WO2017150595A1 - Immunity inducer - Google Patents

Immunity inducer Download PDF

Info

Publication number
WO2017150595A1
WO2017150595A1 PCT/JP2017/008055 JP2017008055W WO2017150595A1 WO 2017150595 A1 WO2017150595 A1 WO 2017150595A1 JP 2017008055 W JP2017008055 W JP 2017008055W WO 2017150595 A1 WO2017150595 A1 WO 2017150595A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
cancer
immunity
amino acid
cells
Prior art date
Application number
PCT/JP2017/008055
Other languages
French (fr)
Japanese (ja)
Inventor
祥 栗原
文義 岡野
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201780013955.2A priority Critical patent/CN108697757B/en
Priority to KR1020187027574A priority patent/KR102356961B1/en
Priority to AU2017227308A priority patent/AU2017227308B2/en
Priority to MX2018009692A priority patent/MX2018009692A/en
Priority to JP2017515854A priority patent/JP7147168B2/en
Priority to CA3016298A priority patent/CA3016298A1/en
Priority to RU2018134171A priority patent/RU2755542C2/en
Priority to BR112018016920A priority patent/BR112018016920A2/en
Priority to EP17760059.0A priority patent/EP3424518B1/en
Priority to CN202211424606.9A priority patent/CN116059325A/en
Priority to US16/080,857 priority patent/US11318185B2/en
Priority to DK17760059.0T priority patent/DK3424518T3/en
Priority to PL17760059T priority patent/PL3424518T3/en
Priority to ES17760059T priority patent/ES2890425T3/en
Publication of WO2017150595A1 publication Critical patent/WO2017150595A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/177Receptors; Cell surface antigens; Cell surface determinants
    • A61K38/1774Immunoglobulin superfamily (e.g. CD2, CD4, CD8, ICAM molecules, B7 molecules, Fc-receptors, MHC-molecules)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/44Oxidoreductases (1)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/15Cells of the myeloid line, e.g. granulocytes, basophils, eosinophils, neutrophils, leucocytes, monocytes, macrophages or mast cells; Myeloid precursor cells; Antigen-presenting cells, e.g. dendritic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/17Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001154Enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/19Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with oxidation of a pair of donors resulting in the reduction of molecular oxygen to two molecules of water (1.14.19)
    • C12Y114/19001Stearoyl-CoA 9-desaturase (1.14.19.1), i.e. DELTA9-desaturase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5156Animal cells expressing foreign proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/005Enzyme inhibitors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • C12N2510/02Cells for production
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2477Hemicellulases not provided in a preceding group
    • C12N9/248Xylanases

Definitions

  • the present invention relates to a novel immunity-inducing agent useful as an active ingredient of a therapeutic or prophylactic agent for cancer.
  • SCD1 stearoyl-CoA desaturase 1
  • SCD1 stearoyl-CoA desaturase 1
  • SCD1 protein has been suggested to be associated with carcinogenesis.
  • expression is increased in various cancers such as liver cancer, esophageal cancer, and colon cancer.
  • siRNA or a small molecule inhibitor When the function of SCD1 is inhibited by siRNA or a small molecule inhibitor, the proliferation of cancer cells is suppressed. It is disclosed that apoptosis is induced and the formed tumor is reduced.
  • Patent Document 1 discloses that SCD1 protein has immunity-inducing activity against cancer cells, and is therefore useful for the treatment and prevention of cancer. However, Patent Document 1 does not disclose information about peptides that bind to MHC molecules.
  • An object of the present invention is to find a novel polypeptide useful as an active ingredient of a therapeutic or preventive agent for cancer, and to provide use of the polypeptide as an immune inducer.
  • Another object of the present invention is to provide an isolated antigen-presenting cell containing a complex of the polypeptide and MHC molecule, an isolated T cell that selectively binds the complex of the polypeptide and MHC molecule, and cancers thereof. It is to provide a therapeutic or prophylactic agent.
  • human SCD1 protein consisting of the amino acid sequence represented by SEQ ID NO: 2 is malignant lymphoma, breast cancer, liver cancer, prostate cancer, ovarian cancer, kidney cancer, colon cancer, gastric cancer, malignant brain tumor, It was found that it is specifically expressed in tissues or cells of esophageal cancer and lung cancer.
  • a partial peptide present in a specific region of the SCD1 protein is presented by an antigen-presenting cell and has the ability to activate and proliferate T cells specific for the polypeptide (immunity-inducing activity); and It has been found that the immunity induction activity is useful for the treatment or prevention of cancer.
  • the polypeptide can be an active ingredient of an immunity-inducing agent for the treatment and / or prevention of cancer, and an antigen-presenting cell in contact with the peptide or a T in contact with the antigen-presenting cell.
  • an immunity-inducing agent for the treatment and / or prevention of cancer
  • an antigen-presenting cell in contact with the peptide or a T in contact with the antigen-presenting cell.
  • the present inventors have found that cells are also useful for treating or preventing cancer and completed the present invention.
  • the present invention has the following features (1) to (12).
  • Polypeptide consisting of the above amino acids (b) a polypeptide in which one to several amino acids are deleted, substituted, inserted or added in the amino acid sequence of any one of the polypeptides described in (a) above, or encoding any one of the above polypeptides
  • a immunity-inducing agent comprising, as an active ingredient, a recombinant vector comprising at least one polynucleotide to be expressed and capable of expressing the polypeptide in vivo.
  • the immunity-inducing agent according to (4), wherein the polypeptide having immunity-inducing activity is any one polypeptide selected from the group of polypeptides described in (f) to (h) below.
  • An isolated antigen-presenting cell comprising a complex of the polypeptide having immunity-inducing activity according to (1), (3) or (5) and an MHC molecule.
  • a polypeptide having immunity-inducing activity comprising the above amino acids
  • (b) A polypeptide in which one to several amino acids have been deleted, substituted, inserted or added in the amino acid sequence of the polypeptide described in (a).
  • polypeptide having immunity-inducing activity is at least one polypeptide selected from the group of polypeptides described in (c) to (h) below: medicine: (c) a polypeptide comprising the amino acid sequence shown in SEQ ID NOs: 3-36; (d) a polypeptide in which one to several amino acids are deleted, substituted, inserted or added in the amino acid sequence of the polypeptide according to (c); (e) a polypeptide comprising the polypeptide according to (c) or (d) as a partial sequence; (f) a polypeptide consisting of the amino acid sequence shown in SEQ ID NOs: 37 to 45; (g) a polypeptide in which one to several amino acids are deleted, substituted, inserted or added in the amino acid sequence of the polypeptide described in (f); (h) A polypeptide comprising the polypeptide according to (f) or (g) as a partial sequence.
  • polypeptide having immunity-inducing activity is at least one polypeptide selected from the group of polypeptides described in (c) to (h) below: (c) a polypeptide comprising the amino acid sequence shown in SEQ ID NOs: 3-36; (d) a polypeptide in which one to several amino acids are deleted, substituted, inserted or added in the amino acid sequence of the polypeptide according to (c); (e) a polypeptide comprising the polypeptide according to (c) or (d) as a partial sequence; (f) a polypeptide consisting of the amino acid sequence shown in SEQ ID NOs: 37 to 45; (g) a polypeptide in which one to several amino acids are deleted, substituted, inserted or added in the amino acid sequence of the polypeptide described in (f); (h) A polypeptide comprising the polypeptide according to (f) or (g) as a partial sequence. (18) The method according to (16) or (17), wherein the cancer is a
  • a novel immunity-inducing agent useful as an active ingredient of a therapeutic or prophylactic agent for cancer is provided.
  • immune cells that kill cancer cells can be induced by the polypeptide used in the present invention, and cancer that has already occurred can be reduced or regressed.
  • the induction of immune cells that kill cancer cells can be enhanced by the peptides used in the present invention, and cancer that has already occurred can be reduced or regressed. Therefore, the polypeptide of the present invention is useful as an active ingredient of a therapeutic or prophylactic agent for cancer.
  • FIG. 3 is a view showing that CD8-positive T cells specific for each polypeptide consisting of the amino acid sequences shown in SEQ ID NOs: 3 to 23 recognize a complex of the polypeptide and HLA-A0201, and produce IFN- ⁇ . is there.
  • lanes 4 to 24 on the horizontal axis represent IFN- ⁇ production of HLA-A0201-positive CD8-positive T cells by stimulation of dendritic cells pulsed with the polypeptides represented by the amino acid sequences of SEQ ID NOs: 3 to 23, respectively.
  • Lane 1 shows the result (Mock) when the above treatment is performed without adding the polypeptide
  • Lane 2 shows the result by adding a negative control polypeptide outside the scope of the present invention shown in SEQ ID NO: 46.
  • the results are shown
  • lane 3 shows the results of the above treatment with the addition of the full-length SCD1 protein consisting of the amino acid sequence represented by SEQ ID NO: 2.
  • FIG. 1 shows the result (Mock) when the above treatment is performed without adding the polypeptide
  • Lane 2 shows the result by adding a negative control polypeptide outside the scope of the present invention shown in SEQ ID NO: 46.
  • the results are shown
  • lane 3 shows the results of the above treatment with the addition of the full-length S
  • FIG. 2 is a view showing that CD8-positive T cells specific for each polypeptide consisting of the amino acid sequences shown in SEQ ID NOs: 24-36 recognize a complex of the polypeptide and HLA-A24 and produce IFN- ⁇ . is there.
  • lanes 4 to 16 on the horizontal axis represent IFN- ⁇ production of HLA-A24-positive CD8-positive T cells by stimulation of dendritic cells pulsed with the polypeptides represented by the amino acid sequences of SEQ ID NOs: 24-36, respectively. Show performance.
  • Lane 1 shows the result (Mock) when the above treatment is performed without adding the polypeptide
  • Lane 2 shows the result of adding the negative control peptide shown in SEQ ID NO: 47 outside the scope of the present invention.
  • Lane 3 shows the results of adding the full-length SCD1 protein consisting of the amino acid sequence represented by SEQ ID NO: 2 and performing the above treatment.
  • FIG. 3 is a graph showing the damage activity of a CD8-positive T cell specific for each polypeptide consisting of the amino acid sequences shown in SEQ ID NOs: 3 to 23 against cancer cells.
  • lanes 4 to 24 on the horizontal axis show cytotoxic activity against U251 cells of HLA-A0201-positive CD8-positive T cells induced by using the polypeptides represented by the amino acid sequences of SEQ ID NOs: 3 to 23, respectively. .
  • Lane 1 shows the cytotoxic activity of CD8 positive T cells (Mock) induced without addition of the polypeptide
  • Lane 2 shows cells of CD8 positive T cells induced with the negative control polypeptide (SEQ ID NO: 46).
  • Lane activity shows the cytotoxic activity of CD8-positive T cells induced using the full-length SCD1 protein consisting of the amino acid sequence represented by SEQ ID NO: 2.
  • FIG. 3 is a graph showing the damage activity of a CD8-positive T cell specific for each polypeptide consisting of the amino acid sequences shown in SEQ ID NOs: 3 to 23 against cancer cells.
  • lanes 4 to 24 on the horizontal axis represent HLA-A0201-positive CD8-positive T cells induced with the polypeptides represented by the amino acid sequences of SEQ ID NOs: 3 to 23, respectively, with respect to SK-Hep-1 cells. Shows cytotoxic activity. Lane 1 shows the cytotoxic activity of CD8 positive T cells (Mock) induced without addition of the polypeptide, and Lane 2 shows cells of CD8 positive T cells induced with the negative control polypeptide (SEQ ID NO: 46). Lane activity shows the cytotoxic activity of CD8 positive T cells induced using the full-length SCD1 protein consisting of the amino acid sequence represented by SEQ ID NO: 2.
  • FIG. 3 is a graph showing the damage activity against cancer cells of CD8-positive T cells specific for each polypeptide consisting of the amino acid sequences shown in SEQ ID NOs: 24-36
  • Lanes 4 to 16 on the horizontal axis show cytotoxic activity against SW480 cells of HLA-A24-positive CD8-positive T cells stimulated with the polypeptides represented by the amino acid sequences of SEQ ID NOs: 24-36, respectively.
  • Lane 1 shows the cytotoxic activity of CD8 positive T cells (Mock) induced without addition of the polypeptide
  • reference number 2 shows the CD8 positive T cells induced using the negative control polypeptide (SEQ ID NO: 47).
  • FIG. 3 is a graph showing the cytotoxic activity of a CD8-positive T cell specific for each peptide consisting of the amino acid sequences shown in SEQ ID NOs: 24-36 on cancer cells.
  • Lanes 4 to 16 on the horizontal axis show cytotoxic activity against ZR-75-1 cells of HLA-A24 positive CD8 positive T cells stimulated with polypeptides represented by amino acid sequences of SEQ ID NOs: 24 to 36, respectively. Show.
  • Lane 1 shows the cytotoxic activity of CD8 positive T cells (Mock) induced without addition of the polypeptide
  • reference number 2 shows the CD8 positive T cells induced using the negative control polypeptide (SEQ ID NO: 47). Cytotoxic activity is shown
  • lane 3 shows the cytotoxic activity of CD8 positive T cells induced using the SCD1 protein consisting of the amino acid sequence represented by SEQ ID NO: 2. It shows that CD4-positive T cells specific for each polypeptide consisting of the amino acid sequences shown in SEQ ID NOs: 37 to 45 recognize the complex of the polypeptide and HLA-DRB1 * 04 and produce IFN- ⁇ .
  • Lanes 4 to 12 show the IFN- ⁇ production ability of HLA-DRB1 * 04 positive CD4 positive T cells by stimulation of dendritic cells pulsed with the polypeptides represented by the amino acid sequences of SEQ ID NOs: 37 to 45, respectively.
  • Lane 1 shows the result of Mock when the above treatment is performed without adding the polypeptide
  • Lane 2 shows the result of adding the negative control polypeptide outside the scope of the present invention shown in SEQ ID NO: 48 and carrying out the above treatment.
  • Lane 3 shows the results of adding the full-length SCD1 protein consisting of the amino acid sequence represented by SEQ ID NO: 2 and performing the above treatment.
  • polypeptide refers to a molecule formed by peptide bonding of a plurality of amino acids.
  • the polypeptide of the present invention encompasses not only a polypeptide molecule having a large number of amino acids but also a low molecular weight molecule (oligopeptide) having a small number of amino acids.
  • the polypeptide constituting the immunity-inducing agent of the present invention includes at least one polypeptide selected from the group of polypeptides described in the following (a) or (b) and having immunity-inducing activity.
  • (a) In the human SCD1 protein consisting of the amino acid sequence represented by SEQ ID NO: 2, positions 34 to 50 (17 amino acids), 69 to 148 (80 amino acids), and 178 to 195 when the starting methionine is position 1 ( 18 amino acids), 207 to 242 positions (36 amino acids), 247 to 280 positions (34 amino acids), 296 to 332 positions (37 amino acids), a polypeptide comprising 7 or more consecutive amino acids
  • “consisting of an amino acid sequence” means that amino acid residues are arranged in such an order. Therefore, for example, the “polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2” has the amino acid sequence of Met Asp Pro Ala covered, Tyr Lys Ser Gly shown in SEQ ID NO: 2. Means a polypeptide of size 359 amino acid residues.
  • polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is often abbreviated as “polypeptide of SEQ ID NO: 2”. The same applies to the expression “consisting of a base sequence”.
  • “immunity-inducing activity” means the ability to activate and proliferate T cells that react with cancer cells that express SCD1 protein. Specifically, the ability of cytotoxic T cells and / or helper T cells stimulated with SCD1 protein or a partial polypeptide thereof to be higher than that of unstimulated control T cells, SCD1 Cytotoxicity of cytotoxic T cells stimulated with the protein or a partial polypeptide thereof is higher than that of unstimulated control T cells with respect to SCD1 protein-expressing cancer cells; Stimulated helper T cells enhance the cytotoxic activity of cytotoxic T cells over that of unstimulated control T cells, or cytotoxic T cells stimulated with SCD1 protein or a partial polypeptide thereof Means that cells or helper T cells proliferate better than that of unstimulated control T cells
  • the proliferation of cells can be confirmed by visual observation, measurement of the number of cells under a microscope, flow cytometry, the amount of tritium thymidine in the medium incorporated into the cells, and the like.
  • the measurement of IFN- ⁇ production ability can be confirmed using, for example, a known ELISPOT assay.
  • a T cell a polypeptide (in the present invention, SCD1 protein or a partial polypeptide thereof) to be evaluated for immunity-inducing activity, and peripheral blood mononuclear
  • PBMC antigen-presenting cells derived from spheres
  • IFN- ⁇ produced from T cells is measured using an antibody specific for IFN- ⁇ . Thereby, the number of immune cells in the T cell can be measured. From these measurement results, immunity-inducing activity can be evaluated.
  • the cytotoxic activity can be measured, for example, by co-culturing T cells with a polypeptide to be evaluated for cytotoxic activity (in the present invention, SCD1 protein or a partial polypeptide thereof) and PBMC-derived antigen-presenting cells. It can be evaluated by examining whether or not it exhibits the ability to suppress the growth of tumor cells or the ability to kill tumor cells (hereinafter referred to as “cytotoxic activity”). As described later, the contact between the T cell and the antigen-presenting cell can be achieved by co-culturing both in a liquid medium. The cytotoxic activity can be measured by a known method called 51 Cr release assay described in Int. J. Cancer, 58: P317, 1994, for example.
  • the immunity induction activity can also be evaluated as the ability to suppress the growth of cancer cells or to reduce or eliminate cancer tissue (tumor) (hereinafter referred to as “antitumor activity”).
  • the evaluation of immunity induction activity is preferably based on the cytotoxic activity or antitumor activity.
  • a polypeptide of about 7 amino acid residues or more can include an epitope, it can exhibit antigenicity and immunogenicity, and can have immunity-inducing activity. It can be used as an agent.
  • the polypeptide of (a) above has positions 34-50, 69-148, 178-195, 207-242, 247-280, 296-332 in the amino acid sequence shown in SEQ ID NO: 2.
  • the polypeptide As a principle of inducing immunity by administering a cancer antigen polypeptide, the polypeptide is taken into the antigen-presenting cell, and then undergoes degradation by peptidase in the cell to become a smaller fragment, and then the fragmented antigen peptide Is presented on the surface of the antigen-presenting cell.
  • cytotoxic T cells and the like recognize an antigen presented on the cell surface and selectively kill cancer cells presenting the antigen on the cell surface.
  • the helper T cell recognizes the antigen presented on the surface of the antigen-presenting cell and promotes induction of cytotoxic T cells that selectively kill cancer cells presenting the antigen on the cell surface.
  • the size of the antigen polypeptide presented on the surface of the antigen-presenting cell is relatively small, and is about 7 to 30 amino acids. Therefore, from the viewpoint of presentation on antigen-presenting cells, the above-mentioned polypeptide (a) includes the positions 34 to 50, 69 to 148, 178 to 195, 207 in the amino acid sequence represented by SEQ ID NO: 2. It is preferably about 7 to 30 consecutive in the amino acid sequence shown at positions 242, 247, 280, 296, 332. It is sufficient that the polypeptide consists of about 8 to 30, about 9 to 30, or about 9 to 25 amino acids. These relatively small polypeptides may be presented directly on the cell surface on antigen-presenting cells without being taken up into antigen-presenting cells.
  • Polypeptides taken up by antigen-presenting cells are cleaved at random positions by peptidases in the cells to generate various polypeptide fragments, and these polypeptide fragments are presented on the surface of antigen-presenting cells. Therefore, a polypeptide having a large size such as positions 34-50, 69-148, 178-195, 207-242, 247-280, 296-332 in the amino acid sequence shown in SEQ ID NO: 2 Is administered, inevitably results in polypeptide fragments effective for inducing immunity via antigen-presenting cells due to degradation in antigen-presenting cells. Therefore, a large-sized polypeptide can be used for immunity induction via antigen-presenting cells.
  • the number of amino acids of the polypeptide may be 30 or more, preferably 40 or more, more preferably 50 or more, and still more preferably 100 or more.
  • the polypeptide of the present invention has 8 to 25, preferably 9 to 24, more preferably 9 to 23 having a binding motif with a class I molecule or class II molecule of MHC (HLA in humans) described later.
  • a collation medium that can search for epitope peptides consisting of a single amino acid for example, HLA Peptide Binding Predications (http: // bimas. Or it can be obtained by collating with SYFPEITHI and screening for peptides that can be epitope peptides.
  • the polypeptide of the present invention has positions 34-50, 69-148, 178-195, 207-242, 247-280, 296-332 in the amino acid sequence shown in SEQ ID NO: 2.
  • polypeptide consisting of seven or more consecutive amino acids in the region includes a polypeptide represented by SEQ ID NO: 3 to 45 or a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 3 to 45 as a partial sequence, and has 10 to 10 amino acid residues.
  • the immunity-inducing activity of the polypeptides represented by SEQ ID NOs: 3-36 is due to binding to MHC class I molecules
  • the immunity-inducing activities of the polypeptides represented by SEQ ID NOs: 37-45 are due to binding to MHC class II molecules. Is.
  • the polypeptide (b) is a polypeptide in which one or several amino acid residues in the polypeptide (a) are substituted, deleted, inserted and / or added, And a polypeptide having immunity-inducing activity.
  • the polypeptide of the present invention includes a polypeptide in which one to several amino acids are deleted, substituted, inserted or added in the polypeptide consisting of the amino acid sequence shown in SEQ ID NOs: 3 to 45.
  • number in “several” represents an integer of 2 to 10, preferably an integer of 2 to 6, more preferably 2 to 4, and further preferably an integer of 2 or 3.
  • modification of one or several amino acids in a polypeptide will not affect the function of the original polypeptide, and may in some cases enhance the desired function of the original polypeptide. Even thought to be.
  • a modified peptide composed of an amino acid sequence in which one or several amino acid residues are modified (ie, substituted, deleted, added and / or inserted) , Known to retain the biological activity of the original peptide (Mark et al., 1984, Proc Natl Acad Sci USA, 81: 5562-5666, Zoller and Smith, 1982, Nucleic Acids Res.
  • the polypeptide (b) can also exhibit immunity-inducing activity, it can be used for the preparation of the immunity-inducing agent of the present invention.
  • the 20 kinds of amino acids constituting the natural protein include neutral amino acids having low polarity side chains (Gly, Ile, Val, Leu, Ala, Met, Pro), neutral amino acids having hydrophilic side chains (Asn). , Gln, Thr, Ser, Tyr, Cys), acidic amino acids (Asp, Glu), basic amino acids (Arg, Lys, His), and aromatic amino acids (Phe, Tyr, Trp) It is known that the properties of a polypeptide often do not change if substitution is made between these groups. Therefore, when substituting an amino acid residue in the above-mentioned polypeptide (a) of the present invention, it is preferable to substitute between these groups because the possibility of maintaining immunity-inducing activity is increased.
  • the polypeptide of (b) is 34 to 50, 69 to 148, 178 to 195, 207 to 242, 247 to 280, 296 to 332 in the amino acid sequence shown in SEQ ID NO: 2.
  • the “identity” of amino acid sequences (or base sequences) means that both amino acid sequences (or bases) match so that the amino acid residues (or bases) of two amino acid sequences (or base sequences) to be compared match as much as possible. Or the number of matched amino acid residues (or the number of matched bases) divided by the total number of amino acid residues (or the total number of bases), expressed as a percentage. In the above alignment, a gap is appropriately inserted in one or both of the two sequences to be compared as necessary. Such alignment of sequences can be performed using a known program such as BLAST, FASTA, CLUSTALSTW, and the like.
  • the total number of amino acid residues is the number of residues obtained by counting one gap as one amino acid residue.
  • the sequence identity (%) is the total number of amino acid residues in the longer sequence, and the amino acid residues that match. Calculated by dividing the number.
  • the polypeptides of the present invention When used in the context of cancer treatment or prevention, the polypeptides of the present invention should be presented on the surface of cells or exosomes, preferably as a complex with each type of HLA. Therefore, it is preferable to select a polypeptide of the present invention that not only has immunity-inducing activity but also has a high binding affinity for each type of HLA.
  • the peptide may be modified by substitution, insertion, deletion and / or addition of amino acid residues to obtain a modified peptide with improved binding affinity.
  • the regularity of the sequence of peptides presented by binding to each type of HLA is known (J Immunol, 1994, 152: 3913; Immunogenetics, 1995, 41: 178).
  • Substitution can be introduced not only at the terminal amino acid position but also at a position where TCR recognition of the peptide is possible.
  • amino acid substitutions of peptides have equivalent or better immunity-inducing activity than the original, including, for example, CAP1, p53 (264-272), Her -2 / neu (369-377), or gp100 (209-217) (Zaremba et al. 1997, Cancer Res. 57: 4570-4777, TK Hoffmann et al. 2002, J Immunol. 168 ( 3): 1338-47, S.O. Dionne et al. 2003, Cancer Immunol immunother. 52: 199-206, and S.O. Dionne et al. 2004, Cancer Immunology, Immunotherapy, 53: 307-314).
  • polypeptide of the present invention can be linked to other substances as long as the resulting linked polypeptide retains the necessary immunity-inducing activity of the original peptide.
  • other substances include, but are not limited to, peptides, lipids, sugars and sugar chains, acetyl groups, natural and synthetic polymers, and the like.
  • a peptide can include modifications such as glycosylation, side chain oxidation or phosphorylation provided that the modification does not impair the biological activity of the original peptide. These types of modifications can be made to confer additional functions (eg, targeting and delivery functions) or to stabilize the polypeptide.
  • Polypeptide stability can be assayed in several ways. For example, stability can be tested using peptidases and various biological media such as human plasma and serum (eg, Verhoef et al., 1986, Eur J Drug Metapharma, 11: 291-302). reference).
  • polypeptide of the present invention may be linked to another peptide via a spacer or a linker.
  • other peptides include, but are not limited to, epitope peptides derived from other polypeptides.
  • two or more polypeptides of the invention may be linked via a spacer or linker.
  • Peptides linked via a spacer or linker may be the same or different from each other.
  • the type of spacer and linker is not particularly limited, and includes those composed of peptides, more preferably those composed of peptides having one or more cleavage sites that can be cleaved by enzymes such as peptidases, proteases, and proteasomes. It is.
  • linkers or spacers include, but are not limited to, AAY (PM Daftarian et al., J Trans Med, 2007, 5:26), AAA, NKRK (RPM Sutmuller et al., J Immunol. 2000, 165: 7308-7315), or one to several lysine residues (S. Ota et al., 2002, Can Res. 62: 1471-1476, KS Kawamura et al., 2002) , J Immunol. 168: 5709-5715).
  • the present invention contemplates polypeptides linked to other peptides via spacers or linkers.
  • polypeptides of the present invention When the polypeptides of the present invention contain cysteine residues, these polypeptides tend to form dimers via disulfide bonds between SH groups of cysteine residues. Therefore, a dimer of the polypeptide is also included in the polypeptide of the present invention.
  • the polypeptide of the present invention can be prepared using a well-known technique. For example, it can be synthesized according to a chemical synthesis method such as the Fmoc method (fluorenylmethyloxycarbonyl method) or the tBoc method (t-butyloxycarbonyl method). Moreover, it can also synthesize
  • a polynucleotide encoding the above polypeptide is prepared, the polynucleotide is incorporated into an expression vector and introduced into a host cell, and the desired polypeptide in the host cell To produce the desired polypeptide.
  • the desired polypeptide may be purified or isolated so as to be substantially free from other natural host cell proteins and fragments thereof, or any other chemical substances.
  • the polynucleotide encoding the above polypeptide can be easily prepared by a known genetic engineering technique or a conventional method using a commercially available nucleic acid synthesizer.
  • DNA having the base sequence of SEQ ID NO: 1 is subjected to PCR using a human chromosomal DNA or cDNA library as a template and a pair of primers designed to amplify the base sequence described in SEQ ID NO: 1.
  • PCR reaction conditions can be set as appropriate. For example, one cycle of a reaction process consisting of 94 ° C. for 30 seconds (denaturation), 55 ° C. for 30 seconds to 1 minute (annealing), and 72 ° C.
  • the conditions include, but are not limited to, conditions of reacting at 72 ° C. for 1 minute after 30 cycles.
  • appropriate probes and primers are prepared, and the desired DNA is isolated by screening a cDNA library such as human using the same. can do.
  • the cDNA library is preferably prepared from cells, organs or tissues expressing the protein of SEQ ID NO: 2. The above-described operations such as preparation of the probe or primer, construction of the cDNA library, screening of the cDNA library, and cloning of the target gene are known to those skilled in the art.
  • such a polynucleotide may be synthesized by a conventional method using a commercially available nucleic acid synthesizer. .
  • the host cell may be any cell as long as it can express the polypeptide.
  • prokaryotic cells include Escherichia coli
  • eukaryotic cells include cultured mammalian cells such as monkey kidney cells COS1 and Chinese hamster ovary cells CHO, budding yeast, fission yeast, silkworm cells, and Xenopus egg cells. However, it is not limited to these.
  • an expression vector having an origin, a promoter, a ribosome binding site, a DNA cloning site, a terminator and the like that can replicate in the prokaryotic cell is used as the expression vector.
  • Examples of the expression vector for E. coli include pUC, pBluescript II, pET expression system, pGEX expression system and the like.
  • an expression vector for a eukaryotic cell having a promoter, a splicing region, a poly (A) addition site and the like is used as an expression vector.
  • expression vectors include pKA1, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, EBV vector, pRS, pcDNA3, pMSG, pYES2, and the like.
  • pIND / V5-His pFLAG-CMV-2, pEGFP-N1, pEGFP-C1, etc.
  • the polypeptide can be expressed.
  • a known method such as an electroporation method, a calcium phosphate method, a liposome method, or a DEAE dextran method can be used.
  • Polypeptides obtained by the above methods include those in the form of fusion proteins with other arbitrary proteins as described above. Examples thereof include glutathione-S-transferase (GST) and a fusion protein with a His tag. Accordingly, polypeptides in the form of such fusion proteins are also included within the scope of the present invention. Furthermore, the polypeptide expressed in the transformed cell may be subjected to various modifications in the cell after being translated. Such post-translationally modified polypeptides are also included in the scope of the present invention as long as they have immunity-inducing activity. Examples of such translational modifications include elimination of N-terminal methionine, N-terminal acetylation, sugar chain addition, limited degradation by intracellular protease, myristoylation, isoprenylation, phosphorylation and the like.
  • the polypeptide having immunity-inducing activity of the present invention or an expression vector containing a gene encoding the polypeptide is administered to a cancer-bearing organism, an already produced tumor can be regressed. Moreover, the occurrence of tumor can be prevented by administering the above-described polypeptide having immunity-inducing activity or a gene encoding the polypeptide to a living body before the onset of cancer. Therefore, the polypeptide of the present invention or the gene encoding the polypeptide can be an active ingredient of an immunity-inducing agent.
  • the terms “tumor” and “cancer” mean a malignant neoplasm and are used interchangeably.
  • the target cancer is preferably a cancer that expresses SCD1 protein, and among them, malignant lymphoma, breast cancer, liver cancer, prostate cancer, ovarian cancer, kidney cancer, colon cancer, gastric cancer, malignant cancer are preferable. Brain tumors, esophageal cancer and lung cancer.
  • the target animals are preferably mammals, more preferably mammals including primates, pet animals, livestock, sport animals, etc., more preferably humans, dogs or cats, particularly preferably humans. is there.
  • the subject cancer-affected individual (a cancer patient when the individual is a human) is preferably a cancer-affected individual that expresses the SCD1 protein in vivo, and specifically, cancer described in WO2011 / 027807 It is preferable that they are cancer-affected individuals screened by the detection method. In particular, screening is performed because the expression level of the antibody against the SCD1 protein contained in the sample obtained from the target living body is larger than the expression level of the antibody contained in the sample obtained from the living body of a healthy individual. It is preferably an individual with cancer. Samples to be screened for target cancer-affected individuals include blood, serum, plasma, ascites, pleural effusion, and other body fluids, tissues, and cells. When screening by measuring the expression level of antibodies against SCD1 protein Serum, plasma, ascites or pleural effusion are preferred.
  • the administration route of the immunity-inducing agent of the present invention may be oral administration or parenteral administration, but parenteral administration such as intramuscular administration, subcutaneous administration, intravenous administration and intraarterial administration is preferred.
  • parenteral administration such as intramuscular administration, subcutaneous administration, intravenous administration and intraarterial administration is preferred.
  • the immunity-inducing agent When used for the purpose of treating cancer, it can be administered to regional lymph nodes in the vicinity of the tumor to be treated in order to enhance the anticancer effect.
  • the dose may be an amount effective for inducing immunity.
  • it may be an amount effective for the treatment or prevention of cancer.
  • the amount effective for the treatment or prevention of cancer is appropriately selected according to the size and symptoms of the tumor, the body weight, volume, etc. of the target animal.
  • the effective amount per day is usually 0. 0001 to 1000 ⁇ g, preferably 0.001 to 1000 ⁇ g. This can be administered in one or several divided doses. It is preferable to divide it into several times per day and administer it every few days or months.
  • the immunity-inducing agent of the present invention can regress an already formed tumor. Therefore, since anticancer activity can be exerted on a small number of cancer cells at the early stage of development, onset and recurrence of cancer can be prevented if used before onset of cancer or after treatment of cancer. That is, the immunity-inducing agent of the present invention is useful for both treatment and prevention of cancer and can be an active ingredient of a cancer treatment or prevention drug.
  • the immunity-inducing agent of the present invention contains the above-described polypeptide of the present invention as an active ingredient, but it may consist of only a single polypeptide or a combination of a plurality of polypeptides. By combining a plurality of the polypeptides of the present invention, the immunity-inducing activity (induction / activation action of cytotoxicity T cells) possessed by each polypeptide is enhanced, and cancer treatment or prevention can be achieved more effectively. it can.
  • the immunity-inducing agent of the present invention can also be used in combination with known peptides capable of inducing cytotoxic T cells.
  • immunity induction activity cytotoxic activity T cell induction / activation action
  • cancer treatment or prevention can be achieved more effectively.
  • “Combination” in this case includes administration of the immunity-inducing agent of the present invention and a peptide capable of inducing known cytotoxic T cells separately or simultaneously.
  • “Separate administration” as used herein refers to administration of the immunity-inducing agent of the present invention and a known peptide capable of inducing cytotoxic T cells separately with a time lag. The order of administration does not matter.
  • “administered simultaneously” means that the immunity-inducing agent of the present invention and a known peptide capable of inducing cytotoxic T cells are preliminarily mixed and administered, or the immunity-inducing agent of the present invention. And a known peptide capable of inducing cytotoxic T cells is administered in individual form with no time difference.
  • the immunity-inducing agent of the present invention can be used in combination with other immunity enhancing agents that can enhance the immunological response in vivo.
  • Other immunity enhancing agents may be contained in the immunity-inducing agent of the present invention, or may be administered to a patient in combination with the immunity-inducing agent of the present invention as a separate composition.
  • the “other immune enhancing agent” examples include an adjuvant.
  • Adjuvants provide an antigen reservoir (extracellular or in macrophages), can enhance the immunological response by activating macrophages and stimulating specific lymphocytes, thus enhancing anticancer effects Can do. Therefore, when the immunity-inducing agent of the present invention is used as an active ingredient of a therapeutic or prophylactic agent for cancer, the immunity-inducing agent preferably further contains an adjuvant in addition to the polypeptide of the present invention as an active ingredient. Many types of adjuvants are well known in the art, and any adjuvant can be used.
  • adjuvants include MPL (SmithKline Beecham), Salmonella minnesota Re 595 lipopolysaccharide, and the like obtained after purification and acid hydrolysis; QA-21 saponin; DQS21 described in PCT application WO 96/33739 (SmithKline Beecham); QS-7, QS-17, QS-18 and QS-L1 (So, HS, et al., 1997, Molecules).
  • Freund's incomplete adjuvant Freund's complete adjuvant; Vitamin E; Montanide; Alum; CpG Rigonucleotides (see, eg, Kreig, AM, et al., 1995, Nature 374: 546-549); poly IC and its derivatives (such as poly ICLC) and biodegradable oils such as squalene and / or tocopherol And various water-in-oil emulsions prepared from Of these, Freund's incomplete adjuvant, montanide, poly IC and derivatives thereof, and CpG oligonucleotides are preferred.
  • the mixing ratio of the adjuvant to the polypeptide is typically about 1:10 to 10: 1, preferably about 1: 5 to 5: 1, more preferably about 1: 1.
  • adjuvants are not limited to the above examples, and other adjuvants known in the art can also be used when administering the immunity-inducing agent of the present invention (for example, Goding, Monoclonal Antibodies: Principles and Practices, Second Edition, 1986). Methods for preparing mixtures or emulsions of immunity inducers and adjuvants are well known to those skilled in vaccination.
  • factors that stimulate the immune response of the subject can also be used as the other immune enhancer.
  • various cytokines having the property of stimulating lymphocytes and antigen-presenting cells can be used in combination with the immune inducer of the present invention as an immune enhancer.
  • Many cytokines capable of enhancing such immunological responses are known to those skilled in the art, such as interleukin-12 (IL-12), which has been shown to enhance the protective effects of vaccines, Examples include, but are not limited to, GM-CSF, IL-18, interferon ⁇ (IFN- ⁇ ), interferon ⁇ (IFN- ⁇ ), interferon ⁇ (IFN- ⁇ ), interferon ⁇ (IFN- ⁇ ), and Flt3 ligand.
  • IL-12 interleukin-12
  • Such factors can also be used as the above-mentioned immunity enhancing agent, and can be administered to patients in the immunity-inducing agent of the present invention or in combination with the immunity-inducing agent of the present invention as a separate composition.
  • the immunity-inducing agent of the present invention can be used as an active ingredient of a therapeutic or prophylactic agent for cancer.
  • a therapeutic or prophylactic agent for cancer can be formulated by appropriately mixing the immunity-inducing agent of the present invention with additives such as pharmacologically acceptable carriers, diluents and excipients suitable for each administration form. it can.
  • additives include diluents such as physiological buffers; excipients such as sugar, lactose, corn starch, calcium phosphate, sorbitol, glycine; syrup, gelatin, gum arabic, sorbitol, polyvinyl chloride, tragacanth, etc. Binders such as magnesium stearate, polyethylene glycol, talc, silica and the like, but are not limited thereto.
  • Examples of the dosage form include oral preparations such as tablets, capsules, granules, powders, and syrups, and parenteral preparations such as inhalants, injections, suppositories, and liquids. These preparations can be made by generally known production methods.
  • the polypeptide can be presented to the antigen-presenting cell by contacting the polypeptide and the antigen-presenting cell in vitro. That is, the above-described polypeptide (a) or (b) can be used as a treatment agent for antigen-presenting cells.
  • dendritic cells or B cells possessing MHC class I molecules and class II molecules can be preferably used as antigen-presenting cells.
  • MHC class I and class II molecules have been identified and are well known. MHC molecules in humans are called HLA. Examples of HLA class I molecules include HLA-A, HLA-B, and HLA-C.
  • HLA-A1 HLA-A0201, HLA-A0204, HLA-A0205, HLA-A0206, HLA-A0207, HLA-A11, HLA-A24, HLA-A31, HLA-A6801, HLA-B7, HLA-B8, HLA-B2705, HLA-B37, HLA-Cw0401, HLA-Cw0602, and the like.
  • HLA class II molecules include HLA-DR, HLA-DQ, and HLA-DP.
  • HLA-DRB1 * 01, HLA-DRB1 * 03, HLA-DRB1 * 04, HLA- DRB1 * 0405, HLA-DRB1 * 07, HLA-DRB1 * 08, HLA-DRB1 * 11, HLA-DRB1 * 13, HLA-DRB1 * 15, HLA-DRB1 * 15, HLA-DQA1, HLA-DQB1, HLA- DPB1 is mentioned.
  • Dendritic cells or B cells carrying MHC class I or MHC class II molecules can be prepared from blood or the like by known methods. For example, dendritic cells are induced from bone marrow, umbilical cord blood or patient peripheral blood using granulocyte macrophage colony-stimulating factor (GM-CSF) and IL-3 (or IL-4), and tumor-related peptide is introduced into the culture system. Can be added to induce tumor-specific dendritic cells.
  • GM-CSF granulocyte macrophage colony-stimulating factor
  • IL-3 or IL-4
  • an immune response desirable for cancer treatment can be induced.
  • the cells to be used bone marrow and umbilical cord blood provided from a healthy person, bone marrow and peripheral blood of the patient himself, and the like can be used.
  • the patient's original autologous cells are preferable because they are highly safe and can be expected to avoid serious side effects.
  • Peripheral blood or bone marrow may be a fresh sample, a cryopreserved sample, or a cryopreserved sample.
  • whole blood may be cultured, or only the leukocyte component may be separated and cultured, but the latter is more efficient and preferable.
  • mononuclear cells may be separated among the leukocyte components.
  • the whole cells constituting the bone marrow may be cultured, or mononuclear cells may be separated and cultured from this.
  • Peripheral blood, its white blood cell components, and bone marrow cells include mononuclear cells, hematopoietic stem cells, immature dendritic cells, CD4 positive cells, and the like that are the origin of dendritic cells.
  • the cytokine used is of a property that has been confirmed to be safe and physiologically active, it does not matter whether it is a natural type or a genetically engineered type, and its production method is preferably ensured. Are used in the minimum amount required.
  • the concentration of the cytokine to be added is not particularly limited as long as it is a concentration at which dendritic cells are induced, and is usually preferably about 10 to 1000 ng / mL, more preferably about 20 to 500 ng / mL as the total concentration of cytokines.
  • the culture can be performed using a well-known medium usually used for culturing leukocytes.
  • the culture temperature is not particularly limited as long as leukocyte growth is possible, but is most preferably about 37 ° C. which is the human body temperature.
  • the gas environment during the culture is not particularly limited as long as leukocytes can grow, but it is preferable to aerate 5% CO 2 .
  • the culture period is not particularly limited as long as a necessary number of cells are induced, but it is usually performed for 3 days to 2 weeks.
  • a device used for cell separation and culture an appropriate device can be used as appropriate, but it is preferable that safety is confirmed for medical use and that the operation is stable and simple.
  • stacked containers, multistage containers, roller bottles, spinner bottles, bag-type incubators, hollow fiber columns, etc. can be used regardless of general containers such as petri dishes, flasks, and bottles. .
  • the method of bringing the polypeptide into contact with the antigen-presenting cell in vitro can be performed by a well-known method. For example, it can be achieved by culturing antigen-presenting cells in a culture solution containing the polypeptide.
  • the peptide concentration in the medium is not particularly limited, but is usually about 1 to 100 ⁇ g / mL, preferably about 5 to 20 ⁇ g / mL.
  • the cell density during the culture is not particularly limited, but is usually about 10 3 to 10 7 cells / mL, preferably about 5 ⁇ 10 4 to 5 ⁇ 10 6 cells / mL. Cultivation is preferably performed according to a conventional method in an atmosphere of 37 ° C. and 5% CO 2 .
  • the length of the peptide that can be presented on the surface by antigen-presenting cells is usually about 30 amino acid residues at the maximum. Therefore, although not particularly limited, when the antigen-presenting cell and the polypeptide are contacted in vitro, the polypeptide may be prepared to a length of 30 amino acid residues or less.
  • an isolated antigen-presenting cell containing a complex of the polypeptide and MHC molecule can be prepared using the polypeptide.
  • Such antigen-presenting cells can present the polypeptide to T cells in vivo or in vitro, and induce and proliferate cytotoxic T cells or helper T cells specific for the polypeptide. it can.
  • a cytotoxic T cell specific for the polypeptide Luper T cells can be induced and expanded.
  • This can be done by co-culturing the antigen-presenting cells and T cells in a liquid medium.
  • it can be carried out by suspending antigen-presenting cells in a liquid medium, placing them in a container such as a well of a microplate, adding T cells thereto, and culturing.
  • the mixing ratio of antigen-presenting cells and T cells during co-culture is not particularly limited, but is usually about 1: 1 to 1: 100, preferably about 1: 5 to 1:20 in terms of the number of cells.
  • the density of antigen-presenting cells suspended in the liquid medium is not particularly limited, but is usually about 1 to 10 million cells / mL, preferably about 10,000 to 1 million cells / mL.
  • the co-culture is preferably performed according to a conventional method in a 37 ° C., 5% CO 2 atmosphere.
  • the culture time is not particularly limited, but is usually 2 days to 3 weeks, preferably about 4 days to 2 weeks.
  • the co-culture is preferably performed in the presence of one or more interleukins such as IL-2, IL-6, IL-7 and IL-12.
  • the concentration of IL-2 and IL-7 is usually about 5 to 20 U / mL
  • the concentration of IL-6 is usually about 500 to 2000 U / mL
  • the concentration of IL-12 is usually about 5 to 20 ng / mL.
  • the above co-culture may be repeated once or several times by adding fresh antigen-presenting cells. For example, the operation of discarding the culture supernatant after co-culture, adding a fresh suspension of antigen-presenting cells, and further co-culturing may be repeated once or several times.
  • the conditions for each co-culture may be the same as described above.
  • cytotoxic T cells and helper T cells specific for the polypeptide are induced and proliferated. Therefore, an isolated T cell that selectively binds the complex of the polypeptide and the MHC molecule can be prepared using the polypeptide.
  • SCD1 protein As described in Examples below, the genes encoding SCD1 protein (SCD1 gene) are malignant lymphoma tissue, malignant lymphoma cell, breast cancer tissue, breast cancer cell, liver cancer tissue, liver cancer cell, prostate cancer tissue, prostate Cancer cell, ovarian cancer tissue, ovarian cancer cell, kidney cancer tissue, kidney cancer cell, colon cancer tissue, colon cancer cell, stomach cancer tissue, stomach cancer cell, malignant brain tumor tissue, malignant brain tumor cell, esophageal cancer tissue, esophageal cancer cell, lung cancer It is expressed specifically in tissues and lung cancer cells. Therefore, in these cancer types, SCD1 protein is considered to exist significantly more than normal cells.
  • cytotoxic T cells can damage cancer cells or enhance the cytotoxic activity of cytotoxic T cells.
  • the antigen-presenting cells presenting the polypeptide can induce and proliferate cytotoxic T cells and helper T cells specific for the polypeptide even in vivo, the antigen-presenting cells can survive.
  • cytotoxic T cells can damage cancer cells, or the cytotoxic activity of cytotoxic T cells can be enhanced. That is, the cytotoxic T cell, helper T cell, and antigen-presenting cell prepared using the polypeptide are also useful as a therapeutic or prophylactic agent for cancer, like the immunity-inducing agent of the present invention.
  • Cells or T cells are preferably prepared using the polypeptide (a) or (b) as described above.
  • the administration route of a therapeutic or prophylactic agent for cancer comprising antigen presenting cells or isolated T cells as an active ingredient is preferably parenteral administration such as intravenous administration or intraarterial administration.
  • the dose is appropriately selected according to symptoms, administration purposes, etc., but is usually 1 to 10 trillion, preferably 1 million to 1 billion, and this is once every several days or months. Administration is preferred.
  • the preparation may be, for example, one in which cells are suspended in physiological buffer saline, and can be used in combination with other anticancer agents, cytokines, and the like.
  • one or two or more additives well known in the pharmaceutical field can be added.
  • the immunity-inducing agent of the present invention comprises a polynucleotide encoding the above-described polypeptide (a) or (b), and contains a recombinant vector capable of expressing the polypeptide in vivo as an active ingredient. There may be. As shown in the Examples below, a recombinant vector capable of expressing such an antigen polypeptide is also called a “gene vaccine”.
  • the vector used for producing the gene vaccine is not particularly limited as long as it can be expressed in the target animal cell (preferably in the mammalian cell), and may be a plasmid vector or a virus vector, and is known in the field of gene vaccines. Any of these vectors may be used.
  • a polynucleotide such as DNA or RNA encoding the polypeptide can be easily prepared by a conventional method.
  • the polynucleotide can be incorporated into a vector by a method well known to those skilled in the art.
  • the administration route of the gene vaccine is preferably a parenteral administration route such as intramuscular administration, subcutaneous administration, intravenous administration or intraarterial administration, and the dosage can be appropriately selected according to the type of antigen and the like.
  • the weight of the gene vaccine per kg of body weight is about 0.1 ⁇ g to 100 mg, preferably about 1 ⁇ g to 10 mg.
  • a polynucleotide encoding the above polypeptide in RNA virus or DNA virus such as retrovirus, adenovirus, adeno-associated virus, herpes virus, vaccinia virus, poxvirus, poliovirus, Sindbis virus, etc. And a method for infecting a target animal with this.
  • retroviruses, adenoviruses, adeno-associated viruses, vaccinia viruses and the like are particularly preferred.
  • Examples of other methods include a method in which an expression plasmid is directly administered into muscle (DNA vaccine method), a liposome method, a lipofectin method, a microinjection method, a calcium phosphate method, an electroporation method, and the like. The method is preferred.
  • an in vivo method in which the gene is directly introduced into the body, and certain cells are collected from the target animal and the gene is transferred to the cells outside the body.
  • an ex vivo method of introducing and returning the cells to the body is more preferred.
  • an in vivo method it can be administered by an appropriate administration route according to the disease, symptom or the like for the purpose of treatment.
  • it can be administered intravenously, artery, subcutaneous, intramuscularly.
  • it can be in the form of a preparation such as a liquid, but is generally an injection containing the DNA encoding the peptide of the present invention, which is an active ingredient, etc.
  • Conventional carriers may be added.
  • the liposome or membrane-fused liposome containing the DNA can be in the form of a liposome preparation such as a suspension, a freezing agent, or a centrifugal concentrated freezing agent.
  • base sequence shown in SEQ ID NO: 1 includes the base sequence actually shown in SEQ ID NO: 1 as well as a complementary sequence thereto. Therefore, when saying “polynucleotide having the base sequence shown in SEQ ID NO: 1”, the single-stranded polynucleotide having the base sequence actually shown in SEQ ID NO: 1, its complementary base sequence Single-stranded polynucleotides and double-stranded polynucleotides comprising these are included.
  • any base sequence is appropriately selected, but those skilled in the art can easily select it.
  • Example 1 Expression analysis in each tissue>
  • SCD1 gene expression analysis in each cancer cell line A gene sequence (SEQ ID NO: 1) encoding the amino acid sequence of human SCD1 protein was obtained from Gene Bank. The expression of the obtained gene in various human cell lines was examined by RT-PCR (Reverse Transcription-PCR) method. The reverse transcription reaction was performed as follows. Specifically, total RNA was extracted from 50 to 100 mg of each tissue and 5 to 10 ⁇ 10 6 cells of each cell line using TRIZOL reagent (manufactured by Life Technologies) according to the attached protocol. Using this total RNA, cDNA was synthesized according to the attached protocol by Superscript First-Strand Synthesis System for RT-PCR (manufactured by Life Technologies).
  • cDNA of normal human tissues (brain, hippocampus, testis, colon, placenta), Genepool cDNA (Life Technologies), QUICK-Clone cDNA (Clontech) and Large-Insert cDNA Library (Clontech) are used. It was.
  • the PCR reaction was performed as follows using the obtained gene-specific primer (the base sequence of the primer is described in SEQ ID NOs: 49 and 50). That is, 0.25 ⁇ L of the sample prepared by the reverse transcription reaction, 2 ⁇ M each of the above primers, 0.2 mM of each dNTP, 0.65 U of ExTaq polymerase (manufactured by Takara Shuzo Co., Ltd.), and each reagent and attached buffer were added.
  • the cycle was 94 ° C-30 seconds, 55 ° C-30 seconds, and 72 ° C-1 minutes 30 times using a Thermal Cycler (manufactured by BIO RAD).
  • a primer specific for the GAPDH gene which is a housekeeping gene (the base sequence of the human GAPDH primer is described in SEQ ID NOs: 51 and 52) was also used.
  • human SCD1 gene is found in most cancer cell lines, that is, malignant lymphoma, breast cancer, liver cancer, prostate cancer, ovarian cancer, kidney cancer, colon cancer, gastric cancer, malignant brain tumor, esophageal cancer. And expression was detected in lung cancer.
  • a commercially available rabbit polyclonal antibody that reacts with SCD1 protein was placed at 10 ⁇ g / mL in a PBS-T solution containing 5% FBS, and allowed to stand overnight at 4 ° C. in a moist chamber. .
  • an appropriate amount of Peroxidase Labeled Polymer Conjugated (manufactured by DAKO) was added dropwise and allowed to stand at room temperature for 30 minutes in a moist chamber.
  • DAB coloring solution manufactured by DAKO
  • Example 2 Induction of peptide epitope-reactive CD8-positive T cells> (1) Prediction of peptide motif binding to HLA-A0201 and HLA-A24 Information on the amino acid sequence of the human SCD1 protein represented by SEQ ID NO: 2 was obtained from GenBank.
  • Adherent cells were cultured in AIM-V medium in the presence of IL-4 (1000 U / mL) and GM-CSF (1000 U / mL). After 6 days, IL-4 (1000 U / mL), GM-CSF (1000 U / mL), IL-6 (1000 U / mL, manufactured by Genzyme), IL-1 ⁇ (10 ng / mL, manufactured by Genzyme) and TNF- ⁇ After replacing with AIM-V medium supplemented with (10 ng / mL, manufactured by Genzyme) and culturing for another 2 days, the obtained non-adherent cell population was used as dendritic cells.
  • the prepared dendritic cells are suspended in AIM-V medium at a cell density of 1 ⁇ 10 6 cells / mL, and 10 ⁇ g / mL of a peptide expected to be able to bind to the HLA-A0201 molecule selected in (1) above. And cultured for 4 hours under conditions of 37 ° C. and 5% CO 2 using a 96-well plate. After culture, X-ray irradiation (3000 rad), washed with AIM-V medium, 10% human AB serum (Nabi), IL-6 (1000 U / mL) and IL-12 (10 ng / mL, Genzyme) And 1 ⁇ 10 5 cells per well of a 24-well plate.
  • the prepared T cell population was added at 1 ⁇ 10 6 cells per well, and cultured under conditions of 37 ° C. and 5% CO 2 . Seven days later, each culture supernatant was discarded, and dendritic cells treated with each peptide obtained in the same manner as described above and then X-irradiated were treated with 10% human AB serum (manufactured by Nabi), IL-7 (10 U / mL, Suspended in AIM-V medium (Genzyme) and IL-2 (10 U / mL, Genzyme) (cell density: 1 ⁇ 10 5 cells / mL), and 1 ⁇ each per 24-well plate 10 5 cells were added and further cultured. The same operation was repeated 4 times every 7 days, and then stimulated T cells were collected, and induction of CD8 positive T cells was confirmed by flow cytometry.
  • a peptide (SEQ ID NO: 46) which is a sequence outside the scope of the present invention and an SCD1 protein consisting of the amino acid sequence represented by SEQ ID NO: 2 prepared based on Example 3 of WO2012 / 157736 are comparative examples. The same treatment as above was performed.
  • peptides that are expected to be able to bind to the HLA-A24 molecule are also synthesized in the same manner as described above using dendritic cells and T cell populations derived from peripheral blood of HLA-A24 positive healthy individuals. Attempts were made to induce reactive CD8 positive T cells.
  • a peptide SEQ ID NO: 47
  • SCD1 protein consisting of the amino acid sequence represented by SEQ ID NO: 2 as a comparative example.
  • Example 3 Determination of cytotoxic T cell antigen epitope> (1) IFN- ⁇ production ability
  • various polypeptides were applied to dendritic cells expressing HLA-A0201 molecules. Pulsed. The dendritic cells were prepared by adding each polypeptide in AIM-V medium at a concentration of 10 ⁇ g / mL and culturing at 37 ° C. under 5% CO 2 for 4 hours.
  • each polypeptide is represented by each polypeptide represented by the amino acid sequence of SEQ ID NOs: 3 to 23, which is expected to be capable of binding to the HLA-A0201 molecule, a negative control polypeptide (SEQ ID NO: 46), and SEQ ID NO: 2.
  • SCD1 protein consisting of the amino acid sequence described above was used. 5 ⁇ 10 3 T cells were added to 5 ⁇ 10 4 dendritic cells after the pulse, and cultured in a 96-well plate for 24 hours in AIM-V medium containing 10% human AB serum. The supernatant after culturing was taken, and the amount of IFN- ⁇ produced was measured by ELISA.
  • dendritic cells pulsed with the polypeptide represented by the amino acid sequence of SEQ ID NOs: 3 to 23 were compared with dendritic cells not pulsed with the polypeptide and lanes 1 and 2 using the negative control polypeptide.
  • lanes 4 to 24 used clearly high IFN- ⁇ production was confirmed (FIG. 2). From these results, it was found that the peptides of SEQ ID NOs: 3 to 23 are T cell epitope peptides having the ability to specifically stimulate proliferation of HLA-A0201-positive CD8-positive T cells and induce IFN- ⁇ production.
  • the amount of IFN- ⁇ produced using these peptides is significantly higher than IFN- ⁇ produced from T cells stimulated with the full-length SCD1 protein consisting of the amino acid sequence represented by SEQ ID NO: 2 (lane 3). It was also found out. That is, the polypeptides of SEQ ID NOs: 3 to 23 have significantly high immunity induction activity. Further, although the amino acid sequence of the full-length SCD1 protein represented by SEQ ID NO: 2 contains SEQ ID NOs: 3 to 23 having the above-described immunity-inducing activity, T stimulated with the full-length SCD1 protein of SEQ ID NO: 2 The amount of IFN- ⁇ produced from the cells was low. This is probably because the amino acid sequence of the full-length SCD1 protein did not show sufficient immunity-inducing activity because it contains many sequences that suppress immunity-inducing activity.
  • the peptide epitope-reactive CD8-positive T cells induced using the polypeptide represented by the amino acid sequence of SEQ ID NOs: 24-36 in Example 3 (2) have specificity for the peptide epitope.
  • pulsed with SEQ ID NO: 24-36 polypeptide (lanes 4-16), negative control polypeptide represented by the amino acid sequence of SEQ ID NO: 47, full-length SCD1 protein represented by the amino acid sequence of SEQ ID NO: 2 The amount of IFN- ⁇ produced by T cells against dendritic cells expressing HLA-A24 molecules was measured by ELISA according to the above method.
  • polypeptides of SEQ ID NOs: 24-36 are T cell epitope peptides that have the ability to specifically stimulate HLA-A24 positive CD8 positive T cells to proliferate and induce IFN- ⁇ production. . Furthermore, it was also found that the amount of IFN- ⁇ produced using these polypeptides was significantly higher than IFN- ⁇ produced from T cells stimulated with the full-length SCD1 protein represented by the amino acid sequence of SEQ ID NO: 2. For the same reason as described above, it is considered that the full-length SCD1 protein did not show sufficient immunity-inducing activity.
  • the HLA-A0201 molecule on tumor cells in which the polypeptide represented by the amino acid sequence of SEQ ID NOS: 3 to 23 used in the present invention is HLA-A0201 positive and expresses human SCD1 protein is used. Whether CD8 positive T cells stimulated with a polypeptide of the present invention can be damaged by HLA-A0201 positive tumor cells expressing human SCD1 protein, or SCD1 protein It was investigated whether tumor cells were significantly damaged compared with CD8 positive T cells stimulated with.
  • Human glioma (malignant brain tumor) cell line U251 cell, human leukemia cell line THP1 liver cancer cell line SK-Hep-1, breast cancer cell line MCF7, ovarian cancer cell line OVCAR3, renal cancer cell line A498, colorectal cancer cell lines HCT116, stomach cancer cell lines AGS, and lung cancer cell line NCI-H522 were collected in a centrifuge tube for each 10 6 50mL volumes of cell lines (JCRB, RIKEN and purchased from ATCC), chromium 100 ⁇ Ci 51 was added and incubated at 37 ° C. for 2 hours.
  • RPMI medium Kibco containing 10% fetal bovine serum (hereinafter referred to as FBS, manufactured by Kibco), and 10 3 pieces were added per well of a 96-well V-bottom plate.
  • Table polypeptide, negative control polypeptide (SEQ ID NO: 46) and amino acid sequence of SEQ ID NO: 2 represented by the amino acid sequence of the suspended 5 ⁇ 10 4 pieces of SEQ ID NO: 3 to 23 in RPMI medium containing of FBS HLA-A0201-positive CD8-positive T cells induced by stimulation with the full-length SCD1 protein were added and cultured at 37 ° C. under 5% CO 2 for 4 hours. After culture, the cytotoxic activity of CD8 positive T cells induced by stimulation with each polypeptide and protein was calculated by measuring the amount of chromium 51 in the culture supernatant released from the damaged tumor cells. .
  • FIGS. 4A and 4B show the results of cytotoxic activity against U251 cells and SK-Hep-1 cells, respectively.
  • FIGS. 4A and 4B show the results of cytotoxic activity against U251 cells and SK-Hep-1 cells, respectively.
  • CD8 positive T cells induced with the negative control polypeptide were similar to Mock (lane 1) and did not show cytotoxic activity.
  • This result shows that the polypeptides of SEQ ID NOs: 3 to 23 used in the present invention are presented on HLA-A0201 molecules on tumor cells that are positive for HLA-A0201 and express human SCD1 polypeptide.
  • the polypeptides of the invention suggest the ability to induce CD8 positive cytotoxic T cells that can damage such tumor cells.
  • SEQ ID NOs: 3 to 23 are included in the amino acid sequence of the full-length SCD1 protein, it is significantly more than the cytotoxic activity of CD8 positive T cells stimulated with the polypeptide of SEQ ID NOs: 3 to 23 It was weak (lanes 3, 4-24). This is probably because T-cells having strong cytotoxic activity could not be induced because the amino acid sequence of the SCD1 protein contains many sequences that suppress immunity-inducing activity.
  • polypeptides of SEQ ID NOs: 24-36 are presented on HLA-A24 molecules on tumor cells that are HLA-A24 positive and express human SCD1 protein, and are stimulated with the polypeptides of the present invention.
  • CD8-positive T cells can damage HLA-A24-positive tumor cells expressing human SCD1 protein, or significantly damage tumor cells compared to CD8-positive T cells stimulated with SCD1 protein We examined what to do.
  • HLA-A24 positive and expressing human SCD1 protein human glioma cell line KNS-42, liver cancer cell line SK-Hep1, kidney cancer cell line Caki1, colon cancer cell line SW480, gastric cancer cell line MKN45, prostate cancer cell line PC3 A breast cancer cell line ZR75-1 (purchased from JCRB, RIKEN and ATCC) and incorporating chromium 51, a polypeptide represented by the amino acid sequence of SEQ ID NOs: 24-36, a negative control polypeptide (SEQ ID NO: 47), And when HLA-A24-positive CD8-positive T cells induced by stimulation with full-length SCD1 protein were cultured, the amount of chromium 51 in the culture supernatant released from the damaged cells was measured.
  • HLA-A24-positive CD8-positive T cells stimulated with the polypeptide represented by the amino acid sequences of SEQ ID NOs: 24-36 were significantly more than would normally be expected for all cancer cells used. It was found to have a cytotoxic activity.
  • FIGS. 5A and 5B show the results of cytotoxic activity against SW480 cells and ZR75-1 cells, respectively.
  • the CD8 positive T cells stimulated with the polypeptide represented by the amino acid sequence of SEQ ID NOs: 24-36 (lanes 4 to 16 respectively) were compared with the CD8 positive T cells stimulated with the full-length SCD1 protein (lane 3).
  • SW480 cells, and ZR75-1 cells exhibit significantly higher cytotoxic activity.
  • CD8 positive T cells induced with the negative control polypeptide were similar to Mock (lane 1) and did not show cytotoxic activity (lane 2). Accordingly, SEQ ID NOs: 24-36 are presented on HLA-A24 molecules on cells that are positive for HLA-A24 and express human SCD1 protein, and this result indicates that the polypeptides of the present invention It suggests the ability to induce CD8 positive cytotoxic T cells that can damage cells.
  • the cytotoxic activity is obtained by mixing 5 ⁇ 10 4 CD8 positive T cells stimulated with each polypeptide used in the present invention and 10 3 tumor cells incorporating chromium 51. 4 hours after culturing, the amount of chromium 51 released into the culture medium after the culture was measured, and the cytotoxic activity against each tumor cell (referred to as target cell) of CD8 positive T cells calculated by the following calculation formula * It is.
  • Cytotoxic activity (%) chrome 51 release from target cells when CD8 positive T cells are added ⁇ chrome 51 release from target cells added with 1N hydrochloric acid ⁇ 100.
  • Example 4 Induction of SCD1 protein-derived peptide epitope-reactive CD4-positive T cells>
  • SYFPEITHI algorithm Ramensee
  • Peripheral blood was isolated from a healthy person positive for HLA-DRB1 * 04, layered on Lymphocyte separation medium (manufactured by OrganonpTeknik), and centrifuged at 1,500 rpm at room temperature for 20 minutes. Fractions containing PBMC were collected and washed three times (or more) in cold phosphate buffer to obtain PBMC. The obtained PBMC was suspended in 20 mL of AIM-V medium (manufactured by Life Technologies) and allowed to adhere for 2 hours under conditions of 37 ° C. and 5% CO 2 in a culture flask (manufactured by Falcon). Non-adherent cells were used for T cell preparation, and adherent cells were used to prepare dendritic cells.
  • AIM-V medium manufactured by Life Technologies
  • adherent cells were cultured in the presence of IL-4 (1000 U / mL) and GM-CSF (1000 U / mL) in AIM-V medium. After 6 days, IL-4 (1000 U / mL), GM-CSF (1000 U / mL), IL-6 (1000 U / mL, manufactured by Genzyme), IL-1 ⁇ (10 ng / mL, manufactured by Genzyme) and TNF- ⁇ The non-adherent cell population obtained after replacing with AIM-V medium supplemented with (10 ng / mL, Genzyme) and further culturing for 2 days was used as dendritic cells.
  • the prepared dendritic cells were suspended in AIM-V medium at a cell density of 1 ⁇ 10 6 cells / mL, and each polypeptide of SEQ ID NO: 37 to 45, negative control polypeptide (SEQ ID NO: 48) and SEQ ID NO: 2 were used.
  • SCD1 protein consisting of the amino acid sequence represented was added at a concentration of 10 mg / mL, and cultured for 4 hours under conditions of 37 ° C. and 5% CO 2 using a 96-well plate.
  • Example 5 Determination of SCD1 protein-derived helper T cell antigen epitope that stimulates HLA-DRB1 * 04-positive CD4-positive T cells>
  • PBMCs expressing HLA-DRB1 * 04 molecules were pulsed with various polypeptides.
  • the PBMC was prepared by adding each polypeptide in AIM-V medium at a concentration of 10 ⁇ g / mL and culturing at 37 ° C. under 5% CO 2 for 4 hours.
  • the full-length SCD1 protein consisting of each polypeptide represented by the amino acid sequences of SEQ ID NOs: 37 to 45, a negative control polypeptide (SEQ ID NO: 48), and the amino acid sequence represented by SEQ ID NO: 2 is used. It was. Against PBMC5 ⁇ 10 4 cells after the pulse, the addition of 5 ⁇ 10 4 cells of the CD4-positive T cells were cultured for 24 hours in AIM-V medium containing 10% human AB serum at a 96-well plate. The supernatant after culturing was taken, and the amount of IFN- ⁇ produced was measured by ELISA.
  • IFN- ⁇ of 1000 pg / mL or more was produced in the culture supernatant of the wells using PBMC pulsed with the peptides of SEQ ID NOs: 37 to 45, respectively.
  • almost no IFN- ⁇ production was observed in the culture supernatant of the wells using only the negative control polypeptide and dendritic cells not pulsed with the polypeptide (Mock).
  • the various polypeptides represented by the amino acid sequences of SEQ ID NOs: 37 to 45 have the ability to specifically stimulate HLA-DRB1 * 04-positive CD4-positive T cells to proliferate and induce IFN- ⁇ production. It turned out to be.
  • the amino acid sequence of the full-length SCD1 protein includes SEQ ID NOs: 37 to 45 having the above-described immunity-inducing activity, IFN in the culture supernatant of the hole using the PBMC vesicle pulsed with the full-length SCD1 protein - ⁇ production was very low. This is probably because the amino acid sequence of the SCD1 protein did not show sufficient immunity induction activity because many sequences that suppress immunity induction activity were included.
  • Peripheral blood was separated from a healthy person positive for HLA-DRB1 * 04, layered on Lymphocyte separation medium, and centrifuged at 1,500 rpm at room temperature for 20 minutes.
  • the phase containing PBMC was harvested and washed three times (or more) in cold phosphate buffer to obtain PBMC.
  • the obtained PBMC was suspended in 20 mL of AIM-V medium, allowed to adhere in a culture flask (Falcon) at 37 ° C. under 5% CO 2 for 2 hours, and the adherent cells were treated with IL-4 ( 1000 U / mL) and GM-CSF (1000 U / mL) were cultured for 6 days to prepare immature dendritic cells.
  • IL-4 1000 U / mL
  • GM-CSF 1000 U / mL
  • the lysate was added to 5 ⁇ 10 5 immature dendritic cells, and IL-4 (1000 U / mL), GM-CSF (1000 U / mL), IL-6 (1000 U / mL), IL-1 ⁇ (10 ng) / ML) and TNF- ⁇ (10 ng / mL) in AIM-V medium for 2 days.
  • the cultured dendritic cells were irradiated with X-rays (3000 rad), washed with AIM-V medium, suspended in AIM-V medium containing 10% human AB serum, and 3.3 times per well of 96-well plate. ⁇ 10 4 pieces were added.
  • polypeptide negative control polypeptides of SEQ ID NOs: 37 to 45 and T cells stimulated with SCD1 protein were added and cultured at 37 ° C. under 5% CO 2 for 24 hours. The supernatant after culturing was taken, and the amount of IFN- ⁇ produced was measured by ELISA.
  • T cells in lanes 4 to 12 stimulated with the polypeptides of SEQ ID NOs: 37 to 45 can produce IFN- ⁇ upon stimulation of dendritic cells to which SCD1 protein is added. all right.
  • Lane 2 stimulated with the negative control polypeptide and Lane 1 not stimulated with the polypeptide almost no IFN- ⁇ production was observed.
  • the polypeptides of SEQ ID NOs: 37 to 45 are epitopes on which SCD1 protein is naturally processed in antigen-presenting cells and presented on HLA-DR.
  • Lane 3 where the full-length SCD1 protein was pulsed the amount of IFN- ⁇ produced was extremely small. Since the amino acid sequence of the full-length SCD1 protein contains many sequences that suppress immunity-inducing activity, it is considered that sufficient immunity-inducing activity was not exhibited.
  • the immunity-inducing agent containing a polypeptide that exhibits antitumor activity against various cancers of the present invention is useful for the treatment or prevention of cancer or the detection of cancer.

Abstract

The present invention addresses the problem of discovering a novel peptide useful as an active ingredient of a drug for the treatment or prevention of cancer, and providing the use of the polypeptide as an immunity inducer. An immunity inducer containing as an active ingredient (a) a polypeptide comprising amino acids shown by SEQ ID NOS: 3-45 or (b) a polypeptide in which one to several amino acids of the polypeptide of (a) are deleted, substituted, or added is useful as a drug for the treatment or prevention of cancer.

Description

免疫誘導剤Immune inducer
 本発明は、癌の治療又は予防薬の有効成分として有用な新規な免疫誘導剤に関する。 The present invention relates to a novel immunity-inducing agent useful as an active ingredient of a therapeutic or prophylactic agent for cancer.
 SCD1(stearoyl-CoA desaturase 1)タンパク質は、飽和脂肪酸のC9-C10位に二重結合を導入するタンパク質である。 SCD1 (stearoyl-CoA desaturase 1) protein is a protein that introduces a double bond at the C9-C10 position of a saturated fatty acid.
 SCD1タンパク質は、発癌との関連性が示唆されている。例えば、非特許文献1及び2では、肝臓癌、食道癌、大腸癌など様々な癌で発現が上昇しており、siRNAや低分子阻害化合物によりSCD1の機能を阻害すると、癌細胞の増殖が抑制されたり、アポトーシスが誘導され、形成された腫瘍が縮小されることが開示されている。 SCD1 protein has been suggested to be associated with carcinogenesis. For example, in Non-Patent Documents 1 and 2, expression is increased in various cancers such as liver cancer, esophageal cancer, and colon cancer. When the function of SCD1 is inhibited by siRNA or a small molecule inhibitor, the proliferation of cancer cells is suppressed. It is disclosed that apoptosis is induced and the formed tumor is reduced.
 一方、特許文献1では、SCD1タンパク質が癌細胞に対する免疫誘導活性を有しており、それ故に癌の治療や予防に有用であることが開示されている。しかし、特許文献1には、MHC分子に結合するペプチドついての情報は開示されていない。 On the other hand, Patent Document 1 discloses that SCD1 protein has immunity-inducing activity against cancer cells, and is therefore useful for the treatment and prevention of cancer. However, Patent Document 1 does not disclose information about peptides that bind to MHC molecules.
WO2012/157736WO2012 / 157736
 本発明の課題は、癌の治療又は予防薬の有効成分として有用な新規ポリペプチドを見出し、該ポリペプチドの免疫誘導剤としての使用を提供することである。 An object of the present invention is to find a novel polypeptide useful as an active ingredient of a therapeutic or preventive agent for cancer, and to provide use of the polypeptide as an immune inducer.
 また、本発明の課題は、前記ポリペプチドとMHC分子の複合体を含む単離抗原提示細胞、及び前記ポリペプチドとMHC分子の複合体を選択的に結合する単離T細胞、並びにそれらの癌の治療又は予防薬を提供することである。 Another object of the present invention is to provide an isolated antigen-presenting cell containing a complex of the polypeptide and MHC molecule, an isolated T cell that selectively binds the complex of the polypeptide and MHC molecule, and cancers thereof. It is to provide a therapeutic or prophylactic agent.
 本願発明者らは、鋭意研究の結果、配列番号2で示されるアミノ酸配列からなるヒトSCD1タンパク質が悪性リンパ腫、乳癌、肝臓癌、前立腺癌、卵巣癌、腎臓癌、大腸癌、胃癌、悪性脳腫瘍、食道癌及び肺癌の組織又は細胞に特異的に発現しているという知見を得た。また、前記SCD1タンパク質の特定の領域に存在する部分ペプチドが、抗原提示細胞により提示されて、該ポリペプチドに特異的なT細胞を活性化及び増殖させる能力(免疫誘導活性)を有すること、及び該免疫誘導活性が癌の治療又は予防に有用であることを見出した。それらの結果に基づいて、該ポリペプチドが癌の治療及び/又は予防のための免疫誘導剤の有効成分となり得ること、また、該ペプチドと接触した抗原提示細胞や該抗原提示細胞と接触したT細胞も癌の治療又は予防に有用であることを見出し、本発明を完成した。 As a result of earnest research, the inventors of the present application have found that human SCD1 protein consisting of the amino acid sequence represented by SEQ ID NO: 2 is malignant lymphoma, breast cancer, liver cancer, prostate cancer, ovarian cancer, kidney cancer, colon cancer, gastric cancer, malignant brain tumor, It was found that it is specifically expressed in tissues or cells of esophageal cancer and lung cancer. A partial peptide present in a specific region of the SCD1 protein is presented by an antigen-presenting cell and has the ability to activate and proliferate T cells specific for the polypeptide (immunity-inducing activity); and It has been found that the immunity induction activity is useful for the treatment or prevention of cancer. Based on these results, the polypeptide can be an active ingredient of an immunity-inducing agent for the treatment and / or prevention of cancer, and an antigen-presenting cell in contact with the peptide or a T in contact with the antigen-presenting cell. The present inventors have found that cells are also useful for treating or preventing cancer and completed the present invention.
 すなわち、本発明は、以下の(1)~(12)の特徴を有する。
(1)以下の(a)又は(b)に記載のポリペプチド群から選択され、かつ免疫誘導活性を有する少なくとも1つのポリペプチド、
(a)配列番号2に示されるアミノ酸配列中の34~50位、69~148位、178~195位、207~242位、247~280位、296~332位の領域内の連続する7個以上のアミノ酸からなるポリペプチド
(b)前記(a)に記載のいずれか一のポリペプチドのアミノ酸配列において1~数個のアミノ酸が欠失、置換、挿入若しくは付加されたポリペプチド、あるいは
 前記いずれか一のポリペプチドをコードするポリヌクレオチドを少なくとも1つ含み、生体内で該ポリペプチドを発現可能な組換えベクター、を有効成分として含有する免疫誘導剤。
(2)前記免疫誘導活性を有するポリペプチドがMHCクラスI分子に結合する、(1)に記載の免疫誘導剤。
(3)前記免疫誘導活性を有するポリペプチドが以下の(c)~(e)に記載のポリペプチド群から選択されるいずれか一のポリペプチドである、(2)に記載の免疫誘導剤。
(c)配列番号3~36に示されるアミノ酸配列からなるポリペプチド
(d)前記(c)に記載のポリペプチドのアミノ酸配列において1~数個のアミノ酸が欠失、置換、挿入若しくは付加されたポリペプチド
(e)前記(c)又は(d)に記載のポリペプチドを部分配列として含むポリペプチド
(4)前記免疫誘導活性を有するポリペプチドがMHCクラスII分子に結合する、(1)に記載の免疫誘導剤。
(5)前記免疫誘導活性を有するポリペプチドが以下の(f)~(h)に記載のポリペプチド群から選択されるいずれか一のポリペプチドである、(4)に記載の免疫誘導剤。
(f)配列番号37~45に示されるアミノ酸配列からなるポリペプチド
(g)前記(f)に記載のポリペプチドのアミノ酸配列において1~数個のアミノ酸が欠失、置換、挿入若しくは付加されたポリペプチド
(h)前記(f)又は(g)に記載のポリペプチドを部分配列として含むポリペプチド
(6)癌の治療又は予防薬の有効成分として用いる、(1)~(5)のいずれかに記載の免疫誘導剤。
(7)前記癌がSCD1タンパク質を発現する癌である、(6)に記載の免疫誘導剤。
(8)前記癌が悪性リンパ腫、乳癌、肝臓癌、前立腺癌、卵巣癌、腎臓癌、大腸癌、胃癌、悪性脳腫瘍、食道癌又は肺癌である、(6)又は(7)に記載の免疫誘導剤。
(9)免疫増強剤をさらに含む、(1)~(8)のいずれかに記載の免疫誘導剤。
(10)(1)、(3)又は(5)に記載の免疫誘導活性を有するポリペプチドとMHC分子の複合体を含む単離抗原提示細胞。
That is, the present invention has the following features (1) to (12).
(1) at least one polypeptide selected from the group of polypeptides described in the following (a) or (b) and having immunity-inducing activity;
(a) Seven consecutive in the region of positions 34-50, 69-148, 178-195, 207-242, 247-280, 296-332 in the amino acid sequence shown in SEQ ID NO: 2 Polypeptide consisting of the above amino acids
(b) a polypeptide in which one to several amino acids are deleted, substituted, inserted or added in the amino acid sequence of any one of the polypeptides described in (a) above, or encoding any one of the above polypeptides A immunity-inducing agent comprising, as an active ingredient, a recombinant vector comprising at least one polynucleotide to be expressed and capable of expressing the polypeptide in vivo.
(2) The immunity-inducing agent according to (1), wherein the polypeptide having immunity-inducing activity binds to MHC class I molecules.
(3) The immunity-inducing agent according to (2), wherein the polypeptide having immunity-inducing activity is any one polypeptide selected from the group of polypeptides described in (c) to (e) below.
(c) a polypeptide comprising the amino acid sequence shown in SEQ ID NOs: 3 to 36
(d) a polypeptide in which one to several amino acids have been deleted, substituted, inserted or added in the amino acid sequence of the polypeptide of (c)
(e) a polypeptide comprising the polypeptide according to (c) or (d) as a partial sequence (4) the immunity according to (1), wherein the polypeptide having immunity-inducing activity binds to an MHC class II molecule Inducer.
(5) The immunity-inducing agent according to (4), wherein the polypeptide having immunity-inducing activity is any one polypeptide selected from the group of polypeptides described in (f) to (h) below.
(f) a polypeptide comprising the amino acid sequence shown in SEQ ID NOs: 37 to 45
(g) a polypeptide in which one to several amino acids have been deleted, substituted, inserted or added in the amino acid sequence of the polypeptide of (f)
(h) A polypeptide comprising the polypeptide described in (f) or (g) as a partial sequence (6) used as an active ingredient of a therapeutic or prophylactic agent for cancer, according to any one of (1) to (5) Immunity inducer.
(7) The immunity-inducing agent according to (6), wherein the cancer is a cancer that expresses SCD1 protein.
(8) The immune induction according to (6) or (7), wherein the cancer is malignant lymphoma, breast cancer, liver cancer, prostate cancer, ovarian cancer, kidney cancer, colon cancer, gastric cancer, malignant brain tumor, esophageal cancer or lung cancer Agent.
(9) The immunity-inducing agent according to any one of (1) to (8), further comprising an immune enhancing agent.
(10) An isolated antigen-presenting cell comprising a complex of the polypeptide having immunity-inducing activity according to (1), (3) or (5) and an MHC molecule.
(11)(1)、(3)又は(5)に記載の免疫誘導活性を有するポリペプチドとMHC分子の複合体を選択的に結合する単離T細胞。
(12)以下の(a)又は(b)に記載のポリペプチド群から選択され、かつ免疫誘導活性を有するいずれか一のポリペプチド。
(a)配列番号2に示されるアミノ酸配列中の34~50位、69~148位、178~195位、207~242位、247~280位、296~332位の領域内の連続する7個以上のアミノ酸からなる免疫誘導活性を有するポリペプチド、
(b)前記(a)に記載のポリペプチドのアミノ酸配列において1~数個のアミノ酸が欠失、置換、挿入若しくは付加されたポリペプチド。
(13)以下の(i)~(iv):
 (i)以下の(a)又は(b)に記載のポリペプチド群から選択され、かつ免疫誘導活性を有する少なくとも1つのポリペプチド:
  (a)配列番号2に示されるアミノ酸配列中の34~50位、69~148位、178~195位、207~242位、247~280位、296~332位の領域内の連続する7個以上のアミノ酸からなるポリペプチド、
  (b)前記(a)に記載のいずれか一のポリペプチドのアミノ酸配列において1~数個のアミノ酸が欠失、置換、挿入若しくは付加されたポリペプチド; 
 (ii)前記いずれか一のポリペプチドをコードするポリヌクレオチドを少なくとも1つ含み、生体内で該ポリペプチドを発現可能な組換えベクター;
 (iii)前記いずれか一のポリペプチドとMHC分子の複合体を含む単離抗原提示細胞;ならびに
 (iv)前記いずれか一のポリペプチドに特異的な単離T細胞、
からなる群から選択される一以上を有効成分として含む、癌の治療又は予防薬。
(14)前記免疫誘導活性を有するポリペプチドが以下の(c)~(h)に記載のポリペプチド群から選択される少なくとも1つのポリペプチドである、(13)に記載の癌の治療又は予防薬:
(c)配列番号3~36に示されるアミノ酸配列からなるポリペプチド;
(d)前記(c)に記載のポリペプチドのアミノ酸配列において1~数個のアミノ酸が欠失、置換、挿入若しくは付加されたポリペプチド;
(e)前記(c)又は(d)に記載のポリペプチドを部分配列として含むポリペプチド;
(f)配列番号37~45に示されるアミノ酸配列からなるポリペプチド;
(g)前記(f)に記載のポリペプチドのアミノ酸配列において1~数個のアミノ酸が欠失、置換、挿入若しくは付加されたポリペプチド;
(h)前記(f)又は(g)に記載のポリペプチドを部分配列として含むポリペプチド。
(15)前記癌がSCD1タンパク質を発現する癌である、(13)又は(14)に記載の癌の治療又は予防薬。
(16)以下の(i)~(iv):
 (i)以下の(a)又は(b)に記載のポリペプチド群から選択され、かつ免疫誘導活性を有する少なくとも1つのポリペプチド:
  (a)配列番号2に示されるアミノ酸配列中の34~50位、69~148位、178~195位、207~242位、247~280位、296~332位の領域内の連続する7個以上のアミノ酸からなるポリペプチド、
  (b)前記(a)に記載のいずれか一のポリペプチドのアミノ酸配列において1~数個のアミノ酸が欠失、置換、挿入若しくは付加されたポリペプチド; 
 (ii)前記いずれか一のポリペプチドをコードするポリヌクレオチドを少なくとも1つ含み、生体内で該ポリペプチドを発現可能な組換えベクター;
 (iii)前記いずれか一のポリペプチドとMHC分子の複合体を含む単離抗原提示細胞;ならびに
 (iv)前記いずれか一のポリペプチドに特異的な単離T細胞、
からなる群から選択される一以上を、それを必要とする対象動物に投与することを含む、癌を治療又は予防する方法。
(17)前記免疫誘導活性を有するポリペプチドが以下の(c)~(h)に記載のポリペプチド群から選択される少なくとも1つのポリペプチドである、(16)に記載の方法:
(c)配列番号3~36に示されるアミノ酸配列からなるポリペプチド;
(d)前記(c)に記載のポリペプチドのアミノ酸配列において1~数個のアミノ酸が欠失、置換、挿入若しくは付加されたポリペプチド;
(e)前記(c)又は(d)に記載のポリペプチドを部分配列として含むポリペプチド;
(f)配列番号37~45に示されるアミノ酸配列からなるポリペプチド;
(g)前記(f)に記載のポリペプチドのアミノ酸配列において1~数個のアミノ酸が欠失、置換、挿入若しくは付加されたポリペプチド;
(h)前記(f)又は(g)に記載のポリペプチドを部分配列として含むポリペプチド。
(18)前記癌がSCD1タンパク質を発現する癌である、(16)又は(17)に記載の方法。
(11) An isolated T cell that selectively binds a complex of a polypeptide having immunity-inducing activity according to (1), (3) or (5) and an MHC molecule.
(12) Any one polypeptide selected from the group of polypeptides described in the following (a) or (b) and having immunity-inducing activity.
(a) Seven consecutive in the region of positions 34-50, 69-148, 178-195, 207-242, 247-280, 296-332 in the amino acid sequence shown in SEQ ID NO: 2 A polypeptide having immunity-inducing activity comprising the above amino acids,
(b) A polypeptide in which one to several amino acids have been deleted, substituted, inserted or added in the amino acid sequence of the polypeptide described in (a).
(13) The following (i) to (iv):
(I) At least one polypeptide selected from the group of polypeptides described in the following (a) or (b) and having immunity-inducing activity:
(a) Seven consecutive in the region of positions 34-50, 69-148, 178-195, 207-242, 247-280, 296-332 in the amino acid sequence shown in SEQ ID NO: 2 A polypeptide comprising the above amino acids,
(b) a polypeptide in which one to several amino acids are deleted, substituted, inserted or added in the amino acid sequence of any one of the polypeptides described in (a) above;
(Ii) a recombinant vector comprising at least one polynucleotide encoding any one of the polypeptides, and capable of expressing the polypeptide in vivo;
(Iii) an isolated antigen-presenting cell comprising a complex of any one of the polypeptides and an MHC molecule; and (iv) an isolated T cell specific for any one of the polypeptides,
A therapeutic or prophylactic agent for cancer comprising one or more selected from the group consisting of as active ingredients.
(14) The treatment or prevention of cancer according to (13), wherein the polypeptide having immunity-inducing activity is at least one polypeptide selected from the group of polypeptides described in (c) to (h) below: medicine:
(c) a polypeptide comprising the amino acid sequence shown in SEQ ID NOs: 3-36;
(d) a polypeptide in which one to several amino acids are deleted, substituted, inserted or added in the amino acid sequence of the polypeptide according to (c);
(e) a polypeptide comprising the polypeptide according to (c) or (d) as a partial sequence;
(f) a polypeptide consisting of the amino acid sequence shown in SEQ ID NOs: 37 to 45;
(g) a polypeptide in which one to several amino acids are deleted, substituted, inserted or added in the amino acid sequence of the polypeptide described in (f);
(h) A polypeptide comprising the polypeptide according to (f) or (g) as a partial sequence.
(15) The cancer therapeutic or prophylactic agent according to (13) or (14), wherein the cancer is a cancer that expresses SCD1 protein.
(16) The following (i) to (iv):
(I) At least one polypeptide selected from the group of polypeptides described in the following (a) or (b) and having immunity-inducing activity:
(a) Seven consecutive in the region of positions 34-50, 69-148, 178-195, 207-242, 247-280, 296-332 in the amino acid sequence shown in SEQ ID NO: 2 A polypeptide comprising the above amino acids,
(b) a polypeptide in which one to several amino acids are deleted, substituted, inserted or added in the amino acid sequence of any one of the polypeptides described in (a) above;
(Ii) a recombinant vector comprising at least one polynucleotide encoding any one of the polypeptides, and capable of expressing the polypeptide in vivo;
(Iii) an isolated antigen-presenting cell comprising a complex of any one of the polypeptides and an MHC molecule; and (iv) an isolated T cell specific for any one of the polypeptides,
A method for treating or preventing cancer, comprising administering one or more selected from the group consisting of to a subject animal in need thereof.
(17) The method according to (16), wherein the polypeptide having immunity-inducing activity is at least one polypeptide selected from the group of polypeptides described in (c) to (h) below:
(c) a polypeptide comprising the amino acid sequence shown in SEQ ID NOs: 3-36;
(d) a polypeptide in which one to several amino acids are deleted, substituted, inserted or added in the amino acid sequence of the polypeptide according to (c);
(e) a polypeptide comprising the polypeptide according to (c) or (d) as a partial sequence;
(f) a polypeptide consisting of the amino acid sequence shown in SEQ ID NOs: 37 to 45;
(g) a polypeptide in which one to several amino acids are deleted, substituted, inserted or added in the amino acid sequence of the polypeptide described in (f);
(h) A polypeptide comprising the polypeptide according to (f) or (g) as a partial sequence.
(18) The method according to (16) or (17), wherein the cancer is a cancer that expresses SCD1 protein.
 本明細書は本願の優先権の基礎となる日本国特許出願番号2016-040364号の開示内容を包含する。 This specification includes the disclosure of Japanese Patent Application No. 2016-040364, which is the basis of the priority of this application.
 本発明により、癌の治療又は予防薬の有効成分として有用な新規の免疫誘導剤が提供される。 According to the present invention, a novel immunity-inducing agent useful as an active ingredient of a therapeutic or prophylactic agent for cancer is provided.
 また、後述の実施例において具体的に示されるように、本発明で用いられるポリペプチドによって癌細胞を殺傷する免疫細胞を誘導することができ、既に生じている癌を縮小若しくは退縮させることができる。さらに、本発明で用いられるペプチドによって癌細胞を殺傷する免疫細胞の誘導を増強することができ、既に生じている癌を縮小若しくは退縮させることもできる。したがって、本発明のポリペプチドは癌の治療や予防薬の有効成分として有用である。 In addition, as specifically shown in Examples described later, immune cells that kill cancer cells can be induced by the polypeptide used in the present invention, and cancer that has already occurred can be reduced or regressed. . Furthermore, the induction of immune cells that kill cancer cells can be enhanced by the peptides used in the present invention, and cancer that has already occurred can be reduced or regressed. Therefore, the polypeptide of the present invention is useful as an active ingredient of a therapeutic or prophylactic agent for cancer.
SCD1遺伝子の、ヒト腫瘍組織又は癌細胞株での発現パターンを示す図である。参照番号1;ヒトSCD1遺伝子の発現パターンを示す。参照番号2;ヒトのハウスキーピング遺伝子であるGAPDH遺伝子の発現パターンを示す。It is a figure which shows the expression pattern in a human tumor tissue or a cancer cell line of SCD1 gene. Reference number 1: shows the expression pattern of the human SCD1 gene. Reference number 2: shows the expression pattern of the GAPDH gene, which is a human housekeeping gene. 配列番号3~23に示すアミノ酸配列からなる各ポリペプチドに特異的なCD8陽性T細胞が、該ポリペプチドとHLA-A0201との複合体を認識してIFN-γを産生することを示す図である。図中、横軸のレーン4~24は、それぞれ配列番号3~23のアミノ酸配列で表されるポリペプチドをパルスした樹状細胞の刺激による、HLA-A0201陽性CD8陽性T細胞のIFN-γ産生能を示す。レーン1はポリペプチドを添加せずに上記処理を行なった場合についての結果(Mock)を示し、レーン2は配列番号46に示す本発明の範囲外の陰性コントロールポリペプチドを添加して上記処理を行った結果を示し、レーン3は配列番号2で表されるアミノ酸配列からなる全長SCD1タンパク質を添加して上記処理を行った結果を示す。FIG. 3 is a view showing that CD8-positive T cells specific for each polypeptide consisting of the amino acid sequences shown in SEQ ID NOs: 3 to 23 recognize a complex of the polypeptide and HLA-A0201, and produce IFN-γ. is there. In the figure, lanes 4 to 24 on the horizontal axis represent IFN-γ production of HLA-A0201-positive CD8-positive T cells by stimulation of dendritic cells pulsed with the polypeptides represented by the amino acid sequences of SEQ ID NOs: 3 to 23, respectively. Show performance. Lane 1 shows the result (Mock) when the above treatment is performed without adding the polypeptide, and Lane 2 shows the result by adding a negative control polypeptide outside the scope of the present invention shown in SEQ ID NO: 46. The results are shown, and lane 3 shows the results of the above treatment with the addition of the full-length SCD1 protein consisting of the amino acid sequence represented by SEQ ID NO: 2. 配列番号24~36に示すアミノ酸配列からなる各ポリペプチドに特異的なCD8陽性T細胞が、該ポリペプチドとHLA-A24との複合体を認識してIFN-γを産生することを示す図である。図中、横軸のレーン4~16は、それぞれ配列番号24~36のアミノ酸配列で表されるポリペプチドをパルスした樹状細胞の刺激による、HLA-A24陽性CD8陽性T細胞のIFN-γ産生能を示す。レーン1はポリペプチドを添加せずに上記処理を行なった場合についての結果(Mock)を示し、レーン2は配列番号47に示す本発明の範囲外の陰性コントロールペプチドを添加して上記処理を行った結果を示し、そしてレーン3は配列番号2で表されるアミノ酸配列からなる全長SCD1タンパク質を添加して上記処理を行った結果を示す。FIG. 2 is a view showing that CD8-positive T cells specific for each polypeptide consisting of the amino acid sequences shown in SEQ ID NOs: 24-36 recognize a complex of the polypeptide and HLA-A24 and produce IFN-γ. is there. In the figure, lanes 4 to 16 on the horizontal axis represent IFN-γ production of HLA-A24-positive CD8-positive T cells by stimulation of dendritic cells pulsed with the polypeptides represented by the amino acid sequences of SEQ ID NOs: 24-36, respectively. Show performance. Lane 1 shows the result (Mock) when the above treatment is performed without adding the polypeptide, and Lane 2 shows the result of adding the negative control peptide shown in SEQ ID NO: 47 outside the scope of the present invention. Lane 3 shows the results of adding the full-length SCD1 protein consisting of the amino acid sequence represented by SEQ ID NO: 2 and performing the above treatment. 配列番号3~23に示すアミノ酸配列からなる各ポリペプチドに特異的なCD8陽性T細胞の、癌細胞に対する障害活性を示す図である。図中、横軸のレーン4~24は、それぞれ配列番号3~23のアミノ酸配列で表されるポリペプチドを用いて誘導したHLA-A0201陽性CD8陽性T細胞の、U251細胞に対する細胞障害活性を示す。レーン1はポリペプチドを添加せずに誘導したCD8陽性T細胞(Mock)の細胞障害活性を示し、レーン2は陰性コントロールのポリペプチド(配列番号46)を用いて誘導したCD8陽性T細胞の細胞障害活性を示し、そしてレーン3は配列番号2で表されるアミノ酸配列からなる全長SCD1タンパク質を用いて誘導したCD8陽性T細胞の細胞障害活性を示す。FIG. 3 is a graph showing the damage activity of a CD8-positive T cell specific for each polypeptide consisting of the amino acid sequences shown in SEQ ID NOs: 3 to 23 against cancer cells. In the figure, lanes 4 to 24 on the horizontal axis show cytotoxic activity against U251 cells of HLA-A0201-positive CD8-positive T cells induced by using the polypeptides represented by the amino acid sequences of SEQ ID NOs: 3 to 23, respectively. . Lane 1 shows the cytotoxic activity of CD8 positive T cells (Mock) induced without addition of the polypeptide, and Lane 2 shows cells of CD8 positive T cells induced with the negative control polypeptide (SEQ ID NO: 46). Lane activity shows the cytotoxic activity of CD8-positive T cells induced using the full-length SCD1 protein consisting of the amino acid sequence represented by SEQ ID NO: 2. 配列番号3~23に示すアミノ酸配列からなる各ポリペプチドに特異的なCD8陽性T細胞の、癌細胞に対する障害活性を示す図である。図中、横軸のレーン4~24は、それぞれ配列番号3~23のアミノ酸配列で表されるポリペプチドを用いて誘導したHLA-A0201陽性のCD8陽性T細胞の、SK-Hep-1細胞に対する細胞障害活性を示す。レーン1はポリペプチドを添加せずに誘導したCD8陽性T細胞(Mock)の細胞障害活性を示し、レーン2は陰性コントロールのポリペプチド(配列番号46)を用いて誘導したCD8陽性T細胞の細胞障害活性を示し、レーン3は配列番号2で表されるアミノ酸配列からなる全長SCD1タンパク質を用いて誘導したCD8陽性T細胞の細胞障害活性を示す。FIG. 3 is a graph showing the damage activity of a CD8-positive T cell specific for each polypeptide consisting of the amino acid sequences shown in SEQ ID NOs: 3 to 23 against cancer cells. In the figure, lanes 4 to 24 on the horizontal axis represent HLA-A0201-positive CD8-positive T cells induced with the polypeptides represented by the amino acid sequences of SEQ ID NOs: 3 to 23, respectively, with respect to SK-Hep-1 cells. Shows cytotoxic activity. Lane 1 shows the cytotoxic activity of CD8 positive T cells (Mock) induced without addition of the polypeptide, and Lane 2 shows cells of CD8 positive T cells induced with the negative control polypeptide (SEQ ID NO: 46). Lane activity shows the cytotoxic activity of CD8 positive T cells induced using the full-length SCD1 protein consisting of the amino acid sequence represented by SEQ ID NO: 2. 配列番号24~36に示すアミノ酸配列からなる各ポリペプチドに特異的なCD8陽性T細胞の、癌細胞に対する障害活性を示す図である。横軸のレーン4~16は、それぞれ配列番号24~36のアミノ酸配列で表されるポリペプチドを用いて刺激したHLA-A24陽性のCD8陽性T細胞のSW480細胞に対する細胞障害活性を示す。レーン1はポリペプチドを添加せずに誘導したCD8陽性T細胞(Mock)の細胞障害活性を示し、参照番号2は陰性コントロールのポリペプチド(配列番号47)を用いて誘導したCD8陽性T細胞の細胞障害活性を示し、そしてレーン3は配列番号2で表されるアミノ酸配列からなるSCD1タンパク質を用いて誘導したCD8陽性T細胞の細胞障害活性を示す。FIG. 3 is a graph showing the damage activity against cancer cells of CD8-positive T cells specific for each polypeptide consisting of the amino acid sequences shown in SEQ ID NOs: 24-36 Lanes 4 to 16 on the horizontal axis show cytotoxic activity against SW480 cells of HLA-A24-positive CD8-positive T cells stimulated with the polypeptides represented by the amino acid sequences of SEQ ID NOs: 24-36, respectively. Lane 1 shows the cytotoxic activity of CD8 positive T cells (Mock) induced without addition of the polypeptide, and reference number 2 shows the CD8 positive T cells induced using the negative control polypeptide (SEQ ID NO: 47). Cytotoxic activity is shown, and lane 3 shows the cytotoxic activity of CD8 positive T cells induced using the SCD1 protein consisting of the amino acid sequence represented by SEQ ID NO: 2. 配列番号24~36に示すアミノ酸配列からなる各ペプチドに特異的なCD8陽性T細胞の、癌細胞に対する障害活性を示す図である。横軸のレーン4~16は、それぞれ配列番号24~36のアミノ酸配列で表されるポリペプチドを用いて刺激したHLA-A24陽性CD8陽性T細胞の、ZR-75-1細胞に対する細胞障害活性を示す。レーン1はポリペプチドを添加せずに誘導したCD8陽性T細胞(Mock)の細胞障害活性を示し、参照番号2は陰性コントロールのポリペプチド(配列番号47)を用いて誘導したCD8陽性T細胞の細胞障害活性を示し、そしてレーン3は配列番号2で表されるアミノ酸配列からなるSCD1タンパク質を用いて誘導したCD8陽性T細胞の細胞障害活性を示す。FIG. 3 is a graph showing the cytotoxic activity of a CD8-positive T cell specific for each peptide consisting of the amino acid sequences shown in SEQ ID NOs: 24-36 on cancer cells. Lanes 4 to 16 on the horizontal axis show cytotoxic activity against ZR-75-1 cells of HLA-A24 positive CD8 positive T cells stimulated with polypeptides represented by amino acid sequences of SEQ ID NOs: 24 to 36, respectively. Show. Lane 1 shows the cytotoxic activity of CD8 positive T cells (Mock) induced without addition of the polypeptide, and reference number 2 shows the CD8 positive T cells induced using the negative control polypeptide (SEQ ID NO: 47). Cytotoxic activity is shown, and lane 3 shows the cytotoxic activity of CD8 positive T cells induced using the SCD1 protein consisting of the amino acid sequence represented by SEQ ID NO: 2. 配列番号37~45に示すアミノ酸配列からなる各ポリペプチドに特異的なCD4陽性T細胞が、該ポリペプチドとHLA-DRB1*04との複合体を認識してIFN-γを産生することを示す図である。レーン4~12は、それぞれ配列番号37~45のアミノ酸配列で表されるポリペプチドをパルスした樹状細胞の刺激によるHLA-DRB1*04陽性CD4陽性T細胞のIFN-γ産生能を示す。レーン1はポリペプチドを添加せずに上記処理を行なった場合についてのMockの結果を示し、レーン2は配列番号48に示す本発明の範囲外の陰性コントロールポリペプチドを添加して上記処理を行った結果を示し、そしてレーン3は配列番号2で表されるアミノ酸配列からなる全長SCD1タンパク質を添加して上記処理を行った結果を示す。It shows that CD4-positive T cells specific for each polypeptide consisting of the amino acid sequences shown in SEQ ID NOs: 37 to 45 recognize the complex of the polypeptide and HLA-DRB1 * 04 and produce IFN-γ. FIG. Lanes 4 to 12 show the IFN-γ production ability of HLA-DRB1 * 04 positive CD4 positive T cells by stimulation of dendritic cells pulsed with the polypeptides represented by the amino acid sequences of SEQ ID NOs: 37 to 45, respectively. Lane 1 shows the result of Mock when the above treatment is performed without adding the polypeptide, and Lane 2 shows the result of adding the negative control polypeptide outside the scope of the present invention shown in SEQ ID NO: 48 and carrying out the above treatment. Lane 3 shows the results of adding the full-length SCD1 protein consisting of the amino acid sequence represented by SEQ ID NO: 2 and performing the above treatment.
 <ポリペプチド>
 本発明において、「ポリペプチド」とは、複数のアミノ酸がペプチド結合することによって形成される分子をいう。構成するアミノ酸数が多いポリペプチド分子のみならず、アミノ酸数が少ない低分子量の分子(オリゴペプチド)も本発明のポリペプチドに包含される。
<Polypeptide>
In the present invention, “polypeptide” refers to a molecule formed by peptide bonding of a plurality of amino acids. The polypeptide of the present invention encompasses not only a polypeptide molecule having a large number of amino acids but also a low molecular weight molecule (oligopeptide) having a small number of amino acids.
 本発明の免疫誘導剤を構成するポリペプチドには、以下の(a)又は(b)に記載のポリペプチド群から選択され、かつ免疫誘導活性を有する少なくとも1つのポリペプチドが挙げられる。
(a)配列番号2で示されるアミノ酸配列からなるヒトSCD1タンパク質において、開始メチオニンを1位としたときに34~50位(17アミノ酸)、69~148位(80アミノ酸)、178~195位(18アミノ酸)、207~242位(36アミノ酸)、247~280位(34アミノ酸)、296~332位(37アミノ酸)の領域内の連続する7個以上のアミノ酸からなるポリペプチド
(b)前記(a)に記載のポリペプチドのアミノ酸配列において、1~数個のアミノ酸が欠失、置換、挿入若しくは付加されたポリペプチド。
The polypeptide constituting the immunity-inducing agent of the present invention includes at least one polypeptide selected from the group of polypeptides described in the following (a) or (b) and having immunity-inducing activity.
(a) In the human SCD1 protein consisting of the amino acid sequence represented by SEQ ID NO: 2, positions 34 to 50 (17 amino acids), 69 to 148 (80 amino acids), and 178 to 195 when the starting methionine is position 1 ( 18 amino acids), 207 to 242 positions (36 amino acids), 247 to 280 positions (34 amino acids), 296 to 332 positions (37 amino acids), a polypeptide comprising 7 or more consecutive amino acids
(b) A polypeptide in which one to several amino acids are deleted, substituted, inserted or added in the amino acid sequence of the polypeptide described in (a).
 なお、本発明において、「アミノ酸配列からなる」とは、アミノ酸残基がそのような順序で配列しているという意味である。したがって、例えば、「配列番号2で示されるアミノ酸配列からなるポリペプチド」とは、配列番号2に示されるMet Asp Pro Ala・・・(中略)・・・Tyr Lys Ser Glyのアミノ酸配列を持つ、359アミノ酸残基のサイズのポリペプチドを意味する。また、本明細書では、例えば、「配列番号2で示されるアミノ酸配列からなるポリペプチド」をしばしば「配列番号2のポリペプチド」と略記する。「塩基配列からなる」という表現についても同様である。 In the present invention, “consisting of an amino acid sequence” means that amino acid residues are arranged in such an order. Therefore, for example, the “polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2” has the amino acid sequence of Met Asp Pro Ala (...), Tyr Lys Ser Gly shown in SEQ ID NO: 2. Means a polypeptide of size 359 amino acid residues. In the present specification, for example, “polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2” is often abbreviated as “polypeptide of SEQ ID NO: 2”. The same applies to the expression “consisting of a base sequence”.
 また、本発明で「免疫誘導活性」とは、SCD1タンパク質を発現する癌細胞に対して反応するT細胞を活性化及び増殖させる能力を意味する。具体的には、SCD1タンパク質又はその部分ポリペプチドで刺激された細胞障害性T細胞及び/又はヘルパーT細胞のIFN-γ産生能力が、刺激していない対照T細胞のそれよりも高いこと、SCD1タンパク質又はその部分ポリペプチドで刺激された細胞障害性T細胞のSCD1タンパク質発現癌細胞に対する細胞障害活性が、刺激していない対照のT細胞のそれよりも高いこと、SCD1タンパク質又はその部分ポリペプチドで刺激されたヘルパーT細胞が細胞障害性T細胞の細胞障害活性を、刺激していない対照のT細胞のそれよりも増強すること、又はSCD1タンパク質又はその部分ポリペプチドで刺激された細胞障害性T細胞又はヘルパーT細胞が、刺激していない対照のT細胞のそれよりもよく増殖すること、を意味する。 In the present invention, “immunity-inducing activity” means the ability to activate and proliferate T cells that react with cancer cells that express SCD1 protein. Specifically, the ability of cytotoxic T cells and / or helper T cells stimulated with SCD1 protein or a partial polypeptide thereof to be higher than that of unstimulated control T cells, SCD1 Cytotoxicity of cytotoxic T cells stimulated with the protein or a partial polypeptide thereof is higher than that of unstimulated control T cells with respect to SCD1 protein-expressing cancer cells; Stimulated helper T cells enhance the cytotoxic activity of cytotoxic T cells over that of unstimulated control T cells, or cytotoxic T cells stimulated with SCD1 protein or a partial polypeptide thereof Means that cells or helper T cells proliferate better than that of unstimulated control T cells
 細胞の増殖は、目視観察、顕微鏡下での細胞数計測、フローサイトメトリー、培地中のトリチウムチミジンの細胞内への取り込み量等により確認することができる。また、IFN-γ産生能力の測定は、例えば、公知のエリスポットアッセイ等を用いて確認することができる。具体的には、例えば、後述の実施例に記載されるように、まず、T細胞を、免疫誘導活性を評価すべきポリペプチド(本発明ではSCD1タンパク質又はその部分ポリペプチド)と末梢血単核球(以下、「PBMC」と表記する)由来の抗原提示細胞と共培養することにより、T細胞を、評価すべきポリペプチドを提示する抗原提示細胞と接触させる。続いて、T細胞から産生されたIFN-γを、IFN-γに特異的な抗体を用いて測定する。これにより、該T細胞中の免疫細胞数を測定することができる。これらの測定結果から免疫誘導活性を評価することができる。 The proliferation of cells can be confirmed by visual observation, measurement of the number of cells under a microscope, flow cytometry, the amount of tritium thymidine in the medium incorporated into the cells, and the like. The measurement of IFN-γ production ability can be confirmed using, for example, a known ELISPOT assay. Specifically, for example, as described in Examples below, first, a T cell, a polypeptide (in the present invention, SCD1 protein or a partial polypeptide thereof) to be evaluated for immunity-inducing activity, and peripheral blood mononuclear By co-culturing with antigen-presenting cells derived from spheres (hereinafter referred to as “PBMC”), T cells are brought into contact with antigen-presenting cells that present the polypeptide to be evaluated. Subsequently, IFN-γ produced from T cells is measured using an antibody specific for IFN-γ. Thereby, the number of immune cells in the T cell can be measured. From these measurement results, immunity-inducing activity can be evaluated.
 また、細胞障害活性の測定は、例えば、T細胞を、細胞障害活性を評価すべきポリペプチド(本発明ではSCD1タンパク質又はその部分ポリペプチド)及びPBMC由来の抗原提示細胞と共培養した後、生体外で腫瘍細胞の増殖を抑制する能力又は腫瘍細胞を殺す能力(以下、「細胞障害活性」と表記する)を示すか否かを調べることによって評価することができる。T細胞と抗原提示細胞との接触は、後述するように、両者を液体培地中で共培養することで達成できる。細胞障害活性の測定は、例えば、Int.J.Cancer,58:P317,1994に記載された51Crリリースアッセイと呼ばれる公知の方法により行なうことができる。 In addition, the cytotoxic activity can be measured, for example, by co-culturing T cells with a polypeptide to be evaluated for cytotoxic activity (in the present invention, SCD1 protein or a partial polypeptide thereof) and PBMC-derived antigen-presenting cells. It can be evaluated by examining whether or not it exhibits the ability to suppress the growth of tumor cells or the ability to kill tumor cells (hereinafter referred to as “cytotoxic activity”). As described later, the contact between the T cell and the antigen-presenting cell can be achieved by co-culturing both in a liquid medium. The cytotoxic activity can be measured by a known method called 51 Cr release assay described in Int. J. Cancer, 58: P317, 1994, for example.
 上記で誘導されたT細胞を担癌生体に投与することによって、そのT細胞の細胞障害活性により腫瘍を縮小又は退縮させることができる。よって、上記免疫誘導活性は、癌細胞の増殖を抑制し、又は癌組織(腫瘍)を縮小若しくは消滅させる能力(以下、「抗腫瘍活性」と表記する)として評価することもできる。 By administering the T cells induced above to a cancer-bearing organism, the tumor can be reduced or regressed due to the cytotoxic activity of the T cells. Therefore, the immunity induction activity can also be evaluated as the ability to suppress the growth of cancer cells or to reduce or eliminate cancer tissue (tumor) (hereinafter referred to as “antitumor activity”).
 上記ポリペプチドを癌の治療又は予防用途に用いる場合には、特に限定されないが、免疫誘導活性の評価は、細胞障害活性又は抗腫瘍活性を指標とすることが好ましい。 When the above polypeptide is used for the treatment or prevention of cancer, it is not particularly limited, but the evaluation of immunity induction activity is preferably based on the cytotoxic activity or antitumor activity.
 この分野で公知の通り、約7アミノ酸残基以上のポリペプチドであればエピトープを包含し得ることから抗原性及び免疫原性を発揮でき、免疫誘導活性を有し得るので、本発明の免疫誘導剤として用いることができる。 As known in the art, since a polypeptide of about 7 amino acid residues or more can include an epitope, it can exhibit antigenicity and immunogenicity, and can have immunity-inducing activity. It can be used as an agent.
 したがって、上記(a)のポリペプチドは、配列番号2に示されるアミノ酸配列中の34~50位、69~148位、178~195位、207~242位、247~280位、296~332位の領域内における連続する7個以上、好ましくは連続する8、9又は10個以上のアミノ酸からなるポリペプチドであって、かつ免疫誘導活性を有するものである。特に好ましくは、配列番号2に示されるアミノ酸配列中の34~50位、69~148位、178~195位、207~242位、247~280位、296~332位で示されるアミノ酸配列を有するものである。 Therefore, the polypeptide of (a) above has positions 34-50, 69-148, 178-195, 207-242, 247-280, 296-332 in the amino acid sequence shown in SEQ ID NO: 2. A polypeptide consisting of 7 or more, preferably 8, 9 or 10 or more consecutive amino acids in the region, and has immunity-inducing activity. Particularly preferably, it has an amino acid sequence represented by positions 34-50, 69-148, 178-195, 207-242, 247-280, 296-332 in the amino acid sequence represented by SEQ ID NO: 2. Is.
 癌抗原ポリペプチドを投与することによる免疫誘導の原理として、ポリペプチドが抗原提示細胞に取り込まれ、その後、該細胞内でペプチダーゼによる分解を受けてより小さな断片となり、その後、断片化された抗原ペプチドは該抗原提示細胞の表面上に提示される。細胞表面に提示された抗原を細胞障害性T細胞等が認識して、該抗原を細胞表面に提示している癌細胞を選択的に殺していくことが知られている。また、抗原提示細胞の表面上に提示された抗原をヘルパーT細胞が認識し、その抗原を細胞表面に提示している癌細胞を選択的に殺す細胞障害性T細胞の誘導を促進することが知られている。抗原提示細胞の表面上に提示される抗原ポリペプチドのサイズは比較的小さく、アミノ酸数で7~30程度である。したがって、抗原提示細胞上に提示させるという観点からは、上記(a)のポリペプチドとしては、配列番号2に示されるアミノ酸配列中の34~50位、69~148位、178~195位、207~242位、247~280位、296~332位で示されるアミノ酸配列中の連続する7~30程度であることが好ましい。当該ポリペプチドは8~30程度、9~30程度、若しくは9~25程度のアミノ酸からなるものであれば十分である。これら比較的小さなサイズのポリペプチドは、抗原提示細胞内に取り込まれることなく、直接抗原提示細胞上の細胞表面に提示される場合もある。 As a principle of inducing immunity by administering a cancer antigen polypeptide, the polypeptide is taken into the antigen-presenting cell, and then undergoes degradation by peptidase in the cell to become a smaller fragment, and then the fragmented antigen peptide Is presented on the surface of the antigen-presenting cell. It is known that cytotoxic T cells and the like recognize an antigen presented on the cell surface and selectively kill cancer cells presenting the antigen on the cell surface. In addition, the helper T cell recognizes the antigen presented on the surface of the antigen-presenting cell and promotes induction of cytotoxic T cells that selectively kill cancer cells presenting the antigen on the cell surface. Are known. The size of the antigen polypeptide presented on the surface of the antigen-presenting cell is relatively small, and is about 7 to 30 amino acids. Therefore, from the viewpoint of presentation on antigen-presenting cells, the above-mentioned polypeptide (a) includes the positions 34 to 50, 69 to 148, 178 to 195, 207 in the amino acid sequence represented by SEQ ID NO: 2. It is preferably about 7 to 30 consecutive in the amino acid sequence shown at positions 242, 247, 280, 296, 332. It is sufficient that the polypeptide consists of about 8 to 30, about 9 to 30, or about 9 to 25 amino acids. These relatively small polypeptides may be presented directly on the cell surface on antigen-presenting cells without being taken up into antigen-presenting cells.
 また、抗原提示細胞に取り込まれたポリペプチドは、該細胞内のペプチダーゼによりランダムな位置で切断を受けて、種々のポリペプチド断片が生じ、これらのポリペプチド断片が抗原提示細胞表面上に提示されるので、配列番号2に示されるアミノ酸配列中の34~50位、69~148位、178~195位、207~242位、247~280位、296~332位のように大きなサイズのポリペプチドを投与すれば、抗原提示細胞内での分解によって、抗原提示細胞を介する免疫誘導に有効なポリペプチド断片が必然的に生じる。したがって、抗原提示細胞を介する免疫誘導は、サイズの大きなポリペプチドを用いることもできる。例えば、当該ポリペプチドのアミノ酸数を30以上、好ましくは40以上、より好ましくは50以上、さらに好ましくは100以上としてもよい。 Polypeptides taken up by antigen-presenting cells are cleaved at random positions by peptidases in the cells to generate various polypeptide fragments, and these polypeptide fragments are presented on the surface of antigen-presenting cells. Therefore, a polypeptide having a large size such as positions 34-50, 69-148, 178-195, 207-242, 247-280, 296-332 in the amino acid sequence shown in SEQ ID NO: 2 Is administered, inevitably results in polypeptide fragments effective for inducing immunity via antigen-presenting cells due to degradation in antigen-presenting cells. Therefore, a large-sized polypeptide can be used for immunity induction via antigen-presenting cells. For example, the number of amino acids of the polypeptide may be 30 or more, preferably 40 or more, more preferably 50 or more, and still more preferably 100 or more.
 さらに、本発明のポリペプチドは、後述のMHC(ヒトにおいてはHLA)のクラスI分子又はクラスII分子との結合モチーフを有する8~25個、好ましくは9~24個、さらに好ましくは9~23個のアミノ酸からなるエピトープペプチドを検索しうる照合媒体、例えば、Bioinformatics & Molecular Analysis Selection(BIMAS)のHLA Peptide Binding Predictions(http://bimas.dcrt.nih.gov/molbio/hla_bind/index.html)や、SYFPEITHIによって照合し、エピトープペプチドとなりうるペプチドをスクリーニングすることによって得ることができる。具体的には、本発明のポリペプチドは、配列番号2に示されるアミノ酸配列中の34~50位、69~148位、178~195位、207~242位、247~280位、296~332位の領域内の連続する7個以上のアミノ酸からなるポリペプチドである。例えば、本発明のポリペプチドとしては、配列番号3~45で示されるポリペプチド、又は配列番号3~45に示されるアミノ酸配列からなるポリペプチドを部分配列として含み、かつアミノ酸残基数が10~30であるポリペプチドが挙げられる。このうち、配列番号3~45で示されるポリペプチド、又は配列番号3~45に示されるアミノ酸配列からなるポリペプチドを部分配列として含み、かつアミノ酸残基数が10~30であるポリペプチドのうち、配列番号3~36で示されるポリペプチドの免疫誘導活性はMHCクラスI分子との結合によるもので、配列番号37~45で示されるポリペプチドの免疫誘導活性はMHCクラスII分子との結合によるものである。 Furthermore, the polypeptide of the present invention has 8 to 25, preferably 9 to 24, more preferably 9 to 23 having a binding motif with a class I molecule or class II molecule of MHC (HLA in humans) described later. A collation medium that can search for epitope peptides consisting of a single amino acid, for example, HLA Peptide Binding Predications (http: // bimas. Or it can be obtained by collating with SYFPEITHI and screening for peptides that can be epitope peptides. Specifically, the polypeptide of the present invention has positions 34-50, 69-148, 178-195, 207-242, 247-280, 296-332 in the amino acid sequence shown in SEQ ID NO: 2. A polypeptide consisting of seven or more consecutive amino acids in the region. For example, the polypeptide of the present invention includes a polypeptide represented by SEQ ID NO: 3 to 45 or a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 3 to 45 as a partial sequence, and has 10 to 10 amino acid residues. A polypeptide that is 30. Among these, among the polypeptides represented by SEQ ID NOs: 3 to 45 or the polypeptides comprising the amino acid sequences represented by SEQ ID NOs: 3 to 45 as partial sequences and having 10 to 30 amino acid residues The immunity-inducing activity of the polypeptides represented by SEQ ID NOs: 3-36 is due to binding to MHC class I molecules, and the immunity-inducing activities of the polypeptides represented by SEQ ID NOs: 37-45 are due to binding to MHC class II molecules. Is.
 一方、上記(b)のポリペプチドは、上記(a)のポリペプチドのうちの1個若しくは数個のアミノ酸残基が置換し、欠失し、挿入され及び/又は付加されたポリペプチドで、かつ、免疫誘導活性を有するポリペプチドである。例えば、本発明のポリペプチドとしては、配列番号3~45に示されるアミノ酸配列からなるポリペプチドにおいて1~数個のアミノ酸が欠失、置換、挿入若しくは付加されたポリペプチドが挙げられる。 On the other hand, the polypeptide (b) is a polypeptide in which one or several amino acid residues in the polypeptide (a) are substituted, deleted, inserted and / or added, And a polypeptide having immunity-inducing activity. For example, the polypeptide of the present invention includes a polypeptide in which one to several amino acids are deleted, substituted, inserted or added in the polypeptide consisting of the amino acid sequence shown in SEQ ID NOs: 3 to 45.
 本明細書中の「数個」における「数」とは、2~10の整数、好ましくは2~6の整数、より好ましくは2~4、さらに好ましくは2又は3の整数を表す。 In the present specification, “number” in “several” represents an integer of 2 to 10, preferably an integer of 2 to 6, more preferably 2 to 4, and further preferably an integer of 2 or 3.
 一般に、あるポリペプチドの中の1個、又は数個のアミノ酸の改変は、元のポリペプチドの機能に影響を及ぼさないと考えられ、場合によっては元のポリペプチドの所望の機能を強化することさえあると考えられている。実際、元のアミノ酸配列と比較して、1個、又は数個のアミノ酸残基が改変された(すなわち、置換、欠失、付加及び/又は挿入された)アミノ酸配列で構成される改変ペプチドは、元のペプチドの生物活性を保持することが知られている(Mark et al.,1984,Proc Natl Acad Sci USA,81:5662-5666、Zoller and Smith,1982,Nucleic Acids Res.10:6487-6500、Dalbadie-McFarland et al.,1982,Proc Natl Acad Sci USA.79:6409-6413)。したがって、上記(b)のポリペプチドも免疫誘導活性を発揮し得るので、本発明の免疫誘導剤の調製に用いることができる。 In general, modification of one or several amino acids in a polypeptide will not affect the function of the original polypeptide, and may in some cases enhance the desired function of the original polypeptide. Even thought to be. In fact, compared to the original amino acid sequence, a modified peptide composed of an amino acid sequence in which one or several amino acid residues are modified (ie, substituted, deleted, added and / or inserted) , Known to retain the biological activity of the original peptide (Mark et al., 1984, Proc Natl Acad Sci USA, 81: 5562-5666, Zoller and Smith, 1982, Nucleic Acids Res. 10: 6487- 6500, Dalbadie-McFarland et al., 1982, Proc Natl Acad Sci USA. 79: 6409-6413). Therefore, since the polypeptide (b) can also exhibit immunity-inducing activity, it can be used for the preparation of the immunity-inducing agent of the present invention.
 なお、天然のタンパク質を構成する20種類のアミノ酸は、低極性側鎖を有する中性アミノ酸(Gly,Ile,Val,Leu,Ala,Met,Pro)、親水性側鎖を有する中性アミノ酸(Asn,Gln,Thr,Ser,Tyr,Cys)、酸性アミノ酸(Asp,Glu)、塩基性アミノ酸(Arg,Lys,His)、芳香族アミノ酸(Phe,Tyr,Trp)のように類似の性質を有するものにグループ分けでき、これらの間での置換であればポリペプチドの性質が変化しないことが多いことが知られている。したがって、本発明の上記(a)のポリペプチド中のアミノ酸残基を置換する場合には、これらの各グループの間で置換することにより、免疫誘導活性を維持できる可能性が高くなるため好ましい。 The 20 kinds of amino acids constituting the natural protein include neutral amino acids having low polarity side chains (Gly, Ile, Val, Leu, Ala, Met, Pro), neutral amino acids having hydrophilic side chains (Asn). , Gln, Thr, Ser, Tyr, Cys), acidic amino acids (Asp, Glu), basic amino acids (Arg, Lys, His), and aromatic amino acids (Phe, Tyr, Trp) It is known that the properties of a polypeptide often do not change if substitution is made between these groups. Therefore, when substituting an amino acid residue in the above-mentioned polypeptide (a) of the present invention, it is preferable to substitute between these groups because the possibility of maintaining immunity-inducing activity is increased.
 また、上記(b)のポリペプチドは、配列番号2に示されるアミノ酸配列中の34~50位、69~148位、178~195位、207~242位、247~280位、296~332位の領域内の連続する7個以上のアミノ酸からなるポリペプチド、例えば、配列番号3~45に示されるアミノ酸配列からなるポリペプチドのいずれか、と90%以上、好ましくは95%以上、より好ましくは98%以上、さらに好ましくは99%以上又は99.5%以上のアミノ酸配列の同一性を有し、かつ、免疫誘導活性を有するポリペプチドであってもよい。 The polypeptide of (b) is 34 to 50, 69 to 148, 178 to 195, 207 to 242, 247 to 280, 296 to 332 in the amino acid sequence shown in SEQ ID NO: 2. 90% or more, preferably 95% or more, more preferably, a polypeptide comprising 7 or more consecutive amino acids in the region of, for example, any of the polypeptides comprising the amino acid sequences shown in SEQ ID NOs: 3 to 45 It may be a polypeptide having amino acid sequence identity of 98% or more, more preferably 99% or more or 99.5% or more, and having immunity-inducing activity.
 本明細書においてアミノ酸配列(又は塩基配列)の「同一性」とは、比較すべき2つのアミノ酸配列(又は塩基配列)のアミノ酸残基(又は塩基)ができるだけ多く一致するように両アミノ酸配列(又は塩基配列)を整列させ、一致したアミノ酸残基数(又は一致した塩基数)を全アミノ酸残基数(又は全塩基数)で除したものを百分率で表したものである。上記整列の際には、必要に応じ、比較する2つの配列の一方又は双方に適宜ギャップを挿入する。このような配列の整列化は、例えばBLAST、FASTA、CLUSTAL W等の周知のプログラムを用いて行なうことができる。ギャップが挿入される場合、上記全アミノ酸残基数は、1つのギャップを1つのアミノ酸残基として数えた残基数となる。このようにして数えた全アミノ酸残基数が、比較する2つの配列間で異なる場合には、配列同一性(%)は、長い方の配列の全アミノ酸残基数で、一致したアミノ酸残基数を除して算出される。 In this specification, the “identity” of amino acid sequences (or base sequences) means that both amino acid sequences (or bases) match so that the amino acid residues (or bases) of two amino acid sequences (or base sequences) to be compared match as much as possible. Or the number of matched amino acid residues (or the number of matched bases) divided by the total number of amino acid residues (or the total number of bases), expressed as a percentage. In the above alignment, a gap is appropriately inserted in one or both of the two sequences to be compared as necessary. Such alignment of sequences can be performed using a known program such as BLAST, FASTA, CLUSTALSTW, and the like. When gaps are inserted, the total number of amino acid residues is the number of residues obtained by counting one gap as one amino acid residue. When the total number of amino acid residues counted in this way is different between the two sequences to be compared, the sequence identity (%) is the total number of amino acid residues in the longer sequence, and the amino acid residues that match. Calculated by dividing the number.
 癌治療又は予防との関連で用いられた場合、本発明のポリペプチドは、好ましくはHLAの各型との複合体として、細胞又はエキソソームの表面上に提示されるべきである。したがって、本発明のポリペプチドは、免疫誘導活性を有するだけではなく、HLAの各型に対する高い結合親和性を有するペプチドを選択することが好ましい。そのために、アミノ酸残基の置換、挿入、欠失、及び/又は付加によってペプチドを改変して、結合親和性が改善された改変ペプチドとしてもよい。天然に提示されるペプチドに加えて、HLAの各型への結合によって提示されるペプチドの配列の規則性は既知であることから(J Immunol,1994,152:3913;Immunogenetics,1995,41:178;J Immunol,1994,155:4307)、そのような規則性に基づいた改変を本発明の免疫原性ペプチドに導入することができる。例えば、HLA-A24結合親和性を高めるためには、N末端から2番目のアミノ酸をロイシン若しくはメチオニンで置換すること、及び/又はC末端のアミノ酸をバリン若しくはロイシンで置換することが望ましい可能性がある。したがって、配列番号24~36のアミノ酸配列を有するペプチドであって、これらペプチドのN末端から2番目のアミノ酸がロイシン若しくはメチオニンで置換されている、及び/又はアミノ酸のC末端がバリン若しくはロイシンで置換されているペプチドは、本発明の範囲に含まれる。 When used in the context of cancer treatment or prevention, the polypeptides of the present invention should be presented on the surface of cells or exosomes, preferably as a complex with each type of HLA. Therefore, it is preferable to select a polypeptide of the present invention that not only has immunity-inducing activity but also has a high binding affinity for each type of HLA. For this purpose, the peptide may be modified by substitution, insertion, deletion and / or addition of amino acid residues to obtain a modified peptide with improved binding affinity. In addition to naturally presented peptides, the regularity of the sequence of peptides presented by binding to each type of HLA is known (J Immunol, 1994, 152: 3913; Immunogenetics, 1995, 41: 178). J Immunol, 1994, 155: 4307), modifications based on such regularity can be introduced into the immunogenic peptides of the present invention. For example, in order to increase HLA-A24 binding affinity, it may be desirable to replace the second amino acid from the N-terminus with leucine or methionine and / or to replace the C-terminal amino acid with valine or leucine. is there. Accordingly, peptides having the amino acid sequences of SEQ ID NOs: 24-36, wherein the second amino acid from the N-terminus of these peptides is substituted with leucine or methionine, and / or the C-terminus of amino acids is substituted with valine or leucine Peptides that are included are within the scope of the present invention.
 置換を、末端アミノ酸の箇所だけでなく、ペプチドのTCR認識の可能性のある位置に導入することもできる。いくつかの研究により、ペプチドのアミノ酸置換物は元のものと同等であるか又はより優れた免疫誘導活性を有することが実証されており、これには例えばCAP1、p53(264-272)、Her-2/neu(369-377)、又はgp100(209-217)がある(Zaremba et al.1997,Cancer Res.57:4570-4577、T.K.Hoffmann et al.2002,J Immunol.168(3):1338-47、S.O.Dionne et al.2003,Cancer Immunol immunother.52:199-206、及びS.O.Dionne et al.2004,Cancer Immunology,Immunotherapy,53:307-314)。 Substitution can be introduced not only at the terminal amino acid position but also at a position where TCR recognition of the peptide is possible. Several studies have demonstrated that amino acid substitutions of peptides have equivalent or better immunity-inducing activity than the original, including, for example, CAP1, p53 (264-272), Her -2 / neu (369-377), or gp100 (209-217) (Zaremba et al. 1997, Cancer Res. 57: 4570-4777, TK Hoffmann et al. 2002, J Immunol. 168 ( 3): 1338-47, S.O. Dionne et al. 2003, Cancer Immunol immunother. 52: 199-206, and S.O. Dionne et al. 2004, Cancer Immunology, Immunotherapy, 53: 307-314).
 上記の改変に加えて、結果として生じる連結ポリペプチドが元のペプチドの必要な免疫誘導活性を保持する限り、本発明のポリペプチドを他の物質と連結させることもできる。他の物質の例として、限定はしないが、ペプチド、脂質、糖及び糖鎖、アセチル基、天然及び合成のポリマー等が含まれる。ペプチドは、改変によって元のペプチドの生物活性を損なわないことを条件として、グリコシル化、側鎖酸化又はリン酸化等の改変を含むことができる。これらの種類の改変は、付加的な機能(例えば、標的化機能及び送達機能)を付与するため、又はポリペプチドを安定化するために行うことができる。例えば、ポリペプチドのインビボ安定性を高めるために、D-アミノ酸、アミノ酸模倣体又は非天然アミノ酸を導入する技術が当該分野において公知であり、この概念を本発明のポリペプチドに適用することもできる。ポリペプチドの安定性は、いくつかの方法でアッセイすることができる。例えば、ペプチダーゼ、ならびにヒトの血漿及び血清等のさまざまな生体媒質を用いて、安定性を試験することができる(例えば、Verhoef et al.,1986,Eur J Drug Metab Pharmacokin,11:291-302を参照)。 In addition to the above modifications, the polypeptide of the present invention can be linked to other substances as long as the resulting linked polypeptide retains the necessary immunity-inducing activity of the original peptide. Examples of other substances include, but are not limited to, peptides, lipids, sugars and sugar chains, acetyl groups, natural and synthetic polymers, and the like. A peptide can include modifications such as glycosylation, side chain oxidation or phosphorylation provided that the modification does not impair the biological activity of the original peptide. These types of modifications can be made to confer additional functions (eg, targeting and delivery functions) or to stabilize the polypeptide. For example, techniques for introducing D-amino acids, amino acid mimetics or unnatural amino acids to increase the in vivo stability of the polypeptides are known in the art, and this concept can also be applied to the polypeptides of the present invention. . Polypeptide stability can be assayed in several ways. For example, stability can be tested using peptidases and various biological media such as human plasma and serum (eg, Verhoef et al., 1986, Eur J Drug Metapharma, 11: 291-302). reference).
 さらに、本発明のポリペプチドを、スペーサー又はリンカーを介して他のペプチドと連結させてもよい。他のペプチドの例として、限定はしないが、他のポリペプチドに由来するエピトープペプチドが含まれる。あるいは、本発明の2つ又はそれ以上のポリペプチドをスペーサー又はリンカーを介して連結させてもよい。スペーサー又はリンカーを介して連結させるペプチドは、同じであっても互いに異なってもよい。スペーサー及びリンカーの種類は特に限定されず、ペプチドで構成されるもの、より好ましくはペプチダーゼ、プロテアーゼ及びプロテアソーム等の酵素によって切断され得る1つ又は複数の切断部位を有するペプチドで構成されるものが含まれる。リンカー又はスペーサーの例として、限定はしないが、AAY(P.M.Daftarian et al.,J Trans Med,2007,5:26)、AAA、NKRK(R.P.M.Sutmuller et al.,J Immunol.2000,165:7308-7315)、又は1個~数個のリジン残基(S.Ota et al.,2002,Can Res.62:1471-1476、K.S.Kawamura et al.,2002,J Immunol.168:5709-5715)が挙げられる。本発明は、スペーサー又はリンカーを介して他のペプチドと連結されたポリペプチドを想定している。 Furthermore, the polypeptide of the present invention may be linked to another peptide via a spacer or a linker. Examples of other peptides include, but are not limited to, epitope peptides derived from other polypeptides. Alternatively, two or more polypeptides of the invention may be linked via a spacer or linker. Peptides linked via a spacer or linker may be the same or different from each other. The type of spacer and linker is not particularly limited, and includes those composed of peptides, more preferably those composed of peptides having one or more cleavage sites that can be cleaved by enzymes such as peptidases, proteases, and proteasomes. It is. Examples of linkers or spacers include, but are not limited to, AAY (PM Daftarian et al., J Trans Med, 2007, 5:26), AAA, NKRK (RPM Sutmuller et al., J Immunol. 2000, 165: 7308-7315), or one to several lysine residues (S. Ota et al., 2002, Can Res. 62: 1471-1476, KS Kawamura et al., 2002) , J Immunol. 168: 5709-5715). The present invention contemplates polypeptides linked to other peptides via spacers or linkers.
 本発明のポリペプチドがシステイン残基を含む場合、それらのポリペプチドは、システイン残基のSH基間のジスルフィド結合を介して二量体を形成する傾向がある。したがって、ポリペプチドの二量体も、本発明のポリペプチドに含まれる。 When the polypeptides of the present invention contain cysteine residues, these polypeptides tend to form dimers via disulfide bonds between SH groups of cysteine residues. Therefore, a dimer of the polypeptide is also included in the polypeptide of the present invention.
 本発明のポリペプチドは、周知の技法を用いて調製することができる。例えば、Fmoc法(フルオレニルメチルオキシカルボニル法)、tBoc法(t-ブチルオキシカルボニル法)等の化学合成法に従って合成することができる。また、各種の市販のペプチド合成機を利用して常法により合成することもできる。 The polypeptide of the present invention can be prepared using a well-known technique. For example, it can be synthesized according to a chemical synthesis method such as the Fmoc method (fluorenylmethyloxycarbonyl method) or the tBoc method (t-butyloxycarbonyl method). Moreover, it can also synthesize | combine by a conventional method using various commercially available peptide synthesizers.
 さらに、公知の遺伝子工学的手法を用いて、上記ポリペプチドをコードするポリヌクレオチドを調製し、該ポリヌクレオチドを発現ベクターに組み込んで宿主細胞に導入して、該宿主細胞中で目的とするポリペプチドを生産させることにより、目的とするポリペプチドを得ることもできる。宿主細胞から目的とするポリペプチドを得る場合、他の天然の宿主細胞タンパク質及びそれらの断片、又は他の任意の化学物質を実質的に含まないように、精製又は単離すればよい。 Furthermore, using a known genetic engineering technique, a polynucleotide encoding the above polypeptide is prepared, the polynucleotide is incorporated into an expression vector and introduced into a host cell, and the desired polypeptide in the host cell To produce the desired polypeptide. When the desired polypeptide is obtained from the host cell, it may be purified or isolated so as to be substantially free from other natural host cell proteins and fragments thereof, or any other chemical substances.
 上記ポリペプチドをコードするポリヌクレオチドは、公知の遺伝子工学的手法や市販の核酸合成機を用いた常法により、容易に調製することができる。例えば、配列番号1の塩基配列を有するDNAは、ヒト染色体DNA又はcDNAライブラリーを鋳型として使用し、配列番号1に記載した塩基配列を増幅できるように設計した一対のプライマーを用いてPCRを行うことにより調製することができる。PCRの反応条件は適宜設定することができ、例えば、94℃で30秒間(変性)、55℃で30秒~1分間(アニーリング)、72℃で2分間(伸長)からなる反応行程を1サイクルとして、例えば、30サイクル行った後、72℃で1分間反応させる条件等を挙げることができるが、これに限定されない。また、配列番号1に示される塩基配列及びアミノ酸配列の情報に基づいて、適当なプローブやプライマーを調製し、それを用いてヒト等のcDNAライブラリーをスクリーニングすることにより、所望のDNAを単離することができる。cDNAライブラリーは、配列番号2のタンパク質を発現している細胞、器官又は組織から作製することが好ましい。上記したプローブ又はプライマーの調製、cDNAライブラリーの構築、cDNAライブラリーのスクリーニング、ならびに目的遺伝子のクローニング等の操作は当業者に既知であり、例えば、Green,M.R. and Sambrook,J.,2012,Molecular Cloning:A Laboratory Manual Fourth Ed.,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,New York、又はCurrent Protocolin Molecular Biology:www.currentprotocols.com等に記載された方法に準じて行うことができる。このようにして得られたDNAから、上記(a)のポリペプチドをコードするDNAを得ることができる。また、各アミノ酸をコードするコドンは公知であるから、特定のアミノ酸配列をコードするポリヌクレオチドの塩基配列は容易に特定することができる。したがって、上記した(b)のポリペプチドをコードするポリヌクレオチドの塩基配列も容易に特定することができるので、そのようなポリヌクレオチドも、市販の核酸合成機を用いて常法により合成すればよい。 The polynucleotide encoding the above polypeptide can be easily prepared by a known genetic engineering technique or a conventional method using a commercially available nucleic acid synthesizer. For example, DNA having the base sequence of SEQ ID NO: 1 is subjected to PCR using a human chromosomal DNA or cDNA library as a template and a pair of primers designed to amplify the base sequence described in SEQ ID NO: 1. Can be prepared. PCR reaction conditions can be set as appropriate. For example, one cycle of a reaction process consisting of 94 ° C. for 30 seconds (denaturation), 55 ° C. for 30 seconds to 1 minute (annealing), and 72 ° C. for 2 minutes (extension) Examples of the conditions include, but are not limited to, conditions of reacting at 72 ° C. for 1 minute after 30 cycles. In addition, based on the information on the nucleotide sequence and amino acid sequence shown in SEQ ID NO: 1, appropriate probes and primers are prepared, and the desired DNA is isolated by screening a cDNA library such as human using the same. can do. The cDNA library is preferably prepared from cells, organs or tissues expressing the protein of SEQ ID NO: 2. The above-described operations such as preparation of the probe or primer, construction of the cDNA library, screening of the cDNA library, and cloning of the target gene are known to those skilled in the art. For example, Green, MR and Sambrook, J., 2012, Molecular Cloning: A Laboratory Manual Fourth Ed. , Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, or Current Protocol Molecular Molecular Biology: www.Cold Spring Harbor Press, Cold Spring Harbor, New York, or Current Protocol Molecular Biology: www. It can be carried out according to the method described in currentprotocols.com and the like. From the DNA thus obtained, DNA encoding the polypeptide (a) can be obtained. In addition, since the codons encoding each amino acid are known, the base sequence of a polynucleotide encoding a specific amino acid sequence can be easily specified. Therefore, since the base sequence of the polynucleotide encoding the polypeptide (b) described above can be easily specified, such a polynucleotide may be synthesized by a conventional method using a commercially available nucleic acid synthesizer. .
 上記宿主細胞としては、上記ポリペプチドを発現可能な細胞であればいかなるものであってもよい。原核細胞の例としては、大腸菌等、真核細胞の例としては、サル腎臓細胞COS1、チャイニーズハムスター卵巣細胞CHO等の哺乳動物培養細胞、出芽酵母、分裂酵母、カイコ細胞、アフリカツメガエル卵細胞等が挙げられるが、これらに限定されない。 The host cell may be any cell as long as it can express the polypeptide. Examples of prokaryotic cells include Escherichia coli, and examples of eukaryotic cells include cultured mammalian cells such as monkey kidney cells COS1 and Chinese hamster ovary cells CHO, budding yeast, fission yeast, silkworm cells, and Xenopus egg cells. However, it is not limited to these.
 宿主細胞として原核細胞を用いる場合、発現ベクターとしては、原核細胞中で複製可能なオリジン、プロモーター、リボソーム結合部位、DNAクローニング部位、ターミネーター等を有する発現ベクターを用いる。大腸菌用発現ベクターとしては、pUC系、pBluescriptII、pET発現システム、pGEX発現システム等が例示できる。上記ポリペプチドをコードするDNAをこのような発現ベクターに組み込み、該ベクターで原核宿主細胞を形質転換した後、得られた形質転換体を培養すれば、前記DNAがコードしているポリペプチドを原核宿主細胞中で発現させることができる。この際、該ポリペプチドを、他のタンパク質との融合タンパク質として発現させることもできる。 When a prokaryotic cell is used as a host cell, an expression vector having an origin, a promoter, a ribosome binding site, a DNA cloning site, a terminator and the like that can replicate in the prokaryotic cell is used as the expression vector. Examples of the expression vector for E. coli include pUC, pBluescript II, pET expression system, pGEX expression system and the like. When the DNA encoding the above polypeptide is incorporated into such an expression vector, a prokaryotic host cell is transformed with the vector, and the resulting transformant is cultured, the polypeptide encoded by the DNA is prokaryotic. It can be expressed in a host cell. In this case, the polypeptide can also be expressed as a fusion protein with another protein.
 宿主細胞として真核細胞を用いる場合、発現ベクターとしては、プロモーター、スプライシング領域、ポリ(A)付加部位等を有する真核細胞用発現ベクターを用いる。そのような発現ベクターとしては、pKA1、pCDM8、pSVK3、pMSG、pSVL、pBK-CMV、pBK-RSV、EBVベクター、pRS、pcDNA3、pMSG、pYES2等が例示できる。上記と同様に、上記ポリペプチドをコードするDNAをこのような発現ベクターに組み込み、該ベクターで真核宿主細胞を形質転換した後、得られた形質転換体を培養すれば、前記DNAがコードしているポリペプチドを真核宿主細胞中で発現させることができる。発現ベクターとしてpIND/V5-His、pFLAG-CMV-2、pEGFP-N1、pEGFP-C1等を用いた場合には、Hisタグ、FLAGタグ、mycタグHAタグ、GFP等各種タグを付加した融合タンパク質として、上記ポリペプチドを発現させることができる。 When a eukaryotic cell is used as a host cell, an expression vector for a eukaryotic cell having a promoter, a splicing region, a poly (A) addition site and the like is used as an expression vector. Examples of such expression vectors include pKA1, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, EBV vector, pRS, pcDNA3, pMSG, pYES2, and the like. In the same manner as described above, a DNA encoding the above polypeptide is incorporated into such an expression vector, a eukaryotic host cell is transformed with the vector, and then the resulting transformant is cultured. Can be expressed in eukaryotic host cells. When pIND / V5-His, pFLAG-CMV-2, pEGFP-N1, pEGFP-C1, etc. are used as an expression vector, a fusion protein to which various tags such as His tag, FLAG tag, myc tag HA tag, and GFP are added. As described above, the polypeptide can be expressed.
 発現ベクターの宿主細胞への導入は、電気穿孔法、リン酸カルシウム法、リポソーム法、DEAEデキストラン法等の周知の方法を用いることができる。 For introducing the expression vector into the host cell, a known method such as an electroporation method, a calcium phosphate method, a liposome method, or a DEAE dextran method can be used.
 宿主細胞から目的のポリペプチドを単離精製するためには、公知の分離操作を組み合わせて行うことができる。例えば尿素等の変性剤や界面活性剤による処理、超音波処理、酵素消化、塩析や溶媒分別沈殿法、透析、遠心分離、限外ろ過、ゲルろ過、SDS-PAGE、等電点電気泳動、イオン交換クロマトグラフィー、疎水クロマトグラフィー、アフニティークロマトグラフィー、逆相クロマトグラフィー等が挙げられるが、これらに限定されない。 In order to isolate and purify the target polypeptide from the host cell, known separation operations can be combined. For example, treatment with denaturing agents and surfactants such as urea, sonication, enzyme digestion, salting out and solvent fractional precipitation, dialysis, centrifugation, ultrafiltration, gel filtration, SDS-PAGE, isoelectric focusing, Examples include, but are not limited to, ion exchange chromatography, hydrophobic chromatography, affinity chromatography, and reverse phase chromatography.
 以上の方法によって得られるポリペプチドには、上述した通り、他の任意のタンパク質との融合タンパク質の形態にあるものも含まれる。例えば、グルタチオン-S-トランスフェラーゼ(GST)やHisタグとの融合タンパク質等が例示できる。したがってこのような融合タンパク質の形態のポリペプチドも、本発明の範囲に含まれる。さらに、形質転換細胞で発現されたポリペプチドは、翻訳された後、細胞内で各種修飾を受ける場合がある。このような翻訳後修飾されたポリペプチドも、免疫誘導活性を有する限り、本発明の範囲に含まれる。この様な翻訳修飾としては、N末端メチオニンの脱離、N末端アセチル化、糖鎖付加、細胞内プロテアーゼによる限定分解、ミリストイル化、イソプレニル化、リン酸化等が例示できる。 Polypeptides obtained by the above methods include those in the form of fusion proteins with other arbitrary proteins as described above. Examples thereof include glutathione-S-transferase (GST) and a fusion protein with a His tag. Accordingly, polypeptides in the form of such fusion proteins are also included within the scope of the present invention. Furthermore, the polypeptide expressed in the transformed cell may be subjected to various modifications in the cell after being translated. Such post-translationally modified polypeptides are also included in the scope of the present invention as long as they have immunity-inducing activity. Examples of such translational modifications include elimination of N-terminal methionine, N-terminal acetylation, sugar chain addition, limited degradation by intracellular protease, myristoylation, isoprenylation, phosphorylation and the like.
 <免疫誘導剤>
 本発明の免疫誘導活性を有するポリペプチド又は該ポリペプチドをコードする遺伝子を含む発現ベクターを担癌生体に投与すると、既に生じている腫瘍を退縮させることができる。また、上記した免疫誘導活性を有するポリペプチド又はポリペプチドをコードする遺伝子を癌の発症前の生体に投与することで腫瘍の発生を予防することができる。したがって、本発明のポリペプチド又は該ポリペプチドをコードする遺伝子は、免疫誘導剤の有効成分となり得る。
<Immune inducer>
When the polypeptide having immunity-inducing activity of the present invention or an expression vector containing a gene encoding the polypeptide is administered to a cancer-bearing organism, an already produced tumor can be regressed. Moreover, the occurrence of tumor can be prevented by administering the above-described polypeptide having immunity-inducing activity or a gene encoding the polypeptide to a living body before the onset of cancer. Therefore, the polypeptide of the present invention or the gene encoding the polypeptide can be an active ingredient of an immunity-inducing agent.
 ここで、「腫瘍」及び「癌」という用語は、悪性新生物を意味し、互換的に使用される。この場合、対象となる癌としては、SCD1タンパク質を発現している癌であることが好ましく、中でも好ましくは悪性リンパ腫、乳癌、肝臓癌、前立腺癌、卵巣癌、腎臓癌、大腸癌、胃癌、悪性脳腫瘍、食道癌及び肺癌である。 Here, the terms “tumor” and “cancer” mean a malignant neoplasm and are used interchangeably. In this case, the target cancer is preferably a cancer that expresses SCD1 protein, and among them, malignant lymphoma, breast cancer, liver cancer, prostate cancer, ovarian cancer, kidney cancer, colon cancer, gastric cancer, malignant cancer are preferable. Brain tumors, esophageal cancer and lung cancer.
 対象動物は、好ましくは哺乳動物であり、より好ましくは霊長類、ペット動物、家畜類、競技用動物等を含む哺乳動物であり、さらに好ましくはヒト、イヌ又はネコであり、特に好ましくはヒトである。 The target animals are preferably mammals, more preferably mammals including primates, pet animals, livestock, sport animals, etc., more preferably humans, dogs or cats, particularly preferably humans. is there.
 対象となる癌罹患個体(個体がヒトの場合は癌患者)は、生体内でSCD1タンパク質を発現している癌罹患個体であることが好ましく、具体的には、WO2011/027807に記載される癌の検出方法によってスクリーニングされる癌罹患個体であることが好ましい。特に、対象生体から得られた試料中に含まれるSCD1タンパク質に対する抗体の発現量が、健常個体の生体から得られた試料中に含まれる当該抗体の発現量と比較して多いことによってスクリーニングされる癌罹患個体であることが好ましい。対象となる癌罹患個体のスクリーニングに供される試料としては、血液、血清、血漿、腹水、胸水等の体液、組織、細胞が挙げられるが、SCD1タンパク質に対する抗体の発現量の測定によってスクリーニングする場合は、血清、血漿、腹水又は胸水が好ましい。 The subject cancer-affected individual (a cancer patient when the individual is a human) is preferably a cancer-affected individual that expresses the SCD1 protein in vivo, and specifically, cancer described in WO2011 / 027807 It is preferable that they are cancer-affected individuals screened by the detection method. In particular, screening is performed because the expression level of the antibody against the SCD1 protein contained in the sample obtained from the target living body is larger than the expression level of the antibody contained in the sample obtained from the living body of a healthy individual. It is preferably an individual with cancer. Samples to be screened for target cancer-affected individuals include blood, serum, plasma, ascites, pleural effusion, and other body fluids, tissues, and cells. When screening by measuring the expression level of antibodies against SCD1 protein Serum, plasma, ascites or pleural effusion are preferred.
 本発明の免疫誘導剤の投与経路は、経口投与でも、非経口投与でもよいが、筋肉内投与、皮下投与、静脈内投与、動脈内投与等の非経口投与が好ましい。癌の治療目的で該免疫誘導剤を用いる場合には、抗癌作用を高めるため、治療対象となる腫瘍の近傍の所属リンパ節に投与することもできる。投与量は、免疫誘導するのに有効な量であればよく、例えば、癌の治療又は予防に用いるのであれば、癌の治療又は予防に有効な量であればよい。癌の治療又は予防に有効な量は、腫瘍の大きさや症状、対象動物の体重、体積等に応じて適宜選択されるが、対象動物がヒトの場合、通常1日当りの有効量は、0.0001~1000μg、好ましくは0.001~1000μgとなる。これを、1回又は数回に分けて投与することができる。1日あたり数回に分け、それを数日又は数月おきに投与するのが好ましい。後述の実施例に具体的に示されるとおり、本発明の免疫誘導剤は、既に形成されている腫瘍を退縮させることができる。したがって、発生初期の少数の癌細胞にも抗癌作用を発揮し得るので、癌の発症前や癌の治療後に用いれば、癌の発症や再発を防止することができる。すなわち、本発明の免疫誘導剤は、癌の治療と予防の双方に有用であり、癌治療又は予防薬の有効成分となり得る。 The administration route of the immunity-inducing agent of the present invention may be oral administration or parenteral administration, but parenteral administration such as intramuscular administration, subcutaneous administration, intravenous administration and intraarterial administration is preferred. When the immunity-inducing agent is used for the purpose of treating cancer, it can be administered to regional lymph nodes in the vicinity of the tumor to be treated in order to enhance the anticancer effect. The dose may be an amount effective for inducing immunity. For example, if it is used for the treatment or prevention of cancer, it may be an amount effective for the treatment or prevention of cancer. The amount effective for the treatment or prevention of cancer is appropriately selected according to the size and symptoms of the tumor, the body weight, volume, etc. of the target animal. When the target animal is a human, the effective amount per day is usually 0. 0001 to 1000 μg, preferably 0.001 to 1000 μg. This can be administered in one or several divided doses. It is preferable to divide it into several times per day and administer it every few days or months. As specifically shown in the Examples described later, the immunity-inducing agent of the present invention can regress an already formed tumor. Therefore, since anticancer activity can be exerted on a small number of cancer cells at the early stage of development, onset and recurrence of cancer can be prevented if used before onset of cancer or after treatment of cancer. That is, the immunity-inducing agent of the present invention is useful for both treatment and prevention of cancer and can be an active ingredient of a cancer treatment or prevention drug.
 本発明の免疫誘導剤は、前述した本発明のポリペプチドを有効成分として含有するが、単一のポリペプチドのみから成っていてもよいし、複数のポリペプチドを組み合わせても良い。本発明のポリペプチドを複数組み合わせることにより、各ポリペプチドが有する免疫誘導活性(細胞傷害活性T細胞の誘導・活性化作用)が増強され、癌の治療又は予防をより効果的に達成することができる。 The immunity-inducing agent of the present invention contains the above-described polypeptide of the present invention as an active ingredient, but it may consist of only a single polypeptide or a combination of a plurality of polypeptides. By combining a plurality of the polypeptides of the present invention, the immunity-inducing activity (induction / activation action of cytotoxicity T cells) possessed by each polypeptide is enhanced, and cancer treatment or prevention can be achieved more effectively. it can.
 本発明の免疫誘導剤を公知の細胞障害性T細胞を誘導できるペプチドと組み合わせて用いることもできる。本発明のポリペプチドを組み合わせることにより、各ポリペプチドが有する免疫誘導活性(細胞傷害活性T細胞の誘導・活性化作用)が増強され、癌の治療又は予防をより効果的に達成することができる。この場合の「組み合わせ」は、本発明の免疫誘導剤と公知の細胞障害性T細胞を誘導できるペプチドを別個に、又は同時に、投与することを包含する。ここでいう「別個に投与する」とは、本発明の免疫誘導剤と公知の細胞障害性T細胞を誘導できるペプチドを、時間差をおいて別々に投与することをいう。投与する順序は問わない。一方、「同時に投与する」とは、本発明の免疫誘導剤と公知の細胞障害性T細胞を誘導できるペプチドを予め混合して一体化させた形態で投与すること、又は本発明の免疫誘導剤と公知の細胞障害性T細胞を誘導できるペプチドを個別形態で時間差なく投与することをいう。 The immunity-inducing agent of the present invention can also be used in combination with known peptides capable of inducing cytotoxic T cells. By combining the polypeptides of the present invention, immunity induction activity (cytotoxic activity T cell induction / activation action) possessed by each polypeptide is enhanced, and cancer treatment or prevention can be achieved more effectively. . “Combination” in this case includes administration of the immunity-inducing agent of the present invention and a peptide capable of inducing known cytotoxic T cells separately or simultaneously. “Separate administration” as used herein refers to administration of the immunity-inducing agent of the present invention and a known peptide capable of inducing cytotoxic T cells separately with a time lag. The order of administration does not matter. On the other hand, “administered simultaneously” means that the immunity-inducing agent of the present invention and a known peptide capable of inducing cytotoxic T cells are preliminarily mixed and administered, or the immunity-inducing agent of the present invention. And a known peptide capable of inducing cytotoxic T cells is administered in individual form with no time difference.
 本発明の免疫誘導剤は、生体内での免疫学的応答を強化することができる他の免疫増強剤と組み合わせて用いることができる。他の免疫増強剤は、本発明の免疫誘導剤に含まれていてもよいし、別個の組成物として本発明の免疫誘導剤と併用して患者に投与してもよい。 The immunity-inducing agent of the present invention can be used in combination with other immunity enhancing agents that can enhance the immunological response in vivo. Other immunity enhancing agents may be contained in the immunity-inducing agent of the present invention, or may be administered to a patient in combination with the immunity-inducing agent of the present invention as a separate composition.
 上記「他の免疫増強剤」としては、例えばアジュバントを挙げることができる。アジュバントは、抗原の貯蔵所(細胞外又はマクロファージ内)を提供し、マクロファージを活性化し、かつ特定のリンパ球を刺激することにより、免疫学的応答を強化し得るので、抗癌作用を高めることができる。したがって、本発明の免疫誘導剤を癌の治療又は予防薬の有効成分に用いる場合、免疫誘導剤は、有効成分たる本発明のポリペプチドに加えてさらにアジュバントを含むことが好ましい。多数の種類のアジュバントが当業界で周知であり、いずれのアジュバントでも用いることができる。アジュバントの具体例としては、MPL(SmithKline Beecham)、サルモネラ属のSalmonella minnesota Re 595リポ多糖類の精製及び酸加水分解後に得られる同類物;QS21(SmithKline Beecham)、Quillja saponaria抽出物から精製される純QA-21サポニン;PCT出願WO96/33739(SmithKline Beecham)に記載されたDQS21;QS-7、QS-17、QS-18及びQS-L1(So,H.S.,et al.,1997,Molecules and cells,7:178-186);フロイントの不完全アジュバント;フロイントの完全アジュバント;ビタミンE;モンタニド;ミョウバン;CpGオリゴヌクレオチド(例えば、Kreig,A.M.,et al.,1995,Nature374:546-549を参照);ポリIC及びその誘導体(ポリICLC等)ならびにスクアレン及び/又はトコフェロールのような生分解性油から調製される種々の油中水エマルションが挙げられる。中でも、フロイントの不完全アジュバント、モンタニド、ポリIC及びその誘導体並びにCpGオリゴヌクレオチドが好ましい。上記アジュバントとポリペプチドの混合比は、典型的には約1:10~10:1、好ましくは約1:5~5:1、より好ましくは約1:1である。ただし、アジュバントは上記例示に限定されず、当業界で公知の上記以外のアジュバントも本発明の免疫誘導剤を投与する際に用いることができる(例えば、Goding,Monoclonal Antibodies:Principles and Practice,第2版,1986年を参照)。免疫誘導剤及びアジュバントの混合物又はエマルションの調製方法は、予防接種の当業者には周知である。 Examples of the “other immune enhancing agent” include an adjuvant. Adjuvants provide an antigen reservoir (extracellular or in macrophages), can enhance the immunological response by activating macrophages and stimulating specific lymphocytes, thus enhancing anticancer effects Can do. Therefore, when the immunity-inducing agent of the present invention is used as an active ingredient of a therapeutic or prophylactic agent for cancer, the immunity-inducing agent preferably further contains an adjuvant in addition to the polypeptide of the present invention as an active ingredient. Many types of adjuvants are well known in the art, and any adjuvant can be used. Specific examples of adjuvants include MPL (SmithKline Beecham), Salmonella minnesota Re 595 lipopolysaccharide, and the like obtained after purification and acid hydrolysis; QA-21 saponin; DQS21 described in PCT application WO 96/33739 (SmithKline Beecham); QS-7, QS-17, QS-18 and QS-L1 (So, HS, et al., 1997, Molecules). and cells, 7: 178-186); Freund's incomplete adjuvant; Freund's complete adjuvant; Vitamin E; Montanide; Alum; CpG Rigonucleotides (see, eg, Kreig, AM, et al., 1995, Nature 374: 546-549); poly IC and its derivatives (such as poly ICLC) and biodegradable oils such as squalene and / or tocopherol And various water-in-oil emulsions prepared from Of these, Freund's incomplete adjuvant, montanide, poly IC and derivatives thereof, and CpG oligonucleotides are preferred. The mixing ratio of the adjuvant to the polypeptide is typically about 1:10 to 10: 1, preferably about 1: 5 to 5: 1, more preferably about 1: 1. However, adjuvants are not limited to the above examples, and other adjuvants known in the art can also be used when administering the immunity-inducing agent of the present invention (for example, Goding, Monoclonal Antibodies: Principles and Practices, Second Edition, 1986). Methods for preparing mixtures or emulsions of immunity inducers and adjuvants are well known to those skilled in vaccination.
 また、上記他の免疫増強剤としては、上記アジュバント以外にも、対象の免疫応答を刺激する因子を用いることもできる。例えば、リンパ球や抗原提示細胞を刺激する特性を有する各種サイトカインを免疫増強剤として本発明の免疫誘導剤と組み合わせて用いることができる。そのような免疫学的応答を増強可能な多数のサイトカインは、当業者に公知であり、その例として、ワクチンの防御作用を強化することが示されているインターロイキン-12(IL-12)、GM-CSF、IL-18、インターフェロンα(IFN-α)、インターフェロンβ(IFN-β)、インターフェロンω(IFN-ω)、インターフェロンγ(IFN-γ)及びFlt3リガンドが挙げられるが、これらに限定されない。このような因子も上記免疫増強剤として用いることができ、本発明の免疫誘導剤に含ませて又は別個の組成物として本発明の免疫誘導剤と併用して患者に投与することができる。 In addition to the above-described adjuvant, factors that stimulate the immune response of the subject can also be used as the other immune enhancer. For example, various cytokines having the property of stimulating lymphocytes and antigen-presenting cells can be used in combination with the immune inducer of the present invention as an immune enhancer. Many cytokines capable of enhancing such immunological responses are known to those skilled in the art, such as interleukin-12 (IL-12), which has been shown to enhance the protective effects of vaccines, Examples include, but are not limited to, GM-CSF, IL-18, interferon α (IFN-α), interferon β (IFN-β), interferon ω (IFN-ω), interferon γ (IFN-γ), and Flt3 ligand. Not. Such factors can also be used as the above-mentioned immunity enhancing agent, and can be administered to patients in the immunity-inducing agent of the present invention or in combination with the immunity-inducing agent of the present invention as a separate composition.
 <癌の治療又は予防薬>
 本発明の免疫誘導剤は、癌の治療又は予防薬の有効成分として用いることができる。
<Cancer treatment or prevention drug>
The immunity-inducing agent of the present invention can be used as an active ingredient of a therapeutic or prophylactic agent for cancer.
 癌の治療又は予防薬は、本発明の免疫誘導剤を各投与形態に適した、薬理学的に許容される担体、希釈剤、賦形剤等の添加剤を適宜混合させて製剤することもできる。 A therapeutic or prophylactic agent for cancer can be formulated by appropriately mixing the immunity-inducing agent of the present invention with additives such as pharmacologically acceptable carriers, diluents and excipients suitable for each administration form. it can.
 製剤方法及び使用可能な添加剤は、医薬製剤の分野において周知であり、いずれの方法及び添加剤をも用いることができる。添加剤の具体例としては、生理緩衝液のような希釈剤;砂糖、乳糖、コーンスターチ、リン酸カルシウム、ソルビトール、グリシン等のような賦形剤;シロップ、ゼラチン、アラビアゴム、ソルビトール、ポリビニルクロリド、トラガント等のような結合剤;ステアリン酸マグネシウム、ポリエチレングリコール、タルク、シリカ等の滑沢剤等が挙げられるが、これらに限定されない。製剤形態としては、錠剤、カプセル剤、顆粒剤、散剤、シロップ剤等の経口剤、吸入剤、注射剤、座剤、液剤等の非経口剤等を挙げることができる。これらの製剤は一般的に知られている製法によって作ることができる。 Preparation methods and usable additives are well known in the field of pharmaceutical preparations, and any method and additive can be used. Specific examples of additives include diluents such as physiological buffers; excipients such as sugar, lactose, corn starch, calcium phosphate, sorbitol, glycine; syrup, gelatin, gum arabic, sorbitol, polyvinyl chloride, tragacanth, etc. Binders such as magnesium stearate, polyethylene glycol, talc, silica and the like, but are not limited thereto. Examples of the dosage form include oral preparations such as tablets, capsules, granules, powders, and syrups, and parenteral preparations such as inhalants, injections, suppositories, and liquids. These preparations can be made by generally known production methods.
 <抗原提示細胞>
 また、上記ポリペプチドと抗原提示細胞とをインビトロで接触させることにより、該ポリペプチドを抗原提示細胞に提示させることができる。すなわち、上記した(a)又は(b)のポリペプチドは、抗原提示細胞の処理剤として利用し得る。ここで、抗原提示細胞としては、MHCクラスI分子及びクラスII分子を保有する樹状細胞又はB細胞を好ましく用いることができる。種々のMHCクラスI分子及びクラスII分子が同定されており、周知である。ヒトにおけるMHC分子はHLAと呼ぶ。HLAクラスI分子としては、HLA-A、HLA-B、HLA-Cを挙げることができ、より具体的には、HLA-A1、HLA-A0201、HLA-A0204、HLA-A0205、HLA-A0206、HLA-A0207、HLA-A11、HLA-A24、HLA-A31、HLA-A6801、HLA-B7、HLA-B8、HLA-B2705、HLA-B37、HLA-Cw0401、HLA-Cw0602等を挙げることができる。HLAクラスII分子としては、HLA-DR、HLA-DQ、HLA-DPを挙げることができ、より具体的には、HLA-DRB1*01、HLA-DRB1*03、HLA-DRB1*04、HLA-DRB1*0405、HLA-DRB1*07、HLA-DRB1*08、HLA-DRB1*11、HLA-DRB1*13、HLA-DRB1*15、HLA-DRB1*15、HLA-DQA1、HLA-DQB1、HLA-DPB1が挙げられる。
<Antigen-presenting cells>
In addition, the polypeptide can be presented to the antigen-presenting cell by contacting the polypeptide and the antigen-presenting cell in vitro. That is, the above-described polypeptide (a) or (b) can be used as a treatment agent for antigen-presenting cells. Here, dendritic cells or B cells possessing MHC class I molecules and class II molecules can be preferably used as antigen-presenting cells. Various MHC class I and class II molecules have been identified and are well known. MHC molecules in humans are called HLA. Examples of HLA class I molecules include HLA-A, HLA-B, and HLA-C. More specifically, HLA-A1, HLA-A0201, HLA-A0204, HLA-A0205, HLA-A0206, HLA-A0207, HLA-A11, HLA-A24, HLA-A31, HLA-A6801, HLA-B7, HLA-B8, HLA-B2705, HLA-B37, HLA-Cw0401, HLA-Cw0602, and the like. Examples of HLA class II molecules include HLA-DR, HLA-DQ, and HLA-DP. More specifically, HLA-DRB1 * 01, HLA-DRB1 * 03, HLA-DRB1 * 04, HLA- DRB1 * 0405, HLA-DRB1 * 07, HLA-DRB1 * 08, HLA-DRB1 * 11, HLA-DRB1 * 13, HLA-DRB1 * 15, HLA-DRB1 * 15, HLA-DQA1, HLA-DQB1, HLA- DPB1 is mentioned.
 MHCクラスI又はMHCクラスII分子を保有する樹状細胞又はB細胞は、周知の方法により血液等から調製することができる。例えば、骨髄、臍帯血又は患者末梢血から、顆粒球マクロファージコロニー刺激因子(GM-CSF)とIL-3(又はIL-4)を用いて樹状細胞を誘導し、その培養系に腫瘍関連ペプチドを加えることにより、腫瘍特異的な樹状細胞を誘導することができる。 Dendritic cells or B cells carrying MHC class I or MHC class II molecules can be prepared from blood or the like by known methods. For example, dendritic cells are induced from bone marrow, umbilical cord blood or patient peripheral blood using granulocyte macrophage colony-stimulating factor (GM-CSF) and IL-3 (or IL-4), and tumor-related peptide is introduced into the culture system. Can be added to induce tumor-specific dendritic cells.
 この樹状細胞を有効量投与することで、癌の治療に望ましい免疫応答を誘導できる。用いる細胞は、健康人から提供された骨髄や臍帯血、患者本人の骨髄や末梢血等を用いることができる。患者本来の自家細胞は、安全性が高く、重篤な副作用を回避することも期待できるので好ましい。末梢血又は骨髄は新鮮試料、低温保存試料及び凍結保存試料のいずれでもよい。末梢血は、全血を培養してもよいし、白血球成分だけを分離して培養してもよいが、後者の方が効率的で好ましい。さらに白血球成分の中でも単核球を分離してもよい。また、骨髄や臍帯血を起源とする場合には、骨髄を構成する細胞全体を培養してもよいし、これから単核球を分離して培養してもよい。末梢血やその白血球成分、骨髄細胞には、樹状細胞の起源となる単核球、造血幹細胞又は未成熟樹状細胞やCD4陽性細胞等が含まれている。用いられるサイトカインは、安全性と生理活性が確認された特性のものであれば、天然型、又は遺伝子組み換え型等、その生産手法については問わないが、好ましくは医療用に用いられる品質が確保された標品が必要最低量で用いられる。添加するサイトカインの濃度は、樹状細胞が誘導される濃度であれば特に限定されず、通常サイトカインの合計濃度で10~1000ng/mL程度が好ましく、より好ましくは20~500ng/mL程度である。培養は、白血球の培養に通常用いられている周知の培地を用いて行うことができる。培養温度は白血球の増殖が可能であれば特に限定されないが、ヒトの体温である37℃程度が最も好ましい。また、培養中の気体環境は白血球の増殖が可能であれば特に限定されないが、5%COを通気することが好ましい。さらに培養期間は、必要数の細胞が誘導される期間であれば特に限定されないが、通常3日~2週間の間で行われる。細胞の分離や培養に供される機器は、適宜適当なものを用いることができるが、医療用に安全性が確認され、かつ操作が安定して簡便であることが好ましい。特に細胞培養装置については、シャーレ、フラスコ、ボトル等の一般的容器に拘わらず、積層型容器や多段式容器、ローラーボトル、スピナー式ボトル、バッグ式培養器、中空糸カラム等も用いることができる。 By administering an effective amount of this dendritic cell, an immune response desirable for cancer treatment can be induced. As the cells to be used, bone marrow and umbilical cord blood provided from a healthy person, bone marrow and peripheral blood of the patient himself, and the like can be used. The patient's original autologous cells are preferable because they are highly safe and can be expected to avoid serious side effects. Peripheral blood or bone marrow may be a fresh sample, a cryopreserved sample, or a cryopreserved sample. As the peripheral blood, whole blood may be cultured, or only the leukocyte component may be separated and cultured, but the latter is more efficient and preferable. Furthermore, mononuclear cells may be separated among the leukocyte components. Moreover, when originating in bone marrow or umbilical cord blood, the whole cells constituting the bone marrow may be cultured, or mononuclear cells may be separated and cultured from this. Peripheral blood, its white blood cell components, and bone marrow cells include mononuclear cells, hematopoietic stem cells, immature dendritic cells, CD4 positive cells, and the like that are the origin of dendritic cells. As long as the cytokine used is of a property that has been confirmed to be safe and physiologically active, it does not matter whether it is a natural type or a genetically engineered type, and its production method is preferably ensured. Are used in the minimum amount required. The concentration of the cytokine to be added is not particularly limited as long as it is a concentration at which dendritic cells are induced, and is usually preferably about 10 to 1000 ng / mL, more preferably about 20 to 500 ng / mL as the total concentration of cytokines. The culture can be performed using a well-known medium usually used for culturing leukocytes. The culture temperature is not particularly limited as long as leukocyte growth is possible, but is most preferably about 37 ° C. which is the human body temperature. In addition, the gas environment during the culture is not particularly limited as long as leukocytes can grow, but it is preferable to aerate 5% CO 2 . Further, the culture period is not particularly limited as long as a necessary number of cells are induced, but it is usually performed for 3 days to 2 weeks. As a device used for cell separation and culture, an appropriate device can be used as appropriate, but it is preferable that safety is confirmed for medical use and that the operation is stable and simple. In particular, for cell culture devices, stacked containers, multistage containers, roller bottles, spinner bottles, bag-type incubators, hollow fiber columns, etc. can be used regardless of general containers such as petri dishes, flasks, and bottles. .
 上記ポリペプチドと抗原提示細胞とをインビトロで接触させる方法自体は、周知の方法により行なうことができる。例えば、抗原提示細胞を、上記ポリペプチドを含む培養液中で培養することにより達成できる。培地中のペプチド濃度は、特に限定されないが、通常1~100μg/mL程度、好ましくは5~20μg/mL程度である。培養時の細胞密度は特に限定されないが、通常10~10細胞/mL程度、好ましくは5×10~5×10細胞/mL程度である。培養は、常法に従い、37℃、5%CO雰囲気中で行なうことが好ましい。なお、抗原提示細胞が表面上に提示できるペプチドの長さは、通常、最大で30アミノ酸残基程度である。したがって、特に限定されないが、抗原提示細胞とポリペプチドをインビトロで接触させる場合、該ポリペプチドを30アミノ酸残基以下の長さに調製してもよい。 The method of bringing the polypeptide into contact with the antigen-presenting cell in vitro can be performed by a well-known method. For example, it can be achieved by culturing antigen-presenting cells in a culture solution containing the polypeptide. The peptide concentration in the medium is not particularly limited, but is usually about 1 to 100 μg / mL, preferably about 5 to 20 μg / mL. The cell density during the culture is not particularly limited, but is usually about 10 3 to 10 7 cells / mL, preferably about 5 × 10 4 to 5 × 10 6 cells / mL. Cultivation is preferably performed according to a conventional method in an atmosphere of 37 ° C. and 5% CO 2 . The length of the peptide that can be presented on the surface by antigen-presenting cells is usually about 30 amino acid residues at the maximum. Therefore, although not particularly limited, when the antigen-presenting cell and the polypeptide are contacted in vitro, the polypeptide may be prepared to a length of 30 amino acid residues or less.
 上記したポリペプチドの共存下において抗原提示細胞を培養することにより、ペプチドが抗原提示細胞のMHC分子に取り込まれ、抗原提示細胞の表面に提示される。したがって、上記ポリペプチドを用いて、該ポリペプチドとMHC分子の複合体を含む、単離抗原提示細胞を調製することができる。このような抗原提示細胞は、生体内又はインビトロにおいて、T細胞に対して該ポリペプチドを提示し、該ポリペプチドに特異的な細胞障害性T細胞又はヘルパーT細胞を誘導し、増殖させることができる。 By culturing antigen-presenting cells in the presence of the above-described polypeptide, the peptide is taken up by MHC molecules of the antigen-presenting cell and presented on the surface of the antigen-presenting cell. Therefore, an isolated antigen-presenting cell containing a complex of the polypeptide and MHC molecule can be prepared using the polypeptide. Such antigen-presenting cells can present the polypeptide to T cells in vivo or in vitro, and induce and proliferate cytotoxic T cells or helper T cells specific for the polypeptide. it can.
 上記のようにして調製される、上記ポリペプチドとMHC分子の複合体とを含む抗原提示細胞を、T細胞とインビトロで接触させることにより、該ポリペプチドに特異的な細胞障害性T細胞又はへルパーT細胞を誘導し、増殖させることができる。これは、上記抗原提示細胞とT細胞とを液体培地中で共培養することにより行なうことができる。例えば、抗原提示細胞を液体培地に懸濁して、マイクロプレートのウェル等の容器に入れ、これにT細胞を添加して培養することにより行なうことができる。共培養時の抗原提示細胞とT細胞の混合比率は、特に限定されないが、通常、細胞数の比率で1:1~1:100程度、好ましくは1:5~1:20程度である。また、液体培地中に懸濁する抗原提示細胞の密度は、特に限定されないが、通常、100~1000万細胞/mL程度、好ましくは10000~100万細胞/mL程度である。共培養は、常法に従い、37℃、5%CO雰囲気中で行なうことが好ましい。培養時間は、特に限定されないが、通常、2日~3週間、好ましくは4日~2週間程度である。また、共培養は、IL-2、IL-6、IL-7及びIL-12のようなインターロイキンの1種又は複数の存在下で行なうことが好ましい。この場合、IL-2及びIL-7の濃度は、通常5~20U/mL程度、IL-6の濃度は通常500~2000U/mL程度、IL-12の濃度は通常5~20ng/mL程度であるが、これらに限定されるものではない。上記の共培養は、新鮮な抗原提示細胞を追加して1回又は数回繰り返してもよい。例えば、共培養後の培養上清を捨て、新鮮な抗原提示細胞の懸濁液を添加してさらに共培養を行なうという操作を、1回又は数回繰り返してもよい。各共培養の条件は、上記と同様でよい。 By contacting an antigen-presenting cell containing the above-described polypeptide-MHC molecule complex prepared as described above with a T cell in vitro, a cytotoxic T cell specific for the polypeptide Luper T cells can be induced and expanded. This can be done by co-culturing the antigen-presenting cells and T cells in a liquid medium. For example, it can be carried out by suspending antigen-presenting cells in a liquid medium, placing them in a container such as a well of a microplate, adding T cells thereto, and culturing. The mixing ratio of antigen-presenting cells and T cells during co-culture is not particularly limited, but is usually about 1: 1 to 1: 100, preferably about 1: 5 to 1:20 in terms of the number of cells. The density of antigen-presenting cells suspended in the liquid medium is not particularly limited, but is usually about 1 to 10 million cells / mL, preferably about 10,000 to 1 million cells / mL. The co-culture is preferably performed according to a conventional method in a 37 ° C., 5% CO 2 atmosphere. The culture time is not particularly limited, but is usually 2 days to 3 weeks, preferably about 4 days to 2 weeks. The co-culture is preferably performed in the presence of one or more interleukins such as IL-2, IL-6, IL-7 and IL-12. In this case, the concentration of IL-2 and IL-7 is usually about 5 to 20 U / mL, the concentration of IL-6 is usually about 500 to 2000 U / mL, and the concentration of IL-12 is usually about 5 to 20 ng / mL. However, it is not limited to these. The above co-culture may be repeated once or several times by adding fresh antigen-presenting cells. For example, the operation of discarding the culture supernatant after co-culture, adding a fresh suspension of antigen-presenting cells, and further co-culturing may be repeated once or several times. The conditions for each co-culture may be the same as described above.
 上記の共培養により、該ポリペプチドに特異的な細胞障害性T細胞及びヘルパーT細胞が誘導され、増殖される。したがって、上記ポリペプチドを用いて、該ポリペプチドとMHC分子の複合体を選択的に結合する、単離T細胞を調製することができる。 By the above co-culture, cytotoxic T cells and helper T cells specific for the polypeptide are induced and proliferated. Therefore, an isolated T cell that selectively binds the complex of the polypeptide and the MHC molecule can be prepared using the polypeptide.
 後述の実施例に記載される通り、SCD1タンパク質をコードする遺伝子(SCD1遺伝子)は、それぞれ悪性リンパ腫組織、悪性リンパ腫細胞、乳癌組織、乳癌細胞、肝臓癌組織、肝臓癌細胞、前立腺癌組織、前立腺癌細胞、卵巣癌組織、卵巣癌細胞、腎臓癌組織、腎臓癌細胞、大腸癌組織、大腸癌細胞、胃癌組織、胃癌細胞、悪性脳腫瘍組織、悪性脳腫瘍細胞、食道癌組織、食道癌細胞、肺癌組織、肺癌細胞、に特異的に発現している。したがって、これらの癌種においては、SCD1タンパク質が正常細胞よりも有意に多く存在していると考えられる。癌細胞内に存在するSCD1タンパク質の一部が癌細胞表面上のMHC分子に提示され、上記のようにして調製した細胞障害性T細胞又はヘルパーT細胞が生体内に投与されると、これを目印として細胞障害性T細胞が癌細胞を障害する又は細胞傷害性T細胞の細胞障害活性を増強することができる。また、上記ポリペプチドを提示する抗原提示細胞は、生体内においても該ポリペプチドに特異的な細胞障害性T細胞及びヘルパーT細胞を誘導し、増殖させることができるので、該抗原提示細胞を生体内に投与することによっても、細胞傷害性T細胞が癌細胞を障害する、又は細胞障害性T細胞の細胞障害活性を増強ことができる。すなわち、上記ポリペプチドを用いて調製された上記細胞障害性T細胞やヘルパーT細胞、上記抗原提示細胞もまた、本発明の免疫誘導剤と同様に、癌の治療又は予防薬として有用である。 As described in Examples below, the genes encoding SCD1 protein (SCD1 gene) are malignant lymphoma tissue, malignant lymphoma cell, breast cancer tissue, breast cancer cell, liver cancer tissue, liver cancer cell, prostate cancer tissue, prostate Cancer cell, ovarian cancer tissue, ovarian cancer cell, kidney cancer tissue, kidney cancer cell, colon cancer tissue, colon cancer cell, stomach cancer tissue, stomach cancer cell, malignant brain tumor tissue, malignant brain tumor cell, esophageal cancer tissue, esophageal cancer cell, lung cancer It is expressed specifically in tissues and lung cancer cells. Therefore, in these cancer types, SCD1 protein is considered to exist significantly more than normal cells. When a part of the SCD1 protein present in the cancer cell is presented to the MHC molecule on the surface of the cancer cell and the cytotoxic T cell or helper T cell prepared as described above is administered in vivo, As a landmark, cytotoxic T cells can damage cancer cells or enhance the cytotoxic activity of cytotoxic T cells. In addition, since the antigen-presenting cells presenting the polypeptide can induce and proliferate cytotoxic T cells and helper T cells specific for the polypeptide even in vivo, the antigen-presenting cells can survive. Also by administering to the body, cytotoxic T cells can damage cancer cells, or the cytotoxic activity of cytotoxic T cells can be enhanced. That is, the cytotoxic T cell, helper T cell, and antigen-presenting cell prepared using the polypeptide are also useful as a therapeutic or prophylactic agent for cancer, like the immunity-inducing agent of the present invention.
 上記した単離抗原提示細胞や単離T細胞を生体に投与する場合には、これらの細胞を異物として攻撃する生体内での免疫応答を回避するために、治療を受ける患者から採取した抗原提示細胞又はT細胞を、上記のように上記(a)又は(b)のポリペプチドを用いて調製したものであることが好ましい。 When administering the above-mentioned isolated antigen-presenting cells or isolated T cells to a living body, in order to avoid in vivo immune responses that attack these cells as foreign bodies, antigen presentation collected from patients undergoing treatment Cells or T cells are preferably prepared using the polypeptide (a) or (b) as described above.
 抗原提示細胞又は単離T細胞を有効成分として含む癌の治療又は予防薬の投与経路は、静脈内投与や動脈内投与のような非経口投与が好ましい。また、投与量は、症状や投与目的等に応じて適宜選択されるが、通常1個~10兆個、好ましくは100万個~10億個であり、これを数日又は数月に1回投与するのが好ましい。製剤は、例えば、細胞を生理緩衝食塩水に懸濁したもの等であってよく、他の抗癌剤やサイトカイン等と併用することもできる。また、製剤分野において周知の1又は2以上の添加剤を添加することもできる。 The administration route of a therapeutic or prophylactic agent for cancer comprising antigen presenting cells or isolated T cells as an active ingredient is preferably parenteral administration such as intravenous administration or intraarterial administration. The dose is appropriately selected according to symptoms, administration purposes, etc., but is usually 1 to 10 trillion, preferably 1 million to 1 billion, and this is once every several days or months. Administration is preferred. The preparation may be, for example, one in which cells are suspended in physiological buffer saline, and can be used in combination with other anticancer agents, cytokines, and the like. In addition, one or two or more additives well known in the pharmaceutical field can be added.
 <遺伝子ワクチン>
 また、上記(a)又は(b)のポリペプチドをコードするポリヌクレオチドを対象動物の体内で発現させることによっても、免疫誘導、すなわち該生体内で抗体生産や細胞障害性T細胞を誘導することができ、ポリペプチドを投与するのと同等の効果が得られる。すなわち、本発明の免疫誘導剤は、上記した(a)又は(b)のポリペプチドをコードするポリヌクレオチドを含み、生体内で該ポリペプチドを発現可能な組換えベクターを有効成分として含むものであってもよい。後述の実施例に示されるように、このような抗原ポリペプチドを発現可能な組換えベクターは、「遺伝子ワクチン」とも呼ばれる。
<Gene Vaccine>
In addition, immune expression, that is, induction of antibody production or cytotoxic T cells in the living body can also be achieved by expressing a polynucleotide encoding the polypeptide of (a) or (b) in the body of the subject animal. The same effect as that obtained by administering the polypeptide can be obtained. That is, the immunity-inducing agent of the present invention comprises a polynucleotide encoding the above-described polypeptide (a) or (b), and contains a recombinant vector capable of expressing the polypeptide in vivo as an active ingredient. There may be. As shown in the Examples below, a recombinant vector capable of expressing such an antigen polypeptide is also called a “gene vaccine”.
 遺伝子ワクチンを製造するために用いるベクターは、対象動物細胞内(好ましくは哺乳動物細胞内)で発現可能なベクターであれば特に限定されず、プラスミドベクターでもウイルスベクターでもよく、遺伝子ワクチンの分野で公知のいかなるベクターを用いてもよい。なお、上記ポリペプチドをコードするDNAやRNA等のポリヌクレオチドは、上述した通り、常法により容易に調製することができる。また、ベクターへの該ポリヌクレオチドの組み込みは、当業者に周知の方法を用いて行なうことができる。 The vector used for producing the gene vaccine is not particularly limited as long as it can be expressed in the target animal cell (preferably in the mammalian cell), and may be a plasmid vector or a virus vector, and is known in the field of gene vaccines. Any of these vectors may be used. In addition, as described above, a polynucleotide such as DNA or RNA encoding the polypeptide can be easily prepared by a conventional method. In addition, the polynucleotide can be incorporated into a vector by a method well known to those skilled in the art.
 遺伝子ワクチンの投与経路は、好ましくは筋肉内投与、皮下投与、静脈内投与、動脈内投与等の非経口投与経路であり、投与量は、抗原の種類等に応じて適宜選択することができるが、通常、体重1kg当たり、遺伝子ワクチンの重量で0.1μg~100mg程度、好ましくは1μg~10mg程度である。 The administration route of the gene vaccine is preferably a parenteral administration route such as intramuscular administration, subcutaneous administration, intravenous administration or intraarterial administration, and the dosage can be appropriately selected according to the type of antigen and the like. Usually, the weight of the gene vaccine per kg of body weight is about 0.1 μg to 100 mg, preferably about 1 μg to 10 mg.
 ウイルスベクターによる方法としては、例えばレトロウイルス、アデノウイルス、アデノ関連ウイルス、ヘルペスウイルス、ワクシニアウイルス、ポックスウイルス、ポリオウイルス、シンドビスウイルス等のRNAウイルス又はDNAウイルスに、上記ポリペプチドをコードするポリヌクレオチドを組み込み、これを対象動物に感染させる方法が挙げられる。この中で、レトロウイルス、アデノウイルス、アデノ関連ウイルス、ワクシニアウイルス等を用いた方法が特に好ましい。 As a method using a viral vector, for example, a polynucleotide encoding the above polypeptide in RNA virus or DNA virus such as retrovirus, adenovirus, adeno-associated virus, herpes virus, vaccinia virus, poxvirus, poliovirus, Sindbis virus, etc. And a method for infecting a target animal with this. Of these, methods using retroviruses, adenoviruses, adeno-associated viruses, vaccinia viruses and the like are particularly preferred.
 その他の方法としては、発現プラスミドを直接筋肉内に投与する方法(DNAワクチン法)、リポソーム法、リポフェクチン法、マイクロインジェクション法、リン酸カルシウム法、エレクトロポレーション法等が挙げられ、特にDNAワクチン法、リポソーム法が好ましい。 Examples of other methods include a method in which an expression plasmid is directly administered into muscle (DNA vaccine method), a liposome method, a lipofectin method, a microinjection method, a calcium phosphate method, an electroporation method, and the like. The method is preferred.
 本発明で用いられる上記ポリペプチドをコードする遺伝子を実際に医薬として作用させるには、遺伝子を直接体内に導入するインビボ方法、及び対象動物からある種の細胞を採取し体外で遺伝子を該細胞に導入しその細胞を体内に戻すエクソビボ方法があるが、インビボ方法がより好ましい。 In order to cause the gene encoding the above-mentioned polypeptide used in the present invention to actually act as a medicine, an in vivo method in which the gene is directly introduced into the body, and certain cells are collected from the target animal and the gene is transferred to the cells outside the body. There is an ex vivo method of introducing and returning the cells to the body, but an in vivo method is more preferred.
 インビボ方法により投与する場合は、治療目的の疾患、症状等に応じた適当な投与経路により投与され得る。例えば、静脈、動脈、皮下、筋肉内等に投与することが出来る。インビボ方法により投与する場合は、例えば、液剤等の製剤形態をとりうるが、一般的には、有効成分である本発明の上記ペプチドをコードするDNAを含有する注射剤等とされ、必要に応じて、慣用の担体を加えてもよい。また、該DNAを含有するリポソーム又は膜融合リポソーム(センダイウイルス(HVJ)-リポソーム等)においては、懸濁剤、凍結剤、遠心分離濃縮凍結剤等のリポソーム製剤の形態とすることができる。 In the case of administration by an in vivo method, it can be administered by an appropriate administration route according to the disease, symptom or the like for the purpose of treatment. For example, it can be administered intravenously, artery, subcutaneous, intramuscularly. When administered by an in vivo method, for example, it can be in the form of a preparation such as a liquid, but is generally an injection containing the DNA encoding the peptide of the present invention, which is an active ingredient, etc. Conventional carriers may be added. In addition, the liposome or membrane-fused liposome containing the DNA (Sendai virus (HVJ) -liposome or the like) can be in the form of a liposome preparation such as a suspension, a freezing agent, or a centrifugal concentrated freezing agent.
 なお、本発明において、「配列番号1に示される塩基配列」と言った場合には、配列番号1に実際に示されている塩基配列の他、これと相補的な配列も包含する。したがって、「配列番号1に示される塩基配列を有するポリヌクレオチド」と言った場合には、配列番号1に実際に示されている塩基配列を有する一本鎖ポリヌクレオチド、その相補的な塩基配列を有する一本鎖ポリヌクレオチド、及びこれらからなる二本鎖ポリヌクレオチドが包含される。本発明で用いられるポリペプチドをコードするポリヌクレオチドを調製する場合には、適宜いずれかの塩基配列を選択することとなるが、当業者であれば容易にその選択をすることができる。 In the present invention, the term “base sequence shown in SEQ ID NO: 1” includes the base sequence actually shown in SEQ ID NO: 1 as well as a complementary sequence thereto. Therefore, when saying “polynucleotide having the base sequence shown in SEQ ID NO: 1”, the single-stranded polynucleotide having the base sequence actually shown in SEQ ID NO: 1, its complementary base sequence Single-stranded polynucleotides and double-stranded polynucleotides comprising these are included. When preparing a polynucleotide encoding the polypeptide used in the present invention, any base sequence is appropriately selected, but those skilled in the art can easily select it.
 以下、本発明を実施例に基づき、より具体的に説明する。 Hereinafter, the present invention will be described more specifically based on examples.
 <実施例1:各組織での発現解析>
 (1)各癌細胞株でのSCD1遺伝子発現解析
 ヒトSCD1タンパク質のアミノ酸配列をコードする遺伝子配列(配列番号1)をGene Bankから得た。得られた遺伝子に対しヒト各種細胞株における発現をRT-PCR(Reverse Transcription-PCR)法により調べた。逆転写反応は以下の通り行なった。すなわち、各組織50~100mg及び各細胞株5~10×10個の細胞からTRIZOL試薬(Life Technologies社製)を用いて添付のプロトコールに従い全RNAを抽出した。この全RNAを用いてSuperscript First-Strand Synthesis System for RT-PCR(Life Technologies社製)により添付のプロトコールに従いcDNAを合成した。ヒト正常組織(脳、海馬、精巣、結腸、胎盤)のcDNAは、ジーンプールcDNA(Life Technologies社製)、QUICK-Clone cDNA(クロンテック社製)及びLarge-Insert cDNA Library(クロンテック社製)を用いた。PCR反応は、取得した遺伝子特異的なプライマー(プライマーの塩基配列は配列番号49及び50に記載)を用いて以下の通り行った。すなわち、逆転写反応により調製したサンプル0.25μL、上記プライマーを各2μM、0.2mMの各dNTP、0.65UのExTaqポリメラーゼ(宝酒造社製)となるように各試薬と添付バッファーを加え、全量を25μLとし、Thermal Cycler(BIO RAD社製)を用いて、94℃-30秒、55℃-30秒、及び72℃-1分のサイクルを30回繰り返して行った。比較対照のため、ハウスキーピング遺伝子であるGAPDH遺伝子に特異的なプライマー(ヒトGAPDHプライマーの塩基配列は配列番号51及び52に記載)も同時に用いた。
<Example 1: Expression analysis in each tissue>
(1) SCD1 gene expression analysis in each cancer cell line A gene sequence (SEQ ID NO: 1) encoding the amino acid sequence of human SCD1 protein was obtained from Gene Bank. The expression of the obtained gene in various human cell lines was examined by RT-PCR (Reverse Transcription-PCR) method. The reverse transcription reaction was performed as follows. Specifically, total RNA was extracted from 50 to 100 mg of each tissue and 5 to 10 × 10 6 cells of each cell line using TRIZOL reagent (manufactured by Life Technologies) according to the attached protocol. Using this total RNA, cDNA was synthesized according to the attached protocol by Superscript First-Strand Synthesis System for RT-PCR (manufactured by Life Technologies). For the cDNA of normal human tissues (brain, hippocampus, testis, colon, placenta), Genepool cDNA (Life Technologies), QUICK-Clone cDNA (Clontech) and Large-Insert cDNA Library (Clontech) are used. It was. The PCR reaction was performed as follows using the obtained gene-specific primer (the base sequence of the primer is described in SEQ ID NOs: 49 and 50). That is, 0.25 μL of the sample prepared by the reverse transcription reaction, 2 μM each of the above primers, 0.2 mM of each dNTP, 0.65 U of ExTaq polymerase (manufactured by Takara Shuzo Co., Ltd.), and each reagent and attached buffer were added. The cycle was 94 ° C-30 seconds, 55 ° C-30 seconds, and 72 ° C-1 minutes 30 times using a Thermal Cycler (manufactured by BIO RAD). For comparison, a primer specific for the GAPDH gene, which is a housekeeping gene (the base sequence of the human GAPDH primer is described in SEQ ID NOs: 51 and 52) was also used.
 その結果、図1に示すように、ヒトSCD1遺伝子は、大部分の癌細胞株、すなわち悪性リンパ腫、乳癌、肝臓癌、前立腺癌、卵巣癌、腎臓癌、大腸癌、胃癌、悪性脳腫瘍、食道癌及び肺癌で発現が検出された。 As a result, as shown in FIG. 1, human SCD1 gene is found in most cancer cell lines, that is, malignant lymphoma, breast cancer, liver cancer, prostate cancer, ovarian cancer, kidney cancer, colon cancer, gastric cancer, malignant brain tumor, esophageal cancer. And expression was detected in lung cancer.
 (2)ヒト癌組織におけるSCD1タンパク質の発現(免疫組織化学染色)
 パラフィン包埋された多種類の癌組織アレイ(BIOMAX社製)の癌組織72検体を用いて、免疫組織化学染色を行った。ヒト癌組織アレイを60℃で3時間処理後、キシレンを満たした染色瓶に入れて5分ごとにキシレンを入れ替える操作を3回行った。次にキシレンの代わりにエタノール及びPBS-Tで同様の操作を行った。0.05% Tween20を含む10mMクエン酸緩衝液(pH6.0)を満たした染色瓶にヒト癌組織アレイを入れ、125℃で5分間処理後、室温で40分以上静置した。切片周囲の余分な水分をキムワイプでふき取り、DAKOPENで囲み、Peroxidase Block(DAKO社製)を適量滴下した。室温で5分間静置後、PBS-Tを満たした染色瓶に入れて5分ごとにPBS-Tを入れ替える操作を3回行った。ブロッキング液として、10% FBSを含むPBS-T溶液をのせ、モイストチャンバー内で室温にて1時間静置した。次にSCD1タンパク質に反応する市販ウサギポリクローナル抗体(sigma社)を、5% FBSを含むPBS-T溶液で10μg/mLに調製した溶液をのせ、モイストチャンバー内で4℃にて一晩静置した。PBS-Tで10分間3回洗浄を行った後、Peroxidase Labelled Polymer Conjugated(DAKO社製)適量滴下し、モイストチャンバー内に室温で30分間静置した。PBS-Tで10分間3回洗浄を行った後、DAB発色液(DAKO社製)をのせ、室温で10分程度静置した後、発色液を捨て、PBS-Tで10分間3回洗浄を行った後、蒸留水でリンスし、70%、80%、90%、95%、100%の各エタノール溶液に順番に1分間ずつ入れた後、キシレン中で一晩静置した。スライドガラスを取り出し、Glycergel Mounting Medium(DAKO社製)で封入後、観察を行った。
(2) Expression of SCD1 protein in human cancer tissue (immunohistochemical staining)
Immunohistochemical staining was performed using 72 types of cancer tissue specimens of various types of cancer tissue arrays (manufactured by BIOMAX) embedded in paraffin. The human cancer tissue array was treated at 60 ° C. for 3 hours, then placed in a staining bottle filled with xylene, and the operation of replacing xylene every 5 minutes was performed three times. Next, the same operation was performed with ethanol and PBS-T instead of xylene. A human cancer tissue array was placed in a staining bottle filled with 10 mM citrate buffer (pH 6.0) containing 0.05% Tween 20, treated at 125 ° C. for 5 minutes, and allowed to stand at room temperature for 40 minutes or more. Excess water around the section was wiped off with Kimwipe, surrounded by DAKOPEN, and a suitable amount of Peroxidase Block (manufactured by DAKO) was dropped. After allowing to stand at room temperature for 5 minutes, it was placed in a staining bottle filled with PBS-T and replaced with PBS-T every 5 minutes three times. As a blocking solution, a PBS-T solution containing 10% FBS was placed and allowed to stand in a moist chamber at room temperature for 1 hour. Next, a commercially available rabbit polyclonal antibody (Sigma) that reacts with SCD1 protein was placed at 10 μg / mL in a PBS-T solution containing 5% FBS, and allowed to stand overnight at 4 ° C. in a moist chamber. . After washing with PBS-T three times for 10 minutes, an appropriate amount of Peroxidase Labeled Polymer Conjugated (manufactured by DAKO) was added dropwise and allowed to stand at room temperature for 30 minutes in a moist chamber. After washing with PBS-T three times for 10 minutes, add DAB coloring solution (manufactured by DAKO), let stand at room temperature for about 10 minutes, discard the coloring solution, and wash with PBS-T three times for 10 minutes. After performing, it rinsed with distilled water, and after putting into each ethanol solution of 70%, 80%, 90%, 95%, 100% in order for 1 minute, it left still in xylene overnight. The slide glass was taken out and sealed with Glycergel Mounting Medium (manufactured by DAKO) and then observed.
 その結果、SCD1タンパク質は検証したほとんどの癌、悪性リンパ腫、乳癌、肝臓癌、前立腺癌、卵巣癌、腎臓癌、大腸癌、胃癌、悪性脳腫瘍、食道癌及び肺癌で強い発現が認められた。 As a result, strong expression of SCD1 protein was observed in most of the verified cancers, malignant lymphoma, breast cancer, liver cancer, prostate cancer, ovarian cancer, kidney cancer, colon cancer, stomach cancer, malignant brain tumor, esophageal cancer and lung cancer.
 <実施例2:ペプチドエピトープ反応性CD8陽性T細胞の誘導>
 (1)HLA-A0201とHLA-A24に結合するペプチドモチーフの予測
 配列番号2で示されるヒトSCD1タンパク質のアミノ酸配列の情報をGenBankから得た。HLA-A0201とHLA-A24結合モチーフ予測のため、公知のBIMASソフト(http://bimas.dcrt.nih.gov/molbio/hla_bind/で利用可能)を用いたコンピューター予測プログラムを用いてヒトSCD1タンパク質のアミノ酸配列を解析し、HLA-A0201分子に結合可能と予想される配列番号3~23で表されるアミノ酸配列からなるポリペプチド21種類と、HLA-A24分子に結合可能と予想される配列番号24~36で表されるアミノ酸配列からなるポリペプチド13種類を選択した。選択したすべてのポリペプチドは、株式会社グライナー・ジャパンのカスタムペプチド合成サービスに合成依頼した。なお、合成されたポリペプチドはHPLC分析とマススペクトル分析による品質が保証されたものである。
<Example 2: Induction of peptide epitope-reactive CD8-positive T cells>
(1) Prediction of peptide motif binding to HLA-A0201 and HLA-A24 Information on the amino acid sequence of the human SCD1 protein represented by SEQ ID NO: 2 was obtained from GenBank. Human SCD1 protein using a computer prediction program using the known BIMAS software (available at http://bimas.dcrt.nih.gov/molbio/hla_bind/) for prediction of HLA-A0201 and HLA-A24 binding motifs The 21 amino acid sequences consisting of the amino acid sequences represented by SEQ ID NOs: 3 to 23 that are predicted to be capable of binding to the HLA-A0201 molecule, and the SEQ ID NOs that are predicted to be capable of binding to the HLA-A24 molecule Thirteen types of polypeptides consisting of amino acid sequences represented by 24-36 were selected. All selected polypeptides were commissioned to a custom peptide synthesis service of Greiner Japan. The synthesized polypeptide is guaranteed quality by HPLC analysis and mass spectrum analysis.
 (2)ペプチドエピトープ反応性CD8陽性T細胞の誘導
 HLA-A0201陽性の健常人から末梢血を分離し、Lymphocyte separation medium(OrganonpTeknika,Durham,NC)に重層して1,500rpmで室温にて20分間遠心分離した。PBMCを含有する画分を回収し、冷リン酸塩緩衝液中で3回(又はそれ以上)洗浄し、PBMCを得た。得られたPBMCをAIM-V培地(Life Technololgies社製)20mLに懸濁し、培養フラスコ(Falcon社製)中に37℃、5%COの条件下で2時間付着させた。非付着細胞はT細胞調製に用い、付着細胞は樹状細胞を調製するために用いた。
(2) Induction of peptide epitope-reactive CD8-positive T cells Peripheral blood was isolated from a healthy person positive for HLA-A0201, and overlaid on Lymphocyte separation medium (OrganonpTeknika, Durham, NC) at 1,500 rpm at room temperature for 20 minutes. Centrifuged. Fractions containing PBMC were collected and washed 3 times (or more) in cold phosphate buffer to obtain PBMC. The obtained PBMC was suspended in 20 mL of AIM-V medium (Life Technologies) and allowed to attach in a culture flask (Falcon) for 2 hours under conditions of 37 ° C. and 5% CO 2 . Non-adherent cells were used for T cell preparation, and adherent cells were used to prepare dendritic cells.
 付着細胞をAIM-V培地中でIL-4(1000U/mL)及びGM-CSF(1000U/mL)の存在下で培養した。6日後にIL-4(1000U/mL)、GM-CSF(1000U/mL)、IL-6(1000U/mL、Genzyme社製)、IL-1β(10ng/mL、Genzyme社製)及びTNF-α(10ng/mL、Genzyme社製)を添加したAIM-V培地に交換して、さらに2日間培養した後、得られた非付着細胞集団を樹状細胞として用いた。 Adherent cells were cultured in AIM-V medium in the presence of IL-4 (1000 U / mL) and GM-CSF (1000 U / mL). After 6 days, IL-4 (1000 U / mL), GM-CSF (1000 U / mL), IL-6 (1000 U / mL, manufactured by Genzyme), IL-1β (10 ng / mL, manufactured by Genzyme) and TNF-α After replacing with AIM-V medium supplemented with (10 ng / mL, manufactured by Genzyme) and culturing for another 2 days, the obtained non-adherent cell population was used as dendritic cells.
 調製した樹状細胞をAIM-V培地中に1×10細胞/mLの細胞密度で懸濁し、上記(1)にて選択したHLA-A0201分子に結合可能と予想されるペプチドを10μg/mLの濃度で添加し、96穴プレートを用いて37℃、5%COの条件下で4時間培養した。培養後、X線照射(3000rad)し、AIM-V培地で洗浄し、10%ヒトAB血清(Nabi社製)、IL-6(1000U/mL)及びIL-12(10ng/mL,Genzyme社製)を含有するAIM-V培地で懸濁し、24穴プレート1穴当りにそれぞれ1×10細胞ずつ添加した。さらに調製したT細胞集団を1穴当りそれぞれ1×10細胞添加し、37℃、5%COの条件下で培養した。7日後、それぞれの培養上清を捨て、上記と同様にして得た各ペプチドで処理後X線照射した樹状細胞を10%ヒトAB血清(Nabi社製)、IL-7(10U/mL,Genzyme社製)及びIL-2(10U/mL,Genzyme社製)を含有するAIM-V培地で懸濁し(細胞密度:1×10細胞/mL)、24穴プレート1穴当りにそれぞれ1×10細胞ずつ添加し、さらに培養した。同様の操作を7日間おきに4回繰返した後刺激されたT細胞を回収し,フローサイトメトリーによりCD8陽性T細胞の誘導を確認した。 The prepared dendritic cells are suspended in AIM-V medium at a cell density of 1 × 10 6 cells / mL, and 10 μg / mL of a peptide expected to be able to bind to the HLA-A0201 molecule selected in (1) above. And cultured for 4 hours under conditions of 37 ° C. and 5% CO 2 using a 96-well plate. After culture, X-ray irradiation (3000 rad), washed with AIM-V medium, 10% human AB serum (Nabi), IL-6 (1000 U / mL) and IL-12 (10 ng / mL, Genzyme) And 1 × 10 5 cells per well of a 24-well plate. Further, the prepared T cell population was added at 1 × 10 6 cells per well, and cultured under conditions of 37 ° C. and 5% CO 2 . Seven days later, each culture supernatant was discarded, and dendritic cells treated with each peptide obtained in the same manner as described above and then X-irradiated were treated with 10% human AB serum (manufactured by Nabi), IL-7 (10 U / mL, Suspended in AIM-V medium (Genzyme) and IL-2 (10 U / mL, Genzyme) (cell density: 1 × 10 5 cells / mL), and 1 × each per 24-well plate 10 5 cells were added and further cultured. The same operation was repeated 4 times every 7 days, and then stimulated T cells were collected, and induction of CD8 positive T cells was confirmed by flow cytometry.
 なお、陰性コントロールとして、本発明の範囲外の配列であるペプチド(配列番号46)及びWO2012/157736の実施例3に基づいて作製した配列番号2で表されるアミノ酸配列からなるSCD1タンパク質を比較例として使用し上記と同様の処理を行った。 As a negative control, a peptide (SEQ ID NO: 46) which is a sequence outside the scope of the present invention and an SCD1 protein consisting of the amino acid sequence represented by SEQ ID NO: 2 prepared based on Example 3 of WO2012 / 157736 are comparative examples. The same treatment as above was performed.
 また、HLA-A24分子に結合可能と予想されるペプチドについても、HLA-A24陽性の健常人の末梢血から誘導した樹状細胞とT細胞集団を用いて上記と同様の方法にて、ペプチドエピトープ反応性CD8陽性T細胞の誘導を試みた。なお、陰性コントロールとして、本発明の範囲外の配列であるペプチド(配列番号47)を、前記配列番号2で表されるアミノ酸配列からなるSCD1タンパク質を比較例として使用し同様の処理を行った。 In addition, peptides that are expected to be able to bind to the HLA-A24 molecule are also synthesized in the same manner as described above using dendritic cells and T cell populations derived from peripheral blood of HLA-A24 positive healthy individuals. Attempts were made to induce reactive CD8 positive T cells. As a negative control, a peptide (SEQ ID NO: 47), which is a sequence outside the scope of the present invention, was subjected to the same treatment using the SCD1 protein consisting of the amino acid sequence represented by SEQ ID NO: 2 as a comparative example.
 <実施例3:細胞障害性T細胞抗原エピトープの決定>
 (1)IFN-γ産生能
 実施例2(2)にて誘導したT細胞それぞれについて、エピトープペプチド及びタンパク質に対する特異性を調べるために、HLA-A0201分子を発現する樹状細胞に各種ポリペプチドをパルスした。前記樹状細胞は10μg/mLの濃度でAIM-V培地中各ポリペプチドを添加し、37℃、5%COの条件下で4時間培養して調製した。また、各種ポリペプチドには、HLA-A0201分子に結合可能と予想される配列番号3~23のアミノ酸配列で表される各ポリペプチド、陰性コントロールポリペプチド(配列番号46)及び配列番号2で表されるアミノ酸配列からなるSCD1タンパク質を用いた。パルス後の樹状細胞5×10個に対して、5×10個のT細胞を添加し、10%ヒトAB血清を含むAIM-V培地中で96穴プレートにて24時間培養した。培養後の上清を取って、IFN-γの産生量をELISA法により測定した。
<Example 3: Determination of cytotoxic T cell antigen epitope>
(1) IFN-γ production ability In order to examine the specificity for epitope peptides and proteins for each T cell induced in Example 2 (2), various polypeptides were applied to dendritic cells expressing HLA-A0201 molecules. Pulsed. The dendritic cells were prepared by adding each polypeptide in AIM-V medium at a concentration of 10 μg / mL and culturing at 37 ° C. under 5% CO 2 for 4 hours. In addition, each polypeptide is represented by each polypeptide represented by the amino acid sequence of SEQ ID NOs: 3 to 23, which is expected to be capable of binding to the HLA-A0201 molecule, a negative control polypeptide (SEQ ID NO: 46), and SEQ ID NO: 2. SCD1 protein consisting of the amino acid sequence described above was used. 5 × 10 3 T cells were added to 5 × 10 4 dendritic cells after the pulse, and cultured in a 96-well plate for 24 hours in AIM-V medium containing 10% human AB serum. The supernatant after culturing was taken, and the amount of IFN-γ produced was measured by ELISA.
 その結果、ポリペプチドをパルスしていない樹状細胞及び陰性コントロールポリペプチドを用いたレーン1及び2に比べて、配列番号3~23のアミノ酸配列で表されるポリペプチドをパルスした樹状細胞を用いたレーン4~24では、明らかに高いIFN-γ産生が確認された(図2)。この結果から、配列番号3~23のペプチドは特異的にHLA-A0201陽性CD8陽性T細胞を増殖刺激させ、IFN-γ産生を誘導する能力を有するT細胞エピトープペプチドであることが判明した。さらに、これらペプチドを用いたIFN-γの産生量は、配列番号2で表されるアミノ酸配列からなる全長SCD1タンパク質(レーン3)で刺激したT細胞から産生されるIFN-γよりも顕著に高いことも判明した。すなわち、配列番号3~23のポリペプチドは、顕著に高い免疫誘導活性を有していることを示している。また、配列番号2で表される全長SCD1タンパク質のアミノ酸配列中には上記免疫誘導活性を有する配列番号3~23が含まれているにもかかわらず、配列番号2の全長SCD1タンパク質で刺激したT細胞から産生されるIFN-γの産生量は低かった。これは、全長SCD1タンパク質のアミノ酸配列中には、免疫誘導活性を抑制する配列も多く含まれることから、十分な免疫誘導活性を示さなかったと考えられる。 As a result, dendritic cells pulsed with the polypeptide represented by the amino acid sequence of SEQ ID NOs: 3 to 23 were compared with dendritic cells not pulsed with the polypeptide and lanes 1 and 2 using the negative control polypeptide. In lanes 4 to 24 used, clearly high IFN-γ production was confirmed (FIG. 2). From these results, it was found that the peptides of SEQ ID NOs: 3 to 23 are T cell epitope peptides having the ability to specifically stimulate proliferation of HLA-A0201-positive CD8-positive T cells and induce IFN-γ production. Furthermore, the amount of IFN-γ produced using these peptides is significantly higher than IFN-γ produced from T cells stimulated with the full-length SCD1 protein consisting of the amino acid sequence represented by SEQ ID NO: 2 (lane 3). It was also found out. That is, the polypeptides of SEQ ID NOs: 3 to 23 have significantly high immunity induction activity. Further, although the amino acid sequence of the full-length SCD1 protein represented by SEQ ID NO: 2 contains SEQ ID NOs: 3 to 23 having the above-described immunity-inducing activity, T stimulated with the full-length SCD1 protein of SEQ ID NO: 2 The amount of IFN-γ produced from the cells was low. This is probably because the amino acid sequence of the full-length SCD1 protein did not show sufficient immunity-inducing activity because it contains many sequences that suppress immunity-inducing activity.
 さらに、上記と同様に、実施例3(2)にて配列番号24~36のアミノ酸配列で表されるポリペプチドを用いて誘導したペプチドエピトープ反応性CD8陽性T細胞について、ペプチドエピトープに対する特異性を調べるために、配列番号24~36ポリペプチド(レーン4~16)、配列番号47のアミノ酸配列で表される陰性コントロールポリペプチド、配列番号2のアミノ酸配列で表される全長SCD1タンパク質をパルスした、HLA-A24分子を発現する樹状細胞に対する、T細胞のIFN-γの産生量を上記の方法に準じてELISA法により測定した。 Further, in the same manner as described above, the peptide epitope-reactive CD8-positive T cells induced using the polypeptide represented by the amino acid sequence of SEQ ID NOs: 24-36 in Example 3 (2) have specificity for the peptide epitope. In order to examine, pulsed with SEQ ID NO: 24-36 polypeptide (lanes 4-16), negative control polypeptide represented by the amino acid sequence of SEQ ID NO: 47, full-length SCD1 protein represented by the amino acid sequence of SEQ ID NO: 2, The amount of IFN-γ produced by T cells against dendritic cells expressing HLA-A24 molecules was measured by ELISA according to the above method.
 その結果、ポリペプチドをパルスしていない樹状細胞のレーン1及び陰性コントロールポリペプチドを用いたレーン2に比べて、配列番号24~36のポリペプチドをパルスした樹状細胞を用いたレーン4~16では培養上清において、顕著なIFN-γ産生が確認された(図3)。 As a result, compared to lane 1 of dendritic cells not pulsed with polypeptide and lane 2 using negative control polypeptide, lanes 4 to 4 using dendritic cells pulsed with the polypeptides of SEQ ID NOs: 24-36 were used. In FIG. 16, significant IFN-γ production was confirmed in the culture supernatant (FIG. 3).
 この結果から、配列番号24~36のポリペプチドは、特異的にHLA-A24陽性CD8陽性T細胞を増殖刺激させ、IFN-γ産生を誘導する能力を有するT細胞エピトープペプチドであることが判明した。さらに、これらポリペプチドを用いたIFN-γの産生量は配列番号2のアミノ酸配列で表される全長SCD1タンパク質で刺激したT細胞から産生されるIFN-γよりも顕著に高いことも判明した。上記と同様の理由により全長SCD1タンパク質では、十分な免疫誘導活性を示さなかったと考えられる。 From these results, it was found that the polypeptides of SEQ ID NOs: 24-36 are T cell epitope peptides that have the ability to specifically stimulate HLA-A24 positive CD8 positive T cells to proliferate and induce IFN-γ production. . Furthermore, it was also found that the amount of IFN-γ produced using these polypeptides was significantly higher than IFN-γ produced from T cells stimulated with the full-length SCD1 protein represented by the amino acid sequence of SEQ ID NO: 2. For the same reason as described above, it is considered that the full-length SCD1 protein did not show sufficient immunity-inducing activity.
 (2)細胞障害性評価
 次に、本発明で用いられる配列番号3~23のアミノ酸配列で表されるポリペプチドが、HLA-A0201陽性でヒトSCD1タンパク質を発現する腫瘍細胞上のHLA-A0201分子上に提示されるものであるか、また本発明のポリペプチドで刺激されたCD8陽性T細胞がHLA-A0201陽性でヒトSCD1タンパク質を発現する腫瘍細胞を障害することができるか、さらにはSCD1タンパク質で刺激されたCD8陽性T細胞と比較して腫瘍細胞を顕著に障害するかを検討した。
(2) Evaluation of cytotoxicity Next, the HLA-A0201 molecule on tumor cells in which the polypeptide represented by the amino acid sequence of SEQ ID NOS: 3 to 23 used in the present invention is HLA-A0201 positive and expresses human SCD1 protein is used. Whether CD8 positive T cells stimulated with a polypeptide of the present invention can be damaged by HLA-A0201 positive tumor cells expressing human SCD1 protein, or SCD1 protein It was investigated whether tumor cells were significantly damaged compared with CD8 positive T cells stimulated with.
 ヒトSCD1タンパク質の発現が確認されているヒトグリオーマ(悪性脳腫瘍)細胞株U251細胞、白血病細胞株THP1肝臓癌細胞株SK-Hep-1、乳癌細胞株MCF7、卵巣癌細胞株OVCAR3、腎臓癌細胞株A498、大腸癌細胞株HCT116、胃癌細胞株AGS、及び肺癌細胞株NCI-H522(JCRB,理化学研究所およびATCCより購入)の細胞株をそれぞれ10個50mL容の遠心チューブに集め、100μCiのクロム51を加え、37℃で2時間インキュベートした。その後10%ウシ胎児血清(以下FBSという、キブコ社製)を含むRPMI培地(キブコ社製)で3回洗浄し、96穴V底プレート1穴あたり10個ずつ添加し、さらにこれに10%のFBSを含むRPMI培地で懸濁された5×10個の配列番号3~23のアミノ酸配列で表されるポリペプチド、陰性コントロールポリペプチド(配列番号46)及び配列番号2のアミノ酸配列で表される全長SCD1タンパク質による刺激で誘導されたHLA-A0201陽性のCD8陽性T細胞をそれぞれ添加して、37℃、5%COの条件下で4時間培養した。培養後、障害を受けた腫瘍細胞から放出される培養上清中のクロム51の量を測定することによって、各ポリペプチド及びタンパク質の刺激で誘導されたCD8陽性T細胞の細胞障害活性を算出した。 Human glioma (malignant brain tumor) cell line U251 cell, human leukemia cell line THP1 liver cancer cell line SK-Hep-1, breast cancer cell line MCF7, ovarian cancer cell line OVCAR3, renal cancer cell line A498, colorectal cancer cell lines HCT116, stomach cancer cell lines AGS, and lung cancer cell line NCI-H522 were collected in a centrifuge tube for each 10 6 50mL volumes of cell lines (JCRB, RIKEN and purchased from ATCC), chromium 100μCi 51 was added and incubated at 37 ° C. for 2 hours. Thereafter, the plate was washed 3 times with RPMI medium (Kibco) containing 10% fetal bovine serum (hereinafter referred to as FBS, manufactured by Kibco), and 10 3 pieces were added per well of a 96-well V-bottom plate. Table polypeptide, negative control polypeptide (SEQ ID NO: 46) and amino acid sequence of SEQ ID NO: 2 represented by the amino acid sequence of the suspended 5 × 10 4 pieces of SEQ ID NO: 3 to 23 in RPMI medium containing of FBS HLA-A0201-positive CD8-positive T cells induced by stimulation with the full-length SCD1 protein were added and cultured at 37 ° C. under 5% CO 2 for 4 hours. After culture, the cytotoxic activity of CD8 positive T cells induced by stimulation with each polypeptide and protein was calculated by measuring the amount of chromium 51 in the culture supernatant released from the damaged tumor cells. .
 その結果、配列番号3~23のアミノ酸配列で表されるポリペプチド刺激で誘導されたHLA-A0201陽性のCD8陽性T細胞が上記細胞全てに対して顕著な細胞障害活性を有することが判明した。代表例として、図4A、及び4Bに、それぞれU251細胞、及びSK-Hep-1細胞に対する細胞障害活性の結果を示す。配列番号3~23のアミノ酸配列で表されるポリペプチドで刺激されたCD8陽性T細胞(それぞれレーン4~24)では全長SCD1タンパク質で刺激されたCD8陽性T細胞(レーン3)と比較して、U251細胞及びSK-Hep-1細胞に対して顕著に高い細胞障害活性を示している。一方、陰性コントロールのポリペプチド(レーン2)を用いて誘導したCD8陽性T細胞は、Mock(レーン1)と同程度であり、細胞障害活性を示さなかった。この結果は、本発明で用いられる配列番号3~23のポリペプチドが、HLA-A0201陽性でヒトSCD1ポリペプチドを発現する腫瘍細胞上のHLA-A0201分子上に提示されるものであり、さらに本発明のポリペプチドは、このような腫瘍細胞を障害することができるCD8陽性細胞障害性T細胞を誘導する能力があることを示唆している。また、全長SCD1タンパク質のアミノ酸配列中には配列番号3~23が含まれているにもかかわらず、配列番号3~23のポリペプチドで刺激されたCD8陽性T細胞による細胞障害活性よりも顕著に弱かった(レーン3、4~24)。これは、SCD1タンパク質のアミノ酸配列中には免疫誘導活性を抑制する配列が多く含まれることから、強い細胞障害活性を持つT細胞が誘導できなかったためと考えられる。 As a result, it was found that HLA-A0201-positive CD8-positive T cells induced by stimulation with the polypeptide represented by the amino acid sequences of SEQ ID NOs: 3 to 23 have remarkable cytotoxic activity against all the cells. As a representative example, FIGS. 4A and 4B show the results of cytotoxic activity against U251 cells and SK-Hep-1 cells, respectively. Compared with CD8 positive T cells stimulated with the full-length SCD1 protein (lane 3) in CD8 positive T cells stimulated with the polypeptide represented by the amino acid sequence of SEQ ID NOs: 3 to 23 (lanes 4 to 24, respectively), It shows significantly high cytotoxic activity against U251 cells and SK-Hep-1 cells. On the other hand, CD8 positive T cells induced with the negative control polypeptide (lane 2) were similar to Mock (lane 1) and did not show cytotoxic activity. This result shows that the polypeptides of SEQ ID NOs: 3 to 23 used in the present invention are presented on HLA-A0201 molecules on tumor cells that are positive for HLA-A0201 and express human SCD1 polypeptide. The polypeptides of the invention suggest the ability to induce CD8 positive cytotoxic T cells that can damage such tumor cells. Further, despite the fact that SEQ ID NOs: 3 to 23 are included in the amino acid sequence of the full-length SCD1 protein, it is significantly more than the cytotoxic activity of CD8 positive T cells stimulated with the polypeptide of SEQ ID NOs: 3 to 23 It was weak (lanes 3, 4-24). This is probably because T-cells having strong cytotoxic activity could not be induced because the amino acid sequence of the SCD1 protein contains many sequences that suppress immunity-inducing activity.
 同様に、配列番号24~36のポリペプチドが、HLA-A24陽性でヒトSCD1タンパク質を発現する腫瘍細胞上のHLA-A24分子上に提示されるものであるか、また本発明のポリペプチドで刺激されたCD8陽性T細胞がHLA-A24陽性でヒトSCD1タンパク質を発現する腫瘍細胞を障害することができるか、さらにはSCD1タンパク質で刺激されたCD8陽性T細胞と比較して腫瘍細胞を顕著に障害するかを検討した。 Similarly, the polypeptides of SEQ ID NOs: 24-36 are presented on HLA-A24 molecules on tumor cells that are HLA-A24 positive and express human SCD1 protein, and are stimulated with the polypeptides of the present invention. CD8-positive T cells can damage HLA-A24-positive tumor cells expressing human SCD1 protein, or significantly damage tumor cells compared to CD8-positive T cells stimulated with SCD1 protein We examined what to do.
 HLA-A24陽性でヒトSCD1タンパク質を発現する、ヒトグリオーマ細胞株KNS-42、肝臓癌細胞株SK-Hep1、腎臓癌細胞株Caki1、大腸癌細胞株SW480、胃癌細胞株MKN45、前立腺癌細胞株PC3、乳癌細胞株ZR75-1(JCRB,理化学研究所及びATCCより購入)にクロム51を取り込ませ、配列番号24~36のアミノ酸配列で表されるポリペプチド、陰性コントロールポリペプチド(配列番号47)、及び全長SCD1タンパク質による刺激で誘導されたHLA-A24陽性のCD8陽性T細胞を培養したときの、障害を受けた細胞から放出される培養上清中のクロム51の量を測定した。 HLA-A24 positive and expressing human SCD1 protein, human glioma cell line KNS-42, liver cancer cell line SK-Hep1, kidney cancer cell line Caki1, colon cancer cell line SW480, gastric cancer cell line MKN45, prostate cancer cell line PC3 A breast cancer cell line ZR75-1 (purchased from JCRB, RIKEN and ATCC) and incorporating chromium 51, a polypeptide represented by the amino acid sequence of SEQ ID NOs: 24-36, a negative control polypeptide (SEQ ID NO: 47), And when HLA-A24-positive CD8-positive T cells induced by stimulation with full-length SCD1 protein were cultured, the amount of chromium 51 in the culture supernatant released from the damaged cells was measured.
 その結果、配列番号24~36のアミノ酸配列で表されるポリペプチドで刺激されたHLA-A24陽性のCD8陽性T細胞が、用いた全ての癌細胞に対して通常では予想し得ないほどに顕著な細胞障害活性を有することが判明した。代表例として、図5A及び5BにそれぞれSW480細胞、及びZR75-1細胞に対する細胞障害活性の結果を示す。配列番号24~36のアミノ酸配列で表されるポリペプチドで刺激されたCD8陽性T細胞(それぞれレーン4~16)では、全長SCD1タンパク質で刺激されたCD8陽性T細胞(レーン3)と比較して、SW480細胞、及びZR75-1細胞に対して顕著に高い細胞障害活性を示している。一方、陰性コントロールのポリペプチドを用いて誘導したCD8陽性T細胞は、Mock(レーン1)と同程度であり、細胞障害活性を示さなかった(レーン2)。したがって、配列番号24~36は、HLA-A24陽性でヒトSCD1タンパク質を発現する細胞上のHLA-A24分子上に提示されるものであり、この結果は、本発明のポリペプチドが、このような細胞を障害することができるCD8陽性細胞障害性T細胞を誘導する能力があることを示唆している。 As a result, HLA-A24-positive CD8-positive T cells stimulated with the polypeptide represented by the amino acid sequences of SEQ ID NOs: 24-36 were significantly more than would normally be expected for all cancer cells used. It was found to have a cytotoxic activity. As a representative example, FIGS. 5A and 5B show the results of cytotoxic activity against SW480 cells and ZR75-1 cells, respectively. The CD8 positive T cells stimulated with the polypeptide represented by the amino acid sequence of SEQ ID NOs: 24-36 (lanes 4 to 16 respectively) were compared with the CD8 positive T cells stimulated with the full-length SCD1 protein (lane 3). , SW480 cells, and ZR75-1 cells exhibit significantly higher cytotoxic activity. On the other hand, CD8 positive T cells induced with the negative control polypeptide were similar to Mock (lane 1) and did not show cytotoxic activity (lane 2). Accordingly, SEQ ID NOs: 24-36 are presented on HLA-A24 molecules on cells that are positive for HLA-A24 and express human SCD1 protein, and this result indicates that the polypeptides of the present invention It suggests the ability to induce CD8 positive cytotoxic T cells that can damage cells.
 一方で、上記の癌細胞に対して配列番号3~36のアミノ酸配列で表されるポリペプチド及び配列番号2で表されるアミノ酸配列からなる全長SCD1タンパク質を暴露させたところ癌細胞は全く死滅しなかった。このことから、これらポリペプチドには、直接的に癌細胞を殺す作用が無いことも確認した。 On the other hand, when the above-mentioned cancer cells were exposed to the polypeptide represented by the amino acid sequence of SEQ ID NO: 3 to 36 and the full-length SCD1 protein consisting of the amino acid sequence represented by SEQ ID NO: 2, the cancer cell was completely killed. There wasn't. From this, it was also confirmed that these polypeptides do not have an effect of directly killing cancer cells.
 細胞障害活性は、上記のように、本発明で用いられる各ポリペプチドで刺激誘導されたCD8陽性T細胞5×10個とクロム51を取り込ませた10個の各腫瘍細胞とを混合して4時間培養し、培養後培地に放出されたクロム51の量を測定して、以下計算式*により算出したCD8陽性T細胞の各腫瘍細胞(標的細胞という)に対する細胞障害活性を示した結果である。 As described above, the cytotoxic activity is obtained by mixing 5 × 10 4 CD8 positive T cells stimulated with each polypeptide used in the present invention and 10 3 tumor cells incorporating chromium 51. 4 hours after culturing, the amount of chromium 51 released into the culture medium after the culture was measured, and the cytotoxic activity against each tumor cell (referred to as target cell) of CD8 positive T cells calculated by the following calculation formula * It is.
 *式:細胞障害活性(%)=CD8陽性T細胞を加えた際の標的細胞からのクロム51遊離量÷1N塩酸を加えた標的細胞からのクロム51遊離量×100。 * Formula: Cytotoxic activity (%) = chrome 51 release from target cells when CD8 positive T cells are added ÷ chrome 51 release from target cells added with 1N hydrochloric acid × 100.
 <実施例4:SCD1タンパク質由来ペプチドエピトープ反応性CD4陽性T細胞の誘導>
 CD4陽性T細胞抗原エピトープ予測のため、SYFPEITHI アルゴリズム(ラメンセー著(Rammensee)のコンピューター予測プログラムを用いてヒトSCD1タンパク質のアミノ酸配列を解析し、HLAクラスII結合ペプチドであると予想される配列番号37~45に示す9種類のペプチドを選択した。選択した全てのペプチドは株式会社グライナー・ジャパンのカスタムペプチド合成サービスに合成依頼した。
<Example 4: Induction of SCD1 protein-derived peptide epitope-reactive CD4-positive T cells>
For prediction of CD4-positive T cell antigen epitopes, the amino acid sequence of human SCD1 protein was analyzed using the computer prediction program of SYFPEITHI algorithm (Ramensee), and SEQ ID NOs: 37- Nine types of peptides shown in Fig. 45 were selected, and all the selected peptides were requested for synthesis by a custom peptide synthesis service of Greiner Japan.
 HLA-DRB1*04陽性の健常人から末梢血を分離し、Lymphocyte separation medium(OrganonpTeknika社製)に重層して1,500rpmで室温にて20分間遠心分離した。PBMCを含有する画分を回収し、冷リン酸塩緩衝液中で3回(又はそれ以上)洗浄してPBMCを得た。得られたPBMCを20mLのAIM-V培地(Life Technololgies社製)に懸濁し、培養フラスコ(Falcon社製)中に37℃、5%COの条件下で2時間付着させた。非付着細胞はT細胞調製に用い、付着細胞は樹状細胞を調製するために用いた。 Peripheral blood was isolated from a healthy person positive for HLA-DRB1 * 04, layered on Lymphocyte separation medium (manufactured by OrganonpTeknik), and centrifuged at 1,500 rpm at room temperature for 20 minutes. Fractions containing PBMC were collected and washed three times (or more) in cold phosphate buffer to obtain PBMC. The obtained PBMC was suspended in 20 mL of AIM-V medium (manufactured by Life Technologies) and allowed to adhere for 2 hours under conditions of 37 ° C. and 5% CO 2 in a culture flask (manufactured by Falcon). Non-adherent cells were used for T cell preparation, and adherent cells were used to prepare dendritic cells.
 一方、付着細胞をAIM-V培地中でIL-4(1000U/mL)及びGM-CSF(1000U/mL)の存在下で培養した。6日後にIL-4(1000U/mL)、GM-CSF(1000U/mL)、IL-6(1000U/mL、Genzyme社製)、IL-1β(10ng/mL、Genzyme社製)及びTNF-α(10ng/mL、Genzyme社製)を添加したAIM-V培地に交換してさらに2日間培養した後得られた非付着細胞集団を樹状細胞として用いた。 Meanwhile, adherent cells were cultured in the presence of IL-4 (1000 U / mL) and GM-CSF (1000 U / mL) in AIM-V medium. After 6 days, IL-4 (1000 U / mL), GM-CSF (1000 U / mL), IL-6 (1000 U / mL, manufactured by Genzyme), IL-1β (10 ng / mL, manufactured by Genzyme) and TNF-α The non-adherent cell population obtained after replacing with AIM-V medium supplemented with (10 ng / mL, Genzyme) and further culturing for 2 days was used as dendritic cells.
 調製した樹状細胞をAIM-V培地中に1×10細胞/mLの細胞密度で懸濁し、配列番号37~45の各ポリペプチド、陰性コントロールポリペプチド(配列番号48)及び配列番号2で表されるアミノ酸配列からなるSCD1タンパク質をそれぞれ10mg/mLの濃度で添加し、96穴プレートを用いて37℃、5%COの条件下で4時間培養した。培養後、X線照射(3000rad)し、AIM-V培地で洗浄し、10%ヒトAB血清(Nabi社製)、IL-6(1000U/mL)及びIL-12(10ng/mL、Genzyme社製)を含有するAIM-V培地で懸濁し、24穴プレート1穴当りにそれぞれ1×10細胞ずつ添加した。さらに調製したT細胞集団を1穴当りそれぞれ1×10細胞添加し、37℃、5%COの条件下で培養した。7日後、それぞれの培養上清を捨て、上記と同様にして得た各ペプチド及びSCD1タンパク質で処理後X線照射した樹状細胞を10%ヒトAB血清(Nabi社製)及びIL-2(10U/mL、Genzyme社製)を含有するAIM-V培地で懸濁し、24穴プレート1穴当りにそれぞれ1×10細胞ずつ添加し、さらに培養した。同様の操作を7日間おきに4回繰返した後、刺激されたT細胞を回収し、フローサイトメトリーによりCD4陽性T細胞の誘導を確認した。その結果、誘導した各穴のT細胞が増殖していることが確認された。  The prepared dendritic cells were suspended in AIM-V medium at a cell density of 1 × 10 6 cells / mL, and each polypeptide of SEQ ID NO: 37 to 45, negative control polypeptide (SEQ ID NO: 48) and SEQ ID NO: 2 were used. SCD1 protein consisting of the amino acid sequence represented was added at a concentration of 10 mg / mL, and cultured for 4 hours under conditions of 37 ° C. and 5% CO 2 using a 96-well plate. After culture, X-ray irradiation (3000 rad), washed with AIM-V medium, 10% human AB serum (Nabi), IL-6 (1000 U / mL) and IL-12 (10 ng / mL, Genzyme) And 1 × 10 5 cells per well of a 24-well plate. Further, the prepared T cell population was added at 1 × 10 6 cells per well, and cultured under conditions of 37 ° C. and 5% CO 2 . After 7 days, the respective culture supernatants were discarded, and dendritic cells treated with each peptide and SCD1 protein obtained in the same manner as above and then irradiated with X-rays were treated with 10% human AB serum (manufactured by Nabi) and IL-2 (10 U). / ML, produced by Genzyme), suspended in AIM-V medium, added 1 × 10 5 cells per well of a 24-well plate, and further cultured. The same operation was repeated 4 times every 7 days, and then the stimulated T cells were collected, and the induction of CD4-positive T cells was confirmed by flow cytometry. As a result, it was confirmed that the T cells in each induced hole proliferated.
 <実施例5:HLA-DRB1*04陽性CD4陽性T細胞を刺激するSCD1タンパク質由来ヘルパーT細胞抗原エピトープの決定>
 上記実施例4で誘導したCD4陽性T細胞の各ペプチドタンパク質に対する特異性を調べるために、各種ポリペプチドでHLA-DRB1*04分子を発現するPBMCをパルスした。前記PBMCは10μg/mLの濃度でAIM-V培地中各ポリペプチドを添加し、37℃、5%COの条件下で4時間培養して調製した。また、各種ポリペプチドには、配列番号37~45のアミノ酸配列で表される各ポリペプチド、陰性コントロールポリペプチド(配列番号48)及び配列番号2で表されるアミノ酸配列からなる全長SCD1タンパク質を用いた。パルス後のPBMC5×10個に対して、5×10個のCD4陽性T細胞を添加し、10%ヒトAB血清を含むAIM-V培地中で96穴プレートにて24時間培養した。培養後の上清を取って、IFN-γの産生量をELISA法により測定した。
<Example 5: Determination of SCD1 protein-derived helper T cell antigen epitope that stimulates HLA-DRB1 * 04-positive CD4-positive T cells>
In order to examine the specificity of CD4 positive T cells induced in Example 4 for each peptide protein, PBMCs expressing HLA-DRB1 * 04 molecules were pulsed with various polypeptides. The PBMC was prepared by adding each polypeptide in AIM-V medium at a concentration of 10 μg / mL and culturing at 37 ° C. under 5% CO 2 for 4 hours. For each polypeptide, the full-length SCD1 protein consisting of each polypeptide represented by the amino acid sequences of SEQ ID NOs: 37 to 45, a negative control polypeptide (SEQ ID NO: 48), and the amino acid sequence represented by SEQ ID NO: 2 is used. It was. Against PBMC5 × 10 4 cells after the pulse, the addition of 5 × 10 4 cells of the CD4-positive T cells were cultured for 24 hours in AIM-V medium containing 10% human AB serum at a 96-well plate. The supernatant after culturing was taken, and the amount of IFN-γ produced was measured by ELISA.
 その結果、それぞれ配列番号37~45の各ペプチドをパルスしたPBMCを用いた穴の培養上清において、1000pg/mL以上のIFN-γが産生されていた。一方、陰性コントロールポリペプチド及びポリペプチドをパルスしていない樹状細胞のみ(Mock)を用いた穴の培養上清では、IFN-γの産生はほとんど認められなかった。したがって、配列番号37~45のアミノ酸配列で表される各種ポリペプチドは特異的にHLA-DRB1*04陽性CD4陽性T細胞を増殖刺激させ、IFN-γ産生を誘導する能力を有するT細胞エピトープペプチドであることが判明した。なお、全長SCD1タンパク質のアミノ酸配列中には上記免疫誘導活性を有する配列番号37~45が含まれているにもかかわらず、全長SCD1タンパク質をパルスしたPBMC胞を用いた穴の培養上清におけるIFN-γの産生量が極めて少なかった。これは、SCD1タンパク質のアミノ酸配列中に免疫誘導活性を抑制する配列が多く含まれるために十分な免疫誘導活性を示さなかったと考えられる。 As a result, IFN-γ of 1000 pg / mL or more was produced in the culture supernatant of the wells using PBMC pulsed with the peptides of SEQ ID NOs: 37 to 45, respectively. On the other hand, almost no IFN-γ production was observed in the culture supernatant of the wells using only the negative control polypeptide and dendritic cells not pulsed with the polypeptide (Mock). Accordingly, the various polypeptides represented by the amino acid sequences of SEQ ID NOs: 37 to 45 have the ability to specifically stimulate HLA-DRB1 * 04-positive CD4-positive T cells to proliferate and induce IFN-γ production. It turned out to be. Although the amino acid sequence of the full-length SCD1 protein includes SEQ ID NOs: 37 to 45 having the above-described immunity-inducing activity, IFN in the culture supernatant of the hole using the PBMC vesicle pulsed with the full-length SCD1 protein -Γ production was very low. This is probably because the amino acid sequence of the SCD1 protein did not show sufficient immunity induction activity because many sequences that suppress immunity induction activity were included.
 次に、HLA-DRB1*04陽性T細胞を増殖刺激させる能力を有する配列番号37~45のポリペプチドが、SCD1タンパク質から抗原提示細胞内でナチュラルにプロセスされてHLA-DR上に提示されるエピトープであるかどうかについて検討した。SCD1タンパク質を一過的に発現させたHEK293細胞(ATCCより購入)のライセートを未成熟樹状細胞に添加して消化させ、樹状細胞を成熟化させた後、配列番号37~45のポリペプチド、陰性コントロールポリペプチド及びSCD1タンパク質で刺激されたT細胞が本樹状細胞によって刺激されるかを調べた。HLA-DRB1*04陽性の健常人から末梢血を分離し、Lymphocyte separation mediumに重層して1,500rpmで室温にて20分間遠心分離した。PBMCを含有する相間を収穫し、冷リン酸塩緩衝液中で3回(又はそれ以上)洗浄し、PBMCを得た。得られたPBMCをAIM-V培地20mLに懸濁し、培養フラスコ(Falcon)中に37℃、5%COの条件下で2時間付着させ、付着細胞をAIM-V培地中でIL-4(1000U/mL)及びGM-CSF(1000U/mL)の存在下で6日間培養し、未成熟樹状細胞を作製した。上記ライセートを5×10個の未成熟樹状細胞に添加し、IL-4(1000U/mL)、GM-CSF(1000U/mL)、IL-6(1000U/mL)、IL-1β(10ng/mL)及びTNF-α(10ng/mL)を添加したAIM-V培地中で2日間培養した。培養後の樹状細胞をX線照射(3000rad)し、AIM-V培地で洗浄後、10%ヒトAB血清を含有するAIM-V培地で懸濁し、96穴プレート1穴当りにそれぞれ3.3×10個ずつ添加した。これらに5×10個の配列番号37~45のポリペプチド陰性コントロールポリペプチド及びSCD1タンパク質で刺激されたT細胞を添加し、37℃、5%COの条件下で24時間培養した。培養後の上清を取って、IFN-γの産生量をELISA法により測定した。 Next, an epitope in which the polypeptide of SEQ ID NO: 37-45 having the ability to stimulate proliferation of HLA-DRB1 * 04 positive T cells is naturally processed from SCD1 protein in antigen-presenting cells and presented on HLA-DR We examined whether or not. A lysate of HEK293 cells (purchased from ATCC) in which SCD1 protein was transiently expressed was added to immature dendritic cells, digested, and the dendritic cells were matured, then the polypeptides of SEQ ID NOs: 37 to 45 It was examined whether T cells stimulated with negative control polypeptide and SCD1 protein were stimulated by the dendritic cells. Peripheral blood was separated from a healthy person positive for HLA-DRB1 * 04, layered on Lymphocyte separation medium, and centrifuged at 1,500 rpm at room temperature for 20 minutes. The phase containing PBMC was harvested and washed three times (or more) in cold phosphate buffer to obtain PBMC. The obtained PBMC was suspended in 20 mL of AIM-V medium, allowed to adhere in a culture flask (Falcon) at 37 ° C. under 5% CO 2 for 2 hours, and the adherent cells were treated with IL-4 ( 1000 U / mL) and GM-CSF (1000 U / mL) were cultured for 6 days to prepare immature dendritic cells. The lysate was added to 5 × 10 5 immature dendritic cells, and IL-4 (1000 U / mL), GM-CSF (1000 U / mL), IL-6 (1000 U / mL), IL-1β (10 ng) / ML) and TNF-α (10 ng / mL) in AIM-V medium for 2 days. The cultured dendritic cells were irradiated with X-rays (3000 rad), washed with AIM-V medium, suspended in AIM-V medium containing 10% human AB serum, and 3.3 times per well of 96-well plate. × 10 4 pieces were added. To these, 5 × 10 4 polypeptide negative control polypeptides of SEQ ID NOs: 37 to 45 and T cells stimulated with SCD1 protein were added and cultured at 37 ° C. under 5% CO 2 for 24 hours. The supernatant after culturing was taken, and the amount of IFN-γ produced was measured by ELISA.
 その結果、図6に示すように、配列番号37~45のポリペプチドで刺激されたレーン4~12のT細胞は、SCD1タンパク質を添加した樹状細胞の刺激によってIFN-γを産生することがわかった。一方、陰性コントロールポリペプチドで刺激したレーン2及びポリペプチドで刺激していないレーン1においては、IFN-γの産生はほとんど認められなかった。したがって、配列番号37~45のポリペプチドが、SCD1タンパク質が抗原提示細胞内でナチュラルにプロセスされてHLA-DR上に提示されるエピトープであることが明らかになった。なお、本実験においても全長SCD1タンパク質をパルスしたレーン3では、IFN-γの産生量が極めて少なかった。全長SCD1タンパク質のアミノ酸配列中には免疫誘導活性を抑制する配列が多く含まれることから、十分な免疫誘導活性を示さなかったと考えられる。 As a result, as shown in FIG. 6, T cells in lanes 4 to 12 stimulated with the polypeptides of SEQ ID NOs: 37 to 45 can produce IFN-γ upon stimulation of dendritic cells to which SCD1 protein is added. all right. On the other hand, in Lane 2 stimulated with the negative control polypeptide and Lane 1 not stimulated with the polypeptide, almost no IFN-γ production was observed. Thus, it was revealed that the polypeptides of SEQ ID NOs: 37 to 45 are epitopes on which SCD1 protein is naturally processed in antigen-presenting cells and presented on HLA-DR. In this experiment as well, in Lane 3 where the full-length SCD1 protein was pulsed, the amount of IFN-γ produced was extremely small. Since the amino acid sequence of the full-length SCD1 protein contains many sequences that suppress immunity-inducing activity, it is considered that sufficient immunity-inducing activity was not exhibited.
 本発明の各種癌に対して抗腫瘍活性を発揮するポリペプチドを含む免疫誘導剤は、癌の治療又は予防に、又は癌の検出に有用である。 The immunity-inducing agent containing a polypeptide that exhibits antitumor activity against various cancers of the present invention is useful for the treatment or prevention of cancer or the detection of cancer.
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。 All publications, patents and patent applications cited in this specification are incorporated herein by reference in their entirety.

Claims (18)

  1.  以下の(a)又は(b)に記載のポリペプチド群から選択され、かつ免疫誘導活性を有する少なくとも1つのポリペプチド、
    (a)配列番号2に示されるアミノ酸配列中の34~50位、69~148位、178~195位、207~242位、247~280位、296~332位の領域内の連続する7個以上のアミノ酸からなるポリペプチド
    (b)前記(a)に記載のいずれか一のポリペプチドのアミノ酸配列において1~数個のアミノ酸が欠失、置換、挿入若しくは付加されたポリペプチド、あるいは
     前記いずれか一のポリペプチドをコードするポリヌクレオチドを少なくとも1つ含み、生体内で該ポリペプチドを発現可能な組換えベクター、を有効成分として含有する免疫誘導剤。
    At least one polypeptide selected from the group of polypeptides described in the following (a) or (b) and having immunity-inducing activity;
    (a) Seven consecutive in the region of positions 34-50, 69-148, 178-195, 207-242, 247-280, 296-332 in the amino acid sequence shown in SEQ ID NO: 2 Polypeptide consisting of the above amino acids
    (b) a polypeptide in which one to several amino acids are deleted, substituted, inserted or added in the amino acid sequence of any one of the polypeptides described in (a) above, or encoding any one of the above polypeptides A immunity-inducing agent comprising, as an active ingredient, a recombinant vector comprising at least one polynucleotide to be expressed and capable of expressing the polypeptide in vivo.
  2.  前記免疫誘導活性を有するポリペプチドがMHCクラスI分子に結合する、請求項1に記載の免疫誘導剤。 The immunity-inducing agent according to claim 1, wherein the polypeptide having immunity-inducing activity binds to MHC class I molecules.
  3.  前記免疫誘導活性を有するポリペプチドが以下の(c)~(e)に記載のポリペプチド群から選択されるいずれか一のポリペプチドである、請求項2に記載の免疫誘導剤。
    (c)配列番号3~36に示されるアミノ酸配列からなるポリペプチド
    (d)前記(c)に記載のポリペプチドのアミノ酸配列において1~数個のアミノ酸が欠失、置換、挿入若しくは付加されたポリペプチド
    (e)前記(c)又は(d)に記載のポリペプチドを部分配列として含むポリペプチド
    The immunity-inducing agent according to claim 2, wherein the polypeptide having immunity-inducing activity is any one polypeptide selected from the group of polypeptides described in (c) to (e) below.
    (c) a polypeptide comprising the amino acid sequence shown in SEQ ID NOs: 3 to 36
    (d) a polypeptide in which one to several amino acids have been deleted, substituted, inserted or added in the amino acid sequence of the polypeptide of (c)
    (e) a polypeptide comprising the polypeptide according to (c) or (d) as a partial sequence
  4.  前記免疫誘導活性を有するポリペプチドがMHCクラスII分子に結合する、請求項1に記載の免疫誘導剤。 The immunity-inducing agent according to claim 1, wherein the polypeptide having immunity-inducing activity binds to an MHC class II molecule.
  5.  前記免疫誘導活性を有するポリペプチドが以下の(f)~(h)に記載のポリペプチド群から選択されるいずれか一のポリペプチドである、請求項4に記載の免疫誘導剤。
    (f)配列番号37~45に示されるアミノ酸配列からなるポリペプチド
    (g)前記(f)に記載のポリペプチドのアミノ酸配列において1~数個のアミノ酸が欠失、置換、挿入若しくは付加されたポリペプチド
    (h)前記(f)又は(g)に記載のポリペプチドを部分配列として含むポリペプチド
    The immunity-inducing agent according to claim 4, wherein the polypeptide having immunity-inducing activity is any one polypeptide selected from the group of polypeptides described in (f) to (h) below.
    (f) a polypeptide comprising the amino acid sequence shown in SEQ ID NOs: 37 to 45
    (g) a polypeptide in which one to several amino acids have been deleted, substituted, inserted or added in the amino acid sequence of the polypeptide of (f)
    (h) a polypeptide comprising the polypeptide according to (f) or (g) as a partial sequence
  6.  癌の治療又は予防薬の有効成分として用いる、請求項1~5のいずれか一項に記載の免疫誘導剤。 The immunity-inducing agent according to any one of claims 1 to 5, which is used as an active ingredient of a therapeutic or prophylactic agent for cancer.
  7.  前記癌がSCD1タンパク質を発現する癌である、請求項6に記載の免疫誘導剤。 The immunity-inducing agent according to claim 6, wherein the cancer is a cancer that expresses SCD1 protein.
  8.  前記癌が悪性リンパ腫、乳癌、肝臓癌、前立腺癌、卵巣癌、腎臓癌、大腸癌、胃癌、悪性脳腫瘍、食道癌又は肺癌である、請求項6又は7に記載の免疫誘導剤。 The immunity-inducing agent according to claim 6 or 7, wherein the cancer is malignant lymphoma, breast cancer, liver cancer, prostate cancer, ovarian cancer, kidney cancer, colon cancer, stomach cancer, malignant brain tumor, esophageal cancer or lung cancer.
  9.  免疫増強剤をさらに含む、請求項1~8のいずれか一項に記載の免疫誘導剤。 The immunity-inducing agent according to any one of claims 1 to 8, further comprising an immunity enhancing agent.
  10.  請求項1、3又は5に記載の免疫誘導活性を有するポリペプチドとMHC分子の複合体を含む単離抗原提示細胞。 An isolated antigen-presenting cell comprising a complex of the polypeptide having immunity-inducing activity according to claim 1, 3 or 5 and an MHC molecule.
  11.  請求項1、3又は5に記載の免疫誘導活性を有するポリペプチドとMHC分子の複合体を選択的に結合する単離T細胞。 An isolated T cell that selectively binds a complex of the polypeptide having immunity-inducing activity according to claim 1, 3 or 5 and an MHC molecule.
  12.  以下の(a)又は(b)に記載のポリペプチド群から選択され、かつ免疫誘導活性を有するいずれか一のポリペプチド。
    (a)配列番号2に示されるアミノ酸配列中の34~50位、69~148位、178~195位、207~242位、247~280位、296~332位の領域内の連続する7個以上のアミノ酸からなる免疫誘導活性を有するポリペプチド、
    (b)前記(a)に記載のポリペプチドのアミノ酸配列において1~数個のアミノ酸が欠失、置換、挿入若しくは付加されたポリペプチド。
    Any one polypeptide selected from the group of polypeptides described in the following (a) or (b) and having immunity-inducing activity.
    (a) Seven consecutive in the region of positions 34-50, 69-148, 178-195, 207-242, 247-280, 296-332 in the amino acid sequence shown in SEQ ID NO: 2 A polypeptide having immunity-inducing activity comprising the above amino acids,
    (b) A polypeptide in which one to several amino acids have been deleted, substituted, inserted or added in the amino acid sequence of the polypeptide described in (a).
  13.  以下の(i)~(iv):
     (i)以下の(a)又は(b)に記載のポリペプチド群から選択され、かつ免疫誘導活性を有する少なくとも1つのポリペプチド:
      (a)配列番号2に示されるアミノ酸配列中の34~50位、69~148位、178~195位、207~242位、247~280位、296~332位の領域内の連続する7個以上のアミノ酸からなるポリペプチド、
      (b)前記(a)に記載のいずれか一のポリペプチドのアミノ酸配列において1~数個のアミノ酸が欠失、置換、挿入若しくは付加されたポリペプチド; 
     (ii)前記いずれか一のポリペプチドをコードするポリヌクレオチドを少なくとも1つ含み、生体内で該ポリペプチドを発現可能な組換えベクター;
     (iii)前記いずれか一のポリペプチドとMHC分子の複合体を含む単離抗原提示細胞;ならびに
     (iv)前記いずれか一のポリペプチドに特異的な単離T細胞、
    からなる群から選択される一以上を有効成分として含む、癌の治療又は予防薬。
    The following (i) to (iv):
    (I) At least one polypeptide selected from the group of polypeptides described in the following (a) or (b) and having immunity-inducing activity:
    (a) Seven consecutive in the region of positions 34-50, 69-148, 178-195, 207-242, 247-280, 296-332 in the amino acid sequence shown in SEQ ID NO: 2 A polypeptide comprising the above amino acids,
    (b) a polypeptide in which one to several amino acids are deleted, substituted, inserted or added in the amino acid sequence of any one of the polypeptides described in (a) above;
    (Ii) a recombinant vector comprising at least one polynucleotide encoding any one of the polypeptides, and capable of expressing the polypeptide in vivo;
    (Iii) an isolated antigen-presenting cell comprising a complex of any one of the polypeptides and an MHC molecule; and (iv) an isolated T cell specific for any one of the polypeptides,
    A therapeutic or prophylactic agent for cancer comprising one or more selected from the group consisting of as active ingredients.
  14.  前記免疫誘導活性を有するポリペプチドが以下の(c)~(h)に記載のポリペプチド群から選択される少なくとも1つのポリペプチドである、請求項13に記載の癌の治療又は予防薬:
    (c)配列番号3~36に示されるアミノ酸配列からなるポリペプチド;
    (d)前記(c)に記載のポリペプチドのアミノ酸配列において1~数個のアミノ酸が欠失、置換、挿入若しくは付加されたポリペプチド;
    (e)前記(c)又は(d)に記載のポリペプチドを部分配列として含むポリペプチド;
    (f)配列番号37~45に示されるアミノ酸配列からなるポリペプチド;
    (g)前記(f)に記載のポリペプチドのアミノ酸配列において1~数個のアミノ酸が欠失、置換、挿入若しくは付加されたポリペプチド;
    (h)前記(f)又は(g)に記載のポリペプチドを部分配列として含むポリペプチド。
    The therapeutic or prophylactic agent for cancer according to claim 13, wherein the polypeptide having immunity-inducing activity is at least one polypeptide selected from the group of polypeptides described in (c) to (h) below:
    (c) a polypeptide comprising the amino acid sequence shown in SEQ ID NOs: 3-36;
    (d) a polypeptide in which one to several amino acids are deleted, substituted, inserted or added in the amino acid sequence of the polypeptide according to (c);
    (e) a polypeptide comprising the polypeptide according to (c) or (d) as a partial sequence;
    (f) a polypeptide consisting of the amino acid sequence shown in SEQ ID NOs: 37 to 45;
    (g) a polypeptide in which one to several amino acids are deleted, substituted, inserted or added in the amino acid sequence of the polypeptide described in (f);
    (h) A polypeptide comprising the polypeptide according to (f) or (g) as a partial sequence.
  15.  前記癌がSCD1タンパク質を発現する癌である、請求項13又は14に記載の癌の治療又は予防薬。 The cancer therapeutic or prophylactic agent according to claim 13 or 14, wherein the cancer is a cancer that expresses SCD1 protein.
  16.  以下の(i)~(iv):
     (i)以下の(a)又は(b)に記載のポリペプチド群から選択され、かつ免疫誘導活性を有する少なくとも1つのポリペプチド:
      (a)配列番号2に示されるアミノ酸配列中の34~50位、69~148位、178~195位、207~242位、247~280位、296~332位の領域内の連続する7個以上のアミノ酸からなるポリペプチド、
      (b)前記(a)に記載のいずれか一のポリペプチドのアミノ酸配列において1~数個のアミノ酸が欠失、置換、挿入若しくは付加されたポリペプチド; 
     (ii)前記いずれか一のポリペプチドをコードするポリヌクレオチドを少なくとも1つ含み、生体内で該ポリペプチドを発現可能な組換えベクター;
     (iii)前記いずれか一のポリペプチドとMHC分子の複合体を含む単離抗原提示細胞;ならびに
     (iv)前記いずれか一のポリペプチドに特異的な単離T細胞、
    からなる群から選択される一以上を、それを必要とする対象動物に投与することを含む、癌を治療又は予防する方法。
    The following (i) to (iv):
    (I) At least one polypeptide selected from the group of polypeptides described in the following (a) or (b) and having immunity-inducing activity:
    (a) Seven consecutive in the region of positions 34-50, 69-148, 178-195, 207-242, 247-280, 296-332 in the amino acid sequence shown in SEQ ID NO: 2 A polypeptide comprising the above amino acids,
    (b) a polypeptide in which one to several amino acids are deleted, substituted, inserted or added in the amino acid sequence of any one of the polypeptides described in (a) above;
    (Ii) a recombinant vector comprising at least one polynucleotide encoding any one of the polypeptides, and capable of expressing the polypeptide in vivo;
    (Iii) an isolated antigen-presenting cell comprising a complex of any one of the polypeptides and an MHC molecule; and (iv) an isolated T cell specific for any one of the polypeptides,
    A method for treating or preventing cancer, comprising administering one or more selected from the group consisting of to a subject animal in need thereof.
  17.  前記免疫誘導活性を有するポリペプチドが以下の(c)~(h)に記載のポリペプチド群から選択される少なくとも1つのポリペプチドである、請求項16に記載の方法:
    (c)配列番号3~36に示されるアミノ酸配列からなるポリペプチド;
    (d)前記(c)に記載のポリペプチドのアミノ酸配列において1~数個のアミノ酸が欠失、置換、挿入若しくは付加されたポリペプチド;
    (e)前記(c)又は(d)に記載のポリペプチドを部分配列として含むポリペプチド;
    (f)配列番号37~45に示されるアミノ酸配列からなるポリペプチド;
    (g)前記(f)に記載のポリペプチドのアミノ酸配列において1~数個のアミノ酸が欠失、置換、挿入若しくは付加されたポリペプチド;
    (h)前記(f)又は(g)に記載のポリペプチドを部分配列として含むポリペプチド。
    The method according to claim 16, wherein the polypeptide having immunity-inducing activity is at least one polypeptide selected from the group of polypeptides described in (c) to (h) below:
    (c) a polypeptide comprising the amino acid sequence shown in SEQ ID NOs: 3-36;
    (d) a polypeptide in which one to several amino acids are deleted, substituted, inserted or added in the amino acid sequence of the polypeptide according to (c);
    (e) a polypeptide comprising the polypeptide according to (c) or (d) as a partial sequence;
    (f) a polypeptide consisting of the amino acid sequence shown in SEQ ID NOs: 37 to 45;
    (g) a polypeptide in which one to several amino acids are deleted, substituted, inserted or added in the amino acid sequence of the polypeptide described in (f);
    (h) A polypeptide comprising the polypeptide according to (f) or (g) as a partial sequence.
  18.  前記癌がSCD1タンパク質を発現する癌である、請求項16又は17に記載の方法。 The method according to claim 16 or 17, wherein the cancer is a cancer that expresses SCD1 protein.
PCT/JP2017/008055 2016-03-02 2017-03-01 Immunity inducer WO2017150595A1 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
CN201780013955.2A CN108697757B (en) 2016-03-02 2017-03-01 Immune inducer
KR1020187027574A KR102356961B1 (en) 2016-03-02 2017-03-01 immune inducers
AU2017227308A AU2017227308B2 (en) 2016-03-02 2017-03-01 Immunity inducer
MX2018009692A MX2018009692A (en) 2016-03-02 2017-03-01 Immunity inducer.
JP2017515854A JP7147168B2 (en) 2016-03-02 2017-03-01 Immunity inducer
CA3016298A CA3016298A1 (en) 2016-03-02 2017-03-01 Immunity inducer
RU2018134171A RU2755542C2 (en) 2016-03-02 2017-03-01 Immunity inducer
BR112018016920A BR112018016920A2 (en) 2016-03-02 2017-03-01 immunity inducer, isolated antigen presenting cell, isolated t cell, polypeptide, agent for treating or preventing cancer, and method of treating or preventing cancer
EP17760059.0A EP3424518B1 (en) 2016-03-02 2017-03-01 Immunity inducer
CN202211424606.9A CN116059325A (en) 2016-03-02 2017-03-01 Immune inducer
US16/080,857 US11318185B2 (en) 2016-03-02 2017-03-01 Immunogenic peptides of SCD1 protein
DK17760059.0T DK3424518T3 (en) 2016-03-02 2017-03-01 IMMUNITY INDUCER
PL17760059T PL3424518T3 (en) 2016-03-02 2017-03-01 Immunity inducer
ES17760059T ES2890425T3 (en) 2016-03-02 2017-03-01 immunity inducer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-040364 2016-03-02
JP2016040364 2016-03-02

Publications (1)

Publication Number Publication Date
WO2017150595A1 true WO2017150595A1 (en) 2017-09-08

Family

ID=59743073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008055 WO2017150595A1 (en) 2016-03-02 2017-03-01 Immunity inducer

Country Status (16)

Country Link
US (1) US11318185B2 (en)
EP (1) EP3424518B1 (en)
JP (1) JP7147168B2 (en)
KR (1) KR102356961B1 (en)
CN (2) CN116059325A (en)
AU (1) AU2017227308B2 (en)
BR (1) BR112018016920A2 (en)
CA (1) CA3016298A1 (en)
DK (1) DK3424518T3 (en)
ES (1) ES2890425T3 (en)
HU (1) HUE056857T2 (en)
MX (1) MX2018009692A (en)
PL (1) PL3424518T3 (en)
PT (1) PT3424518T (en)
RU (1) RU2755542C2 (en)
WO (1) WO2017150595A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157736A1 (en) * 2011-05-19 2012-11-22 東レ株式会社 Immunity induction agent
JP2015501301A (en) * 2011-10-15 2015-01-15 ジェネンテック, インコーポレイテッド SCD1 antagonists for treating cancer

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040226056A1 (en) 1998-12-22 2004-11-11 Myriad Genetics, Incorporated Compositions and methods for treating neurological disorders and diseases
US6824292B2 (en) * 1999-01-06 2004-11-30 Armament Systems And Procedures, Inc. LED flashlight with clip opposite LED
WO2009090651A2 (en) * 2008-01-15 2009-07-23 Technion Research And Development Foundation Ltd. Major histocompatibility complex hla-b2705 ligands useful for therapy and diagnosis
CN101683354B (en) * 2008-09-25 2012-02-22 中国科学院上海生命科学研究院 Liver damage relevant drug target and application thereof
US8053633B1 (en) * 2008-12-30 2011-11-08 University Of Kentucky Research Foundation Fungal desaturases and related methods
DK2474315T3 (en) * 2009-09-03 2018-03-12 Toray Industries IMMUNITY INDUCER
MA40737A (en) * 2014-11-21 2017-07-04 Memorial Sloan Kettering Cancer Center DETERMINANTS OF CANCER RESPONSE TO PD-1 BLOCKED IMMUNOTHERAPY
CA3172682A1 (en) * 2015-04-23 2016-10-27 Nantomics, Llc Cancer neoepitopes
WO2017184590A1 (en) 2016-04-18 2017-10-26 The Broad Institute Inc. Improved hla epitope prediction

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157736A1 (en) * 2011-05-19 2012-11-22 東レ株式会社 Immunity induction agent
JP2015501301A (en) * 2011-10-15 2015-01-15 ジェネンテック, インコーポレイテッド SCD1 antagonists for treating cancer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BAI, Y ET AL.: "X-ray structure of a mammalian stearoyl-CoA desaturase", NATURE, vol. 524, no. 7564, 2015, pages 252 - 256, XP055414134 *

Also Published As

Publication number Publication date
EP3424518A4 (en) 2019-08-14
PL3424518T3 (en) 2022-01-03
AU2017227308B2 (en) 2024-02-22
EP3424518A1 (en) 2019-01-09
HUE056857T2 (en) 2022-03-28
RU2018134171A (en) 2020-04-02
CA3016298A1 (en) 2017-09-08
JPWO2017150595A1 (en) 2018-12-27
RU2018134171A3 (en) 2020-06-18
CN108697757A (en) 2018-10-23
CN116059325A (en) 2023-05-05
AU2017227308A1 (en) 2018-08-30
JP7147168B2 (en) 2022-10-05
KR102356961B1 (en) 2022-01-28
US20190076505A1 (en) 2019-03-14
BR112018016920A2 (en) 2019-01-02
CN108697757B (en) 2022-11-04
KR20180117653A (en) 2018-10-29
ES2890425T3 (en) 2022-01-19
PT3424518T (en) 2021-09-22
EP3424518B1 (en) 2021-08-11
US11318185B2 (en) 2022-05-03
MX2018009692A (en) 2018-12-19
DK3424518T3 (en) 2021-09-13
RU2755542C2 (en) 2021-09-17

Similar Documents

Publication Publication Date Title
JP5962739B2 (en) Immune inducer
JP7147168B2 (en) Immunity inducer
JP7181676B2 (en) Immunity inducer
JP5217502B2 (en) Cancer treatment and / or prevention agent
JP7035534B2 (en) Immune inducer
JP7087387B2 (en) Immune inducer
JP7160462B2 (en) Immunity inducer
JP5572938B2 (en) Immune inducer
JP2008247891A (en) Treating and/or preventive agent of cancer

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017515854

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/009692

Country of ref document: MX

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018016920

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017227308

Country of ref document: AU

Date of ref document: 20170301

Kind code of ref document: A

Ref document number: 3016298

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187027574

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017760059

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017760059

Country of ref document: EP

Effective date: 20181002

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17760059

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112018016920

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180817