WO2017149941A1 - Capacitance sensor, manufacturing method therefor, and molded article equipped with capacitance sensor - Google Patents
Capacitance sensor, manufacturing method therefor, and molded article equipped with capacitance sensor Download PDFInfo
- Publication number
- WO2017149941A1 WO2017149941A1 PCT/JP2017/000731 JP2017000731W WO2017149941A1 WO 2017149941 A1 WO2017149941 A1 WO 2017149941A1 JP 2017000731 W JP2017000731 W JP 2017000731W WO 2017149941 A1 WO2017149941 A1 WO 2017149941A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive
- capacitance sensor
- black
- electrode pattern
- photosensitive
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0445—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
Definitions
- the present invention relates to a bendable electrostatic capacitance touch sensor having a low resistance and excellent visibility, and a method of manufacturing the same.
- a film sensor used for a capacitive touch panel (hereinafter referred to as a capacitive sensor) is a sensor that senses a change in capacitance (charge) between X and Y electrodes that occurs when a finger touches the surface of the touch panel. This is a mechanism for recognizing the position.
- the electrodes are made of ITO (indium tin oxide) so that the X and Y electrodes arranged in a matrix are not conspicuous.
- ITO indium tin oxide
- electronic devices equipped with touch panels are currently mainly applied to small sizes of mobile devices such as smartphones (high-function mobile terminals), but are applied to digital signage (electronic signage) etc. It is thought that the increase in size will progress.
- conventional ITO (Indium Tin Oxide) electrodes have a large resistance, and as the application size increases, the current transfer speed between the electrodes decreases, and the response speed (contact the fingertip). The time until the position is detected after that is delayed.
- Patent Documents 1 to 3 are known as capacitance sensors using metal fine wires as electrodes.
- the metal color reflectance of the metal thin wire constituting the electrode is high, and visibility becomes a problem.
- a black mesh electrode made of chromium and provided with an oxide film is not only expensive, but is also not easily etched during patterning.
- an oxide film can also be attached to the wiring from the electrode, the terminal surface is poor in conductivity and is not suitable for taking out the terminal.
- the above digital signage is a tool that sends information and images to many people at once in complex commercial facilities, public facilities, etc., but the installation area has been limited due to the recent increase in screen size.
- digital signage that can replace printed materials such as posters attached to cylinders has become possible.
- a metal mesh electrode formed by finely processing a metal thin film is used for the capacitance sensor, it has been difficult to apply it to a curved display or a foldable display because of fear of disconnection or the like. For the same reason, it has been difficult to apply to curved molded products such as automobile interiors.
- the present invention has been made in consideration of such problems, and the electrode has a low resistance, excellent visibility, a foldable capacitance touch sensor, a manufacturing method thereof, and a molded product with the capacitance sensor.
- the purpose is to provide.
- “bendable” includes any meaning of being bent (bendable) and capable of being folded in two (foldable).
- the present invention is configured as follows.
- the capacitance sensor of the present invention includes a transparent base film, a first conductive portion formed on the first main surface of the base film, a second conductive portion formed on the second main surface of the base film, Each of the first conductive portions is made of a black conductive thin wire that is opaque and has a reflectance of 2% or less, and a blank portion partitioned by the black conductive thin wire, and extends in the first direction.
- first electrode patterns arranged in a second direction orthogonal to the first conductive pattern and the second conductive part is opaque and divided by the black conductive thin line and the black conductive thin line each having a reflectance of 2% or less It consists of a blank portion, extends in the second direction, and has two or more second electrode patterns arranged in the first direction, and the black conductive fine wire is formed of metal particles and conductive black in the photosensitive resin. It has a gist in that it contains an agent.
- the first electrode pattern and the second electrode pattern are made of opaque black conductive wires having a reflectance of 2% or less and blank portions partitioned by the black conductive wires, so that the reflection of the conductive wires can be suppressed. And has excellent visibility.
- the black electroconductive thin wire is comprised including the metal particle and the electroconductive black agent in photosensitive resin, it is low resistance and can be bent.
- the metal particles are preferably one or more metal particles selected from silver, copper, and aluminum. These are suitable for industrial production in terms of conductivity and cost.
- the conductive black agent is preferably one or more conductive black agents selected from carbon nanotubes, fullerenes, graphene, graphite, and doped amorphous carbon. These are suitable for opacifying the conductive thin wires.
- the photosensitive resin is preferably a photosensitive resin containing a photopolymerization initiator. This is because the photosensitive resin containing the photopolymerization initiator is excellent in flexibility.
- the first electrode pattern formed on the first main surface of the base film and the second electrode pattern formed on the second main surface of the base film are respectively covered with a flexible protective film.
- a flexible protective film By forming a flexible protective film on both sides, the bendability of the capacitance sensor is improved.
- the first conductive portion further includes a black conductive fine wire made of the same material as that of the first electrode pattern and a blank portion partitioned by the black conductive thin wire.
- Black conductive material having a plurality of first dummy patterns arranged in a gap between the one electrode patterns and electrically insulated from the first electrode pattern, wherein the second conductive portion is the same material as the second electrode pattern It has a plurality of second dummy patterns which are composed of a fine line and a blank portion partitioned by the black conductive fine line and are arranged in a gap between adjacent second electrode patterns and are electrically insulated from the second electrode pattern. It is preferable.
- the first dummy pattern and the second dummy pattern can be complemented so that the gap between the first electrode patterns and the gap between the second electrode patterns are not conspicuous. That is, it can appear as if the blank portion partitioned by the black conductive thin wire in the first electrode pattern or the second electrode pattern is continuously present in the gap.
- the first electrode pattern and the first dummy pattern formed on the first main surface of the base film, and the second electrode pattern and the second dummy pattern formed on the second main surface of the base film are formed by a flexible protective film. Each is preferably coated. Even in the case of having a dummy pattern, the bendability of the capacitance sensor is improved by forming a flexible protective film on both sides.
- the molded product with a capacitance sensor of the present invention is summarized in that it includes a resin molded product having a curved surface and the above-described capacitance sensor integrated along the curved surface of the molded product.
- the first electrode pattern and the second electrode pattern of the capacitance sensor are separated by a black conductive thin wire having a reflectance of 2% or less and the black conductive thin wire. Since it consists of a blank part, reflection of the electroconductive fine wire of an electrostatic capacitance sensor can be suppressed, and it is excellent in visibility.
- the black conductive thin wire of the capacitance sensor is configured by containing metal particles and a conductive black agent in the photosensitive resin, it can be bent with low resistance and has a curved surface. Suitable for integration.
- the method for producing a capacitance sensor of the present invention includes a support film having releasability, and a photosensitive conductive material provided on the support film and containing metal particles and a conductive black agent in a photosensitive resin.
- a photosensitive conductive resin laminate including a resin layer is used, and the photosensitive conductive resin layer surface of the photosensitive conductive resin laminate is laminated on the first main surface and the second main surface of the transparent base film, respectively.
- the method for manufacturing a capacitance sensor according to the present invention includes a first electrode pattern and a second electrode pattern that are capable of suppressing reflection of a conductive thin wire, have excellent visibility, and have low resistance and bendability. Since it can be formed by a simple method of forming by a photo process using the above photosensitive conductive resin laminate, it is suitable for industrial production.
- the first electrode pattern and the second electrode pattern are opaque and have a black conductivity of 2% or less. Since it consists of the blank part partitioned off by a conductive fine wire and the said black conductive fine wire, reflection of a conductive thin wire can be suppressed and it is excellent in visibility. Moreover, since the said black electroconductive fine wire is comprised including the metal particle and the electroconductive black agent in photosensitive resin, it is low resistance and can be bent.
- the capacitance sensor 1 includes a transparent base film 12, a first conductive portion 14 a formed on the first main surface 12 a of the base film 12, and And a second conductive portion 14b formed on the second main surface 12b of the base film 12.
- the base film 12 is a resin film having a transmittance of 90% or more.
- the resin include polyesters such as polyethylene terephthalate (PET), polylactic acid (PLA), and polyethylene naphthalate (PEN), polyethylene (PE), polypropylene (PP), polystyrene, EVA, cycloolefin polymer (COP), Polyolefins such as cyclic olefin copolymer (COC), vinyl resin, polycarbonate (PC), polyamide, polyimide (PI), acrylic resin (PMMA), triacetyl cellulose (TAC), and the like can be used.
- PET polyethylene terephthalate
- PLA polylactic acid
- PEN polyethylene naphthalate
- PE polyethylene
- PP polypropylene
- COP cycloolefin polymer
- COC cyclic olefin copolymer
- vinyl resin polycarbonate
- PC polyamide
- PI polyimide
- PMMA triacety
- the thickness of the base film 12 is preferably 5 to 350 ⁇ m, and more preferably 30 to 150 ⁇ m. If it is in the range of 5 to 350 ⁇ m, a desired visible light transmittance can be obtained, and handling is easy.
- the base film 12 may be a single layer or a laminate in which two or more layers are bonded.
- the base film 12 may have a 1 / 4 ⁇ phase difference film, for example, a stretched COP in its configuration.
- the base film 12 can also be a piezoelectric film that is uniaxially stretched from the polylactic acid film described above and does not generate pyroelectricity.
- the base film 12 may be coated with a resin on one or both of the first main surface 12a and the second main surface 12b. For example, it is a coating of a transparent film that does not transmit the exposure wavelength.
- the first conductive portion 14 a and the second conductive portion 14 b include a portion that requires perspective (first sensor portion 24 a and second sensor portion 24 b) and a portion that does not require perspective (first terminal).
- the external shape of the capacitance sensor 1 has a rectangular shape in plan view, and the external shapes of the first sensor unit 24a and the second sensor unit 24b also have a rectangular shape.
- the first sensor portion 24a of the first conductive portion 14a is composed of a black conductive thin wire 16 which is opaque and has a reflectance of 2% or less, and a blank portion 17 partitioned by the black conductive thin wire 16 in a first direction (FIG. 1). And two or more first electrode patterns 25a arranged in a second direction (Y direction in FIG. 1) orthogonal to the first direction.
- FIG. 2 is a cross-sectional view of one first electrode pattern 25a in the capacitance sensor of FIG. 1 cut in the length direction.
- the second sensor portion 24b of the second conductive portion 14b is composed of a black conductive thin wire 16 which is opaque and has a reflectance of 2% or less and a blank portion 17 partitioned by the black conductive thin wire 16 in the second direction (FIG. 1). And two or more second electrode patterns 25b extending in the first Y direction and arranged in the first direction (X direction in FIG. 1).
- the second conductive portion 14 b is in a state where it is electrically insulated from the first conductive portion 14 a by the base film 12.
- the pattern composed of the black conductive fine wires 16 and the blank portions 17 partitioned by the black conductive fine wires 16 is specifically a mesh pattern. That is, the outline of each mesh pattern is constituted by the black conductive thin wires 16, and the opening portion of each mesh pattern is constituted by the blank portion 17 surrounded by the black conductive fine wires 16 (see FIG. 1). Further, the first electrode pattern 25a and the second electrode pattern 25b are formed in such a pattern, thereby obtaining transparency.
- the mesh pattern applied to the first electrode pattern 25a and the second electrode pattern 25b of the capacitance sensor 1 form an opening with a quadrangle as shown in FIG. 1 or other polygons.
- a quadrangle as shown in FIG. 1 or other polygons.
- non-polygonal ones such as those with circular or elliptical openings
- a thick outline is formed between the openings. This is because the thick part is noticeable and the light transmittance is reduced.
- it can be configured by one type or a combination of a plurality of types among figures such as a triangle, a quadrangle, and a hexagon.
- FIGS. 3 to 5 are enlarged views of examples of mesh patterns applicable to the present invention.
- the mesh pattern shown in FIG. 3 has a quadrangular shape as a nucleus and is continuous in the X direction and the Y direction, and corresponds to the first electrode pattern 25a and the second electrode pattern 25b shown in FIG.
- both the first electrode pattern 25a and the second electrode pattern 25b shown in FIG. 1 have a quadrangle as a nucleus, the dimensions of the nucleus are different. More specifically, the size in which a plurality of nuclei of the first electrode pattern 25a are arranged in the Y direction corresponds to one nucleus of the second electrode pattern 25b.
- the mesh pattern shown in FIG. 4 has a hexagonal core and is continuous in the X direction, Ya direction, and b direction.
- the mesh pattern shown in FIG. 5 has a ladder shape as a nucleus and is continuous in the X and Y directions.
- those having a square as a core are particularly preferable because the mesh pattern is less likely to be recognized as a streak compared to other polygonal shapes. That is, when a regularly continuous pattern with a certain shape as a nucleus is seen, the outline (black conductive thin line 16) tends to appear as a continuous streak along the continuous direction of the nucleus. For example, in the case of a hexagonal core, the line of black conductive thin wires 16 along the continuous direction becomes zigzag, so that it appears thicker by the amplitude of the zigzag, and as a result, the black conductive thin wires It appears that the line width of 16 is expanded.
- the long side direction and the short side direction of this rectangle have different pitches, so when looking at the whole, the short side direction with a shorter pitch is darker than the long side direction. It appears and flickers and tends to appear flickering.
- the square is continuous as a nucleus, such streaks do not appear and are not noticeable.
- the square is not limited to a completely square, but includes a chamfered square.
- the “polygon” in the present specification includes not only a geometrically perfect polygon but also a “substantial polygon” in which a slight change is made to the perfect polygon. And Examples of minor changes include the addition of minute point elements / line elements as compared to the mesh, and partial loss of each side (black conductive fine wire 16) constituting the mesh. For example, in the example shown in FIG. 1, the presence of the linear protrusion 40 facing the gap 20 between the first electrode patterns 25a obscures the boundary between the gap 20 and the first electrode pattern 25a and does not stand out. I am doing so.
- the lower limit is preferably 1 ⁇ m or more, 3 ⁇ m or more, 4 ⁇ m or more, or 5 ⁇ m or more
- the upper limit is preferably 15 ⁇ m, 10 ⁇ m or less, 9 ⁇ m or less, or 8 ⁇ m or less.
- the aperture ratio of the mesh pattern is preferably 85% or more from the viewpoint of visible light transmittance, more preferably 90% or more, and most preferably 95% or more.
- An aperture ratio is the ratio which a translucent part accounts to the whole.
- the black conductive fine wires 16 of the first electrode pattern 25a and the second electrode pattern 25b are configured by containing metal particles and a conductive black agent in a photosensitive resin. Therefore, while being lower in resistance than the ITO electrode, it is possible to bend, which is difficult with the conventional metal mesh due to the possibility of disconnection or the like.
- the metal particles used for the black conductive fine wire 16 are made of metal such as silver, copper, aluminum, nickel, gold, tin, zinc, stainless steel, aluminum based on titanium oxide, zinc oxide, indium oxide, tin oxide, etc.
- One or more metal particles selected from the above are preferable from the viewpoint of conductivity and cost.
- the conductive fine wire 16 By using a conductive black agent for the black conductive fine wire 16, the conductive fine wire can be made opaque. As a result, the reflection of the conductive thin wire can be suppressed, and the visibility is excellent.
- the conductive blacking agent used for the black conductive thin wire 16 include carbon black, carbon nanotube, fullerene, graphene, graphite, doped amorphous carbon, and a mixture thereof. In particular, carbon nanotube, fullerene, graphene, graphite And at least one conductive black agent selected from doped amorphous carbon.
- the size of the conductive black agent is preferably 0.5 ⁇ m or less. More preferred are graphene, carbon nanotubes, and fullerenes having high electrical conductivity.
- organic colorants such as reactive dyes, azo dyes, nigrosines, perylene pigments, mixed phase pigments, etc. that have no electrical conductivity. There is a risk of impairing the conductivity obtained with the particles.
- Examples of the photosensitive resin used for the black conductive fine wire 16 include photosensitive resins such as acrylic, alicyclic epoxy, acrylic acrylate, urethane acrylate, epoxy acrylate, polyester acrylate, vinyl ether, and novolac. Among them, a photosensitive resin containing a photopolymerization initiator is particularly preferable from the viewpoint of excellent flexibility.
- photopolymerization initiator photopolymerization initiators such as benzophenone, acetophenone, thioxanthone, benzyl, and azo can be used. A sensitizer may be added.
- the first conductive portion 14a and the second conductive portion 14b include a portion that requires perspective (the first sensor portion 24a and the second sensor portion 24b) and a portion that does not require perspective (the first terminal wiring portion). 34a and second terminal wiring portion 34b) (see FIG. 1).
- a plurality of first terminals are arranged in the central portion in the longitudinal direction on the peripheral portion of one side of the capacitance sensor 1 in the first terminal wiring portion 34a.
- the first terminal wiring pattern 35a is led out from one end of each first electrode pattern 25a, routed toward the first terminal, and electrically connected to the corresponding first terminal 64a.
- a plurality of second terminals are arranged in the center in the longitudinal direction at the peripheral portion of one side of the capacitance sensor 1 in the second terminal wiring portion 34b.
- the 2nd terminal wiring pattern 35b is derived
- the first terminal wiring pattern 35a and the second terminal wiring pattern 35b can be formed of the same material as the first electrode pattern 25a and the second electrode pattern 25b.
- the first terminal wiring pattern 35a and the second terminal wiring pattern 35b are configured to have a width of 25 ⁇ m or more and 500 ⁇ m or less, a length of 10 mm or more, and a resistance of 300 ohms or less per 10 mm, preferably 100 ohms or less.
- this electrostatic capacitance sensor 1 is comprised as a touch panel, the cover member laminated
- An FPC electrically connected to the sensor 1 and an IC circuit arranged on the FPC are provided.
- signals from the first electrode pattern 25a and the second electrode pattern 25b facing the fingertip are transmitted to the IC circuit.
- the IC circuit calculates the position of the fingertip based on the supplied signal.
- the capacitance sensor 1 has a large size and is suitable for a use in which it is bent.
- an insert molding method may be used. Specifically, the electrostatic capacitance sensor 1 is inserted and arranged in a molding die so that the surface on the touch side is integrated with the molding resin, and vacuum suction is performed through a suction hole provided in the die. After placing the capacitance sensor 1 along the cavity surface, the mold is closed, and the mold resin in a molten state is injected and filled in the cavity. As a result, a resin molded product is obtained, and at the same time, the capacitance sensor 1 is coated along the surface thereof.
- the molding resin examples include general-purpose resins such as polystyrene resin, polyolefin resin, ABS resin, and AS resin.
- General engineering resins such as polyphenylene oxide / polystyrene resins, polycarbonate resins, polyacetal resins, acrylic resins, polycarbonate-modified polyphenylene ether resins, polyethylene terephthalate resins, polybutylene terephthalate resins, ultrahigh molecular weight polyethylene resins, and polysulfone resins
- Super engineering resins such as polyphenylene sulfide resins, polyphenylene oxide resins, polyacrylate resins, polyetherimide resins, polyimide resins, liquid crystal polyester resins, and polyallyl heat-resistant resins can also be used.
- an adhesive layer may be provided on the surface of the capacitance sensor 1 that is in close contact with the resin molded product.
- a heat-sensitive or pressure-sensitive resin suitable for the material of the resin molded product is appropriately used.
- the material of the resin molded product is a polyacrylic resin
- a polyacrylic resin may be used.
- the material of the resin molded product is a polyphenylene oxide / polystyrene resin, a polycarbonate resin, a styrene copolymer resin, or a polystyrene blend resin
- a polyacrylic resin, a polystyrene resin having an affinity for these resins, A polyamide resin or the like may be used.
- the material of the resin molded product is a polypropylene resin
- chlorinated polyolefin resin chlorinated ethylene-vinyl acetate copolymer resin, cyclized rubber, and coumarone indene resin can be used.
- This production method is a photosensitive film comprising a support film 22 having peelability and a photosensitive conductive resin layer 23 provided on the support film 22 and containing metal particles and a conductive black agent in the photosensitive resin.
- the surface of the photosensitive conductive resin layer 23 of the photosensitive conductive resin laminate 60 is formed on the first main surface 12a and the second main surface 12b of the transparent base film 12 using the conductive conductive resin laminate 60 (see FIG. 9).
- Laminating step see FIG. 10
- an exposure step see FIG.
- the photosensitive conductive resin laminate 60 has a photosensitive conductive resin layer 23 on a support film 22 having releasability. If necessary, a support film for the photosensitive conductive resin layer 23 is used. You may have further a protective film on the surface on the opposite side to 22 side.
- the support film 22 is preferably transparent so as to transmit light emitted from the exposure light source.
- a support film 22 include a polyethylene terephthalate film, a polyvinyl alcohol film, a polyvinyl chloride film, a vinyl chloride copolymer film, a polyvinylidene chloride film, a vinylidene chloride copolymer film, and a polymethyl methacrylate copolymer film.
- the support film preferably has a haze of 5 or less. The thinner the support film is, the more advantageous in terms of image formation and economy, but it is preferably 10 ⁇ m to 30 ⁇ m in order to maintain the strength.
- the photosensitive conductive resin layer 23 is for forming the black conductive fine wires 16 of the capacitance sensor 1, and the material thereof is as described in the description of the black conductive fine wires 16.
- a protective film that is sufficiently smaller than the support film 22 in terms of adhesion to the photosensitive conductive resin layer 23 and that can be easily peeled is selected.
- a polyethylene film or a polypropylene film is preferable as the protective film.
- the method for producing the photosensitive conductive resin laminate 60 by sequentially laminating the support film 22, the photosensitive conductive resin layer 23 and, if necessary, a protective film a known method can be adopted.
- a composition used for forming the photosensitive conductive resin layer 23 is mixed with a solvent for dissolving the composition to obtain a uniform mixed solution.
- the preparation liquid is applied onto the support film 22 using a bar coater or a roll coater, and then dried to laminate the photosensitive conductive resin layer 23 on the support film 22.
- a protective film is laminated on the photosensitive conductive resin layer 23 as necessary.
- the photosensitive conductive resin laminate 60 can be manufactured.
- the photosensitive conductive resin laminate 60 is used, and the photosensitive properties of the photosensitive conductive resin laminate 60 are respectively formed on the first main surface 12 a and the second main surface 12 b of the transparent base film 12.
- the surfaces of the conductive resin layer 23 are stacked and stacked.
- the resulting double-sided laminate 110 includes a transparent base film 12, an opaque first photosensitive conductive resin layer 123a and a first support film 122a formed by sequentially laminating on the first main surface of the base film 12, It has the opaque 2nd photosensitive conductive resin layer 123b and the 2nd support film 122b which were formed by laminating on the 2nd principal surface of base film 12 one by one.
- the film thickness of the first photosensitive conductive resin layer 123a and the second photosensitive conductive resin layer 123b depends on the line width and resistance value of the black conductive thin wires 16 constituting the first electrode pattern 25a and the second electrode pattern. It is determined in the range of 0.5 to 10 ⁇ m.
- the double-sided laminate 110 is exposed.
- the first photosensitive conductive resin layer 123a is irradiated with light toward the base film 12 so that the first photosensitive conductive resin layer 123a follows the first exposure pattern.
- First exposure processing to be exposed, and second photosensitive conductive resin layer 123b is irradiated with light toward the base film 12 to expose the second photosensitive conductive resin layer 123b along the second exposure pattern.
- Exposure processing is performed (simultaneous double-side exposure).
- the first photosensitive conductive resin layer 123a is irradiated with the first light 111a (parallel light) through the first photomask 117a.
- the second photosensitive conductive resin layer 123b is irradiated with the second light 111b (parallel light) through the second photomask 117b.
- the first light 111a is obtained by converting the light emitted from the first light source 118a into parallel light by the first collimator lens 120a
- the second light 111b is emitted from the second light source 118b. It is obtained by converting the light into parallel light by the second collimator lens 120b in the middle.
- the case where two light sources (the first light source 118a and the second light source 118b) are used is shown, but the light emitted from one light source is divided through the optical system to generate the first light.
- Exposure wavelength is semiconductor laser, metal halide lamp, g-line (wavelength 436 nm), h-line (wavelength 405 nm) i-line (wavelength 365 nm), broad (three wavelengths such as g, h, and i-line) high-pressure mercury lamp, KrF excimer laser Excimer laser such as (wavelength 248 nm), ArF excimer laser (wavelength 193 nm), F2 excimer laser (wavelength 157 nm), extreme ultraviolet light (wavelength 13.6 nm), electron beam, etc. are used.
- a first photomask 117a is disposed in close contact with the first photosensitive conductive resin layer 123a, for example, and a first light source disposed opposite to the first photomask 117a.
- the first photosensitive conductive resin layer 123a is exposed by irradiating the first light 111a from 118a toward the first photomask 117a.
- the first photomask 117a is composed of a glass substrate made of transparent soda glass and a mask pattern (first exposure pattern) formed on the glass substrate. Accordingly, the first exposure process exposes a portion of the first photosensitive conductive resin layer 123a along the first exposure pattern formed on the first photomask 117a.
- the second photomask 117b is disposed in close contact with the second photosensitive conductive resin layer 123b, for example, and the second light source 118b disposed opposite to the second photomask 117b is used for the second exposure.
- the second photosensitive conductive resin layer 123b is exposed by irradiating the second light 111b toward the photomask 117b.
- the second photomask 117b includes a glass substrate formed of transparent soda glass and a mask pattern (second exposure pattern) formed on the glass substrate. . Accordingly, the second exposure process exposes a portion of the second photosensitive conductive resin layer 123b along the second exposure pattern formed on the second photomask 117b.
- the emission timing of the first light 111a from the first light source 118a and the emission timing of the second light 111b from the second light source 118b may be made simultaneously or differently. Also good.
- the first photosensitive conductive resin layer 123a and the second photosensitive conductive resin layer 123b can be exposed simultaneously by one exposure process, and the processing time can be shortened.
- the 1st light 111a from the 1st light source 118a irradiated to the 1st photosensitive conductive resin layer 123a is interrupted by the opaque 1st photosensitive conductive resin layer 123a, and becomes the 2nd photosensitive conductive resin layer 123b.
- the second light 111b from the second light source 118b irradiated to the second photosensitive conductive resin layer 123b, which has not substantially reached, is blocked by the opaque second photosensitive conductive resin layer 123b, and the first photosensitive.
- the conductive resin layer 123a is not substantially reached. Therefore, different exposure patterns can be formed on both surfaces (front and back) of the transparent base film 12 arbitrarily and with high positional accuracy by the exposure process.
- substantially does not reach indicates the case where the light does not reach or the amount of light that has reached the light but does not form an image by development. Therefore, “light arrives” indicates that light of a light amount reaching an image formed by development arrives.
- the photosensitive conductive resin layers 123a and 123b after the support films 122a and 122b are peeled are developed (see FIG. 12).
- the solubility in the developer 140 is lowered when exposed, so that an exposed portion (the portion shown dark in the drawing) remains after development.
- the photosensitive resin is a positive type, since the solubility in the developer 140 is increased when exposed, the exposed portion (the portion shown dark in the figure) is removed. Therefore, the first electrode pattern 25a is formed on the first main surface of the transparent base film 12 by removing a part of the first conductive film 115a, and the second electrode pattern 25b is formed by the second conductive film.
- an alkaline solution for example, an aqueous solution of sodium hydroxide, potassium hydroxide, sodium carbonate or the like can be used.
- both the first electrode pattern 25a and the second electrode pattern 25b are mesh patterns.
- the first electrode pattern 25a and the second electrode pattern 25b of the present invention include the black conductive thin wires 16 and the black conductive wires.
- the pattern is not limited to the mesh pattern as long as it is composed of the blank portions 17 partitioned by the fine thin lines.
- the second electrode pattern 25b may be not a mesh pattern but a comb-like pattern in which teeth are arranged in the X direction as in the capacitance sensor 10 shown in FIG.
- the present invention is not limited to this.
- the first conductive portion 14a is made of the black conductive thin wire 18 made of the same material as the first electrode pattern 25a, and the gap between the adjacent first electrode patterns 25a.
- FIG. 8 is a cross-sectional view of one first electrode pattern 25a in the capacitance sensor 100 of FIG. 7 cut in the length direction.
- the first dummy pattern 55a and the second dummy pattern 55b complement each other so that the gap 20 between the first electrode patterns 25a and the gap 21 between the second electrode patterns 25b are not conspicuous. That is, whether the blank portion 17 (the opening portion in the first embodiment) partitioned by the black conductive thin wires 16 in the first electrode pattern 25a and the second electrode pattern 25b is continuously present in the gaps 20 and 21 as well. It looks like this. Further, the first dummy pattern 55a is formed simultaneously with the first electrode pattern 25a when the first electrode pattern 25a is formed. Similarly, the second dummy pattern 55b is formed simultaneously with the second electrode pattern 25b when the second electrode pattern 25b is formed.
- the first electrode pattern 25a and the second electrode pattern 25b are preferably designed so that a moire pattern does not appear due to interference with the pixels of the display device.
- the arrangement direction of the first electrode pattern 25a and the arrangement direction of the second electrode pattern 25b may be inclined with respect to the pixel arrangement direction of the display device.
- the tilted first electrode pattern 25a and second electrode pattern 25b cause a shift in the detected position information, but a position correction circuit that corrects the position information according to the set tilt angle may be incorporated in the IC circuit.
- the first electrode pattern 25a and the second electrode pattern 25b may be designed so that the pitch between adjacent black conductive thin wires is not constant.
- the black conductive thin wire may be designed in a curved shape.
- first electrode pattern 25a and the second electrode pattern 25b may be configured such that the intersections of the black conductive thin wires 16 do not overlap each other.
- the intersection point of the black conductive thin wires 16 of the first electrode pattern 25a is located in the blank portion 17 of the second electrode pattern 25b (for the sake of convenience, light color representation), and the second electrode pattern The intersection of the black conductive thin wires 16 of 25b is positioned in the blank portion 17 of the first electrode pattern 25a.
- the first terminal wiring pattern 35a and the second terminal wiring pattern 35b are formed using the same material for the first electrode pattern 25a and the second electrode pattern 25b.
- the first terminal wiring pattern 35a and the second terminal wiring pattern 35b may be formed using a material different from that of the first electrode pattern 25a and the second electrode pattern 25b. For example, since it is formed at the periphery, it is not always necessary to make it opaque. Accordingly, the conductive black agent can be omitted.
- the first main surface of the base film 12 on which the first electrode pattern 25a is formed and the second main surface on which the second electrode pattern 25b is formed are used as touch panels on the touch panel. It is not specified whether to include it. Therefore, “first” and “second” may be interchanged in this specification.
- the capacitance sensor 101 includes a first electrode pattern 25 a formed on the first main surface of the base film 12 and a second electrode pattern formed on the second main surface of the base film 12.
- 25b is preferably covered with a flexible protective film (the first protective film 180a and the second protective film 180b in FIG. 16).
- the first electrode pattern 25a is sandwiched between the base film 12 and the first protective film 180a, and the second electrode pattern 25b is formed between the base film 12 and the second protective film 180b. It is in a state of being sandwiched between.
- the first electrode pattern 25a and the second electrode pattern 25b are entirely pressed against the base film 12 by the protective film even when the capacitance sensor 101 is bent.
- the protective film may cover not only the first electrode pattern 25a and the first electrode pattern 25a but also the first terminal wiring pattern 35a and the second terminal wiring pattern 35b. However, for the first terminal wiring pattern 35a and the second terminal wiring pattern 35b, one end of the side opposite to the side connected to the first electrode pattern 25a or the first electrode pattern 25a is exposed for external connection such as FPC.
- the protective film covers the first dummy pattern 55a and the second dummy pattern 55b. (See FIG. 17).
- the first electrode pattern 25a and the first dummy pattern 55a are sandwiched between the base film 12 and the first protective film 180a, and the second electrode pattern 25b and the second dummy film are formed.
- the pattern 55b is sandwiched between the base film 12 and the second protective film 180b.
- the protective film is a flexible resin film.
- the resin for example, urethane resin, polyamic acid resin, acrylic rubber, or the like can be used.
- being flexible means that the protective film does not peel, crack, or bend even when it is repeatedly bent.
- the protective film can be formed by screen printing using ink made of the above-described materials. Further, the protective film is a photosensitive resin made of the above-described material on both surfaces of the base film 12 in which the first conductive portion 14a is formed on the first main surface and the second conductive portion 14b is formed on the second main surface.
- the layer can be formed by a photo process in which both sides are exposed and developed through a photo mask.
- the photosensitive resin layer in the photo process may be formed by coating, or may be formed by laminating a dry film resist.
- the first protective film 180a and the second protective film 180a when the direction in which the capacitance sensor 102 can be bent is always determined, that is, when the outer surface and the inner surface are always determined when the capacitance sensor 102 is bent, the first protective film 180a and the second protective film 180a.
- the material used for the protective film 180b may be different. That is, it is preferable to use a material that can easily follow the tension for the outer protective film, and a material that is less likely to cause wrinkles to the compression for the inner protection.
- a urethane resin is used for the protective film material on the outer side and a polyamic acid resin is used for the protective film material on the inner side.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Position Input By Displaying (AREA)
Abstract
[Problem]
To provide a bendable capacitive touch sensor wherein the electrodes have low resistance and an excellent visual property, a method for manufacturing this capacitive touch sensor, and a molded article equipped with this capacitive touch sensor.
[Solution]
A capacitance sensor characterized by being equipped with a transparent base film, a first conductive part formed on a first primary surface of the base film, and a second conductive part formed on a second primary surface of the base film, wherein the first conductive part has two or more first electrode patterns, which comprise black conductive thin wires that are opaque and have a reflectance of 2% or less, and blank parts partitioned by the black conductive thin wires, and which extend in a first direction and are arranged in a second direction orthogonal to the first direction, the second conductive part has two or more second electrode patterns, which comprise black conductive thin wires that are opaque and have a reflectance of 2% or less, and blank parts partitioned by the black conductive thin wires, and which extend in the second direction and are arranged in the first direction, and the black conductive thin wires are configured by including metal particles and a conductive blacking agent in a photosensitive resin.
Description
本発明は、電極が低抵抗かつ視認性に優れ、折り曲げ可能な静電容量瀬タッチセンサーとその製造方法に関する。
The present invention relates to a bendable electrostatic capacitance touch sensor having a low resistance and excellent visibility, and a method of manufacturing the same.
静電容量方式タッチパネルに用いるフィルムセンサー(以下、静電容量センサー)は、タッチパネルの表面に指で触れると生じるXとYの電極間の静電容量(電荷)の変化を、センサーが感知することで位置を認識する仕組みのものである。
A film sensor used for a capacitive touch panel (hereinafter referred to as a capacitive sensor) is a sensor that senses a change in capacitance (charge) between X and Y electrodes that occurs when a finger touches the surface of the touch panel. This is a mechanism for recognizing the position.
従来、静電容量センサーにおいて、マトリクス状に配列したXとYの電極が目立たないようにするために、電極をITO(酸化インジウムスズ)にて構成していた。ところが、タッチパネルを備えた電子機器は、現在はスマートフォン(高機能携帯端末)をはじめとするモバイル機器等の小サイズへの適用が主となっているが、デジタルサイネージ(電子看板)等への適用による大サイズ化が進むと考えられる。このような将来の動向において、従来のITO(酸化インジウムスズ)を用いた電極では抵抗が大きく、適用サイズが大きくなるにつれて、電極間の電流の伝達速度が遅くなり、応答速度(指先を接触してからその位置を検出するまでの時間)が遅くなるという問題がある。
Conventionally, in a capacitance sensor, the electrodes are made of ITO (indium tin oxide) so that the X and Y electrodes arranged in a matrix are not conspicuous. However, electronic devices equipped with touch panels are currently mainly applied to small sizes of mobile devices such as smartphones (high-function mobile terminals), but are applied to digital signage (electronic signage) etc. It is thought that the increase in size will progress. In such future trends, conventional ITO (Indium Tin Oxide) electrodes have a large resistance, and as the application size increases, the current transfer speed between the electrodes decreases, and the response speed (contact the fingertip). The time until the position is detected after that is delayed.
そこで、この問題を解決するため、低抵抗な金、銀、銅などの金属薄膜を微細加工し、タッチ者に視認されない線幅の金属細線により電極を構成する技術(いわゆる、メタルメッシュ電極)の開発が進められている。金属細線を電極に用いた静電容量センサーとしては、例えば、特許文献1~3が知られている 。
Therefore, in order to solve this problem, a technology (so-called metal mesh electrode) of a technique (so-called metal mesh electrode) in which a metal thin film such as gold, silver, or copper having a low resistance is finely processed and a metal thin wire having a line width that is not visually recognized by the toucher. Development is underway. For example, Patent Documents 1 to 3 are known as capacitance sensors using metal fine wires as electrodes.
しかしながら、静電容量センサーにメタルメッシュ電極を用いる場合、電極を構成する金属細線の金属色の反射率が高く、視認性が問題となる。
メタルメッシュ電極の反射を抑えるためにメタルメッシュ電極表面に黒色の酸化膜を付ける対策もあるが、この場合、価格が高価である。また、クロムからなるメッシュ電極に酸化膜を設けて黒色にしたものは、高価であるだけでなく、パターニングの際のエッチングも容易ではない。さらに、電極からの配線にも酸化膜が付けれるので、端子表面の導電性に乏しく、端子の取り出しとしては不適である。 However, when a metal mesh electrode is used for the capacitance sensor, the metal color reflectance of the metal thin wire constituting the electrode is high, and visibility becomes a problem.
In order to suppress reflection of the metal mesh electrode, there is a measure to attach a black oxide film to the surface of the metal mesh electrode, but in this case, the price is expensive. Further, a black mesh electrode made of chromium and provided with an oxide film is not only expensive, but is also not easily etched during patterning. Furthermore, since an oxide film can also be attached to the wiring from the electrode, the terminal surface is poor in conductivity and is not suitable for taking out the terminal.
メタルメッシュ電極の反射を抑えるためにメタルメッシュ電極表面に黒色の酸化膜を付ける対策もあるが、この場合、価格が高価である。また、クロムからなるメッシュ電極に酸化膜を設けて黒色にしたものは、高価であるだけでなく、パターニングの際のエッチングも容易ではない。さらに、電極からの配線にも酸化膜が付けれるので、端子表面の導電性に乏しく、端子の取り出しとしては不適である。 However, when a metal mesh electrode is used for the capacitance sensor, the metal color reflectance of the metal thin wire constituting the electrode is high, and visibility becomes a problem.
In order to suppress reflection of the metal mesh electrode, there is a measure to attach a black oxide film to the surface of the metal mesh electrode, but in this case, the price is expensive. Further, a black mesh electrode made of chromium and provided with an oxide film is not only expensive, but is also not easily etched during patterning. Furthermore, since an oxide film can also be attached to the wiring from the electrode, the terminal surface is poor in conductivity and is not suitable for taking out the terminal.
また、上述のデジタルサイネージは、複合商業施設、公共施設などにおいて、一度に多くの人々へ情報や映像を発信するツールであるが、昨今の大画面化により設置エリアが限られていたところ、近年、曲面ディスプレイの開発によって、円柱に貼り付けられたポスターなど印刷物の替わりとなるデジタルサイネージ化も可能となってきた。ところが、静電容量センサーに金属薄膜を微細加工してなるメタルメッシュ電極を用いる場合、断線などのおそれから曲面ディスプレイや折り曲げ可能なディスプレイに適用することが困難であった。また、同様の理由から、自動車内装のような曲面成形品への適用も困難であった。
The above digital signage is a tool that sends information and images to many people at once in complex commercial facilities, public facilities, etc., but the installation area has been limited due to the recent increase in screen size. With the development of curved displays, digital signage that can replace printed materials such as posters attached to cylinders has become possible. However, when a metal mesh electrode formed by finely processing a metal thin film is used for the capacitance sensor, it has been difficult to apply it to a curved display or a foldable display because of fear of disconnection or the like. For the same reason, it has been difficult to apply to curved molded products such as automobile interiors.
したがって、本発明はこのような課題を考慮してなされたものであり、電極が低抵抗かつ視認性に優れ、折り曲げ可能な静電容量タッチセンサーとその製造方法、静電容量センサー付き成形品を提供することを目的とする。
なお、本明細書において折り曲げ可能とは、曲げられる(ベンダブル:bendable)、2つ折りに出来る(フォルダブル:Foldable)のいずれの意味も含む。 Therefore, the present invention has been made in consideration of such problems, and the electrode has a low resistance, excellent visibility, a foldable capacitance touch sensor, a manufacturing method thereof, and a molded product with the capacitance sensor. The purpose is to provide.
In the present specification, “bendable” includes any meaning of being bent (bendable) and capable of being folded in two (foldable).
なお、本明細書において折り曲げ可能とは、曲げられる(ベンダブル:bendable)、2つ折りに出来る(フォルダブル:Foldable)のいずれの意味も含む。 Therefore, the present invention has been made in consideration of such problems, and the electrode has a low resistance, excellent visibility, a foldable capacitance touch sensor, a manufacturing method thereof, and a molded product with the capacitance sensor. The purpose is to provide.
In the present specification, “bendable” includes any meaning of being bent (bendable) and capable of being folded in two (foldable).
上記目的を達成するために、本発明は以下のように構成する。
In order to achieve the above object, the present invention is configured as follows.
本発明の静電容量センサーは、透明な基体フィルムと、該基体フィルムの第1主面に形成された第1導電部と、基体フィルムの第2主面に形成された第2導電部と、を備え、第1導電部は、それぞれ不透明で反射率2%以下の黒色導電性細線及び当該黒色導電性細線によって仕切られた空白部からなって第1方向に延在し、且つ、第1方向と直交する第2方向に配列された2以上の第1電極パターンを有し、第2導電部は、それぞれ不透明で反射率2%以下の黒色導電性細線及び当該黒色導電性細線によって仕切られた空白部からなって第2方向に延在し、且つ、第1方向に配列された2以上の第2電極パターンを有し、黒色導電性細線は、感光性樹脂中に金属粒子及び導電性黒色剤を含有して構成される点に要旨を有する。
このように第1電極パターン及び第2電極パターンが、不透明で反射率2%以下の黒色導電性細線及び当該黒色導電性細線によって仕切られた空白部からなるので、導電性細線の反射を抑えることができ、視認性に優れる。また、黒色導電性細線は、感光性樹脂中に金属粒子及び導電性黒色剤を含有して構成されているので、低抵抗かつ折り曲げ可能である。 The capacitance sensor of the present invention includes a transparent base film, a first conductive portion formed on the first main surface of the base film, a second conductive portion formed on the second main surface of the base film, Each of the first conductive portions is made of a black conductive thin wire that is opaque and has a reflectance of 2% or less, and a blank portion partitioned by the black conductive thin wire, and extends in the first direction. Two or more first electrode patterns arranged in a second direction orthogonal to the first conductive pattern, and the second conductive part is opaque and divided by the black conductive thin line and the black conductive thin line each having a reflectance of 2% or less It consists of a blank portion, extends in the second direction, and has two or more second electrode patterns arranged in the first direction, and the black conductive fine wire is formed of metal particles and conductive black in the photosensitive resin. It has a gist in that it contains an agent.
As described above, the first electrode pattern and the second electrode pattern are made of opaque black conductive wires having a reflectance of 2% or less and blank portions partitioned by the black conductive wires, so that the reflection of the conductive wires can be suppressed. And has excellent visibility. Moreover, since the black electroconductive thin wire is comprised including the metal particle and the electroconductive black agent in photosensitive resin, it is low resistance and can be bent.
このように第1電極パターン及び第2電極パターンが、不透明で反射率2%以下の黒色導電性細線及び当該黒色導電性細線によって仕切られた空白部からなるので、導電性細線の反射を抑えることができ、視認性に優れる。また、黒色導電性細線は、感光性樹脂中に金属粒子及び導電性黒色剤を含有して構成されているので、低抵抗かつ折り曲げ可能である。 The capacitance sensor of the present invention includes a transparent base film, a first conductive portion formed on the first main surface of the base film, a second conductive portion formed on the second main surface of the base film, Each of the first conductive portions is made of a black conductive thin wire that is opaque and has a reflectance of 2% or less, and a blank portion partitioned by the black conductive thin wire, and extends in the first direction. Two or more first electrode patterns arranged in a second direction orthogonal to the first conductive pattern, and the second conductive part is opaque and divided by the black conductive thin line and the black conductive thin line each having a reflectance of 2% or less It consists of a blank portion, extends in the second direction, and has two or more second electrode patterns arranged in the first direction, and the black conductive fine wire is formed of metal particles and conductive black in the photosensitive resin. It has a gist in that it contains an agent.
As described above, the first electrode pattern and the second electrode pattern are made of opaque black conductive wires having a reflectance of 2% or less and blank portions partitioned by the black conductive wires, so that the reflection of the conductive wires can be suppressed. And has excellent visibility. Moreover, since the black electroconductive thin wire is comprised including the metal particle and the electroconductive black agent in photosensitive resin, it is low resistance and can be bent.
金属粒子は、銀、銅、アルミニウムの中から選ばれた1以上の金属粒子であることが好ましい。これら導電性、コストの点で工業生産上適している。
The metal particles are preferably one or more metal particles selected from silver, copper, and aluminum. These are suitable for industrial production in terms of conductivity and cost.
導電性黒色剤は、カーボンナノチューブ、フラーレン、グラフェン、グラファイト及びドーピングされたアモルファスカーボンの中から選ばれた1以上の導電性黒色剤であることが好ましい。これらは導電性細線を不透明化するのに適している。
The conductive black agent is preferably one or more conductive black agents selected from carbon nanotubes, fullerenes, graphene, graphite, and doped amorphous carbon. These are suitable for opacifying the conductive thin wires.
感光性樹脂は、光重合開始剤を含有した感光性樹脂であることが好ましい。光重合開始剤を含有した感光性樹脂は、柔軟性に優れるからである。
The photosensitive resin is preferably a photosensitive resin containing a photopolymerization initiator. This is because the photosensitive resin containing the photopolymerization initiator is excellent in flexibility.
基体フィルムの第1主面に形成された第1電極パターン、基体フィルムの第2主面に形成された第2電極パターンは、柔軟性のある保護膜によってそれぞれ被覆されていることが好ましい。両面に柔軟性のある保護膜を形成することにより、静電容量センサーの折り曲げ性が向上する。
It is preferable that the first electrode pattern formed on the first main surface of the base film and the second electrode pattern formed on the second main surface of the base film are respectively covered with a flexible protective film. By forming a flexible protective film on both sides, the bendability of the capacitance sensor is improved.
また、本発明の静電容量センサーは、第1導電部が、さらに、第1電極パターンと同じ材料の黒色導電性細線及び当該黒色導電性細線によって仕切られた空白部からなって、隣り合う第1電極パターン同士の隙間に配置され、第1電極パターンと電気的に絶縁された複数の第1ダミーパターンを有し、第2導電部が、さらに、第2電極パターンと同じ材料の黒色導電性細線及び当該黒色導電性細線によって仕切られた空白部からなって、隣り合う第2電極パターン同士の隙間に配置され、第2電極パターンと電気的に絶縁された複数の第2ダミーパターンを有していることが好ましい。
第1ダミーパターン及び第2ダミーパターンは、第1電極パターン同士の隙間、及び、第2電極パターン同士の隙間が目立たないように、補完することができる。すなわち、第1電極パターンや第2電極パターンにおける黒色導電性細線によって仕切られた空白部が隙間にも連続して存在するかのように見せることができる。 In the capacitance sensor of the present invention, the first conductive portion further includes a black conductive fine wire made of the same material as that of the first electrode pattern and a blank portion partitioned by the black conductive thin wire. Black conductive material having a plurality of first dummy patterns arranged in a gap between the one electrode patterns and electrically insulated from the first electrode pattern, wherein the second conductive portion is the same material as the second electrode pattern It has a plurality of second dummy patterns which are composed of a fine line and a blank portion partitioned by the black conductive fine line and are arranged in a gap between adjacent second electrode patterns and are electrically insulated from the second electrode pattern. It is preferable.
The first dummy pattern and the second dummy pattern can be complemented so that the gap between the first electrode patterns and the gap between the second electrode patterns are not conspicuous. That is, it can appear as if the blank portion partitioned by the black conductive thin wire in the first electrode pattern or the second electrode pattern is continuously present in the gap.
第1ダミーパターン及び第2ダミーパターンは、第1電極パターン同士の隙間、及び、第2電極パターン同士の隙間が目立たないように、補完することができる。すなわち、第1電極パターンや第2電極パターンにおける黒色導電性細線によって仕切られた空白部が隙間にも連続して存在するかのように見せることができる。 In the capacitance sensor of the present invention, the first conductive portion further includes a black conductive fine wire made of the same material as that of the first electrode pattern and a blank portion partitioned by the black conductive thin wire. Black conductive material having a plurality of first dummy patterns arranged in a gap between the one electrode patterns and electrically insulated from the first electrode pattern, wherein the second conductive portion is the same material as the second electrode pattern It has a plurality of second dummy patterns which are composed of a fine line and a blank portion partitioned by the black conductive fine line and are arranged in a gap between adjacent second electrode patterns and are electrically insulated from the second electrode pattern. It is preferable.
The first dummy pattern and the second dummy pattern can be complemented so that the gap between the first electrode patterns and the gap between the second electrode patterns are not conspicuous. That is, it can appear as if the blank portion partitioned by the black conductive thin wire in the first electrode pattern or the second electrode pattern is continuously present in the gap.
基体フィルムの第1主面に形成された第1電極パターン及び第1ダミーパターン、基体フィルムの第2主面に形成された第2電極パターン及び第2ダミーパターンは、柔軟性のある保護膜によってそれぞれ被覆されていることが好ましい。ダミーパターンを有する場合においても、両面に柔軟性のある保護膜を形成することにより、静電容量センサーの折り曲げ性が向上する。
The first electrode pattern and the first dummy pattern formed on the first main surface of the base film, and the second electrode pattern and the second dummy pattern formed on the second main surface of the base film are formed by a flexible protective film. Each is preferably coated. Even in the case of having a dummy pattern, the bendability of the capacitance sensor is improved by forming a flexible protective film on both sides.
また、本発明の静電容量センサー付き成形品は、曲面を有する樹脂成形品と、該成形品の曲面に沿って一体化している上記の静電容量センサーと、を備えている点に要旨を有する。
本発明の静電容量センサー付き成形品は、静電容量センサーの第1電極パターン及び第2電極パターンが、不透明で反射率2%以下の黒色導電性細線及び当該黒色導電性細線によって仕切られた空白部からなるので、静電容量センサーの導電性細線の反射を抑えることができ、視認性に優れる。また、静電容量センサーの黒色導電性細線は、感光性樹脂中に金属粒子及び導電性黒色剤を含有して構成されているので、低抵抗かつ折り曲げ可能であり、曲面を有する樹脂成形品への一体化に適している。 The molded product with a capacitance sensor of the present invention is summarized in that it includes a resin molded product having a curved surface and the above-described capacitance sensor integrated along the curved surface of the molded product. Have.
In the molded article with a capacitance sensor of the present invention, the first electrode pattern and the second electrode pattern of the capacitance sensor are separated by a black conductive thin wire having a reflectance of 2% or less and the black conductive thin wire. Since it consists of a blank part, reflection of the electroconductive fine wire of an electrostatic capacitance sensor can be suppressed, and it is excellent in visibility. In addition, since the black conductive thin wire of the capacitance sensor is configured by containing metal particles and a conductive black agent in the photosensitive resin, it can be bent with low resistance and has a curved surface. Suitable for integration.
本発明の静電容量センサー付き成形品は、静電容量センサーの第1電極パターン及び第2電極パターンが、不透明で反射率2%以下の黒色導電性細線及び当該黒色導電性細線によって仕切られた空白部からなるので、静電容量センサーの導電性細線の反射を抑えることができ、視認性に優れる。また、静電容量センサーの黒色導電性細線は、感光性樹脂中に金属粒子及び導電性黒色剤を含有して構成されているので、低抵抗かつ折り曲げ可能であり、曲面を有する樹脂成形品への一体化に適している。 The molded product with a capacitance sensor of the present invention is summarized in that it includes a resin molded product having a curved surface and the above-described capacitance sensor integrated along the curved surface of the molded product. Have.
In the molded article with a capacitance sensor of the present invention, the first electrode pattern and the second electrode pattern of the capacitance sensor are separated by a black conductive thin wire having a reflectance of 2% or less and the black conductive thin wire. Since it consists of a blank part, reflection of the electroconductive fine wire of an electrostatic capacitance sensor can be suppressed, and it is excellent in visibility. In addition, since the black conductive thin wire of the capacitance sensor is configured by containing metal particles and a conductive black agent in the photosensitive resin, it can be bent with low resistance and has a curved surface. Suitable for integration.
また、本発明の静電容量センサーの製造方法は、剥離性を有する支持フィルムと、該支持フィルム上に設けられ、感光性樹脂中に金属粒子及び導電性黒色剤を含有している感光性導電樹脂層とを備えた感光性導電樹脂積層体を用い、透明な基体フィルムの第1主面及び第2主面に、各々、感光性導電樹脂積層体の感光性導電樹脂層面を重ねて積層するラミネート工程と、前工程で得られた両面ラミネート物に対してフォトマスクを介して両面露光する露光工程と、露光後且つ支持フィルムの剥離後の感光性導電樹脂層を現像することにより、上記の静電容量センサーの第1導電部及び第2導電部を形成する現像工程と、を備えた点に要旨を有する。
本発明の静電容量センサーの製造方法は、導電性細線の反射を抑えることができ、視認性に優れ、さらに低抵抗かつ折り曲げ可能であるという効果を奏する第1電極パターン及び第2電極パターンを、上記の感光性導電樹脂積層体を用いてフォトプロセスで形成するという簡便な方法で形成できるため、工業生産上適している。 In addition, the method for producing a capacitance sensor of the present invention includes a support film having releasability, and a photosensitive conductive material provided on the support film and containing metal particles and a conductive black agent in a photosensitive resin. A photosensitive conductive resin laminate including a resin layer is used, and the photosensitive conductive resin layer surface of the photosensitive conductive resin laminate is laminated on the first main surface and the second main surface of the transparent base film, respectively. Laminating step, exposure step of exposing both sides of the double-sided laminate obtained in the previous step through a photomask, and developing the photosensitive conductive resin layer after exposure and after peeling of the support film, And a developing step for forming the first conductive portion and the second conductive portion of the capacitance sensor.
The method for manufacturing a capacitance sensor according to the present invention includes a first electrode pattern and a second electrode pattern that are capable of suppressing reflection of a conductive thin wire, have excellent visibility, and have low resistance and bendability. Since it can be formed by a simple method of forming by a photo process using the above photosensitive conductive resin laminate, it is suitable for industrial production.
本発明の静電容量センサーの製造方法は、導電性細線の反射を抑えることができ、視認性に優れ、さらに低抵抗かつ折り曲げ可能であるという効果を奏する第1電極パターン及び第2電極パターンを、上記の感光性導電樹脂積層体を用いてフォトプロセスで形成するという簡便な方法で形成できるため、工業生産上適している。 In addition, the method for producing a capacitance sensor of the present invention includes a support film having releasability, and a photosensitive conductive material provided on the support film and containing metal particles and a conductive black agent in a photosensitive resin. A photosensitive conductive resin laminate including a resin layer is used, and the photosensitive conductive resin layer surface of the photosensitive conductive resin laminate is laminated on the first main surface and the second main surface of the transparent base film, respectively. Laminating step, exposure step of exposing both sides of the double-sided laminate obtained in the previous step through a photomask, and developing the photosensitive conductive resin layer after exposure and after peeling of the support film, And a developing step for forming the first conductive portion and the second conductive portion of the capacitance sensor.
The method for manufacturing a capacitance sensor according to the present invention includes a first electrode pattern and a second electrode pattern that are capable of suppressing reflection of a conductive thin wire, have excellent visibility, and have low resistance and bendability. Since it can be formed by a simple method of forming by a photo process using the above photosensitive conductive resin laminate, it is suitable for industrial production.
以上説明したように、本発明に係る静電容量センサーとその製造方法、静電センサー付き成形品によれば、第1電極パターン及び第2電極パターンが、不透明で反射率2%以下の黒色導電性細線及び当該黒色導電性細線によって仕切られた空白部からなるので、導電性細線の反射を抑えることができ、視認性に優れる。
また、上記黒色導電性細線は、感光性樹脂中に金属粒子及び導電性黒色剤を含有して構成されているので、低抵抗かつ折り曲げ可能である。 As described above, according to the capacitance sensor, the method for manufacturing the same, and the molded product with the electrostatic sensor according to the present invention, the first electrode pattern and the second electrode pattern are opaque and have a black conductivity of 2% or less. Since it consists of the blank part partitioned off by a conductive fine wire and the said black conductive fine wire, reflection of a conductive thin wire can be suppressed and it is excellent in visibility.
Moreover, since the said black electroconductive fine wire is comprised including the metal particle and the electroconductive black agent in photosensitive resin, it is low resistance and can be bent.
また、上記黒色導電性細線は、感光性樹脂中に金属粒子及び導電性黒色剤を含有して構成されているので、低抵抗かつ折り曲げ可能である。 As described above, according to the capacitance sensor, the method for manufacturing the same, and the molded product with the electrostatic sensor according to the present invention, the first electrode pattern and the second electrode pattern are opaque and have a black conductivity of 2% or less. Since it consists of the blank part partitioned off by a conductive fine wire and the said black conductive fine wire, reflection of a conductive thin wire can be suppressed and it is excellent in visibility.
Moreover, since the said black electroconductive fine wire is comprised including the metal particle and the electroconductive black agent in photosensitive resin, it is low resistance and can be bent.
下記で、本発明に係る実施形態を図面に基づいてさらに詳細に説明する。なお、本発明の実施例に記載した部位や部分の寸法、材質、形状、その相対位置などは、とくに特定的な記載がない限り、この発明の範囲をそれらのみに限定する趣旨のものではなく、単なる説明例にすぎない。
Hereinafter, embodiments according to the present invention will be described in more detail with reference to the drawings. It should be noted that the dimensions, materials, shapes, relative positions, etc. of the parts and portions described in the embodiments of the present invention are not intended to limit the scope of the present invention only to those unless otherwise specified. This is just an illustrative example.
[第1実施形態]
<静電容量センサーの構成>
第1実施形態に係る静電容量センサー1は、図1、図2に示すように、透明な基体フィルム12と、基体フィルム12の第1主面12aに形成された第1導電部14aと、基体フィルム12の第2主面12bに形成された第2導電部14bと、を備えている。 [First Embodiment]
<Configuration of capacitance sensor>
As shown in FIGS. 1 and 2, thecapacitance sensor 1 according to the first embodiment includes a transparent base film 12, a first conductive portion 14 a formed on the first main surface 12 a of the base film 12, and And a second conductive portion 14b formed on the second main surface 12b of the base film 12.
<静電容量センサーの構成>
第1実施形態に係る静電容量センサー1は、図1、図2に示すように、透明な基体フィルム12と、基体フィルム12の第1主面12aに形成された第1導電部14aと、基体フィルム12の第2主面12bに形成された第2導電部14bと、を備えている。 [First Embodiment]
<Configuration of capacitance sensor>
As shown in FIGS. 1 and 2, the
(基体フィルム)
基体フィルム12は、90%以上の透過率をもつ樹脂フィルムである。樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリ乳酸(PLA)、ポリエチレンナフタレート(PEN)等のポリエステル類、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン、EVA、シクロオレフィンポリマー(COP)、環状オレフィン・コポリマー(COC)等のポリオレフィン類、その他にビニル系樹脂、ポリカーボネート(PC)、ポリアミド、ポリイミド(PI)、アクリル樹脂(PMMA)、トリアセチルセルロース(TAC)等を用いることができる。 (Base film)
Thebase film 12 is a resin film having a transmittance of 90% or more. Examples of the resin include polyesters such as polyethylene terephthalate (PET), polylactic acid (PLA), and polyethylene naphthalate (PEN), polyethylene (PE), polypropylene (PP), polystyrene, EVA, cycloolefin polymer (COP), Polyolefins such as cyclic olefin copolymer (COC), vinyl resin, polycarbonate (PC), polyamide, polyimide (PI), acrylic resin (PMMA), triacetyl cellulose (TAC), and the like can be used.
基体フィルム12は、90%以上の透過率をもつ樹脂フィルムである。樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリ乳酸(PLA)、ポリエチレンナフタレート(PEN)等のポリエステル類、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン、EVA、シクロオレフィンポリマー(COP)、環状オレフィン・コポリマー(COC)等のポリオレフィン類、その他にビニル系樹脂、ポリカーボネート(PC)、ポリアミド、ポリイミド(PI)、アクリル樹脂(PMMA)、トリアセチルセルロース(TAC)等を用いることができる。 (Base film)
The
基体フィルム12の厚さは、5~350μmであることが好ましく、30~150μmであることがさらに好ましい。5~350μmの範囲であれば所望の可視光の透過率が得られ、且つ、取り扱いも容易である。また、基体フィルム12は、単一層又は2層以上の貼合された積層体であってもよい。さらに、基体フィルム12は、1/4λ位相差フィルム、例えば延伸COPを構成中に有していてもよい。また、基体フィルム12には、上述のポリ乳酸フィルムを一軸延伸してなる、焦電性の生じない圧電フィルムを用いることもできる。
また、基体フィルム12は、第1主面12aと第2主面12bの一方又は両方に樹脂コートがされていてもよい。例えば、露光波長を透過させない透明膜のコーティングである。 The thickness of thebase film 12 is preferably 5 to 350 μm, and more preferably 30 to 150 μm. If it is in the range of 5 to 350 μm, a desired visible light transmittance can be obtained, and handling is easy. Moreover, the base film 12 may be a single layer or a laminate in which two or more layers are bonded. Furthermore, the base film 12 may have a 1 / 4λ phase difference film, for example, a stretched COP in its configuration. The base film 12 can also be a piezoelectric film that is uniaxially stretched from the polylactic acid film described above and does not generate pyroelectricity.
Further, thebase film 12 may be coated with a resin on one or both of the first main surface 12a and the second main surface 12b. For example, it is a coating of a transparent film that does not transmit the exposure wavelength.
また、基体フィルム12は、第1主面12aと第2主面12bの一方又は両方に樹脂コートがされていてもよい。例えば、露光波長を透過させない透明膜のコーティングである。 The thickness of the
Further, the
(第1導電部及び第2導電部)
第1導電部14a及び第2導電部14bは、図1に示すように、透視を必要とする部分(第1センサ部24a及び第2センサ部24b)と透視を必要としない部分(第1端子配線部34a及び第2端子配線部34b)とを有する。そして、静電容量センサー1の外形は平面視で矩形状を有すると共に、第1センサ部24a及び第2センサ部24bの外形も矩形状を有する。 (First conductive part and second conductive part)
As shown in FIG. 1, the firstconductive portion 14 a and the second conductive portion 14 b include a portion that requires perspective (first sensor portion 24 a and second sensor portion 24 b) and a portion that does not require perspective (first terminal). Wiring portion 34a and second terminal wiring portion 34b). The external shape of the capacitance sensor 1 has a rectangular shape in plan view, and the external shapes of the first sensor unit 24a and the second sensor unit 24b also have a rectangular shape.
第1導電部14a及び第2導電部14bは、図1に示すように、透視を必要とする部分(第1センサ部24a及び第2センサ部24b)と透視を必要としない部分(第1端子配線部34a及び第2端子配線部34b)とを有する。そして、静電容量センサー1の外形は平面視で矩形状を有すると共に、第1センサ部24a及び第2センサ部24bの外形も矩形状を有する。 (First conductive part and second conductive part)
As shown in FIG. 1, the first
第1導電部14aの第1センサ部24aは、それぞれ不透明で反射率2%以下の黒色導電性細線16及び当該黒色導電性細線16によって仕切られた空白部17からなって第1方向(図1中のX方向)に延在し、且つ、第1方向と直交する第2方向(図1中のY方向)に配列された2以上の第1電極パターン25aを有する。なお、図2は、図1の静電容量センサー中の1つの第1電極パターン25aを長さ方向に切断した断面図である。
The first sensor portion 24a of the first conductive portion 14a is composed of a black conductive thin wire 16 which is opaque and has a reflectance of 2% or less, and a blank portion 17 partitioned by the black conductive thin wire 16 in a first direction (FIG. 1). And two or more first electrode patterns 25a arranged in a second direction (Y direction in FIG. 1) orthogonal to the first direction. FIG. 2 is a cross-sectional view of one first electrode pattern 25a in the capacitance sensor of FIG. 1 cut in the length direction.
第2導電部14bの第2センサ部24bは、それぞれ不透明で反射率2%以下の黒色導電性細線16及び当該黒色導電性細線16によって仕切られた空白部17からなって第2方向(図1中のY方向)に延在し、且つ、第1方向(図1中のX方向)に配列された2以上の第2電極パターン25bを有する。第2導電部14bは、基体フィルム12によって第1導電部14aと電気的に絶縁された状態下にある。
The second sensor portion 24b of the second conductive portion 14b is composed of a black conductive thin wire 16 which is opaque and has a reflectance of 2% or less and a blank portion 17 partitioned by the black conductive thin wire 16 in the second direction (FIG. 1). And two or more second electrode patterns 25b extending in the first Y direction and arranged in the first direction (X direction in FIG. 1). The second conductive portion 14 b is in a state where it is electrically insulated from the first conductive portion 14 a by the base film 12.
本実施形態において、黒色導電性細線16及び当該黒色導電性細線16によって仕切られた空白部17からなるパターンは、具体的には網目パターンである。すなわち、各網目パターンの輪郭が黒色導電性細線16で構成され、各網目パターンの開口部が黒色導電性細線16で囲まれた空白部17で構成される(図1参照)。そして、第1電極パターン25a及び第2電極パターン25bは、このようなパターンで形成されることによって、透視性が得られる。
In the present embodiment, the pattern composed of the black conductive fine wires 16 and the blank portions 17 partitioned by the black conductive fine wires 16 is specifically a mesh pattern. That is, the outline of each mesh pattern is constituted by the black conductive thin wires 16, and the opening portion of each mesh pattern is constituted by the blank portion 17 surrounded by the black conductive fine wires 16 (see FIG. 1). Further, the first electrode pattern 25a and the second electrode pattern 25b are formed in such a pattern, thereby obtaining transparency.
ところで、静電容量センサー1の第1電極パターン25a及び第2電極パターン25bに適用される網目パターンは、図1に示すような四角形や、その他の多角形で開口部を構成するのが好ましい。多角形でないもの、例えば円形や楕円形の開口を設けたものでは、開口部を最大限密に並べて配置しても開口部同士の間に輪郭の太い部分ができてしまうことから、その輪郭の太い部分が目立つとともに光線透過率を低下させる要因となるからである。また、三角形、四角形、六角形等の図形のうち、一種類あるいはそれらの複数種類の組み合わせで構成することができる。
By the way, it is preferable that the mesh pattern applied to the first electrode pattern 25a and the second electrode pattern 25b of the capacitance sensor 1 form an opening with a quadrangle as shown in FIG. 1 or other polygons. For non-polygonal ones, such as those with circular or elliptical openings, even if the openings are arranged as closely as possible, a thick outline is formed between the openings. This is because the thick part is noticeable and the light transmittance is reduced. Further, it can be configured by one type or a combination of a plurality of types among figures such as a triangle, a quadrangle, and a hexagon.
図3~図5は本発明に適用可能な網目パターンの例について、その一部を拡大して示したものである。
図3に示す網目パターンは、四角形を核としてX方向およびY方向に連続させたものであり、先に示した図1の第1電極パターン25a及び第2電極パターン25bに相当する。ただし、図1に示す第1電極パターン25aと第2電極パターン25bとは、共に四角形を核とするが、当該核の寸法が異なる。更に詳しく説明すると、第1電極パターン25aの核をY方向に複数個並べたサイズが、第2電極パターン25bの核一つに相当する。図4に示す網目パターンは、六角形を核としX方向およびYa方向、b方向に連続させたものである。図5に示す網目パターンは、梯子形を核としX方向およびY方向に連続させたものである。 FIGS. 3 to 5 are enlarged views of examples of mesh patterns applicable to the present invention.
The mesh pattern shown in FIG. 3 has a quadrangular shape as a nucleus and is continuous in the X direction and the Y direction, and corresponds to thefirst electrode pattern 25a and the second electrode pattern 25b shown in FIG. However, although both the first electrode pattern 25a and the second electrode pattern 25b shown in FIG. 1 have a quadrangle as a nucleus, the dimensions of the nucleus are different. More specifically, the size in which a plurality of nuclei of the first electrode pattern 25a are arranged in the Y direction corresponds to one nucleus of the second electrode pattern 25b. The mesh pattern shown in FIG. 4 has a hexagonal core and is continuous in the X direction, Ya direction, and b direction. The mesh pattern shown in FIG. 5 has a ladder shape as a nucleus and is continuous in the X and Y directions.
図3に示す網目パターンは、四角形を核としてX方向およびY方向に連続させたものであり、先に示した図1の第1電極パターン25a及び第2電極パターン25bに相当する。ただし、図1に示す第1電極パターン25aと第2電極パターン25bとは、共に四角形を核とするが、当該核の寸法が異なる。更に詳しく説明すると、第1電極パターン25aの核をY方向に複数個並べたサイズが、第2電極パターン25bの核一つに相当する。図4に示す網目パターンは、六角形を核としX方向およびYa方向、b方向に連続させたものである。図5に示す網目パターンは、梯子形を核としX方向およびY方向に連続させたものである。 FIGS. 3 to 5 are enlarged views of examples of mesh patterns applicable to the present invention.
The mesh pattern shown in FIG. 3 has a quadrangular shape as a nucleus and is continuous in the X direction and the Y direction, and corresponds to the
四角形のなかでも特に正方形が核となって連続するものは、他の多角形状に比べて網目パターンが筋状に認識され難いので好ましい。つまり、或る形状が核となって規則的に連続するパターンを見たとき、その核の連続する方向に沿って輪郭(黒色導電性細線16)が連続する筋状に見える傾向がある。例えば六角形が核となったものの場合では、その連続方向に沿った黒色導電性細線16の線形がジグザグとなる為に、このジグザグの振幅の分だけ太く見えてしまい、結果として黒色導電性細線16の線幅が膨張した状態に見えてしまう。この点において上記正方形が核となって連続するものの場合は、連続方向に沿った黒色導電性細線16の線形が真っ直ぐとなるから、本来の幅よりも太く見える懸念がないので、その存在が認識され難く、網目パターンが目立たない。
Of the quadrangular shapes, those having a square as a core are particularly preferable because the mesh pattern is less likely to be recognized as a streak compared to other polygonal shapes. That is, when a regularly continuous pattern with a certain shape as a nucleus is seen, the outline (black conductive thin line 16) tends to appear as a continuous streak along the continuous direction of the nucleus. For example, in the case of a hexagonal core, the line of black conductive thin wires 16 along the continuous direction becomes zigzag, so that it appears thicker by the amplitude of the zigzag, and as a result, the black conductive thin wires It appears that the line width of 16 is expanded. In this respect, in the case where the square is continuous as a nucleus, since the linear shape of the black conductive thin wire 16 along the continuous direction is straight, there is no concern that it may appear thicker than the original width, so its existence is recognized. It is hard to be done and the mesh pattern is not conspicuous.
また長方形が核となって連続するものの場合では、この長方形の長辺方向と短辺方向のピッチが違うので、全体を見たときに、長辺方向に比べてピッチの短い短辺方向が濃く現れ、これが筋状となってちらついて見える傾向にあるが、上記正方形が核となって連続するものでは、この様な筋状は現れず、目立たない。尚上記正方形には、完全に角張った正方形に限らず、面取りされた正方形も含まれる。
Also, in the case where the rectangle is continuous as a nucleus, the long side direction and the short side direction of this rectangle have different pitches, so when looking at the whole, the short side direction with a shorter pitch is darker than the long side direction. It appears and flickers and tends to appear flickering. However, when the square is continuous as a nucleus, such streaks do not appear and are not noticeable. The square is not limited to a completely square, but includes a chamfered square.
なお、本明細書中における「多角形」には、幾何学的に完全な多角形のみならず、前記完全な多角形に対し軽微な変更を加えた「実質的な多角形」も含まれるものとする。軽微な変更の例示として、網目と比べて微小な点要素・線要素の付加や、網目を構成する各辺(黒色導電性細線16)の部分的欠損等が挙げられる。例えば、図1に示す例では、第1電極パターン25a同士の隙間20に臨む線状突起40が存在することにより、当該隙間20と第1電極パターン25aとの境界を曖昧にさせ、目立たせないようにしている。
The “polygon” in the present specification includes not only a geometrically perfect polygon but also a “substantial polygon” in which a slight change is made to the perfect polygon. And Examples of minor changes include the addition of minute point elements / line elements as compared to the mesh, and partial loss of each side (black conductive fine wire 16) constituting the mesh. For example, in the example shown in FIG. 1, the presence of the linear protrusion 40 facing the gap 20 between the first electrode patterns 25a obscures the boundary between the gap 20 and the first electrode pattern 25a and does not stand out. I am doing so.
網目パターンの輪郭線幅は、下限は1μm以上、3μm以上、4μm以上、もしくは5μm以上が好ましく、上限は15μm、10μm以下、9μm以下、8μm以下が好ましい。線幅が上記下限値未満の場合には、導電性が不十分となるためタッチパネルの検出感度が不十分となる。他方、上記上限値を越えると透視性が悪くなったりする。
As for the outline width of the mesh pattern, the lower limit is preferably 1 μm or more, 3 μm or more, 4 μm or more, or 5 μm or more, and the upper limit is preferably 15 μm, 10 μm or less, 9 μm or less, or 8 μm or less. When the line width is less than the above lower limit value, the conductivity becomes insufficient, so that the detection sensitivity of the touch panel becomes insufficient. On the other hand, if the upper limit is exceeded, the transparency may deteriorate.
網目パターンの開口率は、可視光透過率の点から85%以上であることが好ましく、90%以上であることがさらに好ましく、95%以上であることが最も好ましい。開口率とは、透光性部分が全体に占める割合である。
The aperture ratio of the mesh pattern is preferably 85% or more from the viewpoint of visible light transmittance, more preferably 90% or more, and most preferably 95% or more. An aperture ratio is the ratio which a translucent part accounts to the whole.
第1電極パターン25a及び第2電極パターン25bの黒色導電性細線16は、感光性樹脂中に金属粒子及び導電性黒色剤を含有して構成される。したがって、ITO電極よりも低抵抗でありながら、従来のメタルメッシュでは断線などのおそれから難しかった、折り曲げも可能である。
The black conductive fine wires 16 of the first electrode pattern 25a and the second electrode pattern 25b are configured by containing metal particles and a conductive black agent in a photosensitive resin. Therefore, while being lower in resistance than the ITO electrode, it is possible to bend, which is difficult with the conventional metal mesh due to the possibility of disconnection or the like.
黒色導電性細線16に使用する金属粒子としては、銀、銅、アルミニウム、ニッケル、金、錫、亜鉛、ステンレスなどの金属系、酸化チタン、酸化亜鉛、酸化インジウム、酸化スズなどを基材にアルミ ニウム、酸化アンチモンをドープした金属酸化物系、絶縁性で安価なマイカ、炭酸カルシウム、ガラスビーズにアルミニウムやニッケルなどの金属を被覆した金属被覆系などが挙げられるが、とくに銀、銅及びアルミニウムの中から選ばれた1以上の金属粒子とするのが 導電性、コストの点から好ましい。
The metal particles used for the black conductive fine wire 16 are made of metal such as silver, copper, aluminum, nickel, gold, tin, zinc, stainless steel, aluminum based on titanium oxide, zinc oxide, indium oxide, tin oxide, etc. Metal oxide systems doped with nickel, antimony oxide, insulating and inexpensive mica, calcium carbonate, metal coated systems in which glass beads are coated with a metal such as aluminum or nickel, etc., but particularly silver, copper and aluminum One or more metal particles selected from the above are preferable from the viewpoint of conductivity and cost.
黒色導電性細線16に導電性黒色剤を使用することにより、導電性細線を不透明化することができる。その結果、導電性細線の反射を抑えることができ、視認性に優れる。
黒色導電性細線16に使用する導電性黒色剤としては、カーボンブラック、カーボンナノチューブ、フラーレン、グラフェン、グラファイト及びドーピングされたアモルファスカーボンなどやその混合が挙げられるが、とくにカーボンナノチューブ、フラーレン、グラフェン、グラファイト及びドーピングされたアモルファスカーボンの中から選ばれた1以上の導電性黒色剤とするのが好ましい。また、導電性黒色剤の大きさは、0.5μm以下とするのが好ましい。さらに好ましくは電気伝導率の高いグラフェン、カーボンナノチューブ、フラーレンである。
なお、一般の黒色剤としては、導電性を有しない、反応性染料、アゾ染料、ニグロシン類、ペリレン顔料、混合相顔料などの有機系着色剤もあるが、非導電性黒色剤の添加により金属粒子で得た導電性を損なうおそれがある。 By using a conductive black agent for the black conductivefine wire 16, the conductive fine wire can be made opaque. As a result, the reflection of the conductive thin wire can be suppressed, and the visibility is excellent.
Examples of the conductive blacking agent used for the black conductivethin wire 16 include carbon black, carbon nanotube, fullerene, graphene, graphite, doped amorphous carbon, and a mixture thereof. In particular, carbon nanotube, fullerene, graphene, graphite And at least one conductive black agent selected from doped amorphous carbon. The size of the conductive black agent is preferably 0.5 μm or less. More preferred are graphene, carbon nanotubes, and fullerenes having high electrical conductivity.
In addition, as general black agents, there are organic colorants such as reactive dyes, azo dyes, nigrosines, perylene pigments, mixed phase pigments, etc. that have no electrical conductivity. There is a risk of impairing the conductivity obtained with the particles.
黒色導電性細線16に使用する導電性黒色剤としては、カーボンブラック、カーボンナノチューブ、フラーレン、グラフェン、グラファイト及びドーピングされたアモルファスカーボンなどやその混合が挙げられるが、とくにカーボンナノチューブ、フラーレン、グラフェン、グラファイト及びドーピングされたアモルファスカーボンの中から選ばれた1以上の導電性黒色剤とするのが好ましい。また、導電性黒色剤の大きさは、0.5μm以下とするのが好ましい。さらに好ましくは電気伝導率の高いグラフェン、カーボンナノチューブ、フラーレンである。
なお、一般の黒色剤としては、導電性を有しない、反応性染料、アゾ染料、ニグロシン類、ペリレン顔料、混合相顔料などの有機系着色剤もあるが、非導電性黒色剤の添加により金属粒子で得た導電性を損なうおそれがある。 By using a conductive black agent for the black conductive
Examples of the conductive blacking agent used for the black conductive
In addition, as general black agents, there are organic colorants such as reactive dyes, azo dyes, nigrosines, perylene pigments, mixed phase pigments, etc. that have no electrical conductivity. There is a risk of impairing the conductivity obtained with the particles.
黒色導電性細線16に使用する前記感光性樹脂としては、アクリル系、脂環式エポキシ系、アクリルアクリレート系、ウレタンアクリレート系、エポキシアクリレート系、ポリエステルアクリレート系、ビニールエーテル系及びノボラック系などの感光性樹脂が挙げられるが、とくに光重合開始剤を含有した感光性樹脂とすることが柔軟性に優れるという観点から好ましい。光重合開始剤としては、ベンゾフェノン系、アセトフェノン系、チオキサントン系、ベンジル系、アゾ系等の光重合開始剤を用いることができる。また、増感剤を添加してもよい。
Examples of the photosensitive resin used for the black conductive fine wire 16 include photosensitive resins such as acrylic, alicyclic epoxy, acrylic acrylate, urethane acrylate, epoxy acrylate, polyester acrylate, vinyl ether, and novolac. Among them, a photosensitive resin containing a photopolymerization initiator is particularly preferable from the viewpoint of excellent flexibility. As the photopolymerization initiator, photopolymerization initiators such as benzophenone, acetophenone, thioxanthone, benzyl, and azo can be used. A sensitizer may be added.
(その他の構成)
前記したように、第1導電部14a及び第2導電部14bは、透視を必要とする部分(第1センサ部24a及び第2センサ部24b)と透視を必要としない部分(第1端子配線部34a及び第2端子配線部34b)とを有している(図1参照)。 (Other configurations)
As described above, the firstconductive portion 14a and the second conductive portion 14b include a portion that requires perspective (the first sensor portion 24a and the second sensor portion 24b) and a portion that does not require perspective (the first terminal wiring portion). 34a and second terminal wiring portion 34b) (see FIG. 1).
前記したように、第1導電部14a及び第2導電部14bは、透視を必要とする部分(第1センサ部24a及び第2センサ部24b)と透視を必要としない部分(第1端子配線部34a及び第2端子配線部34b)とを有している(図1参照)。 (Other configurations)
As described above, the first
第1端子配線部34aのうち静電容量センサー1の一辺側の周縁部には、その長さ方向中央部分に、複数の第1端子(図示せず)が配列形成されている。そして、第1端子配線パターン35aが、各第1電極パターン25aのいずれか一端から導出され、前記第1端子に向かって引き回されて、それぞれ対応する第1端子64aに電気的に接続されている。また、第2端子配線部34bのうち静電容量センサー1の一辺側の周縁部にも、その長さ方向中央部分に、複数の第2端子(図示せず)が配列形成されている。そして、第2端子配線パターン35bが、各第2電極パターン25bのいずれか一端から導出され、前記第2端子に向かって引き回されて、、それぞれ対応する第2端子に電気的に接続されている。
A plurality of first terminals (not shown) are arranged in the central portion in the longitudinal direction on the peripheral portion of one side of the capacitance sensor 1 in the first terminal wiring portion 34a. The first terminal wiring pattern 35a is led out from one end of each first electrode pattern 25a, routed toward the first terminal, and electrically connected to the corresponding first terminal 64a. Yes. In addition, a plurality of second terminals (not shown) are arranged in the center in the longitudinal direction at the peripheral portion of one side of the capacitance sensor 1 in the second terminal wiring portion 34b. And the 2nd terminal wiring pattern 35b is derived | led-out from either one end of each 2nd electrode pattern 25b, it was drawn around toward the said 2nd terminal, and it electrically connected to the corresponding 2nd terminal, respectively. Yes.
第1端子配線パターン35a及び第2端子配線パターン35bは、第1電極パターン25a及び第2電極パターン25bと同じ材料で形成することができる。第1端子配線パターン35a及び第2端子配線パターン35bは、例えば、25μm以上500μm以下の幅、10mm以上の長さで構成し、抵抗が10mm当たり300オーム以下、好ましくは100オーム以下である。
The first terminal wiring pattern 35a and the second terminal wiring pattern 35b can be formed of the same material as the first electrode pattern 25a and the second electrode pattern 25b. The first terminal wiring pattern 35a and the second terminal wiring pattern 35b are configured to have a width of 25 μm or more and 500 μm or less, a length of 10 mm or more, and a resistance of 300 ohms or less per 10 mm, preferably 100 ohms or less.
そして、この静電容量センサー1をタッチパネルとして構成する場合は、上記した静電容量センサー1の他、静電容量センサー1のいずれか一方の主面側に積層されたカバー部材と、静電容量センサー1に電気的に接続されたFPCと、FPC上に配置されたIC回路とを備える。指先をカバー部材上に接触させることで、指先に対向する第1電極パターン25aと第2電極パターン25bからの信号がIC回路に伝達される。IC回路では、供給された信号に基づいて指先の位置を演算する。
And when this electrostatic capacitance sensor 1 is comprised as a touch panel, the cover member laminated | stacked on either main surface side of the electrostatic capacitance sensor 1 other than the above-mentioned electrostatic capacitance sensor 1, and electrostatic capacitance An FPC electrically connected to the sensor 1 and an IC circuit arranged on the FPC are provided. By bringing the fingertip into contact with the cover member, signals from the first electrode pattern 25a and the second electrode pattern 25b facing the fingertip are transmitted to the IC circuit. The IC circuit calculates the position of the fingertip based on the supplied signal.
<静電容量センサー付き成形品>
以上のような静電容量センサー1の用途としては、静電容量センサー1が大サイズで、折り曲げて使用する用途に適している。例えば、課題の欄で示したような公共施設などの円柱200に取り付けられたデジタルサイネージ201の表面カバー201a(図13参照)や、自動車内装成形品300(図14参照)である。
これらは、曲面を有する樹脂成形品201a,300と、前記成形品201a,300の曲面に沿って一体化している静電容量センサー1と、を備えた静電容量センサー付き成形品である。 <Molded product with capacitance sensor>
As a use of thecapacitance sensor 1 as described above, the capacitance sensor 1 has a large size and is suitable for a use in which it is bent. For example, the surface cover 201a (see FIG. 13) of the digital signage 201 attached to the column 200 of a public facility or the like as shown in the column of the problem, or the automobile interior molded product 300 (see FIG. 14).
These are molded products with a capacitance sensor including resin molded products 201a and 300 having curved surfaces and a capacitance sensor 1 integrated along the curved surfaces of the molded products 201a and 300.
以上のような静電容量センサー1の用途としては、静電容量センサー1が大サイズで、折り曲げて使用する用途に適している。例えば、課題の欄で示したような公共施設などの円柱200に取り付けられたデジタルサイネージ201の表面カバー201a(図13参照)や、自動車内装成形品300(図14参照)である。
これらは、曲面を有する樹脂成形品201a,300と、前記成形品201a,300の曲面に沿って一体化している静電容量センサー1と、を備えた静電容量センサー付き成形品である。 <Molded product with capacitance sensor>
As a use of the
These are molded products with a capacitance sensor including resin molded
曲面を有する樹脂成形品201a,300に静電容量センサー1を一体化するには、インサート成形法を用いるとよい。具体的には、静電容量センサー1をタッチ側の面が成形樹脂と一体化されるように成形金型内に挿入配置し、金型に設けられた吸引孔を通じて真空吸引することにより金型キャビティ面に静電容量センサー1を沿わせた後、金型を閉じてキャビテイ内に溶融状態の成形樹脂を射出充満させる。これにより樹脂成形品を得るのと同時にその表面に沿って静電容量センサー1を被覆させる。
In order to integrate the capacitance sensor 1 into the resin molded products 201a and 300 having curved surfaces, an insert molding method may be used. Specifically, the electrostatic capacitance sensor 1 is inserted and arranged in a molding die so that the surface on the touch side is integrated with the molding resin, and vacuum suction is performed through a suction hole provided in the die. After placing the capacitance sensor 1 along the cavity surface, the mold is closed, and the mold resin in a molten state is injected and filled in the cavity. As a result, a resin molded product is obtained, and at the same time, the capacitance sensor 1 is coated along the surface thereof.
成形樹脂としては、ポリスチレン系樹脂、ポリオレフィン系樹脂、ABS樹脂、AS樹脂などの汎用樹脂を挙げることができる。また、ポリフェニレンオキシド・ポリスチレン系樹脂、ポリカーボネート系樹脂、ポリアセタール系樹脂、アクリル系樹脂、ポリカーボネート変性ポリフェニレンエーテル樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、超高分子量ポリエチレン樹脂などの汎用エンジニアリング樹脂やポリスルホン樹脂、ポリフェニレンサルファイド系樹脂、ポリフェニレンオキシド系樹脂、ポリアクリレート樹脂、ポリエーテルイミド樹脂、ポリイミド樹脂、液晶ポリエステル樹脂、ポリアリル系耐熱樹脂などのスーパーエンジニアリング樹脂を使用することもできる。
Examples of the molding resin include general-purpose resins such as polystyrene resin, polyolefin resin, ABS resin, and AS resin. General engineering resins such as polyphenylene oxide / polystyrene resins, polycarbonate resins, polyacetal resins, acrylic resins, polycarbonate-modified polyphenylene ether resins, polyethylene terephthalate resins, polybutylene terephthalate resins, ultrahigh molecular weight polyethylene resins, and polysulfone resins, Super engineering resins such as polyphenylene sulfide resins, polyphenylene oxide resins, polyacrylate resins, polyetherimide resins, polyimide resins, liquid crystal polyester resins, and polyallyl heat-resistant resins can also be used.
また、静電容量センサー1の樹脂成形品と密着する面に接着層を設けてもよい。接着層としては、樹脂成形品の素材に適した感熱性あるいは感圧性の樹脂を適宜使用する。たとえば、樹脂成形品の材料がポリアクリル系樹脂の場合はポリアクリル系樹脂を用いるとよい。また、樹脂成形品の材料がポリフェニレンオキシド・ポリスチレン系樹脂、ポリカーボネート系樹脂、スチレン共重合体系樹脂、ポリスチレン系ブレンド樹脂の場合は、これらの樹脂と親和性のあるポリアクリル系樹脂、ポリスチレン系樹脂、ポリアミド系樹脂などを使用すればよい。さらに、樹脂成形品の材料がポリプロピレン樹脂の場合は、塩素化ポリオレフィン樹脂、塩素化エチレン-酢酸ビニル共重合体樹脂、環化ゴム、クマロンインデン樹脂が使用可能である。
Further, an adhesive layer may be provided on the surface of the capacitance sensor 1 that is in close contact with the resin molded product. As the adhesive layer, a heat-sensitive or pressure-sensitive resin suitable for the material of the resin molded product is appropriately used. For example, when the material of the resin molded product is a polyacrylic resin, a polyacrylic resin may be used. In addition, when the material of the resin molded product is a polyphenylene oxide / polystyrene resin, a polycarbonate resin, a styrene copolymer resin, or a polystyrene blend resin, a polyacrylic resin, a polystyrene resin having an affinity for these resins, A polyamide resin or the like may be used. Furthermore, when the material of the resin molded product is a polypropylene resin, chlorinated polyolefin resin, chlorinated ethylene-vinyl acetate copolymer resin, cyclized rubber, and coumarone indene resin can be used.
<静電容量センサーの製造方法>
以下、本実施形態に係る静電容量センサーの製造方法について説明する。
本製造方法は、剥離性を有する支持フィルム22と、支持フィルム22上に設けられ、感光性樹脂中に金属粒子及び導電性黒色剤を含有している感光性導電樹脂層23とを備えた感光性導電樹脂積層体60(図9参照)を用い、透明な基体フィルム12の第1主面12a及び第2主面12bに、各々、感光性導電樹脂積層体60の感光性導電樹脂層23面を重ねて積層するラミネート工程(図10参照)と、この工程で得られた両面ラミネート物110に対してフォトマスク117a,117bを介して両面露光する露光工程(図11参照)と、露光後且つ支持フィルム122a,122bの剥離後の感光性導電樹脂層123a,123bを現像する現像工程(図12参照)と、を備える。 <Manufacturing method of capacitance sensor>
Hereinafter, a method for manufacturing the capacitance sensor according to the present embodiment will be described.
This production method is a photosensitive film comprising asupport film 22 having peelability and a photosensitive conductive resin layer 23 provided on the support film 22 and containing metal particles and a conductive black agent in the photosensitive resin. The surface of the photosensitive conductive resin layer 23 of the photosensitive conductive resin laminate 60 is formed on the first main surface 12a and the second main surface 12b of the transparent base film 12 using the conductive conductive resin laminate 60 (see FIG. 9). Laminating step (see FIG. 10), and an exposure step (see FIG. 11) in which double-sided laminate 110 obtained in this step is exposed on both sides through photomasks 117a and 117b, and after exposure and And a developing step (see FIG. 12) for developing the photosensitive conductive resin layers 123a and 123b after the support films 122a and 122b are peeled off.
以下、本実施形態に係る静電容量センサーの製造方法について説明する。
本製造方法は、剥離性を有する支持フィルム22と、支持フィルム22上に設けられ、感光性樹脂中に金属粒子及び導電性黒色剤を含有している感光性導電樹脂層23とを備えた感光性導電樹脂積層体60(図9参照)を用い、透明な基体フィルム12の第1主面12a及び第2主面12bに、各々、感光性導電樹脂積層体60の感光性導電樹脂層23面を重ねて積層するラミネート工程(図10参照)と、この工程で得られた両面ラミネート物110に対してフォトマスク117a,117bを介して両面露光する露光工程(図11参照)と、露光後且つ支持フィルム122a,122bの剥離後の感光性導電樹脂層123a,123bを現像する現像工程(図12参照)と、を備える。 <Manufacturing method of capacitance sensor>
Hereinafter, a method for manufacturing the capacitance sensor according to the present embodiment will be described.
This production method is a photosensitive film comprising a
(感光性導電樹脂積層体)
感光性導電樹脂積層体60は、図9に示すように、剥離性を有する支持フィルム22上に感光性導電樹脂層23を有するものであるが、必要により、感光性導電樹脂層23の支持フィルム22側とは反対側の表面に保護フィルムをさらに有していてもよい。 (Photosensitive conductive resin laminate)
As shown in FIG. 9, the photosensitiveconductive resin laminate 60 has a photosensitive conductive resin layer 23 on a support film 22 having releasability. If necessary, a support film for the photosensitive conductive resin layer 23 is used. You may have further a protective film on the surface on the opposite side to 22 side.
感光性導電樹脂積層体60は、図9に示すように、剥離性を有する支持フィルム22上に感光性導電樹脂層23を有するものであるが、必要により、感光性導電樹脂層23の支持フィルム22側とは反対側の表面に保護フィルムをさらに有していてもよい。 (Photosensitive conductive resin laminate)
As shown in FIG. 9, the photosensitive
支持フィルム22は、露光光源から放射される光を透過する透明なものが望ましい。このような支持フィルム22としては、例えば、ポリエチレンテレフタレートフィルム、ポリビニルアルコールフィルム、ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム、ポリ塩化ビニリデンフィルム、塩化ビニリデン共重合フィルム、ポリメタクリル酸メチル共重合体フィルム、ポリスチレンフィルム、ポリアクリロニトリルフィルム、スチレン共重合体フィルム、ポリアミドフィルム、セルロース誘導体フィルム等が挙げられる。これらのフィルムとしては、必要に応じて延伸されたものも使用可能である。支持フィルムは、ヘーズ5以下のものであることが好ましい。支持フィルムの厚みは、薄いほど画像形成性及び経済性の面で有利であるが、強度を維持するために10μm~30μmであることが好ましい。
The support film 22 is preferably transparent so as to transmit light emitted from the exposure light source. Examples of such a support film 22 include a polyethylene terephthalate film, a polyvinyl alcohol film, a polyvinyl chloride film, a vinyl chloride copolymer film, a polyvinylidene chloride film, a vinylidene chloride copolymer film, and a polymethyl methacrylate copolymer film. , Polystyrene film, polyacrylonitrile film, styrene copolymer film, polyamide film, cellulose derivative film and the like. As these films, those stretched as necessary can be used. The support film preferably has a haze of 5 or less. The thinner the support film is, the more advantageous in terms of image formation and economy, but it is preferably 10 μm to 30 μm in order to maintain the strength.
感光性導電樹脂層23は、静電容量センサー1の黒色導電性細線16を形成するためのものであり、その材料は黒色導電性細線16の説明で述べた通りである。
The photosensitive conductive resin layer 23 is for forming the black conductive fine wires 16 of the capacitance sensor 1, and the material thereof is as described in the description of the black conductive fine wires 16.
保護フィルムを設ける場合、感光性導電樹脂層23との密着力について支持フィルム22よりも保護フィルムの方が充分小さく、容易に剥離できるものを選ぶ。例えば、ポリエチレンフィルム又はポリプロピレンフィルムが保護フィルムとして好ましい。
In the case of providing a protective film, a protective film that is sufficiently smaller than the support film 22 in terms of adhesion to the photosensitive conductive resin layer 23 and that can be easily peeled is selected. For example, a polyethylene film or a polypropylene film is preferable as the protective film.
支持フィルム22、感光性導電樹脂層23、必要により保護フィルムを順次積層し感光性導電樹脂積層体60を作製する方法としては、既知の方法を採用することができる。例えば、感光性導電樹脂層23を形成するために用いる組成物を、これを溶解する溶剤と混ぜ合わせ均一な調合液にする。次に、支持フィルム22上にバーコーター又はロールコーターを用いて該調合液を塗布し、次いで乾燥して、支持フィルム22上に感光性導電樹脂層23を積層する。次いで必要により、感光性導電樹脂層23上に保護フィルムをラミネートする。以上のようにして、感光性導電樹脂積層体60を作製することができる。
As the method for producing the photosensitive conductive resin laminate 60 by sequentially laminating the support film 22, the photosensitive conductive resin layer 23 and, if necessary, a protective film, a known method can be adopted. For example, a composition used for forming the photosensitive conductive resin layer 23 is mixed with a solvent for dissolving the composition to obtain a uniform mixed solution. Next, the preparation liquid is applied onto the support film 22 using a bar coater or a roll coater, and then dried to laminate the photosensitive conductive resin layer 23 on the support film 22. Next, a protective film is laminated on the photosensitive conductive resin layer 23 as necessary. As described above, the photosensitive conductive resin laminate 60 can be manufactured.
(ラミネート工程)
まず、図10に示すように、感光性導電樹脂積層体60を用い、透明な基体フィルム12の第1主面12a及び第2主面12bに、各々、感光性導電樹脂積層体60の感光性導電樹脂層23面を重ねて積層する。
得られる両面ラミネート物110は、透明な基体フィルム12と、該基体フィルム12の第1主面に順次積層して形成された不透明な第1感光性導電樹脂層123a及び第1支持フィルム122aと、基体フィルム12の第2主面に順次積層して形成された不透明な第2感光性導電樹脂層123b及び第2支持フィルム122bとを有する。 (Lamination process)
First, as shown in FIG. 10, the photosensitiveconductive resin laminate 60 is used, and the photosensitive properties of the photosensitive conductive resin laminate 60 are respectively formed on the first main surface 12 a and the second main surface 12 b of the transparent base film 12. The surfaces of the conductive resin layer 23 are stacked and stacked.
The resulting double-sided laminate 110 includes a transparent base film 12, an opaque first photosensitive conductive resin layer 123a and a first support film 122a formed by sequentially laminating on the first main surface of the base film 12, It has the opaque 2nd photosensitive conductive resin layer 123b and the 2nd support film 122b which were formed by laminating on the 2nd principal surface of base film 12 one by one.
まず、図10に示すように、感光性導電樹脂積層体60を用い、透明な基体フィルム12の第1主面12a及び第2主面12bに、各々、感光性導電樹脂積層体60の感光性導電樹脂層23面を重ねて積層する。
得られる両面ラミネート物110は、透明な基体フィルム12と、該基体フィルム12の第1主面に順次積層して形成された不透明な第1感光性導電樹脂層123a及び第1支持フィルム122aと、基体フィルム12の第2主面に順次積層して形成された不透明な第2感光性導電樹脂層123b及び第2支持フィルム122bとを有する。 (Lamination process)
First, as shown in FIG. 10, the photosensitive
The resulting double-
第1感光性導電樹脂層123a及び第2感光性導電樹脂層123bの膜厚は、第1電極パターン25a及び第2電極パターンを構成する黒色導電性細線16の線幅と抵抗値に応じて、0.5~10μmの範囲で決定する。
The film thickness of the first photosensitive conductive resin layer 123a and the second photosensitive conductive resin layer 123b depends on the line width and resistance value of the black conductive thin wires 16 constituting the first electrode pattern 25a and the second electrode pattern. It is determined in the range of 0.5 to 10 μm.
(露光工程)
次に、両面ラミネート物110を露光する。この露光処理では、図11に示すように、第1感光性導電樹脂層123aに対し、基体フィルム12に向かって光を照射して第1感光性導電樹脂層123aを第1露光パターンに沿って露光する第1露光処理と、第2感光性導電樹脂層123bに対し、基体フィルム12に向かって光を照射して第2感光性導電樹脂層123bを第2露光パターンに沿って露光する第2露光処理とが行われる(両面同時露光)。 (Exposure process)
Next, the double-sided laminate 110 is exposed. In this exposure processing, as shown in FIG. 11, the first photosensitive conductive resin layer 123a is irradiated with light toward the base film 12 so that the first photosensitive conductive resin layer 123a follows the first exposure pattern. First exposure processing to be exposed, and second photosensitive conductive resin layer 123b is irradiated with light toward the base film 12 to expose the second photosensitive conductive resin layer 123b along the second exposure pattern. Exposure processing is performed (simultaneous double-side exposure).
次に、両面ラミネート物110を露光する。この露光処理では、図11に示すように、第1感光性導電樹脂層123aに対し、基体フィルム12に向かって光を照射して第1感光性導電樹脂層123aを第1露光パターンに沿って露光する第1露光処理と、第2感光性導電樹脂層123bに対し、基体フィルム12に向かって光を照射して第2感光性導電樹脂層123bを第2露光パターンに沿って露光する第2露光処理とが行われる(両面同時露光)。 (Exposure process)
Next, the double-
図11の例では、長尺の両面ラミネート物110を一方向に搬送しながら、第1感光性導電樹脂層123aに第1光111a(平行光)を第1フォトマスク117aを介して照射すると共に、第2感光性導電樹脂層123bに第2光111b(平行光)を第2フォトマスク117bを介して照射する。第1光111aは、第1光源118aから出射された光を途中の第1コリメータレンズ120aにて平行光に変換されることにより得られ、第2光111bは、第2光源118bから出射された光を途中の第2コリメータレンズ120bにて平行光に変換されることにより得られる。図11の例では、2つの光源(第1光源118a及び第2光源118b)を使用した場合を示しているが、1つの光源から出射した光を光学系を介して分割して、第1光111a及び第2光111bとして第1感光性導電樹脂層123a及び第2感光性導電樹脂層123bに照射してもよい。
In the example of FIG. 11, while conveying the long double-sided laminate 110 in one direction, the first photosensitive conductive resin layer 123a is irradiated with the first light 111a (parallel light) through the first photomask 117a. The second photosensitive conductive resin layer 123b is irradiated with the second light 111b (parallel light) through the second photomask 117b. The first light 111a is obtained by converting the light emitted from the first light source 118a into parallel light by the first collimator lens 120a, and the second light 111b is emitted from the second light source 118b. It is obtained by converting the light into parallel light by the second collimator lens 120b in the middle. In the example of FIG. 11, the case where two light sources (the first light source 118a and the second light source 118b) are used is shown, but the light emitted from one light source is divided through the optical system to generate the first light. You may irradiate the 1st photosensitive conductive resin layer 123a and the 2nd photosensitive conductive resin layer 123b as 111a and the 2nd light 111b.
露光波長は、半導体レーザー、メタルハライドランプ、g線(波長436nm)、h線(波長405nm)i線(波長365nm)、ブロード(g,h,i線の3波長等)の高圧水銀灯、KrFエキシマレーザー(波長248nm)、ArFエキシマレーザー(波長193nm)、F2エキシマレーザー(波長157nm)等のエキシマレーザー、極端紫外線(波長13.6nm)、電子線等が使用される。
Exposure wavelength is semiconductor laser, metal halide lamp, g-line (wavelength 436 nm), h-line (wavelength 405 nm) i-line (wavelength 365 nm), broad (three wavelengths such as g, h, and i-line) high-pressure mercury lamp, KrF excimer laser Excimer laser such as (wavelength 248 nm), ArF excimer laser (wavelength 193 nm), F2 excimer laser (wavelength 157 nm), extreme ultraviolet light (wavelength 13.6 nm), electron beam, etc. are used.
第1露光処理は、図11に示すように、第1感光性導電樹脂層123a上に第1フォトマスク117aを例えば密着配置し、該第1フォトマスク117aに対向して配置された第1光源118aから第1フォトマスク117aに向かって第1光111aを照射することで、第1感光性導電樹脂層123aを露光する。第1フォトマスク117aは、透明なソーダガラスで形成されたガラス基板と、該ガラス基板上に形成されたマスクパターン(第1露光パターン)とで構成されている。従って、この第1露光処理によって、第1感光性導電樹脂層123aのうち、第1フォトマスク117aに形成された第1露光パターンに沿った部分が露光される。
In the first exposure process, as shown in FIG. 11, a first photomask 117a is disposed in close contact with the first photosensitive conductive resin layer 123a, for example, and a first light source disposed opposite to the first photomask 117a. The first photosensitive conductive resin layer 123a is exposed by irradiating the first light 111a from 118a toward the first photomask 117a. The first photomask 117a is composed of a glass substrate made of transparent soda glass and a mask pattern (first exposure pattern) formed on the glass substrate. Accordingly, the first exposure process exposes a portion of the first photosensitive conductive resin layer 123a along the first exposure pattern formed on the first photomask 117a.
同様に、第2露光処理は、第2感光性導電樹脂層123b上に第2フォトマスク117bを例えば密着配置し、該第2フォトマスク117bに対向して配置された第2光源118bから第2フォトマスク117bに向かって第2光111bを照射することで、第2感光性導電樹脂層123bを露光する。第2フォトマスク117bは、第1フォトマスク117aと同様に、透明なソーダガラスで形成されたガラス基板と、該ガラス基板上に形成されたマスクパターン(第2露光パターン)とで構成されている。従って、この第2露光処理によって、第2感光性導電樹脂層123bのうち、第2フォトマスク117bに形成された第2露光パターンに沿った部分が露光される。
Similarly, in the second exposure process, the second photomask 117b is disposed in close contact with the second photosensitive conductive resin layer 123b, for example, and the second light source 118b disposed opposite to the second photomask 117b is used for the second exposure. The second photosensitive conductive resin layer 123b is exposed by irradiating the second light 111b toward the photomask 117b. Similar to the first photomask 117a, the second photomask 117b includes a glass substrate formed of transparent soda glass and a mask pattern (second exposure pattern) formed on the glass substrate. . Accordingly, the second exposure process exposes a portion of the second photosensitive conductive resin layer 123b along the second exposure pattern formed on the second photomask 117b.
第1露光処理及び第2露光処理は、第1光源118aからの第1光111aの出射タイミングと、第2光源118bからの第2光111bの出射タイミングを同時にしてもよいし、異ならせてもよい。同時であれば、1度の露光処理で、第1感光性導電樹脂層123a及び第2感光性導電樹脂層123bを同時に露光することができ、処理時間の短縮化を図ることができる。
In the first exposure process and the second exposure process, the emission timing of the first light 111a from the first light source 118a and the emission timing of the second light 111b from the second light source 118b may be made simultaneously or differently. Also good. At the same time, the first photosensitive conductive resin layer 123a and the second photosensitive conductive resin layer 123b can be exposed simultaneously by one exposure process, and the processing time can be shortened.
そして、第1感光性導電樹脂層123aに照射された第1光源118aからの第1光111aが、不透明な第1感光性導電樹脂層123aによって遮ぎられて第2感光性導電樹脂層123bに実質的に到達せず、第2感光性導電樹脂層123bに照射された第2光源118bからの第2光111bが、不透明な第2感光性導電樹脂層123bによって遮ぎられて第1感光性導電樹脂層123aに実質的に到達しない。それゆえに、露光処理によって、透明な基体フィルム12の両面(表裏)に異なった露光パターンを任意に、且つ、表裏に対して位置精度よく形成することができる。ここで、「実質的に到達しない」とは、光が到達しない場合や、光は到達しているが、現像で結像しない光量である場合を示す。従って、「光が到達する」とは、現像で結像する程度の光量の光が到達することを示す。
And the 1st light 111a from the 1st light source 118a irradiated to the 1st photosensitive conductive resin layer 123a is interrupted by the opaque 1st photosensitive conductive resin layer 123a, and becomes the 2nd photosensitive conductive resin layer 123b. The second light 111b from the second light source 118b irradiated to the second photosensitive conductive resin layer 123b, which has not substantially reached, is blocked by the opaque second photosensitive conductive resin layer 123b, and the first photosensitive. The conductive resin layer 123a is not substantially reached. Therefore, different exposure patterns can be formed on both surfaces (front and back) of the transparent base film 12 arbitrarily and with high positional accuracy by the exposure process. Here, “substantially does not reach” indicates the case where the light does not reach or the amount of light that has reached the light but does not form an image by development. Therefore, “light arrives” indicates that light of a light amount reaching an image formed by development arrives.
(現像工程)
次いで、支持フィルム122a,122bの剥離後の感光性導電樹脂層123a,123bを現像処理する(図12参照)。現像処理では、感光性樹脂がネガ型の場合、露光されると現像液140に対して溶解性が低下しているので、現像後に露光部分(図中濃く示した部分)が残る。他方、感光性樹脂がポジ型の場合、露光されると現像液140に対して溶解性が増大しているため、露光した部分(図中、濃く示した部分)が除去される。したがって、第1電極パターン25aは、第1導電性膜115aの一部が除去されることにより透明な基体フィルム12の第1主面に形成され、第2電極パターン25bは、第2導電性膜115bの露出部分が除去されることにより透明な基体フィルム12の第2主面に形成される。
使用する現像液140としては、アルカリ液、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム等の水溶液を用いることができる。 (Development process)
Next, the photosensitive conductive resin layers 123a and 123b after the support films 122a and 122b are peeled are developed (see FIG. 12). In the development processing, when the photosensitive resin is a negative type, the solubility in the developer 140 is lowered when exposed, so that an exposed portion (the portion shown dark in the drawing) remains after development. On the other hand, when the photosensitive resin is a positive type, since the solubility in the developer 140 is increased when exposed, the exposed portion (the portion shown dark in the figure) is removed. Therefore, the first electrode pattern 25a is formed on the first main surface of the transparent base film 12 by removing a part of the first conductive film 115a, and the second electrode pattern 25b is formed by the second conductive film. By removing the exposed portion of 115b, the second main surface of the transparent base film 12 is formed.
As thedeveloper 140 to be used, an alkaline solution, for example, an aqueous solution of sodium hydroxide, potassium hydroxide, sodium carbonate or the like can be used.
次いで、支持フィルム122a,122bの剥離後の感光性導電樹脂層123a,123bを現像処理する(図12参照)。現像処理では、感光性樹脂がネガ型の場合、露光されると現像液140に対して溶解性が低下しているので、現像後に露光部分(図中濃く示した部分)が残る。他方、感光性樹脂がポジ型の場合、露光されると現像液140に対して溶解性が増大しているため、露光した部分(図中、濃く示した部分)が除去される。したがって、第1電極パターン25aは、第1導電性膜115aの一部が除去されることにより透明な基体フィルム12の第1主面に形成され、第2電極パターン25bは、第2導電性膜115bの露出部分が除去されることにより透明な基体フィルム12の第2主面に形成される。
使用する現像液140としては、アルカリ液、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム等の水溶液を用いることができる。 (Development process)
Next, the photosensitive
As the
以上、本発明の第1実施形態について説明したが、本発明は第1実施形態に限定されない。例えば、以下に説明する各実施形態が可能である。なお、第1実施形態と共通する構成については説明を省略する。
As mentioned above, although 1st Embodiment of this invention was described, this invention is not limited to 1st Embodiment. For example, each embodiment described below is possible. In addition, description is abbreviate | omitted about the structure which is common in 1st Embodiment.
[第2実施形態]
第1実施形態では第1電極パターン25a及び第2電極パターン25bの両方を網目パターンとしたが、本発明の第1電極パターン25a及び第2電極パターン25bは、黒色導電性細線16及び当該黒色導電性細線によって仕切られた空白部17からなるものであれば網目パターンに限らない。例えば、第2電極パターン25bを網目パターンではなく、図6に示す静電容量センサー10のようなX方向に歯が並ぶ櫛歯状パターンとしてもよい。 [Second Embodiment]
In the first embodiment, both thefirst electrode pattern 25a and the second electrode pattern 25b are mesh patterns. However, the first electrode pattern 25a and the second electrode pattern 25b of the present invention include the black conductive thin wires 16 and the black conductive wires. The pattern is not limited to the mesh pattern as long as it is composed of the blank portions 17 partitioned by the fine thin lines. For example, the second electrode pattern 25b may be not a mesh pattern but a comb-like pattern in which teeth are arranged in the X direction as in the capacitance sensor 10 shown in FIG.
第1実施形態では第1電極パターン25a及び第2電極パターン25bの両方を網目パターンとしたが、本発明の第1電極パターン25a及び第2電極パターン25bは、黒色導電性細線16及び当該黒色導電性細線によって仕切られた空白部17からなるものであれば網目パターンに限らない。例えば、第2電極パターン25bを網目パターンではなく、図6に示す静電容量センサー10のようなX方向に歯が並ぶ櫛歯状パターンとしてもよい。 [Second Embodiment]
In the first embodiment, both the
その他の点については、第1実施形態と同じである。
Other points are the same as in the first embodiment.
[第3実施形態]
第1実施形態では第1導電部14a及び第2導電部14bは、隣り合う第1電極パターン25a同士の隙間20、及び、隣り合う第2電極パターン25b同士の隙間21には何も設けられていないが、本発明はこれに限らない。例えば、図7に示す静電容量センサー100のように、第1導電部14aが、第1電極パターン25aと同じ材料の黒色導電性細線18からなって、隣り合う第1電極パターン25a同士の隙間20に配置され、第1電極パターン25aと電気的に絶縁された2以上の第1ダミーパターン55aを有し、第2導電部14bが、第2電極パターン25bと同じ材料の黒色導電性細線18からなって、隣り合う第2電極パターン25b同士の隙間21に配置され、第2電極パターン25bと電気的に絶縁された2以上の第2ダミーパターン55bを有していてもよい。図8は、図7の静電容量センサー100中の1つの第1電極パターン25aを長さ方向に切断した断面図である。 [Third Embodiment]
In the first embodiment, nothing is provided in thegap 20 between the adjacent first electrode patterns 25a and the gap 21 between the adjacent second electrode patterns 25b in the first conductive portion 14a and the second conductive portion 14b. However, the present invention is not limited to this. For example, as in the capacitance sensor 100 shown in FIG. 7, the first conductive portion 14a is made of the black conductive thin wire 18 made of the same material as the first electrode pattern 25a, and the gap between the adjacent first electrode patterns 25a. 20 and two or more first dummy patterns 55a electrically insulated from the first electrode pattern 25a, and the second conductive portion 14b is a black conductive thin wire 18 made of the same material as the second electrode pattern 25b. And may be provided in the gap 21 between the adjacent second electrode patterns 25b, and may have two or more second dummy patterns 55b that are electrically insulated from the second electrode patterns 25b. FIG. 8 is a cross-sectional view of one first electrode pattern 25a in the capacitance sensor 100 of FIG. 7 cut in the length direction.
第1実施形態では第1導電部14a及び第2導電部14bは、隣り合う第1電極パターン25a同士の隙間20、及び、隣り合う第2電極パターン25b同士の隙間21には何も設けられていないが、本発明はこれに限らない。例えば、図7に示す静電容量センサー100のように、第1導電部14aが、第1電極パターン25aと同じ材料の黒色導電性細線18からなって、隣り合う第1電極パターン25a同士の隙間20に配置され、第1電極パターン25aと電気的に絶縁された2以上の第1ダミーパターン55aを有し、第2導電部14bが、第2電極パターン25bと同じ材料の黒色導電性細線18からなって、隣り合う第2電極パターン25b同士の隙間21に配置され、第2電極パターン25bと電気的に絶縁された2以上の第2ダミーパターン55bを有していてもよい。図8は、図7の静電容量センサー100中の1つの第1電極パターン25aを長さ方向に切断した断面図である。 [Third Embodiment]
In the first embodiment, nothing is provided in the
第1ダミーパターン55a及び第2ダミーパターン55bは、第1電極パターン25a同士の隙間20、及び、第2電極パターン25b同士の隙間21が目立たないように、補完するものである。すなわち、第1電極パターン25aや第2電極パターン25bにおける黒色導電性細線16によって仕切られた空白部17(第1実施形態においては開口部)が隙間20、21にも連続して存在するかのように見せるのである。
また、第1ダミーパターン55aは、第1電極パターン25aをパターン形成する際に第1電極パターン25aと同時にパターン形成される。同様に、第2ダミーパターン55bは、第2電極パターン25bをパターン形成する際に第2電極パターン25bと同時にパターン形成される。 Thefirst dummy pattern 55a and the second dummy pattern 55b complement each other so that the gap 20 between the first electrode patterns 25a and the gap 21 between the second electrode patterns 25b are not conspicuous. That is, whether the blank portion 17 (the opening portion in the first embodiment) partitioned by the black conductive thin wires 16 in the first electrode pattern 25a and the second electrode pattern 25b is continuously present in the gaps 20 and 21 as well. It looks like this.
Further, thefirst dummy pattern 55a is formed simultaneously with the first electrode pattern 25a when the first electrode pattern 25a is formed. Similarly, the second dummy pattern 55b is formed simultaneously with the second electrode pattern 25b when the second electrode pattern 25b is formed.
また、第1ダミーパターン55aは、第1電極パターン25aをパターン形成する際に第1電極パターン25aと同時にパターン形成される。同様に、第2ダミーパターン55bは、第2電極パターン25bをパターン形成する際に第2電極パターン25bと同時にパターン形成される。 The
Further, the
その他の点については、第1実施形態と同じである。
Other points are the same as in the first embodiment.
[その他変化例]
さらに、第1電極パターン25a及び第2電極パターン25bは、表示装置の画素との干渉によってモアレ模様が出ないように設計するのが好ましい。例えば、モアレの発生を抑制するために、第1電極パターン25aの配列方向及び第2電極パターン25bの配列方向を、表示装置の画素配列方向に対して傾きを有するようにしてもよい。第1電極パターン25a及び第2電極パターン25bを傾けることによって、検出される位置情報にズレが生じるが、設定された傾斜角度に応じて位置情報を補正する位置補正回路をIC回路に組み込めばよい。
また、他ののモアレ対策としては、第1電極パターン25a及び第2電極パターン25bにおいて、隣り合う黒色導電性細線間のピッチを一定にしないように設計してもよい。あるいは、黒色導電性細線を、曲線状に設計してもよい。 [Other changes]
Furthermore, thefirst electrode pattern 25a and the second electrode pattern 25b are preferably designed so that a moire pattern does not appear due to interference with the pixels of the display device. For example, in order to suppress the occurrence of moire, the arrangement direction of the first electrode pattern 25a and the arrangement direction of the second electrode pattern 25b may be inclined with respect to the pixel arrangement direction of the display device. The tilted first electrode pattern 25a and second electrode pattern 25b cause a shift in the detected position information, but a position correction circuit that corrects the position information according to the set tilt angle may be incorporated in the IC circuit. .
As another moire countermeasure, thefirst electrode pattern 25a and the second electrode pattern 25b may be designed so that the pitch between adjacent black conductive thin wires is not constant. Alternatively, the black conductive thin wire may be designed in a curved shape.
さらに、第1電極パターン25a及び第2電極パターン25bは、表示装置の画素との干渉によってモアレ模様が出ないように設計するのが好ましい。例えば、モアレの発生を抑制するために、第1電極パターン25aの配列方向及び第2電極パターン25bの配列方向を、表示装置の画素配列方向に対して傾きを有するようにしてもよい。第1電極パターン25a及び第2電極パターン25bを傾けることによって、検出される位置情報にズレが生じるが、設定された傾斜角度に応じて位置情報を補正する位置補正回路をIC回路に組み込めばよい。
また、他ののモアレ対策としては、第1電極パターン25a及び第2電極パターン25bにおいて、隣り合う黒色導電性細線間のピッチを一定にしないように設計してもよい。あるいは、黒色導電性細線を、曲線状に設計してもよい。 [Other changes]
Furthermore, the
As another moire countermeasure, the
また、第1電極パターン25a及び第2電極パターン25bは、互いの黒色導電性細線16の交点が重ならないようにしてもよい。例えば、図15示すように、第1電極パターン25aの黒色導電性細線16の交点が第2電極パターン25b(図中、便宜的に薄色表現)の空白部17に位置し、第2電極パターン25bの黒色導電性細線16の交点が第1電極パターン25aの空白部17に位置するようにする。
In addition, the first electrode pattern 25a and the second electrode pattern 25b may be configured such that the intersections of the black conductive thin wires 16 do not overlap each other. For example, as shown in FIG. 15, the intersection point of the black conductive thin wires 16 of the first electrode pattern 25a is located in the blank portion 17 of the second electrode pattern 25b (for the sake of convenience, light color representation), and the second electrode pattern The intersection of the black conductive thin wires 16 of 25b is positioned in the blank portion 17 of the first electrode pattern 25a.
また、各実施形態では、第1端子配線パターン35a及び第2端子配線パターン35bを第1電極パターン25a及び第2電極パターン25bを同じ材料を用いて形成しているが、これに限定されない。第1端子配線パターン35a及び第2端子配線パターン35bを第1電極パターン25a及び第2電極パターン25bとは別の材料を用いて形成してもよい。例えば、周縁部に形成されるため、必ずしも不透明化は必要でない。したがって、導電性黒色剤を省くこともできる。
In each embodiment, the first terminal wiring pattern 35a and the second terminal wiring pattern 35b are formed using the same material for the first electrode pattern 25a and the second electrode pattern 25b. However, the present invention is not limited to this. The first terminal wiring pattern 35a and the second terminal wiring pattern 35b may be formed using a material different from that of the first electrode pattern 25a and the second electrode pattern 25b. For example, since it is formed at the periphery, it is not always necessary to make it opaque. Accordingly, the conductive black agent can be omitted.
また、静電容量センサー1の製造工程において、現像工程の後に、第1導電部14a及び第2導電部14bの基体フィルム12への密着性向上のために、さらなる露光、ベーキング等の後処理を施してもよい。
Further, in the manufacturing process of the capacitance sensor 1, after the development process, in order to improve the adhesion of the first conductive portion 14 a and the second conductive portion 14 b to the base film 12, further post-processing such as exposure and baking is performed. You may give it.
なお、静電容量センサーにおいては、第1電極パターン25aが形成される基体フィルム12の第1主面と第2電極パターン25bの形成される第2主面は、いずれをタッチ面側としてタッチパネルに組み込むかは特定していない。したがって、本明細書中において「第1」と「第2」とを入れ替えてもよい。
In the capacitance sensor, the first main surface of the base film 12 on which the first electrode pattern 25a is formed and the second main surface on which the second electrode pattern 25b is formed are used as touch panels on the touch panel. It is not specified whether to include it. Therefore, “first” and “second” may be interchanged in this specification.
(柔軟な保護層)
また、図16に示すように、静電容量センサー101は、基体フィルム12の第1主面に形成された第1電極パターン25a、基体フィルム12の第2主面に形成された第2電極パターン25bが、柔軟性のある保護膜(図16中、第1保護膜180a及び第2保護膜180b)によってそれぞれ被覆されていることが好ましい。 (Flexible protective layer)
As shown in FIG. 16, thecapacitance sensor 101 includes a first electrode pattern 25 a formed on the first main surface of the base film 12 and a second electrode pattern formed on the second main surface of the base film 12. 25b is preferably covered with a flexible protective film (the first protective film 180a and the second protective film 180b in FIG. 16).
また、図16に示すように、静電容量センサー101は、基体フィルム12の第1主面に形成された第1電極パターン25a、基体フィルム12の第2主面に形成された第2電極パターン25bが、柔軟性のある保護膜(図16中、第1保護膜180a及び第2保護膜180b)によってそれぞれ被覆されていることが好ましい。 (Flexible protective layer)
As shown in FIG. 16, the
両面に柔軟性のある保護膜を形成することにより、第1電極パターン25aが基体フィルム12と第1保護膜180aの間に挟まれ、第2電極パターン25bが基体フィルム12と第2保護膜180bの間に挟まれた状態となる。電極パターンを両側から挟むことにより、静電容量センサー101を折り曲げた場合でも、第1電極パターン25aや第2電極パターン25bが保護膜によって基体フィルム12に対して全体的に押さえつけられる。その結果、第1電極パターン25aや第2電極パターン25bの黒色導電性細線16に局所的な応力が働くのを抑制できるため、これらの黒色導電性細線16が破断したり、皺が寄ったりすることが発生しにくくなる。
By forming flexible protective films on both sides, the first electrode pattern 25a is sandwiched between the base film 12 and the first protective film 180a, and the second electrode pattern 25b is formed between the base film 12 and the second protective film 180b. It is in a state of being sandwiched between. By sandwiching the electrode pattern from both sides, the first electrode pattern 25a and the second electrode pattern 25b are entirely pressed against the base film 12 by the protective film even when the capacitance sensor 101 is bent. As a result, it is possible to suppress local stress from acting on the black conductive thin wires 16 of the first electrode pattern 25a and the second electrode pattern 25b, so that these black conductive thin wires 16 are broken or wrinkled. It becomes difficult to occur.
保護膜は、第1電極パターン25aや第1電極パターン25aだけでなく、第1端子配線パターン35aや第2端子配線パターン35bも被覆してもよい。ただし、第1端子配線パターン35a及び第2端子配線パターン35bについては、第1電極パターン25aや第1電極パターン25aと接続する側とは反対側の一端は、FPCなどの外部接続のために露出させる。
The protective film may cover not only the first electrode pattern 25a and the first electrode pattern 25a but also the first terminal wiring pattern 35a and the second terminal wiring pattern 35b. However, for the first terminal wiring pattern 35a and the second terminal wiring pattern 35b, one end of the side opposite to the side connected to the first electrode pattern 25a or the first electrode pattern 25a is exposed for external connection such as FPC. Let
また、第三実施形態のように、静電容量センサー1が第1ダミーパターン55aや 第2ダミーパターン55bを有している場合、保護膜は第1ダミーパターン55a及び第2ダミーパターン55bも被覆する(図17参照)。
Further, as in the third embodiment, when the capacitance sensor 1 has the first dummy pattern 55a and the second dummy pattern 55b, the protective film covers the first dummy pattern 55a and the second dummy pattern 55b. (See FIG. 17).
両面に柔軟性のある保護膜を形成することにより、第1電極パターン25a及び第1ダミーパターン55aが基体フィルム12と第1保護膜180aの間に挟まれ、第2電極パターン25b及び第2ダミーパターン55bが基体フィルム12と第2保護膜180bの間に挟まれた状態となる。電極パターン及びダミーパターンを両側から挟むことにより、静電容量センサー102を折り曲げた場合でも、第1電極パターン25aや第2電極パターン25bのみならず、第1ダミーパターン55a及び第2ダミーパターン55bも保護膜によって基体フィルム12に対して全体的に押さえつけられる。その結果、第1電極パターン25aや第2電極パターン25bの黒色導電性細線16、第1ダミーパターン55a及び第2ダミーパターン55bの黒色導電性細線18に局所的な応力が働くのを抑制できるため、これらの黒色導電性細線16や黒色導電性細線18が破断したり、皺が寄ったりすることが発生しにくくなる。
By forming a flexible protective film on both sides, the first electrode pattern 25a and the first dummy pattern 55a are sandwiched between the base film 12 and the first protective film 180a, and the second electrode pattern 25b and the second dummy film are formed. The pattern 55b is sandwiched between the base film 12 and the second protective film 180b. Even when the capacitance sensor 102 is bent by sandwiching the electrode pattern and the dummy pattern from both sides, not only the first electrode pattern 25a and the second electrode pattern 25b but also the first dummy pattern 55a and the second dummy pattern 55b The whole is pressed against the base film 12 by the protective film. As a result, local stress can be suppressed from acting on the black conductive thin wires 16 of the first electrode pattern 25a and the second electrode pattern 25b, and the black conductive thin wires 18 of the first dummy pattern 55a and the second dummy pattern 55b. These black conductive thin wires 16 and black conductive thin wires 18 are less likely to break or wrinkle.
保護膜は、柔軟性のある樹脂膜である。樹脂としては、例えば、ウレタン樹脂、ポリアミック酸樹脂やアクリルゴム等を用いることができる。なお、本明細書において、柔軟性があるとは、繰り返し折り曲げても、保護膜に剥離、クラックや曲げ筋が発生しないことを意味する。
The protective film is a flexible resin film. As the resin, for example, urethane resin, polyamic acid resin, acrylic rubber, or the like can be used. In the present specification, being flexible means that the protective film does not peel, crack, or bend even when it is repeatedly bent.
保護膜は、上記した材料からなるインキを用いスクリーン印刷法にて形成することができる。また、保護膜は、第1主面に第1導電部14aが形成され、第2主面に第2導電部14bが形成された基体フィルム12の両面に対し、上記した材料からなる感光性樹脂層を形成し、フォトマスクを介して両面露光、現像するフォトプロセスにて形成することができる。なお、該フォトプロセスにおける感光性樹脂層は、塗布によって形成してもよいし、ドライフィルムレジストのラミネートによって形成してもよい。
The protective film can be formed by screen printing using ink made of the above-described materials. Further, the protective film is a photosensitive resin made of the above-described material on both surfaces of the base film 12 in which the first conductive portion 14a is formed on the first main surface and the second conductive portion 14b is formed on the second main surface. The layer can be formed by a photo process in which both sides are exposed and developed through a photo mask. The photosensitive resin layer in the photo process may be formed by coating, or may be formed by laminating a dry film resist.
また、静電容量センサー102を折り曲ける方向が常に決まっている場合、すなわち折り曲げたときに外側となる面、内側となる面が常に決まっている場合には、第1保護膜180aと第2保護膜180bとで使用する材料を異ならせてもよい。つまり、外側となる保護膜には引張りに対してより追従しやすい材料を用い、内側となる保護には圧縮に対してより皺の発生しにくい材料を用いるのが好ましい。例えば、外側となる保護膜材料にウレタン樹脂を用い、内側となる保護膜材料にポリアミック酸樹脂を用いる組合せである。
Further, when the direction in which the capacitance sensor 102 can be bent is always determined, that is, when the outer surface and the inner surface are always determined when the capacitance sensor 102 is bent, the first protective film 180a and the second protective film 180a. The material used for the protective film 180b may be different. That is, it is preferable to use a material that can easily follow the tension for the outer protective film, and a material that is less likely to cause wrinkles to the compression for the inner protection. For example, a urethane resin is used for the protective film material on the outer side and a polyamic acid resin is used for the protective film material on the inner side.
1,10,100,101,102 静電容量センサー
12 基体フィルム
14a 第1導電部 14b 第2導電部
16,18 黒色導電性細線
17 空白部
20,21 隙間
22 支持フィルム
23 感光性導電樹脂層
24a 第1センサ部 24b 第2センサ部
25a 第1電極パターン 25b 第2電極パターン
34a 第1端子配線部 34b 第2端子配線部
35a 第1端子配線パターン 35b 第2端子配線パターン
40 線状突起
55a 第1ダミーパターン 55b 第2ダミーパターン
60 観光性導電樹脂層積層体
110 両面ラミネート物
111a 第1光 111b 第2光
117a 第1フォトマスク 117b 第2フォトマスク
118a 第1光源 118b 第2光源
122a 第1支持フィルム 122b 第2支持フィルム
123a 第1感光性導電樹脂層 123b 第2感光性導電樹脂層
140 現像液
180a 第1保護膜 180b 第2保護膜
200 円柱
201 デジタルサイネージ 201a 表面カバー
300 自動車内装成形品
1, 10, 100, 101, 102Capacitance sensor 12 Base film 14a First conductive portion 14b Second conductive portion 16, 18 Black conductive thin wire 17 Blank portion 20, 21 Gap 22 Support film 23 Photosensitive conductive resin layer 24a First sensor unit 24b Second sensor unit 25a First electrode pattern 25b Second electrode pattern 34a First terminal wiring unit 34b Second terminal wiring unit 35a First terminal wiring pattern 35b Second terminal wiring pattern 40 Linear protrusion 55a First Dummy pattern 55b Second dummy pattern 60 Tourism conductive resin layer laminate 110 Double-sided laminate 111a First light 111b Second light 117a First photomask 117b Second photomask 118a First light source 118b Second light source 122a First support film 122b 2 support film 123a first photosensitive conductive resin layer 123b second photosensitive conductive resin layer 140 developer 180a first protective layer 180b second protective layer 200 columnar 201 digital signage 201a front cover 300 automobile interior moldings
12 基体フィルム
14a 第1導電部 14b 第2導電部
16,18 黒色導電性細線
17 空白部
20,21 隙間
22 支持フィルム
23 感光性導電樹脂層
24a 第1センサ部 24b 第2センサ部
25a 第1電極パターン 25b 第2電極パターン
34a 第1端子配線部 34b 第2端子配線部
35a 第1端子配線パターン 35b 第2端子配線パターン
40 線状突起
55a 第1ダミーパターン 55b 第2ダミーパターン
60 観光性導電樹脂層積層体
110 両面ラミネート物
111a 第1光 111b 第2光
117a 第1フォトマスク 117b 第2フォトマスク
118a 第1光源 118b 第2光源
122a 第1支持フィルム 122b 第2支持フィルム
123a 第1感光性導電樹脂層 123b 第2感光性導電樹脂層
140 現像液
180a 第1保護膜 180b 第2保護膜
200 円柱
201 デジタルサイネージ 201a 表面カバー
300 自動車内装成形品
1, 10, 100, 101, 102
Claims (9)
- 透明な基体フィルムと、前記基体フィルムの第1主面に形成された第1導電部と、前記基体フィルムの第2主面に形成された第2導電部と、を備え、
前記第1導電部は、それぞれ不透明で反射率2%以下の黒色導電性細線及び当該黒色導電性細線によって仕切られた空白部からなって第1方向に延在し、且つ、前記第1方向と直交する第2方向に配列された2以上の第1電極パターンを有し、
前記第2導電部は、それぞれ不透明で反射率2%以下の黒色導電性細線及び当該黒色導電性細線によって仕切られた空白部からなって前記第2方向に延在し、且つ、前記第1方向に配列された2以上の第2電極パターンを有し、
前記黒色導電性細線は、感光性樹脂中に金属粒子及び導電性黒色剤を含有して構成される、
ことを特徴とする静電容量センサー。 A transparent base film, a first conductive portion formed on the first main surface of the base film, and a second conductive portion formed on the second main surface of the base film,
Each of the first conductive portions includes a black conductive thin wire that is opaque and has a reflectance of 2% or less, and a blank portion partitioned by the black conductive thin wire, and extends in the first direction. Having two or more first electrode patterns arranged in a second direction perpendicular to each other;
The second conductive portion is composed of a black conductive thin wire that is opaque and has a reflectance of 2% or less, and a blank portion partitioned by the black conductive thin wire, extends in the second direction, and the first direction. Two or more second electrode patterns arranged in a
The black conductive fine wire is configured to contain metal particles and a conductive black agent in a photosensitive resin.
Capacitance sensor characterized by that. - 前記金属粒子が、銀、銅及びアルミニウムの中から選ばれた1以上の金属粒子である請求項1記載の静電容量センサー。 The capacitance sensor according to claim 1, wherein the metal particles are one or more metal particles selected from silver, copper, and aluminum.
- 前記導電性黒色剤が、カーボンナノチューブ、フラーレン、グラフェン、グラファイト及びドーピングされたアモルファスカーボンの中から選ばれた1以上の導電性黒色剤である請求項1又は請求項2に記載の静電容量センサー。 The capacitance sensor according to claim 1 or 2, wherein the conductive black agent is one or more conductive black agents selected from carbon nanotubes, fullerenes, graphene, graphite, and doped amorphous carbon. .
- 前記感光性樹脂が、光重合開始剤を含有した感光性樹脂である請求項1~3のいずれかに記載の静電容量センサー。 The capacitance sensor according to any one of claims 1 to 3, wherein the photosensitive resin is a photosensitive resin containing a photopolymerization initiator.
- 前記基体フィルムの第1主面に形成された前記第1電極パターン、前記基体フィルムの第2主面に形成された前記第2電極パターンが、柔軟性のある保護膜によってそれぞれ被覆されている請求項1~4のいずれかに記載の静電容量センサー。 The first electrode pattern formed on the first main surface of the base film and the second electrode pattern formed on the second main surface of the base film are respectively covered with a flexible protective film. Item 5. The capacitance sensor according to any one of Items 1 to 4.
- 前記第1導電部が、さらに、前記第1電極パターンと同じ材料の黒色導電性細線及び当該黒色導電性細線によって仕切られた空白部からなって、隣り合う前記第1電極パターン同士の隙間に配置され、前記第1電極パターンと電気的に絶縁された複数の第1ダミーパターンを有し、
前記第2導電部が、さらに、前記第2電極パターンと同じ材料の黒色導電性細線及び当該黒色導電性細線によって仕切られた空白部からなって、隣り合う前記第2電極パターン同士の隙間に配置され、前記第2電極パターンと電気的に絶縁された複数の第2ダミーパターンを有している請求項1~4のいずれかに記載の静電容量センサー。 The first conductive portion is further composed of a black conductive thin wire made of the same material as the first electrode pattern and a blank portion partitioned by the black conductive thin wire, and is disposed in a gap between the adjacent first electrode patterns. A plurality of first dummy patterns electrically insulated from the first electrode pattern,
The second conductive portion is further composed of a black conductive thin wire made of the same material as the second electrode pattern and a blank portion partitioned by the black conductive thin wire, and is disposed in a gap between the adjacent second electrode patterns. 5. The capacitance sensor according to claim 1, further comprising a plurality of second dummy patterns electrically insulated from the second electrode pattern. - 前記基体フィルムの第1主面に形成された前記第1電極パターン及び前記第1ダミーパターン、前記基体フィルムの第2主面に形成された前記第2電極パターン及び前記第2ダミーパターンが、柔軟性のある保護膜によってそれぞれ被覆されている請求項6記載の静電容量センサー。 The first electrode pattern and the first dummy pattern formed on the first main surface of the base film, and the second electrode pattern and the second dummy pattern formed on the second main surface of the base film are flexible. The electrostatic capacitance sensor according to claim 6, wherein each of the capacitance sensors is covered with a protective film.
- 曲面を有する樹脂成形品と、前記成形品の曲面に沿って一体化している請求項1~7の静電容量センサーと、を備えたことを特徴とする静電容量センサー付き成形品。 A molded product with a capacitance sensor, comprising: a resin molded product having a curved surface; and the capacitance sensor according to claim 1 integrated along the curved surface of the molded product.
- 剥離性を有する支持フィルムと、前記支持フィルム上に設けられ、感光性樹脂中に金属粒子及び導電性黒色剤を含有している感光性導電樹脂層とを備えた感光性導電樹脂積層体を用い、透明な基体フィルムの第1主面及び第2主面に、各々、前記感光性導電樹脂積層体の前記感光性導電樹脂層面を重ねて積層するラミネート工程と、
前記工程で得られた両面ラミネート物に対してフォトマスクを介して両面露光する露光工程と、
露光後且つ前記支持フィルムの剥離後の前記感光性導電樹脂層を現像することにより、請求項1~4及び請求項6のいずれかに記載の第1導電部及び第2導電部を形成する現像工程と、
を備えたことを特徴とする静電容量センサーの製造方法。
A photosensitive conductive resin laminate comprising a support film having peelability and a photosensitive conductive resin layer provided on the support film and containing metal particles and a conductive black agent in the photosensitive resin is used. A laminating step of laminating the photosensitive conductive resin layer surface of the photosensitive conductive resin laminate on the first main surface and the second main surface of the transparent base film,
An exposure step of performing double-sided exposure through a photomask on the double-sided laminate obtained in the above step,
The development for forming the first conductive portion and the second conductive portion according to any one of claims 1 to 4 and claim 6 by developing the photosensitive conductive resin layer after exposure and after peeling of the support film. Process,
A method for manufacturing a capacitance sensor, comprising:
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-039225 | 2016-03-01 | ||
JP2016039225 | 2016-03-01 | ||
JP2016-119500 | 2016-06-16 | ||
JP2016119500A JP2017157184A (en) | 2016-03-01 | 2016-06-16 | Capacitance sensor, manufacturing method of the same, and molding with capacitance sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017149941A1 true WO2017149941A1 (en) | 2017-09-08 |
Family
ID=59742700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/000731 WO2017149941A1 (en) | 2016-03-01 | 2017-01-12 | Capacitance sensor, manufacturing method therefor, and molded article equipped with capacitance sensor |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017149941A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11201181B2 (en) | 2018-12-14 | 2021-12-14 | Novatek Microelectronics Corp. | Image sensor of fingerprint |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010258325A (en) * | 2009-04-28 | 2010-11-11 | Dainippon Printing Co Ltd | Method of manufacturing electromagnetic wave shielding material |
JP2013143045A (en) * | 2012-01-11 | 2013-07-22 | Dainippon Printing Co Ltd | Touch panel sensor |
JP2015150884A (en) * | 2014-02-19 | 2015-08-24 | 富士フイルム株式会社 | Laminate structure and touch panel module |
JP2015184648A (en) * | 2014-03-26 | 2015-10-22 | 東洋紡株式会社 | Photosensitive conductive paste, conductive thin film, electric circuit and touch panel |
-
2017
- 2017-01-12 WO PCT/JP2017/000731 patent/WO2017149941A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010258325A (en) * | 2009-04-28 | 2010-11-11 | Dainippon Printing Co Ltd | Method of manufacturing electromagnetic wave shielding material |
JP2013143045A (en) * | 2012-01-11 | 2013-07-22 | Dainippon Printing Co Ltd | Touch panel sensor |
JP2015150884A (en) * | 2014-02-19 | 2015-08-24 | 富士フイルム株式会社 | Laminate structure and touch panel module |
JP2015184648A (en) * | 2014-03-26 | 2015-10-22 | 東洋紡株式会社 | Photosensitive conductive paste, conductive thin film, electric circuit and touch panel |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11201181B2 (en) | 2018-12-14 | 2021-12-14 | Novatek Microelectronics Corp. | Image sensor of fingerprint |
TWI762808B (en) * | 2018-12-14 | 2022-05-01 | 聯詠科技股份有限公司 | Image sensor of fingerprint |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5795038B2 (en) | Electrode sheet for capacitive touch panel | |
TWI550449B (en) | Conductive sheet and touch panel | |
JP6451258B2 (en) | Electrode substrate for touch panel, touch panel, and display device | |
JP6225053B2 (en) | Photosensitive laminate, transfer material, patterned photosensitive laminate and method for producing the same, touch panel, and image display device | |
JP6117620B2 (en) | Touch panel member and manufacturing method thereof | |
JP3167700U (en) | Transparent touch control sensor | |
JP2013254469A (en) | Touch sensor and method of manufacturing the same | |
JP6405659B2 (en) | Position detection electrode member for touch panel, touch panel, image display device, and multi-faceted intermediate of position detection electrode member for touch panel | |
JP5884763B2 (en) | Electrode substrate for touch panel, touch panel, and image display device | |
US20150185887A1 (en) | Touch sensor and method of manufacturing the same | |
WO2016165260A1 (en) | Capacitive touch screen and manufacturing process thereof, and touch display panel | |
US9921671B2 (en) | Touch projection screen and manufacturing method thereof | |
KR20140084788A (en) | Touch Panel And Method For Manufacturing The Same | |
KR20150137443A (en) | Touch Sensor | |
JP2014146308A (en) | Touch panel | |
TW201635015A (en) | Catalytic photoresist for photolithographic metal mesh touch sensor fabrication | |
JP2015092321A (en) | Touch sensor and method for manufacturing the same | |
JP2017157184A (en) | Capacitance sensor, manufacturing method of the same, and molding with capacitance sensor | |
WO2017149941A1 (en) | Capacitance sensor, manufacturing method therefor, and molded article equipped with capacitance sensor | |
JP2015152946A (en) | Electrode substrate for touch panel, touch panel, and display device | |
JP2014186687A (en) | Electrode substrate for touch panel, touch panel and image display device | |
JP2014191575A (en) | Electrode substrate for touch panel, touch panel, and image display device | |
KR20140039845A (en) | Touch panel and method for manufacturing the same | |
KR20150094472A (en) | Touch sensor and Display device having the same | |
JP6183103B2 (en) | Position detection electrode substrate for touch panel, touch panel using the same, and image display device using the touch panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17759413 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17759413 Country of ref document: EP Kind code of ref document: A1 |