluid is stored in the pump base 102, and the fluid can be insulin or other medicine; controller 101, which can be electrically connected with the pump base 102.
  • the controller 101 and the pump base 102 are integrated, so the tubeless fluid delivery system 1 is used as one unit by being pasted onto the skin using pharmaceutical tape 2 by the user.
  • the controller 101 and the pump base 102 snap to realize electrical connection
  • metal pins are set on both the controller 101 and the pump base 102, when the controller 101 and the pump base 102 snap, the metal pin set on the controller 101 and the metal pin set on the pump base 102 contact each other to realize electrical connection; in some other embodiments, the controller 101 and the pump base 102 may realize electrical connection through wires.
  • the controller 101 comprises a switch unit and a control unit;
  • the switch unit comprises a connector 13 and a socket 12, the connector 13 is alternatively selected from a couple of connectors, each connector 13 corresponds to one certain preprogrammed operating instruction.
  • a certain operating instruction is selected which consists of one operating mode or a combination of several operating modes, and the certain connector 13 corresponding to the operating instruction is to be inserted into the socket 12, making the switch unit sending a selection instruction to the control unit, then the control unit receives the selection instruction and sends a delivery instruction to the pump base 102, so as to control the pump base 102 to deliver the fluid to the user or suspend fluid delivery.
  • the tubeless fluid delivery system 1 is used as an insulin pump; while the operating mode is selected from several operating modes including a basal rate delivery mode, a programmable basal rate delivery mode, a delivery suspend mode, a system locking mode and a wireless control mode.
  • the basal rate can be understood as the rate of insulin infusion per unit time, usually expressed in the form of unit (u) /h (h) .
  • Different connector correspond to different but certain operating instructions, and one operating instruction consists of one operating mode or a combination of several operating modes, which means selection of one connector equals corresponding selection of one certain operating mode or certain combinations of operating modes, and the tubeless fluid delivery system 1 switch its operating mode or combination of operating modes by changing connectors 13 in the socket 12; and each operating mode is un-rewritable, preventing possible attacks to the tubeless fluid delivery system 1 from hackers, thus improving patient safety.
  • the connector 13 of the present invention comprises a connector housing 130 and a separating device 14.
  • the connector housing 130 has a cylinder shape, but in some other embodiments, connector housing 130 may have other shapes such as a cuboid.
  • the separating device 14 is located on the connector housing 130, and its location on the connector housing 130 is not fixed, as long as it can be used to separate the connector 13 from the socket 12.
  • the connector 13 is separated from the socket 12 using separating device 14, and another connector with a different operating instruction is selected to be inserted into the socket, making the tubeless fluid delivery system 1changing to a different operating instruction, so the tubeless fluid delivery system 1 may deliver fluid to the user properly and timely under corresponding operating instruction minimizing safety risks.
  • the separating device 14 is a handle, the connector housing 130 has a cylinder shape, the connector 13 has no shape restriction, it can be, such as, a cuboid shape; a groove is set on the connector housing 130 in the longitudinal direction; the separating device 14 is inserted in the groove, and fixedly connected with the groove, and the handle is round; In other embodiments, the separating device 14 is welded on the connector housing 130 and its location is not restricted, when the separating device 14 is fixedly connected with the connector housing 130, the user can separate the connector 13 from the socket 12 by applying an external force on the separation device 14 using tools like tweezers, clips or hooks.
  • the separation device 14 is a round handle, in other embodiments, the separation device 14 can be an arc shaped handle or a hook shaped handle, the user can separate the connector 13 from the socket 12 by applying an external force on the separation device 14 using tools like tweezers, clips or hooks.
  • the separating device 14 is a strut
  • the connector housing 130 has a cylinder shape
  • two struts are provided in the circumferential direction of the connector housing 130.
  • the number of the struts is not restricted, it can be 3 or 5 or even more.
  • the user can separate the connector 13 from the socket 12 by applying an external force on the strut using tools like tweezers, clips or hooks.
  • the user may use a pair of tweezers to clamp the strut to separate the connector 13 from the socket 12.
  • the strut and the connector housing 130 are set with an angle, in this embodiment, the struts are almost perpendicular to the connector housing 130, but in other embodiments, the angle between the strut and the connector housing 130 can be other degrees such as 30° or 60° or 110°.
  • the strut can also be set in the longitudinal direction of the connector housing 130, as long as an external force can be applied on the strut by tools like tweezers, clips or hooks, the connector 13 can be conveniently separated from the socket 12.
  • the separating device 14 is a protrusion with a cylindrical shape
  • the connector housing 130 has a cylinder shape
  • two protrusions are provided in the circumferential direction of the connector housing 130.
  • the number of the protrusions is not restricted, it can be 3 or 5 or even more.
  • the user can separate the connector 13 from the socket 12 by applying an external force on the protrusion using tools like tweezers, clips or hooks. For example, the user may use tweezers to clamp the protrusion to separate the connector 13 from the socket 12.
  • the protrusion and the connector housing 130 are set with an angle, in this embodiment, the protrusions are almost perpendicular to the connector housing 130, but in other embodiments, the angle between the protrusion and the connector housing 130 can be other degrees.
  • the protrusion can also be set in the longitudinal direction of the connector housing 130, and the shape of the protrusion is not restricted, for example it can be triangular, elliptical or other shapes, as long as an external force can be applied on the protrusion by tools like tweezers, clips or hooks, the connector 13 can be conveniently separated from the socket 12.
  • the separating device 14 is a hole
  • the connector housing 130 has a cylinder shape
  • two holes are provided in the circumferential direction of the connector housing 130.
  • the number of the holes is not restricted, it can be 3 or 5 or even more.
  • the user can separate the connector 13 from the socket 12 by applying an external force on the hole using tools like tweezers, clips or hooks.
  • the user may use a pair of tweezers to clamp the hole to separate the connector 13 from the socket 12.
  • the holes are parallel to the connector housing 130, but in other embodiments, the angle between the hole and the connector housing 130 can be other degrees.
  • the present invention further comprises an anti-inserted-reversely structure, configured to prevent the connector 13 from being inserted incorrectly into the socket 12.
  • the connector 13 comprises: a connector housing 130 and a plug 131 set on the connector housing 130, configured to realize the electrical connection between the connector 13 and the socket 12;
  • the anti-inserted-reversely structure comprises: a first groove 12a set on the surface of the socket 12 facing the connector 13; and a second groove set on the connector housing 130; when the connector 13 is inserted into the socket 12, the first groove 12a and the second groove 13a lie along the same line; or the first groove 12a is adjacent to the second groove 13a.
  • first groove 12a and the second groove 13a are not restricted.
  • the first groove 12a is located at the bottom of the socket 12, accordingly the second groove 13a is located at the bottom of the connector housing 130; in some other embodiments, the first groove 12a can be located at the middle or top of the socket 12, accordingly the second groove 13a can be located at the middle or top of the connector housing 130.
  • the connector 13 When the connector 13 needs to be inserted into the socket 12, firstly identify the position of the first groove 12a, secondly align the second groove 13a with the first groove 12a accordingly, you may easily find the connector 13 inserted into the socket 12 correctly, in which case the first groove 12a and the second groove 13a lie along the same line, that is to say the first groove 12a coincides with the second groove 13a (see FIG. 18) , preventing the connector 13 from being inserted reversely.
  • the connector 13 comprises: a connector housing 130 and a plug 131 set on the connector housing 130; in this embodiment, the centerline B of the connector housing 130 and the centerline A of the plug 131 do not lie on the same straight line.
  • the socket 12 comprises: a plug receiving cavity 131a, configured to receive the plug 131; a connector housing receiving cavity 130a, configured to receive the connector housing 130; the centerline of the plug receiving cavity 131a (not indicated in the figures) and the centerline A of the plug 131 lie on the same straight line; the centerline of the connector housing receiving cavity 130a (not indicated in the figures) and the centerline B of the connector housing 130 lie on the same straight line.
  • the shape of the plug 131 connected with the connector housing 130 matches the shape of the connector housing receiving cavity 130a and the shape of the plug receiving cavity 131a.
  • the centerline of the plug receiving cavity 131a is designed to be above the centerline of the connector housing receiving cavity 130a; accordingly, the centerline A of the plug 131 is designed above the centerline B of the connector housing 130, so when you hold the connector 13, you should keep the centerline A of the plug 131 above the centerline B of the connector housing 130, the plug 131 aligned with the plug receiving cavity 131a, the centerline of the plug receiving cavity 131a and the centerline A of the plug 131 on the same straight line, the centerline of the connector housing receiving cavity 130a and the centerline B of the connector housing 130 on the same straight line, then the connector 13 can be inserted into the socket 12 correctly instead of being inserted reversely.
  • the above-mentioned word “above” can be understood as, when you hold the connector 13, take the ground as a reference, the centerline close to the ground is “below” , the centerline away from the ground is “above” ; the centerline A of the plug 131 is above the centerline B of the connector housing 130, which means the centerline B of the connector housing 130 close to the ground and the centerline A of the plug 131 away from the ground.
  • a slot 120 is set in the socket 12, and an adapter 121 is set in the slot 120, and electrically connected with the control unit.
  • the adapter 121 is also electrically connected with the built-in circuit of the PCB board, when the connector 13 is inserted into the socket 12, the plug 131 can be inserted into the adapter 121 and electrically connected with the adapter 121.
  • a third pin and a fourth pin are set in the adapter 121, when the pins of the plug 131 are electrically connected with the pins of the adapter 121, the communication between the connector 13 and the control unit is realized.
  • an O-shaped sealing ring 132 is circumferentially set on the connector housing 130, and an O-shaped sealing ring 122 is set on the surface on which the adapter 121 is attached with the socket 12; when the connector 13 is inserted into the socket 12, the plug 131 is inserted into the adapter 121 and thus electrically connected with the adapter 121; the O-shaped sealing ring 132 on the connector housing 130 press-fitted with the socket 12 to realize waterproof, and the O-shaped sealing ring 122 on the adapter 121 press-fitted with the according surface to realize waterproof.
  • the connector 13 further comprises a built-in electric circuit located inside the connector housing 130, in specific, the built-in electric circuit is an analog circuit comprising resistor, capacitor or a combination thereof, or a digital integrated circuit including Flash, EEROM, or One Time Programmable (OTP) memory device, or a digital integrated circuit with identity recognition function, or a digital integrated circuit with an authentication function, an encryption function or a combination thereof, or a digital-analog hybrid integrated circuit, configured to identify different connectors and read different operating modes carried by the connectors; or an LED displaying status or information, and the LED can be designed with different colors to display different status of information; or an accelerometer with motion detection function to detect motions, with the built-in electric circuit set on the PCB board.
  • the built-in electric circuit is an analog circuit comprising resistor, capacitor or a combination thereof, or a digital integrated circuit including Flash, EEROM, or One Time Programmable (OTP) memory device, or a digital integrated circuit with identity recognition function, or a digital integrated circuit with an authentication function, an encryption
  • a sensor circuit is located in the socket 12, and the connector 13 is a sensor connector; the sensor connector includes a connector housing 130 and a second sensor circuit located inside of the connector housing 130, with which non-physical contact communications between the connector 13 and the control unit set inside of the tubeless fluid delivery system 1 can be realized, and non-physical contact communications between the sensor circuit inside of the socket 12 and the sensor circuit inside of the connector 13 can be realized.
  • the sensor circuit can be a magnetic sensor, an optical sensor, a near field communication (NFC) tag or a radio frequency identification (RFID) tag; the tubeless fluid delivery system 1 can work under corresponding operating mode or combination of operating modes via the sensor circuit identifying different connectors.
  • the controller 101 further comprises a button unit.
  • the button unit comprises physical buttons 11, 11a and/or touch buttons (not indicated in the figures) , configured to receive button instructions from the users; the control unit sends a delivery instruction to the pump base 102 when receiving a button instruction or a selection instruction, so as to control the pump base 102 to deliver the fluid to the user or suspend fluid delivery.
  • the user button instruction is configured to realize functions as power on, power off and restart of the system using the user buttons, or to realize functions as delivery suspension, system hibernation and system programming using a button combination.
  • buttons are set in the tubeless fluid delivery system of the present invention.
  • the physical buttons comprise a physical “B” button 11 to set a fluid delivery dose, and a physical “OK” button 11a for confirmation use.
  • physical buttons are set in the tubeless fluid delivery system of the present invention.
  • the touch buttons can be capacitive touch buttons, resistive touch buttons, or a touch screen, and different buttons are designed with different labels (for example, color labels or graphic labels) , for distinguishing use.
  • the tubeless fluid delivery system 1 Based on an operating mode or a combination of operating modes required by theuser, firstly identify the corresponding operating instruction, secondly insert a certain connector corresponding to the certain operating instruction into the socket 12, For instance, when a connector 13 carries the basal rate delivery mode, the tubeless fluid delivery system 1 correspondingly works under the basal rate delivery mode, then set a fluid delivery dose by the physical “B” button 11, and confirm the fluid delivery dose by the physical “OK” button 11a, and a fluid delivery based on the basal rate delivery mode can be realized.
  • buttons and/or touch buttons are further designed with functions of event input, instruction input or alarm clearance.
  • the tubeless fluid delivery system comprises: a button unit, a switch unit, a reservoir unit, an indwelling unit, a drive unit and a control unit; wherein the button unit, the switch unit and the control unit are integrated in the controller 101, the reservoir unit, the indwelling unit and the drive unit are integrated in the pump base 102; wherein the reservoir unit is configured to store fluid;
  • the fluid is insulin for diabetes treatment, but not restricted in other embodiments.
  • the fluid stored in the reservoir unit can be different based on different medical requirements by the users.
  • the pump base 102 and the controller 101 connect with each other by connecting a hook socket or a slot 1011 set on the controller 101 with the hook 1022 set on the pump base 102, and realize electrically connection by connecting the sealed socket 1010 set on the controller 101 with the plug set on the pump base 102.
  • the hook 1022 connects with the hook arm 1023, and the hook 1022 can be separated from the hook socket or the slot 1011 by operating the hook arm 1023.
  • a connecter slot 1013 is set inside of the sealed socket 1010, and a adapter 1014 electrically connected with the built-in electric circuit of the control unit is set in the connecter slot 1013, wherein an O-shaped sealing ring 1015 is set on the surface on which the adapter 1014 is attached with the sealed socket 1010.
  • the user should paste the whole tubeless fluid delivery system 1 onto the skin, set a fluid delivery program using the buttons and a connector.
  • the system would alert the user for further instructions via the buzzer, and/or the vibration motor and/or the indicator light; the user may clear the alarm using the buttons and replace the pump base or repair the tubeless fluid delivery system 1 when receiving an alarm from the buzzer, and/or the vibration motor and/or the indicator light.
  • the tubeless fluid delivery system of the present invention is designed with independent control structure to enhance the convenience of using and carrying.
  • the tubeless fluid delivery system comprises a control unit to handle instructions from the user, coordinate and manage device operations; a button unit and a switch unit for the communications between the user and the device via buttons and connectors; at the same time, the management of the fluid delivery is also realized via the coordination with the buzzer, the vibration motor and the indicator light, so as to complete the treatment for the user.
  • the tubeless fluid delivery system of the present invention further comprises a separating device set on the connector housing configured to separate the connector from the socket, when the tubeless fluid delivery system needs to work under a different operating mode or a combination of operating modes, one connector is separated from the socket using the separating device, and a certain different connector corresponding to a certain operating instruction is inserted into the socket causing a switch to a different operating mode or a combination of operating modes of the tubeless fluid delivery system, so as to deliver the fluid to the user properly and timely under corresponding operating mode or a combination of operating modes minimizing safety risks.
  • a separating device set on the connector housing configured to separate the connector from the socket, when the tubeless fluid delivery system needs to work under a different operating mode or a combination of operating modes, one connector is separated from the socket using the separating device, and a certain different connector corresponding to a certain operating instruction is inserted into the socket causing a switch to a different operating mode or a combination of operating modes of the tubeless fluid delivery system, so as to deliver the fluid to

Landscapes

  • Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

A tubeless fluid delivery system (1) is provided, comprising a pump base (102) to store fluid and a controller (101) electrically connected to the pump base (102);the controller (101) comprises a switch unit and a control unit;the switch unit comprises a socket (12) and a connector (13) alternatively selected from a couple of connectors (13);and each one of the connectors (13) corresponds to one certain preprogrammed operating instruction;when a fluid delivery is needed, the user selects an operating instruction, and inserts the one and only connector (13) corresponding to the operating instruction into the socket (12), the selected connector (13) then sends a selection instruction to the control unit under its corresponding operating instruction. One connector (13) corresponds to one certain operating instruction, to certain operating mode or certain combination of operating modes, and the operating modes are preprogrammed and un-rewritable, which effectively prevents the program of the system being remote tampered, so as to make the device safer to use.

Description

[Title established by the ISA under Rule 37.2] TUBELESS FLUID DELIVERY SYSTEM TECHNICAL FIELD
The present invention relates to a medical device, and more particularly, a tubeless fluid delivery system.
BACKGROUND OF THE INVENTION
A fluid delivery device is a medical device which can treat disease by continuously delivering a fluid into a patient. The fluid delivery device is widely used in the treatment of diabetes. The fluid delivery device continuously delivers insulin to a subcutaneous tissue of a patient based on a dosage required by the patient, so as to simulate the secretion function of the pancreas and stabilize glucose of the patient. The fluid is usually stored in a reservoir, and a conventional fluid delivery device usually delivers the fluid into a patient via a tubing connected to the reservoir. The tubing, when it is used, is not only an obstruction for the patient's activities, but also not pleasant to the eye.
In order to overcome the above-mentioned shortcomings of the conventional fluid delivery device, a tubeless fluid delivery device has been developed, which has a patch pump stuck to the patient's body using pharmaceutical tape, and an indwelling cannula implanted in a subcutaneous tissue of the patient to deliver a fluid. The tubeless fluid delivery device integrates the reservoir and a wireless control module in a box, and remotely controls fluid delivery by a wireless handheld device. However, the patient is required at least to wear a patch pump and carry a wireless handheld device, at the same time, the existing tubeless fluid delivery device has other shortages such as radio interference and high cost. Additionally, because the current fluid delivery system uses a wireless remote control to switch operating modes, it is with high risk of being hacked and reprogrammed of the instructions by hackers which brings safety risk to the user.
BRIEF SUMMARY OF THE INVENTION
Regarding the above-mentioned shortcomings of the prior art, the present invention provides a tubeless fluid delivery system for solving the problems such as the inconvenience of carrying both a patch pump and a wireless handheld device, possible radio interference, attacks from hackers, program tampering, and other safety risks; at the same time, the inconvenience of selecting operating modes of the tubeless fluid delivery system caused by hard pulling out of connectors from the socket resulting in untimely fluid delivery to the user is also taken care of by the present invention.
To solve the problems mentioned above, the present invention provides a tubeless fluid delivery system, comprising: a pump base configured to store fluid; a controller electrically connected to the pump base, comprising a switch unit and a control unit; the switch unit comprises a connector and a socket; the connector is alternatively selected from a couple of connectors, and each one of the connectors corresponds to one certain preprogrammed operating instruction; when a fluid delivery is needed, the user selects an operating instruction, and inserts the one and only connector corresponding to the operating instruction into the socket, the selected connector then sends a selection instruction to the control unit under its corresponding operating instruction, and the control unit receives the selection instruction and sends a delivery instruction to the pump base, so as to control the pump base to deliver the fluid to the user or suspend fluid delivery; furthermore, the operating instruction consists of one operating mode or a combination of several operating modes.
Alternatively, the connector comprises: a connector housing; a plug located on the connector housing, configured to realize electrical connection between the connector and the socket; a separating device located on the connector housing, configured to separate the connector from the socket.
Alternatively, the socket comprises: a plug receiving cavity, configured to receive the plug; a connector housing receiving cavity, configured to receive the  connector housing; the centerline of the plug receiving cavity and the centerline of the plug lie on the same straight line; the centerline of the connector housing receiving cavity and the centerline of the connector housing lie on the same straight line.
Alternatively, the operating mode is selected from a group consisting of a basal rate delivery mode, a programmable basal rate delivery mode, a delivery suspend mode, a system locking mode and a wireless control mode.
Alternatively, the connector comprises: a connector housing, a plug located on the connector housing, a built-in electric circuit located inside the connector housing, and an O-shaped sealing ring circumferentially set on the connector housing.
Alternatively, the built-in electric circuit is an analog circuit comprising resistor, capacitor or a combination thereof, or a digital integrated circuit including Flash, EEROM, or One Time Programmable (OTP) memory device, or a digital integrated circuit with identity recognition function, or a digital integrated circuit with an authentication function, an encryption function or a combination thereof, or a digital-analog hybrid integrated circuit, or an LED displaying status or information; or an accelerometer with motion detection function.
Alternatively, the socket includes a slot and an adapter set in the slot, and the adapter is electrically connected with the built-in electric circuit, wherein an O-shaped sealing ring is set on the surface on which the adapter is attached with the socket, and the plug is inserted into the adapter and thus electrically connected with the adapter when the connector is inserted into the socket.
Alternatively, a sensor circuit is located in the socket, and the connector is a sensor connector; the sensor connector includes a connector housing and a sensor circuit located inside of the connector housing.
Alternatively, the sensor circuit includes a magnetic sensor, an optical sensor, a near field communication (NFC) tag or a radio frequency identification (RFID) tag.
Alternatively, the separating device is a handle.
Alternatively, the connector housing has a cylindrical shape, and a groove is set on one end of the connector housing in the longitudinal direction; the handle is set inside the groove and fixedly connected with the groove.
Alternatively, the centerline of the connector housing and the centerline of the plug do not lie on the same straight line, configured to prevent the connector from being inserted reversely into the socket.
Alternatively, the controller further comprises a button unit, the button unit comprises physical buttons and/or touch buttons, configured to receive button instructions from the user; the control unit sends a delivery instruction to the pump base when receiving a button instruction or a selection instruction, so as to control the pump base to deliver the fluid to the user or suspend fluid delivery.
Alternatively, the physical buttons and/or touch buttons are designed with functions of event input, instruction input or alarm clearance.
Alternatively, the tubeless fluid delivery system is an insulin pump and the fluid stored in the pump base is insulin.
Compared to prior arts, the present invention has advantages in following ways.
The tubeless fluid delivery system provided in the present invention uses an independent control structure to enhance convenience of using and wearing. In specific, the control unit and the switch unit are set in the same device, with the control unit configured to process user instructions, coordinate and manage device operations, while the switch unit configured to realize communications between the user and the device via connecting or separating the connector from the socket. The connector to be inserted into the socket is selected from a multiple connectors, and different connectors correspond to different operating instructions, and each connector corresponds to one certain preprogrammed operating instruction. One operating instruction consists of one operating mode or a combination of several operating modes such as basal rate delivery mode, programmable basal rate delivery mode,  delivery suspend mode, system locking mode and wireless control mode; when a fluid delivery is needed, the user selects an operating instruction, and inserts the certain connector corresponding to the operating instruction into the socket, so the selected connector sends a selection instruction to the control unit under its corresponding operating instruction, then the control unit receives the selection instruction and sends a delivery instruction to the pump base, so as to control the pump base to deliver the fluid to the user or suspend fluid delivery. The switch unit in the present invention replaced the wireless remote control device used in prior arts, and different requirements of delivery patterns are satisfied by different selections of hardware which means the connectors in the present invention instead of wireless remote controlling in prior arts. In specific, one connector corresponds to one certain operating instruction, in other word, to certain operating mode or certain combination of operating modes, and the operating modes are preprogrammed and un-rewritable, which effectively prevents the program of the system being remote tampered, so as to make the device safer to use.
Furthermore, the connector of the present invention comprises a separating device set on the connector housing, configured to separate the connector from the socket. When the tubeless fluid delivery system of the present invention needs to work under a different operating instruction, one connector is separated from the socket using the separating device, and a different connector is inserted into the socket causing a switch to a different operating mode or a different combination of operating modes of the tubeless fluid delivery system to deliver the fluid to the user properly and timely under according operating mode or modes minimizing safety risks.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates a block diagram of a tubeless fluid delivery system in the present invention.
FIG. 2 illustrates a perspective view of the tubeless fluid delivery system in the present invention.
FIG. 3 illustrates a perspective exploded view of the tubeless fluid delivery system in the present invention.
FIG. 4 illustrates a perspective view of a controller of the tubeless fluid delivery system in the present invention.
FIG. 5 illustrates an enlarged view of the A part of FIG. 4.
FIG. 6 illustrates a first schematic diagram of the connection of a socket and a connector of the tubeless fluid delivery system in the embodiment of the present invention.
FIG. 7 illustrates a perspective exploded view of a connector of a switch unit of the tubeless fluid delivery system in the embodiment of the present invention.
FIG. 8 illustrates a first perspective view of a connector of a switch unit of the tubeless fluid delivery system in the embodiment of the present invention.
FIG. 9 illustrates an enlarged view of the B part of FIG. 4.
FIG. 10 illustrates a second schematic diagram of the connection of the socket and the connector of the tubeless fluid delivery system in the embodiment of the present invention.
FIG. 11 illustrates a schematic diagram of the connection of the controller and a buzzer, a vibration motor and an indicator light of the tubeless fluid delivery system in the embodiment of the present invention.
FIG. 12 illustrates a schematic diagram of how the buzzer, the vibration motor and the indicator light are integrated in the controller of the tubeless fluid delivery system in the embodiment of the present invention.
FIG. 13 illustrates a first plan view of the connector of the switch unit of the tubeless fluid delivery system in the embodiment of the present invention when the plug is vertically downward.
FIG. 14 illustrates a second plan view of the connector of the switch unit of the  tubeless fluid delivery system in the embodiment of the present invention when the plug is vertically downward.
FIG. 15 illustrates a third plan view of the connector of the switch unit of the tubeless fluid delivery system in the embodiment of the present invention when the plug is vertically downward.
FIG. 16 illustrates a first schematic diagram of the socket of the tubeless fluid delivery system in the embodiment of the present invention.
FIG. 17 illustrates a first schematic diagram of the connector of the tubeless fluid delivery system in the embodiment of the present invention.
FIG. 18 illustrates a first schematic diagram of how the connector is inserted in the socket of the tubeless fluid delivery system in the embodiment of the present invention.
FIG. 19 illustrates a second schematic diagram of the connector of the tubeless fluid delivery system in the embodiment of the present invention.
FIG. 20 illustrates a second schematic diagram of how the connector is correctly inserted in the socket of the tubeless fluid delivery system in the embodiment of the present invention.
FIG. 21 illustrates a third schematic diagram of how the connector is incorrectly inserted in the socket of the tubeless fluid delivery system in the embodiment of the present invention.
DETAILED DESCRIPTION
To make the above-mentioned objects, features and advantages of the present invention more obvious and understandable, the embodiments of the present invention are described in the following through specific examples.
Referring to the FIG. 1 to FIG. 3, a tubeless fluid delivery system 1 of the present invention is provided, comprising: pump base 102, fluid is stored in the pump  base 102, and the fluid can be insulin or other medicine; controller 101, which can be electrically connected with the pump base 102. As in this embodiment, the controller 101 and the pump base 102 are integrated, so the tubeless fluid delivery system 1 is used as one unit by being pasted onto the skin using pharmaceutical tape 2 by the user.
In this embodiment, the controller 101 and the pump base 102 snap to realize electrical connection, metal pins are set on both the controller 101 and the pump base 102, when the controller 101 and the pump base 102 snap, the metal pin set on the controller 101 and the metal pin set on the pump base 102 contact each other to realize electrical connection; in some other embodiments, the controller 101 and the pump base 102 may realize electrical connection through wires.
Referring to the FIG. 1, the controller 101 comprises a switch unit and a control unit; Referring to the FIG. 6, the switch unit comprises a connector 13 and a socket 12, the connector 13 is alternatively selected from a couple of connectors, each connector 13 corresponds to one certain preprogrammed operating instruction. When a fluid delivery is needed, a certain operating instruction is selected which consists of one operating mode or a combination of several operating modes, and the certain connector 13 corresponding to the operating instruction is to be inserted into the socket 12, making the switch unit sending a selection instruction to the control unit, then the control unit receives the selection instruction and sends a delivery instruction to the pump base 102, so as to control the pump base 102 to deliver the fluid to the user or suspend fluid delivery.
In this embodiment, applying the tubeless fluid delivery system 1 in diabetes treatment, the tubeless fluid delivery system 1 is used as an insulin pump; while the operating mode is selected from several operating modes including a basal rate delivery mode, a programmable basal rate delivery mode, a delivery suspend mode, a system locking mode and a wireless control mode. In this embodiment, the basal rate can be understood as the rate of insulin infusion per unit time, usually expressed in the form of unit (u) /h (h) . Different connector correspond to different but certain operating instructions, and one operating instruction consists of one operating mode  or a combination of several operating modes, which means selection of one connector equals corresponding selection of one certain operating mode or certain combinations of operating modes, and the tubeless fluid delivery system 1 switch its operating mode or combination of operating modes by changing connectors 13 in the socket 12; and each operating mode is un-rewritable, preventing possible attacks to the tubeless fluid delivery system 1 from hackers, thus improving patient safety.
In addition, referring to the FIG. 6 and FIG. 7, the connector 13 of the present invention comprises a connector housing 130 and a separating device 14. In this embodiment, the connector housing 130 has a cylinder shape, but in some other embodiments, connector housing 130 may have other shapes such as a cuboid. The separating device 14 is located on the connector housing 130, and its location on the connector housing 130 is not fixed, as long as it can be used to separate the connector 13 from the socket 12. When the tubeless fluid delivery system 1 needs an operating instruction change, the connector 13 is separated from the socket 12 using separating device 14, and another connector with a different operating instruction is selected to be inserted into the socket, making the tubeless fluid delivery system 1changing to a different operating instruction, so the tubeless fluid delivery system 1 may deliver fluid to the user properly and timely under corresponding operating instruction minimizing safety risks.
Referring to the FIG. 1 to FIG. 3, in this embodiment, the separating device 14 is a handle, the connector housing 130 has a cylinder shape, the connector 13 has no shape restriction, it can be, such as, a cuboid shape; a groove is set on the connector housing 130 in the longitudinal direction; the separating device 14 is inserted in the groove, and fixedly connected with the groove, and the handle is round; In other embodiments, the separating device 14 is welded on the connector housing 130 and its location is not restricted, when the separating device 14 is fixedly connected with the connector housing 130, the user can separate the connector 13 from the socket 12 by applying an external force on the separation device 14 using tools like tweezers, clips or hooks. In this embodiment, the separation device 14 is a round handle, in other  embodiments, the separation device 14 can be an arc shaped handle or a hook shaped handle, the user can separate the connector 13 from the socket 12 by applying an external force on the separation device 14 using tools like tweezers, clips or hooks.
Referring to the FIG. 6 and FIG. 13, in this embodiment, the separating device 14 is a strut, the connector housing 130 has a cylinder shape, and two struts are provided in the circumferential direction of the connector housing 130. But in other embodiments, the number of the struts is not restricted, it can be 3 or 5 or even more. The user can separate the connector 13 from the socket 12 by applying an external force on the strut using tools like tweezers, clips or hooks. For example, the user may use a pair of tweezers to clamp the strut to separate the connector 13 from the socket 12.The strut and the connector housing 130 are set with an angle, in this embodiment, the struts are almost perpendicular to the connector housing 130, but in other embodiments, the angle between the strut and the connector housing 130 can be other degrees such as 30° or 60° or 110°. The strut can also be set in the longitudinal direction of the connector housing 130, as long as an external force can be applied on the strut by tools like tweezers, clips or hooks, the connector 13 can be conveniently separated from the socket 12.
Referring to the FIG. 6 and FIG. 14, in this embodiment, the separating device 14 is a protrusion with a cylindrical shape, the connector housing 130 has a cylinder shape, and two protrusions are provided in the circumferential direction of the connector housing 130. But in other embodiments, the number of the protrusions is not restricted, it can be 3 or 5 or even more. The user can separate the connector 13 from the socket 12 by applying an external force on the protrusion using tools like tweezers, clips or hooks. For example, the user may use tweezers to clamp the protrusion to separate the connector 13 from the socket 12. The protrusion and the connector housing 130 are set with an angle, in this embodiment, the protrusions are almost perpendicular to the connector housing 130, but in other embodiments, the angle between the protrusion and the connector housing 130 can be other degrees. The protrusion can also be set in the longitudinal direction of the connector housing 130,  and the shape of the protrusion is not restricted, for example it can be triangular, elliptical or other shapes, as long as an external force can be applied on the protrusion by tools like tweezers, clips or hooks, the connector 13 can be conveniently separated from the socket 12.
Referring to the FIG. 6 and FIG. 15, in this embodiment, the separating device 14 is a hole, the connector housing 130 has a cylinder shape, and two holes are provided in the circumferential direction of the connector housing 130. But in other embodiments, the number of the holes is not restricted, it can be 3 or 5 or even more. The user can separate the connector 13 from the socket 12 by applying an external force on the hole using tools like tweezers, clips or hooks. For example, the user may use a pair of tweezers to clamp the hole to separate the connector 13 from the socket 12.In this embodiment, the holes are parallel to the connector housing 130, but in other embodiments, the angle between the hole and the connector housing 130 can be other degrees.
The present invention further comprises an anti-inserted-reversely structure, configured to prevent the connector 13 from being inserted incorrectly into the socket 12.Referring to the FIG. 16 to FIG. 18, in this embodiment, the connector 13 comprises: a connector housing 130 and a plug 131 set on the connector housing 130, configured to realize the electrical connection between the connector 13 and the socket 12; the anti-inserted-reversely structure comprises: a first groove 12a set on the surface of the socket 12 facing the connector 13; and a second groove set on the connector housing 130; when the connector 13 is inserted into the socket 12, the first groove 12a and the second groove 13a lie along the same line; or the first groove 12a is adjacent to the second groove 13a.
The specific positions of the first groove 12a and the second groove 13a are not restricted. In this embodiment, the first groove 12a is located at the bottom of the socket 12, accordingly the second groove 13a is located at the bottom of the connector housing 130; in some other embodiments, the first groove 12a can be located at the middle or top of the socket 12, accordingly the second groove 13a can be located at  the middle or top of the connector housing 130. When the connector 13 needs to be inserted into the socket 12, firstly identify the position of the first groove 12a, secondly align the second groove 13a with the first groove 12a accordingly, you may easily find the connector 13 inserted into the socket 12 correctly, in which case the first groove 12a and the second groove 13a lie along the same line, that is to say the first groove 12a coincides with the second groove 13a (see FIG. 18) , preventing the connector 13 from being inserted reversely.
Referring to the FIG. 19 to FIG. 21, in other embodiments, the connector 13 comprises: a connector housing 130 and a plug 131 set on the connector housing 130; in this embodiment, the centerline B of the connector housing 130 and the centerline A of the plug 131 do not lie on the same straight line.
The socket 12 comprises: a plug receiving cavity 131a, configured to receive the plug 131; a connector housing receiving cavity 130a, configured to receive the connector housing 130; the centerline of the plug receiving cavity 131a (not indicated in the figures) and the centerline A of the plug 131 lie on the same straight line; the centerline of the connector housing receiving cavity 130a (not indicated in the figures) and the centerline B of the connector housing 130 lie on the same straight line.
That is to say, the shape of the plug 131 connected with the connector housing 130 matches the shape of the connector housing receiving cavity 130a and the shape of the plug receiving cavity 131a. In specific, in the process designing the socket 12, the centerline of the plug receiving cavity 131a is designed to be above the centerline of the connector housing receiving cavity 130a; accordingly, the centerline A of the plug 131 is designed above the centerline B of the connector housing 130, so when you hold the connector 13, you should keep the centerline A of the plug 131 above the centerline B of the connector housing 130, the plug 131 aligned with the plug receiving cavity 131a, the centerline of the plug receiving cavity 131a and the centerline A of the plug 131 on the same straight line, the centerline of the connector housing receiving cavity 130a and the centerline B of the connector housing 130 on the same straight line, then the connector 13 can be inserted into the socket 12  correctly instead of being inserted reversely.
No matter how the centerline is set, as long as the centerline of the plug receiving cavity 131a and the centerline A of the plug 131 lie on the same straight line, and the centerline of the connector housing receiving cavity 130a and the centerline B of the connector housing 130 lie on the same straight line, then the connector 13 can be inserted into the socket 12 correctly instead of being inserted reversely.
It should be noted that the above-mentioned word “above” can be understood as, when you hold the connector 13, take the ground as a reference, the centerline close to the ground is "below" , the centerline away from the ground is "above" ; the centerline A of the plug 131 is above the centerline B of the connector housing 130, which means the centerline B of the connector housing 130 close to the ground and the centerline A of the plug 131 away from the ground.
Referring to the FIG. 9, a slot 120 is set in the socket 12, and an adapter 121 is set in the slot 120, and electrically connected with the control unit. The adapter 121 is also electrically connected with the built-in circuit of the PCB board, when the connector 13 is inserted into the socket 12, the plug 131 can be inserted into the adapter 121 and electrically connected with the adapter 121. A third pin and a fourth pin are set in the adapter 121, when the pins of the plug 131 are electrically connected with the pins of the adapter 121, the communication between the connector 13 and the control unit is realized.
For waterproof use, referring to the FIG. 6 and FIG. 9, an O-shaped sealing ring 132 is circumferentially set on the connector housing 130, and an O-shaped sealing ring 122 is set on the surface on which the adapter 121 is attached with the socket 12; when the connector 13 is inserted into the socket 12, the plug 131 is inserted into the adapter 121 and thus electrically connected with the adapter 121; the O-shaped sealing ring 132 on the connector housing 130 press-fitted with the socket 12 to realize waterproof, and the O-shaped sealing ring 122 on the adapter 121 press-fitted with the according surface to realize waterproof.
In this embodiment, the connector 13 further comprises a built-in electric circuit located inside the connector housing 130, in specific, the built-in electric circuit is an analog circuit comprising resistor, capacitor or a combination thereof, or a digital integrated circuit including Flash, EEROM, or One Time Programmable (OTP) memory device, or a digital integrated circuit with identity recognition function, or a digital integrated circuit with an authentication function, an encryption function or a combination thereof, or a digital-analog hybrid integrated circuit, configured to identify different connectors and read different operating modes carried by the connectors; or an LED displaying status or information, and the LED can be designed with different colors to display different status of information; or an accelerometer with motion detection function to detect motions, with the built-in electric circuit set on the PCB board.
Referring to the FIG. 10, in other embodiments, a sensor circuit is located in the socket 12, and the connector 13 is a sensor connector; the sensor connector includes a connector housing 130 and a second sensor circuit located inside of the connector housing 130, with which non-physical contact communications between the connector 13 and the control unit set inside of the tubeless fluid delivery system 1 can be realized, and non-physical contact communications between the sensor circuit inside of the socket 12 and the sensor circuit inside of the connector 13 can be realized. In specific, the sensor circuit can be a magnetic sensor, an optical sensor, a near field communication (NFC) tag or a radio frequency identification (RFID) tag; the tubeless fluid delivery system 1 can work under corresponding operating mode or combination of operating modes via the sensor circuit identifying different connectors.
In this embodiment, referring to the FIG. 1 to FIG. 3, the controller 101 further comprises a button unit. Referring to the FIG. 6, the button unit comprises  physical buttons  11, 11a and/or touch buttons (not indicated in the figures) , configured to receive button instructions from the users; the control unit sends a delivery instruction to the pump base 102 when receiving a button instruction or a selection instruction, so as to control the pump base 102 to deliver the fluid to the user or suspend fluid  delivery.
In specific, the user button instruction is configured to realize functions as power on, power off and restart of the system using the user buttons, or to realize functions as delivery suspension, system hibernation and system programming using a button combination.
In some embodiments, physical buttons are set in the tubeless fluid delivery system of the present invention. The physical buttons comprise a physical “B” button 11 to set a fluid delivery dose, and a physical “OK” button 11a for confirmation use. In some other embodiments, physical buttons are set in the tubeless fluid delivery system of the present invention. The touch buttons can be capacitive touch buttons, resistive touch buttons, or a touch screen, and different buttons are designed with different labels (for example, color labels or graphic labels) , for distinguishing use.
Based on an operating mode or a combination of operating modes required by theuser, firstly identify the corresponding operating instruction, secondly insert a certain connector corresponding to the certain operating instruction into the socket 12, For instance, when a connector 13 carries the basal rate delivery mode, the tubeless fluid delivery system 1 correspondingly works under the basal rate delivery mode, then set a fluid delivery dose by the physical “B” button 11, and confirm the fluid delivery dose by the physical “OK” button 11a, and a fluid delivery based on the basal rate delivery mode can be realized.
In this embodiment, the physical buttons and/or touch buttons are further designed with functions of event input, instruction input or alarm clearance.
In specific, referring to the FIG. 1, the tubeless fluid delivery system comprises: a button unit, a switch unit, a reservoir unit, an indwelling unit, a drive unit and a control unit; wherein the button unit, the switch unit and the control unit are integrated in the controller 101, the reservoir unit, the indwelling unit and the drive unit are integrated in the pump base 102; wherein the reservoir unit is configured to store fluid; In this embodiment, the fluid is insulin for diabetes treatment, but not restricted in  other embodiments. The fluid stored in the reservoir unit can be different based on different medical requirements by the users.
In this embodiment, referring to the FIG. 3, the pump base 102 and the controller 101 connect with each other by connecting a hook socket or a slot 1011 set on the controller 101 with the hook 1022 set on the pump base 102, and realize electrically connection by connecting the sealed socket 1010 set on the controller 101 with the plug set on the pump base 102. In one embodiment, the hook 1022 connects with the hook arm 1023, and the hook 1022 can be separated from the hook socket or the slot 1011 by operating the hook arm 1023.
Referring to the FIG. 3 to FIG. 5, a connecter slot 1013 is set inside of the sealed socket 1010, and a adapter 1014 electrically connected with the built-in electric circuit of the control unit is set in the connecter slot 1013, wherein an O-shaped sealing ring 1015 is set on the surface on which the adapter 1014 is attached with the sealed socket 1010.
To use the device, the user should paste the whole tubeless fluid delivery system 1 onto the skin, set a fluid delivery program using the buttons and a connector. When the system is given an instruction by the user, or the liquid in the pump base is running out, or device error happens, the system would alert the user for further instructions via the buzzer, and/or the vibration motor and/or the indicator light; the user may clear the alarm using the buttons and replace the pump base or repair the tubeless fluid delivery system 1 when receiving an alarm from the buzzer, and/or the vibration motor and/or the indicator light.
To sum up, the tubeless fluid delivery system of the present invention is designed with independent control structure to enhance the convenience of using and carrying. The tubeless fluid delivery system comprises a control unit to handle instructions from the user, coordinate and manage device operations; a button unit and a switch unit for the communications between the user and the device via buttons and connectors; at the same time, the management of the fluid delivery is also realized  via the coordination with the buzzer, the vibration motor and the indicator light, so as to complete the treatment for the user. The tubeless fluid delivery system of the present invention further comprises a separating device set on the connector housing configured to separate the connector from the socket, when the tubeless fluid delivery system needs to work under a different operating mode or a combination of operating modes, one connector is separated from the socket using the separating device, and a certain different connector corresponding to a certain operating instruction is inserted into the socket causing a switch to a different operating mode or a combination of operating modes of the tubeless fluid delivery system, so as to deliver the fluid to the user properly and timely under corresponding operating mode or a combination of operating modes minimizing safety risks.
The above descriptions of the detailed embodiments are only to illustrate the principle and the effect of the present invention, and it is not to limit the scope of the present invention. Those skilled in the art can modify or change the embodiments without departing from the spirit and scope of the present invention. Accordingly, all equivalent modifications and variations completed by persons of ordinary skill in the art, without departing from the spirit and technical idea of the present invention, should fall within the scope of the present disclosure defined by the appended claims.

Claims (15)

  1. A tubeless fluid delivery system, comprising:
    a pump base configured to store fluid;
    a controller electrically connected to the pump base, comprising a switch unit and a control unit;
    wherein, the switch unit comprises a connector and a socket;
    wherein, the connector is alternatively selected from a couple of connectors, and each one of the connectors corresponds to one certain preprogrammed operating instruction; when a fluid delivery is needed, the user selects an operating instruction, and inserts the one and only connector corresponding to the operating instruction into the socket, the selected connector then sends a selection instruction to the control unit under the one and only corresponding operating instruction, and the control unit receives the selection instruction and sends a delivery instruction to the pump base, so as to control the pump base to deliver the fluid to the user or suspend fluid delivery;
    wherein, the operating instruction consists of one operating mode or a combination of several operating modes.
  2. The tubeless fluid delivery system according to claim 1, wherein the connector comprises:
    a connector housing;
    a plug located on the connector housing, configured to realize electrical connection between the connector and the socket;
    a separating device located on the connector housing, configured to separate the connector from the socket.
  3. The tubeless fluid delivery system according to claim 2, wherein the socket comprises:
    a plug receiving cavity, configured to receive the plug;
    a connector housing receiving cavity, configured to receive the connector housing;
    the centerline of the plug receiving cavity and the centerline of the plug lie on the same straight line;
    the centerline of the connector housing receiving cavity and the centerline of the connector housing lie on the same straight line.
  4. The tubeless fluid delivery system according to claim 1, wherein the operating mode is selected from a group consisting of a basal rate delivery mode, a programmable basal rate delivery mode, a delivery suspend mode, a system locking mode and a wireless control mode.
  5. The tubeless fluid delivery system according to claim 1, wherein the connector comprises: a connector housing, a plug located on the connector housing, a built-in electric circuit located inside the connector housing, and an O-shaped sealing ring circumferentially set on the connector housing.
  6. The tubeless fluid delivery system according to claim 5, wherein the built-in electric circuit is an analog circuit comprising resistor, capacitor or a combination thereof, or a digital integrated circuit including Flash, EEROM, or One Time Programmable (OTP) memory device, or a digital integrated circuit with identity recognition function, or a digital integrated circuit with an authentication function, an encryption function or a combination thereof, or a digital-analog hybrid integrated circuit, or an LED displaying status or information; or an accelerometer with motion detection function.
  7. The tubeless fluid delivery system according to claim 5, wherein the socket includes a slot and a adapter set in the slot, and the adapter is electrically connected  with the built-in electric circuit, wherein an O-shaped sealing ring is set on the surface on which the adapter is attached with the socket; the plug is inserted into the adapter and thus electrically connected with the adapter when the connector is inserted into the socket.
  8. The tubeless fluid delivery system according to claim 5, wherein a sensor circuit is located in the socket, and the connector is a sensor connector; the sensor connector includes a connector housing and a sensor circuit located inside of the connector housing.
  9. The tubeless fluid delivery system according to claim 8, wherein the sensor circuit includes a magnetic sensor, an optical sensor, a near field communication (NFC) tag or a radio frequency identification (RFID) tag.
  10. The tubeless fluid delivery system according to claim 2, wherein the separating device is a handle.
  11. The tubeless fluid delivery system according to claim 10, wherein the connector housing has a cylindrical shape, and a groove is set on one end of the connector housing in the longitudinal direction; the handle is set inside the groove and fixedly connected with the groove.
  12. The tubeless fluid delivery system according to claim 2, wherein the centerline of the connector housing and the centerline of the plug do not lie on the same straight line, configured to prevent the connector from being inserted reversely into the socket.
  13. The tubeless fluid delivery system according to claim 1, wherein the controller further comprises a button unit, and the button unit comprises physical buttons and/or touch buttons, configured to receive button instructions from the user; the control unit sends a delivery instruction to the pump base when receiving a button instruction or a selection instruction, so as to control the pump base to deliver the fluid to the user or suspend fluid delivery.
  14. The tubeless fluid delivery system according to claim 13, wherein the physical buttons and/or touch buttons are designed with functions of event input, instruction input or alarm clearance.
  15. The tubeless fluid delivery system according to any claim from claim 1 to 14, wherein the tubeless fluid delivery system is an insulin pump, and the fluid stored in the pump base is insulin.
PCT/CN2016/075787 2016-03-07 2016-03-07 Tubeless fluid delivery system WO2017152346A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/075787 WO2017152346A1 (en) 2016-03-07 2016-03-07 Tubeless fluid delivery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/075787 WO2017152346A1 (en) 2016-03-07 2016-03-07 Tubeless fluid delivery system

Publications (1)

Publication Number Publication Date
WO2017152346A1 true WO2017152346A1 (en) 2017-09-14

Family

ID=59790079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075787 WO2017152346A1 (en) 2016-03-07 2016-03-07 Tubeless fluid delivery system

Country Status (1)

Country Link
WO (1) WO2017152346A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049446A1 (en) * 2004-11-04 2006-05-11 Hong Kyu Lee Insulin pump having triple functions which enables efficient control of blood glucose concentration and insulin injection system comprising the same
WO2008045896A2 (en) * 2006-10-10 2008-04-17 Medsolvetechnologies, Inc. Method and apparatus for infusing liquid to a body
CN103083756A (en) * 2013-01-18 2013-05-08 郑州瑞宇科技有限公司 Intelligent insulin pump
CN103083751A (en) * 2013-01-18 2013-05-08 郑州瑞宇科技有限公司 Control method of insulin pump basal rate infusion
CN104784777A (en) * 2014-01-20 2015-07-22 上海移宇科技有限公司 Ductless medicine fluid infusion device
CN105311702A (en) * 2014-09-03 2016-02-10 上海移宇科技有限公司 Throwable duct-free drug delivery system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049446A1 (en) * 2004-11-04 2006-05-11 Hong Kyu Lee Insulin pump having triple functions which enables efficient control of blood glucose concentration and insulin injection system comprising the same
WO2008045896A2 (en) * 2006-10-10 2008-04-17 Medsolvetechnologies, Inc. Method and apparatus for infusing liquid to a body
CN103083756A (en) * 2013-01-18 2013-05-08 郑州瑞宇科技有限公司 Intelligent insulin pump
CN103083751A (en) * 2013-01-18 2013-05-08 郑州瑞宇科技有限公司 Control method of insulin pump basal rate infusion
CN104784777A (en) * 2014-01-20 2015-07-22 上海移宇科技有限公司 Ductless medicine fluid infusion device
CN105311702A (en) * 2014-09-03 2016-02-10 上海移宇科技有限公司 Throwable duct-free drug delivery system

Similar Documents

Publication Publication Date Title
US11931588B2 (en) Plug-in accessory for configuring a mobile device into an external controller for an implantable medical device
US11571507B2 (en) Ambulatory device and components thereof
US11266842B2 (en) Use of a dedicated remote control as an intermediary device to communicate with an implantable medical device
US10064992B2 (en) Disposable tubeless fluid delivery system
US20140304773A1 (en) Systems, devices, components and methods for communicating with an imd using a portable electronic device and a mobile computing device
US20180214694A1 (en) Wearable Implantable Medical Device Controller
CN112999476B (en) Multimode respiratory therapy devices, systems, and methods
JP2023162384A (en) Medical device, method and system
US20200155831A1 (en) Nasal neurostimulator with integrated rfid
US20180116610A1 (en) Medical device customization
WO2017152346A1 (en) Tubeless fluid delivery system
CN107158512A (en) Duct free drug infusion system
CN112888389A (en) Safety component for performing endoderm radiofrequency therapy
CN107773212A (en) A kind of medical monitoring equipment identification device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892998

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892998

Country of ref document: EP

Kind code of ref document: A1