WO2017150094A1 - Method for producing planarization film, active light sensitive or radiation sensitive composition for forming planarization film, planarization film, and method for manufacturing electronic device - Google Patents

Method for producing planarization film, active light sensitive or radiation sensitive composition for forming planarization film, planarization film, and method for manufacturing electronic device Download PDF

Info

Publication number
WO2017150094A1
WO2017150094A1 PCT/JP2017/004367 JP2017004367W WO2017150094A1 WO 2017150094 A1 WO2017150094 A1 WO 2017150094A1 JP 2017004367 W JP2017004367 W JP 2017004367W WO 2017150094 A1 WO2017150094 A1 WO 2017150094A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
film
resin
planarizing film
planarizing
Prior art date
Application number
PCT/JP2017/004367
Other languages
French (fr)
Japanese (ja)
Inventor
康智 米久田
康介 越島
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016130972A external-priority patent/JP2019070676A/en
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2017150094A1 publication Critical patent/WO2017150094A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention relates to a method for producing a planarizing film, an actinic ray-sensitive or radiation-sensitive composition for forming a planarizing film, a planarizing film, and a method for producing an electronic device.
  • fine processing by photolithography is performed by forming a film of a photoresist composition on a substrate such as a silicon wafer and actinic rays such as ultraviolet rays through a mask pattern on which a semiconductor device pattern is drawn. Is a processing method in which a silicon wafer is etched using the obtained resist pattern as a protective material.
  • Patent Document 1 discloses a composition for forming a resist underlayer film.
  • the resist underlayer film forming composition of Patent Document 1 includes a conductive compound having a specific structural unit, a crosslinking agent, a compound that promotes a crosslinking reaction, and an organic solvent (Claim 1).
  • a stepped substrate having a hole shape and / or a trench shape may be used as a substrate used for manufacturing an electronic device as described above.
  • an actinic ray-sensitive or radiation-sensitive planarizing film-forming composition such as the above-described photoresist composition is embedded in the holes and trenches of the stepped substrate, and an exposure process and a development process are performed.
  • a substantially flat planarizing film may be formed on the stepped substrate.
  • the stepped substrate has a portion which is convex with respect to the hole and the trench, that is, a portion where the hole and the trench are not formed (hereinafter also referred to as “convex portion”).
  • the flattening film located on the convex portion is raised more than the flattening film located on the holes and trenches. End up. That is, the surface of the obtained planarization film has an uneven shape corresponding to the unevenness of the stepped substrate, and the flatness of the planarization film may be insufficient.
  • the flatness of the planarization film is not sufficient, when manufacturing an electronic device or the like using the stepped substrate on which the planarization film is formed, the processing accuracy of the electronic device may be adversely affected.
  • the present inventors have controlled the characteristics of a film formed by an actinic ray-sensitive or radiation-sensitive planarizing film-forming composition (that is, a film before exposure).
  • the inventors have found that the desired effect can be obtained. That is, the present inventors have found that the above problem can be solved by the following configuration.
  • a method for producing a planarizing film for planarizing the surface of a stepped substrate having irregularities on the surface A step A of forming a film on the stepped substrate using the actinic ray-sensitive or radiation-sensitive planarizing film-forming composition containing the resin (A) and the photoacid generator (B); A step B of exposing the film through a mask disposed at a position corresponding to the convex portion of the stepped substrate; Using a developer, removing at least a portion of the film provided on the convex portion of the stepped substrate to obtain a planarization film; and Have A method for producing a planarization film, wherein a test film having a thickness T is formed on a silicon substrate using the composition for forming a planarization film, wherein the value of ⁇ of the test film is less than 1000.
  • is obtained by the following ⁇ calculation method.
  • ⁇ calculation method silicon with respect to the test membrane of the formed thickness T on a substrate 99 places performs exposure while increasing every 0.8 mJ / cm 2 exposure amount from 1 mJ / cm 2 by using a KrF excimer laser Then, the exposed test film is baked at 130 ° C. for 60 seconds, and then a removal process is performed to remove a part of the test film after baking with an aqueous 2.38 mass% tetramethylammonium hydroxide solution.
  • the film thickness at each exposure point of the test film after the removal treatment is calculated, and the point corresponding to the film thickness and the exposure amount at each exposure point on the orthogonal coordinates with the film thickness as the vertical axis and the exposure amount as the horizontal axis
  • a line obtained by connecting the plotted points is created, and the vertical axis on the line connects the point of thickness T ⁇ 0.8 and the vertical axis of the point of thickness T ⁇ 0.4. of the absolute value of the slope ⁇ ( ⁇ ⁇ cm 2 / mJ To.
  • Resin (A1) in which the resin (A) contains 0.5 to 30 mol% of repeating units having two or more crosslinkable sites that are crosslinked by the action of an acid, and a repeating unit having a phenolic hydroxyl group The method for producing a planarizing film according to the above [1] or [2], comprising at least one of a resin (A2) containing. [4] The method for producing a flattened film according to the above [3], wherein the resin (A1) has substantially no repeating unit having an acid-decomposable group.
  • planarizing film-forming composition does not contain a crosslinking agent or contains the crosslinking agent in an amount of 5% by mass or less based on the total solid content of the planarizing film-forming composition.
  • the method for producing a planarizing film according to any one of [9]. [11] The method for producing a planarizing film according to any one of [1] to [10] above, wherein the glass transition temperature of the resin (A) is 150 ° C. or lower. [12] The content of the resin (A) according to any one of the above [1] to [11], wherein the content of the resin (A) is 50 to 99% by mass with respect to the total solid content of the composition for flattening film formation.
  • a method for producing a planarizing film [13] The method for producing a flattened film according to any one of the above [1] to [12], wherein the composition for forming a flattened film further contains an acid diffusion controller. [14] The method for producing a flattening film according to any one of the above [1] to [13], wherein the flattening film forming composition further contains a surfactant.
  • a method for manufacturing an electronic device including the method for manufacturing a planarizing film according to any one of [1] to [14].
  • the actinic-ray-sensitive or radiation-sensitive composition for planarization film formation, a planarization film, and the manufacturing method of an electronic device can be provided.
  • the notation that does not indicate substitution and non-substitution includes those having no substituent and those having a substituent.
  • the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • Actinic light” or “radiation” in the present invention means, for example, an emission line spectrum of a mercury lamp, far ultraviolet rays represented by an excimer laser, extreme ultraviolet rays (EUV light), X-rays, electron beams (EB) and the like.
  • light means actinic rays or radiation.
  • exposure in the present invention is not limited to exposure with an ultraviolet ray, an ultraviolet ray (EUV light) typified by an excimer laser, an X-ray, an electron beam, an ion unless otherwise specified. Drawing with particle beams such as beams is also included in exposure.
  • EUV light ultraviolet ray
  • drawing with particle beams such as beams is also included in exposure.
  • to is used to mean that the numerical values described before and after it are included as a lower limit and an upper limit.
  • (meth) acrylate represents acrylate and methacrylate
  • (meth) acryl represents acryl and methacryl.
  • 1 ⁇ (angstrom) corresponds to 0.1 nm.
  • the planarizing film manufacturing method of the present invention is a planarizing film manufacturing method for planarizing the surface of a stepped substrate having irregularities on the surface, and includes at least the following steps A to C.
  • Step A Step of forming a film on the stepped substrate using the actinic ray-sensitive or radiation-sensitive planarizing film forming composition containing the resin (A) and the photoacid generator (B)
  • Step B Step of exposing the film through a mask arranged at a position corresponding to the convex portion of the stepped substrate
  • Step C Using a developer, the film provided on the convex portion of the stepped substrate Removing at least a portion to obtain a planarization film
  • FIG. 1 to 4 are schematic views showing an example of a method for producing a planarizing film of the present invention step by step.
  • Step A uses an actinic ray-sensitive or radiation-sensitive planarizing film-forming composition containing a resin (A) and a photoacid generator (B) to form a film (hereinafter referred to as “resist film”) on a stepped substrate. Is also referred to as “.”.
  • step A is also referred to as a resist film forming step.
  • the resist film formed in step A is formed for the purpose of flattening the stepped substrate, and does not necessarily have to be used as an etching mask.
  • a trench structure will be described as an example.
  • a step substrate 10 is prepared as shown in FIG.
  • the stepped substrate 10 is provided with a trench 12 having a predetermined opening width and depth (hereinafter also referred to as “concave portion 12”) and a convex portion 13 in which the trench 12 is not formed.
  • a planarization film forming composition is applied to the entire surface of the stepped substrate 10 to form a resist film 14.
  • the resist film 14 has a convex upper film 14a formed by adhering the flat film forming composition on the convex part 13 and a concave part formed by flowing the flattening film forming composition into the trench 12. And a film 14b.
  • an appropriate known application method can be used as a method for applying the planarization film forming composition on the stepped substrate 10.
  • a coating method include a spin coating method, a dip coating method, a roller blade method, and a spray method.
  • the composition for forming a protective film is preferably applied in an amount such that the coating film thickness (indicated as A in FIG. 2) on the convex upper film 14a is 500 to 5000 mm, and is 700 to 4000 mm. It is more preferable to apply in such an amount, and it is even more preferable to apply in an amount of 800 to 4000 mm.
  • the “step substrate” means a substrate provided with holes and / or trenches.
  • a method for manufacturing the stepped substrate 10 having the trench 12 is not particularly limited, and a known method can be used. For example, a method in which a photoresist process and an etching process are combined can be used. More specifically, a method of depositing an insulating film made of a mask nitride film / pad oxide film on a substrate and then etching it into a pattern can be used.
  • the stepped substrate 10 examples include a bottomed hole structure and a trench structure.
  • the aspect ratio represented by height / diameter is 0.2 to 50, preferably 0.5 to 20, and more preferably 1 to 10.
  • the bottomed trench structure for example, the aspect ratio represented by height / groove width is 0.2 to 50, preferably 0.5 to 20, and more preferably 1 to 10.
  • the measuring method of the opening width and depth of the hole structure and the trench structure can be measured by a publicly known method.
  • the stepped substrate 10 may have holes and trenches having the same opening size (groove width and diameter), depth and aspect ratio on the surface, and different opening sizes (groove width and diameter), depth, A plurality of types of holes and trenches having an aspect ratio may be provided.
  • the material constituting the stepped substrate 10 is not particularly limited, and silicon, silicon carbide, metal (for example, gold, silver, copper, nickel, and aluminum), metal nitride (for example, silicon nitride, titanium nitride, tantalum nitride, and the like) Tungsten nitride etc.), glass (eg quartz glass, borate glass and soda glass etc.), resin (eg polyethylene terephthalate and polyimide etc.) and metal oxides (eg silicon oxide, titanium oxide, zirconium oxide and oxide) Hafnium, etc.).
  • metal for example, gold, silver, copper, nickel, and aluminum
  • metal nitride for example, silicon nitride, titanium nitride, tantalum nitride, and the like
  • Tungsten nitride etc. glass
  • glass eg quartz glass, borate glass and soda glass etc.
  • resin eg polyethylene terephthalate and polyimide etc.
  • composition or “composition of the present invention”.
  • the resist film 14 applied on the stepped substrate 10 may be baked (Pre Bake; PB).
  • the temperature during the baking process (PB) is preferably 70 ° C. to 200 ° C., and more preferably 80 ° C. to 180 ° C.
  • the time for performing the baking treatment (PB) is preferably 20 to 180 seconds, and more preferably 30 to 120 seconds.
  • the baking process (PB) can be performed using a known heating device.
  • Step B is a step of exposing the resist film through a mask arranged at a position corresponding to the convex portion of the stepped substrate.
  • step B is also referred to as an exposure step.
  • the resist film 14 is irradiated with actinic rays or radiation through a mask 20 disposed at a position corresponding to the convex portion 13 of the stepped substrate 10.
  • Part of the resist film 14A is exposed to form a resist film 14A after exposure.
  • the exposed resist film 14A includes a convex upper film 14a located in the unexposed area and a post-exposed concave film 14B located in the exposed area.
  • FIG. 3 shows the state where the convex portion upper film 14a is not exposed, the present invention is not limited to this, and the convex portion upper film 14a may be slightly exposed by light diffracted at the time of exposure.
  • the exposure apparatus used in this step is not particularly limited, and a known apparatus may be used. Although there is no restriction
  • the mask 20 is disposed at a position corresponding to the convex portion 13 of the step substrate 10.
  • the “position corresponding to the convex portion 13 of the stepped substrate 10” specifically refers to a position where the convex portion 13 is not irradiated with light irradiated from the exposure apparatus when the resist film 14 is exposed. That is, the mask 20 is disposed so that the opening of the mask 20 is disposed above the recess 12 (above the recess upper film 14B).
  • Step C is a step of obtaining a planarizing film by removing at least a part of the film provided on the convex portion of the stepped substrate using a developer.
  • step C is also referred to as a development step.
  • FIG. 4 shows a state in which the convex film 14a located in the unexposed area is removed from the resist film 14A after exposure, and only the concave film 14B after exposure is left. That is, the exposed concave upper film 14B obtained through the development process is the planarizing film 14C.
  • the developer used in this step is not particularly limited, and for example, an alkali developer or a developer containing an organic solvent (hereinafter also referred to as “organic developer”) can be used. Among these, it is preferable to use an alkali developer.
  • the alkali developer include inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate and aqueous ammonia, primary amines such as ethylamine and n-propylamine, diethylamine And secondary amines such as di-n-butylamine, tertiary amines such as triethylamine and methyldiethylamine, alcohol amines such as dimethylethanolamine and triethanolamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, Tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, tetrapentylam
  • an appropriate amount of alcohol and / or surfactant can be added to the alkaline aqueous solution.
  • the alkali concentration of the alkali developer is usually from 0.1 to 20% by mass.
  • the pH of the alkali developer is usually from 10.0 to 15.0.
  • the alkali concentration and pH of the alkali developer can be appropriately adjusted and used.
  • the alkali developer may be used after adding a surfactant or an organic solvent.
  • pure water can be used, and an appropriate amount of a surfactant can be added.
  • a polar solvent such as a ketone solvent, an ester solvent, an alcohol solvent, an amide solvent and an ether solvent, and a hydrocarbon solvent
  • a polar solvent such as a ketone solvent, an ester solvent, an alcohol solvent, an amide solvent and an ether solvent, and a hydrocarbon solvent
  • a plurality of the above solvents may be mixed, or may be used by mixing with a solvent other than those described above or water.
  • the water content of the developer as a whole is preferably less than 10% by mass, and more preferably substantially free of moisture. That is, the amount of the organic solvent used relative to the organic developer is preferably 90% by mass or more and 100% by mass or less, and more preferably 95% by mass or more and 100% by mass or less with respect
  • the organic developer is preferably a developer containing at least one organic solvent selected from the group consisting of ketone solvents, ester solvents, alcohol solvents, amide solvents and ether solvents. .
  • the vapor pressure of the organic developer at 20 ° C. is preferably 5 kPa or less, more preferably 3 kPa or less, and even more preferably 2 kPa or less.
  • a surfactant can be added to the organic developer as required. Two or more surfactants may be used in combination.
  • the surfactant is not particularly limited, and for example, an ionic or nonionic fluorine-based and / or silicon-based surfactant can be used. Examples of these fluorine and / or silicon surfactants include, for example, JP-A No. 62-36663, JP-A No. 61-226746, JP-A No. 61-226745, JP-A No. 62-170950, JP-A-63-34540, JP-A-7-230165, JP-A-8-62834, JP-A-9-54432, JP-A-9-5988, US Pat. No.
  • Nonionic surfactant is not particularly limited, and it is more preferable to use a fluorine-based surfactant or a silicon-based surfactant.
  • the amount of the surfactant used is usually 0.001 to 5% by mass, preferably 0.005 to 2% by mass, and more preferably 0.01 to 0.5% by mass with respect to the total amount of the developer.
  • the organic developer may contain a basic compound.
  • Specific examples and preferred examples of the basic compound that can be contained in the organic developer used in the present invention are the same as those in the basic compound that can be contained in the composition as an acid diffusion controller described later.
  • a developing method for example, a method in which a substrate is immersed in a tank filled with a developer for a certain period of time (dip method), a method in which the developer is raised on the surface of the substrate by surface tension and is left stationary for a certain time (paddle) Method), a method of spraying the developer on the substrate surface (spray method), and a method of continuously discharging the developer while scanning the developer discharge nozzle at a constant speed on the substrate rotating at a constant speed (dynamic dispensing). Law) and the like can be applied.
  • the discharge pressure of the discharged developer (the flow rate per unit area of the discharged developer) is Preferably it is 2 mL / sec / mm 2 or less, More preferably, it is 1.5 mL / sec / mm 2 or less, More preferably, it is 1 mL / sec / mm 2 or less.
  • the details of this mechanism are not clear, but perhaps by setting the discharge pressure in the above range, the pressure applied to the resist film by the developer is reduced, and the resist film and the planarizing film are inadvertently cut or collapsed. This is considered to be suppressed.
  • the developer discharge pressure (mL / sec / mm 2 ) is a value at the developing nozzle outlet in the developing device.
  • Examples of the method for adjusting the discharge pressure of the developer include a method of adjusting the discharge pressure with a pump or the like, and a method of changing the pressure by adjusting the pressure by supply from a pressurized tank. Moreover, you may implement the process of stopping image development, substituting with another solvent after the process developed using the developing solution containing an organic solvent.
  • a step of developing using a developer containing an organic solvent (organic solvent developing step) and a step of developing using an aqueous alkaline solution (alkali developing step) are combined. May be used.
  • the rinsing solution used in the rinsing step after the step of developing using a developer containing an organic solvent is not particularly limited as long as the planarizing film is not dissolved, and a solution containing a general organic solvent may be used. it can.
  • a rinsing liquid containing at least one organic solvent selected from the group consisting of hydrocarbon solvents, ketone solvents, ester solvents, alcohol solvents, amide solvents and ether solvents should be used. Is preferred. Specific examples of the hydrocarbon solvent, the ketone solvent, the ester solvent, the alcohol solvent, the amide solvent, and the ether solvent are the same as those described in the developer containing an organic solvent.
  • the step of developing using a developer containing an organic solvent at least one selected from the group consisting of ketone solvents, ester solvents, alcohol solvents, amide solvents, and hydrocarbon solvents.
  • the step of washing with a rinsing liquid containing an organic solvent is performed, more preferably the step of washing with a rinsing liquid containing an alcohol solvent or an ester solvent, particularly preferably a monohydric alcohol.
  • a cleaning step is performed using the rinsing liquid contained, and most preferably, a cleaning step is performed using a rinsing liquid containing a monohydric alcohol having 5 or more carbon atoms.
  • examples of the monohydric alcohol used in the rinsing step include linear, branched, and cyclic monohydric alcohols. Specific examples include 1-butanol, 2-butanol, and 3-methyl-1-butanol. Tert-butyl alcohol, 1-pentanol, 2-pentanol, 1-hexanol, 4-methyl-2-pentanol, 1-heptanol, 1-octanol, 2-hexanol, cyclopentanol, 2-heptanol, 2 -Octanol, 3-hexanol, 3-heptanol, 3-octanol, 4-octanol and the like can be used, and particularly preferable monohydric alcohols having 5 or more carbon atoms are 1-hexanol, 2-hexanol, 4-methyl- Use 2-pentanol, 1-pentanol, 3-methyl-1-butanol, etc.
  • a hydrocarbon compound having 6 to 30 carbon atoms is preferable, a hydrocarbon compound having 7 to 30 carbon atoms is more preferable, and a hydrocarbon compound having 8 to 30 carbon atoms is more preferable.
  • a hydrocarbon compound having 10 to 30 carbon atoms is particularly preferred.
  • a glycol ether solvent may be used in addition to the ester solvent (one or more). Specific examples in this case include using an ester solvent (preferably butyl acetate) as a main component and a glycol ether solvent (preferably propylene glycol monomethyl ether (PGME)) as a subcomponent. Thereby, residue defects are suppressed.
  • a plurality of each component may be mixed, or may be used by mixing with an organic solvent other than the above.
  • the water content in the rinse liquid is preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 3% by mass or less. By setting the water content to 10% by mass or less, good development characteristics can be obtained.
  • the vapor pressure of the rinsing liquid used after the step of developing with a developer containing an organic solvent is preferably 0.05 kPa or more and 5 kPa or less, more preferably 0.1 kPa or more and 5 kPa or less, and 0.12 kPa or more at 20 ° C. More preferably, it is 3 kPa or less.
  • An appropriate amount of a surfactant can be added to the rinse solution.
  • washing is performed using a rinsing solution.
  • the method of the cleaning treatment is not particularly limited.
  • the method of continuously discharging the rinse liquid onto the substrate rotating at a constant speed (rotary coating method), or immersing the substrate in a tank filled with the rinse liquid for a certain period of time.
  • a method (dip method), a method of spraying a rinsing liquid onto the substrate surface (spray method), and the like can be applied.
  • the post-baking is usually performed at 40 to 160 ° C., preferably 70 to 95 ° C., usually 10 seconds to 3 minutes, preferably 30 seconds to 90 seconds.
  • the exposed resist film may be baked (post exposure bake; PEB).
  • the temperature in the baking treatment is not particularly limited, and is often 160 ° C. or less, and is preferably 150 ° C. or less because the effects of the present invention are more excellent.
  • the lower limit is not particularly limited, and is often 50 ° C. or higher.
  • the baking time is preferably 30 to 300 seconds, more preferably 30 to 180 seconds, and further preferably 30 to 90 seconds. Baking can be performed by means provided in a normal exposure / developing machine, and may be performed using a hot plate or the like. Baking promotes the reaction of the exposed area and improves the sensitivity and pattern profile.
  • the value of ⁇ of the test film is less than 1000. That is, in the method for producing a planarization film of the present invention, a planarization film forming composition having a value of ⁇ calculated by a ⁇ calculation method described later of less than 1000 is used.
  • the value of ⁇ of the test film is a parameter that can be calculated by a method to be described later, but mainly represents the sensitivity of the resist film to the exposure amount.
  • the recess upper film 14b which is a portion not masked at the time of exposure of the resist film, has a low sensitivity to the exposure amount of the resist film, but is not masked, so that a sufficient exposure amount is given. Therefore, the concave upper film 14B after exposure is sufficiently cured and is not easily removed by development.
  • the concave film 14b (the concave film 14B after exposure) is removed while removing the convex film 14a of the resist film. Since it can hold
  • the value of ⁇ needs to be less than 1000, but is preferably 900 or less, more preferably 800 or less, and even more preferably 500 or less from the viewpoint that the above-described effects are further improved. 100 or less is particularly preferable.
  • the lower limit is not particularly limited, and is preferably 1 or more and more preferably 5 or more from the viewpoint of productivity.
  • a test film (resist film) 120 having a thickness T is formed on a substrate 100.
  • a substrate to be used a Si substrate (manufactured by Advanced Materials Technology) subjected to hexamethyldisilazane treatment is used.
  • the thickness T is usually 500 to 5000 mm, preferably 700 to 4500 mm, and more preferably 800 to 4000 mm.
  • the film (resist film) 120 having a thickness T is manufactured by applying the composition onto the substrate 100 by a spin coating method and baking (Pre Bake) at 140 ° C. for 60 seconds.
  • a KrF excimer laser scanner (NA0.80), without passing through the exposure mask, the wafer having a resist film formed, while the amount of exposure from 1 mJ / cm 2 increased every 0.8 mJ / cm 2 99-point exposure is performed. That is, exposure with different exposure amounts is performed for 99 different positions on the film surface. At that time, the exposure amount in each exposure position is, 1mJ / cm 2 0.8mJ / cm 2 every increase from. More specifically, as shown in FIG. 6, exposure is performed by changing the exposure amount at different portions of the film, as indicated by the white arrows. In FIG. 6, exposure is performed at three different positions on the film 120. In the rightmost exposure in FIG.
  • exposure is performed at an exposure amount AmJ / cm 2 , and in the middle exposure, exposure is performed at an exposure amount (A + 0.8) mJ / cm 2 , and the leftmost exposure is performed. Then, exposure is performed at an exposure amount (A + 1.6) mJ / cm 2 . In this manner, exposure is performed while increasing the exposure amount by 0.8 mJ / cm 2 for each exposure location. Thereafter, the exposed resist film is baked at 130 ° C. for 60 seconds (Post Exposure Bake; PEB). Thereafter, development processing is performed on the obtained film.
  • PEB Post Exposure Bake
  • FIG. 7 is a view after the development processing is performed on the film shown in FIG. Becomes the thinnest. That is, a relationship of T1>T2> T3 is established.
  • FIG. 7 shows an example of a plot diagram.
  • Each black circle in FIG. 1 is shown, but actually the film thicknesses at the 99 exposure points are measured.
  • a plot diagram is created using the exposure amount and film thickness data at each exposure location. Specifically, the points corresponding to the film thickness and the exposure dose at each exposure location are plotted on orthogonal coordinates with the film thickness as the vertical axis and the exposure dose as the horizontal axis. That is, a graph is created with the film thickness at each exposure location on the vertical axis and the common logarithm of the exposure amount at each exposure location on the horizontal axis. The unit of the vertical axis is ⁇ , and the unit of exposure amount is mJ / cm 2 .
  • FIG. 8 shows an example of a plot diagram. Each black circle in FIG.
  • the number of black circle plots is less than the actual 99 points.
  • a line is created by connecting the plotted points in the obtained plot.
  • the vertical axis thickness value is 0.8 ⁇ T (80% thickness of T) point A
  • the vertical axis thickness value is 0.4 ⁇ T (40 T).
  • % B) is selected, and the absolute value of the slope of the straight line connecting the points A and B is calculated and set as ⁇ . For example, when the thickness T is 2000 mm, 0.8T corresponds to 1600 mm and 0.4T corresponds to 800 mm.
  • FIG. 8 corresponds to the result (film thickness and exposure amount) at each exposure location.
  • the number of black circle plots is less than the actual 99 points.
  • the method for controlling ⁇ described above is not particularly limited. For example, it can be performed by adjusting the type and amount of materials (for example, resin and photoacid generator) contained in the composition for forming a planarization film. . More specifically, the curability of the resin (A1) and the resin (A2) is maintained by using the resin (A1) and / or the resin (A2), which will be described later, and the photoacid generator (B) in combination.
  • the value of ⁇ can be reduced by reducing the crosslinking rate.
  • the value of ⁇ can also be controlled by changing the temperature at PB, the development time during the development process, and the like.
  • composition for forming actinic ray-sensitive or radiation-sensitive planarizing film In the method for producing a planarizing film of the present invention, an actinic ray-sensitive or radiation-sensitive composition for forming a planarizing film is used.
  • the actinic ray-sensitive or radiation-sensitive planarizing film-forming composition contains at least a resin (A) and a photoacid generator (B).
  • the planarization film-forming composition of the present invention is preferably a negative type. That is, when the flat film forming composition is exposed, the exposed portion is hardly dissolved by the developer.
  • compositions for forming an actinic ray-sensitive or radiation-sensitive planarizing film and components that may be contained will be described in detail.
  • the resin (A) is not particularly limited as long as it can easily reduce the above-described ⁇ value to less than 1000, and it becomes easier to adjust the above-described ⁇ value to a value less than 1000, It is preferable that at least one of resin (A1) and resin (A2), which will be described later, is included from the viewpoint that a flattened film superior in flatness can be produced.
  • Resin (A) may be used individually by 1 type, and may use 2 or more types together.
  • the glass transition temperature (Tg) of the resin (A) is preferably 150 ° C. or lower, more preferably 120 ° C. or lower, further preferably 80 ° C. or lower, and particularly preferably 50 ° C. or lower. preferable.
  • Tg of the resin (A) is 150 ° C. or less, the fluidity of the composition for forming a flattened film becomes good, and the flatness of the flattened film can be further improved.
  • the lower limit of Tg of resin (A) is not specifically limited, Resin (A) The lower limit of Tg is usually 5 ° C. or higher.
  • the glass transition temperature (Tg) was determined by weighing a vacuum-dried sample (about 2 mg) on an aluminum pan using a differential scanning calorimeter (DSC) Q2000 manufactured by TA Instruments, and measuring the aluminum pan using DSC. Obtained from the inflection point when the temperature is set at 10 ° C. to 200 ° C. at a rate of 2 ° C./min. When an inflection point of a DTA (differential thermal analysis) curve corresponding to the glass transition temperature is not observed by 200 ° C., Tg is determined to be 200 ° C. or higher.
  • DSC differential scanning calorimeter
  • the content of the resin (A) is preferably 50 to 99% by mass, more preferably 55 to 97% by mass, and more preferably 60 to 95% with respect to the total solid content of the flattening film forming composition. More preferably, it is mass%. When the content of the resin (A) is 50% by mass or more, the curability of the flattened film becomes better.
  • the resin (A1) is a resin containing 0.5 to 30 mol% of repeating units having two or more crosslinkable sites that are crosslinked by the action of an acid.
  • the planarizing film-forming composition of the present invention is irradiated with actinic rays or radiation, the crosslinkable site of the resin (A1) is crosslinked by the action of the acid generated from the photoacid generator (B).
  • the planarization film-forming composition containing the resin (A1) has low sensitivity to actinic rays or radiation. Therefore, it is presumed that it becomes easier to adjust the value of ⁇ by less than 1000.
  • the film formed on the convex part of the stepped substrate obtained by using the planarizing film forming composition is masked in the process B (exposure process), it is difficult to be exposed. Therefore, the cross-linking reaction of the cross-linkable site of the resin (A1) becomes slower, and the curability of the film formed on the convex portion of the step substrate is lowered. Thereby, the film formed on the convex portion of the stepped substrate is more easily removed in the step C (developing step).
  • the film (film embedded in the concave portion) formed on the concave portion of the stepped substrate obtained by using the planarization film forming composition is not masked in the step B (exposure step) and is sufficiently Since it is exposed, it cures well. For this reason, the film formed on the concave portion of the stepped substrate is difficult to be removed in the step C (developing step). As a result, it is estimated that the flatness of the planarization film formed on the stepped substrate is further improved.
  • repeating unit (a1) a repeating unit having two or more crosslinkable sites that are crosslinked by the action of an acid is also simply referred to as “repeating unit (a1)”.
  • Examples of the crosslinkable site that is crosslinked by the action of an acid include a hydroxy group and an epoxy group. From the viewpoint of easy control of the reaction, a hydroxy group is preferable, and a phenolic hydroxyl group is more preferable.
  • the number of cross-linkable sites that are cross-linked by the action of an acid contained in the repeating unit is 2 or more, but preferably 2 to 4, and the curability of the composition for forming a flattened film is maintained. However, it is more preferable that the number is two from the viewpoint that the sensitivity can be lowered. Two or more crosslinkable sites that are cross-linked by the action of an acid contained in the repeating unit may be the same or different from each other, but are preferably the same.
  • the resin (A1) is preferably a novolak resin from the viewpoint that it becomes easy to adjust the value of ⁇ described above to less than 1000 and the flatness of the planarizing film is further improved.
  • the novolac resin include those obtained by condensing phenols and aldehydes in the presence of an acid catalyst.
  • the phenols include phenol, cresol, ethylphenol, butylphenol, xylenol, phenylphenol, catechol, hydroquinone, resorcinol, pyrogallol, naphthol, and bisphenol A.
  • aldehydes examples include formaldehyde, paraformaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, and the like.
  • the said phenols and aldehydes can be used individually or in combination of 2 or more types.
  • the novolak resin examples include a condensation product of hydroquinone, resorcinol or a mixture thereof and formalin.
  • the novolak resin may be adjusted in molecular weight distribution using means such as fractionation. Moreover, you may mix the low molecular weight component which has phenolic hydroxyl groups, such as bisphenol C and bisphenol A, in the said novolak resin.
  • the repeating unit (a1) can easily adjust the value of ⁇ described above to less than 1000, the flatness of the flattened film can be further improved, and swelling of the flattened film can also be suppressed.
  • It preferably has a structure, and preferably has at least one of a resorcinol structure (see the following formula (a1-1)) and a hydroquinone structure (see the following formula (a1-2)).
  • the content of the repeating unit (a1) is preferably 0.5 to 30 mol% and preferably 1 to 20 mol% with respect to 100 mol% of all repeating units constituting the resin (A1). More preferably, it is 1 to 15 mol%, further preferably 1 to 10 mol%.
  • the content of the repeating unit (a1) is 0.5 mol% or more, the flatness of the flattened film can be further improved. Moreover, since it can suppress that the sensitivity of the composition for planarization film formation falls too much because content of a repeating unit (a1) is 30 mol% or less, productivity of a planarization film becomes favorable.
  • the resin (A1) may have a repeating unit other than the repeating unit (a1).
  • a repeating unit include a repeating unit having a phenol structure, a repeating unit having an olefin structure, a repeating unit having an epoxy structure, a repeating unit having a methylol structure, and the like, from the viewpoint that the value of ⁇ can be further reduced.
  • a repeating unit having a phenol structure is preferred.
  • the content of repeating units other than the above repeating unit (a1) is preferably 70 to 99.5 mol%, based on 100 mol% of all repeating units constituting the resin (A1), and preferably 80 to 99 mol%. More preferably, it is 85 to 99 mol%, more preferably 90 to 99 mol%.
  • Resin (A1) has substantially a repeating unit having an acid-decomposable group from the viewpoint that when the exposure of the resist film is performed at a low exposure amount, the resist film in the exposed portion is too thin after development. Preferably not. Details of the acid-decomposable group will be described in the section of the resin (A2) described later.
  • having substantially no repeating unit having an acid-decomposable group specifically means that the content of the repeating unit having an acid-decomposable group is 100% of all repeating units constituting the resin (A1). It means 0 to 5 mol% with respect to mol%, preferably 0 to 3 mol%, preferably 0 mol% (that is, having no repeating unit having an acid-decomposable group). ) Is more preferable.
  • the weight average molecular weight (Mw) of the resin (A1) is preferably 1000 to 30000, more preferably 1500 to 25000, and still more preferably 1500 to 20000.
  • the weight average molecular weight (Mw), the number average molecular weight (Mn), and the dispersity (Mw / Mn) indicate polystyrene conversion values by GPC measurement.
  • HLC-8120 manufactured by Tosoh Corporation
  • TSK gel Multipore HXL-M manufactured by Tosoh Corporation, 7.8 mm ID ⁇ 30.0 cm
  • the dispersity is usually 1.0 to 3.0, preferably 1.0 to 2.6, more preferably 1.0 to 2.0, and 1.1 to More preferably, it is 2.0.
  • the smaller the molecular weight distribution the better the resolution and resist shape, the smoother the side wall of the planarizing film, and the better the roughness.
  • resin (A1) Specific examples of resin (A1) are shown below.
  • n, m, and p represent the number of repeating units.
  • the resin (A2) is a resin containing a repeating unit having a phenolic hydroxyl group.
  • the phenolic hydroxyl group contained in the resin (A2) is crosslinked by the action of the acid generated from the photoacid generator (B). Therefore, when the film (resist film) obtained using the planarization film-forming composition is irradiated with actinic rays or radiation, the resist film is cured by the action of the phenolic hydroxyl group contained in the resin (A2).
  • the value of ⁇ can be easily adjusted to less than 1000.
  • the film formed on the convex part of the stepped substrate obtained by using the planarizing film forming composition is masked in the process B (exposure process), it is difficult to be exposed. Therefore, the cross-linking reaction of the phenolic hydroxyl group contained in the film formed on the convex part does not proceed sufficiently, and the film formed on the convex part of the stepped substrate is further removed in the step C (development process). It becomes easy to be done.
  • the film (film embedded in the concave portion) formed on the concave portion of the stepped substrate obtained by using the planarization film forming composition is not masked in the step B (exposure step) and is sufficiently Since it is exposed, it cures well. For this reason, the film formed on the concave portion of the stepped substrate is difficult to be removed in the step C (developing step). As a result, it is estimated that the flatness of the planarization film formed on the stepped substrate is further improved.
  • Resin (A2) should just contain the repeating unit which has a phenolic hydroxyl group, and it is preferable that it is resin which consists only of a repeating unit which has a phenolic hydroxyl group from the point that the flatness of a planarization film
  • the repeating unit having a phenolic hydroxyl group is represented by the following general formula (IA) and the following general formula (IB) from the viewpoint that the flatness of the planarizing film is further improved. It is preferably at least one repeating unit selected from repeating units and repeating units represented by the following general formula (IC).
  • the repeating unit having a phenolic hydroxyl group may be used alone or in combination of two or more. From the viewpoint of further improving the flatness of the planarizing film, it may be used alone. preferable.
  • R 1 represents a hydrogen atom or a methyl group.
  • m represents 1 or 2.
  • R 2 represents a hydrogen atom or a methyl group.
  • n represents 1 or 2.
  • the content of the repeating unit having a phenolic hydroxyl group is preferably 5 mol% or more, more preferably 20 mol% or more, more preferably 50 mol, based on 100 mol% of all repeating units of the resin (A2). % Or more is more preferable, and 80 mol% or more is particularly preferable.
  • the content of the repeating unit having a phenolic hydroxyl group is 5 mol% or more, the flatness of the flattened film can be further improved.
  • the repeating unit represented by the general formula (IA) has a structure represented by the formula (I) -a.
  • the resin (A2) may further contain a repeating unit having an acid-decomposable group.
  • the repeating unit having an acid-decomposable group may have an acid-decomposable group in at least one of the main chain and the side chain, and a repeating unit represented by the following general formula (II) is preferably used.
  • R 1 represents a hydrogen atom or a methyl group.
  • A represents a group that decomposes and leaves by the action of an acid.
  • An acid-decomposable group is a group that decomposes by the action of an acid to produce an alkali-soluble group.
  • Alkali-soluble groups include phenolic hydroxyl groups, carboxylic acid groups, fluorinated alcohol groups, sulfonic acid groups, sulfonamido groups, sulfonylimide groups, (alkylsulfonyl) (alkylcarbonyl) methylene groups, (alkylsulfonyl) (alkylcarbonyl) Imido group, bis (alkylcarbonyl) methylene group, bis (alkylcarbonyl) imide group, bis (alkylsulfonyl) methylene group, bis (alkylsulfonyl) imide group, tris (alkylcarbonyl) methylene group, tris (alkylsulfonyl) methylene group A group having A preferred group as an acid-decomposable group (acid-decompos
  • R 36 to R 39 each independently represents an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group or an alkenyl group.
  • R 36 and R 37 may be bonded to each other to form a ring.
  • R 01 to R 02 each independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group or an alkenyl group.
  • the acid-decomposable group is preferably a cumyl ester group, an enol ester group, an acetal ester group, a tertiary alkyl ester group or the like. More preferably, it is a tertiary alkyl ester group.
  • the acid-decomposable group is contained in the repeating unit represented by the general formula (II), but may be further contained in another repeating unit.
  • a in the repeating unit represented by the formula (II) represents a group that decomposes and leaves by the action of an acid, and is a hydrocarbon group (preferably having 20 or less carbon atoms, more preferably 4 to 12 carbon atoms). More preferred are a t-butyl group, a t-amyl group, and a hydrocarbon group having an alicyclic structure (for example, an alicyclic group itself, or a group in which an alicyclic group is substituted on an alkyl group), and t-butyl. Groups are more preferred.
  • the alicyclic structure may be monocyclic or polycyclic.
  • Examples include monocyclo, bicyclo, tricyclo, and tetracyclo structures having 5 or more carbon atoms.
  • the number of carbon atoms is preferably 6-30, and particularly preferably 7-25.
  • These hydrocarbon groups having an alicyclic structure may further have a substituent.
  • examples of the substituent that may be included include an alkyl group having 1 to 4 carbon atoms, an alkoxy group, an alkoxycarbonyl group, a carbamoyl group, a cyano group, and a nitro group.
  • the content of the repeating unit having an acid-decomposable group is 50 mol% or less with respect to 100 mol% of all the repeating units of the resin (A2). Is preferable, and it is more preferable that it is 40 mol% or less.
  • the repeating unit represented by the general formula (II) has a structure represented by the formula (II) -a.
  • R 1 represents a hydrogen atom or a methyl group.
  • Resin (A2) is not particularly limited, and may have a repeating unit other than the above.
  • the repeating unit other than the above it is preferable to use a repeating unit represented by the following general formula (III) from the viewpoint of lowering the Tg of the resin (A2).
  • R 1 represents a hydrogen atom or a methyl group.
  • R 2 represents a phenyl group or a cyclohexyl group, and is preferably a phenyl group. These phenyl group and cyclohexyl group may further have one or more substituents. Examples of the substituent that the phenyl group and the cyclohexyl group may further include an alkyl group having 1 to 4 carbon atoms, an alkoxy group, an alkoxycarbonyl group, a carbamoyl group, a cyano group, and a nitro group. Particularly preferred substituents are alkyl groups having 1 to 4 carbon atoms. n represents an integer of 0 to 2, and is preferably 1.
  • the content of the repeating unit represented by the general formula (III) is 100 mol% of all the repeating units of the resin (A2). On the other hand, it is preferably 50 mol% or less, more preferably 40 mol% or less, and further preferably 35 mol% or less.
  • the resin (A2) may further have a repeating unit other than the above.
  • a repeating unit having a carboxylic acid group is preferably used from the viewpoint that the swelling of the planarizing film can be suppressed.
  • the repeating unit having a carboxylic acid group is at least one type of repeating unit selected from repeating units represented by the following formulas (IV-A) to (IV-C) from the viewpoint that the swelling of the planarization film can be further suppressed.
  • it is a unit.
  • the repeating unit represented by the formula (IV-A) is included from the viewpoint of further suppressing the swelling of the planarizing film. Is preferred.
  • the repeating unit having a carboxylic acid group may be used alone or in combination of two or more.
  • R 3A represents a hydrogen atom or a methyl group.
  • R 3B-1 represents a hydrogen atom or a methyl group
  • R 3B-2 represents an alicyclic hydrocarbon group.
  • the alicyclic hydrocarbon group is preferably an adamantyl group, a diadamantyl group, or a group obtained by removing one hydrogen atom from a norbornane group.
  • R 3C represents a hydrogen atom or a methyl group
  • Ar represents an aromatic hydrocarbon group.
  • the aromatic hydrocarbon group a phenylene group or a naphthylene group is preferable.
  • the content of the repeating unit having a carboxylic acid group is 1 to 50 mol% with respect to 100 mol% of all the repeating units of the resin (A2). Preferably, it is 1 to 30 mol%, more preferably 5 to 30 mol%.
  • the content of the repeating unit having a carboxylic acid group is within the above range, swelling of the planarizing film can be further suppressed while maintaining the planarity of the planarizing film in a favorable range.
  • the resin (A2) may further have a repeating unit other than the above.
  • a repeating unit having a hydroxyl group is preferably used from the viewpoint of suppressing swelling of the planarizing film.
  • the repeating unit having a hydroxyl group is preferably at least one repeating unit selected from repeating units represented by the following formulas (VA) to (VB).
  • the repeating unit having a hydroxyl group may be used alone or in combination of two or more.
  • R 4A-1 represents a hydrogen atom or a methyl group
  • R 4A-2 represents a linear or branched alkylene group.
  • the number of carbon atoms of the alkylene group is preferably 1 to 10, and more preferably 1 to 5.
  • R 4B-1 represents a hydrogen atom or a methyl group
  • R 4B-2 represents an alicyclic hydrocarbon group.
  • the alicyclic hydrocarbon group is preferably an adamantyl group, a diadamantyl group, or a group obtained by removing one hydrogen atom from a norbornane group.
  • the content of the repeating unit having a hydroxyl group is 1 to 50 mol% with respect to 100 mol% of all the repeating units of the resin (A2). Preferably, it is 1 to 30 mol%, more preferably 5 to 30 mol%.
  • the content of the repeating unit having a hydroxyl group is within the above range, it is possible to further suppress swelling of the planarizing film while maintaining the planarity of the planarizing film in a favorable range.
  • Resin (A2) may further have a repeating unit other than the above.
  • a repeating unit based on styrene is preferably used from the viewpoint of lowering the Tg of the resin (A2).
  • the repeating unit based on styrene is specifically a repeating unit represented by the following formula (VI).
  • the content of the repeating unit based on styrene is 1 to 50 mol% with respect to 100 mol% of all repeating units of the resin (A2). Preferably, it is 1 to 30 mol%, more preferably 5 to 30 mol%. Since the content of the repeating unit based on styrene is within the above range, the resin (A2) can have a low Tg, and thus the flatness of the flattened film can be further improved.
  • the weight average molecular weight (Mw) of the resin (A2) is preferably 1500 to 25000, and more preferably 1500 to 20000.
  • the dispersity (Mw / Mn) is preferably 1.0 to 3.0, more preferably 1.0 to 2.5, and still more preferably 1.0 to 2.0. .
  • the weight average molecular weight (Mw), number average molecular weight (Mn), and dispersity (Mw / Mn) of the resin (A2) are polystyrene-converted values by GPC measurement, and can be measured by the same method as the resin (A1).
  • resin (A2) Specific examples of the resin (A2) will be shown below, but are not limited thereto.
  • the planarization film-forming composition of the present invention may contain two or more kinds of resins (A1). Similarly, two or more kinds of resins (A2) may be contained, and both the resin (A1) and the resin (A2) may be contained.
  • the photoacid generator (B) contained in the composition of the present invention is a compound that generates an acid upon irradiation with actinic rays or radiation (hereinafter, “compound (B)”, “acid generator”, “acid generator”). (B) "or” photo acid generator ”) as long as it is not particularly limited.
  • the compound (B) is preferably a compound that generates an organic acid upon irradiation with actinic rays or radiation.
  • the compound (B) may be in the form of a low molecular compound or may be in a form incorporated in a part of the polymer. Moreover, you may use together the form incorporated in a part of polymer and the form of a low molecular compound.
  • the molecular weight is preferably 3000 or less, more preferably 2000 or less, and even more preferably 1000 or less.
  • the compound (B) is in a form incorporated in a part of the polymer, it may be incorporated in a part of the resin (A) described above or may be incorporated in a resin different from the resin (A). . Specific examples of the case where the compound (B) is incorporated in a part of the polymer include paragraphs 0191 to 0209 in JP2013-54196A.
  • the acid generator photo-initiator of photocation polymerization, photo-initiator of photo-radical polymerization, photo-decoloring agent of dyes, photo-discoloring agent, irradiation of actinic ray or radiation used for micro resist, etc.
  • the known compounds that generate an acid and mixtures thereof can be appropriately selected and used.
  • examples of the acid generator include diazonium salts, phosphonium salts, sulfonium salts, iodonium salts, imide sulfonates, oxime sulfonates, diazodisulfones, disulfones, and o-nitrobenzyl sulfonates.
  • an acid generator having a pKa of the generated acid of ⁇ 2 or more is preferable.
  • pKa is preferably ⁇ 1.5 or more, more preferably ⁇ 1 or more, from the viewpoint that it is excellent in the flatness of the formed flattening film.
  • the upper limit of pKa is not particularly limited, and is preferably 1 or less.
  • pKa (acid strength) is one of the indexes for quantitatively expressing the strength of acid, and is synonymous with an acidity constant. Considering a dissociation reaction in which hydrogen ions are released from an acid, its equilibrium constant Ka is expressed by its negative common logarithm pKa. A smaller pKa indicates a stronger acid.
  • the calculation is performed by calculation using the following software package 1.
  • Software package 1 Advanced Chemistry Development (ACD / Labs)
  • Preferred compounds among the acid generators include compounds represented by the following general formulas (ZI), (ZII), and (ZIII).
  • R 201 , R 202 and R 203 each independently represents an organic group.
  • the organic group as R 201 , R 202 and R 203 generally has 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms.
  • Two of R 201 to R 203 may be bonded to form a ring structure, and the ring may contain an oxygen atom, a sulfur atom, an ester bond, an amide bond, or a carbonyl group.
  • Examples of the group formed by combining two members out of R 201 to R 203 include an alkylene group (eg, butylene group, pentylene group).
  • Z ⁇ represents a non-nucleophilic anion.
  • non-nucleophilic anion as Z ⁇ examples include a sulfonate anion, a carboxylate anion, a sulfonylimide anion, a bis (alkylsulfonyl) imide anion, and a tris (alkylsulfonyl) methyl anion.
  • non-nucleophilic anion is an anion having an extremely low ability to cause a nucleophilic reaction, and an anion capable of suppressing degradation with time due to an intramolecular nucleophilic reaction. Thereby, the temporal stability of the composition is improved.
  • the sulfonate anion include an aliphatic sulfonate anion, an aromatic sulfonate anion, and a camphor sulfonate anion.
  • carboxylate anion include an aliphatic carboxylate anion, an aromatic carboxylate anion, and an aralkylcarboxylate anion.
  • the aliphatic moiety in the aliphatic sulfonate anion and the aliphatic carboxylate anion may be an alkyl group or a cycloalkyl group, preferably an alkyl group having 1 to 30 carbon atoms and a cycloalkyl group having 3 to 30 carbon atoms.
  • An alkyl group is mentioned.
  • the aromatic group in the aromatic sulfonate anion and aromatic carboxylate anion is preferably an aryl group having 6 to 14 carbon atoms, such as a phenyl group, a tolyl group, and a naphthyl group.
  • the alkyl group, cycloalkyl group and aryl group in the aliphatic sulfonate anion and aromatic sulfonate anion may have a substituent.
  • examples of other non-nucleophilic anions include fluorinated phosphorus (for example, PF 6 ⁇ ), fluorinated boron (for example, BF 4 ⁇ ), fluorinated antimony and the like (for example, SbF 6 ⁇ ).
  • non-nucleophilic anion of Z ⁇ examples include an aliphatic sulfonate anion in which at least ⁇ position of the sulfonic acid is substituted with a fluorine atom, an aromatic sulfonate anion substituted with a fluorine atom or a group having a fluorine atom, an alkyl group Is preferably a bis (alkylsulfonyl) imide anion substituted with a fluorine atom, or a tris (alkylsulfonyl) methide anion wherein an alkyl group is substituted with a fluorine atom.
  • the non-nucleophilic anion is more preferably a perfluoroaliphatic sulfonate anion having 4 to 8 carbon atoms, a benzenesulfonate anion having a fluorine atom, still more preferably a nonafluorobutanesulfonate anion, a perfluorooctanesulfonate anion, Pentafluorobenzenesulfonate anion, 3,5-bis (trifluoromethyl) benzenesulfonate anion.
  • the non-nucleophilic anion of Z ⁇ is preferably represented by the general formula (2).
  • the volume of the generated acid is large and acid diffusion is suppressed.
  • Xf each independently represents a fluorine atom or an alkyl group substituted with at least one fluorine atom.
  • R 7 and R 8 each independently represent a hydrogen atom, a fluorine atom, an alkyl group, or an alkyl group substituted with at least one fluorine atom, and when there are a plurality of R 7 and R 8 , R 7 and R 8 are the same But it can be different.
  • L represents a divalent linking group, and when there are a plurality of L, L may be the same or different.
  • A represents an organic group containing a cyclic structure.
  • x represents an integer of 1 to 20
  • y represents an integer of 0 to 10.
  • z represents an integer of 0 to 10.
  • Xf is a fluorine atom or an alkyl group substituted with at least one fluorine atom as described above, and the alkyl group in the alkyl group substituted with a fluorine atom is preferably an alkyl group having 1 to 10 carbon atoms, An alkyl group having 1 to 4 carbon atoms is more preferable.
  • the alkyl group substituted with a fluorine atom of Xf is preferably a perfluoroalkyl group.
  • Xf is preferably a fluorine atom or a perfluoroalkyl group having 1 to 4 carbon atoms.
  • fluorine atom, CF 3 , C 2 F 5 , C 3 F 7 , C 4 F 9 , C 5 F 11 , C 6 F 13 , C 7 F 15 , C 8 F 17 , CH 2 CF 3 , CH 2 CH 2 CF 3, CH 2 C 2 F 5, CH 2 CH 2 C 2 F 5, CH 2 C 3 F 7, CH 2 CH 2 C 3 F 7, CH 2 C 4 F 9 and CH 2 CH 2 C 4 F 9 is mentioned, among which fluorine atom and CF 3 are preferable.
  • both Xf are fluorine atoms.
  • R 7 and R 8 represent a hydrogen atom, a fluorine atom, an alkyl group, or an alkyl group substituted with at least one fluorine atom as described above.
  • the alkyl group preferably has 1 to 4 carbon atoms. More preferred is a perfluoroalkyl group having 1 to 4 carbon atoms.
  • Specific examples of the alkyl group substituted with at least one fluorine atom of R 7 and R 8 include CF 3 , C 2 F 5 , C 3 F 7 , C 4 F 9 , C 5 F 11 , and C 6 F 13.
  • L represents a divalent linking group, and represents —COO—, —OCO—, —CO—, —O—, —S—, —SO—, —SO 2 —, —N (Ri) — (wherein Ri represents a hydrogen atom or an alkyl group), an alkylene group (preferably an alkylene group having 1 to 6 carbon atoms, more preferably an alkylene group having 1 to 4 carbon atoms, particularly preferably a methylene group or an ethylene group, most preferably methylene group).
  • a cycloalkylene group preferably having 3 to 10 carbon atoms
  • an alkenylene group preferably having 2 to 6 carbon atoms
  • a divalent linking group in which a plurality of these are combined.
  • the alkylene group in -CON (Ri) -alkylene group-, -N (Ri) CO-alkylene group-, -COO-alkylene group-, and -OCO-alkylene group- is an alkylene group having 1 to 20 carbon atoms. And an alkylene group having 1 to 10 carbon atoms is more preferable. When there are a plurality of L, they may be the same or different.
  • the alkyl group for Ri is preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 4 carbon atoms, such as a methyl group, an ethyl group, a propyl group, an n-butyl group, a sec-butyl group. , T-butyl group and the like.
  • the organic group containing the cyclic structure of A is not particularly limited as long as it has a cyclic structure, and is not limited to alicyclic groups, aryl groups, and heterocyclic groups (not only those having aromaticity but also aromaticity).
  • a tetrahydropyran ring, a lactone ring structure, and a sultone ring structure are also included.
  • the alicyclic group may be monocyclic or polycyclic, and may be a monocyclic cycloalkyl group such as a cyclopentyl group, a cyclohexyl group, or a cyclooctyl group, and a norbornyl group, a norbornene-yl group, or a tricyclodecanyl group (for example, A tricyclo [5.2.1.0 (2,6) ] decanyl group), a tetracyclodecanyl group, a tetracyclododecanyl group, and an adamantyl group are preferred, and an adamantyl group is particularly preferred.
  • a monocyclic cycloalkyl group such as a cyclopentyl group, a cyclohexyl group, or a cyclooctyl group
  • a norbornyl group for example, A tricyclo [5.2.1.0 (2,6) ] decanyl
  • nitrogen atom containing alicyclic groups such as a piperidine group, a decahydroquinoline group, and a decahydroisoquinoline group, are also preferable.
  • alicyclic groups having a bulky structure of 7 or more carbon atoms such as norbornyl group, tricyclodecanyl group, tetracyclodecanyl group, tetracyclododecanyl group, adamantyl group, decahydroquinoline group and decahydroisoquinoline group are included.
  • PEB post-exposure heating
  • an adamantyl group and a decahydroisoquinoline group are particularly preferable.
  • the aryl group include a benzene ring, a naphthalene ring, a phenanthrene ring, and an anthracene ring.
  • a naphthalene ring having a low absorbance is preferable from the viewpoint of light absorbance at 193 nm.
  • the heterocyclic group include a furan ring, a thiophene ring, a benzofuran ring, a benzothiophene ring, a dibenzofuran ring, a dibenzothiophene ring, and a pyridine ring.
  • a furan ring, a thiophene ring, and a pyridine ring are preferable.
  • Other preferred heterocyclic groups include the structures shown below (wherein X represents a methylene group or an oxygen atom, and R represents a monovalent organic group).
  • the organic group containing the cyclic structure may have a substituent, and the substituent may be an alkyl group (which may be linear, branched or cyclic, preferably having 1 to 12 carbon atoms), Examples thereof include aryl groups (preferably having 6 to 14 carbon atoms), hydroxy groups, alkoxy groups, ester groups, amide groups, urethane groups, ureido groups, thioether groups, sulfonamido groups, and sulfonic acid ester groups.
  • the carbon constituting the organic group containing a cyclic structure may be a carbonyl carbon.
  • X is preferably 1 to 8, more preferably 1 to 4, and particularly preferably 1.
  • y is preferably 0 to 4, more preferably 0 or 1, and still more preferably 1.
  • z is preferably 0 to 8, more preferably 0 to 4, and still more preferably 1.
  • Z - is a non-nucleophilic anion, and may be a di-imide anion.
  • the disulfonylimidoanion is preferably a bis (alkylsulfonyl) imide anion.
  • the alkyl group in the bis (alkylsulfonyl) imide anion is preferably an alkyl group having 1 to 5 carbon atoms.
  • Two alkyl groups in the bis (alkylsulfonyl) imide anion may be linked to each other to form an alkylene group (preferably having 2 to 4 carbon atoms) and form a ring together with the imide group and the two sulfonyl groups.
  • the ring structure that may be formed by the bis (alkylsulfonyl) imide anion is preferably a 5- to 7-membered ring, and more preferably a 6-membered ring.
  • These alkyl groups and alkylene groups formed by connecting two alkyl groups to each other can have a halogen atom, an alkyl group substituted with a halogen atom, an alkoxy group, an alkylthio group, an alkyloxysulfonyl group, an aryl Examples thereof include an oxysulfonyl group and a cycloalkylaryloxysulfonyl group, and a fluorine atom or an alkyl group substituted with a fluorine atom is preferable.
  • the non-nucleophilic anion of Z ⁇ has a fluorine content represented by (total mass of all fluorine atoms contained in the anion) / (total mass of all atoms contained in the anion) of 0.25 or less. Is preferably 0.20 or less, and more preferably 0.15 or less.
  • Examples of the organic group represented by R 201 , R 202 and R 203 include the corresponding groups in the compounds (ZI-1), (ZI-2), (ZI-3) and (ZI-4) described later. Can be mentioned.
  • the compound which has two or more structures represented by general formula (ZI) may be sufficient.
  • at least one of R 201 to R 203 of the compound represented by the general formula (ZI) is a single bond or at least one of R 201 to R 203 of the other compound represented by the general formula (ZI). It may be a compound having a structure bonded through a linking group.
  • More preferred (ZI) components include compounds (ZI-1), (ZI-2), (ZI-3) and (ZI-4) described below.
  • the compound (ZI-1) is at least one of aryl group R 201 ⁇ R 203 of formula (ZI), arylsulfonium compounds, namely, compounds containing an arylsulfonium as a cation.
  • arylsulfonium compound all of R 201 to R 203 may be an aryl group, or a part of R 201 to R 203 may be an aryl group and the rest may be an alkyl group or a cycloalkyl group.
  • arylsulfonium compound examples include triarylsulfonium compounds, diarylalkylsulfonium compounds, aryldialkylsulfonium compounds, diarylcycloalkylsulfonium compounds, and aryldicycloalkylsulfonium compounds.
  • the aryl group of the arylsulfonium compound is preferably a phenyl group or a naphthyl group, and more preferably a phenyl group.
  • the aryl group may be an aryl group having a heterocyclic structure having an oxygen atom, a nitrogen atom, a sulfur atom or the like. Examples of the heterocyclic structure include a pyrrole residue, a furan residue, a thiophene residue, an indole residue, a benzofuran residue, and a benzothiophene residue.
  • the two or more aryl groups may be the same or different.
  • the alkyl group or cycloalkyl group optionally possessed by the arylsulfonium compound is preferably a linear or branched alkyl group having 1 to 15 carbon atoms and a cycloalkyl group having 3 to 15 carbon atoms, such as a methyl group, Examples thereof include an ethyl group, a propyl group, an n-butyl group, a sec-butyl group, a t-butyl group, a cyclopropyl group, a cyclobutyl group, and a cyclohexyl group.
  • the aryl group, alkyl group, and cycloalkyl group of R 201 to R 203 are an alkyl group (eg, having 1 to 15 carbon atoms), a cycloalkyl group (eg, having 3 to 15 carbon atoms), an aryl group (eg, having 6 to 6 carbon atoms). 14) may have at least one selected from the group consisting of an alkoxy group (for example, having 1 to 15 carbon atoms), a halogen atom, a hydroxyl group, and a phenylthio group as a substituent.
  • Compound (ZI-2) is a compound in which R 201 to R 203 in formula (ZI) each independently represents an organic group having no aromatic ring.
  • the aromatic ring includes an aromatic ring containing a hetero atom.
  • the organic group containing no aromatic ring as R 201 to R 203 generally has 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms.
  • R 201 to R 203 are each independently preferably an alkyl group, a cycloalkyl group, an allyl group, or a vinyl group, more preferably a linear or branched 2-oxoalkyl group or 2-oxocycloalkyl group. Or an alkoxycarbonylmethyl group, particularly preferably a linear or branched 2-oxoalkyl group.
  • the alkyl group and cycloalkyl group represented by R 201 to R 203 are preferably a linear or branched alkyl group having 1 to 10 carbon atoms (for example, a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group), and And a cycloalkyl group having 3 to 10 carbon atoms (for example, a cyclopentyl group, a cyclohexyl group, and a norbornyl group).
  • R 201 to R 203 may be further substituted with at least one selected from the group consisting of a halogen atom, an alkoxy group (eg, having 1 to 5 carbon atoms), a hydroxyl group, a cyano group, and a nitro group.
  • the compound (ZI-3) is a compound represented by the following general formula (ZI-3), which is a compound having a phenacylsulfonium salt structure.
  • R 1c to R 5c are each independently a hydrogen atom, alkyl group, cycloalkyl group, aryl group, alkoxy group, aryloxy group, alkoxycarbonyl group, alkylcarbonyloxy group, cycloalkylcarbonyloxy group, halogen atom, hydroxyl group Represents a nitro group, an alkylthio group or an arylthio group.
  • R 6c and R 7c each independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, a halogen atom, a cyano group or an aryl group.
  • R x and R y each independently represents an alkyl group, a cycloalkyl group, a 2-oxoalkyl group, a 2-oxocycloalkyl group, an alkoxycarbonylalkyl group, an allyl group, or a vinyl group.
  • R 1c to R 5c , R 5c and R 6c , R 6c and R 7c , R 5c and R x , and R x and R y may be bonded to form a ring structure.
  • this ring structure may contain at least one selected from the group consisting of an oxygen atom, a sulfur atom, a ketone group, an ester bond and an amide bond.
  • the ring structure include an aromatic or non-aromatic hydrocarbon ring, an aromatic or non-aromatic heterocycle, or a polycyclic fused ring formed by combining two or more of these rings.
  • the ring structure include 3- to 10-membered rings, preferably 4- to 8-membered rings, more preferably 5- or 6-membered rings.
  • Examples of the group formed by combining any two or more of R 1c to R 5c , R 6c and R 7c , and R x and R y include a butylene group and a pentylene group.
  • the group formed by combining R 5c and R 6c and R 5c and R x is preferably a single bond or an alkylene group, and examples of the alkylene group include a methylene group and an ethylene group.
  • Z c - represents a non-nucleophilic anion, in the general formula (ZI) Z - and include the same non-nucleophilic anion.
  • the alkyl group as R 1c to R 5c may be either linear or branched, and examples thereof include an alkyl group having 1 to 20 carbon atoms, preferably a linear or branched alkyl group having 1 to 12 carbon atoms. Can do.
  • Examples of the cycloalkyl group as R 1c to R 5c include cycloalkyl groups having 3 to 10 carbon atoms.
  • the alkoxy group as R 1c to R 5c may be linear, branched or cyclic, for example, an alkoxy group having 1 to 10 carbon atoms, preferably a linear or branched alkoxy group having 1 to 5 carbon atoms, And a cyclic alkoxy group having 3 to 10 carbon atoms.
  • the aryl group as R 1c to R 5c is preferably an aryl group having 5 to 15 carbon atoms.
  • Specific examples of the alkoxy group in the alkoxycarbonyl group as R 1c ⁇ R 5c are the same as specific examples of the alkoxy group as the R 1c ⁇ R 5c.
  • Specific examples of the alkyl group in the alkylcarbonyloxy group and alkylthio group as R 1c ⁇ R 5c are the same as specific examples of the alkyl group of the R 1c ⁇ R 5c.
  • cycloalkyl group in the cycloalkyl carbonyl group as R 1c ⁇ R 5c are the same as specific examples of the cycloalkyl group of the R 1c ⁇ R 5c.
  • aryl group in the aryloxy group and arylthio group as R 1c ⁇ R 5c are the same as specific examples of the aryl group of the R 1c ⁇ R 5c.
  • Examples of the cation in the compound (ZI-2) or (ZI-3) in the present invention include cations described in paragraphs 0036 and after of US Patent Application Publication No. 2012/0076996.
  • the compound (ZI-4) is represented by the following general formula (ZI-4).
  • R 13 represents a hydrogen atom, a fluorine atom, a hydroxyl group, an alkyl group, a cycloalkyl group, an alkoxy group, an alkoxycarbonyl group, or a group having a cycloalkyl group. These groups may have a substituent.
  • R 14 is independently a group having a hydroxyl group, an alkyl group, a cycloalkyl group, an alkoxy group, an alkoxycarbonyl group, an alkylcarbonyl group, an alkylsulfonyl group, a cycloalkylsulfonyl group, or a cycloalkyl group, when a plurality of R 14 are present.
  • R 15 each independently represents an alkyl group, a cycloalkyl group or a naphthyl group. These groups may have a substituent.
  • Two R 15 may be bonded to each other to form a ring. When two R 15 's are bonded to each other to form a ring, the ring skeleton may contain a heteroatom such as an oxygen atom and a nitrogen atom. In one embodiment, it is preferred that two R 15 are alkylene groups and are bonded to each other to form a ring structure.
  • l represents an integer of 0-2.
  • r represents an integer of 0 to 8.
  • Z ⁇ represents a non-nucleophilic anion, and examples thereof include the same non-nucleophilic anion as Z ⁇ in formula (ZI).
  • the alkyl group of R 13 , R 14 and R 15 is linear or branched and preferably has 1 to 10 carbon atoms, and is preferably a methyl group, an ethyl group, n -Butyl group, t-butyl group and the like are preferable.
  • Examples of the cation of the compound represented by the general formula (ZI-4) in the present invention include paragraphs 0121, 0123 and 0124 of JP2010-256842A, and paragraphs 0127 and 0129 of JP2011-76056A. And cations described in 0130 and the like.
  • R 204 to R 207 each independently represents an aryl group, an alkyl group, or a cycloalkyl group.
  • the aryl group for R 204 to R 207 is preferably a phenyl group or a naphthyl group, and more preferably a phenyl group.
  • the aryl group of R 204 to R 207 may be an aryl group having a heterocyclic structure having an oxygen atom, a nitrogen atom, a sulfur atom, or the like.
  • Examples of the skeleton of the aryl group having a heterocyclic structure include pyrrole, furan, thiophene, indole, benzofuran, and benzothiophene.
  • the alkyl group and cycloalkyl group in R 204 to R 207 are preferably a linear or branched alkyl group having 1 to 10 carbon atoms (eg, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group), and And cycloalkyl groups having 3 to 10 carbon atoms (cyclopentyl group, cyclohexyl group, norbornyl group).
  • the aryl group, alkyl group, and cycloalkyl group of R 204 to R 207 may have a substituent.
  • substituents that the aryl group, alkyl group, and cycloalkyl group of R 204 to R 207 may have include an alkyl group (eg, having 1 to 15 carbon atoms) and a cycloalkyl group (eg, having 3 to 15 carbon atoms). ), An aryl group (eg, having 6 to 15 carbon atoms), an alkoxy group (eg, having 1 to 15 carbon atoms), a halogen atom, a hydroxyl group, and a phenylthio group.
  • Z ⁇ represents a non-nucleophilic anion, and examples thereof include the same as the non-nucleophilic anion of Z ⁇ in formula (ZI).
  • acid generators particularly preferable examples include compounds exemplified in US2012 / 0207978A1 ⁇ 0143>.
  • the acid generator can be synthesized by a known method, for example, according to the method described in JP-A No. 2007-161707.
  • An acid generator can be used individually by 1 type or in combination of 2 or more types.
  • the content of the acid generator in the composition is preferably 0.1 to 30% by mass, more preferably 0.5 to 25%, based on the total solid content of the composition. % By mass, more preferably 0.5 to 20% by mass, particularly preferably 0.5 to 15% by mass.
  • the acid generator is represented by the above general formula (ZI-3) or (ZI-4) (when there are a plurality of types)
  • the content is the total solid content of the composition.
  • 0.1 to 35% by mass is preferable, 0.5 to 30% by mass is more preferable, and 0.5 to 25% by mass is particularly preferable.
  • the planarization film forming composition further contains an acid diffusion controller.
  • the acid diffusion controller acts as a quencher that traps the acid generated from the acid generator or the like during exposure and suppresses the reaction of the acid-decomposable resin in the unexposed area due to excess generated acid.
  • the acid diffusion controller include a basic compound, a low-molecular compound having a nitrogen atom and a group capable of leaving by the action of an acid, a basic compound whose basicity decreases or disappears upon irradiation with actinic rays or radiation, or An onium salt that is a weak acid relative to the acid generator can be used.
  • the content of the acid diffusion controller is not particularly limited, and is preferably 0.01% by mass or more based on the total solid content in the composition in terms of more excellent effects of the present invention, and 0.2% by mass. % Or more is more preferable.
  • the upper limit is not particularly limited, and is often 2.0% by mass or less. In addition, only 1 type may be used for an acid diffusion control agent and it may use 2 or more types together.
  • Preferred examples of the basic compound include compounds having structures represented by the following formulas (A) to (E).
  • R 200 , R 201 and R 202 may be the same or different and are a hydrogen atom, an alkyl group (preferably having a carbon number of 1 to 20), a cycloalkyl group (preferably having a carbon number of 3 to 20) or an aryl group (having a carbon number). 6-20), wherein R 201 and R 202 may combine with each other to form a ring.
  • R 203 , R 204 , R 205 and R 206 may be the same or different and each represents an alkyl group having 1 to 20 carbon atoms.
  • the alkyl group having a substituent is preferably an aminoalkyl group having 1 to 20 carbon atoms, a hydroxyalkyl group having 1 to 20 carbon atoms, or a cyanoalkyl group having 1 to 20 carbon atoms.
  • the alkyl groups in the general formulas (A) and (E) are more preferably unsubstituted.
  • Preferred compounds include guanidine, aminopyrrolidine, pyrazole, pyrazoline, piperazine, aminomorpholine, aminoalkylmorpholine, piperidine and the like, and more preferred compounds include imidazole structure, diazabicyclo structure, onium hydroxide structure, onium carboxylate Examples thereof include a compound having a structure, a trialkylamine structure, an aniline structure or a pyridine structure, an alkylamine derivative having a hydroxyl group and / or an ether bond, and an aniline derivative having a hydroxyl group and / or an ether bond. Specific examples of preferred compounds include those exemplified in US2012 / 0219913A1 ⁇ 0379>.
  • Preferred examples of the basic compound further include an amine compound having a phenoxy group, an ammonium salt compound having a phenoxy group, an amine compound having a sulfonic acid ester group, and an ammonium salt compound having a sulfonic acid ester group.
  • amine compound a primary, secondary or tertiary amine compound can be used, and an amine compound in which at least one alkyl group is bonded to a nitrogen atom is preferable.
  • the amine compound is more preferably a tertiary amine compound.
  • the amine compound has an cycloalkyl group (preferably having 3 to 20 carbon atoms) or an aryl group (preferably having 3 to 20 carbon atoms).
  • 6 to 12 carbon atoms may be bonded to the nitrogen atom.
  • the amine compound preferably has an oxygen atom in the alkyl chain and an oxyalkylene group is formed.
  • the number of oxyalkylene groups is one or more in the molecule, preferably 3 to 9, and more preferably 4 to 6.
  • an oxyethylene group (—CH 2 CH 2 O—) or an oxypropylene group (—CH (CH 3 ) CH 2 O— or —CH 2 CH 2 CH 2 O—) is preferable, and more preferably oxy Ethylene group.
  • ammonium salt compound a primary, secondary, tertiary or quaternary ammonium salt compound can be used, and an ammonium salt compound in which at least one alkyl group is bonded to a nitrogen atom is preferable.
  • the ammonium salt compound may be a cycloalkyl group (preferably having 3 to 20 carbon atoms) or an aryl group, provided that at least one alkyl group (preferably having 1 to 20 carbon atoms) is bonded to the nitrogen atom. (Preferably having 6 to 12 carbon atoms) may be bonded to a nitrogen atom.
  • the ammonium salt compound preferably has an oxygen atom in the alkyl chain and an oxyalkylene group is formed.
  • the number of oxyalkylene groups is one or more in the molecule, preferably 3 to 9, and more preferably 4 to 6.
  • an oxyethylene group (—CH 2 CH 2 O—) or an oxypropylene group (—CH (CH 3 ) CH 2 O— or —CH 2 CH 2 CH 2 O—) is preferable, and more preferably oxy Ethylene group.
  • anion of the ammonium salt compound examples include halogen atoms, sulfonates, borates, and phosphates. Among them, halogen atoms and sulfonates are preferable. The following compounds are also preferable as the basic compound.
  • JP2011-22560A [0180] to [0225], JP2012-137735A [0218] to [0219], WO2011 / 158687A1 [0416] to The compounds described in [0438] can also be used. These basic compounds may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the acid generator / basic compound (molar ratio) is more preferably from 5.0 to 200, still more preferably from 7.0 to 150.
  • a low molecular weight compound having a nitrogen atom and a group capable of leaving by the action of an acid is an amine having a group on the nitrogen atom that is released by the action of an acid.
  • a derivative is preferred.
  • the group capable of leaving by the action of an acid an acetal group, a carbonate group, a carbamate group, a tertiary ester group, a tertiary hydroxyl group, and a hemiaminal ether group are preferable, and a carbamate group and a hemiaminal ether group are particularly preferable. .
  • the molecular weight of the compound (D-1) is preferably 100 to 1,000, more preferably 100 to 700, and particularly preferably 100 to 500.
  • Compound (D-1) may have a carbamate group having a protecting group on the nitrogen atom.
  • the protecting group constituting the carbamate group can be represented by the following general formula (d-1).
  • R b each independently represents a hydrogen atom, an alkyl group (preferably 1 to 10 carbon atoms), a cycloalkyl group (preferably 3 to 30 carbon atoms), an aryl group (preferably 3 to 30 carbon atoms), an aralkyl group. (Preferably having 1 to 10 carbon atoms) or an alkoxyalkyl group (preferably having 1 to 10 carbon atoms).
  • R b may be connected to each other to form a ring.
  • the alkyl group, cycloalkyl group, aryl group, and aralkyl group represented by R b are substituted with a functional group such as a hydroxyl group, a cyano group, an amino group, a pyrrolidino group, a piperidino group, a morpholino group, and an oxo group, an alkoxy group, and a halogen atom. May be. The same applies to the alkoxyalkyl group represented by Rb .
  • R b is preferably a linear or branched alkyl group, cycloalkyl group, or aryl group. More preferably, it is a linear or branched alkyl group or cycloalkyl group.
  • Examples of the ring formed by connecting two R b to each other include an alicyclic hydrocarbon group, an aromatic hydrocarbon group, a heterocyclic hydrocarbon group, or a derivative thereof.
  • Specific examples of the group represented by the general formula (d-1) include, but are not limited to, the structures disclosed in US2012 / 0135348A1 ⁇ 0466>.
  • the compound (D-1) particularly preferably has a structure represented by the following general formula (6).
  • R a represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or an aralkyl group.
  • l represents 2 R a may be the same or different, and two R a may be connected to each other to form a heterocyclic ring together with the nitrogen atom in the formula.
  • the heterocycle may contain a heteroatom other than the nitrogen atom in the formula.
  • R b has the same meaning as R b in formula (d-1), and preferred examples are also the same.
  • l represents an integer of 0 to 2
  • the alkyl group, cycloalkyl group, aryl group and aralkyl group as R a are the groups in which the alkyl group, cycloalkyl group, aryl group and aralkyl group as R b may be substituted. It may be substituted with a group similar to the group described above.
  • R b includes the same groups as the specific examples described above.
  • Specific examples of the particularly preferable compound (D-1) in the present invention include compounds disclosed in US2012 / 0135348A1 ⁇ 0475>, but are not limited thereto.
  • the compound represented by the general formula (6) can be synthesized based on JP2007-298869A, JP2009-199021A, and the like.
  • the compound (D-1) can be used singly or in combination of two or more.
  • a basic compound whose basicity decreases or disappears upon irradiation with actinic rays or radiation (hereinafter also referred to as “compound (PA)”) has a proton acceptor functional group and is irradiated with actinic rays or radiation. Is a compound whose proton acceptor properties are degraded, disappeared, or changed from proton acceptor properties to acidic properties.
  • the “proton acceptor functional group” is a functional group having electrons or a group capable of electrostatically interacting with protons, such as a functional group having a macrocyclic structure such as a cyclic polyether, or ⁇ It means a functional group having a nitrogen atom with an unshared electron pair that does not contribute to conjugation.
  • the “nitrogen atom having an unshared electron pair that does not contribute to ⁇ conjugation” is, for example, a nitrogen atom having a partial structure represented by the following formula.
  • Examples of a preferable partial structure of the proton acceptor functional group include a crown ether, an azacrown ether, a primary to tertiary amine, a pyridine, an imidazole, and a pyrazine structure.
  • the compound (PA) is decomposed by irradiation with an actinic ray or radiation to generate a compound in which the proton acceptor property is lowered, disappeared, or changed from proton acceptor property to acidity.
  • “decrease, disappearance of proton acceptor property, or change from proton acceptor property to acid” is a change in proton acceptor property resulting from addition of a proton to a proton acceptor functional group, Specifically, when a proton adduct is produced from a compound (PA) having a proton acceptor functional group and a proton, it means that the equilibrium constant in the chemical equilibrium is reduced. Proton acceptor property can be confirmed by measuring pH.
  • the acid dissociation constant pKa of the compound generated by decomposition of the compound (PA) upon irradiation with actinic rays or radiation preferably satisfies pKa ⁇ 1, more preferably ⁇ 13 ⁇ pKa ⁇ 1. More preferably, ⁇ 13 ⁇ pKa ⁇ 3.
  • the “acid dissociation constant pKa” represents the acid dissociation constant pKa in an aqueous solution.
  • Chemical Handbook (II) (4th revised edition, 1993, edited by the Chemical Society of Japan, Maruzen Co., Ltd.) The lower the value, the higher the acid strength.
  • the acid dissociation constant pKa in an aqueous solution can be measured by measuring an acid dissociation constant at 25 ° C. using an infinitely diluted aqueous solution, and using the following software package 1, Hammett
  • the values based on the substituent constants and the database of known literature values can also be obtained by calculation.
  • the values of pKa described in this specification all indicate values obtained by calculation using this software package.
  • the compound (PA) generates, for example, a compound represented by the following general formula (PA-1) as the proton adduct generated by decomposition upon irradiation with actinic rays or radiation. Since the compound represented by the general formula (PA-1) has an acidic group together with the proton acceptor functional group, the proton acceptor property is reduced or disappeared compared to the compound (PA), or the proton acceptor property is reduced. It is a compound that has changed to acidic.
  • PA-1 a compound represented by the following general formula (PA-1) as the proton adduct generated by decomposition upon irradiation with actinic rays or radiation. Since the compound represented by the general formula (PA-1) has an acidic group together with the proton acceptor functional group, the proton acceptor property is reduced or disappeared compared to the compound (PA), or the proton acceptor property is reduced. It is a compound that has changed to acidic.
  • Q represents —SO 3 H, —CO 2 H, or —W 1 NHW 2 R f .
  • R f represents an alkyl group (preferably having 1 to 20 carbon atoms), a cycloalkyl group (preferably having 3 to 20 carbon atoms) or an aryl group (preferably having 6 to 30 carbon atoms), and W 1 and W 2 each independently represents —SO 2 — or —CO—.
  • A represents a single bond or a divalent linking group.
  • X represents —SO 2 — or —CO—.
  • n represents 0 or 1.
  • B represents a single bond, an oxygen atom, or —N (R x ) R y —.
  • R x represents a hydrogen atom or a monovalent organic group
  • R y represents a single bond or a divalent organic group.
  • R x may be bonded to R y to form a ring, or R x may be bonded to R to form a ring.
  • R represents a monovalent organic group having a proton acceptor functional group.
  • the divalent linking group in A is preferably a divalent linking group having 2 to 12 carbon atoms, and examples thereof include an alkylene group and a phenylene group. More preferred is an alkylene group having at least one fluorine atom, and the preferred carbon number is 2 to 6, more preferably 2 to 4.
  • the alkylene chain may have a linking group such as an oxygen atom or a sulfur atom.
  • the alkylene group is particularly preferably an alkylene group in which 30 to 100% of the hydrogen atoms are substituted with fluorine atoms, and more preferably, the carbon atom bonded to the Q site has a fluorine atom.
  • a perfluoroalkylene group is preferable, and a perfluoroethylene group, a perfluoropropylene group, and a perfluorobutylene group are more preferable.
  • the monovalent organic group in R x is preferably an organic group having 1 to 30 carbon atoms, and examples thereof include an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, and an alkenyl group. These groups may further have a substituent.
  • the alkyl group in R x may have a substituent, and is preferably a linear or branched alkyl group having 1 to 20 carbon atoms, and has an oxygen atom, a sulfur atom, or a nitrogen atom in the alkyl chain. It may be.
  • the cycloalkyl group in R x may have a substituent, and is preferably a monocyclic cycloalkyl group or a polycyclic cycloalkyl group having 3 to 20 carbon atoms, and an oxygen atom, a sulfur atom, It may have a nitrogen atom.
  • the aryl group for R x may have a substituent, and preferably has 6 to 14 carbon atoms, and examples thereof include a phenyl group and a naphthyl group.
  • the aralkyl group in R x may have a substituent, and preferably has 7 to 20 carbon atoms, and examples thereof include a benzyl group and a phenethyl group.
  • the alkenyl group in R x may have a substituent, may be linear, or may be branched.
  • the alkenyl group preferably has 3 to 20 carbon atoms. Examples of such alkenyl groups include vinyl groups, allyl groups, and styryl groups.
  • R x further has a substituent
  • substituents include a halogen atom, a linear, branched or cyclic alkyl group, an alkenyl group, an alkynyl group, an aryl group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, Examples include carbamoyl group, cyano group, carboxylic acid group, hydroxyl group, alkoxy group, aryloxy group, alkylthio group, arylthio group, heterocyclic oxy group, acyloxy group, amino group, nitro group, hydrazino group, and heterocyclic group. .
  • Preferred examples of the divalent organic group for R y include an alkylene group.
  • Examples of the ring structure that R x and R y may be bonded to each other include a 5- to 10-membered ring containing a nitrogen atom, particularly preferably a 6-membered ring.
  • the proton acceptor functional group for R is as described above, and examples thereof include azacrown ether, primary to tertiary amines, and groups having a heterocyclic aromatic structure containing a nitrogen atom such as pyridine and imidazole.
  • the organic group having such a structure is preferably an organic group having 4 to 30 carbon atoms, and examples thereof include an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, and an alkenyl group.
  • the alkyl group, the cycloalkyl group, the aryl group, the aralkyl group, the alkyl group in the alkenyl group, the cycloalkyl group, the aryl group, the aralkyl group, the alkenyl group in the proton acceptor functional group or ammonium group in R is the above R
  • R and R x are preferably bonded to each other to form a ring.
  • the number of carbon atoms forming the ring is preferably 4 to 20, and may be monocyclic or polycyclic, and may contain an oxygen atom, a sulfur atom, or a nitrogen atom in the ring.
  • Examples of the monocyclic structure include a 4-membered ring, a 5-membered ring, a 6-membered ring, a 7-membered ring, and an 8-membered ring containing a nitrogen atom.
  • Examples of the polycyclic structure include a structure composed of a combination of two or three or more monocyclic structures.
  • R f in -W 1 NHW 2 R f represented by Q preferred is an alkyl group which may have a fluorine atom of 1 to 6 carbon atoms, more preferably perfluoroalkyl of 1 to 6 carbon atoms It is a group.
  • W 1 and W 2 at least one is preferably —SO 2 —, and more preferably, both W 1 and W 2 are —SO 2 —.
  • Q is particularly preferably —SO 3 H or —CO 2 H from the viewpoint of the hydrophilicity of the acid group.
  • PA-1 a compound in which the Q site is a sulfonic acid can be synthesized by using a general sulfonamidation reaction.
  • a method in which one sulfonyl halide part of a bissulfonyl halide compound is selectively reacted with an amine compound to form a sulfonamide bond, and then the other sulfonyl halide part is hydrolyzed, or a cyclic sulfonic acid anhydride is used. It can be obtained by a method of ring-opening by reacting with an amine compound.
  • the compound (PA) is preferably an ionic compound.
  • the proton acceptor functional group may be contained in either the anion portion or the cation portion, and is preferably contained in the anion portion.
  • Preferred examples of the compound (PA) include compounds represented by the following general formulas (4) to (6).
  • C + represents a counter cation.
  • the counter cation is preferably an onium cation. More specifically, in the acid generator, a sulfonium cation described as S + (R 201 ) (R 202 ) (R 203 ) in general formula (ZI), I + (R 204 ) in general formula (ZII) ( A preferred example is the iodonium cation described as R 205 ).
  • Specific examples of the compound (PA) include compounds exemplified in US2011 / 0269072A1 ⁇ 0280>.
  • a compound (PA) other than the compound that generates the compound represented by the general formula (PA-1) can be appropriately selected.
  • an ionic compound that has a proton acceptor moiety in the cation moiety may be used.
  • a compound represented by the following general formula (7) is exemplified.
  • A represents a sulfur atom or an iodine atom.
  • m represents 1 or 2
  • n represents 1 or 2.
  • R represents an aryl group.
  • R N represents an aryl group substituted with a proton acceptor functional group.
  • X ⁇ represents a counter anion. Specific examples of X ⁇ include the same as the above-mentioned anion of the acid generator. Specific examples of the aryl group of R and R N is a phenyl group are preferably exemplified.
  • proton acceptor functional group R N are the same as those of the proton acceptor functional group described in the foregoing formula (PA-1).
  • Specific examples of the ionic compound having a proton acceptor site in the cation moiety include compounds exemplified in US2011 / 0269072A1 ⁇ 0291>. Such a compound can be synthesized with reference to methods described in, for example, JP-A-2007-230913 and JP-A-2009-122623.
  • Compound (PA) may be used alone or in combination of two or more.
  • an onium salt that becomes a weak acid relative to the acid generator can be used as an acid diffusion control agent.
  • an acid generator and an onium salt that generates an acid that is a relatively weak acid (preferably a weak acid having a pKa of more than ⁇ 1) with respect to the acid generated from the acid generator are used in combination, actinic rays or radiation
  • the acid generated from the acid generator collides with an onium salt having an unreacted weak acid anion by irradiation, a weak acid is released by salt exchange to produce an onium salt having a strong acid anion.
  • the strong acid is exchanged with a weak acid having a lower catalytic ability, so that the acid is apparently deactivated and the acid diffusion can be controlled.
  • the onium salt that is a weak acid relative to the acid generator is preferably a compound represented by the following general formulas (d1-1) to (d1-3).
  • R 51 represents a hydrocarbon group which may have a substituent
  • Z 2c represents a hydrocarbon group having 1 to 30 carbon atoms which may have a substituent (however, a carbon adjacent to S).
  • R 52 is an organic group
  • Y 3 is a linear, branched or cyclic alkylene group or an arylene group
  • Rf is a fluorine atom.
  • Each of the M + is independently a sulfonium cation or an iodonium cation.
  • Preferable examples of the sulfonium cation or iodonium cation represented by M + include the sulfonium cation exemplified for the acid generator (ZI) and the iodonium cation exemplified for (ZII).
  • Preferable examples of the anion moiety of the compound represented by the general formula (d1-1) include the structures exemplified in paragraph [0198] of JP2012-242799A.
  • Preferable examples of the anion moiety of the compound represented by the general formula (d1-2) include the structures exemplified in paragraph [0201] of JP2012-242799A.
  • Preferable examples of the anion moiety of the compound represented by the general formula (d1-3) include the structures exemplified in paragraphs [0209] and [0210] of JP2012-242799A.
  • An onium salt that is a weak acid relative to an acid generator is a compound having a cation moiety and an anion moiety in the same molecule, and the cation moiety and the anion moiety being linked by a covalent bond (hereinafter referred to as “compound”).
  • compound Also referred to as (D-2) ”).
  • the compound (D-2) is preferably a compound represented by any one of the following general formulas (C-1) to (C-3).
  • R 1 , R 2 and R 3 represent a substituent having 1 or more carbon atoms.
  • L 1 represents a divalent linking group or a single bond linking the cation moiety and the anion moiety.
  • -X - it is, -COO -, -SO 3 - represents an anion portion selected from -R 4 -, -SO 2 -, -N.
  • R 4 is a group having a carbonyl group: —C ( ⁇ O) —, a sulfonyl group: —S ( ⁇ O) 2 —, and a sulfinyl group: —S ( ⁇ O) — at the site of connection with the adjacent N atom.
  • R 1 , R 2 , R 3 , R 4 and L 1 may be bonded to each other to form a ring structure.
  • R 1 to R 3 may be combined to form a double bond with the N atom.
  • Examples of the substituent having 1 or more carbon atoms in R 1 to R 3 include alkyl group, cycloalkyl group, aryl group, alkyloxycarbonyl group, cycloalkyloxycarbonyl group, aryloxycarbonyl group, alkylaminocarbonyl group, cycloalkylamino A carbonyl group, an arylaminocarbonyl group, etc. are mentioned. Preferably, they are an alkyl group, a cycloalkyl group, and an aryl group.
  • L 1 as the divalent linking group is a linear or branched alkylene group, cycloalkylene group, arylene group, carbonyl group, ether bond, ester bond, amide bond, urethane bond, urea bond, and two types thereof. Examples include groups formed by combining the above. L 1 is more preferably an alkylene group, an arylene group, an ether bond, an ester bond, or a group formed by combining two or more of these.
  • Preferable examples of the compound represented by the general formula (C-1) include paragraphs [0037] to [0039] of JP2013-6827A and paragraphs [0027] to [0029] of JP2013-8020A. ] Can be mentioned.
  • Preferable examples of the compound represented by the general formula (C-2) include compounds exemplified in paragraphs [0012] to [0013] of JP2012-189977A.
  • Preferable examples of the compound represented by the general formula (C-3) include the compounds exemplified in paragraphs [0029] to [0031] of JP 2012-252124 A.
  • planarization film-forming composition preferably further contains a surfactant from the viewpoints of film-forming properties, planarization film adhesion, development defect reduction, and the like.
  • the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene alkyl ethers such as polyoxyethylene oleyl ether, polyoxyethylene octylphenol ether, polyoxyethylene Polyoxyethylene alkyl allyl ethers such as nonylphenol ether, polyoxyethylene / polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, sorbitan tristearate Sorbitan fatty acid esters such as rate, polyoxyethylene sorbitan monolaurate, polyoxyethylene Nonionic surfactants such as polyoxyethylene sorbitan fatty acid esters such as bitane monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tristearate, Ftop
  • Hexane polymer KP341 manufactured by Shin-Etsu Chemical Co.
  • acrylic or methacrylic acid-based (co) polymer Polyflow No. 75, no. 95 manufactured by Kyoeisha Yushi Chemical Co., Ltd.
  • the compounding amount of these surfactants is usually 2 parts by mass or less, preferably 1 part by mass or less per 100 parts by mass of the solid content in the composition of the present invention.
  • These surfactants may be added alone or in some combination.
  • the surfactant is any one of fluorine-based and / or silicon-based surfactants (fluorine-based surfactants and silicon-based surfactants, surfactants containing both fluorine atoms and silicon atoms), or It is preferable to contain 2 or more types.
  • these surfactants for example, JP-A-62-36663, JP-A-61-226746, JP-A-61-226745, JP-A-62-170950, JP-A-63-34540 No. 7, JP-A-7-230165, JP-A-8-62834, JP-A-9-54432, JP-A-9-5988, JP-A 2002-277862, US Pat. No. 5,405,720. No.
  • Examples of commercially available surfactants that can be used include F-top EF301, EF303 (manufactured by Shin-Akita Kasei Co., Ltd.), Florard FC430, 431 (manufactured by Sumitomo 3M Co., Ltd.), MegaFuck F171, F173, F176, F189, R08 (Dainippon Ink Chemical Co., Ltd.), Surflon S-382, SC101, 102, 103, 104, 105, 106 (Asahi Glass Co., Ltd.), Troisol S-366 (Troy Chemical Co., Ltd.), etc. Fluorine type surfactant or silicon type surfactant can be mentioned. Polysiloxane polymer KP-341 (manufactured by Shin-Etsu Chemical Co., Ltd.) can also be used as a silicon-based surfactant.
  • surfactants are derived from fluoroaliphatic compounds produced by the telomerization method (also referred to as the telomer method) or the oligomerization method (also referred to as the oligomer method).
  • a surfactant using a polymer having a fluoroaliphatic group can be used.
  • the fluoroaliphatic compound can be synthesized by the method described in JP-A-2002-90991.
  • polymer having a fluoroaliphatic group a copolymer of a monomer having a fluoroaliphatic group and (poly (oxyalkylene)) acrylate and / or (poly (oxyalkylene)) methacrylate is preferable and distributed irregularly. Or may be block copolymerized.
  • the poly (oxyalkylene) group include a poly (oxyethylene) group, a poly (oxypropylene) group, a poly (oxybutylene) group, and the like, and a poly (oxyethylene, oxypropylene, and oxyethylene group).
  • a unit having different chain lengths in the same chain length such as a block linked body) or a poly (block linked body of oxyethylene and oxypropylene) group, may be used.
  • a copolymer of a monomer having a fluoroaliphatic group and (poly (oxyalkylene)) acrylate (or methacrylate) is not only a binary copolymer but also a monomer having two or more different fluoroaliphatic groups, Further, it may be a ternary or higher copolymer obtained by simultaneously copolymerizing two or more different (poly (oxyalkylene)) acrylates (or methacrylates).
  • the amount of the surfactant used is preferably 0.0001 to 6% by mass, and more preferably 0.001 to 4% by mass, based on the total solid content of the flattening film forming composition.
  • the planarization film-forming composition preferably contains a solvent from the viewpoint of applicability.
  • Solvents that can be used in preparing the composition include, for example, alkylene glycol monoalkyl ether carboxylates, alkylene glycol monoalkyl ethers, alkyl lactate esters, alkyl alkoxypropionates, cyclic lactones (preferably having 4 to 4 carbon atoms). 10), an organic solvent such as a monoketone compound (preferably having 4 to 10 carbon atoms) which may have a ring, alkylene carbonate, alkyl alkoxyacetate, alkyl pyruvate and the like. Specific examples of these solvents include those described in US Patent Application Publication No. 2008/0187860 ⁇ 0441> to ⁇ 0455>, and isoamyl acetate, butyl butanoate, and methyl 2-hydroxyisobutyrate. .
  • the mixed solvent which mixed the solvent which contains a hydroxyl group in a structure, and the solvent which does not contain a hydroxyl group as an organic solvent.
  • the solvent containing a hydroxyl group and the solvent not containing a hydroxyl group the above-mentioned exemplary compounds can be appropriately selected.
  • the solvent containing a hydroxyl group alkylene glycol monoalkyl ether, alkyl lactate or the like is preferable, and propylene glycol monomethyl ether (PGME). , Also known as 1-methoxy-2-propanol), ethyl lactate is more preferred.
  • alkylene glycol monoalkyl ether acetate, alkyl alkoxypropionate, monoketone compound which may contain a ring, cyclic lactone, alkyl acetate and the like are preferable, and among these, propylene glycol monomethyl ether Acetate (PGMEA, also known as 1-methoxy-2-acetoxypropane), ethyl ethoxypropionate, 2-heptanone, ⁇ -butyrolactone, cyclohexanone, butyl acetate are particularly preferred, propylene glycol monomethyl ether acetate, ethyl ethoxypropionate, 2 -Heptanone is most preferred.
  • PGMEA propylene glycol monomethyl ether Acetate
  • ethyl ethoxypropionate 2-heptanone
  • ⁇ -butyrolactone cyclohexanone
  • the mixing ratio (mass) of the solvent containing a hydroxyl group and the solvent not containing a hydroxyl group is 1/99 to 99/1, preferably 10/90 to 90/10, more preferably 20/80 to 60/40. .
  • a mixed solvent containing 50% by mass or more of a solvent not containing a hydroxyl group is particularly preferred from the viewpoint of coating uniformity.
  • the solvent preferably includes propylene glycol monomethyl ether acetate.
  • the content in the case of containing a solvent is not particularly limited, and the solid content concentration of the composition for forming a flattened film is preferably 0.1 to 30% by mass, and preferably 1 to 20% by mass. Further preferred.
  • substrate improves by making solid content concentration of the composition for planarization film formation into the said range.
  • the flattening film-forming composition of the present invention contains the resin (A1)
  • the flattening film-forming composition does not contain a cross-linking agent (that is, crosslinking with respect to the total solid content of the flattening film-forming composition).
  • the content of the agent is 0% by mass) or 5% by mass or less based on the total solid content of the composition for flattening film formation. That is, the content of the crosslinking agent in the planarizing film-forming composition of the present invention is preferably 0 to 5% by mass, more preferably 0 to 3% by mass, and 0 to 1% by mass. More preferably, it is particularly preferable that it is not contained at all (0% by mass).
  • composition for planarization film formation of this invention contains resin (A1)
  • content of a crosslinking agent is 0-5 mass%, and the composition for planarization film formation is used. Since the curing speed of the resulting resist film can be reduced, the removability of the resist film provided on the convex portion of the stepped substrate is improved, and the flatness of the planarizing film is further improved.
  • Specific examples of the crosslinking agent include the crosslinking agents described in paragraphs 0450, 0479 and 0485 of JP-A-2015-68860.
  • the composition for planarization film formation of this invention contains resin (A2)
  • the composition for planarization film formation uses 5 crosslinking agents with respect to the total solid of the composition for planarization film formation.
  • the content is 0.1 to 5% by mass, more preferably 0.3 to 4% by mass, and particularly preferably 0.5 to 3% by mass. .
  • the curing rate of the resist film obtained by using the planarizing film-forming composition can be reduced, so that the resist film provided on the convex portion of the stepped substrate has good removability, and the flatness of the planarizing film is improved. More improved.
  • the composition of the present invention and other various materials used do not contain impurities such as metals (solid metal and metal ions).
  • impurities such as metals (solid metal and metal ions).
  • the metal impurity component include Na, K, Ca, Fe, Cu, Mn, Mg, Al, Cr, Ni, Zn, Ag, Sn, Pb, and Li.
  • the total content of impurities contained in these materials is preferably 1 ppm or less, more preferably 10 ppb or less, further preferably 100 ppt or less, particularly preferably 10 ppt or less, and most preferably 1 ppt or less.
  • Examples of a method for removing impurities such as metals from the various materials include filtration using a filter.
  • the filter pore diameter is preferably 10 nm or less, more preferably 5 nm or less, and further preferably 3 nm or less.
  • a filter made of polytetrafluoroethylene, polyethylene or nylon is preferable.
  • the filter may be a composite material obtained by combining these materials and ion exchange media.
  • a filter that has been washed in advance with an organic solvent may be used.
  • a plurality of types of filters may be connected in series or in parallel. When a plurality of types of filters are used, filters having different pore diameters and / or materials may be used in combination.
  • various materials may be filtered a plurality of times, and the step of filtering a plurality of times may be a circulating filtration step.
  • a method for reducing impurities such as metals contained in the above various materials a method of selecting a raw material having a low metal content as a raw material constituting various materials, and performing filter filtration on the raw materials constituting various materials. Examples thereof include a method and a method in which distillation is performed under a condition in which contamination is suppressed as much as possible by lining the inside of the apparatus with Teflon (registered trademark).
  • Teflon registered trademark
  • the preferable conditions for filter filtration performed on the raw materials constituting the various materials are the same as those described above.
  • impurities may be removed by an adsorbent, or a combination of filter filtration and adsorbent may be used.
  • adsorbent known adsorbents can be used.
  • inorganic adsorbents such as silica gel and zeolite, and organic adsorbents such as activated carbon can be used.
  • metal impurities such as metals contained in the various materials
  • it is necessary to prevent metal impurities from being mixed in the manufacturing process. Whether or not the metal impurities have been sufficiently removed from the manufacturing apparatus can be confirmed by measuring the content of the metal component contained in the cleaning liquid used for cleaning the manufacturing apparatus.
  • the content of the metal component contained in the cleaning liquid after use is more preferably 100 ppt (parts per trigger) or less, further preferably 10 ppt or less, and particularly preferably 1 ppt or less.
  • the preparation method (manufacturing method) of the composition for planarization film formation of this invention is not restrict
  • the planarization of the present invention can be achieved by adding a predetermined amount of the resin (A) and the photoacid generator (B) (and the above-described components as necessary) to the solvent, and appropriately stirring the mixture.
  • a film-forming composition can be obtained.
  • planarization film The planarization film of the present invention is obtained using the above-described composition for planarization film formation.
  • the planarizing film of the present invention is provided on a stepped substrate and is used for planarizing unevenness on the surface of the stepped substrate.
  • the stepped substrate provided with the flattening film is flat means that when the cross section of the stepped substrate is observed using a scanning electron microscope, the surface of the flattening film is based on the upper surface of the stepped substrate. It means that the unevenness is in the range of 0 to 300 mm. Referring to FIG.
  • the surface of the stepped substrate 10 on which the resist film 14 is provided (upper surface of the convex portion 13) is defined as a reference surface (0 point), and the distance (convex portion) of the planarization film from the reference surface. If the distance is within the range of 0 to 300 mm, the planarizing film can be said to be flat.
  • the present invention also relates to an electronic device manufacturing method including the flat film manufacturing method described above.
  • a resist underlayer film SOG: Spin on Glass
  • a photoresist layer is provided on the planarization film of the present invention
  • a pattern can be formed by photolithography.
  • the resist underlayer film forming composition and the photoresist composition known materials can be appropriately used.
  • An electronic device manufactured by the method for manufacturing an electronic device of the present invention is suitably mounted on an electric / electronic device (home appliance, OA (Office Appliance) -related device, media-related device, optical device, communication device, etc.). It is.
  • composition for flattening film formation The components shown in Table 1 below were dissolved in a solvent in the proportions shown in the same table (mass% in the total mass of the composition) to prepare resist solutions for each, and this was prepared as a UPE having a pore size of 1.0 ⁇ m (ultra High molecular weight polyethylene) filter. Thereby, a composition for forming a planarization film (resist composition) having a solid content concentration of 9.5% by mass was prepared. All resist compositions shown in Table 1 are negative.
  • Additive A-3 is “Megafac R41” (trade name) manufactured by DIC.
  • SL-1 Propylene glycol monomethyl ether acetate (PGMEA)
  • PGME Propylene glycol monomethyl ether
  • SL-3 Cyclohexanone
  • SL-6 Ethyl 3-ethoxypropionate (EEP)
  • ⁇ Evaluation test> ( ⁇ (contrast) evaluation method)
  • the resist composition prepared above is applied on a Si substrate (manufactured by Advanced Materials Technology) subjected to hexamethyldisilazane treatment, and the applied resist composition is baked at 140 ° C. for 60 seconds (Pre Bake; PB). Then, a film (resist film) having a thickness T described in Table 3 was formed. Then, a KrF excimer laser scanner (NA0.80), without passing through the exposure mask, the wafer having a resist film formed, while the amount of exposure from 1 mJ / cm 2 increased every 0.8 mJ / cm 2 99-point exposure was performed. After that, the exposed resist film was baked at 130 ° C.
  • test films for Examples and Comparative Examples for measuring ⁇ were obtained.
  • pieces is measured, and the film thickness in each exposure location is set to the orthogonal coordinate which used the film thickness ( ⁇ ) as the vertical axis and the exposure amount (mJ / cm 2 ) as the horizontal axis. And the point corresponding to the exposure amount was plotted, and the plot figure was produced (refer FIG. 8).
  • the applied resist composition was baked (Pre Bake; PB) on a hot plate under the conditions shown in Table 3 to form a resist film.
  • PB Pre Bake; PB
  • the exposure amount is 40 mJ / cm 2 .
  • the resist film was exposed under the conditions.
  • the exposed resist film was baked (Post Exposure Bake; PEB) under the conditions shown in Table 3.
  • PEB Post Exposure Bake
  • development was performed with the developer shown in Table 3 for the development time shown in Table 3, rinsed with pure water for 30 seconds, and then spin-dried.
  • nBA n-butanol
  • rinsing was not performed.
  • each of the planarized films of Examples and Comparative Examples was obtained by subjecting the resist film after spin drying to post-bake treatment (Post Bake) under the conditions shown in Table 3.
  • the cross-sectional shapes of the flattened films of Examples and Comparative Examples were observed, and whether the flatness was good or bad was judged according to the following evaluation criteria.
  • the surface of the stepped substrate 10 on which the resist film 14 is provided (the upper surface of the convex portion 13) is used as a reference surface (0 point), and the unevenness of the planarization film from the reference surface. (The maximum value of the length in the direction perpendicular to the upper surface of the convex portion 13).
  • AA The distance of the unevenness of the planarization film from the reference surface is 0 mm or more and 100 mm or less
  • A The distance of the unevenness of the planarization film from the reference surface is more than 100 mm and 300 mm or less
  • B The distance of the unevenness of the planarization film from the reference surface is More than 300 mm and less than 500 mm
  • C The distance of the unevenness of the planarization film from the reference surface is more than 500 mm
  • TMAH tetramethylammonium hydroxide
  • nBA n-butanol
  • the maximum length in the direction perpendicular to the upper surface of the resist film 14C after the formation was measured (shown as “ ⁇ FT” ( ⁇ ) in Table 4 to be described later).
  • AA The distance between the upper surface of the resist film after being immersed in the swelling evaluation liquid and the reference surface is 20 mm or less
  • A The distance between the upper surface of the resist film after being immersed in the swelling evaluation liquid and the reference surface is more than 20 mm and 50 mm or less.
  • B The distance between the upper surface of the resist film after being immersed in the swelling evaluation solution and the reference surface exceeds 50 mm.
  • Example 7 By comparing Example 7 (Resin P-2), Example 15 (Resin P-8) and Example 16 (Resin P-9), a repeating unit having a phenolic hydroxyl group and a repeating unit having a carboxylic acid group It was shown that the swelling of the flattened film tends to be suppressed by using a resin having a succinic acid (resin P-8 of Example 15 and resin P-9 of Example 16).
  • Stepped substrate 12 Trench (concave) 13 Convex part 14 Resist film 14a Convex part upper film 14b Concave part upper film 14A Resist film 14B after exposure Exposed part upper film 14C After exposure Flattening film 20
  • Mask 100 Substrate 120 Resist film

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)

Abstract

Provided are: a method for producing a planarization film, which is capable of forming a planarization film having excellent planarization properties; an active light sensitive or radiation sensitive composition for forming a planarization film; a planarization film; and a method for manufacturing an electronic device. This method for producing a planarization film comprises: a step A for forming a film on a stepped substrate with use of a composition that contains a resin (A) and a photoacid generator (B); a step B for exposing the film to light through a mask that is arranged in a position corresponding to a projected part of the stepped substrate; and a step C for obtaining a planarization film by removing the film provided on the projected part of the stepped substrate with use of a developer liquid. In this connection, the γ value of a test film that is obtained using the above-described composition is less than 1,000.

Description

平坦化膜の製造方法、感活性光線性または感放射線性の平坦化膜形成用組成物、平坦化膜、および、電子デバイスの製造方法Planarizing film manufacturing method, actinic ray-sensitive or radiation-sensitive planarizing film-forming composition, planarizing film, and electronic device manufacturing method
 本発明は、平坦化膜の製造方法、感活性光線性または感放射線性の平坦化膜形成用組成物、平坦化膜、および、電子デバイスの製造方法に関する。 The present invention relates to a method for producing a planarizing film, an actinic ray-sensitive or radiation-sensitive composition for forming a planarizing film, a planarizing film, and a method for producing an electronic device.
 近年、電子デバイスのうち半導体デバイスの製造においては、高集積化による素子の性能向上のために、より一層の配線の微細化が求められている。
 このような微細な配線を得るために、フォトリソグラフィーによる微細加工が行われている。フォトリソグラフィーによる微細加工は、具体的には、シリコンウエハなどの基板上にフォトレジスト組成物の膜を形成し、その上に半導体デバイスのパターンが描かれたマスクパターンを介して紫外線などの活性光線を照射し、現像し、得られたレジストパターンを保護材としてシリコンウエハをエッチング処理する加工法である。
In recent years, in the manufacture of semiconductor devices among electronic devices, further miniaturization of wiring has been demanded in order to improve the performance of elements due to high integration.
In order to obtain such fine wiring, fine processing by photolithography is performed. Specifically, fine processing by photolithography is performed by forming a film of a photoresist composition on a substrate such as a silicon wafer and actinic rays such as ultraviolet rays through a mask pattern on which a semiconductor device pattern is drawn. Is a processing method in which a silicon wafer is etched using the obtained resist pattern as a protective material.
 このようなフォトレジスト組成物の一種として、特許文献1にはレジスト下層膜形成用組成物が開示されている。具体的には、特許文献1のレジスト下層膜形成用組成物は、特定の構造単位を有する導電性化合物、架橋剤、架橋反応を促進させる化合物、および有機溶媒を含む(請求項1)。 As a kind of such a photoresist composition, Patent Document 1 discloses a composition for forming a resist underlayer film. Specifically, the resist underlayer film forming composition of Patent Document 1 includes a conductive compound having a specific structural unit, a crosslinking agent, a compound that promotes a crosslinking reaction, and an organic solvent (Claim 1).
特開2014-10408号公報JP 2014-10408 A
 上述したような電子デバイスの製造に用いられる基板として、ホール形状および/またはトレンチ形状を有する段差基板が用いられることがある。電子デバイスの製造においては、段差基板のホールおよびトレンチに、上述したフォトレジスト組成物のような感活性光線性または感放射線性の平坦化膜形成用組成物を埋め込み、露光工程および現像工程などを経て、段差基板上に略平坦な平坦化膜を形成することがある。
 ここで、段差基板には、ホールおよびトレンチに対して凸な部分、すなわちホールおよびトレンチが形成されていない部分(以下、「凸部」ともいう。)がある。そのため、段差基板の全面に平坦化膜形成用組成物を塗布して平坦化膜を作製した場合、凸部上に位置する平坦化膜が、ホールおよびトレンチ上に位置する平坦化膜よりも盛り上がってしまう。すなわち、得られる平坦化膜の表面が段差基板の凹凸に対応する凹凸形状になり、平坦化膜の平坦性が不十分になる場合がある。
 このように平坦化膜の平坦性が十分でないと、平坦化膜の形成された段差基板を用いて電子デバイスなどを製造する際に、電子デバイスの加工精度に悪影響を及ぼすことがある。
A stepped substrate having a hole shape and / or a trench shape may be used as a substrate used for manufacturing an electronic device as described above. In the manufacture of electronic devices, an actinic ray-sensitive or radiation-sensitive planarizing film-forming composition such as the above-described photoresist composition is embedded in the holes and trenches of the stepped substrate, and an exposure process and a development process are performed. As a result, a substantially flat planarizing film may be formed on the stepped substrate.
Here, the stepped substrate has a portion which is convex with respect to the hole and the trench, that is, a portion where the hole and the trench are not formed (hereinafter also referred to as “convex portion”). Therefore, when a flattening film is formed by applying a flattening film-forming composition to the entire surface of the stepped substrate, the flattening film located on the convex portion is raised more than the flattening film located on the holes and trenches. End up. That is, the surface of the obtained planarization film has an uneven shape corresponding to the unevenness of the stepped substrate, and the flatness of the planarization film may be insufficient.
Thus, when the flatness of the planarization film is not sufficient, when manufacturing an electronic device or the like using the stepped substrate on which the planarization film is formed, the processing accuracy of the electronic device may be adversely affected.
 このような問題に対して、平坦化膜形成用組成物を基板上に塗布して得られる膜を露光する際に、段差基板の凸部(上記膜の凸部)に対応する位置にマスクを配置して露光してみたところ、平坦性が十分ではない場合があり、改良が必要であった。 For such a problem, when exposing a film obtained by applying the planarization film-forming composition onto the substrate, a mask is placed at a position corresponding to the convex portion of the stepped substrate (the convex portion of the film). As a result of arranging and exposing, there was a case where the flatness was not sufficient, and an improvement was necessary.
 そこで、本発明は、平坦性に優れた平坦化膜を形成できる平坦化膜の製造方法を提供することを目的とする。また、本発明は、感活性光線性または感放射線性の平坦化膜形成用組成物、平坦化膜、および、電子デバイスの製造方法を提供することも目的とする。 Therefore, an object of the present invention is to provide a method for producing a planarization film that can form a planarization film having excellent flatness. Another object of the present invention is to provide an actinic ray-sensitive or radiation-sensitive composition for forming a planarizing film, a planarizing film, and a method for producing an electronic device.
 本発明者らは、上記課題について鋭意検討した結果、感活性光線性または感放射線性の平坦化膜形成用組成物により形成される膜(すなわち、露光前の膜)の特性を制御することにより、所望の効果が得られることを見出した。
 すなわち、本発明者らは、以下の構成により上記課題が解決できることを見出した。
As a result of intensive studies on the above problems, the present inventors have controlled the characteristics of a film formed by an actinic ray-sensitive or radiation-sensitive planarizing film-forming composition (that is, a film before exposure). The inventors have found that the desired effect can be obtained.
That is, the present inventors have found that the above problem can be solved by the following configuration.
[1]
 表面に凹凸を有する段差基板の表面を平坦化する平坦化膜の製造方法であって、
 樹脂(A)および光酸発生剤(B)を含有する感活性光線性または感放射線性の平坦化膜形成用組成物を用いて、上記段差基板上に膜を形成する工程Aと、
 上記段差基板の凸部に対応する位置に配置されたマスクを介して、上記膜を露光する工程Bと、
 現像液を用いて、上記段差基板の上記凸部上に設けられた上記膜の少なくとも一部を除去して、平坦化膜を得る工程Cと、
を有し、
 上記平坦化膜形成用組成物を用いて、シリコン基板上に厚みTの試験膜を形成した場合において、上記試験膜のγの値が1000未満である、平坦化膜の製造方法。
 ここで、上記γは、以下のγ算出方法により求められる。
 γ算出方法:シリコン基板上に形成された厚みTの上記試験膜に対して、KrFエキシマレーザーを用いて露光量を1mJ/cmから0.8mJ/cm毎増加させながら露光を99箇所行い、露光後の試験膜に対して130℃で60秒間ベーク処理を施し、その後、2.38質量%のテトラメチルアンモニウムハイドロオキサイド水溶液でベーク処理後の試験膜の一部を除去する除去処理を施し、除去処理後の試験膜の各露光箇所での膜厚を算出し、膜厚を縦軸とし露光量を横軸とした直交座標に、各露光箇所での膜厚及び露光量に対応する点をプロットし、上記プロットされた点を結んで得られる線を作成し、上記線上の縦軸が厚みT×0.8の点と縦軸が上記厚みT×0.4の点とを結ぶ直線の傾きの絶対値をγ(Å・cm/mJ)とする。
[2]
 上記平坦化膜形成用組成物がネガ型である、上記[1]に記載の平坦化膜の製造方法。
[3]
 上記樹脂(A)が、酸の作用によって架橋する架橋性部位を2つ以上有する繰り返し単位を全繰り返し単位中0.5~30モル%含む樹脂(A1)、および、フェノール性水酸基を有する繰り返し単位を含む樹脂(A2)、の少なくとも一方を含む、上記[1]または[2]に記載の平坦化膜の製造方法。
[4]
 上記樹脂(A1)が酸分解性基を有する繰り返し単位を実質的に有さない、上記[3]に記載の平坦化膜の製造方法。
[5]
 上記樹脂(A1)に含まれる上記酸の作用によって架橋する架橋性部位が、ヒドロキシ基である、上記[3]または[4]に記載の平坦化膜の製造方法。
[6]
 上記樹脂(A1)がノボラック樹脂である、上記[3]~[5]のいずれか1つに記載の平坦化膜の製造方法。
[7]
 上記樹脂(A1)に含まれる上記酸の作用によって架橋する架橋性部位を2つ以上有する上記繰り返し単位が、ベンゼンジオール構造を有する、上記[3]~[6]のいずれか1つに記載の平坦化膜の製造方法。
[8]
 上記樹脂(A1)に含まれる上記酸の作用によって架橋する架橋性部位を2つ以上有する上記繰り返し単位が、レゾルシノール構造を有する、上記[3]~[7]のいずれか1つに記載の平坦化膜の製造方法。
[9]
 上記樹脂(A1)に含まれる上記酸の作用によって架橋する架橋性部位を2つ以上有する上記繰り返し単位が、ヒドロキノン構造を有する、上記[3]~[8]のいずれか1つに記載の平坦化膜の製造方法。
[10]
 上記平坦化膜形成用組成物が、架橋剤を含有しない、または、上記架橋剤を上記平坦化膜形成用組成物の全固形分に対して5質量%以下含有する、上記[1]~[9]のいずれか1つに記載の平坦化膜の製造方法。
[11]
 上記樹脂(A)のガラス転移温度が、150℃以下である、上記[1]~[10]のいずれか1つに記載の平坦化膜の製造方法。
[12]
 上記樹脂(A)の含有量が、上記平坦化膜形成用組成物の全固形分に対して、50~99質量%である、上記[1]~[11]のいずれか1つに記載の平坦化膜の製造方法。
[13]
 上記平坦化膜形成用組成物が、さらに酸拡散制御剤を含有する、上記[1]~[12]のいずれか1つに記載の平坦化膜の製造方法。
[14]
 上記平坦化膜形成用組成物が、さらに界面活性剤を含有する、上記[1]~[13]のいずれか1つに記載の平坦化膜の製造方法。
[15]
 上記[1]~[14]のいずれか1つに記載の平坦化膜の製造方法に用いられる、感活性光線性または感放射線性の平坦化膜形成用組成物であって、上記平坦化膜形成用組成物を用いて、シリコン基板上に厚みTの試験膜を形成した場合において、上記試験膜の上記γの値が1000未満である、平坦化膜形成用組成物。
[16]
 上記[15]に記載の感活性光線性または感放射線性の平坦化膜形成用組成物を用いて得られる、平坦化膜。
[17]
 上記[1]~[14]のいずれか1つに記載の平坦化膜の製造方法を含む、電子デバイスの製造方法。
[1]
A method for producing a planarizing film for planarizing the surface of a stepped substrate having irregularities on the surface,
A step A of forming a film on the stepped substrate using the actinic ray-sensitive or radiation-sensitive planarizing film-forming composition containing the resin (A) and the photoacid generator (B);
A step B of exposing the film through a mask disposed at a position corresponding to the convex portion of the stepped substrate;
Using a developer, removing at least a portion of the film provided on the convex portion of the stepped substrate to obtain a planarization film; and
Have
A method for producing a planarization film, wherein a test film having a thickness T is formed on a silicon substrate using the composition for forming a planarization film, wherein the value of γ of the test film is less than 1000.
Here, γ is obtained by the following γ calculation method.
γ calculation method: silicon with respect to the test membrane of the formed thickness T on a substrate 99 places performs exposure while increasing every 0.8 mJ / cm 2 exposure amount from 1 mJ / cm 2 by using a KrF excimer laser Then, the exposed test film is baked at 130 ° C. for 60 seconds, and then a removal process is performed to remove a part of the test film after baking with an aqueous 2.38 mass% tetramethylammonium hydroxide solution. The film thickness at each exposure point of the test film after the removal treatment is calculated, and the point corresponding to the film thickness and the exposure amount at each exposure point on the orthogonal coordinates with the film thickness as the vertical axis and the exposure amount as the horizontal axis A line obtained by connecting the plotted points is created, and the vertical axis on the line connects the point of thickness T × 0.8 and the vertical axis of the point of thickness T × 0.4. of the absolute value of the slope γ (Å · cm 2 / mJ To.
[2]
The method for producing a flattening film according to the above [1], wherein the flattening film forming composition is a negative type.
[3]
Resin (A1) in which the resin (A) contains 0.5 to 30 mol% of repeating units having two or more crosslinkable sites that are crosslinked by the action of an acid, and a repeating unit having a phenolic hydroxyl group The method for producing a planarizing film according to the above [1] or [2], comprising at least one of a resin (A2) containing.
[4]
The method for producing a flattened film according to the above [3], wherein the resin (A1) has substantially no repeating unit having an acid-decomposable group.
[5]
The method for producing a flattened film according to the above [3] or [4], wherein the crosslinkable site crosslinked by the action of the acid contained in the resin (A1) is a hydroxy group.
[6]
The method for producing a planarizing film according to any one of [3] to [5] above, wherein the resin (A1) is a novolac resin.
[7]
The repeating unit according to any one of the above [3] to [6], wherein the repeating unit having two or more crosslinkable sites crosslinked by the action of the acid contained in the resin (A1) has a benzenediol structure. A method for producing a planarizing film.
[8]
The flat unit according to any one of [3] to [7], wherein the repeating unit having two or more crosslinkable sites crosslinked by the action of the acid contained in the resin (A1) has a resorcinol structure. A method for producing a chemical film.
[9]
The flat unit according to any one of [3] to [8], wherein the repeating unit having two or more crosslinkable sites crosslinked by the action of the acid contained in the resin (A1) has a hydroquinone structure. A method for producing a chemical film.
[10]
[1] to [1], wherein the planarizing film-forming composition does not contain a crosslinking agent or contains the crosslinking agent in an amount of 5% by mass or less based on the total solid content of the planarizing film-forming composition. 9]. The method for producing a planarizing film according to any one of [9].
[11]
The method for producing a planarizing film according to any one of [1] to [10] above, wherein the glass transition temperature of the resin (A) is 150 ° C. or lower.
[12]
The content of the resin (A) according to any one of the above [1] to [11], wherein the content of the resin (A) is 50 to 99% by mass with respect to the total solid content of the composition for flattening film formation. A method for producing a planarizing film.
[13]
The method for producing a flattened film according to any one of the above [1] to [12], wherein the composition for forming a flattened film further contains an acid diffusion controller.
[14]
The method for producing a flattening film according to any one of the above [1] to [13], wherein the flattening film forming composition further contains a surfactant.
[15]
An actinic ray-sensitive or radiation-sensitive planarizing film-forming composition used in the method for producing a planarizing film according to any one of [1] to [14], wherein the planarizing film A planarization film-forming composition, wherein when the test film having a thickness T is formed on a silicon substrate using the composition for formation, the value of γ of the test film is less than 1000.
[16]
A planarizing film obtained using the actinic ray-sensitive or radiation-sensitive planarizing film-forming composition as described in [15] above.
[17]
A method for manufacturing an electronic device, including the method for manufacturing a planarizing film according to any one of [1] to [14].
 以下に示すように、本発明によれば、平坦性に優れた平坦化膜を形成できる平坦化膜の製造方法を提供することができる。また、本発明によれば、感活性光線性または感放射線性の平坦化膜形成用組成物、平坦化膜、および、電子デバイスの製造方法を提供することができる。 As described below, according to the present invention, it is possible to provide a method for producing a planarizing film capable of forming a planarized film having excellent flatness. Moreover, according to this invention, the actinic-ray-sensitive or radiation-sensitive composition for planarization film formation, a planarization film, and the manufacturing method of an electronic device can be provided.
本発明の平坦化膜の製造方法における工程の一部を示す概略図。Schematic which shows a part of process in the manufacturing method of the planarization film | membrane of this invention. 本発明の平坦化膜の製造方法における工程の一部を示す概略図。Schematic which shows a part of process in the manufacturing method of the planarization film | membrane of this invention. 本発明の平坦化膜の製造方法における工程の一部を示す概略図。Schematic which shows a part of process in the manufacturing method of the planarization film | membrane of this invention. 本発明の平坦化膜の製造方法における工程の一部を示す概略図。Schematic which shows a part of process in the manufacturing method of the planarization film | membrane of this invention. γの算出方法を説明するための概略図。Schematic for demonstrating the calculation method of (gamma). γの算出方法を説明するための概略図。Schematic for demonstrating the calculation method of (gamma). γの算出方法を説明するための概略図。Schematic for demonstrating the calculation method of (gamma). γの算出方法するために作成されるプロット図の一例。An example of the plot figure produced in order to calculate γ.
 以下に、本発明の実施形態について説明する。
 本発明における基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含する。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。
 本発明における「活性光線」又は「放射線」とは、例えば、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光)、X線、電子線(EB)等を意味する。また、本発明において「光」とは、活性光線又は放射線を意味する。
 また、本発明における「露光」とは、特に断らない限り、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光)、X線などによる露光のみならず、電子線、イオンビーム等の粒子線による描画も露光に含める。
 また、本発明において「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
 また、本発明において、(メタ)アクリレートはアクリレート及びメタクリレートを表し、(メタ)アクリルはアクリル及びメタクリルを表す。
 また、本発明において、1Å(オングストローム)は、0.1nmに相当する。
Hereinafter, embodiments of the present invention will be described.
In the notation of a group (atomic group) in the present invention, the notation that does not indicate substitution and non-substitution includes those having no substituent and those having a substituent. For example, the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
“Actinic light” or “radiation” in the present invention means, for example, an emission line spectrum of a mercury lamp, far ultraviolet rays represented by an excimer laser, extreme ultraviolet rays (EUV light), X-rays, electron beams (EB) and the like. In the present invention, “light” means actinic rays or radiation.
In addition, “exposure” in the present invention is not limited to exposure with an ultraviolet ray, an ultraviolet ray (EUV light) typified by an excimer laser, an X-ray, an electron beam, an ion unless otherwise specified. Drawing with particle beams such as beams is also included in exposure.
In the present invention, “to” is used to mean that the numerical values described before and after it are included as a lower limit and an upper limit.
In the present invention, (meth) acrylate represents acrylate and methacrylate, and (meth) acryl represents acryl and methacryl.
In the present invention, 1 Å (angstrom) corresponds to 0.1 nm.
[平坦化膜の製造方法]
 本発明の平坦化膜の製造方法は、表面に凹凸を有する段差基板の表面を平坦化する平坦化膜の製造方法であって、以下の工程A~工程Cを少なくとも有する。
 工程A: 樹脂(A)および光酸発生剤(B)を含有する感活性光線性または感放射線性の平坦化膜形成用組成物を用いて、上記段差基板上に膜を形成する工程
 工程B: 上記段差基板の凸部に対応する位置に配置されたマスクを介して、上記膜を露光する工程
 工程C: 現像液を用いて、上記段差基板の上記凸部上に設けられた上記膜の少なくとも一部を除去して、平坦化膜を得る工程
[Manufacturing method of flattened film]
The planarizing film manufacturing method of the present invention is a planarizing film manufacturing method for planarizing the surface of a stepped substrate having irregularities on the surface, and includes at least the following steps A to C.
Step A: Step of forming a film on the stepped substrate using the actinic ray-sensitive or radiation-sensitive planarizing film forming composition containing the resin (A) and the photoacid generator (B) Step B Step of exposing the film through a mask arranged at a position corresponding to the convex portion of the stepped substrate Step C: Using a developer, the film provided on the convex portion of the stepped substrate Removing at least a portion to obtain a planarization film
 以下、図面を用いて、本発明の平坦化膜の製造方法について詳述する。図1~図4は、本発明の平坦化膜の製造方法の一例を段階的に示す概略図である。 Hereinafter, the method for producing a planarizing film of the present invention will be described in detail with reference to the drawings. 1 to 4 are schematic views showing an example of a method for producing a planarizing film of the present invention step by step.
<工程A>
 工程Aは、樹脂(A)および光酸発生剤(B)を含有する感活性光線性または感放射線性の平坦化膜形成用組成物を用いて、段差基板上に膜(以下、「レジスト膜」とも称する)を形成する工程である。本発明において、工程Aをレジスト膜形成工程ともいう。工程Aにおいて形成されるレジスト膜は、段差基板を平坦にする目的で形成されるのであって、必ずしもエッチングマスクとして使用される必要はない。
<Process A>
Step A uses an actinic ray-sensitive or radiation-sensitive planarizing film-forming composition containing a resin (A) and a photoacid generator (B) to form a film (hereinafter referred to as “resist film”) on a stepped substrate. Is also referred to as “.”. In the present invention, step A is also referred to as a resist film forming step. The resist film formed in step A is formed for the purpose of flattening the stepped substrate, and does not necessarily have to be used as an etching mask.
 より具体的には、トレンチ構造を例にして説明すると、まず、図1に示すように段差基板10を用意する。段差基板10には、所定の開口幅および深さのトレンチ12(以下、「凹部12」ともいう。)と、トレンチ12の形成されていない凸部13と、が設けられている。
 次に、図2に示すように段差基板10上の全面に、平坦化膜形成用組成物を塗布し、レジスト膜14を作製する。レジスト膜14は、凸部13上に平坦膜形成用組成物が付着して形成された凸部上膜14aと、トレンチ12内部に平坦化膜形成用組成物が流入して形成された凹部上膜14bと、を有する。
More specifically, a trench structure will be described as an example. First, a step substrate 10 is prepared as shown in FIG. The stepped substrate 10 is provided with a trench 12 having a predetermined opening width and depth (hereinafter also referred to as “concave portion 12”) and a convex portion 13 in which the trench 12 is not formed.
Next, as shown in FIG. 2, a planarization film forming composition is applied to the entire surface of the stepped substrate 10 to form a resist film 14. The resist film 14 has a convex upper film 14a formed by adhering the flat film forming composition on the convex part 13 and a concave part formed by flowing the flattening film forming composition into the trench 12. And a film 14b.
 段差基板10上に平坦化膜形成用組成物を塗布する方法としては、適宜の公知の塗布方法を用いることができる。このような塗布方法としては、例えば、スピンコート法、ディップコート法、ローラーブレード法、および、スプレー法などが挙げられる。 As a method for applying the planarization film forming composition on the stepped substrate 10, an appropriate known application method can be used. Examples of such a coating method include a spin coating method, a dip coating method, a roller blade method, and a spray method.
 保護膜形成用組成物は、凸部上膜14aにおける塗膜厚さ(図2中、Aとして表示)が、500~5000Åとなるような量で塗布されることが好ましく、700~4000Åとなるような量で塗布されることがより好ましく、800~4000Åとなるような量で塗布されることがさらに好ましい。 The composition for forming a protective film is preferably applied in an amount such that the coating film thickness (indicated as A in FIG. 2) on the convex upper film 14a is 500 to 5000 mm, and is 700 to 4000 mm. It is more preferable to apply in such an amount, and it is even more preferable to apply in an amount of 800 to 4000 mm.
 本発明において、「段差基板」とは、ホールおよび/またはトレンチが設けられた基板のことをいう。
 トレンチ12を有する段差基板10の製造方法としては特に制限されず、公知の方法を用いることができる。例えば、フォトレジスト処理とエッチング処理とを組み合わせた方法などが挙げられる。より具体的には、基板上にマスク窒化膜/パッド酸化膜からなる絶縁膜を堆積し、次いでこれをパターン状にエッチングする方法などが挙げられる。
In the present invention, the “step substrate” means a substrate provided with holes and / or trenches.
A method for manufacturing the stepped substrate 10 having the trench 12 is not particularly limited, and a known method can be used. For example, a method in which a photoresist process and an etching process are combined can be used. More specifically, a method of depositing an insulating film made of a mask nitride film / pad oxide film on a substrate and then etching it into a pattern can be used.
 段差基板10としては、例えば、有底のホール構造およびトレンチ構造等が挙げられる。有底のホール構造としては、例えば、高さ/直径で示されるアスペクト比が0.2~50であり、好ましくは0.5~20であり、より好ましくは1~10である。有底のトレンチ構造としては、例えば、高さ/溝幅で示されるアスペクト比が0.2~50であり、好ましくは0.5~20であり、より好ましくは1~10である。
 なお、上記ホール構造及びトレンチ構造の開口幅、深さの測定方法は公知の方法で測定でき、例えば、段差基板10の断面をSEM(走査型電子顕微鏡)で観察して求めることができる。
 段差基板10は、その表面上に同一の開口サイズ(溝幅や直径)・深さ・アスペクト比のホールおよびトレンチを有していてもよく、異なる開口サイズ(溝幅や直径)・深さ・アスペクト比を有する複数種のホールおよびトレンチを有していてもよい。
Examples of the stepped substrate 10 include a bottomed hole structure and a trench structure. As the bottomed hole structure, for example, the aspect ratio represented by height / diameter is 0.2 to 50, preferably 0.5 to 20, and more preferably 1 to 10. As the bottomed trench structure, for example, the aspect ratio represented by height / groove width is 0.2 to 50, preferably 0.5 to 20, and more preferably 1 to 10.
In addition, the measuring method of the opening width and depth of the hole structure and the trench structure can be measured by a publicly known method.
The stepped substrate 10 may have holes and trenches having the same opening size (groove width and diameter), depth and aspect ratio on the surface, and different opening sizes (groove width and diameter), depth, A plurality of types of holes and trenches having an aspect ratio may be provided.
 段差基板10を構成する材料としては特に制限されず、シリコン、炭化シリコン、金属(例えば、金、銀、銅、ニッケルおよびアルミニウムなど)、金属窒化物(例えば、窒化シリコン、窒化チタン、窒化タンタルおよび窒化タングステンなど)、ガラス(例えば、石英ガラス、ホウ酸ガラスおよびソーダガラスなど)、樹脂(例えば、ポリエチレンテレフタレートおよびポリイミドなど)、および、金属酸化物(例えば、酸化シリコン、酸化チタン、酸化ジルコニウムおよび酸化ハフニウムなど)などが挙げられる。 The material constituting the stepped substrate 10 is not particularly limited, and silicon, silicon carbide, metal (for example, gold, silver, copper, nickel, and aluminum), metal nitride (for example, silicon nitride, titanium nitride, tantalum nitride, and the like) Tungsten nitride etc.), glass (eg quartz glass, borate glass and soda glass etc.), resin (eg polyethylene terephthalate and polyimide etc.) and metal oxides (eg silicon oxide, titanium oxide, zirconium oxide and oxide) Hafnium, etc.).
 本工程で使用される感活性光線性または感放射線性の平坦化膜形成用組成物(以後、単に「組成物」または「本発明の組成物」とも称する)の詳細については、後段で詳述する。 Details of the actinic ray-sensitive or radiation-sensitive planarizing film-forming composition used in this step (hereinafter also simply referred to as “composition” or “composition of the present invention”) will be described in detail later. To do.
 工程Aにおいては、段差基板10上に塗布されたレジスト膜14をベーク処理(Pre Bake;PB)してもよい。
 ベーク処理(PB)時における温度としては、70℃~200℃であることが好ましく、80℃~180℃であることがより好ましい。また、ベーク処理(PB)を行う時間としては、20~180秒であることが好ましく、30~120秒であることがより好ましい。
 ベーク処理(PB)は、公知の加熱装置を用いて行うことができる。
In step A, the resist film 14 applied on the stepped substrate 10 may be baked (Pre Bake; PB).
The temperature during the baking process (PB) is preferably 70 ° C. to 200 ° C., and more preferably 80 ° C. to 180 ° C. Further, the time for performing the baking treatment (PB) is preferably 20 to 180 seconds, and more preferably 30 to 120 seconds.
The baking process (PB) can be performed using a known heating device.
<工程B>
 工程Bは、段差基板の凸部に対応する位置に配置されたマスクを介して、上記レジスト膜を露光する工程である。本発明において、工程Bを露光工程ともいう。
 具体的には、図3に示すように段差基板10の凸部13に対応する位置に配置されたマスク20を介して、活性光線または放射線をレジスト膜14に照射することにより、レジスト膜14の一部が露光されて、露光後のレジスト膜14Aが形成される。
 露光後のレジスト膜14Aは、未露光領域に位置する凸部上膜14aと、露光領域に位置する露光後の凹部上膜14Bと、を有する。
 図3の例では、凸部上膜14aが露光されていない状態を示すがこれに限定されず、凸部上膜14aは、露光時に回折する光などによって僅かに露光されていてもよい。
<Process B>
Step B is a step of exposing the resist film through a mask arranged at a position corresponding to the convex portion of the stepped substrate. In the present invention, step B is also referred to as an exposure step.
Specifically, as shown in FIG. 3, the resist film 14 is irradiated with actinic rays or radiation through a mask 20 disposed at a position corresponding to the convex portion 13 of the stepped substrate 10. Part of the resist film 14A is exposed to form a resist film 14A after exposure.
The exposed resist film 14A includes a convex upper film 14a located in the unexposed area and a post-exposed concave film 14B located in the exposed area.
Although the example of FIG. 3 shows the state where the convex portion upper film 14a is not exposed, the present invention is not limited to this, and the convex portion upper film 14a may be slightly exposed by light diffracted at the time of exposure.
 本工程に用いる露光装置としては、特に限定されず、公知の装置を用いればよい。
 露光装置に用いられる光源波長に制限は無いが、赤外光、可視光、紫外光、遠紫外光、極紫外光、X線、電子線等を挙げることができ、好ましくは250nm以下、より好ましくは220nm以下、特に好ましくは1~200nmの波長の遠紫外光、具体的には、KrFエキシマレーザー(248nm)、ArFエキシマレーザー(193nm)、Fエキシマレーザー(157nm)、X線、EUV(Extreme Ultraviolet)(13nm)、電子線等であり、KrFエキシマレーザー、ArFエキシマレーザー、EUV又は電子線が好ましく、KrFエキシマレーザー、ArFエキシマレーザーであることがより好ましい。
The exposure apparatus used in this step is not particularly limited, and a known apparatus may be used.
Although there is no restriction | limiting in the light source wavelength used for exposure apparatus, Infrared light, visible light, ultraviolet light, far ultraviolet light, extreme ultraviolet light, X-rays, an electron beam, etc. can be mentioned, Preferably it is 250 nm or less, More preferably Is far ultraviolet light having a wavelength of 220 nm or less, particularly preferably 1 to 200 nm, specifically, KrF excimer laser (248 nm), ArF excimer laser (193 nm), F 2 excimer laser (157 nm), X-ray, EUV (Extreme) Ultraviolet) (13 nm), electron beam, etc., preferably KrF excimer laser, ArF excimer laser, EUV or electron beam, more preferably KrF excimer laser, ArF excimer laser.
 本工程においては、段差基板10の凸部13に対応する位置にマスク20を配置する。
 「段差基板10の凸部13に対応する位置」とは、具体的には、レジスト膜14を露光したときに、露光装置から照射される光が凸部13に照射されない位置のことをいう。つまり、凹部12の上部(凹部上膜14Bの上部)にマスク20の開口部が配置されるように、マスク20が配置される。
 このような位置としては、例えば、段差基板10のレジスト膜14を形成する面を平面視したときに、凸部13の輪郭内の全領域が覆われる位置、および、凸部上膜14aの輪郭内の全領域が覆われる位置が挙げられる。
In this step, the mask 20 is disposed at a position corresponding to the convex portion 13 of the step substrate 10.
The “position corresponding to the convex portion 13 of the stepped substrate 10” specifically refers to a position where the convex portion 13 is not irradiated with light irradiated from the exposure apparatus when the resist film 14 is exposed. That is, the mask 20 is disposed so that the opening of the mask 20 is disposed above the recess 12 (above the recess upper film 14B).
As such a position, for example, when the surface of the stepped substrate 10 on which the resist film 14 is formed is viewed in plan, the position where the entire region within the contour of the convex portion 13 is covered, and the contour of the convex upper film 14a The position where the entire area is covered is mentioned.
<工程C>
 工程Cは、現像液を用いて、上記段差基板の凸部上に設けられた上記膜の少なくとも一部を除去して、平坦化膜を得る工程である。本発明において、工程Cを現像工程ともいう。
 図4の例は、露光後のレジスト膜14Aから未露光領域に位置する凸部上膜14aが除去されて、露光後の凹部上膜14Bのみが残された状態を示す。すなわち、現像工程を経て得られた露光後の凹部上膜14Bが、平坦化膜14Cである。
<Process C>
Step C is a step of obtaining a planarizing film by removing at least a part of the film provided on the convex portion of the stepped substrate using a developer. In the present invention, step C is also referred to as a development step.
The example of FIG. 4 shows a state in which the convex film 14a located in the unexposed area is removed from the resist film 14A after exposure, and only the concave film 14B after exposure is left. That is, the exposed concave upper film 14B obtained through the development process is the planarizing film 14C.
 本工程において使用する現像液は特に限定せず、例えば、アルカリ現像液又は有機溶剤を含有する現像液(以下、「有機系現像液」ともいう。)を用いることができる。なかでも、アルカリ現像液を用いるのが好ましい。
 アルカリ現像液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウムおよびアンモニア水等の無機アルカリ類、エチルアミンおよびn-プロピルアミン等の第一級アミン類、ジエチルアミンおよびジ-n-ブチルアミン等の第二級アミン類、トリエチルアミンおよびメチルジエチルアミン等の第三級アミン類、ジメチルエタノールアミンおよびトリエタノールアミン等のアルコールアミン類、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、テトラペンチルアンモニウムヒドロキシド、テトラヘキシルアンモニウムヒドロキシド、テトラオクチルアンモニウムヒドロキシド、エチルトリメチルアンモニウムヒドロキシド、ブチルトリメチルアンモニウムヒドロキシド、メチルトリアミルアンモニウムヒドロキシドおよびジブチルジペンチルアンモニウムヒドロキシド等のテトラアルキルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシドおよびトリエチルベンジルアンモニウムヒドロキシド等の第四級アンモニウム塩、ならびに、ピロールおよびピペリジン等の環状アミン類等のアルカリ性水溶液を使用することができる。さらに、上記アルカリ性水溶液にアルコール類および/または界面活性剤を適当量添加して使用することもできる。アルカリ現像液のアルカリ濃度は、通常0.1~20質量%である。アルカリ現像液のpHは、通常10.0~15.0である。アルカリ現像液のアルカリ濃度及びpHは、適宜調整して用いることができる。アルカリ現像液は、界面活性剤や有機溶剤を添加して用いてもよい。
 アルカリ現像の後に行うリンス処理におけるリンス液としては、純水を使用し、界面活性剤を適当量添加して使用することもできる。
The developer used in this step is not particularly limited, and for example, an alkali developer or a developer containing an organic solvent (hereinafter also referred to as “organic developer”) can be used. Among these, it is preferable to use an alkali developer.
Examples of the alkali developer include inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate and aqueous ammonia, primary amines such as ethylamine and n-propylamine, diethylamine And secondary amines such as di-n-butylamine, tertiary amines such as triethylamine and methyldiethylamine, alcohol amines such as dimethylethanolamine and triethanolamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, Tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, tetrapentylammonium hydroxide, tetrahexylammonium hydroxide, tetraoctylammoni Tetraalkylammonium hydroxide, trimethylphenylammonium hydroxide, trimethylbenzylammonium hydroxide, and triethylbenzylammonium hydroxide, such as Alkaline aqueous solutions such as quaternary ammonium salts such as pyrrole and cyclic amines such as pyrrole and piperidine can be used. Furthermore, an appropriate amount of alcohol and / or surfactant can be added to the alkaline aqueous solution. The alkali concentration of the alkali developer is usually from 0.1 to 20% by mass. The pH of the alkali developer is usually from 10.0 to 15.0. The alkali concentration and pH of the alkali developer can be appropriately adjusted and used. The alkali developer may be used after adding a surfactant or an organic solvent.
As a rinsing solution in the rinsing treatment performed after alkali development, pure water can be used, and an appropriate amount of a surfactant can be added.
 また、現像処理又はリンス処理の後に、平坦化膜上に付着している現像液又はリンス液を超臨界流体により除去する処理を行うことができる。 Further, after the development process or the rinsing process, it is possible to perform a process of removing the developer or the rinsing liquid adhering on the planarizing film with a supercritical fluid.
 有機系現像液としては、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤およびエーテル系溶剤等の極性溶剤ならびに炭化水素系溶剤を用いることができ、これらの具体例としては特開2013-218223号公報の段落<0507>に記載された溶剤、ならびに、酢酸イソアミル、ブタン酸ブチル、2-ヒドロキシイソ酪酸メチル、イソ酪酸イソブチルおよびプロピオン酸ブチルなどを挙げることができる。
 上記の溶剤は、複数混合してもよいし、上記以外の溶剤や水と混合し使用してもよい。但し、本発明の効果を十二分に奏するためには、現像液全体としての含水率が10質量%未満であることが好ましく、実質的に水分を含有しないことがより好ましい。
 すなわち、有機系現像液に対する有機溶剤の使用量は、現像液の全量に対して、90質量%以上100質量%以下であることが好ましく、95質量%以上100質量%以下であることがより好ましい。
As the organic developer, a polar solvent such as a ketone solvent, an ester solvent, an alcohol solvent, an amide solvent and an ether solvent, and a hydrocarbon solvent can be used. And the solvent described in paragraph <0507> of -218223, and isoamyl acetate, butyl butanoate, methyl 2-hydroxyisobutyrate, isobutyl isobutyrate, and butyl propionate.
A plurality of the above solvents may be mixed, or may be used by mixing with a solvent other than those described above or water. However, in order to fully exhibit the effects of the present invention, the water content of the developer as a whole is preferably less than 10% by mass, and more preferably substantially free of moisture.
That is, the amount of the organic solvent used relative to the organic developer is preferably 90% by mass or more and 100% by mass or less, and more preferably 95% by mass or more and 100% by mass or less with respect to the total amount of the developer. .
 特に、有機系現像液は、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤及びエーテル系溶剤からなる群より選択される少なくとも1種類の有機溶剤を含有する現像液であるのが好ましい。 In particular, the organic developer is preferably a developer containing at least one organic solvent selected from the group consisting of ketone solvents, ester solvents, alcohol solvents, amide solvents and ether solvents. .
 有機系現像液の蒸気圧は、20℃に於いて、5kPa以下が好ましく、3kPa以下がより好ましく、2kPa以下が更に好ましい。有機系現像液の蒸気圧を5kPa以下にすることにより、現像液の基板上あるいは現像カップ内での蒸発が抑制され、ウエハ面内の温度均一性が向上し、結果としてウエハ面内の寸法均一性が良化する。 The vapor pressure of the organic developer at 20 ° C. is preferably 5 kPa or less, more preferably 3 kPa or less, and even more preferably 2 kPa or less. By setting the vapor pressure of the organic developer to 5 kPa or less, the evaporation of the developer on the substrate or in the developing cup is suppressed, and the temperature uniformity in the wafer surface is improved. As a result, the dimensions in the wafer surface are uniform. Sexuality improves.
 有機系現像液には、必要に応じて界面活性剤を適当量添加することができる。なお、界面活性剤は2種以上を併用してもよい。
 界面活性剤としては特に限定されず、例えば、イオン性または非イオン性のフッ素系及び/又はシリコン系界面活性剤等を用いることができる。これらのフッ素及び/又はシリコン系界面活性剤として、例えば特開昭62-36663号公報、特開昭61-226746号公報、特開昭61-226745号公報、特開昭62-170950号公報、特開昭63-34540号公報、特開平7-230165号公報、特開平8-62834号公報、特開平9-54432号公報、特開平9-5988号公報、米国特許第5405720号明細書、同5360692号明細書、同5529881号明細書、同5296330号明細書、同5436098号明細書、同5576143号明細書、同5294511号明細書および同5824451号明細書に記載の界面活性剤を挙げることができ、好ましくは、非イオン性の界面活性剤である。非イオン性の界面活性剤としては特に限定されず、フッ素系界面活性剤又はシリコン系界面活性剤を用いることが更に好ましい。
An appropriate amount of a surfactant can be added to the organic developer as required. Two or more surfactants may be used in combination.
The surfactant is not particularly limited, and for example, an ionic or nonionic fluorine-based and / or silicon-based surfactant can be used. Examples of these fluorine and / or silicon surfactants include, for example, JP-A No. 62-36663, JP-A No. 61-226746, JP-A No. 61-226745, JP-A No. 62-170950, JP-A-63-34540, JP-A-7-230165, JP-A-8-62834, JP-A-9-54432, JP-A-9-5988, US Pat. No. 5,405,720, Mention may be made of the surfactants described in US Pat. No. 5,360,692, US Pat. Preferably, it is a nonionic surfactant. The nonionic surfactant is not particularly limited, and it is more preferable to use a fluorine-based surfactant or a silicon-based surfactant.
 界面活性剤の使用量は現像液の全量に対して、通常0.001~5質量%、好ましくは0.005~2質量%、より好ましくは0.01~0.5質量%である。 The amount of the surfactant used is usually 0.001 to 5% by mass, preferably 0.005 to 2% by mass, and more preferably 0.01 to 0.5% by mass with respect to the total amount of the developer.
 有機系現像液は、塩基性化合物を含んでいてもよい。本発明で用いられる有機系現像液が含みうる塩基性化合物の具体例及び好ましい例としては、後述する酸拡散制御剤として、組成物が含みうる塩基性化合物におけるものと同様である。 The organic developer may contain a basic compound. Specific examples and preferred examples of the basic compound that can be contained in the organic developer used in the present invention are the same as those in the basic compound that can be contained in the composition as an acid diffusion controller described later.
 現像方法としては、たとえば、現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、および、一定速度で回転している基板上に一定速度で現像液吐出ノズルをスキャンしながら現像液を吐出しつづける方法(ダイナミックディスペンス法)などを適用することができる。 As a developing method, for example, a method in which a substrate is immersed in a tank filled with a developer for a certain period of time (dip method), a method in which the developer is raised on the surface of the substrate by surface tension and is left stationary for a certain time (paddle) Method), a method of spraying the developer on the substrate surface (spray method), and a method of continuously discharging the developer while scanning the developer discharge nozzle at a constant speed on the substrate rotating at a constant speed (dynamic dispensing). Law) and the like can be applied.
 上記各種の現像方法が、現像装置の現像ノズルから現像液をレジスト膜に向けて吐出する工程を含む場合、吐出される現像液の吐出圧(吐出される現像液の単位面積あたりの流速)は好ましくは2mL/sec/mm以下、より好ましくは1.5mL/sec/mm以下、更に好ましくは1mL/sec/mm以下である。流速の下限は特に無く、スループットを考慮すると0.2mL/sec/mm以上が好ましい。
 吐出される現像液の吐出圧を上記の範囲とすることにより、現像後のレジスト残渣に由来する平坦化膜の欠陥を著しく低減することができる。
 このメカニズムの詳細は定かではないが、恐らくは、吐出圧を上記範囲とすることで、現像液がレジスト膜に与える圧力が小さくなり、レジスト膜及び平坦化膜が不用意に削られたり崩れたりすることが抑制されるためと考えられる。
 なお、現像液の吐出圧(mL/sec/mm)は、現像装置中の現像ノズル出口における値である。
When the various development methods described above include a step of discharging the developer from the developing nozzle of the developing device toward the resist film, the discharge pressure of the discharged developer (the flow rate per unit area of the discharged developer) is Preferably it is 2 mL / sec / mm 2 or less, More preferably, it is 1.5 mL / sec / mm 2 or less, More preferably, it is 1 mL / sec / mm 2 or less. There is no particular lower limit of the flow rate, and 0.2 mL / sec / mm 2 or more is preferable in consideration of throughput.
By setting the discharge pressure of the discharged developer within the above range, defects in the planarization film derived from the resist residue after development can be remarkably reduced.
The details of this mechanism are not clear, but perhaps by setting the discharge pressure in the above range, the pressure applied to the resist film by the developer is reduced, and the resist film and the planarizing film are inadvertently cut or collapsed. This is considered to be suppressed.
The developer discharge pressure (mL / sec / mm 2 ) is a value at the developing nozzle outlet in the developing device.
 現像液の吐出圧を調整する方法としては、例えば、ポンプなどで吐出圧を調整する方法や、加圧タンクからの供給で圧力を調整することで変える方法などを挙げることができる。
 また、有機溶剤を含む現像液を用いて現像する工程の後に、他の溶剤に置換しながら、現像を停止する工程を実施してもよい。
Examples of the method for adjusting the discharge pressure of the developer include a method of adjusting the discharge pressure with a pump or the like, and a method of changing the pressure by adjusting the pressure by supply from a pressurized tank.
Moreover, you may implement the process of stopping image development, substituting with another solvent after the process developed using the developing solution containing an organic solvent.
 本発明の平坦化膜の製造方法においては、有機溶剤を含む現像液を用いて現像する工程(有機溶剤現像工程)、及び、アルカリ水溶液を用いて現像を行う工程(アルカリ現像工程)を組み合わせて使用してもよい。 In the method for producing a planarized film of the present invention, a step of developing using a developer containing an organic solvent (organic solvent developing step) and a step of developing using an aqueous alkaline solution (alkali developing step) are combined. May be used.
 有機溶剤を含む現像液を用いて現像する工程の後には、リンス液を用いて洗浄する工程を含むことが好ましい。
 有機溶剤を含む現像液を用いて現像する工程の後のリンス工程に用いるリンス液としては、平坦化膜を溶解しなければ特に制限はなく、一般的な有機溶剤を含む溶液を使用することができる。リンス液としては、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤及びエーテル系溶剤からなる群より選択される少なくとも1種類の有機溶剤を含有するリンス液を用いることが好ましい。
 炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤及びエーテル系溶剤の具体例としては、有機溶剤を含む現像液において説明したものと同様のものを挙げることができる。
It is preferable to include the process of wash | cleaning using a rinse liquid after the process developed using the developing solution containing an organic solvent.
The rinsing solution used in the rinsing step after the step of developing using a developer containing an organic solvent is not particularly limited as long as the planarizing film is not dissolved, and a solution containing a general organic solvent may be used. it can. As the rinsing liquid, a rinsing liquid containing at least one organic solvent selected from the group consisting of hydrocarbon solvents, ketone solvents, ester solvents, alcohol solvents, amide solvents and ether solvents should be used. Is preferred.
Specific examples of the hydrocarbon solvent, the ketone solvent, the ester solvent, the alcohol solvent, the amide solvent, and the ether solvent are the same as those described in the developer containing an organic solvent.
 有機溶剤を含む現像液を用いて現像する工程の後に、より好ましくは、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、及び炭化水素系溶剤からなる群より選択される少なくとも1種類の有機溶剤を含有するリンス液を用いて洗浄する工程を行い、更に好ましくは、アルコール系溶剤又はエステル系溶剤を含有するリンス液を用いて洗浄する工程を行い、特に好ましくは、1価アルコールを含有するリンス液を用いて洗浄する工程を行い、最も好ましくは、炭素数5以上の1価アルコールを含有するリンス液を用いて洗浄する工程を行う。 More preferably, after the step of developing using a developer containing an organic solvent, at least one selected from the group consisting of ketone solvents, ester solvents, alcohol solvents, amide solvents, and hydrocarbon solvents. The step of washing with a rinsing liquid containing an organic solvent is performed, more preferably the step of washing with a rinsing liquid containing an alcohol solvent or an ester solvent, particularly preferably a monohydric alcohol. A cleaning step is performed using the rinsing liquid contained, and most preferably, a cleaning step is performed using a rinsing liquid containing a monohydric alcohol having 5 or more carbon atoms.
 ここで、リンス工程で用いられる1価アルコールとしては、直鎖状、分岐状、環状の1価アルコールが挙げられ、具体的には、1-ブタノール、2-ブタノール、3-メチル-1-ブタノール、tert―ブチルアルコール、1-ペンタノール、2-ペンタノール、1-ヘキサノール、4-メチル-2-ペンタノール、1-ヘプタノール、1-オクタノール、2-ヘキサノール、シクロペンタノール、2-ヘプタノール、2-オクタノール、3-ヘキサノール、3-ヘプタノール、3-オクタノール、4-オクタノールなどを用いることができ、特に好ましい炭素数5以上の1価アルコールとしては、1-ヘキサノール、2-ヘキサノール、4-メチル-2-ペンタノール、1-ペンタノール、3-メチル-1-ブタノールなどを用いることができる。
 炭化水素系溶剤を含有するリンス液としては、炭素数6~30の炭化水素化合物が好ましく、炭素数7~30の炭化水素化合物がより好ましく、炭素数8~30の炭化水素化合物が更に好ましく、炭素数10~30の炭化水素化合物が特に好ましい。
 リンス液としてエステル系溶剤を用いる場合には、エステル系溶剤(1種または2種以上)に加えて、グリコールエーテル系溶剤を用いてもよい。この場合の具体例としては、エステル系溶剤(好ましくは、酢酸ブチル)を主成分として、グリコールエーテル系溶剤(好ましくはプロピレングリコールモノメチルエーテル(PGME))を副成分として用いることが挙げられる。これにより、残渣欠陥が抑制される。
Here, examples of the monohydric alcohol used in the rinsing step include linear, branched, and cyclic monohydric alcohols. Specific examples include 1-butanol, 2-butanol, and 3-methyl-1-butanol. Tert-butyl alcohol, 1-pentanol, 2-pentanol, 1-hexanol, 4-methyl-2-pentanol, 1-heptanol, 1-octanol, 2-hexanol, cyclopentanol, 2-heptanol, 2 -Octanol, 3-hexanol, 3-heptanol, 3-octanol, 4-octanol and the like can be used, and particularly preferable monohydric alcohols having 5 or more carbon atoms are 1-hexanol, 2-hexanol, 4-methyl- Use 2-pentanol, 1-pentanol, 3-methyl-1-butanol, etc. It can be.
As the rinsing liquid containing a hydrocarbon solvent, a hydrocarbon compound having 6 to 30 carbon atoms is preferable, a hydrocarbon compound having 7 to 30 carbon atoms is more preferable, and a hydrocarbon compound having 8 to 30 carbon atoms is more preferable. A hydrocarbon compound having 10 to 30 carbon atoms is particularly preferred.
When an ester solvent is used as the rinsing liquid, a glycol ether solvent may be used in addition to the ester solvent (one or more). Specific examples in this case include using an ester solvent (preferably butyl acetate) as a main component and a glycol ether solvent (preferably propylene glycol monomethyl ether (PGME)) as a subcomponent. Thereby, residue defects are suppressed.
 各成分は、複数混合してもよいし、上記以外の有機溶剤と混合し使用してもよい。
 リンス液中の含水率は、10質量%以下が好ましく、より好ましくは5質量%以下、更に好ましくは3質量%以下である。含水率を10質量%以下にすることで、良好な現像特性を得ることができる。
A plurality of each component may be mixed, or may be used by mixing with an organic solvent other than the above.
The water content in the rinse liquid is preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 3% by mass or less. By setting the water content to 10% by mass or less, good development characteristics can be obtained.
 有機溶剤を含む現像液を用いて現像する工程の後に用いるリンス液の蒸気圧は、20℃に於いて0.05kPa以上5kPa以下が好ましく、0.1kPa以上5kPa以下がより好ましく、0.12kPa以上3kPa以下が更に好ましい。リンス液の蒸気圧を0.05kPa以上5kPa以下にすることにより、ウエハ面内の温度均一性が向上し、更にはリンス液の浸透に起因した膨潤が抑制され、ウエハ面内の寸法均一性が良化する。 The vapor pressure of the rinsing liquid used after the step of developing with a developer containing an organic solvent is preferably 0.05 kPa or more and 5 kPa or less, more preferably 0.1 kPa or more and 5 kPa or less, and 0.12 kPa or more at 20 ° C. More preferably, it is 3 kPa or less. By setting the vapor pressure of the rinse liquid to 0.05 kPa or more and 5 kPa or less, the temperature uniformity in the wafer surface is improved, and further, the swelling due to the penetration of the rinse solution is suppressed, and the dimensional uniformity in the wafer surface is improved. It improves.
 リンス液には、界面活性剤を適当量添加して使用することもできる。
 リンス工程においては、リンス液を用いて洗浄処理する。洗浄処理の方法は特に限定されず、たとえば、一定速度で回転している基板上にリンス液を吐出しつづける方法(回転塗布法)、リンス液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、および、基板表面にリンス液を噴霧する方法(スプレー法)、などを適用することができる。この中でも回転塗布法で洗浄処理を行い、洗浄後に基板を2000rpm~4000rpmの回転数で回転させ、リンス液を基板上から除去することが好ましい。
An appropriate amount of a surfactant can be added to the rinse solution.
In the rinsing step, washing is performed using a rinsing solution. The method of the cleaning treatment is not particularly limited. For example, the method of continuously discharging the rinse liquid onto the substrate rotating at a constant speed (rotary coating method), or immersing the substrate in a tank filled with the rinse liquid for a certain period of time. A method (dip method), a method of spraying a rinsing liquid onto the substrate surface (spray method), and the like can be applied. Among these, it is preferable to perform a cleaning process by a spin coating method, and after the cleaning, rotate the substrate at a rotational speed of 2000 rpm to 4000 rpm to remove the rinse liquid from the substrate.
 また、リンス工程の後にベーク処理(Post Bake;ポストベーク)を行うことも好ましい。ベークにより平坦化膜の表面および内部に残留した現像液およびリンス液が除去される。ポストベークは、通常40~160℃、好ましくは70~95℃で、通常10秒~3分、好ましくは30秒から90秒行う。 Further, it is also preferable to perform a baking process (Post Bake) after the rinsing process. The developer and rinse solution remaining on the surface and inside of the planarizing film are removed by baking. The post-baking is usually performed at 40 to 160 ° C., preferably 70 to 95 ° C., usually 10 seconds to 3 minutes, preferably 30 seconds to 90 seconds.
 また、上記工程Bの後、工程Cの前に、露光後のレジスト膜に対してベーク処理(Post Exposure Bake;PEB)を施してもよい。
 このベーク処理における温度は特に制限されず、160℃以下である場合が多く、本発明の効果がより優れる点で、150℃以下であることが好ましい。下限は特に制限されず、50℃以上の場合が多い。
 ベーク時間は30~300秒が好ましく、30~180秒がより好ましく、30~90秒がさらに好ましい。
 ベークは通常の露光・現像機に備わっている手段で行うことができ、ホットプレート等を用いて行ってもよい。
 ベークにより露光部の反応が促進され、感度およびパターンプロファイルが改善する。
Further, after step B and before step C, the exposed resist film may be baked (post exposure bake; PEB).
The temperature in the baking treatment is not particularly limited, and is often 160 ° C. or less, and is preferably 150 ° C. or less because the effects of the present invention are more excellent. The lower limit is not particularly limited, and is often 50 ° C. or higher.
The baking time is preferably 30 to 300 seconds, more preferably 30 to 180 seconds, and further preferably 30 to 90 seconds.
Baking can be performed by means provided in a normal exposure / developing machine, and may be performed using a hot plate or the like.
Baking promotes the reaction of the exposed area and improves the sensitivity and pattern profile.
<γの値>
 本発明において、平坦化膜形成用組成物を用いてシリコン基板上に厚みTの試験膜を形成した場合に、試験膜のγの値が1000未満である。つまり、本発明の平坦化膜の製造方法においては、後述するγ算出方法によって算出されるγの値が1000未満となる平坦化膜形成組成物を用いる。
 試験膜のγの値は、後述する方法により算出することができるパラメータであるが、主に、レジスト膜の露光量に対する感度を表すものである。
 γの値が大きい場合、レジスト膜の露光量に対する感度が高く、露光量の少しの違いでも、試験膜の厚みが大きく異なる。それに対して、γの値が小さい場合、レジスト膜の露光量に対する感度が低く、露光量のバラツキがあっても、試験膜の厚みの差異が生じにくい。
 ここで、上述した平坦化膜の製造方法において、レジスト膜の露光時にマスクされている部分である凸部上膜14aは、回折した光によって僅かに露光した場合であっても、レジスト膜の感度が低いので、現像により容易に除去される。
 一方、レジスト膜の露光時にマスクされていない部分である凹部上膜14bは、レジスト膜の露光量に対する感度が低いものの、マスクされていないので、十分な露光量が与えられる。そのため、露光後の凹部上膜14Bは、十分に硬化しており、現像により除去されにくい。
 このように、レジスト膜の露光量に対する感度が低いこと、すなわちγの値が小さいと、レジスト膜の凸部上膜14aを除去しつつ、凹部上膜14b(露光後の凹部上膜14B)を保持できるので、平坦化膜14Cの平坦性が優れたものになると推測される。
<Value of γ>
In the present invention, when a test film having a thickness T is formed on a silicon substrate using the planarizing film forming composition, the value of γ of the test film is less than 1000. That is, in the method for producing a planarization film of the present invention, a planarization film forming composition having a value of γ calculated by a γ calculation method described later of less than 1000 is used.
The value of γ of the test film is a parameter that can be calculated by a method to be described later, but mainly represents the sensitivity of the resist film to the exposure amount.
When the value of γ is large, the sensitivity of the resist film with respect to the exposure amount is high, and the thickness of the test film varies greatly even with a slight difference in the exposure amount. On the other hand, when the value of γ is small, the sensitivity to the exposure amount of the resist film is low, and even if the exposure amount varies, a difference in the thickness of the test film hardly occurs.
Here, in the planarization film manufacturing method described above, even if the convex upper film 14a, which is a masked part at the time of exposure of the resist film, is slightly exposed by diffracted light, the sensitivity of the resist film Is easily removed by development.
On the other hand, the recess upper film 14b, which is a portion not masked at the time of exposure of the resist film, has a low sensitivity to the exposure amount of the resist film, but is not masked, so that a sufficient exposure amount is given. Therefore, the concave upper film 14B after exposure is sufficiently cured and is not easily removed by development.
Thus, when the sensitivity to the exposure amount of the resist film is low, that is, the value of γ is small, the concave film 14b (the concave film 14B after exposure) is removed while removing the convex film 14a of the resist film. Since it can hold | maintain, it is estimated that the planarity of the planarization film | membrane 14C becomes the outstanding thing.
 γの値は、1000未満である必要があるが、上述した効果がより向上するという点から、900以下であることが好ましく、800以下であることがより好ましく、500以下であることがさらに好ましく、100以下であることが特に好ましい。下限は特に制限されず、生産性の点から、1以上が好ましく、5以上がより好ましい。 The value of γ needs to be less than 1000, but is preferably 900 or less, more preferably 800 or less, and even more preferably 500 or less from the viewpoint that the above-described effects are further improved. 100 or less is particularly preferable. The lower limit is not particularly limited, and is preferably 1 or more and more preferably 5 or more from the viewpoint of productivity.
 以下、γの算出方法に関して、図面を用いて説明する。
 まず、図5に示すように、基板100上に厚みTの試験膜(レジスト膜)120を形成する。使用される基板としては、ヘキサメチルジシラザン処理を施したSi基板(Advanced Materials Technology社製)を用いる。
 厚みTは、通常500~5000Åであり、700~4500Åであることが好ましく、800~4000Åであることがより好ましい。
 厚みTの膜(レジスト膜)120は、基板100上に組成物をスピンコート法により塗布して、140℃で60秒間ベーク(Pre Bake)を行って製造される。
 次に、KrFエキシマレーザースキャナー(NA0.80)を用い、露光マスクを介さずに、レジスト膜が形成されたウエハに対して、露光量を1mJ/cmから0.8mJ/cm毎増やしながら99点露光を行う。つまり、膜表面の異なる99箇所の位置に対して、異なる露光量の露光をそれぞれ行う。その際、各露光箇所での露光量は、1mJ/cmから0.8mJ/cm毎増加させる。より具体的には、図6に示すように、白抜き矢印で表されるように、膜の異なる箇所に露光量を変えた露光を行う。なお、図6では、膜120の3か所の異なる位置に、露光を行っている。図6中の一番右側の露光では露光量AmJ/cmでの露光が行われ、真ん中の露光では露光量(A+0.8)mJ/cmでの露光が行われ、一番左側の露光では露光量(A+1.6)mJ/cmでの露光が行われる。このように、露光箇所毎に、露光量を0.8mJ/cm毎増加させながら、露光を行う。
 その後、露光後のレジスト膜を130℃で60秒間のベーク処理(Post Exposure Bake;PEB)する。
 その後、得られた膜に対して、現像処理を行う。現像処理の方法としては、テトラメチルアンモニウムハイドロオキサイド水溶液(2.38質量%:「水溶液中における、テトラメチルアンモニウムハイドロオキサイドの濃度が2.38質量%」)で60秒間現像し、純水で30秒間リンスした後、スピン乾燥を行う。
 現像処理を行うと、未露光箇所において膜が除去され、露光量が多くなるほど膜の除去量が少なくなる。その際の除去量は露光量によって異なる。例えば、図7は図6で示された膜に対して現像処理を実施した後の図であり、一番左側の露光箇所の膜の厚みが最も厚く、一番右側の露光箇所の膜の厚みが最も薄くなる。つまり、T1>T2>T3の関係となる。図7においては、3点の膜厚のみを記載しているが、実際は99点の露光箇所での膜厚を測定する。
 次に、各露光箇所での露光量と膜厚とのデータを用いて、プロット図を作成する。具体的には、膜厚を縦軸とし露光量を横軸とした直交座標に、各露光箇所での膜厚及び露光量に対応する点をプロットする。つまり、各露光箇所での膜厚を縦軸に、各露光箇所での露光量の常用対数値を横軸にして、グラフを作成する。なお、縦軸の単位はÅであり、露光量の単位はmJ/cmとする。図8に、プロット図の一例を示す。なお、図8中の各黒丸が、各露光箇所での結果(膜厚と露光量)に該当する。なお、図8では、説明を容易にするため、黒丸のプロット数は実際の99点よりも少なくしている。
 次に、得られたプロット図中の各プロットされた点を結んで線を作成する。得られた線上の縦軸の厚みの値が0.8×T(Tの80%の厚み)の点であるA点、及び、縦軸の厚みの値が0.4×T(Tの40%の厚み)の点であるB点を選択し、このA点及びB点を結ぶ直線の傾きの絶対値を算出し、γとする。
 例えば、厚みTが2000Åである場合、0.8Tは1600Åであり、0.4Tは800Åに該当する。ここで、図8に示すように、縦軸の厚みが1600Åである点の横軸の値をX、縦軸の厚みが800Åである点の横軸の値をYとした場合、この2点の傾きは(1600-800)/(X-Y)として算出され、その絶対値をγとする。
Hereinafter, the calculation method of γ will be described with reference to the drawings.
First, as shown in FIG. 5, a test film (resist film) 120 having a thickness T is formed on a substrate 100. As a substrate to be used, a Si substrate (manufactured by Advanced Materials Technology) subjected to hexamethyldisilazane treatment is used.
The thickness T is usually 500 to 5000 mm, preferably 700 to 4500 mm, and more preferably 800 to 4000 mm.
The film (resist film) 120 having a thickness T is manufactured by applying the composition onto the substrate 100 by a spin coating method and baking (Pre Bake) at 140 ° C. for 60 seconds.
Then, a KrF excimer laser scanner (NA0.80), without passing through the exposure mask, the wafer having a resist film formed, while the amount of exposure from 1 mJ / cm 2 increased every 0.8 mJ / cm 2 99-point exposure is performed. That is, exposure with different exposure amounts is performed for 99 different positions on the film surface. At that time, the exposure amount in each exposure position is, 1mJ / cm 2 0.8mJ / cm 2 every increase from. More specifically, as shown in FIG. 6, exposure is performed by changing the exposure amount at different portions of the film, as indicated by the white arrows. In FIG. 6, exposure is performed at three different positions on the film 120. In the rightmost exposure in FIG. 6, exposure is performed at an exposure amount AmJ / cm 2 , and in the middle exposure, exposure is performed at an exposure amount (A + 0.8) mJ / cm 2 , and the leftmost exposure is performed. Then, exposure is performed at an exposure amount (A + 1.6) mJ / cm 2 . In this manner, exposure is performed while increasing the exposure amount by 0.8 mJ / cm 2 for each exposure location.
Thereafter, the exposed resist film is baked at 130 ° C. for 60 seconds (Post Exposure Bake; PEB).
Thereafter, development processing is performed on the obtained film. As a development processing method, development is performed for 60 seconds with an aqueous tetramethylammonium hydroxide solution (2.38% by mass: “the concentration of tetramethylammonium hydroxide in the aqueous solution is 2.38% by mass”), and 30% with pure water. After rinsing for 2 seconds, spin drying is performed.
When the development process is performed, the film is removed at an unexposed portion, and the amount of removal of the film decreases as the exposure amount increases. The removal amount at that time varies depending on the exposure amount. For example, FIG. 7 is a view after the development processing is performed on the film shown in FIG. Becomes the thinnest. That is, a relationship of T1>T2> T3 is established. In FIG. 7, only the film thicknesses at three points are shown, but actually the film thicknesses at the 99 exposure points are measured.
Next, a plot diagram is created using the exposure amount and film thickness data at each exposure location. Specifically, the points corresponding to the film thickness and the exposure dose at each exposure location are plotted on orthogonal coordinates with the film thickness as the vertical axis and the exposure dose as the horizontal axis. That is, a graph is created with the film thickness at each exposure location on the vertical axis and the common logarithm of the exposure amount at each exposure location on the horizontal axis. The unit of the vertical axis is Å, and the unit of exposure amount is mJ / cm 2 . FIG. 8 shows an example of a plot diagram. Each black circle in FIG. 8 corresponds to the result (film thickness and exposure amount) at each exposure location. In FIG. 8, for ease of explanation, the number of black circle plots is less than the actual 99 points.
Next, a line is created by connecting the plotted points in the obtained plot. On the obtained line, the vertical axis thickness value is 0.8 × T (80% thickness of T) point A, and the vertical axis thickness value is 0.4 × T (40 T). % B) is selected, and the absolute value of the slope of the straight line connecting the points A and B is calculated and set as γ.
For example, when the thickness T is 2000 mm, 0.8T corresponds to 1600 mm and 0.4T corresponds to 800 mm. Here, as shown in FIG. 8, when the value of the horizontal axis of the point where the thickness of the vertical axis is 1600 mm is X and the value of the horizontal axis of the point where the thickness of the vertical axis is 800 mm is Y, these two points Is calculated as (1600−800) / (XY), and its absolute value is γ.
 上述したγの制御方法は特に制限されないが、例えば、平坦化膜形成用組成物に含まれる材料(例えば、樹脂および光酸発生剤など)の種類および使用量を調整することで行うことができる。より具体的には、後述する樹脂(A1)および/または樹脂(A2)と、光酸発生剤(B)と、を併用することにより、樹脂(A1)および樹脂(A2)の硬化性を維持しつつ架橋速度を低下させて、γの値を低減できる。
 また、γの値は、PBにおける温度、および、現像処理時の現像時間などを変化させることによっても、制御できる。
The method for controlling γ described above is not particularly limited. For example, it can be performed by adjusting the type and amount of materials (for example, resin and photoacid generator) contained in the composition for forming a planarization film. . More specifically, the curability of the resin (A1) and the resin (A2) is maintained by using the resin (A1) and / or the resin (A2), which will be described later, and the photoacid generator (B) in combination. However, the value of γ can be reduced by reducing the crosslinking rate.
The value of γ can also be controlled by changing the temperature at PB, the development time during the development process, and the like.
[感活性光線性または感放射線性の平坦化膜形成用組成物]
 本発明の平坦化膜の製造方法には、感活性光線性または感放射線性の平坦化膜形成用組成物が用いられる。感活性光線性または感放射線性の平坦化膜形成用組成物は、少なくとも樹脂(A)および光酸発生剤(B)を含有する。
 本発明の平坦化膜形成用組成物は、ネガ型であることが好ましい。すなわち、平坦膜形成用組成物を露光した場合に、露光された部分が現像液によって溶解しにくくなる。
[Composition for forming actinic ray-sensitive or radiation-sensitive planarizing film]
In the method for producing a planarizing film of the present invention, an actinic ray-sensitive or radiation-sensitive composition for forming a planarizing film is used. The actinic ray-sensitive or radiation-sensitive planarizing film-forming composition contains at least a resin (A) and a photoacid generator (B).
The planarization film-forming composition of the present invention is preferably a negative type. That is, when the flat film forming composition is exposed, the exposed portion is hardly dissolved by the developer.
 以下、感活性光線性または感放射線性の平坦化膜形成用組成物に含まれる成分、および、含まれ得る成分について詳述する。 Hereinafter, the components contained in the composition for forming an actinic ray-sensitive or radiation-sensitive planarizing film and components that may be contained will be described in detail.
<樹脂(A)>
 樹脂(A)は、上述したγの値を1000未満にすることを容易にできる樹脂であれば特に限定されず、上述したγの値を1000未満の値に調整することがより容易になり、平坦性により優れた平坦化膜を製造できるという観点から、後述する樹脂(A1)および樹脂(A2)の少なくとも一方を含むことが好ましい。
 樹脂(A)は、1種単独で使用してもよいし、2種以上を併用してもよい。
<Resin (A)>
The resin (A) is not particularly limited as long as it can easily reduce the above-described γ value to less than 1000, and it becomes easier to adjust the above-described γ value to a value less than 1000, It is preferable that at least one of resin (A1) and resin (A2), which will be described later, is included from the viewpoint that a flattened film superior in flatness can be produced.
Resin (A) may be used individually by 1 type, and may use 2 or more types together.
 樹脂(A)のガラス転移温度(Tg)は、150℃以下であることが好ましく、120℃以下であることがより好ましく、80℃以下であることがさらに好ましく、50℃以下であることが特に好ましい。
 樹脂(A)のTgが150℃以下であることで、平坦化膜形成用組成物の流動性が良好となり、平坦化膜の平坦性をより向上できる。
 なお、樹脂(A)のTgが低ければ低いほど、平坦化膜形成用組成物の流動性が良好となるため、樹脂(A)のTgの下限値は特に限定されず、樹脂(A)のTgの下限値は通常5℃以上である。
 なお、ガラス転移温度(Tg)は、TA Instruments社製の示差走査型熱量計(DSC)Q2000を用いて、真空乾燥した試料(約2mg)をアルミニウムパン上で秤量し、該アルミニウムパンをDSC測定ホルダーにセットし、10℃~200℃まで2℃/minで昇温したときの変曲点から求める。200℃までにガラス転移温度に相当するDTA(differential thermal analysis)曲線の変曲点が観察されない場合に、Tgは200℃以上と判断する。
The glass transition temperature (Tg) of the resin (A) is preferably 150 ° C. or lower, more preferably 120 ° C. or lower, further preferably 80 ° C. or lower, and particularly preferably 50 ° C. or lower. preferable.
When the Tg of the resin (A) is 150 ° C. or less, the fluidity of the composition for forming a flattened film becomes good, and the flatness of the flattened film can be further improved.
In addition, since the fluidity | liquidity of the composition for planarization film formation becomes so favorable that Tg of resin (A) is low, the lower limit of Tg of resin (A) is not specifically limited, Resin (A) The lower limit of Tg is usually 5 ° C. or higher.
The glass transition temperature (Tg) was determined by weighing a vacuum-dried sample (about 2 mg) on an aluminum pan using a differential scanning calorimeter (DSC) Q2000 manufactured by TA Instruments, and measuring the aluminum pan using DSC. Obtained from the inflection point when the temperature is set at 10 ° C. to 200 ° C. at a rate of 2 ° C./min. When an inflection point of a DTA (differential thermal analysis) curve corresponding to the glass transition temperature is not observed by 200 ° C., Tg is determined to be 200 ° C. or higher.
 樹脂(A)の含有量は、平坦化膜形成用組成物の全固形分に対して、50~99質量%であることが好ましく、55~97質量%であることがより好ましく、60~95質量%であることがさらに好ましい。
 樹脂(A)の含有量が50質量%以上であることにより、平坦化膜の硬化性がより良好となる。
The content of the resin (A) is preferably 50 to 99% by mass, more preferably 55 to 97% by mass, and more preferably 60 to 95% with respect to the total solid content of the flattening film forming composition. More preferably, it is mass%.
When the content of the resin (A) is 50% by mass or more, the curability of the flattened film becomes better.
(樹脂(A1))
 樹脂(A1)は、酸の作用によって架橋する架橋性部位を2つ以上有する繰り返し単位を全繰り返し単位中0.5~30モル%含む樹脂である。
 本発明の平坦化膜形成用組成物に活性光線または放射線を照射すると、光酸発生剤(B)から発生した酸の作用によって、樹脂(A1)の架橋性部位が架橋する。
 ここで、樹脂(A1)の架橋性部位の架橋反応はゆっくりと進むので、樹脂(A1)を含有する平坦化膜形成用組成物は、活性光線または放射線に対する感度が低い。そのため、γの値を1000未満により調整しやすくなると推測される。
(Resin (A1))
The resin (A1) is a resin containing 0.5 to 30 mol% of repeating units having two or more crosslinkable sites that are crosslinked by the action of an acid.
When the planarizing film-forming composition of the present invention is irradiated with actinic rays or radiation, the crosslinkable site of the resin (A1) is crosslinked by the action of the acid generated from the photoacid generator (B).
Here, since the crosslinking reaction of the crosslinkable site of the resin (A1) proceeds slowly, the planarization film-forming composition containing the resin (A1) has low sensitivity to actinic rays or radiation. Therefore, it is presumed that it becomes easier to adjust the value of γ by less than 1000.
 平坦化膜形成用組成物を用いて得られる段差基板の凸部上に形成された膜は、工程B(露光工程)においてマスクされているので、露光されにくい。そのため、樹脂(A1)の架橋性部位の架橋反応がより遅くなり、段差基板の凸部上に形成された膜の硬化性が低下する。これにより、段差基板の凸部上に形成された膜は、上記工程C(現像工程)において、より除去されやすくなる。
 一方で、平坦化膜形成用組成物を用いて得られる段差基板の凹部上に形成された膜(凹部に埋め込まれた膜)は、工程B(露光工程)においてマスクされておらず、十分に露光されるので、良好に硬化する。そのため、段差基板の凹部上に形成された膜は、上記工程C(現像工程)において、除去されにくい。
 その結果、段差基板上に形成される平坦化膜の平坦性がより向上するものと推測される。
Since the film formed on the convex part of the stepped substrate obtained by using the planarizing film forming composition is masked in the process B (exposure process), it is difficult to be exposed. Therefore, the cross-linking reaction of the cross-linkable site of the resin (A1) becomes slower, and the curability of the film formed on the convex portion of the step substrate is lowered. Thereby, the film formed on the convex portion of the stepped substrate is more easily removed in the step C (developing step).
On the other hand, the film (film embedded in the concave portion) formed on the concave portion of the stepped substrate obtained by using the planarization film forming composition is not masked in the step B (exposure step) and is sufficiently Since it is exposed, it cures well. For this reason, the film formed on the concave portion of the stepped substrate is difficult to be removed in the step C (developing step).
As a result, it is estimated that the flatness of the planarization film formed on the stepped substrate is further improved.
 以下において、酸の作用によって架橋する架橋性部位を2つ以上有する繰り返し単位を、単に「繰り返し単位(a1)」ともいう。 Hereinafter, a repeating unit having two or more crosslinkable sites that are crosslinked by the action of an acid is also simply referred to as “repeating unit (a1)”.
 酸の作用によって架橋する架橋性部位としては、ヒドロキシ基、エポキシ基などが挙げられ、反応の制御しやすさという観点から、ヒドロキシ基が好ましく、フェノール性水酸基であることがより好ましい。
 繰り返し単位中に含まれる酸の作用によって架橋する架橋性部位の数としては、2つ以上であるが、2~4つであることが好ましく、平坦化膜形成用組成物の硬化性を保持しつつ、感度を低下できるという点から、2つであることがより好ましい。
 繰り返し単位中に含まれる酸の作用によって架橋する2つ以上の架橋性部位は、それぞれ同一であっても、互いに異なっていてもよいが、同一であることが好ましい。
Examples of the crosslinkable site that is crosslinked by the action of an acid include a hydroxy group and an epoxy group. From the viewpoint of easy control of the reaction, a hydroxy group is preferable, and a phenolic hydroxyl group is more preferable.
The number of cross-linkable sites that are cross-linked by the action of an acid contained in the repeating unit is 2 or more, but preferably 2 to 4, and the curability of the composition for forming a flattened film is maintained. However, it is more preferable that the number is two from the viewpoint that the sensitivity can be lowered.
Two or more crosslinkable sites that are cross-linked by the action of an acid contained in the repeating unit may be the same or different from each other, but are preferably the same.
 上記樹脂(A1)は、上述したγの値を1000未満に調整することが容易になり、平坦化膜の平坦性がより向上するという観点から、ノボラック樹脂であることが好ましい。
 上記ノボラック樹脂としては、例えば、フェノール類とアルデヒド類とを酸触媒の存在下に縮合させて得られるものが挙げられる。
 上記フェノール類としては、例えば、フェノール、クレゾール、エチルフェノール、ブチルフェノール、キシレノール、フェニルフェノール、カテコール、ヒドロキノン、レゾルシノール、ピロガロール、ナフトールまたはビスフェノールA等が挙げられる。
 上記アルデヒド類としては、例えば、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒドまたはベンズアルデヒド等が挙げられる。
 上記フェノール類およびアルデヒド類は、単独または2種以上を組み合わせて用いることができる。
The resin (A1) is preferably a novolak resin from the viewpoint that it becomes easy to adjust the value of γ described above to less than 1000 and the flatness of the planarizing film is further improved.
Examples of the novolac resin include those obtained by condensing phenols and aldehydes in the presence of an acid catalyst.
Examples of the phenols include phenol, cresol, ethylphenol, butylphenol, xylenol, phenylphenol, catechol, hydroquinone, resorcinol, pyrogallol, naphthol, and bisphenol A.
Examples of the aldehydes include formaldehyde, paraformaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, and the like.
The said phenols and aldehydes can be used individually or in combination of 2 or more types.
 上記ノボラック樹脂の具体例としては、例えば、ヒドロキノン、レゾルシノールまたはこれらの混合物とホルマリンとの縮合生成物が挙げられる。
 上記ノボラック樹脂は、分別等の手段を用いて分子量分布を調節してもよい。また、ビスフェノールCおよびビスフェノールA等のフェノール性水酸基を有する低分子量成分を上記ノボラック樹脂に混合してもよい。
Specific examples of the novolak resin include a condensation product of hydroquinone, resorcinol or a mixture thereof and formalin.
The novolak resin may be adjusted in molecular weight distribution using means such as fractionation. Moreover, you may mix the low molecular weight component which has phenolic hydroxyl groups, such as bisphenol C and bisphenol A, in the said novolak resin.
 上記繰り返し単位(a1)は、上述したγの値を1000未満に調整することが容易になり、平坦化膜の平坦性がより向上し、平坦化膜の膨潤も抑制できるという観点から、ベンゼンジオール構造を有することが好ましく、レゾルシノール構造(下記式(a1-1)参照)およびヒドロキノン構造(下記式(a1-2)参照)の少なくとも一方の構造を有することが好ましい。 From the viewpoint that the repeating unit (a1) can easily adjust the value of γ described above to less than 1000, the flatness of the flattened film can be further improved, and swelling of the flattened film can also be suppressed. It preferably has a structure, and preferably has at least one of a resorcinol structure (see the following formula (a1-1)) and a hydroquinone structure (see the following formula (a1-2)).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記繰り返し単位(a1)の含有量は、樹脂(A1)を構成する全繰り返し単位100モル%に対して、0.5~30モル%であることが好ましく、1~20モル%であることがより好ましく、1~15モル%であることがさらに好ましく、1~10モル%であることが特に好ましい。
 繰り返し単位(a1)の含有量が0.5モル%以上であることで、平坦化膜の平坦性をより向上できる。また、繰り返し単位(a1)の含有量が30モル%以下であることで、平坦化膜形成用組成物の感度が低下しすぎることを抑制できるので、平坦化膜の生産性が良好になる。
The content of the repeating unit (a1) is preferably 0.5 to 30 mol% and preferably 1 to 20 mol% with respect to 100 mol% of all repeating units constituting the resin (A1). More preferably, it is 1 to 15 mol%, further preferably 1 to 10 mol%.
When the content of the repeating unit (a1) is 0.5 mol% or more, the flatness of the flattened film can be further improved. Moreover, since it can suppress that the sensitivity of the composition for planarization film formation falls too much because content of a repeating unit (a1) is 30 mol% or less, productivity of a planarization film becomes favorable.
 樹脂(A1)は、上記繰り返し単位(a1)以外の繰り返し単位を有していてもよい。このような繰り返し単位としては、フェノール構造を有する繰り返し単位、オレフィン構造を有する繰り返し単位、エポキシ構造を有する繰り返し単位、メチロール構造を有する繰り返し単位などが挙げられ、γの値をより低くできるという観点から、フェノール構造を有する繰り返し単位が好ましい。
 上記繰り返し単位(a1)以外の繰り返し単位の含有量は、樹脂(A1)を構成する全繰り返し単位100モル%に対して、70~99.5モル%であることが好ましく、80~99モル%であることがより好ましく、85~99モル%であることがさらに好ましく、90~99モル%であることが特に好ましい。
The resin (A1) may have a repeating unit other than the repeating unit (a1). Examples of such a repeating unit include a repeating unit having a phenol structure, a repeating unit having an olefin structure, a repeating unit having an epoxy structure, a repeating unit having a methylol structure, and the like, from the viewpoint that the value of γ can be further reduced. A repeating unit having a phenol structure is preferred.
The content of repeating units other than the above repeating unit (a1) is preferably 70 to 99.5 mol%, based on 100 mol% of all repeating units constituting the resin (A1), and preferably 80 to 99 mol%. More preferably, it is 85 to 99 mol%, more preferably 90 to 99 mol%.
 レジスト膜の露光を低露光量で行った場合に、露光部のレジスト膜が現像後に減膜しすぎるという観点から、樹脂(A1)は、酸分解性基を有する繰り返し単位を実質的に有さないことが好ましい。酸分解性基の詳細については、後述する樹脂(A2)の項において説明する。
 ここで、酸分解性基を有する繰り返し単位を実質的に有さないとは、具体的には、酸分解性基を有する繰り返し単位の含有量が、樹脂(A1)を構成する全繰り返し単位100モル%に対して、0~5モル%であることをいい、0~3モル%であることが好ましく、0モル%であること(すなわち、酸分解性基を有する繰り返し単位を有さないこと)がより好ましい。
Resin (A1) has substantially a repeating unit having an acid-decomposable group from the viewpoint that when the exposure of the resist film is performed at a low exposure amount, the resist film in the exposed portion is too thin after development. Preferably not. Details of the acid-decomposable group will be described in the section of the resin (A2) described later.
Here, having substantially no repeating unit having an acid-decomposable group specifically means that the content of the repeating unit having an acid-decomposable group is 100% of all repeating units constituting the resin (A1). It means 0 to 5 mol% with respect to mol%, preferably 0 to 3 mol%, preferably 0 mol% (that is, having no repeating unit having an acid-decomposable group). ) Is more preferable.
 樹脂(A1)の重量平均分子量(Mw)は、1000~30000であることが好ましく、1500~25000であることがより好ましく、1500~20000であることがさらに好ましい。
 樹脂(A1)に関して、重量平均分子量(Mw)、数平均分子量(Mn)及び分散度(Mw/Mn)は、GPC測定によるポリスチレン換算値を示す。
 重量平均分子量および数平均分子量は、HLC-8120(東ソー(株)製)を用い、カラムとしてTSK gel Multipore HXL-M(東ソー(株)製、7.8mmID×30.0cm)を溶離液としてTHF(テトラヒドロフラン)を用いることによって算出される。
 分散度(分子量分布)は、通常1.0~3.0であり、1.0~2.6であることが好ましく、1.0~2.0であることがより好ましく、1.1~2.0であることがさらに好ましい。分子量分布の小さいものほど、解像度、レジスト形状が優れ、且つ平坦化膜の側壁がスムーズであり、ラフネス性に優れる。
The weight average molecular weight (Mw) of the resin (A1) is preferably 1000 to 30000, more preferably 1500 to 25000, and still more preferably 1500 to 20000.
Regarding the resin (A1), the weight average molecular weight (Mw), the number average molecular weight (Mn), and the dispersity (Mw / Mn) indicate polystyrene conversion values by GPC measurement.
For weight average molecular weight and number average molecular weight, HLC-8120 (manufactured by Tosoh Corporation) was used, and TSK gel Multipore HXL-M (manufactured by Tosoh Corporation, 7.8 mm ID × 30.0 cm) was used as an eluent. Calculated by using (tetrahydrofuran).
The dispersity (molecular weight distribution) is usually 1.0 to 3.0, preferably 1.0 to 2.6, more preferably 1.0 to 2.0, and 1.1 to More preferably, it is 2.0. The smaller the molecular weight distribution, the better the resolution and resist shape, the smoother the side wall of the planarizing film, and the better the roughness.
 樹脂(A1)の具体例を以下に示す。なお、下記式中、n、m、pは、繰り返し単位数を表す。 Specific examples of resin (A1) are shown below. In the following formula, n, m, and p represent the number of repeating units.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(樹脂(A2))
 樹脂(A2)は、フェノール性水酸基を有する繰り返し単位を含む樹脂である。
 本発明の平坦化膜形成用組成物に感活性光線または感放射線を照射すると、光酸発生剤(B)から発生した酸の作用によって、樹脂(A2)に含まれるフェノール性水酸基が架橋する。
 そのため、平坦化膜形成用組成物を用いて得られた膜(レジスト膜)に活性光線または放射線を照射した場合、樹脂(A2)に含まれるフェノール性水酸基の作用によって、レジスト膜は硬化する。フェノール性水酸基を有する繰り返し単位の含有量(モル%)および任意に用いられる架橋剤の含有量(質量%)などを適宜調整することにより、γの値を1000未満により調整しやすい。
(Resin (A2))
The resin (A2) is a resin containing a repeating unit having a phenolic hydroxyl group.
When the planarizing film-forming composition of the present invention is irradiated with an actinic ray or radiation sensitive, the phenolic hydroxyl group contained in the resin (A2) is crosslinked by the action of the acid generated from the photoacid generator (B).
Therefore, when the film (resist film) obtained using the planarization film-forming composition is irradiated with actinic rays or radiation, the resist film is cured by the action of the phenolic hydroxyl group contained in the resin (A2). By appropriately adjusting the content (mol%) of the repeating unit having a phenolic hydroxyl group and the content (mass%) of a crosslinking agent optionally used, the value of γ can be easily adjusted to less than 1000.
 平坦化膜形成用組成物を用いて得られる段差基板の凸部上に形成された膜は、工程B(露光工程)においてマスクされているので、露光されにくい。そのため、凸部上に形成された膜に含まれるフェノール性水酸基の架橋反応が十分に進行せず、段差基板の凸部上に形成された膜が、上記工程C(現像工程)において、より除去されやすくなる。
 一方で、平坦化膜形成用組成物を用いて得られる段差基板の凹部上に形成された膜(凹部に埋め込まれた膜)は、工程B(露光工程)においてマスクされておらず、十分に露光されるので、良好に硬化する。そのため、段差基板の凹部上に形成された膜は、上記工程C(現像工程)において、除去されにくい。
 その結果、段差基板上に形成される平坦化膜の平坦性がより向上するものと推測される。
Since the film formed on the convex part of the stepped substrate obtained by using the planarizing film forming composition is masked in the process B (exposure process), it is difficult to be exposed. Therefore, the cross-linking reaction of the phenolic hydroxyl group contained in the film formed on the convex part does not proceed sufficiently, and the film formed on the convex part of the stepped substrate is further removed in the step C (development process). It becomes easy to be done.
On the other hand, the film (film embedded in the concave portion) formed on the concave portion of the stepped substrate obtained by using the planarization film forming composition is not masked in the step B (exposure step) and is sufficiently Since it is exposed, it cures well. For this reason, the film formed on the concave portion of the stepped substrate is difficult to be removed in the step C (developing step).
As a result, it is estimated that the flatness of the planarization film formed on the stepped substrate is further improved.
 樹脂(A2)は、フェノール性水酸基を有する繰り返し単位を含んでいればよく、平坦化膜の平坦性がより向上するという点から、フェノール性水酸基を有する繰り返し単位のみからなる樹脂であることが好ましい。
 フェノール性水酸基を有する繰り返し単位は、平坦化膜の平坦性がより向上するという点から、下記一般式(I-A)で表される繰り返し単位、下記一般式(I-B)で表される繰り返し単位および下記一般式(I-C)で表される繰り返し単位から選択される少なくとも1種の繰り返し単位であることが好ましい。
 フェノール性水酸基を有する繰り返し単位は、1種単独で用いてもよいし、2種以上を併用してもよく、平坦化膜の平坦性がより向上する観点から、1種単独で使用することが好ましい。
Resin (A2) should just contain the repeating unit which has a phenolic hydroxyl group, and it is preferable that it is resin which consists only of a repeating unit which has a phenolic hydroxyl group from the point that the flatness of a planarization film | membrane improves more. .
The repeating unit having a phenolic hydroxyl group is represented by the following general formula (IA) and the following general formula (IB) from the viewpoint that the flatness of the planarizing film is further improved. It is preferably at least one repeating unit selected from repeating units and repeating units represented by the following general formula (IC).
The repeating unit having a phenolic hydroxyl group may be used alone or in combination of two or more. From the viewpoint of further improving the flatness of the planarizing film, it may be used alone. preferable.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(I-A)中、Rは水素原子またはメチル基を表す。mは1または2を表す。
 式(I-C)中、Rは水素原子またはメチル基を表す。nは1または2を表す。
In the formula (IA), R 1 represents a hydrogen atom or a methyl group. m represents 1 or 2.
In the formula (IC), R 2 represents a hydrogen atom or a methyl group. n represents 1 or 2.
 フェノール性水酸基を有する繰り返し単位の含有量は、樹脂(A2)の全繰り返し単位100モル%に対して、5モル%以上であることが好ましく、20モル%以上であることがより好ましく、50モル%以上であることがさらに好ましく、80モル%以上であることが特に好ましい。
 フェノール性水酸基を有する繰り返し単位の含有量が5モル%以上であることで、平坦化膜の平坦性をより向上できる。
The content of the repeating unit having a phenolic hydroxyl group is preferably 5 mol% or more, more preferably 20 mol% or more, more preferably 50 mol, based on 100 mol% of all repeating units of the resin (A2). % Or more is more preferable, and 80 mol% or more is particularly preferable.
When the content of the repeating unit having a phenolic hydroxyl group is 5 mol% or more, the flatness of the flattened film can be further improved.
 以下、式(I-A)で表される繰り返し単位の具体的な構造を例示するが、この限りではない。 Hereinafter, a specific structure of the repeating unit represented by the formula (IA) is exemplified, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(I-A)で表される繰り返し単位が式(I)-aで表される構造であることが特に好ましい。 It is particularly preferable that the repeating unit represented by the general formula (IA) has a structure represented by the formula (I) -a.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 以下、式(I-C)で表される繰り返し単位の具体的な構造を例示するが、この限りではない。 Hereinafter, a specific structure of the repeating unit represented by the formula (IC) is exemplified, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 また、樹脂(A2)は酸分解性基を有する繰り返し単位をさらに含有していてもよい。酸分解性基を有する繰り返し単位は、主鎖および側鎖の少なくとも一方に酸分解性基を有していればよく、下記一般式(II)で表される繰り返し単位を用いることが好ましい。 The resin (A2) may further contain a repeating unit having an acid-decomposable group. The repeating unit having an acid-decomposable group may have an acid-decomposable group in at least one of the main chain and the side chain, and a repeating unit represented by the following general formula (II) is preferably used.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(II)中、Rは水素原子またはメチル基を表す。Aは酸の作用により分解し脱離する基を表す。 In formula (II), R 1 represents a hydrogen atom or a methyl group. A represents a group that decomposes and leaves by the action of an acid.
 酸分解性基は、酸の作用により分解して、アルカリ可溶性基を生じる基である。
 アルカリ可溶性基としては、フェノール性水酸基、カルボン酸基、フッ素化アルコール基、スルホン酸基、スルホンアミド基、スルホニルイミド基、(アルキルスルホニル)(アルキルカルボニル)メチレン基、(アルキルスルホニル)(アルキルカルボニル)イミド基、ビス(アルキルカルボニル)メチレン基、ビス(アルキルカルボニル)イミド基、ビス(アルキルスルホニル)メチレン基、ビス(アルキルスルホニル)イミド基、トリス(アルキルカルボニル)メチレン基、トリス(アルキルスルホニル)メチレン基を有する基等が挙げられる。
 酸で分解し得る基(酸分解性基)として好ましい基は、これらのアルカリ可溶性基の水素原子を酸の作用により脱離する基によって置換した基である。
 酸で脱離する基としては、例えば、-C(R36)(R37)(R38)、-C(R36)(R37)(OR39)、-C(R01)(R02)(OR39)等を挙げることができる。
 式中、R36~R39は、各々独立に、アルキル基、シクロアルキル基、アリール基、アラルキル基又はアルケニル基表す。R36とR37とは、互いに結合して環を形成してもよい。
 R01~R02は、各々独立に、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基又はアルケニル基を表す。
 酸分解性基としては好ましくは、クミルエステル基、エノールエステル基、アセタールエステル基、第3級アルキルエステル基等である。更に好ましくは、第3級アルキルエステル基である。
 酸分解性基は上記一般式(II)で表される繰り返し単位が含有するが、さらに他の繰り返し単位が含有していてもよい。
An acid-decomposable group is a group that decomposes by the action of an acid to produce an alkali-soluble group.
Alkali-soluble groups include phenolic hydroxyl groups, carboxylic acid groups, fluorinated alcohol groups, sulfonic acid groups, sulfonamido groups, sulfonylimide groups, (alkylsulfonyl) (alkylcarbonyl) methylene groups, (alkylsulfonyl) (alkylcarbonyl) Imido group, bis (alkylcarbonyl) methylene group, bis (alkylcarbonyl) imide group, bis (alkylsulfonyl) methylene group, bis (alkylsulfonyl) imide group, tris (alkylcarbonyl) methylene group, tris (alkylsulfonyl) methylene group A group having
A preferred group as an acid-decomposable group (acid-decomposable group) is a group in which the hydrogen atom of these alkali-soluble groups is substituted with a group capable of leaving by the action of an acid.
Examples of the group leaving with an acid include —C (R 36 ) (R 37 ) (R 38 ), —C (R 36 ) (R 37 ) (OR 39 ), —C (R 01 ) (R 02 ). ) (OR 39 ) and the like.
In the formula, R 36 to R 39 each independently represents an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group or an alkenyl group. R 36 and R 37 may be bonded to each other to form a ring.
R 01 to R 02 each independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group or an alkenyl group.
The acid-decomposable group is preferably a cumyl ester group, an enol ester group, an acetal ester group, a tertiary alkyl ester group or the like. More preferably, it is a tertiary alkyl ester group.
The acid-decomposable group is contained in the repeating unit represented by the general formula (II), but may be further contained in another repeating unit.
 式(II)で表される繰り返し単位中のAは、酸の作用により分解し脱離する基を表し、炭化水素基(好ましくは炭素数20個以下、より好ましくは4~12個)であることが好ましく、t-ブチル基、t-アミル基、脂環構造を有する炭化水素基(例えば、脂環基自体、及び、アルキル基に脂環基が置換した基)がより好ましく、t-ブチル基がさらに好ましい。
 脂環構造は、単環でも、多環でもよい。具体的には、炭素数5以上のモノシクロ、ビシクロ、トリシクロ、テトラシクロ構造等を挙げることができる。その炭素数は6~30個が好ましく、特に炭素数7~25個が好ましい。これらの脂環構造を有する炭化水素基はさらに置換基を有していてもよい。さらに有していてもよい置換基としては、例えば、炭素数1~4個のアルキル基、アルコキシ基、アルコキシカルボニル基、カルバモイル基、シアノ基、ニトロ基などを挙げることができる。
A in the repeating unit represented by the formula (II) represents a group that decomposes and leaves by the action of an acid, and is a hydrocarbon group (preferably having 20 or less carbon atoms, more preferably 4 to 12 carbon atoms). More preferred are a t-butyl group, a t-amyl group, and a hydrocarbon group having an alicyclic structure (for example, an alicyclic group itself, or a group in which an alicyclic group is substituted on an alkyl group), and t-butyl. Groups are more preferred.
The alicyclic structure may be monocyclic or polycyclic. Specific examples include monocyclo, bicyclo, tricyclo, and tetracyclo structures having 5 or more carbon atoms. The number of carbon atoms is preferably 6-30, and particularly preferably 7-25. These hydrocarbon groups having an alicyclic structure may further have a substituent. Further, examples of the substituent that may be included include an alkyl group having 1 to 4 carbon atoms, an alkoxy group, an alkoxycarbonyl group, a carbamoyl group, a cyano group, and a nitro group.
 酸分解性基を有する繰り返し単位(好ましくは一般式(II)で表される繰り返し単位)の含有量は、樹脂(A2)の全繰り返し単位100モル%に対して、50モル%以下であることが好ましく、40モル%以下であることがより好ましい。 The content of the repeating unit having an acid-decomposable group (preferably the repeating unit represented by formula (II)) is 50 mol% or less with respect to 100 mol% of all the repeating units of the resin (A2). Is preferable, and it is more preferable that it is 40 mol% or less.
 以下、式(II)で表される繰り返し単位の具体的な構造を例示するが、この限りではない。 Hereinafter, although the specific structure of the repeating unit represented by Formula (II) is illustrated, it is not this limitation.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 一般式(II)で表される繰り返し単位が式(II)-aで表される構造であることが特に好ましい。 It is particularly preferable that the repeating unit represented by the general formula (II) has a structure represented by the formula (II) -a.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(II)-a中、Rは水素原子またはメチル基を表す。 In formula (II) -a, R 1 represents a hydrogen atom or a methyl group.
 樹脂(A2)は、特に限定されず、上記以外の繰り返し単位を有していてもよい。上記以外の繰り返し単位としては、樹脂(A2)のTgを下げるという観点から、下記一般式(III)で表される繰り返し単位を用いることが好ましい。 Resin (A2) is not particularly limited, and may have a repeating unit other than the above. As the repeating unit other than the above, it is preferable to use a repeating unit represented by the following general formula (III) from the viewpoint of lowering the Tg of the resin (A2).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 一般式(III)中、Rは、水素原子またはメチル基を表す。
 Rは、フェニル基またはシクロヘキシル基を表し、フェニル基であることが好ましい。これらのフェニル基およびシクロヘキシル基は、さらに置換基を1個以上有していてもよい。
 フェニル基およびシクロヘキシル基がさらに有していてもよい置換基としては、炭素数1~4のアルキル基、アルコキシ基、アルコキシカルボニル基、カルバモイル基、シアノ基、ニトロ基などを挙げることが出来る。特に好ましい置換基は、炭素数1~4のアルキル基である。
 nは、0~2の整数を表し、1であることが好ましい。
In general formula (III), R 1 represents a hydrogen atom or a methyl group.
R 2 represents a phenyl group or a cyclohexyl group, and is preferably a phenyl group. These phenyl group and cyclohexyl group may further have one or more substituents.
Examples of the substituent that the phenyl group and the cyclohexyl group may further include an alkyl group having 1 to 4 carbon atoms, an alkoxy group, an alkoxycarbonyl group, a carbamoyl group, a cyano group, and a nitro group. Particularly preferred substituents are alkyl groups having 1 to 4 carbon atoms.
n represents an integer of 0 to 2, and is preferably 1.
 樹脂(A2)が一般式(III)で表される繰り返し単位を有する場合には、一般式(III)で表される繰り返し単位の含有量は、樹脂(A2)の全繰り返し単位100モル%に対して、50モル%以下であることが好ましく、40モル%以下であることがより好ましく、35モル%以下であることがさらに好ましい。 When the resin (A2) has a repeating unit represented by the general formula (III), the content of the repeating unit represented by the general formula (III) is 100 mol% of all the repeating units of the resin (A2). On the other hand, it is preferably 50 mol% or less, more preferably 40 mol% or less, and further preferably 35 mol% or less.
 以下、一般式(III)で表される繰り返し単位の具体的な構造を例示するが、この限りではない。 Hereinafter, although the specific structure of the repeating unit represented by general formula (III) is illustrated, it is not this limitation.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 樹脂(A2)は、上記以外の繰り返し単位をさらに有していてもよい。上記以外の繰り返し単位としては、平坦化膜の膨潤を抑制できるという観点から、カルボン酸基を有する繰り返し単位が好ましく用いられる。
 カルボン酸基を有する繰り返し単位は、平坦化膜の膨潤をより抑制できるという観点から、下記式(IV-A)~(IV-C)で表される繰り返し単位から選択される少なくとも1種の繰り返し単位であることが好ましい。
 また、式(IV-A)~(IV-C)で表される繰り返し単位の中でも、平坦化膜の膨潤をさらに抑制できる観点から、式(IV-A)で表される繰り返し単位を含むことが好ましい。
 カルボン酸基を有する繰り返し単位は、1種単独で使用してもよいし、2種以上を併用してもよい。
The resin (A2) may further have a repeating unit other than the above. As the repeating unit other than the above, a repeating unit having a carboxylic acid group is preferably used from the viewpoint that the swelling of the planarizing film can be suppressed.
The repeating unit having a carboxylic acid group is at least one type of repeating unit selected from repeating units represented by the following formulas (IV-A) to (IV-C) from the viewpoint that the swelling of the planarization film can be further suppressed. Preferably it is a unit.
Further, among the repeating units represented by the formulas (IV-A) to (IV-C), the repeating unit represented by the formula (IV-A) is included from the viewpoint of further suppressing the swelling of the planarizing film. Is preferred.
The repeating unit having a carboxylic acid group may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式(IV-A)中、R3Aは水素原子またはメチル基を表す。
 式(IV-B)中、R3B-1は水素原子またはメチル基を表し、R3B-2は脂環式炭化水素基を表す。脂環式炭化水素基としては、アダマンチル基、ジアダマンチル基、または、ノルボルナン基から水素原子を一つ取り除いた基が好ましい。
 式(IV-C)中、R3Cは水素原子またはメチル基を表し、Arは芳香族炭化水素基を表す。芳香族炭化水素基としては、フェニレン基またはナフチレン基が好ましい。
In the formula (IV-A), R 3A represents a hydrogen atom or a methyl group.
In formula (IV-B), R 3B-1 represents a hydrogen atom or a methyl group, and R 3B-2 represents an alicyclic hydrocarbon group. The alicyclic hydrocarbon group is preferably an adamantyl group, a diadamantyl group, or a group obtained by removing one hydrogen atom from a norbornane group.
In the formula (IV-C), R 3C represents a hydrogen atom or a methyl group, and Ar represents an aromatic hydrocarbon group. As the aromatic hydrocarbon group, a phenylene group or a naphthylene group is preferable.
 樹脂(A2)がカルボン酸基を有する繰り返し単位を有する場合には、カルボン酸基を有する繰り返し単位の含有量は、樹脂(A2)の全繰り返し単位100モル%に対して、1~50モル%であることが好ましく、1~30モル%であることがより好ましく、5~30モル%であることがさらに好ましい。カルボン酸基を有する繰り返し単位の含有量が上記範囲内にあることで、平坦化膜の平坦性を良好な範囲に維持しつつ、平坦化膜の膨潤をより抑制できる。 When the resin (A2) has a repeating unit having a carboxylic acid group, the content of the repeating unit having a carboxylic acid group is 1 to 50 mol% with respect to 100 mol% of all the repeating units of the resin (A2). Preferably, it is 1 to 30 mol%, more preferably 5 to 30 mol%. When the content of the repeating unit having a carboxylic acid group is within the above range, swelling of the planarizing film can be further suppressed while maintaining the planarity of the planarizing film in a favorable range.
 以下、一般式(IV-A)~(IV-C)で表される繰り返し単位の具体的な構造を例示するが、この限りではない。 Hereinafter, specific structures of the repeating units represented by the general formulas (IV-A) to (IV-C) are exemplified, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 樹脂(A2)は、上記以外の繰り返し単位をさらに有していてもよい。上記以外の繰り返し単位としては、平坦化膜の膨潤を抑制できる観点から、水酸基を有する繰り返し単位が好ましく用いられる。
 水酸基を有する繰り返し単位としては、下記式(V-A)~(V-B)で表される繰り返し単位から選択される少なくとも1種の繰り返し単位であることが好ましい。水酸基を有する繰り返し単位は、1種単独で使用してもよいし、2種以上を併用してもよい。
The resin (A2) may further have a repeating unit other than the above. As the repeating unit other than the above, a repeating unit having a hydroxyl group is preferably used from the viewpoint of suppressing swelling of the planarizing film.
The repeating unit having a hydroxyl group is preferably at least one repeating unit selected from repeating units represented by the following formulas (VA) to (VB). The repeating unit having a hydroxyl group may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式(V-A)中、R4A-1は水素原子またはメチル基を表し、R4A-2は直鎖または分岐状のアルキレン基を表す。アルキレン基の炭素数としては、1~10が好ましく、1~5がより好ましい。
 式(V-B)中、R4B-1は水素原子またはメチル基を表し、R4B-2は脂環式炭化水素基を表す。脂環式炭化水素基としては、アダマンチル基、ジアダマンチル基、または、ノルボルナン基から水素原子を一つ取り除いた基が好ましい。
In the formula (VA), R 4A-1 represents a hydrogen atom or a methyl group, and R 4A-2 represents a linear or branched alkylene group. The number of carbon atoms of the alkylene group is preferably 1 to 10, and more preferably 1 to 5.
In the formula (VB), R 4B-1 represents a hydrogen atom or a methyl group, and R 4B-2 represents an alicyclic hydrocarbon group. The alicyclic hydrocarbon group is preferably an adamantyl group, a diadamantyl group, or a group obtained by removing one hydrogen atom from a norbornane group.
 樹脂(A2)が水酸基を有する繰り返し単位を有する場合には、水酸基を有する繰り返し単位の含有量は、樹脂(A2)の全繰り返し単位100モル%に対して、1~50モル%であることが好ましく、1~30モル%であることがより好ましく、5~30モル%であることがさらに好ましい。水酸基を有する繰り返し単位の含有量が上記範囲内にあることで、平坦化膜の平坦性を良好な範囲に維持しつつ、平坦化膜の膨潤をより抑制できる。 When the resin (A2) has a repeating unit having a hydroxyl group, the content of the repeating unit having a hydroxyl group is 1 to 50 mol% with respect to 100 mol% of all the repeating units of the resin (A2). Preferably, it is 1 to 30 mol%, more preferably 5 to 30 mol%. When the content of the repeating unit having a hydroxyl group is within the above range, it is possible to further suppress swelling of the planarizing film while maintaining the planarity of the planarizing film in a favorable range.
 以下、一般式(V-A)~(V-B)で表される繰り返し単位の具体的な構造を例示するが、この限りではない。 Hereinafter, specific structures of the repeating units represented by the general formulas (VA) to (VB) are exemplified, but not limited thereto.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 樹脂(A2)は、上記以外の繰り返し単位をさらに有していてもよい。上記以外の繰り返し単位としては、樹脂(A2)の低Tg化という観点から、スチレンに基づく繰り返し単位が好ましく用いられる。スチレンに基づく繰り返し単位とは、具体的には、下記式(VI)で表される繰り返し単位である。 Resin (A2) may further have a repeating unit other than the above. As the repeating unit other than the above, a repeating unit based on styrene is preferably used from the viewpoint of lowering the Tg of the resin (A2). The repeating unit based on styrene is specifically a repeating unit represented by the following formula (VI).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 樹脂(A2)がスチレンに基づく繰り返し単位を有する場合には、スチレンに基づく繰り返し単位の含有量は、樹脂(A2)の全繰り返し単位100モル%に対して、1~50モル%であることが好ましく、1~30モル%であることがより好ましく、5~30モル%であることがさらに好ましい。スチレンに基づく繰り返し単位の含有量が上記範囲内にあることで、樹脂(A2)を低Tg化することができるため、平坦化膜の平坦性をより向上できる。 When the resin (A2) has a repeating unit based on styrene, the content of the repeating unit based on styrene is 1 to 50 mol% with respect to 100 mol% of all repeating units of the resin (A2). Preferably, it is 1 to 30 mol%, more preferably 5 to 30 mol%. Since the content of the repeating unit based on styrene is within the above range, the resin (A2) can have a low Tg, and thus the flatness of the flattened film can be further improved.
 樹脂(A2)の重量平均分子量(Mw)は、1500~25000であることが好ましく、1500~20000であることがより好ましい。
 分散度(Mw/Mn)は、1.0~3.0であることが好ましく、1.0~2.5であることがより好ましくは、1.0~2.0であることがさらに好ましい。
 樹脂(A2)の重量平均分子量(Mw)、数平均分子量(Mn)および分散度(Mw/Mn)は、GPC測定によるポリスチレン換算値を示し、樹脂(A1)と同様の方法により測定できる。
The weight average molecular weight (Mw) of the resin (A2) is preferably 1500 to 25000, and more preferably 1500 to 20000.
The dispersity (Mw / Mn) is preferably 1.0 to 3.0, more preferably 1.0 to 2.5, and still more preferably 1.0 to 2.0. .
The weight average molecular weight (Mw), number average molecular weight (Mn), and dispersity (Mw / Mn) of the resin (A2) are polystyrene-converted values by GPC measurement, and can be measured by the same method as the resin (A1).
 以下に、樹脂(A2)の具体例を示すが、これらに限定するものではない。 Specific examples of the resin (A2) will be shown below, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 本発明の平坦化膜形成用組成物は、2種以上の樹脂(A1)を含有してもよい。同様に、2種以上の樹脂(A2)を含有してもよく、樹脂(A1)および樹脂(A2)の両方を含有してもよい。 The planarization film-forming composition of the present invention may contain two or more kinds of resins (A1). Similarly, two or more kinds of resins (A2) may be contained, and both the resin (A1) and the resin (A2) may be contained.
<光酸発生剤(B)>
 本発明の組成物に含有される光酸発生剤(B)は、活性光線又は放射線の照射により酸を発生する化合物(以下、「化合物(B)」、「酸発生剤」、「酸発生剤(B)」または「光酸発生剤」とも言う)であれば特に制限されない。
 化合物(B)は、活性光線又は放射線の照射により有機酸を発生する化合物であることが好ましい。
<Photoacid generator (B)>
The photoacid generator (B) contained in the composition of the present invention is a compound that generates an acid upon irradiation with actinic rays or radiation (hereinafter, “compound (B)”, “acid generator”, “acid generator”). (B) "or" photo acid generator ") as long as it is not particularly limited.
The compound (B) is preferably a compound that generates an organic acid upon irradiation with actinic rays or radiation.
 化合物(B)は、低分子化合物の形態であってもよく、重合体の一部に組み込まれた形態であってもよい。また、低分子化合物の形態と重合体の一部に組み込まれた形態を併用してもよい。
 化合物(B)が、低分子化合物の形態である場合、分子量が3000以下であることが好ましく、2000以下であることがより好ましく、1000以下であることが更に好ましい。
 化合物(B)が、重合体の一部に組み込まれた形態である場合、前述した樹脂(A)の一部に組み込まれてもよく、樹脂(A)とは異なる樹脂に組み込まれてもよい。化合物(B)が、重合体の一部に組み込まれた形態である場合の具体例としては、例えば、特開2013-54196の段落0191~0209を挙げることができる。
The compound (B) may be in the form of a low molecular compound or may be in a form incorporated in a part of the polymer. Moreover, you may use together the form incorporated in a part of polymer and the form of a low molecular compound.
When the compound (B) is in the form of a low molecular compound, the molecular weight is preferably 3000 or less, more preferably 2000 or less, and even more preferably 1000 or less.
When the compound (B) is in a form incorporated in a part of the polymer, it may be incorporated in a part of the resin (A) described above or may be incorporated in a resin different from the resin (A). . Specific examples of the case where the compound (B) is incorporated in a part of the polymer include paragraphs 0191 to 0209 in JP2013-54196A.
 酸発生剤としては、光カチオン重合の光開始剤、光ラジカル重合の光開始剤、色素類の光消色剤、光変色剤、あるいはマイクロレジスト等に使用されている、活性光線又は放射線の照射により酸を発生する公知の化合物及びそれらの混合物を適宜に選択して使用することができる。
 例えば、酸発生剤としては、ジアゾニウム塩、ホスホニウム塩、スルホニウム塩、ヨードニウム塩、イミドスルホネート、オキシムスルホネート、ジアゾジスルホン、ジスルホン、o-ニトロベンジルスルホネートを挙げることができる。
As the acid generator, photo-initiator of photocation polymerization, photo-initiator of photo-radical polymerization, photo-decoloring agent of dyes, photo-discoloring agent, irradiation of actinic ray or radiation used for micro resist, etc. The known compounds that generate an acid and mixtures thereof can be appropriately selected and used.
For example, examples of the acid generator include diazonium salts, phosphonium salts, sulfonium salts, iodonium salts, imide sulfonates, oxime sulfonates, diazodisulfones, disulfones, and o-nitrobenzyl sulfonates.
 酸発生剤として、発生酸のpKaが-2以上である酸発生剤が好ましい。なかでも、形成される平坦化膜の平坦性により優れる良いう点で、pKaは-1.5以上が好ましく、-1以上がより好ましい。また、pKaの上限は特に制限されず、1以下が好ましい。
 pKa(酸強度)とは、酸の強さを定量的に表すための指標のひとつであり、酸性度定数と同義である。酸から水素イオンが放出される解離反応を考え、その平衡定数Kaをその負の常用対数pKaによって表したものである。pKaが小さいほど強い酸であることを示す。本発明では、下記ソフトウェアパッケージ1を用いた計算により算出される。
 ソフトウェアパッケージ1: Advanced Chemistry Development (ACD/Labs) Software V8.14 for Solaris (1994-2007 ACD/Labs)。
As the acid generator, an acid generator having a pKa of the generated acid of −2 or more is preferable. Among these, pKa is preferably −1.5 or more, more preferably −1 or more, from the viewpoint that it is excellent in the flatness of the formed flattening film. Moreover, the upper limit of pKa is not particularly limited, and is preferably 1 or less.
pKa (acid strength) is one of the indexes for quantitatively expressing the strength of acid, and is synonymous with an acidity constant. Considering a dissociation reaction in which hydrogen ions are released from an acid, its equilibrium constant Ka is expressed by its negative common logarithm pKa. A smaller pKa indicates a stronger acid. In the present invention, the calculation is performed by calculation using the following software package 1.
Software package 1: Advanced Chemistry Development (ACD / Labs) Software V8.14 for Solaris (1994-2007 ACD / Labs).
 酸発生剤の中で好ましい化合物として、下記一般式(ZI)、(ZII)、(ZIII)で表される化合物を挙げることができる。 Preferred compounds among the acid generators include compounds represented by the following general formulas (ZI), (ZII), and (ZIII).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 上記一般式(ZI)において、
 R201、R202及びR203は、各々独立に、有機基を表す。
 R201、R202及びR203としての有機基の炭素数は、一般的に1~30、好ましくは1~20である。
 また、R201~R203のうち2つが結合して環構造を形成してもよく、環内に酸素原子、硫黄原子、エステル結合、アミド結合、カルボニル基を含んでいてもよい。R201~R203の内の2つが結合して形成する基としては、アルキレン基(例えば、ブチレン基、ペンチレン基)を挙げることができる。
 Zは、非求核性アニオンを表す。
 Zとしての非求核性アニオンとしては、例えば、スルホン酸アニオン、カルボン酸アニオン、スルホニルイミドアニオン、ビス(アルキルスルホニル)イミドアニオン、トリス(アルキルスルホニル)メチルアニオン等を挙げることができる。
In the general formula (ZI),
R 201 , R 202 and R 203 each independently represents an organic group.
The organic group as R 201 , R 202 and R 203 generally has 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms.
Two of R 201 to R 203 may be bonded to form a ring structure, and the ring may contain an oxygen atom, a sulfur atom, an ester bond, an amide bond, or a carbonyl group. Examples of the group formed by combining two members out of R 201 to R 203 include an alkylene group (eg, butylene group, pentylene group).
Z represents a non-nucleophilic anion.
Examples of the non-nucleophilic anion as Z include a sulfonate anion, a carboxylate anion, a sulfonylimide anion, a bis (alkylsulfonyl) imide anion, and a tris (alkylsulfonyl) methyl anion.
 「非求核性アニオン」とは、求核反応を起こす能力が著しく低いアニオンであり、分子内求核反応による経時分解を抑制することができるアニオンである。これにより組成物の経時安定性が向上する。
 スルホン酸アニオンとしては、例えば、脂肪族スルホン酸アニオン、芳香族スルホン酸アニオン、カンファースルホン酸アニオンなどが挙げられる。
 カルボン酸アニオンとしては、例えば、脂肪族カルボン酸アニオン、芳香族カルボン酸アニオン、アラルキルカルボン酸アニオンなどが挙げられる。
The “non-nucleophilic anion” is an anion having an extremely low ability to cause a nucleophilic reaction, and an anion capable of suppressing degradation with time due to an intramolecular nucleophilic reaction. Thereby, the temporal stability of the composition is improved.
Examples of the sulfonate anion include an aliphatic sulfonate anion, an aromatic sulfonate anion, and a camphor sulfonate anion.
Examples of the carboxylate anion include an aliphatic carboxylate anion, an aromatic carboxylate anion, and an aralkylcarboxylate anion.
 脂肪族スルホン酸アニオン及び脂肪族カルボン酸アニオンにおける脂肪族部位は、アルキル基であってもシクロアルキル基であってもよく、好ましくは炭素数1~30のアルキル基及び炭素数3~30のシクロアルキル基が挙げられる。芳香族スルホン酸アニオン及び芳香族カルボン酸アニオンにおける芳香族基としては、好ましくは炭素数6~14のアリール基、例えば、フェニル基、トリル基、ナフチル基等を挙げることができる。
 脂肪族スルホン酸アニオン及び芳香族スルホン酸アニオンにおけるアルキル基、シクロアルキル基及びアリール基は、置換基を有していてもよい。
 その他の非求核性アニオンとしては、例えば、フッ素化燐(例えば、PF )、フッ素化硼素(例えば、BF )、フッ素化アンチモン等(例えば、SbF )を挙げることができる。
The aliphatic moiety in the aliphatic sulfonate anion and the aliphatic carboxylate anion may be an alkyl group or a cycloalkyl group, preferably an alkyl group having 1 to 30 carbon atoms and a cycloalkyl group having 3 to 30 carbon atoms. An alkyl group is mentioned. The aromatic group in the aromatic sulfonate anion and aromatic carboxylate anion is preferably an aryl group having 6 to 14 carbon atoms, such as a phenyl group, a tolyl group, and a naphthyl group.
The alkyl group, cycloalkyl group and aryl group in the aliphatic sulfonate anion and aromatic sulfonate anion may have a substituent.
Examples of other non-nucleophilic anions include fluorinated phosphorus (for example, PF 6 ), fluorinated boron (for example, BF 4 ), fluorinated antimony and the like (for example, SbF 6 ). .
 Zの非求核性アニオンとしては、スルホン酸の少なくともα位がフッ素原子で置換された脂肪族スルホン酸アニオン、フッ素原子又はフッ素原子を有する基で置換された芳香族スルホン酸アニオン、アルキル基がフッ素原子で置換されたビス(アルキルスルホニル)イミドアニオン、アルキル基がフッ素原子で置換されたトリス(アルキルスルホニル)メチドアニオンが好ましい。非求核性アニオンとして、より好ましくは炭素数4~8のパーフロロ脂肪族スルホン酸アニオン、フッ素原子を有するベンゼンスルホン酸アニオン、更により好ましくはノナフロロブタンスルホン酸アニオン、パーフロロオクタンスルホン酸アニオン、ペンタフロロベンゼンスルホン酸アニオン、3,5-ビス(トリフロロメチル)ベンゼンスルホン酸アニオンである。 Examples of the non-nucleophilic anion of Z include an aliphatic sulfonate anion in which at least α position of the sulfonic acid is substituted with a fluorine atom, an aromatic sulfonate anion substituted with a fluorine atom or a group having a fluorine atom, an alkyl group Is preferably a bis (alkylsulfonyl) imide anion substituted with a fluorine atom, or a tris (alkylsulfonyl) methide anion wherein an alkyl group is substituted with a fluorine atom. The non-nucleophilic anion is more preferably a perfluoroaliphatic sulfonate anion having 4 to 8 carbon atoms, a benzenesulfonate anion having a fluorine atom, still more preferably a nonafluorobutanesulfonate anion, a perfluorooctanesulfonate anion, Pentafluorobenzenesulfonate anion, 3,5-bis (trifluoromethyl) benzenesulfonate anion.
 Zの非求核性アニオンは、一般式(2)で表されることが好ましい。この場合、発生酸の体積が大きく、酸の拡散が抑制される。 The non-nucleophilic anion of Z is preferably represented by the general formula (2). In this case, the volume of the generated acid is large and acid diffusion is suppressed.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 一般式(2)中、
 Xfは、各々独立に、フッ素原子、又は少なくとも一つのフッ素原子で置換されたアルキル基を表す。
 R及びRは、各々独立に、水素原子、フッ素原子、アルキル基、又は、少なくとも一つのフッ素原子で置換されたアルキル基を表し、複数存在する場合のR及びRは、それぞれ同一でも異なっていてもよい。
 Lは、2価の連結基を表し、複数存在する場合のLは同一でも異なっていてもよい。
 Aは、環状構造を含む有機基を表す。
 xは、1~20の整数を表し、yは、0~10の整数を表す。zは、0~10の整数を表す。
In general formula (2),
Xf each independently represents a fluorine atom or an alkyl group substituted with at least one fluorine atom.
R 7 and R 8 each independently represent a hydrogen atom, a fluorine atom, an alkyl group, or an alkyl group substituted with at least one fluorine atom, and when there are a plurality of R 7 and R 8 , R 7 and R 8 are the same But it can be different.
L represents a divalent linking group, and when there are a plurality of L, L may be the same or different.
A represents an organic group containing a cyclic structure.
x represents an integer of 1 to 20, and y represents an integer of 0 to 10. z represents an integer of 0 to 10.
 一般式(2)のアニオンについて、更に詳しく説明する。 The anion of the general formula (2) will be described in more detail.
 Xfは、上記の通り、フッ素原子、又は少なくとも1つのフッ素原子で置換されたアルキル基であり、フッ素原子で置換されたアルキル基におけるアルキル基としては、炭素数1~10のアルキル基が好ましく、炭素数1~4のアルキル基がより好ましい。また、Xfのフッ素原子で置換されたアルキル基は、パーフルオロアルキル基であることが好ましい。
 Xfとして、好ましくは、フッ素原子又は炭素数1~4のパーフルオロアルキル基である。具体的には、フッ素原子、CF、C、C、C、C11、C13、C15、C17、CHCF、CHCHCF、CH、CHCH、CH、CHCH、CHおよびCHCHが挙げられ、中でもフッ素原子、CFが好ましい。特に、双方のXfがフッ素原子であることが好ましい。
Xf is a fluorine atom or an alkyl group substituted with at least one fluorine atom as described above, and the alkyl group in the alkyl group substituted with a fluorine atom is preferably an alkyl group having 1 to 10 carbon atoms, An alkyl group having 1 to 4 carbon atoms is more preferable. The alkyl group substituted with a fluorine atom of Xf is preferably a perfluoroalkyl group.
Xf is preferably a fluorine atom or a perfluoroalkyl group having 1 to 4 carbon atoms. Specifically, fluorine atom, CF 3 , C 2 F 5 , C 3 F 7 , C 4 F 9 , C 5 F 11 , C 6 F 13 , C 7 F 15 , C 8 F 17 , CH 2 CF 3 , CH 2 CH 2 CF 3, CH 2 C 2 F 5, CH 2 CH 2 C 2 F 5, CH 2 C 3 F 7, CH 2 CH 2 C 3 F 7, CH 2 C 4 F 9 and CH 2 CH 2 C 4 F 9 is mentioned, among which fluorine atom and CF 3 are preferable. In particular, it is preferable that both Xf are fluorine atoms.
 R及びRは、上記の通り、水素原子、フッ素原子、アルキル基、又は、少なくとも一つのフッ素原子で置換されたアルキル基を表す。アルキル基は、炭素数1~4のものが好ましい。更に好ましくは炭素数1~4のパーフルオロアルキル基である。R及びRの少なくとも一つのフッ素原子で置換されたアルキル基の具体例としては、CF、C、C、C、C11、C13、C15、C17、CHCF、CHCHCF、CH、CHCH、CH、CHCH、CH、および、CHCHが挙げられ、中でもCFが好ましい。 R 7 and R 8 represent a hydrogen atom, a fluorine atom, an alkyl group, or an alkyl group substituted with at least one fluorine atom as described above. The alkyl group preferably has 1 to 4 carbon atoms. More preferred is a perfluoroalkyl group having 1 to 4 carbon atoms. Specific examples of the alkyl group substituted with at least one fluorine atom of R 7 and R 8 include CF 3 , C 2 F 5 , C 3 F 7 , C 4 F 9 , C 5 F 11 , and C 6 F 13. , C 7 F 15 , C 8 F 17 , CH 2 CF 3 , CH 2 CH 2 CF 3 , CH 2 C 2 F 5 , CH 2 CH 2 C 2 F 5 , CH 2 C 3 F 7 , CH 2 CH 2 Examples thereof include C 3 F 7 , CH 2 C 4 F 9 , and CH 2 CH 2 C 4 F 9 , among which CF 3 is preferable.
 Lは、2価の連結基を表し、-COO-、-OCO-、-CO-、-O-、-S-、-SO-、-SO-、-N(Ri)-(式中、Riは水素原子又はアルキル基を表す)、アルキレン基(好ましくは炭素数1~6のアルキレン基、より好ましくは炭素数1~4のアルキレン基、特に好ましくはメチレン基又はエチレン基、最も好ましくはメチレン基)、シクロアルキレン基(好ましくは炭素数3~10)、アルケニレン基(好ましくは炭素数2~6)又はこれらの複数を組み合わせた2価の連結基などが挙げられ、-COO-、-OCO-、-CO-、-SO-、-CON(Ri)-、-SON(Ri)-、-CON(Ri)-アルキレン基-、-N(Ri)CO-アルキレン基-、-COO-アルキレン基-又は-OCO-アルキレン基-であることが好ましく、-SO-、-COO-、-OCO-、-COO-アルキレン基-、-OCO-アルキレン基-であることがより好ましい。-CON(Ri)-アルキレン基-、-N(Ri)CO-アルキレン基-、-COO-アルキレン基-、および、-OCO-アルキレン基-におけるアルキレン基としては、炭素数1~20のアルキレン基が好ましく、炭素数1~10のアルキレン基がより好ましい。複数存在する場合のLは同一でも異なっていてもよい。
 Riについてのアルキル基は、炭素数1~10のアルキル基が好ましく、炭素数1~4のアルキル基がより好ましく、例えば、メチル基、エチル基、プロピル基、n-ブチル基、sec-ブチル基、t-ブチル基等が挙げられる。
L represents a divalent linking group, and represents —COO—, —OCO—, —CO—, —O—, —S—, —SO—, —SO 2 —, —N (Ri) — (wherein Ri represents a hydrogen atom or an alkyl group), an alkylene group (preferably an alkylene group having 1 to 6 carbon atoms, more preferably an alkylene group having 1 to 4 carbon atoms, particularly preferably a methylene group or an ethylene group, most preferably methylene group). Group), a cycloalkylene group (preferably having 3 to 10 carbon atoms), an alkenylene group (preferably having 2 to 6 carbon atoms), or a divalent linking group in which a plurality of these are combined. -, -CO-, -SO 2- , -CON (Ri)-, -SO 2 N (Ri)-, -CON (Ri) -alkylene group-, -N (Ri) CO-alkylene group-, -COO -Alkylene group- or -OCO-a It is preferably, -SO 2 - - Killen group, - COO -, - OCO -, - COO- alkylene group -, - more preferably - OCO- alkylene group. The alkylene group in -CON (Ri) -alkylene group-, -N (Ri) CO-alkylene group-, -COO-alkylene group-, and -OCO-alkylene group- is an alkylene group having 1 to 20 carbon atoms. And an alkylene group having 1 to 10 carbon atoms is more preferable. When there are a plurality of L, they may be the same or different.
The alkyl group for Ri is preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 4 carbon atoms, such as a methyl group, an ethyl group, a propyl group, an n-butyl group, a sec-butyl group. , T-butyl group and the like.
 Aの環状構造を含む有機基としては、環状構造を有するものであれば特に限定されず、脂環基、アリール基、複素環基(芳香族性を有するものだけでなく、芳香族性を有さないものも含み、例えば、テトラヒドロピラン環、ラクトン環構造、スルトン環構造も含む。)等が挙げられる。
 脂環基としては、単環でも多環でもよく、シクロペンチル基、シクロヘキシル基およびシクロオクチル基などの単環のシクロアルキル基、ならびに、ノルボルニル基、ノルボルネン-イル基、トリシクロデカニル基(例えば、トリシクロ[5.2.1.0(2,6)]デカニル基)、テトラシクロデカニル基、テトラシクロドデカニル基およびアダマンチル基などの多環のシクロアルキル基が好ましく、アダマンチル基が特に好ましい。また、ピペリジン基、デカヒドロキノリン基、および、デカヒドロイソキノリン基等の窒素原子含有脂環基も好ましい。中でも、ノルボルニル基、トリシクロデカニル基、テトラシクロデカニル基、テトラシクロドデカニル基、アダマンチル基、デカヒドロキノリン基およびデカヒドロイソキノリン基といった炭素数7以上のかさ高い構造を有する脂環基が、PEB(露光後加熱)工程での膜中拡散性を抑制できる点から好ましい。中でも、アダマンチル基、および、デカヒドロイソキノリン基が特に好ましい。
 アリール基としては、ベンゼン環、ナフタレン環、フェナンスレン環、および、アントラセン環が挙げられる。中でも193nmにおける光吸光度の観点から低吸光度のナフタレン環が好ましい。
 複素環基としては、フラン環、チオフェン環、ベンゾフラン環、ベンゾチオフェン環、ジベンゾフラン環、ジベンゾチオフェン環、および、ピリジン環が挙げられる。中でもフラン環、チオフェン環、および、ピリジン環が好ましい。その他の好ましい複素環基として、下記に示す構造を挙げることができる(式中、Xはメチレン基又は酸素原子を表し、Rは1価の有機基を表す)。
The organic group containing the cyclic structure of A is not particularly limited as long as it has a cyclic structure, and is not limited to alicyclic groups, aryl groups, and heterocyclic groups (not only those having aromaticity but also aromaticity). For example, a tetrahydropyran ring, a lactone ring structure, and a sultone ring structure are also included.
The alicyclic group may be monocyclic or polycyclic, and may be a monocyclic cycloalkyl group such as a cyclopentyl group, a cyclohexyl group, or a cyclooctyl group, and a norbornyl group, a norbornene-yl group, or a tricyclodecanyl group (for example, A tricyclo [5.2.1.0 (2,6) ] decanyl group), a tetracyclodecanyl group, a tetracyclododecanyl group, and an adamantyl group are preferred, and an adamantyl group is particularly preferred. Moreover, nitrogen atom containing alicyclic groups, such as a piperidine group, a decahydroquinoline group, and a decahydroisoquinoline group, are also preferable. Among them, alicyclic groups having a bulky structure of 7 or more carbon atoms such as norbornyl group, tricyclodecanyl group, tetracyclodecanyl group, tetracyclododecanyl group, adamantyl group, decahydroquinoline group and decahydroisoquinoline group are included. , PEB (post-exposure heating) is preferable from the viewpoint of suppressing diffusibility in the film. Of these, an adamantyl group and a decahydroisoquinoline group are particularly preferable.
Examples of the aryl group include a benzene ring, a naphthalene ring, a phenanthrene ring, and an anthracene ring. Among these, a naphthalene ring having a low absorbance is preferable from the viewpoint of light absorbance at 193 nm.
Examples of the heterocyclic group include a furan ring, a thiophene ring, a benzofuran ring, a benzothiophene ring, a dibenzofuran ring, a dibenzothiophene ring, and a pyridine ring. Of these, a furan ring, a thiophene ring, and a pyridine ring are preferable. Other preferred heterocyclic groups include the structures shown below (wherein X represents a methylene group or an oxygen atom, and R represents a monovalent organic group).
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 上記環状構造を含む有機基は、置換基を有していてもよく、置換基としては、アルキル基(直鎖、分岐、環状のいずれであっても良く、炭素数1~12が好ましい)、アリール基(炭素数6~14が好ましい)、ヒドロキシ基、アルコキシ基、エステル基、アミド基、ウレタン基、ウレイド基、チオエーテル基、スルホンアミド基、および、スルホン酸エステル基等が挙げられる。
 なお、環状構造を含む有機基を構成する炭素(環形成に寄与する炭素)はカルボニル炭素であっても良い。
The organic group containing the cyclic structure may have a substituent, and the substituent may be an alkyl group (which may be linear, branched or cyclic, preferably having 1 to 12 carbon atoms), Examples thereof include aryl groups (preferably having 6 to 14 carbon atoms), hydroxy groups, alkoxy groups, ester groups, amide groups, urethane groups, ureido groups, thioether groups, sulfonamido groups, and sulfonic acid ester groups.
Note that the carbon constituting the organic group containing a cyclic structure (carbon contributing to ring formation) may be a carbonyl carbon.
 xは1~8が好ましく、1~4がより好ましく、1が特に好ましい。yは0~4が好ましく、0又は1がより好ましく、1が更に好ましい。zは0~8が好ましく、0~4がより好ましく、1が更に好ましい。 X is preferably 1 to 8, more preferably 1 to 4, and particularly preferably 1. y is preferably 0 to 4, more preferably 0 or 1, and still more preferably 1. z is preferably 0 to 8, more preferably 0 to 4, and still more preferably 1.
 上記一般式(2)中のアニオンにおいて、A以外の部分構造の組み合わせとして、SO -CF-CH-OCO-、SO -CF-CHF-CH-OCO-、SO -CF-COO-、SO -CF-CF-CH-、および、SO -CF-CH(CF)-OCO-が好ましいものとして挙げられる。 In the anion in the general formula (2), as a combination of partial structures other than A, SO 3 - -CF 2 -CH 2 -OCO-, SO 3 - -CF 2 -CHF-CH 2 -OCO-, SO 3 - -CF 2 -COO-, SO 3 - -CF 2 -CF 2 -CH 2 -, and, SO 3 - -CF 2 -CH ( CF 3) -OCO- are mentioned as preferred.
 また、本発明の他の態様において、Zの非求核性アニオンは、ジスルホニルイミド酸アニオンであってもよい。
 ジスルホニルイミド酸アニオンとしては、ビス(アルキルスルホニル)イミドアニオンであることが好ましい。
 ビス(アルキルスルホニル)イミドアニオンにおけるアルキル基は、炭素数1~5のアルキル基が好ましい。
 ビス(アルキルスルホニル)イミドアニオンにおける2つのアルキル基が互いに連結してアルキレン基(好ましくは炭素数2~4)を成し、イミド基及び2つのスルホニル基とともに環を形成していてもよい。ビス(アルキルスルホニル)イミドアニオンが形成していてもよい上記の環構造としては、5~7員環であることが好ましく、6員環であることがより好ましい。
 これらのアルキル基、及び2つのアルキル基が互いに連結して成すアルキレン基が有し得る置換基としてはハロゲン原子、ハロゲン原子で置換されたアルキル基、アルコキシ基、アルキルチオ基、アルキルオキシスルホニル基、アリールオキシスルホニル基、および、シクロアルキルアリールオキシスルホニル基等を挙げることができ、フッ素原子又はフッ素原子で置換されたアルキル基が好ましい。
Further, in another aspect of the present invention, Z - is a non-nucleophilic anion, and may be a di-imide anion.
The disulfonylimidoanion is preferably a bis (alkylsulfonyl) imide anion.
The alkyl group in the bis (alkylsulfonyl) imide anion is preferably an alkyl group having 1 to 5 carbon atoms.
Two alkyl groups in the bis (alkylsulfonyl) imide anion may be linked to each other to form an alkylene group (preferably having 2 to 4 carbon atoms) and form a ring together with the imide group and the two sulfonyl groups. The ring structure that may be formed by the bis (alkylsulfonyl) imide anion is preferably a 5- to 7-membered ring, and more preferably a 6-membered ring.
These alkyl groups and alkylene groups formed by connecting two alkyl groups to each other can have a halogen atom, an alkyl group substituted with a halogen atom, an alkoxy group, an alkylthio group, an alkyloxysulfonyl group, an aryl Examples thereof include an oxysulfonyl group and a cycloalkylaryloxysulfonyl group, and a fluorine atom or an alkyl group substituted with a fluorine atom is preferable.
 Zの非求核性アニオンは、(アニオン中に含まれる全フッ素原子の質量の合計)/(アニオン中に含まれる全原子の質量の合計)により表されるフッ素含有率が0.25以下であることが好ましく、0.20以下であることがより好ましく、0.15以下であることが更に好ましい。 The non-nucleophilic anion of Z has a fluorine content represented by (total mass of all fluorine atoms contained in the anion) / (total mass of all atoms contained in the anion) of 0.25 or less. Is preferably 0.20 or less, and more preferably 0.15 or less.
 R201、R202及びR203により表される有機基としては、例えば、後述する化合物(ZI-1)、(ZI-2)、(ZI-3)及び(ZI-4)における対応する基を挙げることができる。
 なお、一般式(ZI)で表される構造を複数有する化合物であってもよい。例えば、一般式(ZI)で表される化合物のR201~R203の少なくとも1つが、一般式(ZI)で表されるもうひとつの化合物のR201~R203の少なくとも一つと、単結合又は連結基を介して結合した構造を有する化合物であってもよい。
Examples of the organic group represented by R 201 , R 202 and R 203 include the corresponding groups in the compounds (ZI-1), (ZI-2), (ZI-3) and (ZI-4) described later. Can be mentioned.
In addition, the compound which has two or more structures represented by general formula (ZI) may be sufficient. For example, at least one of R 201 to R 203 of the compound represented by the general formula (ZI) is a single bond or at least one of R 201 to R 203 of the other compound represented by the general formula (ZI). It may be a compound having a structure bonded through a linking group.
 更に好ましい(ZI)成分として、以下に説明する化合物(ZI-1)、(ZI-2)、(ZI-3)及び(ZI-4)を挙げることができる。 More preferred (ZI) components include compounds (ZI-1), (ZI-2), (ZI-3) and (ZI-4) described below.
 先ず、化合物(ZI-1)について説明する。
 化合物(ZI-1)は、上記一般式(ZI)のR201~R203の少なくとも1つがアリール基である、アリールスルホニウム化合物、即ち、アリールスルホニウムをカチオンとする化合物である。
 アリールスルホニウム化合物は、R201~R203の全てがアリール基でもよいし、R201~R203の一部がアリール基で、残りがアルキル基又はシクロアルキル基でもよい。
 アリールスルホニウム化合物としては、例えば、トリアリールスルホニウム化合物、ジアリールアルキルスルホニウム化合物、アリールジアルキルスルホニウム化合物、ジアリールシクロアルキルスルホニウム化合物、および、アリールジシクロアルキルスルホニウム化合物を挙げることができる。
First, the compound (ZI-1) will be described.
The compound (ZI-1) is at least one of aryl group R 201 ~ R 203 of formula (ZI), arylsulfonium compounds, namely, compounds containing an arylsulfonium as a cation.
In the arylsulfonium compound, all of R 201 to R 203 may be an aryl group, or a part of R 201 to R 203 may be an aryl group and the rest may be an alkyl group or a cycloalkyl group.
Examples of the arylsulfonium compound include triarylsulfonium compounds, diarylalkylsulfonium compounds, aryldialkylsulfonium compounds, diarylcycloalkylsulfonium compounds, and aryldicycloalkylsulfonium compounds.
 アリールスルホニウム化合物のアリール基としてはフェニル基、ナフチル基が好ましく、更に好ましくはフェニル基である。アリール基は、酸素原子、窒素原子、硫黄原子等を有する複素環構造を有するアリール基であってもよい。複素環構造としては、ピロール残基、フラン残基、チオフェン残基、インドール残基、ベンゾフラン残基、および、ベンゾチオフェン残基等が挙げられる。アリールスルホニウム化合物が2つ以上のアリール基を有する場合に、2つ以上あるアリール基は同一であっても異なっていてもよい。
 アリールスルホニウム化合物が必要に応じて有しているアルキル基又はシクロアルキル基は、炭素数1~15の直鎖又は分岐アルキル基及び炭素数3~15のシクロアルキル基が好ましく、例えば、メチル基、エチル基、プロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、シクロプロピル基、シクロブチル基、および、シクロヘキシル基等を挙げることができる。
The aryl group of the arylsulfonium compound is preferably a phenyl group or a naphthyl group, and more preferably a phenyl group. The aryl group may be an aryl group having a heterocyclic structure having an oxygen atom, a nitrogen atom, a sulfur atom or the like. Examples of the heterocyclic structure include a pyrrole residue, a furan residue, a thiophene residue, an indole residue, a benzofuran residue, and a benzothiophene residue. When the arylsulfonium compound has two or more aryl groups, the two or more aryl groups may be the same or different.
The alkyl group or cycloalkyl group optionally possessed by the arylsulfonium compound is preferably a linear or branched alkyl group having 1 to 15 carbon atoms and a cycloalkyl group having 3 to 15 carbon atoms, such as a methyl group, Examples thereof include an ethyl group, a propyl group, an n-butyl group, a sec-butyl group, a t-butyl group, a cyclopropyl group, a cyclobutyl group, and a cyclohexyl group.
 R201~R203のアリール基、アルキル基、および、シクロアルキル基は、アルキル基(例えば炭素数1~15)、シクロアルキル基(例えば炭素数3~15)、アリール基(例えば炭素数6~14)、アルコキシ基(例えば炭素数1~15)、ハロゲン原子、水酸基、および、フェニルチオ基からなる群より選択される少なくとも1種を置換基として有してもよい。 The aryl group, alkyl group, and cycloalkyl group of R 201 to R 203 are an alkyl group (eg, having 1 to 15 carbon atoms), a cycloalkyl group (eg, having 3 to 15 carbon atoms), an aryl group (eg, having 6 to 6 carbon atoms). 14) may have at least one selected from the group consisting of an alkoxy group (for example, having 1 to 15 carbon atoms), a halogen atom, a hydroxyl group, and a phenylthio group as a substituent.
 次に、化合物(ZI-2)について説明する。
 化合物(ZI-2)は、式(ZI)におけるR201~R203が、各々独立に、芳香環を有さない有機基を表す化合物である。ここで芳香環とは、ヘテロ原子を含有する芳香族環も包含する。
 R201~R203としての芳香環を含有しない有機基は、一般的に炭素数1~30、好ましくは炭素数1~20である。
 R201~R203は、各々独立に、好ましくはアルキル基、シクロアルキル基、アリル基、または、ビニル基であり、更に好ましくは直鎖又は分岐の2-オキソアルキル基、2-オキソシクロアルキル基、または、アルコキシカルボニルメチル基、特に好ましくは直鎖又は分岐の2-オキソアルキル基である。
Next, the compound (ZI-2) will be described.
Compound (ZI-2) is a compound in which R 201 to R 203 in formula (ZI) each independently represents an organic group having no aromatic ring. Here, the aromatic ring includes an aromatic ring containing a hetero atom.
The organic group containing no aromatic ring as R 201 to R 203 generally has 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms.
R 201 to R 203 are each independently preferably an alkyl group, a cycloalkyl group, an allyl group, or a vinyl group, more preferably a linear or branched 2-oxoalkyl group or 2-oxocycloalkyl group. Or an alkoxycarbonylmethyl group, particularly preferably a linear or branched 2-oxoalkyl group.
 R201~R203のアルキル基及びシクロアルキル基としては、好ましくは、炭素数1~10の直鎖又は分岐アルキル基(例えば、メチル基、エチル基、プロピル基、ブチル基およびペンチル基)、および、炭素数3~10のシクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基およびノルボニル基)を挙げることができる。
 R201~R203は、ハロゲン原子、アルコキシ基(例えば炭素数1~5)、水酸基、シアノ基およびニトロ基からなる群より選択される少なくとも1種によって更に置換されていてもよい。
The alkyl group and cycloalkyl group represented by R 201 to R 203 are preferably a linear or branched alkyl group having 1 to 10 carbon atoms (for example, a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group), and And a cycloalkyl group having 3 to 10 carbon atoms (for example, a cyclopentyl group, a cyclohexyl group, and a norbornyl group).
R 201 to R 203 may be further substituted with at least one selected from the group consisting of a halogen atom, an alkoxy group (eg, having 1 to 5 carbon atoms), a hydroxyl group, a cyano group, and a nitro group.
 次に、化合物(ZI-3)について説明する。
 化合物(ZI-3)とは、以下の一般式(ZI-3)で表される化合物であり、フェナシルスルフォニウム塩構造を有する化合物である。
Next, the compound (ZI-3) will be described.
The compound (ZI-3) is a compound represented by the following general formula (ZI-3), which is a compound having a phenacylsulfonium salt structure.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 一般式(ZI-3)中、
 R1c~R5cは、各々独立に、水素原子、アルキル基、シクロアルキル基、アリール基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アルキルカルボニルオキシ基、シクロアルキルカルボニルオキシ基、ハロゲン原子、水酸基、ニトロ基、アルキルチオ基又はアリールチオ基を表す。
 R6c及びR7cは、各々独立に、水素原子、アルキル基、シクロアルキル基、ハロゲン原子、シアノ基又はアリール基を表す。
 R及びRは、各々独立に、アルキル基、シクロアルキル基、2-オキソアルキル基、2-オキソシクロアルキル基、アルコキシカルボニルアルキル基、アリル基又はビニル基を表す。
In general formula (ZI-3),
R 1c to R 5c are each independently a hydrogen atom, alkyl group, cycloalkyl group, aryl group, alkoxy group, aryloxy group, alkoxycarbonyl group, alkylcarbonyloxy group, cycloalkylcarbonyloxy group, halogen atom, hydroxyl group Represents a nitro group, an alkylthio group or an arylthio group.
R 6c and R 7c each independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, a halogen atom, a cyano group or an aryl group.
R x and R y each independently represents an alkyl group, a cycloalkyl group, a 2-oxoalkyl group, a 2-oxocycloalkyl group, an alkoxycarbonylalkyl group, an allyl group, or a vinyl group.
 R1c~R5c中のいずれか2つ以上、R5cとR6c、R6cとR7c、R5cとR、及びRとRは、各々結合して環構造を形成してもよく、この環構造は、酸素原子、硫黄原子、ケトン基、エステル結合およびアミド結合からなる群より選択される少なくとも1種を含んでいてもよい。
 上記環構造としては、芳香族若しくは非芳香族の炭化水素環、芳香族若しくは非芳香族の複素環、又は、これらの環が2つ以上組み合わされてなる多環縮合環を挙げることができる。環構造としては、3~10員環を挙げることができ、4~8員環であることが好ましく、5又は6員環であることがより好ましい。
Any two or more of R 1c to R 5c , R 5c and R 6c , R 6c and R 7c , R 5c and R x , and R x and R y may be bonded to form a ring structure. In addition, this ring structure may contain at least one selected from the group consisting of an oxygen atom, a sulfur atom, a ketone group, an ester bond and an amide bond.
Examples of the ring structure include an aromatic or non-aromatic hydrocarbon ring, an aromatic or non-aromatic heterocycle, or a polycyclic fused ring formed by combining two or more of these rings. Examples of the ring structure include 3- to 10-membered rings, preferably 4- to 8-membered rings, more preferably 5- or 6-membered rings.
 R1c~R5c中のいずれか2つ以上、R6cとR7c、及びRとRが結合して形成する基としては、ブチレン基、ペンチレン基等を挙げることができる。
 R5cとR6c、及び、R5cとRが結合して形成する基としては、単結合又はアルキレン基であることが好ましく、アルキレン基としては、メチレン基、エチレン基等を挙げることができる。
 Z は、非求核性アニオンを表し、一般式(ZI)に於けるZと同様の非求核性アニオンを挙げることができる。
Examples of the group formed by combining any two or more of R 1c to R 5c , R 6c and R 7c , and R x and R y include a butylene group and a pentylene group.
The group formed by combining R 5c and R 6c and R 5c and R x is preferably a single bond or an alkylene group, and examples of the alkylene group include a methylene group and an ethylene group. .
Z c - represents a non-nucleophilic anion, in the general formula (ZI) Z - and include the same non-nucleophilic anion.
 R1c~R5cとしてのアルキル基は、直鎖又は分岐のいずれであってもよく、例えば炭素数1~20のアルキル基、好ましくは炭素数1~12の直鎖又は分岐アルキル基を挙げることができる。
 R1c~R5cとしてのシクロアルキル基は、例えば炭素数3~10のシクロアルキル基を挙げることができる。
 R1c~R5cとしてのアルコキシ基は、直鎖、分岐、環状のいずれであってもよく、例えば炭素数1~10のアルコキシ基、好ましくは炭素数1~5の直鎖又は分岐アルコキシ基、及び、炭素数3~10の環状アルコキシ基を挙げることができる。
 R1c~R5cとしてのアリール基は、好ましくは炭素数5~15のアリール基である。
 R1c~R5cとしてのアルコキシカルボニル基におけるアルコキシ基の具体例は、上記R1c~R5cとしてのアルコキシ基の具体例と同様である。
 R1c~R5cとしてのアルキルカルボニルオキシ基及びアルキルチオ基におけるアルキル基の具体例は、上記R1c~R5cとしてのアルキル基の具体例と同様である。
 R1c~R5cとしてのシクロアルキルカルボニルオキシ基におけるシクロアルキル基の具体例は、上記R1c~R5cとしてのシクロアルキル基の具体例と同様である。
 R1c~R5cとしてのアリールオキシ基及びアリールチオ基におけるアリール基の具体例は、上記R1c~R5cとしてのアリール基の具体例と同様である。
The alkyl group as R 1c to R 5c may be either linear or branched, and examples thereof include an alkyl group having 1 to 20 carbon atoms, preferably a linear or branched alkyl group having 1 to 12 carbon atoms. Can do.
Examples of the cycloalkyl group as R 1c to R 5c include cycloalkyl groups having 3 to 10 carbon atoms.
The alkoxy group as R 1c to R 5c may be linear, branched or cyclic, for example, an alkoxy group having 1 to 10 carbon atoms, preferably a linear or branched alkoxy group having 1 to 5 carbon atoms, And a cyclic alkoxy group having 3 to 10 carbon atoms.
The aryl group as R 1c to R 5c is preferably an aryl group having 5 to 15 carbon atoms.
Specific examples of the alkoxy group in the alkoxycarbonyl group as R 1c ~ R 5c are the same as specific examples of the alkoxy group as the R 1c ~ R 5c.
Specific examples of the alkyl group in the alkylcarbonyloxy group and alkylthio group as R 1c ~ R 5c are the same as specific examples of the alkyl group of the R 1c ~ R 5c.
Specific examples of the cycloalkyl group in the cycloalkyl carbonyl group as R 1c ~ R 5c are the same as specific examples of the cycloalkyl group of the R 1c ~ R 5c.
Specific examples of the aryl group in the aryloxy group and arylthio group as R 1c ~ R 5c are the same as specific examples of the aryl group of the R 1c ~ R 5c.
 本発明における化合物(ZI-2)又は(ZI-3)におけるカチオンとしては、米国特許出願公開第2012/0076996号明細書の段落0036以降に記載のカチオンを挙げることができる。 Examples of the cation in the compound (ZI-2) or (ZI-3) in the present invention include cations described in paragraphs 0036 and after of US Patent Application Publication No. 2012/0076996.
 次に、化合物(ZI-4)について説明する。
 化合物(ZI-4)は、下記一般式(ZI-4)で表される。
Next, the compound (ZI-4) will be described.
The compound (ZI-4) is represented by the following general formula (ZI-4).
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 一般式(ZI-4)中、
 R13は水素原子、フッ素原子、水酸基、アルキル基、シクロアルキル基、アルコキシ基、アルコキシカルボニル基、又はシクロアルキル基を有する基を表す。これらの基は置換基を有してもよい。
 R14は、複数存在する場合は各々独立して、水酸基、アルキル基、シクロアルキル基、アルコキシ基、アルコキシカルボニル基、アルキルカルボニル基、アルキルスルホニル基、シクロアルキルスルホニル基、又はシクロアルキル基を有する基を表す。これらの基は置換基を有してもよい。
 R15は各々独立して、アルキル基、シクロアルキル基又はナフチル基を表す。これらの基は置換基を有してもよい。2個のR15が互いに結合して環を形成してもよい。2個のR15が互いに結合して環を形成するとき、環骨格内に、酸素原子および窒素原子などのヘテロ原子を含んでもよい。一態様において、2個のR15がアルキレン基であり、互いに結合して環構造を形成することが好ましい。
 lは0~2の整数を表す。
 rは0~8の整数を表す。
 Zは、非求核性アニオンを表し、一般式(ZI)に於けるZと同様の非求核性アニオンを挙げることができる。
In general formula (ZI-4),
R 13 represents a hydrogen atom, a fluorine atom, a hydroxyl group, an alkyl group, a cycloalkyl group, an alkoxy group, an alkoxycarbonyl group, or a group having a cycloalkyl group. These groups may have a substituent.
R 14 is independently a group having a hydroxyl group, an alkyl group, a cycloalkyl group, an alkoxy group, an alkoxycarbonyl group, an alkylcarbonyl group, an alkylsulfonyl group, a cycloalkylsulfonyl group, or a cycloalkyl group, when a plurality of R 14 are present. Represents. These groups may have a substituent.
R 15 each independently represents an alkyl group, a cycloalkyl group or a naphthyl group. These groups may have a substituent. Two R 15 may be bonded to each other to form a ring. When two R 15 's are bonded to each other to form a ring, the ring skeleton may contain a heteroatom such as an oxygen atom and a nitrogen atom. In one embodiment, it is preferred that two R 15 are alkylene groups and are bonded to each other to form a ring structure.
l represents an integer of 0-2.
r represents an integer of 0 to 8.
Z represents a non-nucleophilic anion, and examples thereof include the same non-nucleophilic anion as Z − in formula (ZI).
 一般式(ZI-4)において、R13、R14及びR15のアルキル基としては、直鎖状若しくは分岐状であり、炭素原子数1~10のものが好ましく、メチル基、エチル基、n-ブチル基、t-ブチル基等が好ましい。
 本発明における一般式(ZI-4)で表される化合物のカチオンとしては、特開2010-256842号公報の段落0121、0123、0124、及び、特開2011-76056号公報の段落0127、0129、0130等に記載のカチオンを挙げることができる。
In the general formula (ZI-4), the alkyl group of R 13 , R 14 and R 15 is linear or branched and preferably has 1 to 10 carbon atoms, and is preferably a methyl group, an ethyl group, n -Butyl group, t-butyl group and the like are preferable.
Examples of the cation of the compound represented by the general formula (ZI-4) in the present invention include paragraphs 0121, 0123 and 0124 of JP2010-256842A, and paragraphs 0127 and 0129 of JP2011-76056A. And cations described in 0130 and the like.
 次に、一般式(ZII)、(ZIII)について説明する。
 一般式(ZII)、(ZIII)中、R204~R207は、各々独立に、アリール基、アルキル基又はシクロアルキル基を表す。
 R204~R207のアリール基としてはフェニル基またはナフチル基が好ましく、更に好ましくはフェニル基である。R204~R207のアリール基は、酸素原子、窒素原子、硫黄原子等を有する複素環構造を有するアリール基であってもよい。複素環構造を有するアリール基の骨格としては、例えば、ピロール、フラン、チオフェン、インドール、ベンゾフラン、ベンゾチオフェン等を挙げることができる。
 R204~R207におけるアルキル基及びシクロアルキル基としては、好ましくは、炭素数1~10の直鎖又は分岐アルキル基(例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基)、および、炭素数3~10のシクロアルキル基(シクロペンチル基、シクロヘキシル基、ノルボニル基)を挙げることができる。
Next, general formulas (ZII) and (ZIII) will be described.
In the general formulas (ZII) and (ZIII), R 204 to R 207 each independently represents an aryl group, an alkyl group, or a cycloalkyl group.
The aryl group for R 204 to R 207 is preferably a phenyl group or a naphthyl group, and more preferably a phenyl group. The aryl group of R 204 to R 207 may be an aryl group having a heterocyclic structure having an oxygen atom, a nitrogen atom, a sulfur atom, or the like. Examples of the skeleton of the aryl group having a heterocyclic structure include pyrrole, furan, thiophene, indole, benzofuran, and benzothiophene.
The alkyl group and cycloalkyl group in R 204 to R 207 are preferably a linear or branched alkyl group having 1 to 10 carbon atoms (eg, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group), and And cycloalkyl groups having 3 to 10 carbon atoms (cyclopentyl group, cyclohexyl group, norbornyl group).
 R204~R207のアリール基、アルキル基、シクロアルキル基は、置換基を有していてもよい。R204~R207のアリール基、アルキル基、シクロアルキル基が有していてもよい置換基としては、例えば、アルキル基(例えば炭素数1~15)、シクロアルキル基(例えば炭素数3~15)、アリール基(例えば炭素数6~15)、アルコキシ基(例えば炭素数1~15)、ハロゲン原子、水酸基、および、フェニルチオ基等を挙げることができる。 The aryl group, alkyl group, and cycloalkyl group of R 204 to R 207 may have a substituent. Examples of the substituent that the aryl group, alkyl group, and cycloalkyl group of R 204 to R 207 may have include an alkyl group (eg, having 1 to 15 carbon atoms) and a cycloalkyl group (eg, having 3 to 15 carbon atoms). ), An aryl group (eg, having 6 to 15 carbon atoms), an alkoxy group (eg, having 1 to 15 carbon atoms), a halogen atom, a hydroxyl group, and a phenylthio group.
 Zは、非求核性アニオンを表し、一般式(ZI)に於けるZの非求核性アニオンと同様のものを挙げることができる。 Z represents a non-nucleophilic anion, and examples thereof include the same as the non-nucleophilic anion of Z − in formula (ZI).
 酸発生剤の中で、特に好ましい例としては、US2012/0207978A1 <0143>に例示された化合物を挙げることができる。
 酸発生剤は、公知の方法で合成することができ、例えば、特開2007-161707号公報に記載の方法に準じて合成することができる。
 酸発生剤は、1種類単独又は2種類以上を組み合わせて使用することができる。
Among the acid generators, particularly preferable examples include compounds exemplified in US2012 / 0207978A1 <0143>.
The acid generator can be synthesized by a known method, for example, according to the method described in JP-A No. 2007-161707.
An acid generator can be used individually by 1 type or in combination of 2 or more types.
 酸発生剤の組成物中の含有量(複数種存在する場合はその合計)は、組成物の全固形分に対して、0.1~30質量%が好ましく、より好ましくは0.5~25質量%、更に好ましくは0.5~20質量%、特に好ましくは0.5~15質量%である。
 また、酸発生剤が上記一般式(ZI-3)又は(ZI-4)により表される場合(複数種存在する場合はその合計)には、その含有量は、組成物の全固形分を基準として、0.1~35質量%が好ましく、0.5~30質量%がより好ましく、0.5~25質量%が特に好ましい。
 酸発生剤の具体例を以下に示すが、本発明はこれに限定されない。
The content of the acid generator in the composition (when there are a plurality of types) is preferably 0.1 to 30% by mass, more preferably 0.5 to 25%, based on the total solid content of the composition. % By mass, more preferably 0.5 to 20% by mass, particularly preferably 0.5 to 15% by mass.
In addition, when the acid generator is represented by the above general formula (ZI-3) or (ZI-4) (when there are a plurality of types), the content is the total solid content of the composition. As a reference, 0.1 to 35% by mass is preferable, 0.5 to 30% by mass is more preferable, and 0.5 to 25% by mass is particularly preferable.
Although the specific example of an acid generator is shown below, this invention is not limited to this.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
<酸拡散制御剤>
 平坦化膜形成用組成物は、さらに酸拡散制御剤を含有することが好ましい。
 酸拡散制御剤は、露光時に酸発生剤等から発生する酸をトラップし、余分な発生酸による、未露光部における酸分解性樹脂の反応を抑制するクエンチャーとして作用するものである。酸拡散制御剤としては、塩基性化合物、窒素原子を有し酸の作用により脱離する基を有する低分子化合物、活性光線又は放射線の照射により塩基性が低下又は消失する塩基性化合物、又は、酸発生剤に対して相対的に弱酸となるオニウム塩を使用することができる。
 酸拡散制御剤の含有量は特に制限されず、本発明の効果がより優れる点で、組成物中の全固形分に対して、0.01質量%以上であることが好ましく、0.2質量%以上であることがより好ましい。上限は特に制限されず、2.0質量%以下の場合が多い。
 なお、酸拡散制御剤は、1種のみを用いてもよいし、2種以上を併用してもよい。
<Acid diffusion control agent>
It is preferable that the planarization film forming composition further contains an acid diffusion controller.
The acid diffusion controller acts as a quencher that traps the acid generated from the acid generator or the like during exposure and suppresses the reaction of the acid-decomposable resin in the unexposed area due to excess generated acid. Examples of the acid diffusion controller include a basic compound, a low-molecular compound having a nitrogen atom and a group capable of leaving by the action of an acid, a basic compound whose basicity decreases or disappears upon irradiation with actinic rays or radiation, or An onium salt that is a weak acid relative to the acid generator can be used.
The content of the acid diffusion controller is not particularly limited, and is preferably 0.01% by mass or more based on the total solid content in the composition in terms of more excellent effects of the present invention, and 0.2% by mass. % Or more is more preferable. The upper limit is not particularly limited, and is often 2.0% by mass or less.
In addition, only 1 type may be used for an acid diffusion control agent and it may use 2 or more types together.
 塩基性化合物としては、好ましくは、下記式(A)~(E)で示される構造を有する化合物を挙げることができる。 Preferred examples of the basic compound include compounds having structures represented by the following formulas (A) to (E).
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 一般式(A)及び(E)中、
 R200、R201及びR202は、同一でも異なってもよく、水素原子、アルキル基(好ましくは炭素数1~20)、シクロアルキル基(好ましくは炭素数3~20)又はアリール基(炭素数6~20)を表し、ここで、R201とR202は、互いに結合して環を形成してもよい。
 R203、R204、R205及びR206は、同一でも異なってもよく、炭素数1~20個のアルキル基を表す。
In general formulas (A) and (E),
R 200 , R 201 and R 202 may be the same or different and are a hydrogen atom, an alkyl group (preferably having a carbon number of 1 to 20), a cycloalkyl group (preferably having a carbon number of 3 to 20) or an aryl group (having a carbon number). 6-20), wherein R 201 and R 202 may combine with each other to form a ring.
R 203 , R 204 , R 205 and R 206 may be the same or different and each represents an alkyl group having 1 to 20 carbon atoms.
 上記アルキル基について、置換基を有するアルキル基としては、炭素数1~20のアミノアルキル基、炭素数1~20のヒドロキシアルキル基、又は炭素数1~20のシアノアルキル基が好ましい。
 これら一般式(A)及び(E)中のアルキル基は、無置換であることがより好ましい。
Regarding the alkyl group, the alkyl group having a substituent is preferably an aminoalkyl group having 1 to 20 carbon atoms, a hydroxyalkyl group having 1 to 20 carbon atoms, or a cyanoalkyl group having 1 to 20 carbon atoms.
The alkyl groups in the general formulas (A) and (E) are more preferably unsubstituted.
 好ましい化合物として、グアニジン、アミノピロリジン、ピラゾール、ピラゾリン、ピペラジン、アミノモルホリン、アミノアルキルモルフォリン、ピペリジン等を挙げることができ、更に好ましい化合物として、イミダゾール構造、ジアザビシクロ構造、オニウムヒドロキシド構造、オニウムカルボキシレート構造、トリアルキルアミン構造、アニリン構造又はピリジン構造を有する化合物、水酸基及び/又はエーテル結合を有するアルキルアミン誘導体、水酸基及び/又はエーテル結合を有するアニリン誘導体等を挙げることができる。
 好ましい化合物の具体例としては、US2012/0219913A1 <0379>に例示された化合物を挙げることができる。
 好ましい塩基性化合物として、更に、フェノキシ基を有するアミン化合物、フェノキシ基を有するアンモニウム塩化合物、スルホン酸エステル基を有するアミン化合物及びスルホン酸エステル基を有するアンモニウム塩化合物を挙げることができる。
Preferred compounds include guanidine, aminopyrrolidine, pyrazole, pyrazoline, piperazine, aminomorpholine, aminoalkylmorpholine, piperidine and the like, and more preferred compounds include imidazole structure, diazabicyclo structure, onium hydroxide structure, onium carboxylate Examples thereof include a compound having a structure, a trialkylamine structure, an aniline structure or a pyridine structure, an alkylamine derivative having a hydroxyl group and / or an ether bond, and an aniline derivative having a hydroxyl group and / or an ether bond.
Specific examples of preferred compounds include those exemplified in US2012 / 0219913A1 <0379>.
Preferred examples of the basic compound further include an amine compound having a phenoxy group, an ammonium salt compound having a phenoxy group, an amine compound having a sulfonic acid ester group, and an ammonium salt compound having a sulfonic acid ester group.
 アミン化合物は、1級、2級、3級のアミン化合物を使用することができ、少なくとも1つのアルキル基が窒素原子に結合しているアミン化合物が好ましい。アミン化合物は、3級アミン化合物であることがより好ましい。アミン化合物は、少なくとも1つのアルキル基(好ましくは炭素数1~20)が窒素原子に結合していれば、アルキル基の他に、シクロアルキル基(好ましくは炭素数3~20)又はアリール基(好ましくは炭素数6~12)が窒素原子に結合していてもよい。アミン化合物は、アルキル鎖中に、酸素原子を有し、オキシアルキレン基が形成されていることが好ましい。オキシアルキレン基の数は、分子内に1つ以上、好ましくは3~9個、更に好ましくは4~6個である。オキシアルキレン基の中でもオキシエチレン基(-CHCHO-)若しくはオキシプロピレン基(-CH(CH)CHO-若しくは-CHCHCHO-)が好ましく、更に好ましくはオキシエチレン基である。 As the amine compound, a primary, secondary or tertiary amine compound can be used, and an amine compound in which at least one alkyl group is bonded to a nitrogen atom is preferable. The amine compound is more preferably a tertiary amine compound. As long as at least one alkyl group (preferably having 1 to 20 carbon atoms) is bonded to a nitrogen atom, the amine compound has an cycloalkyl group (preferably having 3 to 20 carbon atoms) or an aryl group (preferably having 3 to 20 carbon atoms). Preferably 6 to 12 carbon atoms may be bonded to the nitrogen atom. The amine compound preferably has an oxygen atom in the alkyl chain and an oxyalkylene group is formed. The number of oxyalkylene groups is one or more in the molecule, preferably 3 to 9, and more preferably 4 to 6. Among the oxyalkylene groups, an oxyethylene group (—CH 2 CH 2 O—) or an oxypropylene group (—CH (CH 3 ) CH 2 O— or —CH 2 CH 2 CH 2 O—) is preferable, and more preferably oxy Ethylene group.
 アンモニウム塩化合物は、1級、2級、3級又は4級のアンモニウム塩化合物を使用することができ、少なくとも1つのアルキル基が窒素原子に結合しているアンモニウム塩化合物が好ましい。アンモニウム塩化合物は、少なくとも1つのアルキル基(好ましくは炭素数1~20)が窒素原子に結合していれば、アルキル基の他に、シクロアルキル基(好ましくは炭素数3~20)又はアリール基(好ましくは炭素数6~12)が窒素原子に結合していてもよい。アンモニウム塩化合物は、アルキル鎖中に、酸素原子を有し、オキシアルキレン基が形成されていることが好ましい。オキシアルキレン基の数は、分子内に1つ以上、好ましくは3~9個、更に好ましくは4~6個である。オキシアルキレン基の中でもオキシエチレン基(-CHCHO-)若しくはオキシプロピレン基(-CH(CH)CHO-若しくは-CHCHCHO-)が好ましく、更に好ましくはオキシエチレン基である。 As the ammonium salt compound, a primary, secondary, tertiary or quaternary ammonium salt compound can be used, and an ammonium salt compound in which at least one alkyl group is bonded to a nitrogen atom is preferable. In addition to the alkyl group, the ammonium salt compound may be a cycloalkyl group (preferably having 3 to 20 carbon atoms) or an aryl group, provided that at least one alkyl group (preferably having 1 to 20 carbon atoms) is bonded to the nitrogen atom. (Preferably having 6 to 12 carbon atoms) may be bonded to a nitrogen atom. The ammonium salt compound preferably has an oxygen atom in the alkyl chain and an oxyalkylene group is formed. The number of oxyalkylene groups is one or more in the molecule, preferably 3 to 9, and more preferably 4 to 6. Among the oxyalkylene groups, an oxyethylene group (—CH 2 CH 2 O—) or an oxypropylene group (—CH (CH 3 ) CH 2 O— or —CH 2 CH 2 CH 2 O—) is preferable, and more preferably oxy Ethylene group.
 アンモニウム塩化合物のアニオンとしては、ハロゲン原子、スルホネート、ボレート、フォスフェート等が挙げられるが、中でもハロゲン原子、スルホネートが好ましい。
 また、下記化合物も塩基性化合物として好ましい。
Examples of the anion of the ammonium salt compound include halogen atoms, sulfonates, borates, and phosphates. Among them, halogen atoms and sulfonates are preferable.
The following compounds are also preferable as the basic compound.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 塩基性化合物としては、上述した化合物のほかに、特開2011-22560号公報〔0180〕~〔0225〕、特開2012-137735号公報〔0218〕~〔0219〕、WO2011/158687A1〔0416〕~〔0438〕に記載されている化合物等を使用することもできる。
 これらの塩基性化合物は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
As basic compounds, in addition to the compounds described above, JP2011-22560A [0180] to [0225], JP2012-137735A [0218] to [0219], WO2011 / 158687A1 [0416] to The compounds described in [0438] can also be used.
These basic compounds may be used individually by 1 type, and may be used in combination of 2 or more types.
 酸発生剤(複数種類有する場合はその合計)と塩基性化合物の組成物中の使用割合は、酸発生剤/塩基性化合物(モル比)=2.5~300であることが好ましい。即ち、感度、解像度の点からモル比は2.5以上が好ましく、解像度の低下抑制の点から300以下が好ましい。酸発生剤/塩基性化合物(モル比)は、より好ましくは5.0~200、更に好ましくは7.0~150である。 It is preferable that the ratio of the acid generator (the total when there are a plurality of types) and the basic compound used in the composition is acid generator / basic compound (molar ratio) = 2.5 to 300. That is, the molar ratio is preferably 2.5 or more from the viewpoint of sensitivity and resolution, and is preferably 300 or less from the viewpoint of suppressing the decrease in resolution. The acid generator / basic compound (molar ratio) is more preferably from 5.0 to 200, still more preferably from 7.0 to 150.
 窒素原子を有し酸の作用により脱離する基を有する低分子化合物(以下、「化合物(D-1)」ともいう。)は、酸の作用により脱離する基を窒素原子上に有するアミン誘導体であることが好ましい。
 酸の作用により脱離する基として、アセタール基、カルボネート基、カルバメート基、3級エステル基、3級水酸基、ヘミアミナールエーテル基が好ましく、カルバメート基、ヘミアミナールエーテル基であることが特に好ましい。
 化合物(D-1)の分子量は、100~1000が好ましく、100~700がより好ましく、100~500が特に好ましい。
 化合物(D-1)は、窒素原子上に保護基を有するカルバメート基を有してもよい。カルバメート基を構成する保護基としては、下記一般式(d-1)で表すことができる。
A low molecular weight compound having a nitrogen atom and a group capable of leaving by the action of an acid (hereinafter also referred to as “compound (D-1)”) is an amine having a group on the nitrogen atom that is released by the action of an acid. A derivative is preferred.
As the group capable of leaving by the action of an acid, an acetal group, a carbonate group, a carbamate group, a tertiary ester group, a tertiary hydroxyl group, and a hemiaminal ether group are preferable, and a carbamate group and a hemiaminal ether group are particularly preferable. .
The molecular weight of the compound (D-1) is preferably 100 to 1,000, more preferably 100 to 700, and particularly preferably 100 to 500.
Compound (D-1) may have a carbamate group having a protecting group on the nitrogen atom. The protecting group constituting the carbamate group can be represented by the following general formula (d-1).
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 一般式(d-1)において、
 Rは、各々独立に、水素原子、アルキル基(好ましくは炭素数1~10)、シクロアルキル基(好ましくは炭素数3~30)、アリール基(好ましくは炭素数3~30)、アラルキル基(好ましくは炭素数1~10)、又はアルコキシアルキル基(好ましくは炭素数1~10)を表す。Rは相互に連結して環を形成していてもよい。
 Rが示すアルキル基、シクロアルキル基、アリール基、アラルキル基は、ヒドロキシル基、シアノ基、アミノ基、ピロリジノ基、ピペリジノ基、モルホリノ基、オキソ基等の官能基、アルコキシ基、ハロゲン原子で置換されていてもよい。Rが示すアルコキシアルキル基についても同様である。
In general formula (d-1),
R b each independently represents a hydrogen atom, an alkyl group (preferably 1 to 10 carbon atoms), a cycloalkyl group (preferably 3 to 30 carbon atoms), an aryl group (preferably 3 to 30 carbon atoms), an aralkyl group. (Preferably having 1 to 10 carbon atoms) or an alkoxyalkyl group (preferably having 1 to 10 carbon atoms). R b may be connected to each other to form a ring.
The alkyl group, cycloalkyl group, aryl group, and aralkyl group represented by R b are substituted with a functional group such as a hydroxyl group, a cyano group, an amino group, a pyrrolidino group, a piperidino group, a morpholino group, and an oxo group, an alkoxy group, and a halogen atom. May be. The same applies to the alkoxyalkyl group represented by Rb .
 Rとして好ましくは、直鎖状、又は分岐状のアルキル基、シクロアルキル基、アリール基である。より好ましくは、直鎖状、又は分岐状のアルキル基、シクロアルキル基である。
 2つのRが相互に連結して形成する環としては、脂環式炭化水素基、芳香族炭化水素基、複素環式炭化水素基若しくはその誘導体等が挙げられる。
 一般式(d-1)で表される基の具体的な構造としては、US2012/0135348A1 <0466>に開示された構造を挙げることができるが、これに限定されない。
R b is preferably a linear or branched alkyl group, cycloalkyl group, or aryl group. More preferably, it is a linear or branched alkyl group or cycloalkyl group.
Examples of the ring formed by connecting two R b to each other include an alicyclic hydrocarbon group, an aromatic hydrocarbon group, a heterocyclic hydrocarbon group, or a derivative thereof.
Specific examples of the group represented by the general formula (d-1) include, but are not limited to, the structures disclosed in US2012 / 0135348A1 <0466>.
 化合物(D-1)は、下記一般式(6)で表される構造を有するものであることが特に好ましい。 The compound (D-1) particularly preferably has a structure represented by the following general formula (6).
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 一般式(6)において、Rは、水素原子、アルキル基、シクロアルキル基、アリール基又はアラルキル基を表す。lが2のとき、2つのRは同じでも異なっていてもよく、2つのRは相互に連結して式中の窒素原子と共に複素環を形成していてもよい。複素環には式中の窒素原子以外のヘテロ原子を含んでいてもよい。
 Rは、上記一般式(d-1)におけるRと同義であり、好ましい例も同様である。
 lは0~2の整数を表し、mは1~3の整数を表し、l+m=3を満たす。
 一般式(6)において、Rとしてのアルキル基、シクロアルキル基、アリール基、アラルキル基は、Rとしてのアルキル基、シクロアルキル基、アリール基、アラルキル基が置換されていてもよい基として前述した基と同様な基で置換されていてもよい。
In General Formula (6), R a represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or an aralkyl group. When l is 2, two R a may be the same or different, and two R a may be connected to each other to form a heterocyclic ring together with the nitrogen atom in the formula. The heterocycle may contain a heteroatom other than the nitrogen atom in the formula.
R b has the same meaning as R b in formula (d-1), and preferred examples are also the same.
l represents an integer of 0 to 2, m represents an integer of 1 to 3, and satisfies l + m = 3.
In the general formula (6), the alkyl group, cycloalkyl group, aryl group and aralkyl group as R a are the groups in which the alkyl group, cycloalkyl group, aryl group and aralkyl group as R b may be substituted. It may be substituted with a group similar to the group described above.
 上記Rのアルキル基、シクロアルキル基、アリール基、及びアラルキル基(これらのアルキル基、シクロアルキル基、アリール基、及びアラルキル基は、上記基で置換されていてもよい)の具体例としては、Rについて前述した具体例と同様な基が挙げられる。
 本発明における特に好ましい化合物(D-1)の具体的としては、US2012/0135348A1 <0475>に開示された化合物を挙げることができるが、これに限定されない。
Specific examples of the alkyl group, cycloalkyl group, aryl group, and aralkyl group of R a (these alkyl group, cycloalkyl group, aryl group, and aralkyl group may be substituted with the above group) , R b includes the same groups as the specific examples described above.
Specific examples of the particularly preferable compound (D-1) in the present invention include compounds disclosed in US2012 / 0135348A1 <0475>, but are not limited thereto.
 一般式(6)で表される化合物は、特開2007-298569号公報、特開2009-199021号公報などに基づき合成することができる。
 本発明において、化合物(D-1)は、一種単独でも又は2種以上を混合しても使用することができる。
The compound represented by the general formula (6) can be synthesized based on JP2007-298869A, JP2009-199021A, and the like.
In the present invention, the compound (D-1) can be used singly or in combination of two or more.
 活性光線又は放射線の照射により塩基性が低下又は消失する塩基性化合物(以下、「化合物(PA)」ともいう。)は、プロトンアクセプター性官能基を有し、且つ、活性光線又は放射線の照射により分解して、プロトンアクセプター性が低下、消失、又はプロトンアクセプター性から酸性に変化する化合物である。 A basic compound whose basicity decreases or disappears upon irradiation with actinic rays or radiation (hereinafter also referred to as “compound (PA)”) has a proton acceptor functional group and is irradiated with actinic rays or radiation. Is a compound whose proton acceptor properties are degraded, disappeared, or changed from proton acceptor properties to acidic properties.
 「プロトンアクセプター性官能基」とは、プロトンと静電的に相互作用し得る基或いは電子を有する官能基であって、例えば、環状ポリエーテル等のマクロサイクリック構造を有する官能基や、π共役に寄与しない非共有電子対をもった窒素原子を有する官能基を意味する。「π共役に寄与しない非共有電子対を有する窒素原子」とは、例えば、下記式に示す部分構造を有する窒素原子である。 The “proton acceptor functional group” is a functional group having electrons or a group capable of electrostatically interacting with protons, such as a functional group having a macrocyclic structure such as a cyclic polyether, or π It means a functional group having a nitrogen atom with an unshared electron pair that does not contribute to conjugation. The “nitrogen atom having an unshared electron pair that does not contribute to π conjugation” is, for example, a nitrogen atom having a partial structure represented by the following formula.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 プロトンアクセプター性官能基の好ましい部分構造として、例えば、クラウンエーテル、アザクラウンエーテル、1~3級アミン、ピリジン、イミダゾール、ピラジン構造などを挙げることができる。 Examples of a preferable partial structure of the proton acceptor functional group include a crown ether, an azacrown ether, a primary to tertiary amine, a pyridine, an imidazole, and a pyrazine structure.
 化合物(PA)は、活性光線又は放射線の照射により分解してプロトンアクセプター性が低下、消失、又はプロトンアクセプター性から酸性に変化した化合物を発生する。ここで「プロトンアクセプター性の低下、消失、又はプロトンアクセプター性から酸性への変化」とは、プロトンアクセプター性官能基にプロトンが付加することに起因するプロトンアクセプター性の変化であり、具体的には、プロトンアクセプター性官能基を有する化合物(PA)とプロトンからプロトン付加体が生成する時、その化学平衡に於ける平衡定数が減少することを意味する。
 プロトンアクセプター性は、pH測定を行うことによって確認することができる。
The compound (PA) is decomposed by irradiation with an actinic ray or radiation to generate a compound in which the proton acceptor property is lowered, disappeared, or changed from proton acceptor property to acidity. Here, “decrease, disappearance of proton acceptor property, or change from proton acceptor property to acid” is a change in proton acceptor property resulting from addition of a proton to a proton acceptor functional group, Specifically, when a proton adduct is produced from a compound (PA) having a proton acceptor functional group and a proton, it means that the equilibrium constant in the chemical equilibrium is reduced.
Proton acceptor property can be confirmed by measuring pH.
 本発明においては、活性光線又は放射線の照射により化合物(PA)が分解して発生する化合物の酸解離定数pKaが、pKa<-1を満たすことが好ましく、より好ましくは-13<pKa<-1であり、更に好ましくは-13<pKa<-3である。 In the present invention, the acid dissociation constant pKa of the compound generated by decomposition of the compound (PA) upon irradiation with actinic rays or radiation preferably satisfies pKa <−1, more preferably −13 <pKa <−1. More preferably, −13 <pKa <−3.
 本発明に於いて、「酸解離定数pKa」とは、水溶液中での酸解離定数pKaのことを表し、例えば、化学便覧(II)(改訂4版、1993年、日本化学会編、丸善株式会社)に記載のものであり、この値が低いほど酸強度が大きいことを示している。水溶液中での酸解離定数pKaは、具体的には、無限希釈水溶液を用い、25℃での酸解離定数を測定することにより実測することができ、また、下記ソフトウェアパッケージ1を用いて、ハメットの置換基定数及び公知文献値のデータベースに基づいた値を、計算により求めることもできる。本明細書中に記載したpKaの値は、全て、このソフトウェアパッケージを用いて計算により求めた値を示している。 In the present invention, the “acid dissociation constant pKa” represents the acid dissociation constant pKa in an aqueous solution. For example, Chemical Handbook (II) (4th revised edition, 1993, edited by the Chemical Society of Japan, Maruzen Co., Ltd.) The lower the value, the higher the acid strength. Specifically, the acid dissociation constant pKa in an aqueous solution can be measured by measuring an acid dissociation constant at 25 ° C. using an infinitely diluted aqueous solution, and using the following software package 1, Hammett The values based on the substituent constants and the database of known literature values can also be obtained by calculation. The values of pKa described in this specification all indicate values obtained by calculation using this software package.
 ソフトウェアパッケージ1: Advanced Chemistry Development (ACD/Labs) Software V8.14 for Solaris (1994-2007 ACD/Labs)。 Software package 1: Advanced Chemistry Development (ACD / Labs) Software V8.14 for Solaris (1994-2007 ACD / Labs).
 化合物(PA)は、活性光線又は放射線の照射により分解して発生する上記プロトン付加体として、例えば、下記一般式(PA-1)で表される化合物を発生する。一般式(PA-1)で表される化合物は、プロトンアクセプター性官能基とともに酸性基を有することにより、化合物(PA)に比べてプロトンアクセプター性が低下、消失、又はプロトンアクセプター性から酸性に変化した化合物である。 The compound (PA) generates, for example, a compound represented by the following general formula (PA-1) as the proton adduct generated by decomposition upon irradiation with actinic rays or radiation. Since the compound represented by the general formula (PA-1) has an acidic group together with the proton acceptor functional group, the proton acceptor property is reduced or disappeared compared to the compound (PA), or the proton acceptor property is reduced. It is a compound that has changed to acidic.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 一般式(PA-1)中、
 Qは、-SOH、-COH、又は-WNHWを表す。ここで、Rは、アルキル基(好ましくは炭素数1~20)、シクロアルキル基(好ましくは炭素数3~20)又はアリール基(好ましくは炭素数6~30)を表し、W及びWは、各々独立に、-SO-又は-CO-を表す。
 Aは、単結合又は2価の連結基を表す。
 Xは、-SO-又は-CO-を表す。
 nは、0又は1を表す。
 Bは、単結合、酸素原子、又は-N(R)R-を表す。ここで、Rは水素原子又は1価の有機基を表し、Rは単結合又は2価の有機基を表す。Rは、Rと結合して環を形成していてもよく、Rと結合して環を形成していてもよい。
 Rは、プロトンアクセプター性官能基を有する1価の有機基を表す。
In general formula (PA-1),
Q represents —SO 3 H, —CO 2 H, or —W 1 NHW 2 R f . Here, R f represents an alkyl group (preferably having 1 to 20 carbon atoms), a cycloalkyl group (preferably having 3 to 20 carbon atoms) or an aryl group (preferably having 6 to 30 carbon atoms), and W 1 and W 2 each independently represents —SO 2 — or —CO—.
A represents a single bond or a divalent linking group.
X represents —SO 2 — or —CO—.
n represents 0 or 1.
B represents a single bond, an oxygen atom, or —N (R x ) R y —. Here, R x represents a hydrogen atom or a monovalent organic group, and R y represents a single bond or a divalent organic group. R x may be bonded to R y to form a ring, or R x may be bonded to R to form a ring.
R represents a monovalent organic group having a proton acceptor functional group.
 一般式(PA-1)について更に詳細に説明する。
 Aにおける2価の連結基としては、好ましくは炭素数2~12の2価の連結基であり、例えば、アルキレン基、フェニレン基等が挙げられる。より好ましくは少なくとも1つのフッ素原子を有するアルキレン基であり、好ましい炭素数は2~6、より好ましくは炭素数2~4である。アルキレン鎖中に酸素原子、硫黄原子などの連結基を有していてもよい。アルキレン基は、特に水素原子数の30~100%がフッ素原子で置換されたアルキレン基が好ましく、Q部位と結合した炭素原子がフッ素原子を有することがより好ましい。更にはパーフルオロアルキレン基が好ましく、パーフロロエチレン基、パーフロロプロピレン基、パーフロロブチレン基がより好ましい。
The general formula (PA-1) will be described in more detail.
The divalent linking group in A is preferably a divalent linking group having 2 to 12 carbon atoms, and examples thereof include an alkylene group and a phenylene group. More preferred is an alkylene group having at least one fluorine atom, and the preferred carbon number is 2 to 6, more preferably 2 to 4. The alkylene chain may have a linking group such as an oxygen atom or a sulfur atom. The alkylene group is particularly preferably an alkylene group in which 30 to 100% of the hydrogen atoms are substituted with fluorine atoms, and more preferably, the carbon atom bonded to the Q site has a fluorine atom. Further, a perfluoroalkylene group is preferable, and a perfluoroethylene group, a perfluoropropylene group, and a perfluorobutylene group are more preferable.
 Rにおける1価の有機基としては、好ましくは炭素数1~30の有機基であり、例えば、アルキル基、シクロアルキル基、アリール基、アラルキル基、アルケニル基などを挙げることができる。これら基は更に置換基を有していてもよい。
 Rにおけるアルキル基としては、置換基を有していてもよく、好ましくは炭素数1~20の直鎖及び分岐アルキル基であり、アルキル鎖中に酸素原子、硫黄原子、窒素原子を有していてもよい。
 Rにおけるシクロアルキル基としては、置換基を有していてもよく、好ましくは炭素数3~20の単環シクロアルキル基又は多環シクロアルキル基であり、環内に酸素原子、硫黄原子、窒素原子を有していてもよい。
 Rにおけるアリール基としては、置換基を有してもよく、好ましくは炭素数6~14のものが挙げられ、例えば、フェニル基及びナフチル基等が挙げられる。
 Rにおけるアラルキル基としては、置換基を有してもよく、好ましくは炭素数7~20のものが挙げられ、例えば、ベンジル基及びフェネチル基等が挙げられる。
 Rにおけるアルケニル基は、置換基を有してもよく、直鎖状であってもよく、分岐鎖状であってもよい。このアルケニル基の炭素数は、3~20であることが好ましい。このようなアルケニル基としては、例えば、ビニル基、アリル基及びスチリル基等が挙げられる。
The monovalent organic group in R x is preferably an organic group having 1 to 30 carbon atoms, and examples thereof include an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, and an alkenyl group. These groups may further have a substituent.
The alkyl group in R x may have a substituent, and is preferably a linear or branched alkyl group having 1 to 20 carbon atoms, and has an oxygen atom, a sulfur atom, or a nitrogen atom in the alkyl chain. It may be.
The cycloalkyl group in R x may have a substituent, and is preferably a monocyclic cycloalkyl group or a polycyclic cycloalkyl group having 3 to 20 carbon atoms, and an oxygen atom, a sulfur atom, It may have a nitrogen atom.
The aryl group for R x may have a substituent, and preferably has 6 to 14 carbon atoms, and examples thereof include a phenyl group and a naphthyl group.
The aralkyl group in R x may have a substituent, and preferably has 7 to 20 carbon atoms, and examples thereof include a benzyl group and a phenethyl group.
The alkenyl group in R x may have a substituent, may be linear, or may be branched. The alkenyl group preferably has 3 to 20 carbon atoms. Examples of such alkenyl groups include vinyl groups, allyl groups, and styryl groups.
 Rが更に置換基を有する場合の置換基としては、例えばハロゲン原子、直鎖、分岐又は環状のアルキル基、アルケニル基、アルキニル基、アリール基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基、シアノ基、カルボン酸基、水酸基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、ヘテロ環オキシ基、アシルオキシ基、アミノ基、ニトロ基、ヒドラジノ基及び、ヘテロ環基などが挙げられる。 Examples of the substituent when R x further has a substituent include a halogen atom, a linear, branched or cyclic alkyl group, an alkenyl group, an alkynyl group, an aryl group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, Examples include carbamoyl group, cyano group, carboxylic acid group, hydroxyl group, alkoxy group, aryloxy group, alkylthio group, arylthio group, heterocyclic oxy group, acyloxy group, amino group, nitro group, hydrazino group, and heterocyclic group. .
 Rにおける2価の有機基としては、好ましくはアルキレン基を挙げることができる。
 RとRが互いに結合して形成してもよい環構造としては、窒素原子を含む5~10員の環、特に好ましくは6員の環が挙げられる。
Preferred examples of the divalent organic group for R y include an alkylene group.
Examples of the ring structure that R x and R y may be bonded to each other include a 5- to 10-membered ring containing a nitrogen atom, particularly preferably a 6-membered ring.
 Rにおけるプロトンアクセプター性官能基とは、上記の通りであり、アザクラウンエーテル、1~3級アミン、ピリジンやイミダゾールといった窒素原子を含む複素環式芳香族構造などを有する基が挙げられる。
 このような構造を有する有機基として、好ましい炭素数は4~30の有機基であり、アルキル基、シクロアルキル基、アリール基、アラルキル基、アルケニル基などを挙げることができる。
The proton acceptor functional group for R is as described above, and examples thereof include azacrown ether, primary to tertiary amines, and groups having a heterocyclic aromatic structure containing a nitrogen atom such as pyridine and imidazole.
The organic group having such a structure is preferably an organic group having 4 to 30 carbon atoms, and examples thereof include an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, and an alkenyl group.
 Rにおけるプロトンアクセプター性官能基又はアンモニウム基を含むアルキル基、シクロアルキル基、アリール基、アラルキル基、アルケニル基に於けるアルキル基、シクロアルキル基、アリール基、アラルキル基、アルケニル基は、上記Rとして挙げたアルキル基、シクロアルキル基、アリール基、アラルキル基、アルケニル基と同様のものである。 The alkyl group, the cycloalkyl group, the aryl group, the aralkyl group, the alkyl group in the alkenyl group, the cycloalkyl group, the aryl group, the aralkyl group, the alkenyl group in the proton acceptor functional group or ammonium group in R is the above R The same as the alkyl group, cycloalkyl group, aryl group, aralkyl group and alkenyl group mentioned as x .
 Bが-N(R)R-の時、RとRが互いに結合して環を形成していることが好ましい。環構造を形成することによって、安定性が向上し、これを用いた組成物の保存安定性が向上する。環を形成する炭素数は4~20が好ましく、単環式でも多環式でもよく、環内に酸素原子、硫黄原子、窒素原子を含んでいてもよい。
 単環式構造としては、窒素原子を含む4員環、5員環、6員環、7員環、8員環等を挙げることができる。多環式構造としては、2又は3以上の単環式構造の組み合わせから成る構造を挙げることができる。
When B is —N (R x ) R y —, R and R x are preferably bonded to each other to form a ring. By forming the ring structure, the stability is improved, and the storage stability of the composition using the ring structure is improved. The number of carbon atoms forming the ring is preferably 4 to 20, and may be monocyclic or polycyclic, and may contain an oxygen atom, a sulfur atom, or a nitrogen atom in the ring.
Examples of the monocyclic structure include a 4-membered ring, a 5-membered ring, a 6-membered ring, a 7-membered ring, and an 8-membered ring containing a nitrogen atom. Examples of the polycyclic structure include a structure composed of a combination of two or three or more monocyclic structures.
 Qにより表される-WNHW2におけるRとして、好ましくは炭素数1~6のフッ素原子を有してもよいアルキル基であり、更に好ましくは炭素数1~6のパーフルオロアルキル基である。また、W及びW2としては、少なくとも一方が-SO-であることが好ましく、より好ましくはW及びW2の両方が-SO-である場合である。
 Qは、酸基の親水性の観点から、-SOH又は-COHであることが特に好ましい。
 一般式(PA-1)で表される化合物の中、Q部位がスルホン酸である化合物は、一般的なスルホンアミド化反応を用いることで合成できる。例えば、ビススルホニルハライド化合物の一方のスルホニルハライド部を選択的にアミン化合物と反応させて、スルホンアミド結合を形成した後、もう一方のスルホニルハライド部分を加水分解する方法、あるいは環状スルホン酸無水物をアミン化合物と反応させ開環させる方法により得ることができる。
As R f in -W 1 NHW 2 R f represented by Q, preferred is an alkyl group which may have a fluorine atom of 1 to 6 carbon atoms, more preferably perfluoroalkyl of 1 to 6 carbon atoms It is a group. Further, as W 1 and W 2 , at least one is preferably —SO 2 —, and more preferably, both W 1 and W 2 are —SO 2 —.
Q is particularly preferably —SO 3 H or —CO 2 H from the viewpoint of the hydrophilicity of the acid group.
Among the compounds represented by the general formula (PA-1), a compound in which the Q site is a sulfonic acid can be synthesized by using a general sulfonamidation reaction. For example, a method in which one sulfonyl halide part of a bissulfonyl halide compound is selectively reacted with an amine compound to form a sulfonamide bond, and then the other sulfonyl halide part is hydrolyzed, or a cyclic sulfonic acid anhydride is used. It can be obtained by a method of ring-opening by reacting with an amine compound.
 化合物(PA)は、イオン性化合物であることが好ましい。プロトンアクセプター性官能基はアニオン部、カチオン部のいずれに含まれていてもよく、アニオン部位に含まれていることが好ましい。
 化合物(PA)として、好ましくは下記一般式(4)~(6)で表される化合物が挙げられる。
The compound (PA) is preferably an ionic compound. The proton acceptor functional group may be contained in either the anion portion or the cation portion, and is preferably contained in the anion portion.
Preferred examples of the compound (PA) include compounds represented by the following general formulas (4) to (6).
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 一般式(4)~(6)において、A、X、n、B、R、R、W及びWは、一般式(PA-1)における各々と同義である。
 Cはカウンターカチオンを示す。
 カウンターカチオンとしては、オニウムカチオンが好ましい。より詳しくは、酸発生剤において、一般式(ZI)におけるS(R201)(R202)(R203)として説明されているスルホニウムカチオン、一般式(ZII)におけるI(R204)(R205)として説明されているヨードニウムカチオンが好ましい例として挙げられる。
 化合物(PA)の具体例としては、US2011/0269072A1 <0280>に例示された化合物を挙げることが出来る。
In the general formulas (4) to (6), A, X, n, B, R, R f , W 1 and W 2 have the same meanings as those in the general formula (PA-1).
C + represents a counter cation.
The counter cation is preferably an onium cation. More specifically, in the acid generator, a sulfonium cation described as S + (R 201 ) (R 202 ) (R 203 ) in general formula (ZI), I + (R 204 ) in general formula (ZII) ( A preferred example is the iodonium cation described as R 205 ).
Specific examples of the compound (PA) include compounds exemplified in US2011 / 0269072A1 <0280>.
 また、本発明においては、一般式(PA-1)で表される化合物を発生する化合物以外の化合物(PA)も適宜選択可能である。例えば、イオン性化合物であって、カチオン部にプロトンアクセプター部位を有する化合物を用いてもよい。より具体的には、下記一般式(7)で表される化合物などが挙げられる。 In the present invention, a compound (PA) other than the compound that generates the compound represented by the general formula (PA-1) can be appropriately selected. For example, an ionic compound that has a proton acceptor moiety in the cation moiety may be used. More specifically, a compound represented by the following general formula (7) is exemplified.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 式中、Aは硫黄原子又はヨウ素原子を表す。
 mは1又は2を表し、nは1又は2を表す。但し、Aが硫黄原子の時、m+n=3、Aがヨウ素原子の時、m+n=2である。
 Rは、アリール基を表す。
 Rは、プロトンアクセプター性官能基で置換されたアリール基を表す。Xは、対アニオンを表す。
 Xの具体例としては、前述した酸発生剤のアニオンと同様のものを挙げることができる。
 R及びRのアリール基の具体例としては、フェニル基が好ましく挙げられる。
In the formula, A represents a sulfur atom or an iodine atom.
m represents 1 or 2, and n represents 1 or 2. However, when A is a sulfur atom, m + n = 3, and when A is an iodine atom, m + n = 2.
R represents an aryl group.
R N represents an aryl group substituted with a proton acceptor functional group. X represents a counter anion.
Specific examples of X include the same as the above-mentioned anion of the acid generator.
Specific examples of the aryl group of R and R N is a phenyl group are preferably exemplified.
 Rが有するプロトンアクセプター性官能基の具体例としては、前述の式(PA-1)で説明したプロトンアクセプター性官能基と同様である。
 カチオン部にプロトンアクセプター部位を有するイオン性化合物の具体例としては、US2011/0269072A1 <0291>に例示された化合物を挙げることが出来る。
 なお、このような化合物は、例えば、特開2007-230913号公報及び特開2009-122623号公報などに記載の方法を参考にして合成できる。
Specific examples of the proton acceptor functional group R N are the same as those of the proton acceptor functional group described in the foregoing formula (PA-1).
Specific examples of the ionic compound having a proton acceptor site in the cation moiety include compounds exemplified in US2011 / 0269072A1 <0291>.
Such a compound can be synthesized with reference to methods described in, for example, JP-A-2007-230913 and JP-A-2009-122623.
 化合物(PA)は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Compound (PA) may be used alone or in combination of two or more.
 本発明の組成物では、酸発生剤に対して相対的に弱酸となるオニウム塩を酸拡散制御剤として使用することができる。
 酸発生剤と、酸発生剤から生じた酸に対して相対的に弱酸(好ましくはpKaが-1超の弱酸)である酸を発生するオニウム塩を混合して用いた場合、活性光線又は放射線の照射により酸発生剤から生じた酸が未反応の弱酸アニオンを有するオニウム塩と衝突すると、塩交換により弱酸を放出して強酸アニオンを有するオニウム塩を生じる。この過程で強酸がより触媒能の低い弱酸に交換されるため、見かけ上、酸が失活して酸拡散の制御を行うことができる。
In the composition of the present invention, an onium salt that becomes a weak acid relative to the acid generator can be used as an acid diffusion control agent.
When an acid generator and an onium salt that generates an acid that is a relatively weak acid (preferably a weak acid having a pKa of more than −1) with respect to the acid generated from the acid generator are used in combination, actinic rays or radiation When the acid generated from the acid generator collides with an onium salt having an unreacted weak acid anion by irradiation, a weak acid is released by salt exchange to produce an onium salt having a strong acid anion. In this process, the strong acid is exchanged with a weak acid having a lower catalytic ability, so that the acid is apparently deactivated and the acid diffusion can be controlled.
 酸発生剤に対して相対的に弱酸となるオニウム塩としては、下記一般式(d1‐1)~(d1‐3)で表される化合物であることが好ましい。 The onium salt that is a weak acid relative to the acid generator is preferably a compound represented by the following general formulas (d1-1) to (d1-3).
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 式中、R51は置換基を有していてもよい炭化水素基であり、Z2cは置換基を有していてもよい炭素数1~30の炭化水素基(ただし、Sに隣接する炭素にはフッ素原子は置換されていないものとする)であり、R52は有機基であり、Yは直鎖状、分岐鎖状若しくは環状のアルキレン基又はアリーレン基であり、Rfはフッ素原子を含む炭化水素基であり、Mは各々独立に、スルホニウムカチオン又はヨードニウムカチオンである。 In the formula, R 51 represents a hydrocarbon group which may have a substituent, and Z 2c represents a hydrocarbon group having 1 to 30 carbon atoms which may have a substituent (however, a carbon adjacent to S). R 52 is an organic group, Y 3 is a linear, branched or cyclic alkylene group or an arylene group, and Rf is a fluorine atom. Each of the M + is independently a sulfonium cation or an iodonium cation.
 Mとして表されるスルホニウムカチオン又はヨードニウムカチオンの好ましい例としては、酸発生剤(ZI)で例示したスルホニウムカチオン及び(ZII)で例示したヨードニウムカチオンを挙げることができる。 Preferable examples of the sulfonium cation or iodonium cation represented by M + include the sulfonium cation exemplified for the acid generator (ZI) and the iodonium cation exemplified for (ZII).
 一般式(d1-1)で表される化合物のアニオン部の好ましい例としては、特開2012-242799号公報の段落〔0198〕に例示された構造を挙げることが出来る。
 一般式(d1‐2)で表される化合物のアニオン部の好ましい例としては、特開2012-242799号公報の段落〔0201〕に例示された構造を挙げることが出来る。
 一般式(d1‐3)で表される化合物のアニオン部の好ましい例としては、特開2012-242799号公報の段落〔0209〕及び〔0210〕に例示された構造を挙げることが出来る。
Preferable examples of the anion moiety of the compound represented by the general formula (d1-1) include the structures exemplified in paragraph [0198] of JP2012-242799A.
Preferable examples of the anion moiety of the compound represented by the general formula (d1-2) include the structures exemplified in paragraph [0201] of JP2012-242799A.
Preferable examples of the anion moiety of the compound represented by the general formula (d1-3) include the structures exemplified in paragraphs [0209] and [0210] of JP2012-242799A.
 酸発生剤に対して相対的に弱酸となるオニウム塩は、カチオン部位とアニオン部位を同一分子内に有し、かつ、カチオン部位とアニオン部位が共有結合により連結している化合物(以下、「化合物(D-2)」ともいう。)であってもよい。
 化合物(D-2)としては、下記一般式(C-1)~(C-3)のいずれかで表される化合物であることが好ましい。
An onium salt that is a weak acid relative to an acid generator is a compound having a cation moiety and an anion moiety in the same molecule, and the cation moiety and the anion moiety being linked by a covalent bond (hereinafter referred to as “compound”). (Also referred to as (D-2) ”).
The compound (D-2) is preferably a compound represented by any one of the following general formulas (C-1) to (C-3).
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 一般式(C-1)~(C-3)中、
 R、R、Rは、炭素数1以上の置換基を表す。
 Lは、カチオン部位とアニオン部位を連結する2価の連結基又は単結合を表す。
 -Xは、-COO、-SO 、-SO 、-N-Rから選択されるアニオン部位を表す。Rは、隣接するN原子との連結部位に、カルボニル基:-C(=O)-、スルホニル基:-S(=O)-、スルフィニル基:-S(=O)-を有する1価の置換基を表す。
 R、R、R、R、Lは互いに結合して環構造を形成してもよい。また、(C-3)において、R~Rのうち2つを合わせて、N原子と2重結合を形成してもよい。
In general formulas (C-1) to (C-3),
R 1 , R 2 and R 3 represent a substituent having 1 or more carbon atoms.
L 1 represents a divalent linking group or a single bond linking the cation moiety and the anion moiety.
-X - it is, -COO -, -SO 3 - represents an anion portion selected from -R 4 -, -SO 2 -, -N. R 4 is a group having a carbonyl group: —C (═O) —, a sulfonyl group: —S (═O) 2 —, and a sulfinyl group: —S (═O) — at the site of connection with the adjacent N atom. Represents a valent substituent.
R 1 , R 2 , R 3 , R 4 and L 1 may be bonded to each other to form a ring structure. In (C-3), two of R 1 to R 3 may be combined to form a double bond with the N atom.
 R~Rにおける炭素数1以上の置換基としては、アルキル基、シクロアルキル基、アリール基、アルキルオキシカルボニル基、シクロアルキルオキシカルボニル基、アリールオキシカルボニル基、アルキルアミノカルボニル基、シクロアルキルアミノカルボニル基、アリールアミノカルボニル基などが挙げられる。好ましくは、アルキル基、シクロアルキル基、アリール基である。 Examples of the substituent having 1 or more carbon atoms in R 1 to R 3 include alkyl group, cycloalkyl group, aryl group, alkyloxycarbonyl group, cycloalkyloxycarbonyl group, aryloxycarbonyl group, alkylaminocarbonyl group, cycloalkylamino A carbonyl group, an arylaminocarbonyl group, etc. are mentioned. Preferably, they are an alkyl group, a cycloalkyl group, and an aryl group.
 2価の連結基としてのLは、直鎖若しくは分岐鎖状アルキレン基、シクロアルキレン基、アリーレン基、カルボニル基、エーテル結合、エステル結合、アミド結合、ウレタン結合、ウレア結合、及びこれらの2種以上を組み合わせてなる基等が挙げられる。Lは、より好ましくは、アルキレン基、アリーレン基、エーテル結合、エステル結合、及びこれらの2種以上を組み合わせてなる基である。
 一般式(C-1)で表される化合物の好ましい例としては、特開2013-6827号公報の段落〔0037〕~〔0039〕及び特開2013-8020号公報の段落〔0027〕~〔0029〕に例示された化合物を挙げることが出来る。
 一般式(C-2)で表される化合物の好ましい例としては、特開2012-189977号公報の段落〔0012〕~〔0013〕に例示された化合物を挙げることが出来る。
 一般式(C-3)で表される化合物の好ましい例としては、特開2012-252124号公報の段落〔0029〕~〔0031〕に例示された化合物を挙げることが出来る。
L 1 as the divalent linking group is a linear or branched alkylene group, cycloalkylene group, arylene group, carbonyl group, ether bond, ester bond, amide bond, urethane bond, urea bond, and two types thereof. Examples include groups formed by combining the above. L 1 is more preferably an alkylene group, an arylene group, an ether bond, an ester bond, or a group formed by combining two or more of these.
Preferable examples of the compound represented by the general formula (C-1) include paragraphs [0037] to [0039] of JP2013-6827A and paragraphs [0027] to [0029] of JP2013-8020A. ] Can be mentioned.
Preferable examples of the compound represented by the general formula (C-2) include compounds exemplified in paragraphs [0012] to [0013] of JP2012-189977A.
Preferable examples of the compound represented by the general formula (C-3) include the compounds exemplified in paragraphs [0029] to [0031] of JP 2012-252124 A.
<界面活性剤>
 平坦化膜形成用組成物は、製膜性、平坦化膜の密着性、現像欠陥低減等の観点から、さらに界面活性剤を含有することが好ましい。
<Surfactant>
The planarization film-forming composition preferably further contains a surfactant from the viewpoints of film-forming properties, planarization film adhesion, development defect reduction, and the like.
 界面活性剤の具体的としては、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフェノールエーテル、ポリオキシエチレンノニルフェノールエーテル等のポリオキシエチレンアルキルアリルエーテル類、ポリオキシエチレン・ポリオキシプロピレンブロックコポリマー類、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタントリオレエート、ソルビタントリステアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテ-ト、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル類等のノニオン系界面活性剤、エフトップEF301、EF303、EF352(新秋田化成(株)製)、メガファックF171、F173(大日本インキ化学工業(株)製)、フロラ-ドFC430、FC431(住友スリーエム(株)製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子(株)製)、トロイゾルS-366(トロイケミカル(株)製)等のフッ素系界面活性剤又はシリコン系界面活性剤、オルガノシロキサンポリマーKP341(信越化学工業(株)製)やアクリル酸系もしくはメタクリル酸系(共)重合ポリフローNo.75、No.95(共栄社油脂化学工業(株)製)等を挙げることができる。これらの界面活性剤の配合量は、本発明の組成物中の固形分100質量部当たり、通常、2質量部以下、好ましくは1質量部以下である。
 これらの界面活性剤は単独で添加してもよいし、また、いくつかの組み合わせで添加することもできる。
Specific examples of the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene alkyl ethers such as polyoxyethylene oleyl ether, polyoxyethylene octylphenol ether, polyoxyethylene Polyoxyethylene alkyl allyl ethers such as nonylphenol ether, polyoxyethylene / polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, sorbitan tristearate Sorbitan fatty acid esters such as rate, polyoxyethylene sorbitan monolaurate, polyoxyethylene Nonionic surfactants such as polyoxyethylene sorbitan fatty acid esters such as bitane monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tristearate, Ftop EF301, EF303, EF352 (manufactured by Shin-Akita Kasei Co., Ltd.), Megafac F171, F173 (manufactured by Dainippon Ink and Chemicals), Florad FC430, FC431 (manufactured by Sumitomo 3M), Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.), Troysol S-366 (manufactured by Troy Chemical Co., Ltd.), etc. Hexane polymer KP341 (manufactured by Shin-Etsu Chemical Co.) and acrylic or methacrylic acid-based (co) polymer Polyflow No. 75, no. 95 (manufactured by Kyoeisha Yushi Chemical Co., Ltd.). The compounding amount of these surfactants is usually 2 parts by mass or less, preferably 1 part by mass or less per 100 parts by mass of the solid content in the composition of the present invention.
These surfactants may be added alone or in some combination.
 なお、界面活性剤としては、フッ素系及び/又はシリコン系界面活性剤(フッ素系界面活性剤及びシリコン系界面活性剤、フッ素原子と珪素原子の両方を含有する界面活性剤)のいずれか、あるいは2種以上を含有することが好ましい。
 これらの界面活性剤として、例えば特開昭62-36663号公報、特開昭61-226746号公報、特開昭61-226745号公報、特開昭62-170950号公報、特開昭63-34540号公報、特開平7-230165号公報、特開平8-62834号公報、特開平9-54432号公報、特開平9-5988号公報、特開2002-277862号公報、米国特許第5405720号明細書、同5360692号明細書、同5529881号明細書、同5296330号明細書、同5436098号明細書、同5576143号明細書、同 5294511号明細書、同5824451号明細書記載の界面活性剤を挙げることができ、下記市販の界面活性剤をそのまま用いることもできる。
 使用できる市販の界面活性剤として、例えばエフトップEF301、EF303、(新秋田化成(株)製)、フロラードFC430、431(住友スリーエム(株)製)、メガファックF171、F173、F176、F189、R08(大日本インキ化学工業(株)製)、サーフロンS-382、SC101、102、103、104、105、106(旭硝子(株)製)、トロイゾルS-366(トロイケミカル(株)製)等のフッ素系界面活性剤又はシリコン系界面活性剤を挙げることができる。またポリシロキサンポリマーKP-341(信越化学工業(株)製)もシリコン系界面活性剤として用いることができる。
The surfactant is any one of fluorine-based and / or silicon-based surfactants (fluorine-based surfactants and silicon-based surfactants, surfactants containing both fluorine atoms and silicon atoms), or It is preferable to contain 2 or more types.
As these surfactants, for example, JP-A-62-36663, JP-A-61-226746, JP-A-61-226745, JP-A-62-170950, JP-A-63-34540 No. 7, JP-A-7-230165, JP-A-8-62834, JP-A-9-54432, JP-A-9-5988, JP-A 2002-277862, US Pat. No. 5,405,720. No. 5,360,692, No. 5,529,881, No. 5,296,330, No. 5,543,098, No. 5,576,143, No. 5,294,511, No. 5,824,451. The following commercially available surfactants can also be used as they are.
Examples of commercially available surfactants that can be used include F-top EF301, EF303 (manufactured by Shin-Akita Kasei Co., Ltd.), Florard FC430, 431 (manufactured by Sumitomo 3M Co., Ltd.), MegaFuck F171, F173, F176, F189, R08 (Dainippon Ink Chemical Co., Ltd.), Surflon S-382, SC101, 102, 103, 104, 105, 106 (Asahi Glass Co., Ltd.), Troisol S-366 (Troy Chemical Co., Ltd.), etc. Fluorine type surfactant or silicon type surfactant can be mentioned. Polysiloxane polymer KP-341 (manufactured by Shin-Etsu Chemical Co., Ltd.) can also be used as a silicon-based surfactant.
 また、界面活性剤としては、上記に示すような公知のものの他に、テロメリゼーション法(テロマー法ともいわれる)もしくはオリゴメリゼーション法(オリゴマー法ともいわれる)により製造されたフルオロ脂肪族化合物から導かれたフルオロ脂肪族基を有する重合体を用いた界面活性剤を用いることが出来る。フルオロ脂肪族化合物は、特開2002-90991号公報に記載された方法によって合成することが出来る。 In addition to the known surfactants described above, surfactants are derived from fluoroaliphatic compounds produced by the telomerization method (also referred to as the telomer method) or the oligomerization method (also referred to as the oligomer method). A surfactant using a polymer having a fluoroaliphatic group can be used. The fluoroaliphatic compound can be synthesized by the method described in JP-A-2002-90991.
 フルオロ脂肪族基を有する重合体としては、フルオロ脂肪族基を有するモノマーと(ポリ(オキシアルキレン))アクリレート及び/又は(ポリ(オキシアルキレン))メタクリレートとの共重合体が好ましく、不規則に分布しているものでも、ブロック共重合していてもよい。また、ポリ(オキシアルキレン)基としては、ポリ(オキシエチレン)基、ポリ(オキシプロピレン)基、ポリ(オキシブチレン)基などが挙げられ、また、ポリ(オキシエチレンとオキシプロピレンとオキシエチレンとのブロック連結体)やポリ(オキシエチレンとオキシプロピレンとのブロック連結体)基など同じ鎖長内に異なる鎖長のアルキレンを有するようなユニットでもよい。さらに、フルオロ脂肪族基を有するモノマーと(ポリ(オキシアルキレン))アクリレート(又はメタクリレート)との共重合体は2元共重合体ばかりでなく、異なる2種以上のフルオロ脂肪族基を有するモノマーや、異なる2種以上の(ポリ(オキシアルキレン))アクリレート(又はメタクリレート)などを同時に共重合した3元系以上の共重合体でもよい。 As the polymer having a fluoroaliphatic group, a copolymer of a monomer having a fluoroaliphatic group and (poly (oxyalkylene)) acrylate and / or (poly (oxyalkylene)) methacrylate is preferable and distributed irregularly. Or may be block copolymerized. Examples of the poly (oxyalkylene) group include a poly (oxyethylene) group, a poly (oxypropylene) group, a poly (oxybutylene) group, and the like, and a poly (oxyethylene, oxypropylene, and oxyethylene group). A unit having different chain lengths in the same chain length, such as a block linked body) or a poly (block linked body of oxyethylene and oxypropylene) group, may be used. Furthermore, a copolymer of a monomer having a fluoroaliphatic group and (poly (oxyalkylene)) acrylate (or methacrylate) is not only a binary copolymer but also a monomer having two or more different fluoroaliphatic groups, Further, it may be a ternary or higher copolymer obtained by simultaneously copolymerizing two or more different (poly (oxyalkylene)) acrylates (or methacrylates).
 例えば、市販の界面活性剤として、メガファックF178、F-470、F-473、F-475、F-476、F-472(大日本インキ化学工業(株)製)を挙げることができる。さらに、C613基を有するアクリレート(又はメタクリレート)と(ポリ(オキシアルキレン))アクリレート(又はメタクリレート)との共重合体、C613基を有するアクリレート(又はメタクリレート)と(ポリ(オキシエチレン))アクリレート(又はメタクリレート)と(ポリ(オキシプロピレン))アクリレート(又はメタクリレート)との共重合体、C817基を有するアクリレート(又はメタクリレート)と(ポリ(オキシアルキレン))アクリレート(又はメタクリレート)との共重合体、C817基を有するアクリレート(又はメタクリレート)と(ポリ(オキシエチレン))アクリレート(又はメタクリレート)と(ポリ(オキシプロピレン))アクリレート(又はメタクリレート)との共重合体、などを挙げることができる。 For example, as a commercially available surfactant, Megafac F178, F-470, F-473, F-475, F-476, F-472 (manufactured by Dainippon Ink & Chemicals, Inc.) can be mentioned. Further, a copolymer of an acrylate (or methacrylate) having a C 6 F 13 group and (poly (oxyalkylene)) acrylate (or methacrylate), an acrylate (or methacrylate) having a C 6 F 13 group and (poly (oxy) (Ethylene)) acrylate (or methacrylate) and (poly (oxypropylene)) acrylate (or methacrylate) copolymer, acrylate (or methacrylate) and (poly (oxyalkylene)) acrylate having C 8 F 17 groups (or Copolymer of acrylate (or methacrylate), (poly (oxyethylene)) acrylate (or methacrylate), and (poly (oxypropylene)) acrylate (or methacrylate) having a C 8 F 17 group Coalesce, etc. Can.
 界面活性剤の使用量は、平坦化膜形成用組成物の全固形分に対して、0.0001~6質量%であることが好ましく、0.001~4質量%であることがより好ましい。 The amount of the surfactant used is preferably 0.0001 to 6% by mass, and more preferably 0.001 to 4% by mass, based on the total solid content of the flattening film forming composition.
<溶剤>
 平坦化膜形成用組成物は、塗布性の観点から溶剤を含有することが好ましい。
 組成物を調製する際に使用することができる溶剤としては、例えば、アルキレングリコールモノアルキルエーテルカルボキシレート、アルキレングリコールモノアルキルエーテル、乳酸アルキルエステル、アルコキシプロピオン酸アルキル、環状ラクトン(好ましくは炭素数4~10)、環を有してもよいモノケトン化合物(好ましくは炭素数4~10)、アルキレンカーボネート、アルコキシ酢酸アルキル、ピルビン酸アルキル等の有機溶剤を挙げることができる。
 これらの溶剤の具体例は、米国特許出願公開2008/0187860号明細書<0441>~<0455>に記載のもの、及び、酢酸イソアミル、ブタン酸ブチル、2-ヒドロキシイソ酪酸メチルを挙げることができる。
<Solvent>
The planarization film-forming composition preferably contains a solvent from the viewpoint of applicability.
Solvents that can be used in preparing the composition include, for example, alkylene glycol monoalkyl ether carboxylates, alkylene glycol monoalkyl ethers, alkyl lactate esters, alkyl alkoxypropionates, cyclic lactones (preferably having 4 to 4 carbon atoms). 10), an organic solvent such as a monoketone compound (preferably having 4 to 10 carbon atoms) which may have a ring, alkylene carbonate, alkyl alkoxyacetate, alkyl pyruvate and the like.
Specific examples of these solvents include those described in US Patent Application Publication No. 2008/0187860 <0441> to <0455>, and isoamyl acetate, butyl butanoate, and methyl 2-hydroxyisobutyrate. .
 本発明においては、有機溶剤として構造中に水酸基を含有する溶剤と、水酸基を含有しない溶剤とを混合した混合溶剤を使用してもよい。
 水酸基を含有する溶剤、水酸基を含有しない溶剤としては前述の例示化合物が適宜選択可能であり、水酸基を含有する溶剤としては、アルキレングリコールモノアルキルエーテル、乳酸アルキル等が好ましく、プロピレングリコールモノメチルエーテル(PGME、別名1-メトキシ-2-プロパノール)、乳酸エチルがより好ましい。また、水酸基を含有しない溶剤としては、アルキレングリコールモノアルキルエーテルアセテート、アルキルアルコキシプロピオネート、環を含有してもよいモノケトン化合物、環状ラクトン、酢酸アルキルなどが好ましく、これらの内でもプロピレングリコールモノメチルエーテルアセテート(PGMEA、別名1-メトキシ-2-アセトキシプロパン)、エチルエトキシプロピオネート、2-ヘプタノン、γ-ブチロラクトン、シクロヘキサノン、酢酸ブチルが特に好ましく、プロピレングリコールモノメチルエーテルアセテート、エチルエトキシプロピオネート、2-ヘプタノンが最も好ましい。
 水酸基を含有する溶剤と水酸基を含有しない溶剤との混合比(質量)は、1/99~99/1、好ましくは10/90~90/10、更に好ましくは20/80~60/40である。水酸基を含有しない溶剤を50質量%以上含有する混合溶剤が塗布均一性の点で特に好ましい。
 溶剤は、プロピレングリコールモノメチルエーテルアセテートを含むことが好ましい。
In this invention, you may use the mixed solvent which mixed the solvent which contains a hydroxyl group in a structure, and the solvent which does not contain a hydroxyl group as an organic solvent.
As the solvent containing a hydroxyl group and the solvent not containing a hydroxyl group, the above-mentioned exemplary compounds can be appropriately selected. As the solvent containing a hydroxyl group, alkylene glycol monoalkyl ether, alkyl lactate or the like is preferable, and propylene glycol monomethyl ether (PGME). , Also known as 1-methoxy-2-propanol), ethyl lactate is more preferred. Further, as the solvent not containing a hydroxyl group, alkylene glycol monoalkyl ether acetate, alkyl alkoxypropionate, monoketone compound which may contain a ring, cyclic lactone, alkyl acetate and the like are preferable, and among these, propylene glycol monomethyl ether Acetate (PGMEA, also known as 1-methoxy-2-acetoxypropane), ethyl ethoxypropionate, 2-heptanone, γ-butyrolactone, cyclohexanone, butyl acetate are particularly preferred, propylene glycol monomethyl ether acetate, ethyl ethoxypropionate, 2 -Heptanone is most preferred.
The mixing ratio (mass) of the solvent containing a hydroxyl group and the solvent not containing a hydroxyl group is 1/99 to 99/1, preferably 10/90 to 90/10, more preferably 20/80 to 60/40. . A mixed solvent containing 50% by mass or more of a solvent not containing a hydroxyl group is particularly preferred from the viewpoint of coating uniformity.
The solvent preferably includes propylene glycol monomethyl ether acetate.
 溶剤を含有する場合の含有量としては、特に限定されず、平坦化膜形成用組成物の固形分濃度が0.1~30質量%となることが好ましく、1~20質量%となることがさらに好ましい。平坦化膜形成用組成物の固形分濃度を上記範囲内とすることで、段差基板に対する塗布性が向上する。 The content in the case of containing a solvent is not particularly limited, and the solid content concentration of the composition for forming a flattened film is preferably 0.1 to 30% by mass, and preferably 1 to 20% by mass. Further preferred. The application | coating property with respect to a level | step difference board | substrate improves by making solid content concentration of the composition for planarization film formation into the said range.
<他の成分>
 本発明の平坦化膜形成用組成物が樹脂(A1)を含有する場合、平坦化膜形成用組成物が架橋剤を含有しないこと(すなわち、平坦化膜形成用組成物の全固形分に対する架橋剤の含有量が0質量%であること)、または、平坦化膜形成用組成物の全固形分に対して5質量%以下含有することが好ましい。すなわち、本発明の平坦化膜形成用組成物中の架橋剤の含有量は、0~5質量%であることが好ましく、0~3質量%であることがより好ましく、0~1質量%であることがさらに好ましく、全く含有しないこと(0質量%)が特に好ましい。
 このように、本発明の平坦化膜形成用組成物が樹脂(A1)を含有する場合、架橋剤の含有量が0~5質量%であることで、平坦化膜形成用組成物を用いて得られるレジスト膜の硬化速度を低下できるので、段差基板の凸部に設けられたレジスト膜の除去性が良好となり、平坦化膜の平坦性がより向上する。
 架橋剤としては、具体的には、特開2015-68860号公報の段落0450、0479および0485に記載の架橋剤が挙げられる。
 一方、本発明の平坦化膜形成用組成物が樹脂(A2)を含有する場合、平坦化膜形成用組成物は、平坦化膜形成用組成物の全固形分に対して、架橋剤を5質量%以下含有することが好ましく、0.1~5質量%含有することがより好ましく、0.3~4質量%であることがさらに好ましく、0.5~3質量%であることが特に好ましい。これにより、平坦化膜形成用組成物を用いて得られるレジスト膜の硬化速度を低下できるので、段差基板の凸部に設けられたレジスト膜の除去性が良好となり、平坦化膜の平坦性がより向上する。
<Other ingredients>
When the flattening film-forming composition of the present invention contains the resin (A1), the flattening film-forming composition does not contain a cross-linking agent (that is, crosslinking with respect to the total solid content of the flattening film-forming composition). It is preferable that the content of the agent is 0% by mass) or 5% by mass or less based on the total solid content of the composition for flattening film formation. That is, the content of the crosslinking agent in the planarizing film-forming composition of the present invention is preferably 0 to 5% by mass, more preferably 0 to 3% by mass, and 0 to 1% by mass. More preferably, it is particularly preferable that it is not contained at all (0% by mass).
Thus, when the composition for planarization film formation of this invention contains resin (A1), content of a crosslinking agent is 0-5 mass%, and the composition for planarization film formation is used. Since the curing speed of the resulting resist film can be reduced, the removability of the resist film provided on the convex portion of the stepped substrate is improved, and the flatness of the planarizing film is further improved.
Specific examples of the crosslinking agent include the crosslinking agents described in paragraphs 0450, 0479 and 0485 of JP-A-2015-68860.
On the other hand, when the composition for planarization film formation of this invention contains resin (A2), the composition for planarization film formation uses 5 crosslinking agents with respect to the total solid of the composition for planarization film formation. Preferably, the content is 0.1 to 5% by mass, more preferably 0.3 to 4% by mass, and particularly preferably 0.5 to 3% by mass. . As a result, the curing rate of the resist film obtained by using the planarizing film-forming composition can be reduced, so that the resist film provided on the convex portion of the stepped substrate has good removability, and the flatness of the planarizing film is improved. More improved.
 本発明の組成物、及び、その他使用される各種材料(例えば、現像液、リンス液など)は、金属等の不純物(固体状の金属及び金属イオン)を含まないことが好ましい。金属不純物成分としては、例えば、Na、K、Ca、Fe、Cu、Mn、Mg、Al、Cr、Ni、Zn、Ag、Sn、Pb、および、Liを挙げることができる。これら材料に含まれる不純物の合計含有量としては、1ppm以下が好ましく、10ppb以下がより好ましく、100ppt以下がさらに好ましく、10ppt以下が特に好ましく、1ppt以下が最も好ましい。
 上記各種材料から金属等の不純物を除去する方法としては、例えば、フィルターを用いた濾過を挙げることができる。フィルター孔径としては、ポアサイズ10nm以下が好ましく、5nm以下がより好ましく、3nm以下がさらに好ましい。フィルターの材質としては、ポリテトラフロロエチレン製、ポリエチレン製またはナイロン製のフィルターが好ましい。フィルターは、これらの材質とイオン交換メディアを組み合わせた複合材料であってもよい。フィルターは、有機溶剤であらかじめ洗浄したものを用いてもよい。フィルター濾過工程では、複数種類のフィルターを直列又は並列に接続して用いてもよい。複数種類のフィルターを使用する場合は、孔径及び/又は材質が異なるフィルターを組み合わせて使用してもよい。また、各種材料を複数回濾過してもよく、複数回濾過する工程が循環濾過工程であってもよい。
 また、上記各種材料に含まれる金属等の不純物を低減する方法としては、各種材料を構成する原料として金属含有量が少ない原料を選択する方法、各種材料を構成する原料に対してフィルター濾過を行う方法、および、装置内をテフロン(登録商標)でライニングする等してコンタミネーションを可能な限り抑制した条件下で蒸留を行う方法等を挙げることができる。各種材料を構成する原料に対して行うフィルター濾過における好ましい条件は、上述した条件と同様である。
 フィルター濾過の他、吸着材による不純物の除去を行ってもよく、フィルター濾過と吸着材を組み合わせて使用してもよい。吸着材としては、公知の吸着材を用いることができ、例えば、シリカゲル、ゼオライトなどの無機系吸着材、ならびに、活性炭などの有機系吸着材を使用することができる。
 上記各種材料に含まれる金属等の不純物を低減するためには、製造工程における金属不純物の混入を防止することが必要である。製造装置から金属不純物が十分に除去されたかどうかは、製造装置の洗浄に使用された洗浄液中に含まれる金属成分の含有量を測定することで確認することができる。使用後の洗浄液に含まれる金属成分の含有量は、100ppt(parts per trillion)以下がより好ましく、10ppt以下がさらに好ましく、1ppt以下が特に好ましい。
It is preferable that the composition of the present invention and other various materials used (for example, a developing solution, a rinsing solution, etc.) do not contain impurities such as metals (solid metal and metal ions). Examples of the metal impurity component include Na, K, Ca, Fe, Cu, Mn, Mg, Al, Cr, Ni, Zn, Ag, Sn, Pb, and Li. The total content of impurities contained in these materials is preferably 1 ppm or less, more preferably 10 ppb or less, further preferably 100 ppt or less, particularly preferably 10 ppt or less, and most preferably 1 ppt or less.
Examples of a method for removing impurities such as metals from the various materials include filtration using a filter. The filter pore diameter is preferably 10 nm or less, more preferably 5 nm or less, and further preferably 3 nm or less. As a material of the filter, a filter made of polytetrafluoroethylene, polyethylene or nylon is preferable. The filter may be a composite material obtained by combining these materials and ion exchange media. A filter that has been washed in advance with an organic solvent may be used. In the filter filtration step, a plurality of types of filters may be connected in series or in parallel. When a plurality of types of filters are used, filters having different pore diameters and / or materials may be used in combination. Moreover, various materials may be filtered a plurality of times, and the step of filtering a plurality of times may be a circulating filtration step.
In addition, as a method for reducing impurities such as metals contained in the above various materials, a method of selecting a raw material having a low metal content as a raw material constituting various materials, and performing filter filtration on the raw materials constituting various materials. Examples thereof include a method and a method in which distillation is performed under a condition in which contamination is suppressed as much as possible by lining the inside of the apparatus with Teflon (registered trademark). The preferable conditions for filter filtration performed on the raw materials constituting the various materials are the same as those described above.
In addition to filter filtration, impurities may be removed by an adsorbent, or a combination of filter filtration and adsorbent may be used. As the adsorbent, known adsorbents can be used. For example, inorganic adsorbents such as silica gel and zeolite, and organic adsorbents such as activated carbon can be used.
In order to reduce impurities such as metals contained in the various materials, it is necessary to prevent metal impurities from being mixed in the manufacturing process. Whether or not the metal impurities have been sufficiently removed from the manufacturing apparatus can be confirmed by measuring the content of the metal component contained in the cleaning liquid used for cleaning the manufacturing apparatus. The content of the metal component contained in the cleaning liquid after use is more preferably 100 ppt (parts per trigger) or less, further preferably 10 ppt or less, and particularly preferably 1 ppt or less.
<平坦化膜形成用組成物の調製方法>
 本発明の平坦化膜形成用組成物の調製方法(製造方法)は、特に制限されず、公知の方法を採用できる。例えば、溶剤中に所定量の樹脂(A)および光酸発生剤(B)(さらに、必要に応じて上述した各成分)を添加して、適宜攪拌処理を施すことにより、本発明の平坦化膜形成用組成物を得ることができる。また、必要に応じて、所望のタイミングで濾過等の処理を行ってもよい。
<Method for Preparing Composition for Forming Flattened Film>
The preparation method (manufacturing method) of the composition for planarization film formation of this invention is not restrict | limited in particular, A well-known method is employable. For example, the planarization of the present invention can be achieved by adding a predetermined amount of the resin (A) and the photoacid generator (B) (and the above-described components as necessary) to the solvent, and appropriately stirring the mixture. A film-forming composition can be obtained. Moreover, you may process filtration etc. at a desired timing as needed.
[平坦化膜]
 本発明の平坦化膜は、上述した平坦化膜形成用組成物を用いて得られる。本発明の平坦化膜は、段差基板上に設けられ、段差基板の表面の凹凸を平坦化するために用いられる。
 ここで、「平坦化膜の設けられた段差基板が平坦である」とは、走査型電子顕微鏡を用いて段差基板の断面を観察したときに、段差基板の上面を基準として、平坦化膜の凹凸が0~300Åの範囲内にあることをいう。図1を例にして説明すると、段差基板10にレジスト膜14が設けられる面(凸部13の上面)を基準面(0点)として、基準面からの平坦化膜の凹凸の距離(凸部13の上面に対して垂直な方向の長さ)を測定し、この距離が0~300Åの範囲内にあると、平坦化膜が平坦であるといえる。
[Planarization film]
The planarization film of the present invention is obtained using the above-described composition for planarization film formation. The planarizing film of the present invention is provided on a stepped substrate and is used for planarizing unevenness on the surface of the stepped substrate.
Here, “the stepped substrate provided with the flattening film is flat” means that when the cross section of the stepped substrate is observed using a scanning electron microscope, the surface of the flattening film is based on the upper surface of the stepped substrate. It means that the unevenness is in the range of 0 to 300 mm. Referring to FIG. 1 as an example, the surface of the stepped substrate 10 on which the resist film 14 is provided (upper surface of the convex portion 13) is defined as a reference surface (0 point), and the distance (convex portion) of the planarization film from the reference surface. If the distance is within the range of 0 to 300 mm, the planarizing film can be said to be flat.
[電子デバイスの製造方法]
 本発明は、上述した平坦膜の製造方法を含む、電子デバイスの製造方法にも関する。例えば、本発明の平坦化膜の上層にレジスト下層膜(SOG:Spin on Glass)及び/又はフォトレジスト層を設けた後、フォトリソグラフィーによってパターンを形成することができる。レジスト下層膜形成用組成物及びフォトレジスト組成物としては、公知の材料を適宜用いることができる。
 本発明の電子デバイスの製造方法により製造される電子デバイスは、電気電子機器(家電、OA(Office Appliance)関連機器、メディア関連機器、光学用機器及び通信機器等)に、好適に搭載されるものである。
[Electronic device manufacturing method]
The present invention also relates to an electronic device manufacturing method including the flat film manufacturing method described above. For example, after a resist underlayer film (SOG: Spin on Glass) and / or a photoresist layer is provided on the planarization film of the present invention, a pattern can be formed by photolithography. As the resist underlayer film forming composition and the photoresist composition, known materials can be appropriately used.
An electronic device manufactured by the method for manufacturing an electronic device of the present invention is suitably mounted on an electric / electronic device (home appliance, OA (Office Appliance) -related device, media-related device, optical device, communication device, etc.). It is.
 以下、実施例を用いて、本発明を詳細に説明する。ただし、本発明はこれに限定されない。 Hereinafter, the present invention will be described in detail using examples. However, the present invention is not limited to this.
<平坦化膜形成用組成物の調製>
 下記第1表に示す成分を同表に示す割合(組成物全質量中の質量%)で溶剤に溶解させ、それぞれについてのレジスト溶液を調製し、これを1.0μmのポアサイズを有するUPE(ultra high molecular weight polyethylene)フィルターで濾過した。これにより、固形分濃度9.5質量%の平坦化膜形成用組成物(レジスト組成物)を調製した。
 なお、第1表に示すレジスト組成物は、いずれもネガ型である。
<Preparation of composition for flattening film formation>
The components shown in Table 1 below were dissolved in a solvent in the proportions shown in the same table (mass% in the total mass of the composition) to prepare resist solutions for each, and this was prepared as a UPE having a pore size of 1.0 μm (ultra High molecular weight polyethylene) filter. Thereby, a composition for forming a planarization film (resist composition) having a solid content concentration of 9.5% by mass was prepared.
All resist compositions shown in Table 1 are negative.
[規則26に基づく補充 04.04.2017] 
Figure WO-DOC-TABLE-1
[Supplement under rule 26 04.04.2017]
Figure WO-DOC-TABLE-1
 第1表中の樹脂の構造、各繰り返し単位のモル比、Mw(重量平均分子量)、Pd(分子量分布)、Tg(ガラス転移温度)を以下の第2表に示す。
 なお、「組成」欄中の各数値は、各樹脂中の繰り返し単位のモル比を表し、例えば、P-1においては、左側の繰り返し単位:右側の繰り返し単位=90:10を表す。
The structure of the resin in Table 1, the molar ratio of each repeating unit, Mw (weight average molecular weight), Pd (molecular weight distribution), and Tg (glass transition temperature) are shown in Table 2 below.
Each numerical value in the “Composition” column represents the molar ratio of the repeating units in each resin. For example, in P-1, the left repeating unit: the right repeating unit = 90: 10.
[規則26に基づく補充 04.04.2017] 
Figure WO-DOC-TABLE-2
[Supplement under rule 26 04.04.2017]
Figure WO-DOC-TABLE-2
[規則26に基づく補充 04.04.2017] 
Figure WO-DOC-TABLE-3
[Supplement under rule 26 04.04.2017]
Figure WO-DOC-TABLE-3
 第1表中、酸発生剤の構造は下記の通りである。 In Table 1, the structure of the acid generator is as follows.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 第1表中、酸拡散制御剤の構造は下記の通りである。 In Table 1, the structure of the acid diffusion controller is as follows.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 第1表中、添加剤A-1およびA-2の構造は下記の通りである。また、添加剤A-3は、DIC社製の「メガファック R41」(商品名)である。 In Table 1, the structures of the additives A-1 and A-2 are as follows. Additive A-3 is “Megafac R41” (trade name) manufactured by DIC.
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 第1表中、架橋剤の構造は以下の通りである。 In Table 1, the structure of the crosslinking agent is as follows.
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
 第1表中、溶剤は以下の通りである。
SL-1:プロピレングリコールモノメチルエーテルアセテート(PGMEA)
SL-2:プロピレングリコールモノメチルエーテル(PGME)
SL-3:シクロヘキサノン
SL-6:エチル3-エトキシプロピオネート(EEP)
In Table 1, the solvents are as follows.
SL-1: Propylene glycol monomethyl ether acetate (PGMEA)
SL-2: Propylene glycol monomethyl ether (PGME)
SL-3: Cyclohexanone SL-6: Ethyl 3-ethoxypropionate (EEP)
<評価試験>
(γ(コントラスト)評価方法)
 ヘキサメチルジシラザン処理を施したSi基板(Advanced Materials Technology社製)上に、上記で調製したレジスト組成物を塗布し、塗布したレジスト組成物を140℃で60秒間ベーク処理(Pre Bake;PB)をして、第3表に記載の厚みTの膜(レジスト膜)を形成した。
 次に、KrFエキシマレーザースキャナー(NA0.80)を用い、露光マスクを介さずに、レジスト膜が形成されたウエハに対して、露光量を1mJ/cmから0.8mJ/cm毎増やしながら99点露光を行った。
 その後、露光後のレジスト膜を130℃で60秒間のベーク処理(Post Exposure Bake;PEB)した。続いて、テトラメチルアンモニウムハイドロオキサイド水溶液(2.38質量%)で60秒間現像し、純水で30秒間リンスした後、スピン乾燥した。このようにして、γ測定用の実施例および比較例の各試験膜を得た。
 各試験膜について、99点の露光部の膜厚を測定し、膜厚(Å)を縦軸とし露光量(mJ/cm)を横軸とした直交座標に、各露光箇所での膜厚及び露光量に対応する点をプロットし、プロット図を作製した(図8参照)。
 得られたプロット図において、プロットされた点を結んで得られる線を作成し、線上の縦軸が厚みT×0.8の点と縦軸が厚みT×0.4の点とを結ぶ直線の傾きの絶対値をγ(Å・cm/mJ)として算出した。実施例および比較例の各試験膜のγの値を、第3表にまとめて示す。
<Evaluation test>
(Γ (contrast) evaluation method)
The resist composition prepared above is applied on a Si substrate (manufactured by Advanced Materials Technology) subjected to hexamethyldisilazane treatment, and the applied resist composition is baked at 140 ° C. for 60 seconds (Pre Bake; PB). Then, a film (resist film) having a thickness T described in Table 3 was formed.
Then, a KrF excimer laser scanner (NA0.80), without passing through the exposure mask, the wafer having a resist film formed, while the amount of exposure from 1 mJ / cm 2 increased every 0.8 mJ / cm 2 99-point exposure was performed.
After that, the exposed resist film was baked at 130 ° C. for 60 seconds (Post Exposure Bake; PEB). Subsequently, development was performed with an aqueous tetramethylammonium hydroxide solution (2.38 mass%) for 60 seconds, rinsed with pure water for 30 seconds, and then spin-dried. In this way, test films for Examples and Comparative Examples for measuring γ were obtained.
About each test film | membrane, the film thickness of an exposure part of 99 points | pieces is measured, and the film thickness in each exposure location is set to the orthogonal coordinate which used the film thickness (Å) as the vertical axis and the exposure amount (mJ / cm 2 ) as the horizontal axis. And the point corresponding to the exposure amount was plotted, and the plot figure was produced (refer FIG. 8).
In the obtained plot, a line obtained by connecting the plotted points is created, and the vertical axis on the line connects the point of thickness T × 0.8 and the vertical axis of the point of thickness T × 0.4. Was calculated as γ (の · cm 2 / mJ). Table 3 summarizes the values of γ of the test films of Examples and Comparative Examples.
(平坦性)
 上記レジスト組成物をスピンコート法により、配線溝(トレンチ:L/S=25nm/25nm,Height=100nm)を有するSiOウエハ基板(段差基板)上の全面に塗布した。塗布したレジスト組成物を第3表の条件にてホットプレート上でベーク処理(Pre Bake;PB)して、レジスト膜を形成した。
 次に、段差基板の凸部(配線溝の形成されていない部分)に対応する位置に配置されたマスクを介して、KrFエキシマレーザースキャナー(NA0.80)を用い、露光量40mJ/cmの条件でレジスト膜を露光した。
 その後、露光後のレジスト膜を第3表の条件にてベーク処理(Post Exposure Bake;PEB)した。続いて、第3表に記載の現像液によって第3表に記載の現像時間で現像して、純水で30秒間リンスした後、スピン乾燥した。なお、現像液としてnBA(n-ブタノール)を用いた例については、リンスを行わなかった。
 続いて、スピン乾燥後のレジスト膜を第3表の条件にてポストベーク処理(Post Bake)することにより、実施例および比較例の各平坦化膜を得た。
 走査型電子顕微鏡(日立ハイテク社製S-4800)を用いて、実施例および比較例の各平坦化膜の断面形状を観察し、以下の評価基準にしたがって平坦性の良し悪しを判断した。具体的には、図1を例にして説明すると、段差基板10にレジスト膜14が設けられる面(凸部13の上面)を基準面(0点)として、基準面からの平坦化膜の凹凸の距離(凸部13の上面に対して垂直な方向の長さの最大値)を測定した。
AA:基準面からの平坦化膜の凹凸の距離が0Å以上100Å以下
A:基準面からの平坦化膜の凹凸の距離が100Å超300Å以下
B:基準面からの平坦化膜の凹凸の距離が300Å超500Å以下
C:基準面からの平坦化膜の凹凸の距離が500Å超
(Flatness)
The resist composition was applied to the entire surface of a SiO 2 wafer substrate (stepped substrate) having wiring grooves (trench: L / S = 25 nm / 25 nm, Height = 100 nm) by spin coating. The applied resist composition was baked (Pre Bake; PB) on a hot plate under the conditions shown in Table 3 to form a resist film.
Next, using a KrF excimer laser scanner (NA 0.80) through a mask arranged at a position corresponding to the convex portion of the stepped substrate (portion where the wiring groove is not formed), the exposure amount is 40 mJ / cm 2 . The resist film was exposed under the conditions.
Thereafter, the exposed resist film was baked (Post Exposure Bake; PEB) under the conditions shown in Table 3. Subsequently, development was performed with the developer shown in Table 3 for the development time shown in Table 3, rinsed with pure water for 30 seconds, and then spin-dried. In the example using nBA (n-butanol) as the developer, rinsing was not performed.
Subsequently, each of the planarized films of Examples and Comparative Examples was obtained by subjecting the resist film after spin drying to post-bake treatment (Post Bake) under the conditions shown in Table 3.
Using a scanning electron microscope (S-4800, manufactured by Hitachi High-Tech Co., Ltd.), the cross-sectional shapes of the flattened films of Examples and Comparative Examples were observed, and whether the flatness was good or bad was judged according to the following evaluation criteria. Specifically, referring to FIG. 1 as an example, the surface of the stepped substrate 10 on which the resist film 14 is provided (the upper surface of the convex portion 13) is used as a reference surface (0 point), and the unevenness of the planarization film from the reference surface. (The maximum value of the length in the direction perpendicular to the upper surface of the convex portion 13).
AA: The distance of the unevenness of the planarization film from the reference surface is 0 mm or more and 100 mm or less A: The distance of the unevenness of the planarization film from the reference surface is more than 100 mm and 300 mm or less B: The distance of the unevenness of the planarization film from the reference surface is More than 300 mm and less than 500 mm C: The distance of the unevenness of the planarization film from the reference surface is more than 500 mm
 なお、第3表中の現像液の欄において、「TMAH」はテトラメチルアンモニウムハイドロオキサイドを意味し、「nBA」はn-ブタノールを意味する。 In the column of developer in Table 3, “TMAH” means tetramethylammonium hydroxide and “nBA” means n-butanol.
[規則26に基づく補充 04.04.2017] 
Figure WO-DOC-TABLE-4
[Supplement under rule 26 04.04.2017]
Figure WO-DOC-TABLE-4
 第3表の評価結果の通り、γの値が1000未満である場合(実施例)と、γの値が1000以上である場合(比較例)と、の対比から、γの値が1000未満である場合(実施例)には、段差基板上に平坦性に優れた平坦化膜を製造できた。このことから、γの値と、平坦化膜の平坦性と、が関連していることが示された。 From the comparison between the case where the value of γ is less than 1000 (Example) and the case where the value of γ is 1000 or more (Comparative Example) as shown in the evaluation results in Table 3, the value of γ is less than 1000. In some cases (Examples), a flattened film having excellent flatness could be produced on the stepped substrate. From this, it was shown that the value of γ is related to the flatness of the flattened film.
(膨潤)
 上述した「平坦性」と同様にして得られた実施例および比較例の各平坦化膜を用いて、以下の膨潤の評価試験を実施した。
 光干渉式膜厚測定装置VM-1020を用いて、実施例および比較例の各平坦化膜を、50℃に保温した膨潤評価液(PGMEA/PGME=70/30)に5分間浸した後の膨潤を観察し、以下の評価基準に従って平坦化膜の膨潤性を評価した。
 具体的には、図4を例にして説明すると、段差基板10に設けられた平坦化後のレジスト膜14Cの上面を基準面(0点)として、基準面から膨潤後の上面の距離(平坦化後のレジスト膜14Cの上面に対して垂直な方向の長さの最大値。なお、後述する第4表中において「ΔFT」(Å)として示した。)を測定した。
AA:膨潤評価液に浸した後のレジスト膜の上面と、基準面との距離が20Å以下
A:膨潤評価液に浸した後のレジスト膜の上面と、基準面との距離が20Å超50Å以下
B:膨潤評価液に浸した後のレジスト膜の上面と、基準面との距離が50Å超
(Swelling)
The following swelling evaluation tests were carried out using the flattened films of Examples and Comparative Examples obtained in the same manner as the “flatness” described above.
Using the optical interference type film thickness measuring device VM-1020, each flattened film of the example and the comparative example was immersed in a swelling evaluation liquid (PGMEA / PGME = 70/30) kept at 50 ° C. for 5 minutes. The swelling was observed, and the swelling property of the flattened film was evaluated according to the following evaluation criteria.
Specifically, referring to FIG. 4, the upper surface of the flattened resist film 14C provided on the stepped substrate 10 is defined as a reference surface (point 0), and the distance (flatness) from the reference surface to the upper surface after swelling. The maximum length in the direction perpendicular to the upper surface of the resist film 14C after the formation was measured (shown as “ΔFT” (Å) in Table 4 to be described later).
AA: The distance between the upper surface of the resist film after being immersed in the swelling evaluation liquid and the reference surface is 20 mm or less A: The distance between the upper surface of the resist film after being immersed in the swelling evaluation liquid and the reference surface is more than 20 mm and 50 mm or less. B: The distance between the upper surface of the resist film after being immersed in the swelling evaluation solution and the reference surface exceeds 50 mm.
 膨潤の評価試験の結果を第4表に示す。 The results of the swelling evaluation test are shown in Table 4.
[規則26に基づく補充 04.04.2017] 
Figure WO-DOC-TABLE-5
[Supplement under rule 26 04.04.2017]
Figure WO-DOC-TABLE-5
 実施例7(樹脂P-2)、実施例15(樹脂P-8)および実施例16(樹脂P-9)の対比により、フェノール性水酸基を有する繰り返し単位と、カルボン酸基を有する繰り返し単位と、を有する樹脂(実施例15の樹脂P-8、実施例16の樹脂P-9)を用いることで、平坦化膜の膨潤を抑制できる傾向にあることが示された。 By comparing Example 7 (Resin P-2), Example 15 (Resin P-8) and Example 16 (Resin P-9), a repeating unit having a phenolic hydroxyl group and a repeating unit having a carboxylic acid group It was shown that the swelling of the flattened film tends to be suppressed by using a resin having a succinic acid (resin P-8 of Example 15 and resin P-9 of Example 16).
10 段差基板
12 トレンチ(凹部)
13 凸部
14 レジスト膜
14a 凸部上膜
14b 凹部上膜
14A 露光後のレジスト膜
14B 露光後の凹部上膜
14C 平坦化膜
20 マスク
100 基板
120 レジスト膜
 
10 Stepped substrate 12 Trench (concave)
13 Convex part 14 Resist film 14a Convex part upper film 14b Concave part upper film 14A Resist film 14B after exposure Exposed part upper film 14C After exposure Flattening film 20 Mask 100 Substrate 120 Resist film

Claims (17)

  1.  表面に凹凸を有する段差基板の表面を平坦化する平坦化膜の製造方法であって、
     樹脂(A)および光酸発生剤(B)を含有する感活性光線性または感放射線性の平坦化膜形成用組成物を用いて、前記段差基板上に膜を形成する工程Aと、
     前記段差基板の凸部に対応する位置に配置されたマスクを介して、前記膜を露光する工程Bと、
     現像液を用いて、前記段差基板の前記凸部上に設けられた前記膜の少なくとも一部を除去して、平坦化膜を得る工程Cと、
    を有し、
     前記平坦化膜形成用組成物を用いて、シリコン基板上に厚みTの試験膜を形成した場合において、前記試験膜のγの値が1000未満である、平坦化膜の製造方法;
     ここで、前記γは、以下のγ算出方法により求められるものである;
     γ算出方法:シリコン基板上に形成された厚みTの前記試験膜に対して、KrFエキシマレーザーを用いて露光量を1mJ/cmから0.8mJ/cm毎増加させながら露光を99箇所行い、露光後の試験膜に対して130℃で60秒間ベーク処理を施し、その後、2.38質量%のテトラメチルアンモニウムハイドロオキサイド水溶液でベーク処理後の試験膜の一部を除去する除去処理を施し、除去処理後の試験膜の各露光箇所での膜厚を算出し、膜厚を縦軸とし露光量を横軸とした直交座標に、各露光箇所での膜厚及び露光量に対応する点をプロットし、前記プロットされた点を結んで得られる線を作成し、前記線上の縦軸が厚みT×0.8の点と縦軸が前記厚みT×0.4の点とを結ぶ直線の傾きの絶対値をγとし、γの単位はÅ・cm/mJである。
    A method for producing a planarizing film for planarizing the surface of a stepped substrate having irregularities on the surface,
    Step A of forming a film on the stepped substrate using the actinic ray-sensitive or radiation-sensitive planarizing film-forming composition containing the resin (A) and the photoacid generator (B);
    A step B of exposing the film through a mask disposed at a position corresponding to the convex portion of the stepped substrate;
    Using a developer, removing at least a portion of the film provided on the convex portion of the stepped substrate to obtain a planarization film; and
    Have
    A method for producing a planarization film, wherein a test film having a thickness T is formed on a silicon substrate using the composition for planarization film formation, wherein the value of γ of the test film is less than 1000;
    Here, γ is obtained by the following γ calculation method;
    γ calculation method: silicon relative to said test film formed thickness T on a substrate 99 places performs exposure while increasing every 0.8 mJ / cm 2 exposure amount from 1 mJ / cm 2 by using a KrF excimer laser Then, the exposed test film is baked at 130 ° C. for 60 seconds, and then a removal process is performed to remove a part of the test film after baking with an aqueous 2.38 mass% tetramethylammonium hydroxide solution. The film thickness at each exposure point of the test film after the removal treatment is calculated, and the point corresponding to the film thickness and the exposure amount at each exposure point on the orthogonal coordinates with the film thickness as the vertical axis and the exposure amount as the horizontal axis A line obtained by connecting the plotted points is created, and the vertical axis on the line connects the point of thickness T × 0.8 and the vertical axis of the point of thickness T × 0.4. The absolute value of the slope of γ is γ, and the unit of γ is Å ・m is 2 / mJ.
  2.  前記平坦化膜形成用組成物がネガ型である、請求項1に記載の平坦化膜の製造方法。 The method for producing a flattening film according to claim 1, wherein the composition for forming a flattening film is a negative type.
  3.  前記樹脂(A)が、酸の作用によって架橋する架橋性部位を2つ以上有する繰り返し単位を全繰り返し単位中0.5~30モル%含む樹脂(A1)、および、フェノール性水酸基を有する繰り返し単位を含む樹脂(A2)、の少なくとも一方を含む、請求項1または2に記載の平坦化膜の製造方法。 Resin (A1) in which the resin (A) contains 0.5 to 30 mol% of repeating units having two or more crosslinkable sites that are cross-linked by the action of an acid, and a repeating unit having a phenolic hydroxyl group The manufacturing method of the planarization film | membrane of Claim 1 or 2 containing at least one of resin (A2) containing this.
  4.  前記樹脂(A1)が酸分解性基を有する繰り返し単位を実質的に有さない、請求項3に記載の平坦化膜の製造方法。 The method for producing a planarizing film according to claim 3, wherein the resin (A1) has substantially no repeating unit having an acid-decomposable group.
  5.  前記樹脂(A1)に含まれる前記酸の作用によって架橋する架橋性部位が、ヒドロキシ基である、請求項3または4に記載の平坦化膜の製造方法。 The method for producing a flattened film according to claim 3 or 4, wherein the crosslinkable site crosslinked by the action of the acid contained in the resin (A1) is a hydroxy group.
  6.  前記樹脂(A1)がノボラック樹脂である、請求項3~5のいずれか1項に記載の平坦化膜の製造方法。 The method for producing a planarizing film according to any one of claims 3 to 5, wherein the resin (A1) is a novolac resin.
  7.  前記樹脂(A1)に含まれる前記酸の作用によって架橋する架橋性部位を2つ以上有する前記繰り返し単位が、ベンゼンジオール構造を有する、請求項3~6のいずれか1項に記載の平坦化膜の製造方法。 The planarizing film according to any one of claims 3 to 6, wherein the repeating unit having two or more crosslinkable sites that are crosslinked by the action of the acid contained in the resin (A1) has a benzenediol structure. Manufacturing method.
  8.  前記樹脂(A1)に含まれる前記酸の作用によって架橋する架橋性部位を2つ以上有する前記繰り返し単位が、レゾルシノール構造を有する、請求項3~7のいずれか1項に記載の平坦化膜の製造方法。 The planarizing film according to any one of claims 3 to 7, wherein the repeating unit having two or more crosslinkable sites crosslinked by the action of the acid contained in the resin (A1) has a resorcinol structure. Production method.
  9.  前記樹脂(A1)に含まれる前記酸の作用によって架橋する架橋性部位を2つ以上有する前記繰り返し単位が、ヒドロキノン構造を有する、請求項3~8のいずれか1項に記載の平坦化膜の製造方法。 The planarizing film according to any one of claims 3 to 8, wherein the repeating unit having two or more crosslinkable sites crosslinked by the action of the acid contained in the resin (A1) has a hydroquinone structure. Production method.
  10.  前記平坦化膜形成用組成物が架橋剤を含有しない、または、前記架橋剤を前記平坦化膜形成用組成物の全固形分に対して5質量%以下含有する、請求項1~9のいずれか1項に記載の平坦化膜の製造方法。 10. The planarizing film forming composition does not contain a crosslinking agent, or the crosslinking agent is contained in an amount of 5% by mass or less based on the total solid content of the planarizing film forming composition. 2. A method for producing a planarizing film according to claim 1.
  11.  前記樹脂(A)のガラス転移温度が、150℃以下である、請求項1~10のいずれか1項に記載の平坦化膜の製造方法。 The method for producing a planarizing film according to any one of claims 1 to 10, wherein the resin (A) has a glass transition temperature of 150 ° C or lower.
  12.  前記樹脂(A)の含有量が、前記平坦化膜形成用組成物の全固形分に対して、50~99質量%である、請求項1~11のいずれか1項に記載の平坦化膜の製造方法。 The planarizing film according to any one of claims 1 to 11, wherein a content of the resin (A) is 50 to 99 mass% with respect to a total solid content of the planarizing film forming composition. Manufacturing method.
  13.  前記平坦化膜形成用組成物が、さらに酸拡散制御剤を含有する、請求項1~12のいずれか1項に記載の平坦化膜の製造方法。 The method for producing a planarizing film according to any one of claims 1 to 12, wherein the composition for forming a planarizing film further contains an acid diffusion controller.
  14.  前記平坦化膜形成用組成物が、さらに界面活性剤を含有する、請求項1~13のいずれか1項に記載の平坦化膜の製造方法。 The method for producing a planarizing film according to any one of claims 1 to 13, wherein the composition for forming a planarizing film further contains a surfactant.
  15.  請求項1~14のいずれか1項に記載の平坦化膜の製造方法に用いられる、感活性光線性または感放射線性の平坦化膜形成用組成物であって、前記平坦化膜形成用組成物を用いて、シリコン基板上に厚みTの試験膜を形成した場合において、前記試験膜の前記γの値が1000未満である、平坦化膜形成用組成物。 An actinic ray-sensitive or radiation-sensitive planarizing film-forming composition used in the method for producing a planarizing film according to any one of claims 1 to 14, wherein the planarizing film-forming composition is used. When a test film having a thickness T is formed on a silicon substrate using an object, a composition for forming a flattened film, wherein the value of γ of the test film is less than 1000.
  16.  請求項15に記載の感活性光線性または感放射線性の平坦化膜形成用組成物を用いて得られる、平坦化膜。 A planarizing film obtained using the actinic ray-sensitive or radiation-sensitive planarizing film-forming composition according to claim 15.
  17.  請求項1~14のいずれか1項に記載の平坦化膜の製造方法を含む、電子デバイスの製造方法。
     
    An electronic device manufacturing method comprising the planarizing film manufacturing method according to any one of claims 1 to 14.
PCT/JP2017/004367 2016-03-02 2017-02-07 Method for producing planarization film, active light sensitive or radiation sensitive composition for forming planarization film, planarization film, and method for manufacturing electronic device WO2017150094A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-039770 2016-03-02
JP2016039770 2016-03-02
JP2016130972A JP2019070676A (en) 2016-03-02 2016-06-30 Method for producing flattening film, composition for forming actinic ray-sensitive or radiation sensitive flattening film, flattening film and method for manufacturing electronic device
JP2016-130972 2016-06-30

Publications (1)

Publication Number Publication Date
WO2017150094A1 true WO2017150094A1 (en) 2017-09-08

Family

ID=59743858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004367 WO2017150094A1 (en) 2016-03-02 2017-02-07 Method for producing planarization film, active light sensitive or radiation sensitive composition for forming planarization film, planarization film, and method for manufacturing electronic device

Country Status (2)

Country Link
TW (1) TW201800847A (en)
WO (1) WO2017150094A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09167753A (en) * 1995-08-14 1997-06-24 Toshiba Corp Method and apparatus for planarizing surface of semiconductor substrate
JP2002014477A (en) * 2000-06-28 2002-01-18 Nec Corp Method for flattening surface of substrate
JP2003057828A (en) * 2000-07-12 2003-02-28 Nissan Chem Ind Ltd Composition for forming gap filling material for lithography
JP2005156816A (en) * 2003-11-25 2005-06-16 Tokyo Ohka Kogyo Co Ltd Base material and multilayer resist pattern forming method
JP2008065303A (en) * 2006-08-10 2008-03-21 Shin Etsu Chem Co Ltd Bottom resist layer material and pattern forming method
JP2013156627A (en) * 2012-01-04 2013-08-15 Shin Etsu Chem Co Ltd Resist underlayer film material, production method of polymer for resist underlayer film material and pattern forming method using resist underlayer film material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09167753A (en) * 1995-08-14 1997-06-24 Toshiba Corp Method and apparatus for planarizing surface of semiconductor substrate
JP2002014477A (en) * 2000-06-28 2002-01-18 Nec Corp Method for flattening surface of substrate
JP2003057828A (en) * 2000-07-12 2003-02-28 Nissan Chem Ind Ltd Composition for forming gap filling material for lithography
JP2005156816A (en) * 2003-11-25 2005-06-16 Tokyo Ohka Kogyo Co Ltd Base material and multilayer resist pattern forming method
JP2008065303A (en) * 2006-08-10 2008-03-21 Shin Etsu Chem Co Ltd Bottom resist layer material and pattern forming method
JP2013156627A (en) * 2012-01-04 2013-08-15 Shin Etsu Chem Co Ltd Resist underlayer film material, production method of polymer for resist underlayer film material and pattern forming method using resist underlayer film material

Also Published As

Publication number Publication date
TW201800847A (en) 2018-01-01

Similar Documents

Publication Publication Date Title
TWI341961B (en) Method of forming patterns
TWI587090B (en) Pattern forming method, actinic ray-sensitive or radiation-sensitive resin composition, actinic ray-sensitive or radiation-sensitive film, method for forming electronic device and electronic device
TWI438572B (en) Resist composition and pattern forming method using the same
TW201327053A (en) Pattern forming method, multi-layered resist pattern, multi-layered film for organic solvent development, manufacturing method of electronic device, and electronic device
US9063420B2 (en) Photoresist composition, coated substrate, and method of forming electronic device
TWI645253B (en) Actinic-ray- or radiation-sensitive resin composition, resist film and pattern forming method, and method for manufacturing electronic device and electronic device using the same
US11009791B2 (en) Actinic ray-sensitive or radiation-sensitive resin composition, actinic ray-sensitive or radiation-sensitive film, pattern forming method, and method for manufacturing electronic device
KR20170131609A (en) Pattern forming method, photomask manufacturing method, and electronic device manufacturing method
KR20160146881A (en) Pattern forming method, active light sensitive or radiation sensitive resin composition, active light sensitive or radiation sensitive film, method for manufacturing electronic device, and electronic device
JP7221308B2 (en) Actinic ray-sensitive or radiation-sensitive resin composition, resist film, pattern forming method, electronic device manufacturing method
WO2015159830A1 (en) Active light-sensitive or radiation-sensitive resin composition, active light-sensitive or radiation-sensitive film using same, pattern formation method, production method for electronic device, and electronic device
WO2015080048A1 (en) Active light sensitive or radiation sensitive resin composition and pattern forming method
KR20160027151A (en) Pattern forming method, actinic ray sensitive or radiation sensitive resin composition, resist film, method for manufacturing electronic device using same, and electronic device
TWI564662B (en) Method for forming pattern, actinic ray-sensitive or radiation-sensitive resin composition, resist film, method for producing electronic device and electronic device
KR20170121257A (en) A pattern forming method, a resist pattern, a method of manufacturing an electronic device, and a composition for forming an upper layer film
KR101429596B1 (en) Chemical amplification resist composition, and resist film, resist-coated mask blank, resist pattern forming method and photomask each using the composition
WO2015046449A1 (en) Pattern forming method, method for forming patterned mask, method for manufacturing electronic device, and electronic device
JP2019070676A (en) Method for producing flattening film, composition for forming actinic ray-sensitive or radiation sensitive flattening film, flattening film and method for manufacturing electronic device
KR101911300B1 (en) Actinic ray-sensitive or radiation-sensitive composition, and resist film, mask blank, resist pattern-forming method, and electronic device production method all using said composition
KR101747772B1 (en) Active light sensitive or radiation sensitive resin composition, pattern forming method, method for manufacturing electronic device, and electronic device
WO2019187632A1 (en) Active-ray-sensitive or radiation-sensitive resin composition, active-ray-sensitive or radiation-sensitive film, pattern formation method, electronic device manufacturing method, and polyester
WO2014185347A1 (en) Pattern formation method, active ray-sensitive or radiation-sensitive resin composition used in same, electronic device using same, and production method for electronic device
WO2018042892A1 (en) Active light sensitive or radiation sensitive resin composition, active light sensitive or radiation sensitive film, pattern forming method and method for manufacturing electronic device
WO2017150094A1 (en) Method for producing planarization film, active light sensitive or radiation sensitive composition for forming planarization film, planarization film, and method for manufacturing electronic device
WO2019151403A1 (en) Composition, resist-pattern forming method, and insulating-film forming method

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759565

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17759565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP